Confluence Algebras and Acyclicity of the Koszul Complex

Cyrille Chenavier

To cite this version:

Cyrille Chenavier. Confluence Algebras and Acyclicity of the Koszul Complex. Algebras and Representation Theory, 2016, <10.1007/s10468-016-9595-6>. <hal-01141738v2>

HAL Id: hal-01141738
 https://hal.archives-ouvertes.fr/hal-01141738v2

Submitted on 25 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Confluence algebras and acyclicity of the Koszul complex

CYRILLE CHENAVIER

Abstract

The N-Koszul algebras are N-homogeneous algebras satisfying a homological property. These algebras are characterised by their Koszul complex: an N-homogeneous algebra is N-Koszul if and only if its Koszul complex is acyclic. Methods based on computational approaches were used to prove N-Koszulness: an algebra admitting a side-confluent presentation is N-Koszul if and only if the extra-condition holds. However, in general, these methods do not provide an explicit contracting homotopy for the Koszul complex. In this article we present a way to construct such a contracting homotopy. The property of side-confluence enables us to define specific representations of confluence algebras. These representations provide a candidate for the contracting homotopy. When the extracondition holds, it turns out that this candidate works. We make explicit our construction on several examples.

Contents

1 Introduction 1
2 Preliminaries 5
2.1 The Koszul complex 5
2.2 Side-confluent presentations 7
2.3 Extra-confluent presentations 9
3 Confluence algebras and reduction operators 10
3.1 The contracting homotopy in small degree 10
3.2 Reduction operators and confluence algebras 14
3.3 Reduction operators and side-confluent presentations 15
4 The left bound of a side-confluent presentation 16
4.1 Reduction pairs associated with a presentation 17
4.2 Construction 18
4.3 Extra-confluent presentations and reduction relations 20
5 Examples 24
5.1 The symmetric algebra 24
5.2 Monomial algebras satisfying the overlap property 26
5.3 The enveloping algebra of the Heisenberg Lie algebra 27

1 Introduction

Koszul algebras. Koszul algebras were defined by Priddy in [Pri70] as quadratic algebras which satisfy a homological property. A quadratic algebra is a graded associative algebra over a field \mathbb{K} which admits a quadratic presentation $\langle X \mid R\rangle$, that is, X is a set of generators and R is a set of quadratic relations. If \mathbf{A} is a quadratic algebra, the field \mathbb{K} admits a left and right \mathbf{A}-module structure induced by the \mathbb{K}-linear projection $\varepsilon: \mathbf{A} \longrightarrow \mathbb{K}$ which maps any generator of \mathbf{A} to 0 . A quadratic algebra \mathbf{A} is said to be Koszul if the Tor groups $\operatorname{Tor}_{n,(m)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})(n$ is the homological degree and m is graduation induced by the natural graduation over \mathbf{A}) vanish for $m \neq n$.

A property of Koszul algebras is that the ground field \mathbb{K} admits a Koszul resolution. The name of this resolution is due to the fact that it is inspired by ideas of Koszul (see [Kos50]). Let A be a quadratic algebra and let $\langle X \mid R\rangle$ be a quadratic presentation of \mathbf{A}. We denote by $\mathbb{K} X$ and \bar{R} the vector space spanned by X and the sub-vector space of $\mathbb{K} X^{\otimes 2}$ spanned by R, respectively. The Koszul complex of a \mathbf{A} is the complex of free left \mathbf{A}-modules:

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{A} \otimes J_{n} \xrightarrow{\partial_{n}} \mathbf{A} \otimes J_{n-1} \longrightarrow \cdots \xrightarrow{\partial_{4}} \mathbf{A} \otimes J_{3} \xrightarrow{\partial_{3}} \mathbf{A} \otimes \bar{R} \xrightarrow{\partial_{2}} \mathbf{A} \otimes \mathbb{K} X \xrightarrow{\partial_{1}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

where, for every integer n such that $n \geq 2$, we have:

$$
J_{n}=\bigcap_{i=0}^{n-2} \mathbb{K} X^{\otimes i} \otimes \bar{R} \otimes \mathbb{K} X^{\otimes n-2-i}
$$

The differentials of the Koszul complex are defined by the inclusions of \bar{R} in $\mathbf{A} \otimes \mathbb{K} X$, of J_{3} in $\mathbf{A} \otimes \bar{R}$ and of J_{n} in $\mathbf{A} \otimes J_{n-1}$ for every integer n such that $n \geq 4$. Then, a quadratic algebra is Koszul if and only if its Koszul complex is acyclic, that is, if and only if the Koszul complex of \mathbf{A} is a resolution of \mathbb{K}.

Another characterisation of Koszulness was given by Backelin in [BF85] (see also Theorem 4.1 in [PP05, chapter 2]): a quadratic algebra is Koszul if and only if it is distributive (that means that some lattices defined with X and R are distributive). Moreover, Koszul algebras have been studied through computational approaches based on a monomial order, that is, a well founded total order on the set of monomials. In [Ani86], Anick used Gröbner basis to construct a free resolution of \mathbb{K} (see also [Ufn95, Section 3.8]). This resolution enables us to conclude that an algebra which admits a quadratic Gröbner basis is Koszul. In [Ber98], Berger studied quadratic algebras with a side-confluent presentation ${ }^{1}$. The latter is a transcription of the notion of quadratic Gröbner basis using some linear operators. More precisely, we can associate with any quadratic presentation $\langle X \mid R\rangle$ of \mathbf{A} a unique linear projector S of $\mathbb{K} X^{\otimes 2}$. This projector maps any element of $\mathbb{K} X^{\otimes 2}$ to a better one with respect to the monomial order. The presentation $\langle X \mid R\rangle$ is said to be side-confluent if there exists an integer k such that:

$$
\left\langle S \otimes \operatorname{Id}_{\mathbb{K} X}, \operatorname{Id}_{\mathbb{K} X} \otimes S\right\rangle^{k}=\left\langle\operatorname{Id}_{\mathbb{K} X} \otimes S, S \otimes \operatorname{Id}_{\mathbb{K} X}\right\rangle^{k},
$$

where $\langle t, s\rangle^{k}$ denotes the product \cdots sts with k factors. The algebra \mathscr{A}_{k} presented by:

$$
\left\langle s_{1}, s_{2} \mid\left\langle s_{1}, s_{2}\right\rangle^{k}=\left\langle s_{2}, s_{1}\right\rangle^{k}, s_{i}^{2}=s_{i}, i=1,2\right\rangle
$$

is naturally associated with a side-confluent presentation. This algebra is the confluence algebra of degree k. In [Ber98, Section 5], Berger used specific representations of these algebras to construct a contracting homotopy for the Koszul complex of a quadratic algebra admitting a side-confluent presentation. This construction enables us to conclude that such an algebra is Koszul.
N-Koszul algebras. Let N be an integer such that $N \geq 2$. An N-homogeneous algebra is a graded associative algebra over a field \mathbb{K} which admits an N-homogeneous presentation $\langle X \mid R\rangle$, that is, X is a set of generators and R is a set of N-homogeneous relations. In [Ber01] the notion of Koszul algebra

[^0]is extended to the notion of N-Koszul algebra. An N-homogeneous algebra \mathbf{A} is said to be N-Koszul if the Tor groups $\operatorname{Tor}_{n,(m)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})$ vanish for $m \neq l_{N}(n)$, where l_{N} is the function defined by:
\[

l_{N}(n)= $$
\begin{cases}k N, & \text { if } n=2 k \\ k N+1, & \text { if } n=2 k+1\end{cases}
$$
\]

We remark that a 2 -Koszul algebra is precisely a Koszul algebra. Thus, the notion of N-Koszul algebra generalises the one of Koszul algebra.

In the same paper, Berger defined the Koszul complex of an N-homogeneous algebra. Let $\langle X \mid R\rangle$ be an N-homogeneous presentation of \mathbf{A}. The Koszul complex of \mathbf{A} is the complex of left \mathbf{A}-modules:

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{A} \otimes J_{n}^{N} \xrightarrow{\partial_{n}} \mathbf{A} \otimes J_{n-1}^{N} \longrightarrow \cdots \xrightarrow{\partial_{4}} \mathbf{A} \otimes J_{3}^{N} \xrightarrow{\partial_{3}} \mathbf{A} \otimes \bar{R} \xrightarrow{\partial_{2}} \mathbf{A} \otimes \mathbb{K} X \xrightarrow{\partial_{1}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

where the vector spaces J_{n}^{N} are defined by:

$$
J_{n}^{N}=\bigcap_{i=0}^{l_{N}(n)-N} \mathbb{K} X^{\otimes i} \otimes \bar{R} \otimes \mathbb{K} X^{\otimes l_{N}(n)-N-i}
$$

As in the quadratic case, this complex characterises the property of N-Koszulness: an N-homogeneous algebra is N-Koszul if and only if its Koszul complex is acyclic (see [Ber01, Proposition 2.12]). This complex also find applications in the study of higher Koszul duality (see [DV13]).

Berger studied the property of N-Koszulness using monomial orders. As in the quadratic case, there exists a unique linear projector S of $\mathbb{K} X^{\otimes N}$ associated with an N-homogeneous presentation of A which maps any element to a better one with respect to the monomial order. Then, a presentation is side-confluent if for every integer m such that $N+1 \leq m \leq 2 N-1$, there exists an integer k which satisfies:

$$
\left\langle S \otimes \operatorname{Id}_{\mathbb{K} X^{\otimes m-N}}, \operatorname{Id}_{\mathbb{K} X \otimes m-N} \otimes S\right\rangle^{k}=\left\langle\operatorname{Id}_{\mathbb{K} X^{\otimes m-N}} \otimes S, S \otimes \operatorname{Id}_{\mathbb{K} X \otimes m-N}\right\rangle^{k}
$$

Contrary to the quadratic case, an algebra admitting a side-confluent presentation is not necessarily N Koszul. Indeed, when the set X is finite, such an algebra is N-Koszul if and only if the extra-condition holds (see [Ber01, Proposition 3.4]). The extra-condition is stated as follows:

$$
(e c): \quad\left(\mathbb{K} X^{\otimes m} \otimes \bar{R}\right) \cap\left(\bar{R} \otimes \mathbb{K} X^{\otimes m}\right) \subset \mathbb{K} X^{\otimes m-1} \otimes \bar{R} \otimes \mathbb{K} X, \text { for every } 2 \leq m \leq N-1
$$

We group these hypothesis in the following definition:
2.3.2 Definition. Let A be an N-homogeneous algebra. A side-confluent presentation $\langle X \mid R\rangle$ such that X is finite and the extra-condition holds is said to be extra-confluent.

Our problematic. We deduce of the works from [Ber01] that the Koszul complex of an algebra A admitting an extra-confluent presentation is acyclic. However, there does not exist an explicit contracting homotopy for the Koszul complex of \mathbf{A}. The purpose of this paper is to construct such a contracting homotopy. For the quadratic case, our contracting homotopy is the one constructed in [Ber98, Section 5].

Our results

We present the different steps of our construction. Recall that an extra-confluent presentation needs a monomial order. Thus, in what follows, we fix a monomial order. For every integer m, we denote by $X^{(m)}$ the set of words of length m.

Reduction pairs associated with a presentation. In the way to construct our contracting homotopy, we will associate with any N-homogeneous presentation $\langle X \mid R\rangle$ such that X is finite, a family $P_{n, m}=\left(F_{1}^{n, m}, F_{2}^{n, m}\right)$, where $F_{1}^{n, m}$ and $F_{2}^{n, m}$ are linear projectors of $\mathbb{K} X^{(m)}$. The pair $P_{n, m}$ is called the reduction pair of bi-degree (n, m) associated with $\langle X \mid R\rangle$. We point the fact that the finiteness condition over X will be necessary to define the operators $F_{i}^{n, m}$. Moreover, these operators satisfy the following condition: for any $w \in X^{(m)}, F_{i}^{n, m}(w)$ is either equal to w or is a sum of monomials which are strictly smaller than w with respect to the monomial order. The linear projectors of $\mathbb{K} X^{(m)}$ satisfying the previous condition are called reduction operators relatively to $X^{(m)}$. The set of reduction operators relatively to $X^{(m)}$ admits a lattice structure (we will recall it in Section 3.2). This structure plays an essential role in our constructions. A pair $\left(T_{1}, T_{2}\right)$ of reduction operators relatively to $X^{(m)}$ is said to be confluent if there exists an integer k such that we have the following equality in End $\left(\mathbb{K} X^{(m)}\right)$:

$$
\left\langle T_{1}, T_{2}\right\rangle^{k}=\left\langle T_{2}, T_{1}\right\rangle^{k}
$$

Then, our first result is:
4.1.4 Theorem. Let A be an N-homogeneous algebra admitting a side-confluent presentation $\langle X \mid R\rangle$, where X is a finite set. The reduction pairs associated with $\langle X \mid R\rangle$ are confluent.

The left bound of a side-confluent presentation. The reduction pairs associated with a sideconfluent presentation $\langle X \mid R\rangle$ enable us to define a family of representations of confluence algebras in the following way:

$$
\begin{aligned}
\varphi^{P_{n, m}}:\left\langle s_{1}, s_{2} \mid\left\langle s_{1}, s_{2}\right\rangle^{k_{n, m}}=\left\langle s_{2}, s_{1}\right\rangle^{k_{n, m}}, s_{i}^{2}=s_{i}, i=1,2\right\rangle & \longrightarrow \operatorname{End}\left(\mathbb{K} X^{(m)}\right), \\
s_{i} & \longmapsto F_{i}^{n, m}
\end{aligned}
$$

where the integer $k_{n, m}$ satisfies:

$$
\left\langle F_{1}^{n, m}, F_{2}^{n, m}\right\rangle^{k_{n, m}}=\left\langle F_{2}^{n, m}, F_{1}^{n, m}\right\rangle^{k_{n, m}}
$$

For every integers n and m we will consider a specific element in $\mathscr{A}_{k_{n, m}}$:

$$
\gamma_{1}=\left(1-s_{2}\right)\left(s_{1}+s_{1} s_{2} s_{1}+\cdots+\left\langle s_{2}, s_{1}\right\rangle^{2 i+1}\right)
$$

where the integer i depends on $k_{n, m}$. The shape of this element will be motivated in Section 3.1. In Section 4.2 we will use the elements $\varphi^{P_{n, m}}\left(\gamma_{1}\right)$ to construct a family of \mathbb{K}-linear maps

$$
\begin{aligned}
& h_{0}: \mathbf{A} \longrightarrow \mathbf{A} \otimes \mathbb{K} X, \\
& h_{1}: \mathbf{A} \otimes \mathbb{K} X \longrightarrow \mathbf{A} \otimes \bar{R}, \\
& h_{2}: \mathbf{A} \otimes \bar{R} \longrightarrow \mathbf{A} \otimes J_{3}^{N}, \\
& h_{n}: \mathbf{A} \otimes J_{n}^{N} \longrightarrow \mathbf{A} \otimes J_{n+1}^{N}, \text { for } n \geq 3
\end{aligned}
$$

where \mathbf{A} is the N-homogeneous algebra presented by $\langle X \mid R\rangle$. The family $\left(h_{n}\right)_{n}$ is called the left bound of $\langle X \mid R\rangle$. In Proposition 4.2.5, we will show that the left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A} if and only if $\langle X \mid R\rangle$ satisfies some identities. These identities are called the reduction relations.

Extra-confluent presentations and reduction relations. Finally, we will show that the extracondition implies that the reduction relations hold. Then, our main result is stated as follows:
4.3.5 Theorem. Let A be an N-homogeneous algebra admitting an extra-confluent presentation $\langle X \mid R\rangle$. The left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}.

Organisation

In Section 2, we recall how we can construct the Koszul complex of an N-homogeneous algebra. We also recall the definition of an extra-confluent presentation. In Section 3.1, we make explicit our construction in small homological degree. In Section 3.2, we recall the definitions of confluence algebras and reduction operators. We also recall the link between reduction operators and representations of confluence algebras. In Section 4, we construct the contracting homotopy in terms of confluence. As an illustration of our construction, we provide in Section 5 three examples: the symmetric algebra, monomial algebras which satisfy the overlap properties and the enveloping algebra of the Heisenberg Lie algebra.

Acknowledgement. The author wish to thank Roland Berger for helpful discussions. This work is supported by the Sorbonne-Paris-Cité IDEX grant Focal and the ANR grant ANR-13-BS02-0005-02 CATHRE.

2 Preliminaries

2.1 The Koszul complex

2.1.1. Conventions and notations. We denote by \mathbb{K} a field. We say vector space and algebra instead of \mathbb{K}-vector space and \mathbb{K}-algebra, respectively. We consider only associative algebras. Given a set X, we denote by $\langle X\rangle$ and $\mathbb{K} X$ the free monoid and the vector space spanned by X, respectively. For every integer m, we denote by $X^{(m)}$ the subset of $\langle X\rangle$ of words of length m.

We write $V=\mathbb{K} X$. We identify $\mathbb{K} X^{(m)}$ and the free algebra $\mathbb{K}\langle X\rangle$ spanned by X to $V^{\otimes m}$ and to the tensor algebra $\mathrm{T}(V)$ over V, respectively.

Let \mathbf{A} be an algebra. A presentation of \mathbf{A} is a pair $\langle X \mid R\rangle$, where X is a set and R is a subset of $\mathbb{K}\langle X\rangle$ such that \mathbf{A} is isomorphic to the quotient of $\mathbb{K}\langle X\rangle$ by the two-sided ideal spanned by R. The latter is denoted by $I(R)$, and the isomorphism from \mathbf{A} to $\mathbb{K}\langle X\rangle / I(R)$ is denoted by $\psi_{\langle X \mid R\rangle}$. For every $f \in \mathbb{K}\langle X\rangle$, we denote by \bar{f} the image of f through the natural projection of $\mathbb{K}\langle X\rangle$ over \mathbf{A}.

Let N be an integer such that $N \geq 2$. An N-homogeneous presentation of \mathbf{A} is a presentation $\langle X \mid R\rangle$ of \mathbf{A} such that R is included in $V^{\otimes N}$. In this case, the two-sided ideal $I(R)$ is the direct sum of vector spaces $I(R)_{m}$ defined by $I(R)_{m}=0$ if $m<N$, and

$$
I(R)_{m}=\sum_{i=0}^{m-N} V^{\otimes i} \otimes \bar{R} \otimes V^{\otimes m-N-i} \text { if } m \geq N
$$

where \bar{R} denotes the sub-vector space of $V^{\otimes N}$ spanned by R. An N-homogeneous algebra is a graded algebra $\mathbf{A}=\bigoplus_{m \in \mathbb{N}} \mathbf{A}_{m}$ which admits an N-homogeneous presentation $\langle X \mid R\rangle$ such that for every integer $m, \psi_{\langle X \mid R\rangle}$ induces a \mathbb{K}-linear isomorphism from \mathbf{A}_{m} to $V^{\otimes m} / I(R)_{m}$:

$$
\begin{aligned}
\mathbf{A} & =\bigoplus_{m \in \mathbb{N}} \mathbf{A}_{m} \\
& \simeq \mathbb{K} \oplus V \oplus \cdots \oplus V^{\otimes N-1} \oplus \frac{V^{\otimes N}}{\bar{R}} \oplus \frac{V^{\otimes N+1}}{V \otimes \bar{R}+\bar{R} \otimes V} \oplus \cdots
\end{aligned}
$$

We denote by $\varepsilon: \mathbf{A} \longrightarrow \mathbb{K}$ the projection which $\operatorname{maps} 1_{\mathbf{A}}$ to $1_{\mathbb{K}}$ and \mathbf{A}_{m} to 0 for every integer m such that $m \geq 1$.
2.1.2. The construction of the Koszul complex. Let \mathbf{A} be an N-homogeneous algebra and let $\langle X \mid R\rangle$ be an N-homogeneous presentation of \mathbf{A}. We write $V=\mathbb{K} X$. We consider the family of vector spaces $\left(J_{n}^{N}\right)_{n}$ defined by $J_{0}^{N}=\mathbb{K}, J_{1}^{N}=V, J_{2}^{N}=\bar{R}$ and for every integer n such that $n \geq 3$

$$
J_{n}^{N}=\bigcap_{i=0}^{l_{N}(n)-N} V^{\otimes i} \otimes \bar{R} \otimes V^{\otimes l_{N}(n)-N-i},
$$

where the function $l_{N}: \mathbb{N} \longrightarrow \mathbb{N}$ is defined by

$$
l_{N}(n)= \begin{cases}k N, & \text { if } n=2 k, \\ k N+1, & \text { if } n=2 k+1\end{cases}
$$

When there is no ambiguity, we write J_{n} instead of J_{n}^{N}.
Let n be an integer. For every $w \in X^{\left(l_{N}(n+1)\right)}$, let $w_{1} \in X^{\left(l_{N}(n+1)-l_{N}(n)\right)}$ and $w_{2} \in X^{\left(l_{N}(n)\right)}$ such that $w=w_{1} w_{2}$. Let us consider the \mathbf{A}-linear map

$$
\begin{aligned}
F_{n+1}: \mathbf{A} \otimes V^{\otimes l_{N}(n+1)} & \longrightarrow \mathbf{A} \otimes V^{\otimes l_{N}(n)} . \\
1_{\mathbf{A}} \otimes w & \longmapsto \overline{w_{1}} \otimes w_{2}
\end{aligned}
$$

Recall from [Ber01, Section 3] that the Koszul complex of \mathbf{A} is the complex $\left(K_{\bullet}, \partial\right)$

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{A} \otimes J_{n} \xrightarrow{\partial_{n}} \mathbf{A} \otimes J_{n-1} \longrightarrow \cdots \xrightarrow{\partial_{2}} \mathbf{A} \otimes J_{1} \xrightarrow{\partial_{1}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

where ∂_{n} is the restriction of F_{n} to $\mathbf{A} \otimes J_{n}$. In particular, the map ∂_{1} is defined by $\partial_{1}\left(1_{\mathbf{A}} \otimes x\right)=\bar{x}$ for every $x \in X$.
2.1.3. Remark. The two following remarks show that the Koszul complex is well-defined:

1. Let n be an integer. The vector space J_{n+1} is included in $V^{\otimes l_{N}(n+1)-l_{N}(n)} \otimes J_{n}$. Thus, the vector space $F_{n+1}\left(\mathbf{A} \otimes J_{n+1}\right)$ is included in $\mathbf{A} \otimes J_{n}$.
2. Let n be an integer such that $n \geq 1$. The vector space J_{n+1} is included in $R \otimes J_{n-1}$. Thus, the restriction of $F_{n} F_{n+1}$ to $\mathbf{A} \otimes J_{n+1}$ vanishes.
2.1.4. Example. We consider the enveloping algebra of the Heisenberg Lie algebra introduced in [AS87]. This is the 3 -homogeneous algebra presented by

$$
\left\langle x_{1}, x_{2} \mid x_{2} x_{1} x_{1}-2 x_{1} x_{2} x_{1}+x_{1} x_{1} x_{2}, x_{2} x_{2} x_{1}-2 x_{2} x_{1} x_{2}+x_{1} x_{2} x_{2}\right\rangle .
$$

This algebra is the minimal (with respect to the number of generators) example of Yang-Mills algebra introduced in [CDV02].

The map $\partial_{2}: \mathbf{A} \otimes \bar{R} \longrightarrow \mathbf{A} \otimes V$ is defined by

$$
\begin{aligned}
\partial_{2}\left(1_{\mathbf{A}} \otimes x_{2} x_{1} x_{1}-2 x_{1} x_{2} x_{1}+x_{1} x_{1} x_{2}\right) & =\overline{x_{2} x_{1}} \otimes x_{1}-2 \overline{x_{1} x_{2}} \otimes x_{1}+\overline{x_{1} x_{1}} \otimes x_{2}, \\
\partial_{2}\left(1_{\mathbf{A}} \otimes x_{2} x_{2} x_{1}-2 x_{2} x_{1} x_{2}+x_{1} x_{2} x_{2}\right) & =\overline{x_{2} x_{2}} \otimes x_{1}-2 \overline{x_{2} x_{1}} \otimes x_{2}+\overline{x_{1} x_{2}} \otimes x_{2} .
\end{aligned}
$$

The vector space $J_{3}=(V \otimes \bar{R}) \cap(\bar{R} \otimes V)$ is the one-dimensional vector space spanned by

$$
\begin{aligned}
v & =x_{2}\left(x_{2} x_{1} x_{1}-2 x_{1} x_{2} x_{1}+x_{1} x_{1} x_{2}\right)+x_{1}\left(x_{2} x_{2} x_{1}-2 x_{2} x_{1} x_{2}+x_{1} x_{2} x_{2}\right) \\
& =\left(x_{2} x_{2} x_{1}-2 x_{2} x_{1} x_{2}+x_{1} x_{2} x_{2}\right) x_{1}+\left(x_{2} x_{1} x_{1}-2 x_{1} x_{2} x_{1}+x_{1} x_{1} x_{2}\right) x_{2} .
\end{aligned}
$$

The map $\partial_{3}: \mathbf{A} \otimes J_{3} \longrightarrow \mathbf{A} \otimes \bar{R}$ is defined by

$$
\partial_{3}\left(1_{\mathbf{A}} \otimes v\right)=\overline{x_{2}} \otimes\left(x_{2} x_{1} x_{1}-2 x_{1} x_{2} x_{1}+x_{1} x_{1} x_{2}\right)+\overline{x_{1}} \otimes\left(x_{2} x_{2} x_{1}-2 x_{2} x_{1} x_{2}+x_{1} x_{2} x_{2}\right) .
$$

2.2 Side-confluent presentations

Through this section we fix an N-homogeneous algebra A and an N-homogeneous presentation $\langle X \mid R\rangle$ of \mathbf{A}. We assume that X is a totally ordered set. We write $V=\mathbb{K} X$.
2.2.1. Reductions. For every integer m, the set $X^{(m)}$ is totally ordered for the lexicographic order induced by the order over X. For every $f \in V^{\otimes m} \backslash\{0\}$, the leading monomial of f, denoted by $\operatorname{lm}(f)$, is the greatest element of $X^{(m)}$ occurring in the decomposition of f. We denote by $\operatorname{lc}(f)$ the coefficient of $\operatorname{lm}(f)$ in the decomposition of f. Let

$$
R^{\prime}=\left\{\frac{1}{\operatorname{lc}(f)} f, f \in R\right\}
$$

Then, $\left\langle X \mid R^{\prime}\right\rangle$ is an N-homogeneous presentation of \mathbf{A}. Thus, we can assume that lc (f) is equal to 1 for every $f \in R$.

For every $w_{1}, w_{2} \in\langle X\rangle$ and every $f \in R$, let $r_{w_{1} f w_{2}}$ be the \mathbb{K}-linear endomorphism of $\mathrm{T}(V)$ defined on the basis $\langle X\rangle$ in the following way:

$$
r_{w_{1} f w_{2}}(w)=\left\{\begin{array}{l}
w_{1}(\operatorname{lm}(f)-f) w_{2}, \text { if } w=w_{1} \operatorname{lm}(f) w_{2} \\
w, \text { otherwise }
\end{array}\right.
$$

Taking the terminology of [Ber78], the morphisms $r_{w_{1} f w_{2}}$ are called the reductions of $\langle X \mid R\rangle$.
2.2.2. Normal forms. An element $f \in \mathrm{~T}(V)$ is said to be a normal form for $\langle X \mid R\rangle$ if $r(f)=f$ for every reduction r of $\langle X \mid R\rangle$. Given an element f of $\mathrm{T}(V)$, a normal form of f is a normal form g such that there exist reductions r_{1}, \cdots, r_{n} satisfying $g=r_{1} \cdots r_{n}(f)$. In this case, we have $\bar{f}=\bar{g}$.

The presentation $\langle X \mid R\rangle$ is said to be reduced if, for every $f \in R, \operatorname{lm}(f)-f$ is a normal form for $\langle X \mid R\rangle$ and $\operatorname{lm}(f)$ is a normal form for $\langle X \mid R \backslash\{f\}\rangle$. From this moment, all the presentations are assumed to be reduced.
2.2.3. Critical branching. A critical branching of $\langle X \mid R\rangle$ is a 5-tuple ($w_{1}, w_{2}, w_{3}, f, g$) where $f, g \in R$ and w_{1}, w_{2}, w_{3} are non empty words such that:

$$
\begin{aligned}
& w_{1} w_{2}=\operatorname{lm}(f), \text { and } \\
& w_{2} w_{3}=\operatorname{lm}(g) .
\end{aligned}
$$

The word $w_{1} w_{2} w_{3}$ is the source of this critical branching.
2.2.4. The operator of a presentation. Let S be the endomorphism of $V^{\otimes N}$ defined on the basis $X^{(N)}$ in the following way:

$$
S(w)=\left\{\begin{array}{l}
\operatorname{lm}(f)-f, \text { if there exists } f \in R \text { such that } w=\operatorname{lm}(f) \\
w, \text { otherwise }
\end{array}\right.
$$

The operator S is the operator of $\langle X \mid R\rangle$. The presentation $\langle X \mid R\rangle$ is reduced. Thus, S is well-defined and is a projector. The kernel of S is equal to \bar{R}. If $w \in X^{(N)}$ is a normal form, then $S(w)$ is equal to w. If w is not a normal form, then $S(w)$ is a linear combination of words strictly smaller than w.
2.2.5. Definition. The presentation $\langle X \mid R\rangle$ is said to be side-confluent if for every integer m such that $1 \leq m \leq N-1$, there exists an integer k such that:

$$
\left\langle\operatorname{Id}_{V \otimes m} \otimes S, S \otimes \operatorname{Id}_{V \otimes m}\right\rangle^{k}=\left\langle S \otimes \operatorname{Id}_{V \otimes m}, \operatorname{Id}_{V \otimes m} \otimes S\right\rangle^{k},
$$

where $\langle t, s\rangle^{k}$ denotes the product \cdots sts with k factors.
The Diamond Lemma ([Ber78, Theorem 1.2]) implies the following:
2.2.6. Proposition. Let A be an N-homogeneous algebra. Assume that A admits a side-confluent presentation $\langle X \mid R\rangle$. Then, the following hold:

1. Every element of $\mathrm{T}(V)$ admits a unique normal form for $\langle X \mid R\rangle$.
2. The set $\{\bar{w}, w \in\langle X\rangle$ is a normal form $\}$ is a basis of \mathbf{A}.
3. An element of $\mathrm{T}(V)$ belongs to $I(R)$ if and only if its normal form is equal to 0 .

Proof. Let S be the operator of $\langle X \mid R\rangle$. Let $\left(w_{1}, w_{2}, w_{3}, f, g\right)$ be a critical branching of $\langle X \mid R\rangle$. Let m be the length of $w=w_{1} w_{2} w_{3}$. The presentation $\langle X \mid R\rangle$ being N-homogeneous, we have $N+1 \leq m \leq 2 N-1$. Thus, there exists an integer k such that:

$$
\left\langle\operatorname{Id}_{V \otimes m-N} \otimes S, S \otimes \operatorname{Id}_{V \otimes m-N}\right\rangle^{k}(w)=\left\langle S \otimes \operatorname{Id}_{V \otimes m-N}, \operatorname{Id}_{V \otimes m-N} \otimes S\right\rangle^{k}(w) .
$$

Hence, there exist two sequences of reductions r_{1}, \cdots, r_{n} and $r_{1}^{\prime}, \cdots, r_{l}^{\prime}$ such that $r_{1} \cdots r_{n}\left((\operatorname{lm}(f)-f) w_{3}\right)$ is equal to $r_{1}^{\prime} \cdots r_{l}^{\prime}\left(w_{1}(\operatorname{lm}(g)-g)\right)$. We deduce from [Ber78, Theorem 1.2] that every element $f \in \mathrm{~T}(V)$ admits a unique normal form for $\langle X \mid R\rangle$ and that $\{\bar{w}, w \in\langle X\rangle$ is a normal form $\}$ is a basis of \mathbf{A}. Thus, the two first points hold.

Let us show the third point. Let f be an element of $\mathrm{T}(V)$ and let \widehat{f} be its unique normal form. We write:

$$
\widehat{f}=\sum_{i \in I} \lambda_{i} w_{i},
$$

where $w_{i} \in\langle X\rangle$ are normal forms. Then, \bar{f} is equal to $\sum_{i \in I} \lambda_{i} \overline{w_{i}}$. From the second point, \bar{f} is equal to 0 if and only if λ_{i} is equal to 0 for every $i \in I$.
2.2.7. Lemma. Assume that the presentation $\langle X \mid R\rangle$ is side-confluent. Let S be the operator of $\langle X \mid R\rangle$. For every integer m such that $N+1 \leq m \leq 2 N-1$, there exists an integer k such that:

$$
\begin{aligned}
& \left\langle\operatorname{Id}_{V \otimes m}-\mathrm{Id}_{V \otimes m-N} \otimes S, \operatorname{Id}_{V \otimes m}-S \otimes \operatorname{Id}_{V \otimes m-N}\right\rangle^{k} \\
= & \left\langle\mathrm{Id}_{V \otimes m}-S \otimes \operatorname{Id}_{V \otimes m-N}, \operatorname{Id}_{V \otimes m}-\operatorname{Id}_{V \otimes m-N} \otimes S\right\rangle^{k} .
\end{aligned}
$$

Moreover, for every $w \in X^{(m)}$ such that $\operatorname{Id}_{V \otimes m-N} \otimes S(w)$ and $S \otimes \operatorname{Id}_{V \otimes m-N}(w)$ are different from w, we have:

$$
\operatorname{lm}\left(\left(\left\langle\operatorname{Id}_{V \otimes m}-\operatorname{Id}_{V \otimes m-N}\right\rangle \otimes S, \operatorname{Id}_{V \otimes m}-S \otimes \operatorname{Id}_{V \otimes m-N}\right)^{k}(w)\right)=w
$$

Proof. We write $S_{1}=\operatorname{Id}_{V \otimes m-N} \otimes S$ and $S_{2}=S \otimes \operatorname{Id}_{V \otimes m-N}$.
The presentation $\langle X \mid R\rangle$ is side-confluent. Thus, there exists $k \in \mathbb{N}$ such that $\left\langle S_{2}, S_{1}\right\rangle^{k}$ is equal to $\left\langle S_{1}, S_{2}\right\rangle^{k}$. The morphisms S_{1} and S_{2} being projectors, we show by induction that for every integer j we have:

$$
\begin{aligned}
& \left\langle\operatorname{Id}_{V \otimes m}-S_{1}, \operatorname{Id}_{V \otimes m}-S_{2}\right\rangle^{j}=\operatorname{Id}_{V \otimes m}+\sum_{i=1}^{j-1}(-1)^{i}\left(\left\langle S_{1}, S_{2}\right\rangle^{i}+\left\langle S_{2}, S_{1}\right\rangle^{i}\right)+(-1)^{j}\left\langle S_{1}, S_{2}\right\rangle^{j} \\
& \left\langle\operatorname{Id}_{V \otimes m}-S_{2}, \operatorname{Id}_{V \otimes m}-S_{1}\right\rangle^{j}=\operatorname{Id}_{V \otimes m}+\sum_{i=1}^{j-1}(-1)^{i}\left(\left\langle S_{1}, S_{2}\right\rangle^{i}+\left\langle S_{2}, S_{1}\right\rangle^{i}\right)+(-1)^{j}\left\langle S_{2}, S_{1}\right\rangle^{j}
\end{aligned}
$$

In particular we have:

$$
\left\langle\operatorname{Id}_{V \otimes m}-S_{2}, \operatorname{Id}_{V \otimes m}-S_{1}\right\rangle^{k}=\left\langle\operatorname{Id}_{V \otimes m}-S_{1}, \operatorname{Id}_{V \otimes m}-S_{2}\right\rangle^{k}
$$

Moreover, if $w \in X^{(m)}$ is such that $S_{1}(w)$ and $S_{2}(w)$ are different from w, then $S_{1}(w)$ and $S_{2}(w)$ are strictly smaller than w. We deduce from the relation

$$
\left\langle\operatorname{Id}_{V \otimes m}-S_{1}, \operatorname{Id}_{V \otimes m}-S_{2}\right\rangle^{k}(w)=w+\sum_{i=1}^{k-1}(-1)^{i}\left(\left\langle S_{1}, S_{2}\right\rangle^{i}+\left\langle S_{2}, S_{1}\right\rangle^{i}\right)(w)+(-1)^{k}\left\langle S_{1}, S_{2}\right\rangle^{k}(w)
$$

that $\operatorname{lm}\left(\left\langle\operatorname{Id}_{V \otimes m}-S_{1}, \operatorname{Id}_{V \otimes m}-S_{2}\right\rangle^{k}(w)\right)$ is equal to w.
2.2.8. Example. We consider the presentation from Example 2.1 .4 of the enveloping algebra of the Heisenberg Lie algebra with the order $x_{1}<x_{2}$. It was proven in [KVdB15, Theorem 6.3.2] that this presentation is side-confluent (in fact, B.Kriegk and M.Van den Bergh have proven that any Yang-Mills algebra admits a side-confluent presentation). We propose there an other proof of this result.

The operator $S \in \operatorname{End}\left(V^{\otimes 3}\right)$ of this presentation is defined on the basis $X^{(3)}$ by

$$
S(w)=\left\{\begin{array}{l}
2 x_{1} x_{2} x_{1}-x_{1} x_{1} x_{2}, \text { if } w=x_{2} x_{1} x_{1}, \\
2 x_{2} x_{1} x_{2}-x_{1} x_{2} x_{2}, \text { if } w=x_{2} x_{2} x_{1} \\
w, \text { otherwise }
\end{array}\right.
$$

This presentation admits exactly one critical branching:

$$
\left(x_{2}, x_{2} x_{1}, x_{1}, x_{2} x_{1} x_{1}-2 x_{1} x_{2} x_{1}+x_{1} x_{1} x_{2}, x_{2} x_{2} x_{1}-2 x_{2} x_{1} x_{2}+x_{1} x_{2} x_{2}\right) .
$$

We have:

$$
\begin{aligned}
\left\langle S \otimes \operatorname{Id}_{V}, \operatorname{Id}_{V} \otimes S\right\rangle^{2}\left(x_{2} x_{2} x_{1} x_{1}\right) & =\left\langle\operatorname{Id}_{V} \otimes S, S \otimes \operatorname{Id}_{V}\right\rangle^{2}\left(x_{2} x_{2} x_{1} x_{1}\right) \\
& =x_{2} x_{1} x_{2} x_{1}-2 x_{1} x_{2} x_{1} x_{2}+x_{1} x_{1} x_{2} x_{2}
\end{aligned}
$$

Moreover, for every $w \in X^{(4)}$ which is different from $x_{2} x_{2} x_{1} x_{1}$, we check that $\left\langle S \otimes \operatorname{Id}_{V}, \operatorname{Id}_{V} \otimes S\right\rangle^{2}(w)$ is equal to $\left\langle\operatorname{Id}_{V} \otimes S, S \otimes \operatorname{Id}_{V}\right\rangle^{2}(w)$. Thus, we have:

$$
\left\langle S \otimes \operatorname{Id}_{V}, \operatorname{Id}_{V} \otimes S\right\rangle^{2}=\left\langle\operatorname{Id}_{V} \otimes S, S \otimes \operatorname{Id}_{V}\right\rangle^{2}
$$

For every $w \in X^{(5)}$ we check that $\left\langle S \otimes \operatorname{Id}_{V \otimes 2}, \operatorname{Id}_{V \otimes 2} \otimes S\right\rangle^{2}(w)$ and $\left\langle\operatorname{Id}_{V \otimes 2} \otimes S, S \otimes \operatorname{Id}_{V \otimes 2}\right\rangle^{2}(w)$ are equal. Thus, we have:

$$
\left\langle S \otimes \operatorname{Id}_{V^{\otimes 2}}, \operatorname{Id}_{V^{\otimes 2}} \otimes S\right\rangle^{2}=\left\langle\operatorname{Id}_{V^{\otimes 2}} \otimes S, S \otimes \operatorname{Id}_{V^{\otimes 2}}\right\rangle^{2} .
$$

We conclude that the presentation from Example 2.1.4 with the order $x_{1}<x_{2}$ is side-confluent.

2.3 Extra-confluent presentations

2.3.1. The extra-condition. Let \mathbf{A} be an N-homogeneous algebra. Assume that \mathbf{A} admits a sideconfluent presentation $\langle X \mid R\rangle$ where X is a totally ordered finite set. Recall from [Ber01, Section 3] that the Koszul complex of \mathbf{A} is acyclic if and only if the extra-condition holds. The extra-condition is stated as follows:

$$
\left(\mathbb{K} X^{(n)} \otimes \bar{R}\right) \cap\left(\bar{R} \otimes \mathbb{K} X^{(n)}\right) \subset \mathbb{K} X^{(n-1)} \otimes \bar{R} \otimes \mathbb{K} X, \text { for every } 2 \leq n \leq N-1
$$

2.3.2. Definition. Let A be an N-homogeneous algebra. A side-confluent presentation $\langle X \mid R\rangle$ such that X is finite and the extra-condition holds is said to be extra-confluent.
2.3.3. Remark. If $N=2$, the extra-condition is an empty condition. Thus, in this case, the notions of extra-confluent presentation and side-confluent presentation coincide.

An extra-confluent presentation has the following interpretation in terms of critical branching:
2.3.4. Proposition. Let \mathbf{A} be an N-homogeneous algebra. Assume that \mathbf{A} admits an extra-confluent presentation $\langle X \mid R\rangle$. Let $w=x_{1} \cdots x_{m}$ be the source of a critical branching of $\langle X \mid R\rangle$. The word $x_{m-N} \cdots x_{m-1}$ is not a normal form for $\langle X \mid R\rangle$.

Proof. The presentation $\langle X \mid R\rangle$ is N-homogeneous. In particular, we have $N+1 \leq m \leq 2 N-1$. If $m=N+1$, there is nothing to prove. Thus, we assume that m is greater than $N+2$.

Let S be the operator of $\langle X \mid R\rangle$. We write

$$
S_{1}=S \otimes \operatorname{Id}_{\otimes m-N} \text { and } S_{2}=\operatorname{Id}_{\otimes m-N} \otimes S
$$

The presentation $\langle X \mid R\rangle$ is side-confluent. Thus, from Lemma 2.2.7, there exists an integer k such that

$$
\left\langle\operatorname{Id}_{V \otimes m}-S_{2}, \operatorname{Id}_{V \otimes m}-S_{1}\right\rangle^{k}=\left\langle\operatorname{Id}_{V \otimes m}-S_{1}, \operatorname{Id}_{V \otimes m}-S_{2}\right\rangle^{k}
$$

We denote by Λ this common morphism. By hypothesis, $S_{1}(w)$ and $S_{2}(w)$ are different from w. From Lemma 2.2.7, $\operatorname{lm}(\Lambda(w))$ is equal to w.

The image of Λ is included in $\operatorname{im}\left(\operatorname{Id}_{\mathbb{K} X^{(m)}}-S_{1}\right) \cap \operatorname{im}\left(\operatorname{Id}_{\mathbb{K} X^{(m)}}-S_{2}\right)$ that is, $\operatorname{ker}\left(S_{1}\right) \cap \operatorname{ker}\left(S_{2}\right)$. The latter is equal to $\bar{R} \otimes \mathbb{K} X^{(m-N)} \cap \mathbb{K} X^{(m-N)} \otimes \bar{R}$. The presentation $\langle X \mid R\rangle$ satisfies the extracondition. Thus, the image of Λ is included in $\mathbb{K} X^{(m-N-1)} \otimes \bar{R} \otimes \mathbb{K} X$. In particular, there exist $w_{1}, \cdots, w_{l} \in X^{(m-N-1)}, f_{1}, \cdots, f_{l} \in R, x_{1}, \cdots, x_{l} \in X$ and $\lambda_{1}, \cdots \lambda_{l} \in \mathbb{K}$ which satisfy

$$
\Lambda(w)=\sum_{i=1}^{l} \lambda_{i} w_{i} f_{i} x_{i}
$$

Thus, $\operatorname{lm}(\Lambda(w))=w$ is equal to $w_{i} \operatorname{lm}\left(f_{i}\right) x_{i}$ for some $1 \leq i \leq l$. We conclude that $x_{n-N} \cdots x_{m-1}$ is equal to $\operatorname{lm}\left(f_{i}\right)$. In particular, it is not a normal form.
2.3.5. Remark. Let \mathbf{A} be the algebra presented by $\langle x<y \mid x y x\rangle$. This presentation is side-confluent. There is only one critical branching: $(x y, x, y x, x y x, x y x)$. The source $x y x y x$ of this critical has length 5. We deduce from Proposition 2.3.4 that the extra-condition does not hold.

Let us check that the Koszul complex of \mathbf{A} is not acyclic: the vector space J_{3} is reduced to $\{0\}$ and the map $\partial_{2}: \mathbf{A} \otimes \bar{R} \longrightarrow \mathbf{A} \otimes V$ is defined by $\partial_{2}\left(1_{\mathbf{A}} \otimes x y x\right)=\overline{x y} \otimes x$. In particular, $\overline{x y} \otimes x y x$ belongs to the kernel of ∂_{2}. Thus, we have a strict inclusion $\operatorname{im}\left(\partial_{3}\right) \varsubsetneqq \operatorname{ker}\left(\partial_{2}\right)$.
2.3.6. Example. We consider the presentation from Example 2.2.8. The vector space $V^{\otimes 2} \otimes \bar{R} \cap$ $\bar{R} \otimes V^{\otimes 2}$ is reduced to $\{0\}$. Then, the extra-condition holds. We conclude that the presentation from Example 2.2.8 is extra-confluent.

3 Confluence algebras and reduction operators

3.1 The contracting homotopy in small degree

Through this section we fix an N-homogeneous algebra \mathbf{A}. We assume that \mathbf{A} admits an extra-confluent presentation $\langle X \mid R\rangle$. This presentation is also fixed. We write $V=\mathbb{K} X$.

The aim of this section is to make explicit our contracting homotopy in small homological degree. The formal construction will be done in Section 4.

We have to construct a family of \mathbb{K}-linear maps

$$
h_{-1}: \mathbb{K} \longrightarrow \mathbf{A}, \text { and } h_{n}: \mathbf{A} \otimes J_{n} \longrightarrow \mathbf{A} \otimes J_{n+1}, \text { for } 0 \leq n \leq 2,
$$

satisfying the following relations:

$$
\partial_{1} h_{0}+h_{-1} \varepsilon=\operatorname{Id}_{\mathbf{A}} \text { and } \partial_{n+1} h_{n}+h_{n-1} \partial_{n}=\operatorname{Id}_{\mathbf{A} \otimes J_{n}}, \text { for } 0 \leq n \leq 2
$$

By assumption, the set X is finite. However, we will see that for the constructions of h_{-1}, h_{0} and h_{1} this hypothesis is not necessary.

From Proposition 2.2.6, every element f of $\mathrm{T}(V)$ admits a unique normal form for $\langle X \mid R\rangle$. This normal form is denoted by \widehat{f}.

For every $w \in\langle X\rangle$, we define $[w] \in A \otimes V$ as follows:

$$
[w]=\left\{\begin{array}{l}
0, \text { if } w \text { is the empty word, } \\
\overline{w^{\prime}} \otimes x, \text { where } w^{\prime} \in\langle X\rangle \text { and } x \in X \text { are such that } w=w^{\prime} x
\end{array}\right.
$$

The map []: $\langle X\rangle \longrightarrow \mathbf{A} \otimes V$ is extended into a \mathbb{K}-linear map from $\mathrm{T}(V)$ to $\mathbf{A} \otimes V$. Let $w \in\langle X\rangle$ be a non empty word. For every $a \in \mathbf{A}$, the action of \mathbf{A} on $[w]$ is given by $a .[w]=[f w]$, where $f \in \mathrm{~T}(V)$ is such that $a=\bar{f}$.

In small homological degree, the Koszul complex of \mathbf{A} is

$$
\mathbf{A} \otimes(V \otimes \bar{R} \cap \bar{R} \otimes V) \xrightarrow{\partial_{3}} \mathbf{A} \otimes \bar{R} \xrightarrow{\partial_{2}} \mathbf{A} \otimes V \xrightarrow{\partial_{1}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0,
$$

where ∂_{1} is defined by $\partial_{1}\left(1_{\mathbf{A}} \otimes v\right)=\bar{v}$ for every $v \in V, \partial_{2}$ is defined by $\partial_{2}\left(1_{\mathbf{A}} \otimes f\right)=[f]$ for every $f \in \bar{R}$ and ∂_{3} is defined by $\partial_{3}\left(1_{\mathbf{A}} \otimes g\right)=\sum \bar{v} \otimes f$ where $\sum v f$ is a decomposition of $g \in V \otimes \bar{R} \cap \bar{R} \otimes V$ in $V \otimes \bar{R}$. By definition of $\partial_{3}, \partial_{3}\left(1_{\mathbf{A}} \otimes g\right)$ does not depend on the decomposition of g in $V \otimes \bar{R}$.
3.1.1. The constructions of h_{-1} and h_{0}. The maps $h_{-1}: \mathbb{K} \longrightarrow \mathbf{A}$ and $h_{0}: \mathbf{A} \longrightarrow \mathbf{A} \otimes V$ are defined by

$$
h_{-1}\left(1_{\mathbb{K}}\right)=1_{\mathbf{A}} \text { and } h_{0}(a)=[\widehat{f}], \text { where } f \in \mathrm{~T}(V) \text { is such that } \bar{f}=a
$$

We have $h_{0}\left(1_{\mathbf{A}}\right)=0$ and $h_{-1} \varepsilon\left(1_{\mathbf{A}}\right)=1_{\mathbf{A}}$. If \mathbf{A} belongs to \mathbf{A}_{m} for $m \geq 1$, we have $\varepsilon(a)=0$ and $\partial_{1} h_{0}(a)=\bar{f}$. It follows that $\partial_{1} h_{0}+h_{-1} \varepsilon$ is equal to $\operatorname{Id}_{\mathbf{A}}$.
3.1.2. The construction of h_{1}. Recall from Proposition 2.2 .6 that the algebra \mathbf{A} admits as a basis the set $\{\bar{w}, w \in\langle X\rangle$ is a normal form $\}$. Thus, in order to define $h_{1}: \mathbf{A} \otimes V \longrightarrow \mathbf{A} \otimes R$, it is sufficient to define $h_{1}(\bar{w} \otimes x)$ for every normal form $w \in\langle X\rangle$ and every $x \in X$. Moreover, h_{1} has to satisfy the relation

$$
\begin{equation*}
\partial_{2} h_{1}(\bar{w} \otimes x)=\bar{w} \otimes x-h_{0}(\overline{w x}), \tag{1}
\end{equation*}
$$

for every normal form $w \in\langle X\rangle$ and every $x \in X$.
We define $h_{1}(\bar{w} \otimes x)$ by Noetherian induction on $w x$. Assume that $w x$ is a normal form. Then, let $h_{1}(\bar{w} \otimes x)=0$. We have:

$$
\begin{aligned}
h_{0}(\overline{w x}) & =[\widehat{w x}] \\
& =[w x] \\
& =\bar{w} \otimes x .
\end{aligned}
$$

Thus, Relation 1 holds. Assume that $w x$ is not a normal form and that $h_{1}\left(\overline{w^{\prime}} \otimes x^{\prime}\right)$ is defined and satisfies 1 for every normal form $w^{\prime} \in\langle X\rangle$ and every $x^{\prime} \in X$ such that $w^{\prime} x^{\prime}<w x$. The word $w x$ can be written as a product $w_{1} w_{2}$, where $w_{2} \in X^{(N)}$ is not a normal form. The presentation $\langle X \mid R\rangle$ is reduced. Thus, there exists a unique $f \in R$ such that $f=w_{2}-\widehat{w_{2}}$. Let

$$
h_{1}(\bar{w} \otimes x)=\overline{w_{1}} \otimes f+h_{1}\left(\left[w_{1} \widehat{w_{2}}\right]\right) .
$$

We have:

$$
\begin{aligned}
\partial_{2} h_{1}(\bar{w} \otimes x) & =\left[w_{1} f\right]+\partial_{2} h_{1}\left(\left[w_{1} \widehat{w_{2}}\right]\right) \\
& =\left[w_{1} w_{2}\right]-\left[w_{1} \widehat{w_{2}}\right]+\partial_{2} h_{1}\left(\left[w_{1} \widehat{w_{2}}\right]\right) .
\end{aligned}
$$

By induction hypothesis, $\partial_{2} h_{1}\left(\left[w_{1} \widehat{w_{2}}\right]\right)$ is equal to $\left[w_{1} \widehat{w_{2}}\right]-\left[\widehat{w_{1} w_{2}}\right]$. Hence, we have:

$$
\begin{aligned}
\partial_{2} h_{1}(\bar{w} \otimes x) & =\left[w_{1} w_{2}\right]-\left[\widehat{w_{1} w_{2}}\right] \\
& =\bar{w} \otimes x-[\widehat{w x}] \\
& =\bar{w} \otimes x-h_{0}(\overline{w x}) .
\end{aligned}
$$

Thus, Relation 1 holds.
3.1.3. Remark. We consider the \mathbb{K}-linear morphisms

$$
\begin{aligned}
& F_{1}: \mathbf{A} \otimes V \longrightarrow V^{\otimes N}, \overline{w_{1} w_{2}} \otimes x \longmapsto \overline{w_{1}} \otimes w_{2} x, \\
& F_{1}^{1}: \mathbf{A} \otimes V^{\otimes N} \longrightarrow \mathbf{A} \otimes V, \overline{w_{1}} \otimes w_{2} x \longmapsto \overline{w_{1} w_{2}} \otimes x, \\
& F_{2}^{1}: \mathbf{A} \otimes V \longrightarrow \mathbf{A} \otimes V^{\otimes N}, \overline{w_{1} w_{2}} \otimes x \longmapsto \overline{w_{1}} \otimes \widehat{w_{2} x} .
\end{aligned}
$$

The inductive definition of h_{1} implies that $h_{1}(\bar{w} \otimes x)$ is equal to

$$
\left(F_{1}-F_{2}^{1}\right)(\bar{w} \otimes x)+\left(F_{1}-F_{2}^{1}\right)\left(F_{1}^{1} F_{2}^{1}(\bar{w} \otimes x)\right)+\left(F_{1}-F_{2}^{1}\right)\left(\left(F_{1}^{1} F_{2}^{1}\right)^{2}(\bar{w} \otimes x)\right)+\cdots
$$

where $\left(F_{1}-F_{2}^{1}\right)\left(\left(F_{1}^{1} F_{2}^{1}\right)^{2 k}(\bar{w} \otimes x)\right)$ vanishes for k sufficiently large.

In order to define h_{2} we need the following:
3.1.4. Lemma. Let A be an N-homogeneous algebra. Assume that A admits an extra-confluent presentation $\langle X \mid R\rangle$. Let $w_{1} \in\langle X\rangle, w_{2} \in X^{(N-1)}$ and $x_{1}, x_{2} \in X$ such that:

1. $w_{1} x_{1}$ and $x_{1} w_{2}$ are normal forms for $\langle X \mid R\rangle$,
2. $w_{2} x_{2}$ is not a normal form for $\langle X \mid R\rangle$.

The word $w_{1} x_{1} w_{2}$ is a normal form for $\langle X \mid R\rangle$.
Proof. Assume that $w_{1} x_{1} w_{2}$ is not a normal form. By hypothesis, $w_{1} x_{1}$ and $x_{1} w_{2}$ are normal forms. Thus, there exist a right divisor u of w_{1} and a left divisor v of w_{2} such that $u x_{1} v$ has length N and is not a normal form. In particular, $u x_{1} w_{2} x_{2}$ is the source of a critical branching. From Proposition 2.3.4, the word $x_{1} w_{2}$ is not a normal form, which is a contradiction. Thus, Lemma 3.1.4 holds.
3.1.5. The construction of h_{2}. Recall from Proposition 2.2 .6 that the algebra \mathbf{A} admits as a basis the set $\{\bar{w}, w \in\langle X\rangle$ is a normal form $\}$. Thus, in order to define $h_{2}: \mathbf{A} \otimes R \longrightarrow \mathbf{A} \otimes J_{3}$ it is sufficient to define $h_{1}(\bar{w} \otimes f)$ for every normal form $w \in\langle X\rangle$ and every $f \in R$. Moreover, h_{2} has to satisfy the relation

$$
\begin{equation*}
\partial_{3} h_{2}(\bar{w} \otimes f)=\bar{w} \otimes f-h_{1} \partial_{2}(\bar{w} \otimes f), \tag{2}
\end{equation*}
$$

for every normal form $w \in\langle X\rangle$ and every $f \in R$.
We write $w=w_{1} x_{1}, f=w^{\prime}-\widehat{w^{\prime}}$ and $w^{\prime}=w_{2} x_{2}$. We define $h_{2}(\bar{w} \otimes f)$ by Noetherian induction on $x_{1} w_{2}$. Assume that $x_{1} w_{2}$ is a normal form. Let $h_{2}(\bar{w} \otimes f)=0$. We have:

$$
\begin{aligned}
h_{1} \partial_{2}(\bar{w} \otimes f) & =h_{1}([w f]) \\
& =h_{1}\left(\left[w w^{\prime}\right]\right)-h_{1}\left(\left[w \widehat{w^{\prime}}\right]\right) \\
& =h_{1}\left(\overline{w w_{2}} \otimes x^{\prime}\right)-h_{1}\left(\left[w \widehat{w^{\prime}}\right]\right) .
\end{aligned}
$$

From Lemma 3.1.4, $w w_{2}$ is a normal form. Thus, by construction of h_{1}, we have:

$$
h_{1}\left(\overline{w w_{2}} \otimes x^{\prime}\right)=\bar{w} \otimes f+h_{1}\left(\left[\widehat{w w^{\prime}}\right]\right) .
$$

We conclude that $h_{1} \partial_{2}(\bar{w} \otimes f)$ is equal to $\bar{w} \otimes f$. Hence, Relation 2 holds.
Assume that $h_{2}(\bar{u} \otimes g)$ is defined and that $\left(E_{2}\right)$ holds for every normal form $u \in\langle X\rangle$ and $g \in R$ such that $y v<x_{1} w_{2}$, where $y \in X$ and $v \in X^{(N-1)}$ are such that $u=u^{\prime} y$ and $\operatorname{lm}(g)=v z$ for $u^{\prime} \in\langle X\rangle$ and $z \in X$. We consider the two morphisms

$$
S_{1}=S \otimes \mathrm{Id}_{V} \text { and } S_{2}=\mathrm{Id}_{V} \otimes S
$$

The presentation $\langle X \mid R\rangle$ is side-confluent. Thus, from Lemma 2.2.7, there exists an integer k such that:

$$
\left\langle\operatorname{Id}_{V^{\otimes N+1}}-S_{2}, \operatorname{Id}_{V^{\otimes N+1}}-S_{1}\right\rangle^{k}=\left\langle\operatorname{Id}_{V^{\otimes N+1}}-S_{1}, \operatorname{Id}_{V^{\otimes N+1}}-S_{2}\right\rangle^{k}
$$

We denote by Λ this common morphism. The image of Λ is included in $\operatorname{ker}\left(S_{1}\right) \cap \operatorname{ker}\left(S_{2}\right)$. The latter is equal to $(\bar{R} \otimes V) \cap(V \otimes \bar{R})$. Recall that we have:

$$
\left\langle\operatorname{Id}_{V^{\otimes N+1}}-S_{2}, \operatorname{Id}_{V \otimes N+1}-S_{1}\right\rangle^{k}=\operatorname{Id}_{V \otimes N+1}+\sum_{i=1}^{k-1}(-1)^{i}\left(\left\langle S_{1}, S_{2}\right\rangle^{i}+\left\langle S_{2}, S_{1}\right\rangle^{i}\right)+(-1)^{k}\left\langle S_{2}, S_{1}\right\rangle^{k}
$$

Thus, we have:

$$
\Lambda=\left(\operatorname{Id}_{V \otimes N+1}-S_{2}\right)+\left(\operatorname{Id}_{V \otimes N+1}-S_{2}\right) \sum_{i=1}^{k-1}(-1)^{i} g_{i}\left(S_{1}, S_{2}\right)
$$

where $g_{i}\left(S_{1}, S_{2}\right)$ denotes the product $S_{1} S_{2} S_{1} \cdots$ with i factors. In particular, there exist $f_{1}, \cdots, f_{l} \in R$, $x_{1}, \cdots, x_{l} \in X$ and $\lambda_{1}, \cdots, \lambda_{l} \in \mathbb{K}$ such that $x_{i} w_{i}<x_{1} w_{2}$ where $\operatorname{lm}\left(f_{i}\right)=w_{i} y_{i}$ and

$$
\Lambda\left(x w^{\prime}\right)=x f+\sum_{i=1}^{l} \lambda_{i} x_{i} f_{i} .
$$

Then, let

$$
h_{2}(\bar{w} \otimes f)=\overline{w_{1}} \otimes \Lambda\left(x w^{\prime}\right)-\sum_{i=1}^{l} \lambda_{i} h_{2}\left(\overline{w_{1} x_{i}} \otimes f_{i}\right) .
$$

We will show in Section 4 that Relation 2 holds.
3.1.6. Remark. We consider the \mathbb{K}-linear maps

$$
\begin{aligned}
& F_{2}: \mathbf{A} \otimes V^{\otimes N} \longrightarrow V^{\otimes N+1}, \overline{w_{1} x} \otimes w_{2} \longmapsto \overline{w_{1}} \otimes x w_{2}, \\
& F_{1}^{2}: \mathbf{A} \otimes V^{\otimes N+1} \longrightarrow \mathbf{A} \otimes V^{\otimes N}, \overline{w_{1}} \otimes x w_{2} \longmapsto \overline{w_{1} x} \otimes w_{2}, \\
& F_{2}^{2}: \mathbf{A} \otimes V^{\otimes N} \longrightarrow \mathbf{A} \otimes V^{\otimes N+1}, \overline{w_{1}} x \otimes w_{2} \longmapsto \overline{w_{1}} \otimes x w_{2}-\Lambda\left(x w_{2}\right) .
\end{aligned}
$$

The inductive definition of h_{2} implies that $h_{2}(\bar{w} \otimes f)$ is equal to

$$
\left(F_{2}-F_{2}^{2}\right)(\bar{w} \otimes f)+\left(F_{2}-F_{2}^{2}\right)\left(F_{2}^{1} F_{2}^{2}(\bar{w} \otimes f)\right)+\left(F_{2}-F_{2}^{2}\right)\left(\left(F_{2}^{1} F_{2}^{2}\right)^{2}(\bar{w} \otimes f)\right)+\cdots
$$

where $\left(F_{2}-F_{2}^{2}\right)\left(\left(F_{2}^{1} F_{2}^{2}\right)^{2 k}(\bar{w} \otimes f)\right)$ vanishes for k sufficiently large.
3.1.7. Example. The construction of our contracting homotopy for the Koszul complex of the enveloping algebra of the Heisenberg Lie algebra is done in Section 5.3.

3.2 Reduction operators and confluence algebras

We fix a finite set Y, totally ordered by a relation $<$. For every $v \in \mathbb{K} Y \backslash\{0\}$, we denote by $\operatorname{lm}(v)$ the greatest element of Y occurring in the decomposition of v. We extend the order $<$ to a partial order on $\mathbb{K} Y$ in the following way: we have $v<w$ if either $v=0$ or if $\operatorname{lm}(v)<\operatorname{lm}(w)$.

In this section we recall some results from [Ber98] about reduction operators and confluence algebras.
3.2.1. Reduction operators. A linear projector T of $\mathbb{K} Y$ is called a reduction operator relatively to Y if for every $y \in Y$, we have either $T(y)=y$ or $T(y)<y$. We denote by $\operatorname{Red}(Y)$ the set of reduction operators relatively to Y.
3.2.2. Lattice structure. The set $\operatorname{Red}(Y)$ admits a lattice structure. To define the order, recall from [Ber98, Lemma 2.2] that if $U, T \in \operatorname{Red}(Y)$ are such that $\operatorname{ker}(U)$ is included in $\operatorname{ker}(T)$, then $\operatorname{im}(T)$ is included in $\operatorname{im}(U)$. Thus, the relation defined by $T \preceq U$ if $\operatorname{ker}(U) \subset \operatorname{ker}(T)$ is an order relation on $\operatorname{Red}(Y)$.

We denote by $\mathscr{L}(\mathbb{K} Y)$ the lattice of sub-vector spaces of $\mathbb{K} Y$: the order is the inclusion, the lower bound is the intersection and the upper bound is the sum. To define the upper bound and the lower bound on $\operatorname{Red}(Y)$, recall from [Ber98, Theorem 2.3] that the map

$$
\begin{aligned}
\theta_{Y}: \operatorname{Red}(Y) & \longrightarrow \mathscr{L}(\mathbb{K} Y), \\
T & \longmapsto \operatorname{ker}(T)
\end{aligned}
$$

is a bijection. The lower bound $T_{1} \wedge T_{2}$ and the upper bound $T_{1} \vee T_{2}$ of two elements T_{1} and T_{2} of $\operatorname{Red}(Y)$ are defined in the following way:

$$
\left\{\begin{array}{l}
T_{1} \wedge T_{2}=\theta_{Y}^{-1}\left(\operatorname{ker}\left(T_{1}\right)+\operatorname{ker}\left(T_{2}\right)\right), \\
T_{1} \vee T_{2}=\theta_{Y}^{-1}\left(\operatorname{ker}\left(T_{1}\right) \cap \operatorname{ker}\left(T_{2}\right)\right)
\end{array}\right.
$$

3.2.3. Remark. The lattice $\operatorname{Red}(Y)$ admits $\operatorname{Id}_{\mathbb{K} Y}$ as maximum and $0_{\mathbb{K} Y}$ as minimum.
3.2.4. Confluent pairs of reduction operators. A pair $P=\left(T_{1}, T_{2}\right)$ of reduction operators relatively to Y is said to be confluent if there exists an integer k such that:

$$
\left\langle T_{1}, T_{2}\right\rangle^{k}=\left\langle T_{2}, T_{1}\right\rangle^{k}
$$

We will see in Section 3.3 the link between this notion and the side-confluent presentations.
3.2.5. Confluence algebras. Let k be an integer. The confluence algebra of degree k is the algebra presented by

$$
\left\langle s_{1}, s_{2} \mid s_{i}^{2}=s_{i},\left\langle s_{1}, s_{2}\right\rangle^{k}=\left\langle s_{2}, s_{1}\right\rangle^{k}, i=1,2\right\rangle
$$

This algebra is denoted by \mathscr{A}_{k}. Let us consider the following elements of \mathscr{A}_{k} :

$$
\begin{aligned}
\sigma & =\left\langle s_{1}, s_{2}\right\rangle^{k}=\left\langle s_{2}, s_{1}\right\rangle^{k} \\
\gamma_{1} & =\left(1-s_{2}\right) \sum_{i \in I}\left\langle s_{2}, s_{1}\right\rangle^{i} \\
\gamma_{2} & =\left(1-s_{1}\right) \sum_{i \in I}\left\langle s_{1}, s_{2}\right\rangle^{i} \\
\lambda & =1-\left(\sigma+\gamma_{1}+\gamma_{2}\right)
\end{aligned}
$$

where I is the set of odd integers between 1 and $k-1$. We easily check that we have the following relations:

$$
\begin{align*}
& \gamma_{i} s_{i}=\gamma_{i}, \text { for } i=1,2, \tag{3a}\\
& s_{i} \gamma_{i}=s_{i}-\sigma, \text { for } i=1,2 \tag{3b}
\end{align*}
$$

3.2.6. P-representations of confluence algebras. Let $P=\left(T_{1}, T_{2}\right)$ be a confluent pair of reduction operators relatively to Y. Let k be an integer such that $\left\langle T_{1}, T_{2}\right\rangle^{k}=\left\langle T_{2}, T_{1}\right\rangle^{k}$. We consider the morphism of algebras

$$
\begin{aligned}
\varphi^{P}: \mathscr{A}_{k} & \longrightarrow \operatorname{End}(\mathbb{K} Y) . \\
s_{i} & \longmapsto T_{i}
\end{aligned}
$$

The morphism φ^{P} is called the P-representation of \mathscr{A}_{k}. Recall from [Ber98] that:

$$
\begin{align*}
& \varphi^{P}(\sigma)=T_{1} \wedge T_{2} \tag{4a}\\
& \varphi^{P}(1-\lambda)=T_{1} \vee T_{2} \tag{4b}
\end{align*}
$$

3.2.7. The left bound and the right bound. Let $P=\left(T_{1}, T_{2}\right)$ be a confluent pair of reduction operators relatively to Y. By definition of λ and from 3.2.6, we have:

$$
\begin{equation*}
T_{1} \vee T_{2}=T_{1} \wedge T_{2}+\varphi^{P}\left(\gamma_{1}\right)+\varphi^{P}\left(\gamma_{2}\right) \tag{5}
\end{equation*}
$$

The morphisms $\varphi^{P}\left(\gamma_{1}\right)$ and $\varphi^{P}\left(\gamma_{2}\right)$ are called the left bound of P and the right bound of P, respectively.
We end this section with the following:
3.2.8. Lemma. Let $P=\left(T_{1}, T_{2}\right)$ be a confluent pair of reduction operators relatively to Y. Let W be a sub-vector space of $\mathbb{K} Y$. If W is included in $\operatorname{ker}\left(T_{i}\right)$ for $i=1$ or 2, we have:

$$
\varphi^{P}\left(\gamma_{i}\right)_{\mid W}=T_{1} \vee T_{2 \mid W}
$$

Proof. By definition, σ and γ_{i} factorize on the right by s_{i}. Hence, the restrictions of $\varphi^{P}(\sigma)$ and $\varphi^{P}\left(\gamma_{i}\right)$ to W vanish. Thus, Lemma 3.2.8 is a consequence of Relation 5.

3.3 Reduction operators and side-confluent presentations

Let \mathbf{A} be an N-homogeneous algebra. We suppose that \mathbf{A} admits a side-confluent presentation $\langle X \mid R\rangle$ where X is a totally ordered finite set. For every integer m, the set $X^{(m)}$ is finite and totally ordered for the lexicographic order induced by the order over X. We write $V=\mathbb{K} X$.
3.3.1. Normal forms and the Koszul complex. In Lemma 3.3 .3 we will link together the Koszul complex of \mathbf{A} and the reduction operators. In this way, recall from Proposition 2.2.6 that every element $f \in \mathrm{~T}(V)$ admits a unique normal form for $\langle X \mid R\rangle$, denoted by \widehat{f}. Let

$$
\begin{aligned}
\phi: \mathrm{T}(V) & \longrightarrow \mathrm{T}(V) . \\
f & \longmapsto \widehat{f}
\end{aligned}
$$

Recall from Proposition 2.2.6 that for every $f \in \mathrm{~T}(V)$, we have $f \in I(R)$ if and only if $\widehat{f}=0$. Hence, ϕ induces a \mathbb{K}-linear isomorphism $\bar{\phi}$ from \mathbf{A} to $\operatorname{im}(\phi)$. In particular, for every integer n, the morphism $\phi_{n}=\bar{\phi} \otimes \operatorname{Id}_{V}^{\otimes l_{N}(n)}$ is a \mathbb{K}-linear isomorphism from $\mathbf{A} \otimes J_{n}$ to $\operatorname{im}(\phi) \otimes J_{n}$. Thus, the Koszul complex $\left(K_{\bullet}, \partial\right)$ of \mathbf{A} is isomorphic to the complex of vector spaces $\left(K_{\bullet}^{\prime}, \partial^{\prime}\right)$

$$
\cdots \xrightarrow{\partial_{n+1}^{\prime}} \operatorname{im}(\phi) \otimes J_{n} \xrightarrow{\partial_{n}^{\prime}} \operatorname{im}(\phi) \otimes J_{n-1} \longrightarrow \cdots \xrightarrow{\partial_{2}^{\prime}} \operatorname{im}(\phi) \otimes J_{1} \xrightarrow{\partial_{1}^{\prime}} \operatorname{im}(\phi) \xrightarrow{\varepsilon^{\prime}} \mathbb{K} \longrightarrow 0,
$$

where ∂_{n}^{\prime} is equal to $\phi_{n-1} \circ \partial_{n} \circ \phi_{n}^{-1}$.
3.3.2. Definition. The complex $\left(K_{\bullet}^{\prime}, \partial^{\prime}\right)$ is the normalised Koszul complex of A.

3.3.3. Lemma.

1. For every integer m, the restriction of ϕ to $V^{\otimes m}$ is a reduction operator relatively to $X^{(m)}$ and its kernel is equal to $I(R)_{m}$.
2. Let n be an integer such that $n \geq 1$. The morphism ∂_{n}^{\prime} is the restriction to $\operatorname{im}(\phi) \otimes J_{n}$ of the morphism $\varphi_{n}: \bigoplus_{m \geq l_{N}(n)} V^{\otimes m} \longrightarrow \mathrm{~T}(V)$ defined by

$$
\varphi_{n \mid V \otimes m}=\phi_{\mid V^{\otimes m-l_{N}(n-1)}} \otimes \operatorname{Id}_{V^{\otimes l_{N}(n-1)}} .
$$

Proof. Let us show the first point. The presentation $\langle X \mid R\rangle$ is N-homogeneous. Thus, for every $w \in X^{(m)}, \phi(w)$ belongs to $V^{\otimes m}$. In particular, the restriction of ϕ to $V^{\otimes m}$ is an endomorphism of $V^{\otimes m}$. Let $w \in X^{(m)}$. If w is a normal form, then $\phi(w)$ is equal to w. In particular, $\phi_{\mid V \otimes m}$ is a projector. If w is not a normal form, then $\phi(w)=\widehat{w}$ is strictly smaller than w. Thus, $\phi_{\mid V \otimes m}$ is a reduction operator relatively to $X^{(m)}$. Moreover, \widehat{f} is equal to 0 if and only if f belongs to $I(R)$. Thus, the kernel of $\phi_{\mid V \otimes m}$ is equal to $I(R)_{m}$.

Let us show the second point. Recall from 2.1.2 that the differential $\partial_{n}: \mathbf{A} \otimes J_{n} \longrightarrow \mathbf{A} \otimes J_{n-1}$ of the Koszul complex of \mathbf{A} is the restriction to $\mathbf{A} \otimes J_{n}$ of the \mathbf{A}-linear map defined by:

$$
\begin{aligned}
\mathbf{A} \otimes V^{\otimes l_{N}(n)} & \longrightarrow \mathbf{A} \otimes V^{\otimes l_{N}(n-1)} \\
1_{\mathbf{A}} \otimes w & \longmapsto \overline{w_{1}} \otimes w_{2}
\end{aligned}
$$

where $w_{1} \in X^{\left(l_{N}(n)-l_{N}(n-1)\right)}$ and $w_{2} \in X^{\left(l_{N}(n-1)\right)}$ are such that $w=w_{1} w_{2}$. Thus, the map ∂_{n}^{\prime} is the restriction of the morphism which maps a word w of length $m \geq l_{N}(n)$ to $\widehat{w_{1}} w_{2}$, where $w_{1} \in X^{\left(m-l_{N}(n-1)\right)}$ and $w_{2} \in X^{\left(l_{N}(n-1)\right)}$ are such that $w=w_{1} w_{2}$. The latter is equal to $\phi_{\mid V^{\otimes m-l_{N}(n-1)}} \otimes \operatorname{Id}_{V^{\otimes l_{N}(n-1)}}$.
3.3.4. Lattice properties. Let $S \in \operatorname{End}\left(V^{\otimes N}\right)$ be the operator of $\langle X \mid R\rangle$:

$$
S(w)=\left\{\begin{array}{l}
\operatorname{lm}(f)-f, \text { if there exists } f \in R \text { such that } w=\operatorname{lm}(f) \\
w, \text { otherwise }
\end{array}\right.
$$

The properties of S described in 2.2.4 imply that S is equal to $\theta_{X^{(N)}}^{-1}(\bar{R})$. For every integers m and i such that $m \geq N$ and $0 \leq i \leq m-N$, we consider the following reduction operator relatively to $X^{(m)}$:

$$
S_{i}^{(m)}=\operatorname{Id}_{V \otimes i} \otimes S \otimes \operatorname{Id}_{V \otimes m-N-i}
$$

The kernel of $S_{i}^{(m)}$ is equal to $V^{\otimes i} \otimes \bar{R} \otimes V^{\otimes m-N-i}$.
The presentation $\langle X \mid R\rangle$ is side-confluent. Hence, the pair $\left(S_{i}^{(2 N-1)}, S_{j}^{(2 N-1)}\right)$ is confluent for every integers i and j such that $0 \leq i, j \leq N-1$. We deduce from [Ber01, Section 3] and [Ber98, Theorem 2.12] that for every integer m such that $m \geq N$, the sub-lattice of Red $\left(X^{(m)}\right)$ spanned by $S_{0}^{(m)}, \cdots, S_{m-N}^{(m)}$ is confluent (that is, the elements of this lattice are pairwise confluent) and distributive (that is, for every S, T, U belonging to this lattice, we have $(S \wedge T) \vee U=(S \vee U) \wedge(T \vee U))$.

4 The left bound of a side-confluent presentation

Through this section we fix an N-homogeneous algebra \mathbf{A}. We assume that \mathbf{A} admits an N-homogeneous presentation $\langle X \mid R\rangle$ where X is a totally ordered finite set. This presentation is also fixed. We write $V=\mathbb{K} X$. We consider the notations of 3.3.4.

4.1 Reduction pairs associated with a presentation

For every integers n and m such that $m \geq l_{N}(n)$, we consider the following reduction operators relatively to $X^{(m)}$:

$$
\begin{aligned}
& F_{1}^{n, m}=\theta_{X^{(m)}}^{-1}\left(I(R)_{m-l_{N}(n)} \otimes V^{\otimes l_{N}(n)}\right) \\
& F_{2}^{n, m}=\left\{\begin{array}{l}
\operatorname{Id}_{V^{\otimes m}}, \text { if } m<l_{N}(n+1), \\
\theta_{X^{(m)}}^{-1}\left(V^{\otimes m-l_{N}(n+1)} \otimes J_{n+1}\right), \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

The pair $\left(F_{1}^{n, m}, F_{2}^{n, m}\right)$ is denoted by $P_{n, m}$.
4.1.1. Definition. The pair $P_{n, m}$ is the reduction pair of bi-degree (n, m) associated with $\langle X \mid R\rangle$.
4.1.2. Lemma. Let n and m be two integers such that $n \geq 1$ and $l_{N}(n) \leq m<l_{N}(n+1)$. Then, $m-l_{N}(n-1)$ is smaller than $N-1$ and $F_{1}^{n-1, m}$ is equal to $\mathrm{Id}_{V \otimes m}$.

Proof. First, we show that $m-l_{N}(n-1)$ is smaller than $N-1$. Assume that m is a multiple of N : $m=k N$. In this case, the hypothesis $l_{N}(n) \leq m<l_{N}(n+1)$ implies that n is equal to $2 k$. Thus, $l_{N}(n-1)$ is equal to $(k-1) N+1$. That implies that $m-l_{N}(n-1)$ is equal to $N-1$. Assume that m is not a multiple of $N: m=k N+r$ with $1 \leq r \leq N-1$. In this case, the hypothesis $l_{N}(n) \leq m<l_{N}(n+1)$ implies that n is equal to $2 k+1$. Thus, $m-l_{N}(n-1)=m-k N$ is smaller than $N-1$.

Let us show that $F_{1}^{n-1, m}$ is equal to $\operatorname{Id}_{V \otimes m}$. The first part of the lemma implies that $I(R)_{m-l_{N}(n-1)}$ is equal to $\{0\}$. Thus, the kernel of $F_{1}^{n-1, m}$ is equal to $\{0\}$, that is, $F_{1}^{n-1, m}$ is equal to $\operatorname{Id}_{V \otimes m}$.

4.1.3. Lemma.

1. Let n and let m be two integers such that $m \geq l_{N}(n+2)$. We have:

$$
F_{1}^{n, m}=S_{0}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+2)}^{(m)} .
$$

2. Let n and m be two integers such that $n \geq 1$ and $m \geq l_{N}(n+1)$. We have:

$$
F_{2}^{n, m}=S_{m-l_{N}(n+1)}^{(m)} \vee \cdots \vee S_{m-N}^{(m)}
$$

Proof. By definition of \wedge, we have:

$$
\begin{aligned}
\operatorname{ker}\left(S_{0}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+2)}^{(m)}\right) & =\sum_{i=0}^{m-l_{N}(n+2)} \operatorname{ker}\left(S_{i}^{(m)}\right) \\
& =\sum_{i=0}^{m-l_{N}(n+2)} V^{\otimes i} \otimes \bar{R} \otimes V^{\otimes m-N-i} \\
& =\left(\sum_{i=0}^{m-l_{N}(n+2)} V^{\otimes i} \otimes \bar{R} \otimes V^{\otimes m-l_{N}(n)-N-i}\right) \otimes V^{\otimes l_{N}(n)} \\
& =\left(\sum_{i=0}^{m-l_{N}(n)-N} V^{\otimes i} \otimes \bar{R} \otimes V^{\otimes m-l_{N}(n)-N-i}\right) \otimes V^{\otimes l_{N}(n)} \\
& =I(E)_{m-l_{N}(n)} \otimes V^{\otimes l_{N}(n)} .
\end{aligned}
$$

By definition of \vee, we have:

$$
\begin{aligned}
\operatorname{ker}\left(S_{m-l_{N}(n+1)}^{(m)} \vee \cdots \vee S_{m-N}^{(m)}\right) & =\bigcap_{i=m-l_{N}(n+1)}^{m-N} \operatorname{ker}\left(S_{i}^{(m)}\right) \\
& =\bigcap_{i=m-l_{N}(n+1)}^{m-N} V^{\otimes i} \otimes \bar{R} \otimes V^{\otimes m-N-i} \\
& =V^{\otimes m-l_{N}(n+1)} \otimes\left(\bigcap_{i=0}^{l_{N}(n+1)-N} V^{\otimes i} \otimes \bar{R} \otimes V^{\otimes l_{N}(n+1)-N-i}\right) \\
& =V^{\otimes m-l_{N}(n+1)} \otimes J_{n+1} .
\end{aligned}
$$

The map $\theta_{X^{(m)}}$ being a bijection, the two relations hold.
4.1.4. Theorem. Let \mathbf{A} be an N-homogeneous algebra admitting a side-confluent presentation $\langle X \mid R\rangle$, where X is a finite set. The reduction pairs associated with $\langle X \mid R\rangle$ are confluent.

Proof. Let n and m be two integers such that $m \geq l_{N}(n)$. We have to show that the reduction pair of bi-degree (n, m) associated with $\langle X \mid R\rangle$ is confluent. We proceed in four steps.

Step 1. Assume that $n=0$. We have $P_{0,0}=\left(\operatorname{Id}_{\mathbb{K}}, \operatorname{Id}_{\mathbb{K}}\right)$. Thus, the pair $P_{0,0}$ is confluent. Let m be an integer such that $m \geq 1$. The kernel of $F_{2}^{0, m}$ is equal to $V^{\otimes m-1} \otimes J_{1}=V^{\otimes m}$. Thus, $F_{2}^{0, m}$ is equal to $0_{V \otimes m}$. In particular, the operators $F_{1}^{0, m}$ and $F_{2}^{0, m}$ commute, that is, they satisfy the relation $\left\langle F_{1}^{0, m}, F_{2}^{0, m}\right\rangle^{2}=\left\langle F_{2}^{0, m}, F_{1}^{0, m}\right\rangle^{2}$. Hence, the pair $P_{0, m}$ is confluent for every integer m.

Step 2. Assume that $n \geq 1$ and $l_{n}(n) \leq m<l_{N}(n+1)$. The pair $P_{n, m}$ is equal to $\left(F_{1}^{n, m}, \operatorname{Id}_{V \otimes m}\right)$. Thus, the operators $F_{1}^{n, m}$ and $F_{2}^{n, m}$ commute. We conclude that the pairs $P_{n, m}$ such that $n \geq 1$ and $l_{n}(n) \leq m<l_{N}(n+1)$ are confluent.

Step 3. Assume that $n \geq 1$ and $l_{N}(n+1) \leq m<l_{N}(n+2)$. From Lemma 4.1.2, the morphism $F_{1}^{n, m}$ is equal to $\mathrm{Id}_{V \otimes m}$. In particular, the operators $F_{1}^{n, m}$ and $F_{2}^{n, m}$ commute. Thus, the pairs $P_{n, m}$ such that $n \geq 1$ and $l_{N}(n+1) \leq m<l_{N}(n+2)$ are confluent.

Step 4. Assume that $n \geq 1$ and $m \geq l_{N}(n+2)$. Lemma 4.1.3 implies that $F_{1}^{n, m}$ and $F_{2}^{n, m}$ belong to the lattice generated by $S_{i}^{(m)}$, for $0 \leq i \leq m-N$. From 3.3.4 the latter is confluent. Hence, the pairs $P_{n, m}$ such that $n \geq 1$ and $m \geq l_{N}(n+2)$ are confluent.

4.2 Construction

Through this section, we assume that the presentation $\langle X \mid R\rangle$ of \mathbf{A} is side-confluent. From Proposition 2.2.6, every element f of $\mathrm{T}(V)$ admits a unique normal for $\langle X \mid R\rangle$. This normal form is denoted by \widehat{f}. We denote by ϕ the endomorphism of $\mathrm{T}(V)$ which maps an element to its unique normal form. We consider the notations of Section 4.1.
4.2.1. Lemma. For every integers n and m such that $m \geq l_{N}(n)$, the operator $F_{1}^{n, m}$ is equal to $\phi_{\mid V^{\otimes m-l_{N}(n)}} \otimes \mathrm{Id}_{V^{\otimes l_{N}(n)}}$.

Proof. From Point 1 of Lemma 3.3.3, the operator $\phi_{\mid V^{\otimes m-l_{N}(n)}} \otimes \mathrm{Id}_{V^{\otimes l_{N}(n)}}$ is a reduction operator relatively to $X^{(m)}$ and its kernel is equal to $I(R)_{m-l_{n}(n)} \otimes V^{\otimes l_{n}(n)}$. The map $\theta_{X^{(m)}}$ being a bijection, Lemma 4.2.1 holds.
4.2.2. Lemma. Let n be an integer. Let $h_{n}^{\prime}: \bigoplus_{m \geq l_{N}(n)} V^{\otimes m} \longrightarrow \mathrm{~T}(V)$ be the \mathbb{K}-linear map defined by

$$
h_{n \mid V \otimes m}^{\prime}=\varphi^{P_{n, m}}\left(\gamma_{1}\right),
$$

where $\varphi^{P_{n, m}}\left(\gamma_{1}\right)$ is the left bound of $P_{n, m}$. The image of h_{n}^{\prime} is included in $\operatorname{im}(\phi) \otimes J_{n+1}$.
Proof. Let m be an integer such that $m \geq l_{N}(n)$. By definition of the left bound, there exists an endomorphism H of $V^{\otimes m}$ such that

$$
\varphi^{P_{n, m}}\left(\gamma_{1}\right)=\left(\operatorname{Id}_{V \otimes m}-F_{2}^{n, m}\right) F_{1}^{n, m} H
$$

The image of $F_{1}^{n, m}=\phi_{\mid V \otimes m-l_{N}(n)} \otimes V^{\otimes l_{N}(n)}$ is equal to the vector space spanned by the elements with shape $w_{1} w_{2}$ where $w_{1} \in X^{\left(m-l_{N}(n)\right)}$ is a normal form and $w_{2} \in X^{\left(l_{N}(n)\right)}$.

Let

$$
G=\theta_{X^{\left(l_{N}(n+1)\right)}}^{-1}\left(J_{n+1}\right) .
$$

We have $F_{2}^{n, m}=\operatorname{Id}_{V^{\otimes m-l_{N}(n+1)}} \otimes G$. The latter implies that

$$
\left(\operatorname{Id}_{V \otimes m}-F_{2}^{n, m}\right)=\operatorname{Id}_{V^{\otimes m-l_{N}(n+1)}} \otimes\left(\operatorname{Id}_{V^{\otimes l_{N}(n+1)}}-G\right) .
$$

We conclude that the image of $\varphi^{P_{n, m}}\left(\gamma_{1}\right)$ is included in the vector space spanned by elements with shape $w f$ where $w \in X^{\left(m-l_{N}(n+1)\right)}$ is a normal form and $f \in J_{n+1}$. This vector space is equal to $\operatorname{im}\left(\phi_{\mid V^{\otimes m-l_{N}(n+1)}}\right) \otimes J_{n+1}$.
4.2.3. Definition. For every integer n, let

$$
h_{n}=\phi_{n+1}^{-1} \circ h_{n}^{\prime} \circ \phi_{n}: \mathbf{A} \otimes J_{n} \longrightarrow \mathbf{A} \otimes J_{n+1}
$$

where ϕ_{n} is the \mathbb{K}-linear isomorphism between $\mathbf{A} \otimes J_{n}$ and $\operatorname{im}(\phi) \otimes J_{n}$ defined in 3.3.1. The family $\left(h_{n}\right)_{n}$ is the left bound of $\langle X \mid R\rangle$.
4.2.4. Reduction relations. Let n and m be two integers such that $m \geq l_{N}(n)$. Then, we denote by $K_{n}^{(m)}=\operatorname{im}\left(\phi_{\mid V^{\otimes m-l_{N}(n)}}\right) \otimes J_{n}$. In particular, we have:

$$
\operatorname{im}(\phi) \otimes J_{n}=\bigoplus_{m \geq l_{N}(n)} K_{n}^{(m)} .
$$

We say that the presentation $\langle X \mid R\rangle$ satisfy the reduction relations if for every integers n and m such that $m \geq l_{n}(n)$, the following equality holds:

$$
\left(r_{n, m}\right) \quad F_{1}^{n, m} \wedge F_{2}^{n, m}\left|K_{n}^{(m)}=F_{1}^{n-1, m} \vee F_{2}^{n-1, m}\right| K_{n}^{(m)} .
$$

4.2.5. Proposition. Let A be an N-homogeneous algebra. Assume that A admits a side-confluent presentation $\langle X \mid R\rangle$ where X is a finite set. The left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A} if and only if $\langle X \mid R\rangle$ satisfies the reduction relations.

Proof. The left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A} if and only if the family $\left(h_{n}^{\prime}: \operatorname{im}(\phi) \otimes J_{n} \longrightarrow \operatorname{im}(\phi) \otimes J_{n+1}\right)_{n}$ defined in Lemma 4.2.2 is a contracting homotopy for the normalised Koszul complex of \mathbf{A}.

From Point 2 of Lemma 3.3.3, the restriction of $F_{1}^{n-1, m}=\phi_{\mid V^{\otimes m-l_{N}(n-1)}} \otimes \operatorname{Id}_{V \otimes l_{n}(n-1)}$ to $K_{n}^{(m)}$ is equal to the restriction of ∂_{n}^{\prime} to $K_{n}^{(m)}$. Thus, the family $\left(h_{n}^{\prime}\right)_{n}$ is a contracting homotopy for $\left(K_{\bullet}^{\prime}, \partial^{\prime}\right)$ if and only if for every n and m such that $n \geq 1$ and $m \geq l_{N}(n)$, the following relation holds:

$$
\left(\varphi^{P_{n, m}}\left(s_{1}\right) \varphi^{P_{n, m}}\left(\gamma_{1}\right)+\varphi^{P_{n-1, m}}\left(\gamma_{1}\right) \varphi^{P_{n-1, m}}\left(s_{1}\right)\right)_{\mid K_{n}^{(m)}}=\operatorname{Id}_{K_{n}^{(m)}}
$$

From Relation 3b (see page 15) and Relation 4a (see page 15), we have:

$$
\begin{aligned}
\varphi^{P_{n, m}}\left(s_{1}\right) \varphi^{P_{n, m}}\left(\gamma_{1}\right) & =F_{1}^{n, m}-\varphi^{P_{n, m}}(\sigma) \\
& =F_{1}^{n, m}-F_{1}^{n, m} \wedge F_{2}^{n, m}
\end{aligned}
$$

The image of $F_{1}^{n, m}=\phi_{\mid V^{\otimes m-l_{N}(n)}} \otimes \operatorname{Id}_{V^{\otimes l_{N}(n)}}$ is equal to im $\left(\phi_{\mid V^{\otimes m-l_{N}(n)}}\right) \otimes V^{\otimes l_{N}(n)}$. Thus, $K_{n}^{(m)}$ is included in $\operatorname{im}\left(F_{1}^{n, m}\right)$. In particular, the restriction of $F_{1}^{n, m}$ to $K_{n}^{(m)}$ is the identity map. We deduce that the left bound family of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A} if and only if the following relation holds:

$$
\left(\varphi^{P_{n-1, m}}\left(\gamma_{1}\right) \varphi^{P_{n-1, m}}\left(s_{1}\right)\right)_{\mid K_{n}^{(m)}}=F_{1}^{n, m} \wedge F_{2}^{n, m}{ }_{\mid K_{n}^{(m)}} .
$$

From Relation 3a (see page 15), $\varphi^{P_{n-1, m}}\left(\gamma_{1}\right) \varphi^{P_{n-1, m}}\left(s_{1}\right)$ is equal to $\varphi^{P_{n-1, m}}\left(\gamma_{1}\right)$. Thus, it is sufficient to show:

$$
\begin{equation*}
\varphi^{P_{n-1, m}}\left(\gamma_{1}\right)_{\mid K_{n}^{(m)}}=F_{1}^{n-1, m} \vee F_{2}^{n-1, m} \mid K_{n}^{(m)} . \tag{6}
\end{equation*}
$$

By construction, $K_{n}^{(m)}$ is included in $\operatorname{ker}\left(F_{2}^{n-1, m}\right)$. Hence, Relation 6 is a consequence of Lemma 3.2.8.

The following lemma will be used in the proof of Theorem 4.3.5:
4.2.6. Lemma. Let n and m be two integers such that $n \geq 1$ and $l_{N}(n) \leq m<l_{N}(n+1)$. The operators $F_{1}^{n, m}$ and $F_{1}^{n-1, m} \vee F_{2}^{n-1, m}$ commute.
Proof. The pair $P_{n, m}$ being confluent, we deduce from Relation 4b (see page 15) that $F_{1}^{n-1, m} \vee F_{2}^{n-1, m}$ is polynomial in $F_{1}^{n-1, m}$ and $F_{2}^{n-1, m}$. Hence, it is sufficient to show that $F_{1}^{n, m}$ commutes with $F_{1}^{n-1, m}$ and $F_{2}^{n-1, m}$.

Let

$$
G=\theta_{X^{\left(l_{N}(n)\right)}}^{-1}\left(J_{n}\right)
$$

We have $F_{2}^{n-1, m}=\operatorname{Id}_{V^{\otimes m-l_{N}(n)}} \otimes G$. Thus, $F_{1}^{n, m}=\phi_{\mid V \otimes m-l_{N}(n)} \otimes \operatorname{Id}_{V^{\otimes l_{N}(n)}}$ commutes with $F_{2}^{n, m}$. Moreover, the morphism $F_{1}^{n, m}$ (respectively $F_{1}^{n-1, m}$) maps a word w of length m to $\widehat{w_{1}} w_{2}$ (respectively $\widehat{w_{1}^{\prime}} w_{2}^{\prime}$), where $w_{1} \in X^{\left(m-l_{N}(n)\right)}$ and $w_{2} \in X^{\left(l_{N}(n)\right)}$ (respectively $w_{1}^{\prime} \in X^{\left(m-l_{N}(n-1)\right)}$ and $\left.w_{2}^{\prime} \in X^{\left(l_{N}(n-1)\right)}\right)$ are such that $w=w_{1} w_{2}$ (respectively $w=w_{1}^{\prime} w_{2}^{\prime}$). Thus, the two compositions $F_{1}^{n, m} F_{1}^{n-1, m}$ and $F_{1}^{n-1, m} F_{1}^{n, m}$ are equal to $F_{1}^{n-1, m}$.

4.3 Extra-confluent presentations and reduction relations

Through this section we assume that the presentation $\langle X \mid R\rangle$ is extra-confluent. Our aim is to show that $\langle X \mid R\rangle$ satisfies the reduction relations. In this way, we will show in Proposition 4.3.4 that the extra-condition enables us to link together the reduction pairs associated with $\langle X \mid R\rangle$. We consider the notations of Section 4.1.
4.3.1. Lemma. Let m, r and k be three integers such that $m \geq N+2,2 \leq k \leq N-1$ and $r+k \leq m-N$. Then, we have:

1. $S_{r}^{(m)} \vee S_{r+k}^{(m)}=S_{r}^{(m)} \vee \cdots \vee S_{r+k}^{(m)}$,
2. $\left(S_{r}^{(m)} \wedge \cdots \wedge S_{r+k-1}^{(m)}\right) \vee S_{r+k}^{(m)}=S_{r+k-1}^{(m)} \vee S_{r+k}^{(m)}$.

Proof. Let us prove the point 1. The extra-condition implies the following inclusion:

$$
\left(V^{\otimes r+k} \otimes \bar{R} \otimes V^{\otimes m-N-r-k}\right) \cap\left(V^{\otimes r} \otimes \bar{R} \otimes V^{\otimes m-N-r}\right) \subset V^{\otimes r+k-1} \otimes \bar{R} \otimes V^{\otimes m-N-r-k+1} .
$$

Applying the bijection $\theta_{X^{(m)}}^{-1}$, we have:

$$
S_{r+k-1}^{(m)} \preceq S_{r}^{(m)} \vee S_{r+k}^{(m)} .
$$

By definition of the upper bound, we deduce that $S_{r}^{(m)} \vee S_{r+k-1}^{(m)} \vee S_{r+k}^{(m)}$ is equal to $S_{r}^{(m)} \vee S_{r+k}^{(m)}$. By induction on k, we obtain the first relation.

Let us prove the point 2. Recall from 3.3.4 that the lattice spanned by $S_{0}^{(m)}, \ldots, S_{m-N}^{(m)}$ is distributive. Thus, the left hand side of 2 is equal to $\left(S_{r}^{(m)} \vee S_{r+k}^{(m)}\right) \wedge \cdots \wedge\left(S_{r+k-1}^{(m)} \vee S_{r+k}^{(m)}\right)$. By the first point, for every integer i such that $0 \leq i \leq n-2, S_{r+i}^{(m)} \vee S_{r+k}^{(m)}$ is equal to $S_{r+i}^{(m)} \vee \cdots \vee S_{r+k}^{(m)}$, so it is greater than $S_{r+k-1}^{(m)} \vee S_{k+r}^{(m)}$. By definition of the lower bound, the second relation holds.
4.3.2. Lemma. Let n and m be two integers such that $n \geq 2$ and $l_{N}(n+1) \leq m<l_{N}(n+2)$. We have:

$$
\begin{equation*}
\left(S_{0}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+1)}^{(m)}\right) \vee S_{m-l_{N}(n)}^{(m)}=S_{m-l_{N}(n+1)}^{(m)} \vee \cdots \vee S_{m-l_{N}(n)}^{(m)} \tag{7}
\end{equation*}
$$

Proof. From Lemma 4.1.2, the hypothesis $l_{N}(n+1) \leq m<l_{N}(n+2)$ implies that $m-l_{N}(n)$ is smaller than $N-1$.

Assume that m is a multiple of N. The hypothesis $l_{N}(n+1) \leq m<l_{N}(n+2)$ implies that m is equal to $l_{N}(n+1)$. Thus, the left hand side of 7 is equal to $S_{0}^{(m)} \vee S_{m-l_{N}(n)}^{(m)}$ and the right hand side of 7 is equal to $S_{0}^{(m)} \vee \cdots \vee S_{m-l_{N}(n)}^{(m)}$. Hence, Relation 7 is a consequence of Lemma 4.3.1 point 1.

Assume that m is not a multiple of N. The hypothesis $l_{N}(n+1) \leq m<l_{N}(n+2)$ implies that n is even. Hence, the left hand side of 7 is equal to $\left(S_{0}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n)-1}^{(m)}\right) \vee S_{m-l_{N}(n)}^{(m)}$ and the right hand side of 7 is equal to $S_{m-l_{N}(n)-1}^{(m)} \vee S_{m-l_{n}(n)}^{(m)}$. If n is equal to 2 and m is equal to $N+1$, these two morphisms are equal to $S_{0}^{(N+1)} \vee S_{1}^{(N+1)}$. If the couple (n, m) is different from ($2, N+1$), Relation 7 is a consequence of Lemma 4.3 .1 point 2 .
4.3.3. Lemma. Let n and m be two integers such that $n \geq 2$ and $m \geq l_{N}(n+2)$. Letting

$$
T_{n, m}=S_{m-l_{N}(n+2)+1}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+1)}^{(m)}
$$

we have:

$$
T_{n, m} \vee F_{2}^{n-1, m}=F_{2}^{n, m} .
$$

Proof. From Lemma 4.1.3, we have

$$
\begin{aligned}
F_{2}^{n-1, m} & =S_{m-l_{N}(n)}^{(m)} \vee \cdots \vee S_{m-N}^{(m)}, \text { and } \\
F_{2}^{n, m} & =S_{m-l_{N}(n+1)}^{(m)} \vee \cdots \vee S_{m-N}^{(m)} .
\end{aligned}
$$

The law \vee being associative, it is sufficient to show:

$$
\begin{equation*}
T_{n, m} \vee S_{m-l_{N}(n)}^{(m)}=S_{m-l_{N}(n+1)}^{(m)} \vee \cdots \vee S_{m-l_{N}(n)}^{(m)} \tag{8}
\end{equation*}
$$

Assume that n is odd. We have $l_{N}(n+2)=l_{N}(n+1)+1$. Hence, the left hand side of 8 is equal to $S_{m-l_{N}(n+1)}^{(m)} \vee S_{m-l_{N}(n)}^{(m)}$. Moreover, $l_{N}(n+1)-l_{N}(n)$ is equal to $N-1$. Thus, Relation 8 is a consequence of Lemma 4.3.1 point 1 .

Assume that n is even. We have $l_{N}(n+1)=l_{N}(n)+1$. Hence, the left hand side of 8 is equal to $\left(S_{m-l_{N}(n+2)+1}^{(m)} \wedge \cdots \wedge S_{\left.m-l_{N}(n)-1\right)}^{(m)}\right) \vee S_{m-l_{N}(n)}^{(m)}$ and the right hand side of 8 is equal to $S_{m-l_{n}(n)-1}^{(m)} \vee S_{m-l_{N}(n)}^{(m)}$. Moreover, $l_{N}(n+2)-1-l_{N}(n)$ is equal to $N-1$. Thus, Relation 8 is a consequence of Lemma 4.3.1 point 2 .
4.3.4. Proposition. Let \mathbf{A} be an N-homogeneous algebra. Assume that \mathbf{A} admits a side-confluent presentation $\langle X \mid R\rangle$. Then, the presentation $\langle X \mid R\rangle$ satisfies the extra-condition if and only if for every integers n and m such that $n \geq 1$ and $m \geq l_{N}(n+1)$, we have:

$$
F_{1}^{n, m} \wedge\left(F_{1}^{n-1, m} \vee F_{2}^{n-1, m}\right)=F_{1}^{n, m} \wedge F_{2}^{n, m}
$$

Proof. For every integers n and m such that $n \geq 1$ and $m \geq l_{N}(n+1)$, let

$$
\begin{aligned}
L_{n, m} & =F_{1}^{n, m} \wedge\left(F_{1}^{n-1, m} \vee F_{2}^{n-1, m}\right), \\
R_{n, m} & =F_{1}^{n, m} \wedge F_{2}^{n, m} .
\end{aligned}
$$

Step 1. Assume that $n=1$. Fist, we show that:

$$
\begin{equation*}
L_{1, m}=F_{1}^{0, m} . \tag{9}
\end{equation*}
$$

The kernel of $F_{2}^{0, m}$ is equal to $V^{\otimes m-1} \otimes J_{1}=V^{\otimes m}$, that is, $F_{2}^{0, m}$ is equal to $0_{V} \otimes m$. In particular, $F_{1}^{0, m} \vee F_{2}^{0, m}$ is equal to $F_{1}^{0, m}$. Moreover, the kernel of $F_{1}^{1, m}$ is equal to $I(R)_{m-1} \otimes V$ and the kernel of $F_{1}^{0, m}$ is equal to $I(R)_{m}$. The inclusion $I(R)_{m} \subset I(R)_{m-1} \otimes V$ implies that $F_{1}^{0, m}$ is smaller than $F_{1}^{1, m}$. Hence, Relation 9 holds.

Assume that $m=N$. The kernel of $F_{1}^{1, N}$ is equal to $I(R)_{N-1} \otimes V=\{0\}$, that is, $F_{1}^{1, N}$ is equal to $\mathrm{Id}_{V \otimes N}$. In particular, $R_{1, N}$ is equal to $F_{2}^{1, N}$. Moreover, we have:

$$
\begin{aligned}
F_{1}^{0, N} & =\theta_{X^{(N)}}{ }^{-1}\left(I(R)_{N}\right) \\
& =\theta_{X^{(N)}}{ }^{-1}(R), \text { and } \\
F_{2}^{1, N} & =\theta_{X^{(N)}}{ }^{-1}\left(J_{2}\right) \\
& =\theta_{X^{(N)}}-1(R) .
\end{aligned}
$$

Thus $L_{1, N}$ and $R_{1, N}$ are equal.
Assume that $m \geq N+1$. From Lemma 4.1.3, we have:

$$
\begin{aligned}
& F_{1}^{0, m}=S_{0}^{(m)} \wedge \cdots \wedge S_{m-N}^{(m)}, \\
& F_{1}^{1, m}=S_{0}^{(m)} \wedge \cdots \wedge S_{m-N-1}^{(m)}, \\
& F_{2}^{1, m}=S_{m-N}^{(m)} .
\end{aligned}
$$

Thus, $R_{1, m}$ is equal to $F_{1}^{0, m}$. We conclude that Proposition 4.3.4 holds for $n=1$ and $m \geq N$.

Step 2. Assume that, $n \geq 2$ and $l_{N}(n+1) \leq m<l_{N}(n+2)$. From Lemma 4.1.2, $m-l_{N}(n)$ is smaller than $N-1$. Thus, the kernel of $F_{1}^{n, m}$ is equal to $\{0\}$, that is, $F_{1}^{n, m}$ is equal to $\operatorname{Id}_{V \otimes m}$. In particular, $L_{n, m}$ is equal to $F_{1}^{n-1, m} \vee F_{2}^{n-1, m}$ and $R_{n, m}$ is equal to $F_{2}^{n, m}$.

From Lemma 4.1.3, we have:

$$
\begin{aligned}
F_{1}^{n-1, m} & =S_{0}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+1)}^{(m)}, \\
F_{2}^{n-1, m} & =S_{m-l_{N}(n)}^{(m)} \vee \cdots \vee S_{m-N}^{(m)}, \\
F_{2}^{n, m} & =S_{m-l_{N}(n+1)}^{(m)} \vee \cdots \vee S_{m-N}^{(m)} .
\end{aligned}
$$

Moreover, from Lemma 4.3.2, we have:

$$
\left(S_{0}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+1)}^{(m)}\right) \vee S_{m-l_{N}(n)}^{(m)}=S_{m-l_{N}(n+1)}^{(m)} \vee \cdots \vee S_{m-l_{N}(n)}^{(m)}
$$

The law \vee being associative, we deduce that Proposition 4.3.4 holds for every integers n and m such that $n \geq 2$ and $l_{N}(n+1) \leq m<l_{N}(n+2)$.

Step 3. Assume that $n \geq 2$ and $m \geq l_{N}(n+2)$. From Lemma 4.1.3, we have:

$$
\begin{aligned}
F_{1}^{n-1, m} & =S_{0}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+1)}^{(m)}, \text { and } \\
F_{1}^{n, m} & =S_{0}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+2)}^{(m)}
\end{aligned}
$$

Thus, letting $T_{n, m}=S_{m-l_{N}(n+2)+1}^{(m)} \wedge \cdots \wedge S_{m-l_{N}(n+1)}^{(m)}$, we have:

$$
F_{1}^{n-1, m}=F_{1}^{n, m} \wedge T_{n, m} .
$$

The lattice generated by $S_{0}^{(m)}, \cdots, S_{m-N}^{(m)}$ being distributive, we have:

$$
F_{1}^{n-1, m} \vee F_{2}^{n-1, m}=\left(F_{1}^{n, m} \vee F_{2}^{n-1, m}\right) \wedge\left(T_{n, m} \vee F_{2}^{n-1, m}\right)
$$

Using the inequality $F_{1}^{n, m} \preceq\left(F_{1}^{n, m} \vee F_{2}^{n-1, m}\right)$, we deduce:

$$
L_{n, m}=F_{1}^{n, m} \wedge\left(T_{n, m} \vee F_{2}^{n-1, m}\right) .
$$

From Lemma 4.3.3, $T_{n, m} \vee F_{2}^{n-1, m}$ is equal to $F_{2}^{n, m}$. Thus, Proposition 4.3.4 holds for every integers n and m such $n \geq 2$ and that $m \geq l_{N}(n+2)$.
4.3.5. Theorem. Let \mathbf{A} be an N-homogeneous algebra admitting an extra-confluent presentation $\langle X \mid R\rangle$. The left bound of $\langle X \mid R\rangle$ is a contracting homotopy for the Koszul complex of \mathbf{A}.

Proof. Let ϕ be the endomorphism of $\mathrm{T}(V)$ which maps any element to its unique normal form for $\langle X \mid R\rangle$.

The presentation $\langle X \mid R\rangle$ is side-confluent. Thus, from Proposition 4.2.5, it is sufficient to show that for every integers n and m such that $n \geq 1$ and $m \geq l_{N}(n)$ we have:

$$
\left(r_{n, m}\right) \quad F_{1}^{n, m} \wedge F_{2}^{n, m}{ }_{\mid K_{n}^{(m)}}=F_{1}^{n-1, m} \vee F_{2}^{n-1, m} \mid K_{n}^{(m)},
$$

where $K_{n}^{(m)}$ is the vector space $\operatorname{im}\left(\phi_{\mid V^{\otimes m-l_{N}(n)}}\right) \otimes J_{n}$.
Assume that $l_{N}(n) \leq m<l_{N}(n+1)$. We show that $F_{1}^{n, m} \wedge F_{2}^{n, m}$ and $F_{1}^{n-1, m} \vee F_{2}^{n-1, m}$ are equal to $\mathrm{Id}_{V \otimes m}$.

The hypothesis $l_{N}(n) \leq m<l_{N}(n+1)$ implies that $m-l_{N}(n)$ is smaller than $N-1$. In particular, the kernel of $F_{1}^{n, m}$ is equal to $\{0\}$, that is, $F_{1}^{n, m}$ is equal to $\operatorname{Id}_{V \otimes m}$. Moreover, $F_{2}^{n, m}$ is also equal to $\operatorname{Id}_{V \otimes m}$. Thus, the morphism $F_{1}^{n, m} \wedge F_{2}^{n, m}$ is equal to $\operatorname{Id}_{V \otimes m}$. From Lemma 4.1.2, the morphism $F_{1}^{n-1, m}$ is equal to $\operatorname{Id}_{V \otimes m}$. Thus $F_{1}^{n-1, m} \vee F_{2}^{n-1, m}$ is equal to $\operatorname{Id}_{V \otimes m}$ and Relation $\left(r_{n, m}\right)$ holds.

Assume that $m \geq l_{N}(n+1)$. From Lemma 4.2.6 the operators $F_{1}^{n, m}$ and $F_{1}^{n-1, m} \vee F_{2}^{n-1, m}$ commute. We deduce from Relation 4a (see page 15):

$$
F_{1}^{n, m} \wedge\left(F_{1}^{n-1, m} \vee F_{2}^{n-1, m}\right)=\left(F_{1}^{n-1, m} \vee F_{2}^{n-1, m}\right) F_{1}^{n, m}
$$

From Lemma 4.2.1, the image of $F_{1}^{n, m}$ is equal to $\operatorname{im}\left(\phi_{\mid V^{\otimes m-l_{N}(n)}}\right) \otimes V^{\otimes l_{N}(n)}$. Thus, $K_{n}^{(m)}$ is included in $\operatorname{im}\left(F_{1}^{n, m}\right)$. Hence, the restriction of $F_{1}^{n, m} \wedge\left(F_{1}^{n-1, m} \vee F_{2}^{n-1, m}\right)$ to $K_{n}^{(m)}$ is equal to the restriction of $F_{1}^{n-1, m} \vee F_{2}^{n-1, m}$ to $K_{n}^{(m)}$. Moreover, the presentation $\langle X \mid R\rangle$ satisfies the extra-condition. Thus, from Proposition 4.3.4, $F_{1}^{n, m} \wedge\left(F_{1}^{n-1, m} \vee F_{2}^{n-1, m}\right)$ is equal to $F_{1}^{n, m} \wedge F_{2}^{n, m}$. Hence, Relation $\left(r_{n, m}\right)$ holds.

5 Examples

In this section, we consider three examples of algebras which admit an extra-confluent presentation: the symmetric algebra, monomial algebras satisfying the overlap property and the enveloping algebra of the Heisenberg Lie algebra. For each of these examples we explicit the left bound constructed in Section 4.2.

5.1 The symmetric algebra

In this section we consider the symmetric algebra $\mathbf{A}=\mathbb{K}\left[x_{1}, \cdots, x_{d}\right]$ over d generators. This algebra admits the presentation $\langle X \mid R\rangle$, where the set X is equal to $\left\{x_{1}, \cdots, x_{d}\right\}$ and the set R is equal to $\left\{x_{i} x_{j}=x_{j} x_{i}, 1 \leq i \neq j \leq d\right\}$.
5.1.1. Extra-confluence. We consider the order $x_{1}<\cdots<x_{d}$. The operator $S \in \operatorname{End}\left(V^{\otimes 2}\right)$ of the presentation $\langle X \mid R\rangle$ is defined on the basis $X^{(2)}$ by

$$
S\left(x_{i} x_{j}\right)= \begin{cases}x_{j} x_{i}, & \text { if } i>j \\ x_{i} x_{j}, & \text { otherwise }\end{cases}
$$

Let $w=x_{i} x_{j} x_{k} \in X^{(3)}$. If k is strictly smaller than j and i is strictly smaller than k, we have

$$
\begin{aligned}
\left\langle S \otimes \operatorname{Id}_{V}, \operatorname{Id}_{V} \otimes S\right\rangle^{3}(w) & =\left\langle\operatorname{Id}_{V} \otimes S, S \otimes \operatorname{Id}_{V}\right\rangle^{3}(w) \\
& =x_{k} x_{j} x_{i}
\end{aligned}
$$

In the other cases the elements $\left\langle S \otimes \operatorname{Id}_{V}, \operatorname{Id}_{V} \otimes S\right\rangle^{2}(w)$ and $\left\langle\operatorname{Id}_{V} \otimes S, S \otimes \operatorname{Id}_{V}\right\rangle^{2}(w)$ are equal. In particular the two operators $\left\langle S \otimes \operatorname{Id}_{V}, \operatorname{Id}_{V} \otimes S\right\rangle^{3}$ and $\left\langle\operatorname{Id}_{V} \otimes S, S \otimes \operatorname{Id}_{V}\right\rangle^{3}$ are equal. Moreover, N is equal to 2. Thus, from Remark 2.3.3, the presentation $\langle X \mid R\rangle$ is extra-confluent. The normal form of a word $x_{i_{1}} \cdots x_{i_{n}}$ is equal to $x_{j_{1}} \cdots x_{j_{n}}$ where $\left\{j_{1}, \cdots, j_{n}\right\}=\left\{x_{i_{1}}, \cdots, x_{i_{n}}\right\}$ and $j_{1} \leq \cdots \leq j_{n}$.
5.1.2. The Koszul complex of the symmetric algebra. The morphism $\partial_{1}: \mathbf{A} \otimes V \longrightarrow \mathbf{A}$ is defined by $\partial_{1}\left(1_{\mathbf{A}} \otimes x_{i}\right)=\overline{x_{i}}$, for every $1 \leq i \leq d$. The morphism $\partial_{2}: \mathbf{A} \otimes \bar{R} \longrightarrow \mathbf{A} \otimes V$ is defined by
$\partial_{2}\left(1_{\mathbf{A}} \otimes\left(x_{j} x_{i}-x_{i} x_{j}\right)\right)=\overline{x_{j}} \otimes x_{i}-\overline{x_{i}} \otimes x_{j}$, for every $1 \leq i<j \leq d$. If d is greater than 3 , the vector space J_{3} is spanned by the elements

$$
\begin{aligned}
r_{i_{1}<i_{2}<i_{3}}: & =x_{i_{3}}\left(x_{i_{2}} x_{i_{1}}-x_{i_{1}} x_{i_{2}}\right)-x_{i_{2}}\left(x_{i_{3}} x_{i_{1}}-x_{i_{1}} x_{i_{3}}\right)+x_{i_{1}}\left(x_{i_{3}} x_{i_{2}}-x_{i_{2}} x_{i_{3}}\right) \\
& \left(x_{i_{3}} x_{i_{2}}-x_{i_{2}} x_{i_{3}}\right) x_{i_{1}}-\left(x_{i_{3}} x_{i_{1}}-x_{i_{1}} x_{i_{3}}\right) x_{i_{2}}+\left(x_{i_{2}} x_{i_{1}}-x_{i_{1}} x_{i_{2}}\right) x_{i_{3}},
\end{aligned}
$$

where $1 \leq i_{1}<i_{2}<i_{3} \leq d$. The morphism $\partial_{3}: \mathbf{A} \otimes J_{3} \longrightarrow \mathbf{A} \otimes \bar{R}$ maps the element $1_{\mathbf{A}} \otimes r_{i_{1}<i_{2}<i_{3}}$ to $\overline{x_{i_{3}}} \otimes\left(x_{i_{2}} x_{i_{1}}-x_{i_{1}} x_{i_{2}}\right)-\overline{x_{i_{2}}} \otimes\left(x_{i_{3}} x_{i_{1}}-x_{i_{1}} x_{i_{3}}\right)+\overline{x_{i_{1}}} \otimes\left(x_{i_{3}} x_{i_{2}}-x_{i_{2}} x_{i_{3}}\right)$.

Assume that d is greater than 4 and let n be an integer such that $3 \leq n \leq d-1$. We denote by I_{n} the set of sequences $i_{1}<\cdots<i_{n}$ such that $1 \leq i_{1}$ and $i_{n} \leq d$. Assume that r_{l} is defined for every $l \in I_{n}$. For every $l=i_{1}<\cdots<i_{n+1} \in I_{n+1}$ and every $1 \leq j \leq n+1$ we denote by l_{j} the element of I_{n} obtained from l removing i_{j}. Then, let

$$
r_{l}=\sum_{j=0}^{n+1}(-1)^{-\eta(n+j)} x_{i_{j}} r_{l_{j}}
$$

where $\eta: \mathbb{N} \longrightarrow\{-1,1\}$ is defined by $\eta(k)=1$ if k is even and $\eta(k)=-1$ if k is odd. For every $4 \leq n \leq d$, the vector space J_{n} is spanned by the elements r_{l} for $l \in I_{n}$. The map $\partial_{n}: \mathbf{A} \otimes J_{n} \longrightarrow \mathbf{A} \otimes J_{n-1}$ is defined by

$$
\partial_{n}\left(1_{\mathbf{A}} \otimes r_{l}\right)=\sum_{j=1}^{n}(-1)^{-\eta(n-1+j)} \overline{x_{i_{j}}} \otimes r_{l_{j}} .
$$

For every integer n such that $n \geq d+1, J_{n}$ is equal to $\{0\}$.
5.1.3. The construction of h_{1}. Let m be an integer such that $m \geq 2$. Let $P_{1, m}=\left(F_{1}^{1, m}, F_{2}^{1, m}\right)$ be the reduction pair of bi-degree $(1, m)$ associated with $\langle X \mid R\rangle$. The morphisms $F_{1}^{1, m}$ and $F_{2}^{1, m}$ are defined by

$$
\begin{aligned}
& F_{1}^{1, m}\left(x_{i_{1}} \cdots x_{i_{m}}\right)=\widehat{w} x_{i_{m}}, \text { where } w=x_{i_{1}} \cdots x_{i_{m-1}}, \text { and } \\
& F_{2}^{1, m}\left(x_{i_{1}} \cdots x_{i_{m}}\right)=x_{i_{1}} \cdots x_{i_{m-2}} \widehat{w}, \text { where } w=x_{i_{m-1}} x_{i_{m}} .
\end{aligned}
$$

These morphisms satisfy the relation $\left\langle F_{1}^{1, m}, F_{2}^{1, m}\right\rangle^{4}=\left\langle F_{2}^{1, m}, F_{1}^{1, m}\right\rangle^{3}$. Thus, we consider the $P_{1, m^{-}}$ representation of \mathscr{A}_{4} :

$$
\begin{aligned}
\varphi_{1, m}: \mathscr{A}_{4} & \longrightarrow \operatorname{End}\left(V^{\otimes m}\right) . \\
s_{i} & \longmapsto F_{i}^{1, m}
\end{aligned}
$$

The image of $\gamma_{1}=\left(1-s_{2}\right)\left(s_{1}+s_{1} s_{2} s_{1}\right)$ through this morphism is equal to $F_{1}^{1, m}-F_{2}^{1, m} F_{1}^{1, m}$. Let $w x_{i_{1}} \in X^{(m)}$. Denoting by $\widehat{w}=w^{\prime} x_{i_{2}}, \varphi_{1, m}\left(\gamma_{1}\right)\left(w x_{i_{1}}\right)$ is equal to $w^{\prime}\left(x_{i_{2}} x_{i_{1}}-x_{i_{1}} x_{i_{2}}\right)$ if $i_{2}<i_{1}$ and $\varphi_{1, m}\left(\gamma_{1}\right)\left(w x_{i_{1}}\right)$ is equal to 0 , otherwise. Then, the map $h_{1}: \mathbf{A} \otimes V \longrightarrow \mathbf{A} \otimes \bar{R}$ is defined by

$$
h_{1}\left(\bar{w} \otimes x_{i_{1}}\right)=\left\{\begin{array}{l}
\overline{w^{\prime}} \otimes\left(x_{i_{2}} x_{i_{1}}-x_{i_{1}} x_{i_{2}}\right), \text { if } i_{2}<i_{1}, \\
0, \text { otherwise } .
\end{array}\right.
$$

5.1.4. The construction of h_{2}. Let m be an integer such that $m \geq 3$. Let $P_{2, m}=\left(F_{1}^{2, m}, F_{2}^{2, m}\right)$ be the reduction pair of bi-degree $(2, m)$ associated with $\langle X \mid R\rangle$. The morphisms $F_{1}^{2, m}$ and $F_{2}^{2, m}$ are defined by

$$
F_{1}^{1, m}\left(x_{i_{1}} \cdots x_{i_{m}}\right)=\widehat{w} x_{i_{m-1}} x_{i_{m}}, \text { where } w=x_{i_{1}} \cdots x_{i_{m-2}}, \text { and }
$$

$$
F_{2}^{1, m}\left(x_{i_{1}} \cdots x_{i_{m}}\right)=\left\{\begin{array}{l}
x_{i_{1}} \cdots x_{i_{m}-3}\left(r_{i_{m-2}<i_{m-1}<i_{m}}\right), \text { if } i_{m-2}<i_{m-1}<i_{m} \\
0, \text { otherwise }
\end{array}\right.
$$

These morphisms satisfy the relation $\left\langle F_{1}^{2, m}, F_{2}^{2, m}\right\rangle^{4}=\left\langle F_{2}^{2, m}, F_{1}^{2, m}\right\rangle^{3}$. Thus, we consider the $P_{2, m^{-}}$ representation of \mathscr{A}_{4} :

$$
\begin{aligned}
\varphi_{2, m}: \mathscr{A}_{4} & \longrightarrow \operatorname{End}\left(V^{\otimes m}\right) . \\
s_{i} & \longmapsto F_{i}^{2, m}
\end{aligned}
$$

The image of $\gamma_{1}=\left(1-s_{2}\right)\left(s_{1}+s_{1} s_{2} s_{1}\right)$ through this morphism is equal to $F_{1}^{2, m}-F_{2}^{2, m} F_{1}^{2, m}$. Let $w x_{i_{2}} x_{i_{1}} \in X^{(m)}$. Denoting by $\widehat{w}=w^{\prime} x_{i_{3}}, \varphi_{2, m}\left(\gamma_{1}\right)\left(w x_{i_{2}} x_{i_{1}}\right)$ is equal to $w^{\prime} r_{i_{1}<i_{2}<i_{3}}$ if $i_{1}<i_{2}<i_{3}$ and $\varphi_{2, m}\left(\gamma_{1}\right)\left(w x_{i_{2}} x_{i_{1}}\right)$ is equal to 0 otherwise. Then, the map $h_{2}: \mathbf{A} \otimes \bar{R} \longrightarrow \mathbf{A} \otimes J_{3}$ is defined by

$$
h_{2}\left(\bar{w} \otimes\left(x_{i_{2}} x_{i_{1}}-x_{i_{1}} x_{i_{2}}\right)\right)=\left\{\begin{array}{l}
\overline{w^{\prime}} \otimes\left(r_{i_{1}<i_{2}<i_{3}}\right), \text { if } i_{1}<i_{2}<i_{3} \\
0, \text { otherwise } .
\end{array}\right.
$$

5.1.5. The construction of h_{n}. More generally, for every $\bar{w} \otimes r_{i_{1}<\cdots<i_{n}}$ we denote by $\widehat{w}=w^{\prime} x_{i_{n+1}}$. The map $h_{n}: \mathbf{A} \otimes J_{n} \longrightarrow \mathbf{A} \otimes J_{n+1}$ is defined by

$$
h_{n}\left(\bar{w} \otimes r_{i_{1}<\cdots<i_{n}}\right)=\left\{\begin{array}{l}
\overline{w^{\prime}} \otimes r_{i_{1}<\cdots<i_{n+1}}, \text { if } i_{1}<\cdots<i_{n+1} \\
0, \text { otherwise }
\end{array}\right.
$$

5.1.6. Remark. The left bound family of $\langle X \mid R\rangle$ is the contracting homotopy constructed in the proof of [LV12, Proposition 3.4.8].

5.2 Monomial algebras satisfying the overlap property

In the section we consider the example from [Ber01, Proposition 3.8]. We consider a monomial algebra A over d generators: $X=\left\{x_{1}, \cdots, x_{d}\right\}$ and $R=\left\{w_{1}, \cdots, w_{l}\right\}$ is a set of words of length N. We assume that the presentation $\langle X \mid R\rangle$ satisfies the overlap property. This property is stated as follows:
5.2.1. The overlap property. For every integer n such that $N+2 \leq n \leq 2 N-1$ and for any word $w=x_{i_{1}} \cdots x_{i_{n}}$ such that $x_{i_{1}} \cdots x_{i_{N}}$ and $x_{i_{n-N+1}} \cdots x_{i_{n}}$ belong to R, all the sub-words of length N of w belong to R.
5.2.2. Extra-confluence. For any choice of order on X, the operator $S \in \operatorname{End}\left(V^{\otimes N}\right)$ of the presentation $\langle X \mid R\rangle$ is defined on the basis $X^{(N)}$ by

$$
S(w)=\left\{\begin{array}{l}
0, \text { if } w \in R \\
w, \text { otherwise }
\end{array}\right.
$$

As a consequence, for every integer m such that $1 \leq m \leq N-1$, the operators $S \otimes \operatorname{Id}_{V \otimes m}$ and $\operatorname{Id}_{V \otimes m} \otimes S$ commute. Thus, the presentation $\langle X \mid R\rangle$ is side-confluent. Moreover, for monomial algebras, the extracondition is equivalent to the overlap property. Thus, the presentation $\langle X \mid R\rangle$ is extra-confluent. The normal form of a word w is equal to 0 if w admits a sub-word which belongs to R, and w otherwise.
5.2.3. The Koszul complex of a monomial algebra. Let n be an integer such that $n \geq 2$. The vector space J_{n} is spanned by words w of length $l_{N}(n)$ such that every sub-word of length N of w belongs to R. The morphism $\partial_{n}: \mathbf{A} \otimes J_{n} \longrightarrow \mathbf{A} \otimes J_{n-1}$ maps $1_{\mathbf{A}} \otimes x_{i_{1}} \cdots x_{i_{l_{N}(n)}}$ to $\overline{w^{\prime}} \otimes x_{i_{l_{N}(n)-l_{N}(n-1)+1}} \cdots x_{i_{l_{N}(n)}}$, where w^{\prime} is equal to $x_{i_{1}} \cdots x_{i_{l_{N}(n)-l_{N}(n-1)}}$.
5.2.4. The contracting homotopy. Let n and m be two integers such that $m \geq l_{n}(n)$. Let $P_{n, m}=\left(F_{1}^{n, m}, F_{2}^{n, m}\right)$ be the reduction pair of bi-degree (n, m) associated with $\langle X \mid R\rangle$. The operators $F_{1}^{n, m}$ and $F_{2}^{n, m}$ are defined by

$$
F_{1}^{n, m}\left(x_{i_{1}} \cdots x_{i_{m}}\right)=\left\{\begin{array}{l}
0, \text { if a sub-word of length } N \text { of } x_{i_{1}} \cdots x_{i_{m-l_{n}(n)}} \text { belongs to } R \\
w, \text { otherwise }
\end{array}\right.
$$

and

$$
F_{2}^{n, m}\left(x_{i_{1}} \cdots x_{i_{m}}\right)=\left\{\begin{array}{l}
0, \text { if } x_{i_{m-l_{N}(n+1)+1}} \cdots x_{i_{m}} \in J_{n+1}, \\
w, \text { otherwise } .
\end{array}\right.
$$

These operators commute. Thus, we consider the $P_{n, m}$-representation of \mathscr{A}_{2} :

$$
\begin{aligned}
\varphi_{n, m}: \mathscr{A}_{2} & \longrightarrow \operatorname{End}\left(V^{\otimes m}\right) . \\
s_{i} & \longmapsto F_{i}^{2, m}
\end{aligned}
$$

The image of $\gamma_{1}=\left(1-s_{2}\right) s_{1}$ through this morphism is equal to $F_{1}^{n, m}-F_{2}^{n, m} F_{1}^{n, m}$. Let $w=x_{i_{1}} \cdots x_{i_{m}}$ be an element of $X^{(m)}$. If w is such that no sub-word of length N of $x_{i_{1}} \cdots x_{i_{m-l_{n}(n)}}$ belongs to R and if $x_{i_{m-l_{N}(n+1)+1}} \cdots x_{i_{m}}$ belongs to $J_{n+1}, \varphi_{n, m}\left(\gamma_{1}\right)(w)$ is equal to w. In the other cases $\varphi_{n, m}\left(\gamma_{1}\right)(w)$ is equal to 0 . Then, the morphism $h_{n}: \mathbf{A} \otimes J_{n} \longrightarrow \mathbf{A} \otimes J_{n+1}$ is defined by

$$
h_{n}\left(\bar{w} \otimes x_{i_{m-l_{N}(n)+1}} \cdots x_{i_{m}}\right)=\left\{\begin{array}{l}
\overline{w^{\prime}} \otimes x_{i_{m-l_{N}(n+1)+1}} \cdots x_{i_{m}}, \text { if } x_{i_{m-l_{N}(n+1)+1}} \cdots x_{i_{m}} \in J_{n+1}, \\
0, \text { otherwise },
\end{array}\right.
$$

where $w=x_{i_{1}} \cdots x_{i_{m-l_{N}(n)}}$ and $w^{\prime}=x_{i_{1}} \cdots x_{i_{m-l_{N}(n+1)}}$.

5.3 The enveloping algebra of the Heisenberg Lie algebra

Let $\langle X \mid R\rangle$ be the presentation of Example 2.2.8. In this section we make explicit the left bound of $\langle X \mid R\rangle$. Recall that $X=\left\{x_{1}, x_{2}\right\}$ and $R=\left\{f_{1}, f_{2}\right\}$ where

$$
\begin{aligned}
& f_{1}=x_{2} x_{1} x_{1}-2 x_{1} x_{2} x_{1}+x_{1} x_{1} x_{2}, \text { and } \\
& f_{2}=x_{2} x_{2} x_{1}-2 x_{2} x_{1} x_{2}+x_{1} x_{2} x_{2} .
\end{aligned}
$$

The acyclicty of the Koszul complex of any Yang-Mills algebra was proven in [CDV02, Theorem 1] and in [KVdB15, Section 6.3]. In this section, we propose an other proof for the enveloping algebra of the Heisenberg Lie algebra, based on the construction of an explicit contracting homotopy.
5.3.1. Extra-confluence. Recall that for the order $x_{1}<x_{2}$, the operator $S \in \operatorname{End}\left(V^{\otimes 3}\right)$ of the presentation $\langle X \mid R\rangle$ is defined on the basis $X^{(3)}$ by

$$
S(w)=\left\{\begin{array}{l}
2 x_{1} x_{2} x_{1}-x_{1} x_{1} x_{2}, \text { if } w=x_{2} x_{1} x_{1} \\
2 x_{2} x_{1} x_{2}-x_{1} x_{2} x_{2}, \text { if } w=x_{2} x_{2} x_{1} \\
w, \text { otherwise }
\end{array}\right.
$$

Recall from Example 2.3.6 that this presentation is extra-confluent.
5.3.2. The Koszul complex of the enveloping algebra of the Heisenberg Lie algebra. The morphism $\partial_{1}: \mathbf{A} \otimes V \longrightarrow \mathbf{A}$ is defined by $\partial_{1}\left(1_{\mathbf{A}} \otimes x_{i}\right)=\overline{x_{i}}$ for $i=1$ or 2 . The morphism $\partial_{2}: \mathbf{A} \otimes \bar{R} \longrightarrow$ $\mathbf{A} \otimes V$ is defined by

$$
\begin{aligned}
& \partial_{2}\left(1_{\mathbf{A}} \otimes f_{1}\right)=\overline{x_{2} x_{1}} \otimes x_{1}-2 \overline{x_{1} x_{2}} \otimes x_{1}+\overline{x_{1} x_{1}} \otimes x_{2}, \text { and } \\
& \partial_{2}\left(1_{\mathbf{A}} \otimes f_{2}\right)=\overline{x_{2} x_{2}} \otimes x_{1}-2 \overline{x_{2} x_{1}} \otimes x_{2}+\overline{x_{1} x_{2}} \otimes x_{2} .
\end{aligned}
$$

The vector space $J_{3}=(V \otimes \bar{R}) \cap(\bar{R} \otimes V)$ is the one-dimensional vector space spanned by

$$
\begin{aligned}
v & =x_{2} f_{1}+x_{1} f_{2} \\
& =f_{2} x_{1}+f_{1} x_{2} .
\end{aligned}
$$

The morphism $\partial_{3}: \mathbf{A} \otimes J_{3} \longrightarrow \mathbf{A} \otimes \bar{R}$ is defined by

$$
\partial_{3}\left(1_{A} \otimes v\right)=\overline{x_{2}} \otimes f_{1}+\overline{x_{1}} \otimes f_{2}
$$

For every integer n such that $n \geq 4$, the vector space J_{n} is equal to $\{0\}$.
5.3.3. The construction of h_{1}. Recall from Proposition 2.2 .6 that the algebra \mathbf{A} admits as a basis the set $\{\bar{w}, w \in\langle X\rangle$ is a normal form $\}$. Thus, it is sufficient to define $h_{1}\left(\bar{w} \otimes x_{i}\right)$ for every normal form $w \in\langle X\rangle$ and $i=1$ or 2 .

Let m be an integer such that $m \geq 3$. Let $P_{1, m}=\left(F_{1}^{1, m}, F_{2}^{1, m}\right)$ be the reduction pair of bi-degree $(1, m)$ associated with $\langle X \mid R\rangle$. The morphisms $F_{1}^{1, m}$ and $F_{2}^{1, m}$ are defined by

$$
\begin{aligned}
& F_{1}^{1, m}\left(x_{i_{1}} \cdots x_{i_{m}}\right)=\widehat{w} x_{i_{m}} \text {, where } w=x_{i_{1}} \cdots x_{i_{m-1}}, \text { and } \\
& F_{2}^{1, m}\left(x_{i_{1}} \cdots x_{i_{m}}\right)=x_{i_{1}} \cdots x_{i_{m-3}} \widehat{w} \text {, where } w=x_{i_{m-2}} x_{i_{m-1}} x_{i_{m}} .
\end{aligned}
$$

These morphisms commute. Thus, we consider the $P_{1, m}$-representation of \mathscr{A}_{2} :

$$
\begin{aligned}
\varphi_{1, m}: \mathscr{A}_{2} & \longrightarrow \operatorname{End}\left(V^{\otimes m}\right) . \\
s_{i} & \longmapsto F_{i}^{1, m}
\end{aligned}
$$

The image of $\gamma_{1}=\left(1-s_{2}\right) s_{1}$ through this morphism is equal to $F_{1}^{1, m}-F_{2}^{1, m} F_{1}^{1, m}$.
Let w be a normal form such that the length of w is equal to $m-1$. The word $w x_{2}$ does not factorize on the right by $x_{2} x_{1} x_{1}$ or $x_{2} x_{2} x_{1}$. Thus, $\varphi_{1, m}\left(\gamma_{1}\right)\left(w x_{2}\right)$ is equal to 0 . In particular, $h_{1}\left(\bar{w} \otimes x_{2}\right)$ is equal to 0 for every normal form $w \in\langle X\rangle$. If w does not factorize on the right by $x_{2} x_{1}$ or $x_{2} x_{2}$, $\varphi_{1, m}\left(\gamma_{1}\right)\left(w x_{1}\right)$ is equal to 0 . Thus, $h_{1}\left(\bar{w} \otimes x_{1}\right)$ is equal to 0 for every normal form $w \in\langle X\rangle$ such that w does not factorize on the right by $x_{2} x_{1}$ or $x_{2} x_{2}$. If w can be written $w^{\prime} x_{2} x_{1}$ (respectively $w^{\prime} x_{2} x_{2}$), then $\varphi_{1, m}\left(\gamma_{1}\right)\left(w x_{1}\right)$ is equal to $w^{\prime}\left(2 x_{1} x_{2} x_{1}-x_{1} x_{1} x_{2}\right)$ (respectively $\left.w^{\prime}\left(2 x_{2} x_{1} x_{2}-x_{1} x_{2} x_{2}\right)\right)$. Thus, we have:

$$
h_{1}\left(\bar{w} \otimes x_{1}\right)= \begin{cases}\overline{w^{\prime}} \otimes\left(2 x_{1} x_{2} x_{1}-x_{1} x_{1} x_{2}\right), & \text { if } w=w^{\prime} x_{2} x_{1} \\ \overline{w^{\prime}} \otimes\left(2 x_{2} x_{1} x_{2}-x_{1} x_{2} x_{2}\right), & \text { if } w=w^{\prime} x_{2} x_{2}\end{cases}
$$

5.3.4. The construction of h_{2}. Recall from Proposition 2.2 .6 that the algebra \mathbf{A} admits as a basis the set $\{\bar{w}, w \in\langle X\rangle$ is a normal form $\}$. Thus, it is sufficient to define $h_{2}\left(\bar{w} \otimes f_{i}\right)$ for every normal form $w \in\langle X\rangle$ and $i=1$ or 2 .

Let m be an integer such that $m \geq 4$. Let $P_{2, m}=\left(F_{1}^{2, m}, F_{2}^{2, m}\right)$ be the reduction pair of bi-degree $(2, m)$ associated with $\langle X \mid R\rangle$. The operator $F_{1}^{2, m}$ maps a word $w \in X^{(m)}$ to $\widehat{w_{1}} w_{2}$, where $w_{1} \in\langle X\rangle$ and $w_{2} \in X^{(4)}$ are such that $w=w_{1} w_{2}$. The operator $F_{2}^{2, m}$ is equal to $\operatorname{Id}_{V \otimes m-4} \otimes F$ where F is equal to $\theta_{X^{(4)}}^{-1}\left(J_{3}\right)$. The kernel of F is the one-dimensional vector space spanned by v. Thus, $F(\operatorname{lm}(v))$ is equal to $\operatorname{lm}(v)-v$, and for every $w \in X^{(4)} \backslash\{\operatorname{lm}(v)\}, F(w)$ is equal to w. Thus, F is defined on the basis $X^{(4)}$ by

$$
F(w)=\left\{\begin{array}{l}
2 x_{2} x_{1} x_{2} x_{1}-x_{2} x_{1} x_{1} x_{2}-x_{1} x_{2} x_{2} x_{1}+2 x_{1} x_{2} x_{1} x_{2}-x_{1} x_{1} x_{2} x_{2}, \text { if } w=x_{2} x_{2} x_{1} x_{1} \\
w, \text { otherwise }
\end{array}\right.
$$

The two operators $F_{1}^{2, m}$ and $F_{2}^{2, m}$ commute. Thus, we consider the $P_{2, m}$-representation of \mathscr{A}_{2} :

$$
\begin{aligned}
\varphi_{2, m}: \mathscr{A}_{2} & \longrightarrow \text { End }\left(V^{\otimes m}\right) . \\
s_{i} & \longmapsto F_{i}^{2, m}
\end{aligned}
$$

The image of $\gamma_{1}=\left(1-s_{2}\right) s_{1}$ is equal to $F_{1}^{2, m}-F_{2}^{2, m} F_{1}^{2, m}$.
Let w be a normal form such that the length of w is equal to $m-1$. The word $x_{2} x_{2} x_{1} x_{1}$ does not occur in the decomposition of $w f_{2}$. Thus, $\varphi_{2, m}\left(w f_{2}\right)$ is equal to 0 . In particular $h_{2}\left(\bar{w} \otimes f_{2}\right)$ is equal to 0 for every normal form $w \in\langle X\rangle$. If w does not factorize on the right by x_{2}, the word $x_{2} x_{2} x_{1} x_{1}$ does not occur in the decomposition of $w f_{1}$. Thus, $\varphi_{2, m}\left(w f_{1}\right)$ is equal to 0 . In particular $h_{2}\left(\bar{w} \otimes f_{1}\right)$ is equal to 0 for every normal form $w \in\langle X\rangle$ such that w does not factorize on the right by x_{2}. Assume that w factorize on the right by $x_{2}: w=w^{\prime} x_{2}$. Thus, $\varphi_{2, m}\left(w f_{1}\right)$ is equal to $w^{\prime}\left(x_{2} x_{2} x_{1} x_{1}-F\left(x_{2} x_{2} x_{1} x_{1}\right)\right)$. In this case we have

$$
h_{2}\left(\bar{w} \otimes f_{1}\right)=\overline{w^{\prime}} \otimes\left(x_{2} f_{1}+x_{1} f_{2}\right) .
$$

References

[Ani86] David J. Anick. On the homology of associative algebras. Trans. Amer. Math. Soc., 296(2):641-659, 1986.
[AS87] Michael Artin and William F. Schelter. Graded algebras of global dimension 3. Adv. in Math., 66(2):171-216, 1987.
[Ber78] George M. Bergman. The diamond lemma for ring theory. Adv. in Math., 29(2):178-218, 1978.
[Ber98] Roland Berger. Confluence and Koszulity. J. Algebra, 201(1):243-283, 1998.
[Ber01] Roland Berger. Koszulity for nonquadratic algebras. J. Algebra, 239(2):705-734, 2001.
[BF85] Jörgen Backelin and Ralf Fröberg. Koszul algebras, Veronese subrings and rings with linear resolutions. Rev. Roumaine Math. Pures Appl., 30(2):85-97, 1985.
[CDV02] Alain Connes and Michel Dubois-Violette. Yang-Mills algebra. Lett. Math. Phys., 61(2):149158, 2002.
[DV13] Vladimir Dotsenko and Bruno Vallette. Higher Koszul duality for associative algebras. Glasg. Math. J., 55(A):55-74, 2013.
[Kos50] Jean-Louis Koszul. Homologie et cohomologie des algèbres de Lie. Bull. Soc. Math. France, 78:65-127, 1950.
[KVdB15] Benoit Kriegk and Michel Van den Bergh. Representations of non-commutative quantum groups. Proc. Lond. Math. Soc. (3), 110(1):57-82, 2015.
[LV12] Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2012.
[PP05] Alexander Polishchuk and Leonid Positselski. Quadratic algebras, volume 37 of University Lecture Series. American Mathematical Society, Providence, RI, 2005.
[Pri70] Stewart B. Priddy. Koszul resolutions. Trans. Amer. Math. Soc., 152:39-60, 1970.
[Ufn95] V. A. Ufnarovskij. Combinatorial and asymptotic methods in algebra [MR1060321 (92h:16024)]. In Algebra, VI, volume 57 of Encyclopaedia Math. Sci., pages 1-196. Springer, Berlin, 1995.

Cyrille Chenavier
INRIA, équipe πr^{2}
Laboratoire Preuves, Programmes et Systèmes, CNRS UMR 7126
Université Paris-Diderot
Case 7014
75205 PARIS Cedex 13
cyrille.chenavier@pps.univ-paris-diderot.fr

[^0]: ${ }^{1}$ This notion corresponds to the one of X-confluent algebra in [Ber98]. However, we prefer to use our terminology because the property of confluence depends on the presentation.

