
LTL Model-Checking for Dynamic Pushdown Networks

Communicating via Locks

Fu Song, Tayssir Touili

To cite this version:

Fu Song, Tayssir Touili. LTL Model-Checking for Dynamic Pushdown Networks Communicat-
ing via Locks. [Research Report] LIAFA. 2014. <hal-01264220>

HAL Id: hal-01264220

https://hal.archives-ouvertes.fr/hal-01264220

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01264220

LTL Model-Checking for Dynamic Pushdown Networks
Communicating via Locks

Fu Song1 and Tayssir Touili2

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University
fsong@sei.ecnu.edu.cn

2 CNRS and Université Paris Diderot,touili@liafa.univ-paris-diderot.fr

Abstract. A Dynamic Pushdown Network (DPN) is a set of pushdown systems
(PDSs) where each process can dynamically create new instances of PDSs. DPNs
are a natural model of multi-threaded programs with (possibly recursive) proce-
dure calls and thread creation. Extension of DPNs with locks allows processes
to synchronize via locks. Thus, DPNs with locks are a well adapted formalis-
m to model multi-threaded programs that synchronize via locks. Therefore, it
is important to have model-checking algorithms for DPNs with locks. However,
in general, the model-checking problem of DPNs with locks against reachability
properties, and hence Linear Temporal Logic (LTL), is undecidable. To obtain de-
cidable results, we study in this work the model-checking problem of DPNs with
well-nested locks against single-indexed Linear Temporal Logic (LTL) properties
of the form

∧
E fi s.t. fi is a LTL formula interpreted over the PDS i. We show

that this model-checking problem is decidable. We propose an automata-based
approach for computing the set of configurations of a DPN with locks that satisfy
the corresponding single-indexed LTL formula.

1 Introduction

Multithreaded programming paradigm where processes communicate via locks has be-
come more popular. But, it is notoriously difficult to write multithreaded programs
whose bugs are commonly concurrency related and are hard to reproduce and fix.
Hence, we need a formalism to model such programs and we need automated veri-
fication techniques to analyze them. Dynamic Pushdown Networks (DPN) [4] are a
natural model of multi-threaded programs with (possibly recursive) procedure calls and
thread creation. A DPN consists of a finite set of pushdown systems (PDSs), each of
them models a sequential program (process) that can dynamically create new instances
of PDSs. The model-checking problems of DPNs against Linear Temporal Logic (LTL),
Computation Tree Logic (CTL) and reachability properties are well studied in the lit-
erature [4, 21, 20, 9, 17, 27, 23]. However, DPNs cannot model communication between
processes. Recent works [20, 19] extended DPNs with locks (L-DPN) where PDSs can
communicate via locks. This allows to model multi-threaded programs where processes
communicate via locks. Indeed, locks are frequently used in multi-threaded programs
as synchronisation primitives. Thus, it is crucial to have automated techniques to ver-
ify DPNs with locks. However, only reachability properties are studied for L-DPNs
[20, 19] with some restricted lock usages. In this work, we go further and consider the

model-checking problem of L-DPNs against LTL, which can describe more interesting
properties of program behaviors that has not been tackled yet.

In general, the model checking problem of DPNs against unrestricted LTL formulas
(where atomic propositions can be interpreted over the control states of two or more
threads) is undecidable. We have shown in [23] that this problem becomes decidable if
we consider single-indexed LTL properties (where a single-indexed LTL formula is a
formula of the form

∧
E fi such that fi is a LTL formula interpreted over the PDS i). On

the other hand, the model checking problem of pushdown networks with a finite number
of threads (without thread creation) communicating via locks against pairwise reacha-
billity properties is undecidable [13]. [13] shows that it becomes decidable if locks are
accessed in a well-nested style, i.e., each process releases only the latest acquired lock
that has not been released yet.

In this work, we combine these ideas and show that model-checking single indexed
LTL properties is decidable for L-DPNs if locks are accessed in a well-nested style.
It is non-trivial to do LTL model checking for L-DPNs, since the number of instances
of PDSs can be unbounded. Checking independently whether all the different PDSs
satisfy the corresponding subformula E fi is not correct. Indeed, we do not need to
check whether an instance of a PDS j satisfies f j if this instance is not created during
a run, and we have to guarantee that all the created instances are correctly synchro-
nized via locks. In our previous work [23], we have shown how to solve single-indexed
LTL model-checking for L-DPNs without locks, i.e., DPNs. However, the approach
of [23] cannot be directly applied to perform single-indexed LTL model-checking for
L-DPNs due to locks. Indeed, we have to consider communication between each in-
stance of PDSs running in parallel in the network. To overcome this problem, we will
reduce single-indexed LTL model-checking for L-DPNs to the membership problem of
L-DPNs with Büchi acceptance condition. This latter problem is reduced to the mem-
bership problem of DPNs with Büchi acceptance condition. For this, we introduce lock
structures which include the set of held locks, the set of finally acquired locks, the set
of (infinitely) used locks, the set of initial release locks, release/acquisition histories.
The lock structures are an extension of acquisition structures introduced in [20]. [20]
presents an approach for checking pairwise reachability of L-DPNs with well-nested
lock access. The acquisition structures are used to get rid of locks in L-DPNs such that
pairwise reachability of L-DPNs can be reduced to constrained pairwise reachability
of DPNs. For pairwise reachability, one only needs to consider finite runs, as a con-
figuration of a L-DPN reaches another configuration only using finite steps. However,
we have to consider infinite runs of L-DPNs when we study LTL model-checking. Due
to the infinite runs of L-DPNs, we need to introduce the set of infinitely used locks in
our lock structures. Indeed, we need to assure that a finally acquired lock cannot be
infinitely used.

In order to get rid of lock interaction between processes when checking membership
of a L-DPN with Büchi acceptance condition, we compute a DPN with Büchi accep-
tance condition whose runs mimic the runs of L-DPNs by associating lock structures
to the control locations. The runs of the computed DPN with Büchi acceptance con-
dition are lock-free. Thus, to check whether a DPN with Büchi acceptance has a run,
it is sufficient to independently check whether each process (pushdown system) has an

2

accepting run. However, we still need to deal with the fact that the number of processes
is unbounded. To solve this problem, we follow the approach of [23]: we compute, for
every process i, a kind of finite automatonAi which accepts all the configurations from
which the pushdown system i has an accepting run, while recording the set of all the
initial configurations of the spawn processes. We show how to check whether a DPN
with Büchi acceptance condition has a run by querying these automata Ai. Thus, we
can check whether the L-DPN satisfies the LTL formula by querying these automata.

Outline. Section 2 gives the basic definitions used in this work. Section 3 shows how
to reduce the single-indexed LTL model-checking problem for L-DPNs to the mem-
bership problem of L-DPNs with Büchi acceptance condition. Section 4 presents an
efficient approach for checking membership of L-DPNs with Büchi acceptance condi-
tion. Section 5 discusses related works. Due to lack of space, proofs are omitted. They
can be found in the full version of this paper [24].

2 Preliminaries

2.1 Dynamic Pushdown Networks with Locks

Definition 1. A Dynamic Pushdown Network with Locks (L-DPN) M is a tuple
(Act,L,P1, ...,Pn) s.t. L is a finite set of locks, Act is a finite set of actions
{acq(l), rel(l), τ | l ∈ L} where the action acq(l) (resp. rel(l)) for every l ∈ L denotes the
acquisition (resp. release) of the lock l and the action τ denotes all the lock-unrelated
internal actions; for every i ∈ {1, ..., n}, Pi = (Pi, Γi, ∆i) is a Dynamic Pushdown System
with Locks (L-DPDS), where Pi is a finite set of control states s.t. Pk ∩ Pi = ∅ for k , i,
Γi is a finite stack alphabet, ∆i is a finite set of transition rules in the following forms:

(Non-Spawn) p0γ0
a
↪→i p1ω1

(Spawn) p0γ0
τ
↪→i p1ω1 B p2ω2

where a ∈ Act, p0, p1 ∈ Pi, γ0 ∈ Γi, ω1 ∈ Γ
∗
i and p2ω2 ∈ P j×Γ

∗
j for some j : 1 ≤ j ≤ n.

Intuitively, a L-DPDS is a pushdown system if the L-DPDS does not have any
Spawn-rule and L = ∅. A L-DPN consists of a set of pushdown systems (PDSs)
running in parallel where each PDS can dynamically create new instances of PDSs
during the run and where instances of PDSs can communicate via locks. A L-DPN
(Act,L,P1, ...,Pn) (resp. L-DPDS) is called a dynamic pushdown network (DPN) (re-
sp. dynamic pushdown system (DPDS)) if L = ∅ and will sometimes be denoted by
(P1, ...,Pn), where the actions are omitted in the transition rules.

For every i ∈ {1, ..., n}, a local configuration of a L-DPDS Pi is a tuple (pω, L)
such that L ⊆ L is the set of locks held by the instance of Pi, p ∈ Pi is its control
location and ω ∈ Γ∗i is its stack content. A global configuration of M is a multiset
over

⋃n
i=1 Pi × Γ

∗
i × 2L, in which each element (pω, L) ∈ Pi × Γ

∗
i × 2L denotes the

local configuration of an instance of Pi running in parallel in the network. In the setting
of DPNs and DPDSs, the set of locks in local and global configurations is sometimes
omitted. Given a global configuration G, the set of locks held at G is (

⋃
(pω,L)∈G L),

3

denoted by hold(G). The set of free locks at G is L \ hold(G), denoted by f ree(G). A
global configuration G containing only one element (pω, L) will sometimes be denoted
by (pω, L).

In this work, w.l.o.g., we assume that the global initial configuration G ofM con-
tains only one element, i.e., initially, there is only one instance of a L-DPDSPi for some
i ∈ {1, ..., n}. Indeed, a L-DPN whose global initial configuration consists of several lo-
cal configurations can be transformed into an equivalent L-DPN having a single local
configuration as global initial configuration by adding some Spawn-rules. A global run
ofM starting from a global initial configuration (p0ω0, L0) is a binary tree T rooted by
(p0ω0, L0) such that the leaves of T (denoted by leaves(T)) is the current global con-
figuration. Each node in T can either have only the right child (no left child) or have
both the right and left children. The right child of a node (pω, L) is the next local con-
figuration of the instance that reaches (pω, L), while the left child of a node (pω, L) is
the local initial configuration of the new instance that is dynamically created when the
instance moves from (pω, L) to its right child. Formally, the progress of the global run T
is defined as follows: for every local configuration (pγu, L) of an instance of a L-DPDS
Pi running in parallel in the network for some γ ∈ Γi such that (pγu, L) ∈ leaves(T):

β1 : If there exists a transition rule pγ
τ
↪→i p′ω ∈ ∆i, then (p′ωu, L) can be the right

child of the node (pγu, L) (note that (pγ, L) has no left child). This means that this
instance can move from (pγu, L) to (p′ωu, L), moving the control location p to p′

and replacing the stack content γ by ω without changing the set of held locks L.
(Note that the other instances running in parallel in the network stay at the same
local configurations.)

β2 : If there exists a transition rule pγ
τ
↪→i p′ω B p2ω2 ∈ ∆i s.t. p2ω2 ∈ P j × Γ

∗
j ,

then (p′ωu, L) and (p2ω2, ∅) can be the right and left children of the node (pγu, L),
respectively. This means that this instance can move from (pγu, L) to (p′ωu, L).
Moreover, a new instance of the L-DPDS P j is created and it starts from the lo-
cal configuration (p2ω2, ∅). In this work, we suppose w.l.o.g., that the set of locks
currently held by this new instance is empty.

β3 : If there exists a transition rule pγ
acq(l)
↪→ i p′ω ∈ ∆i such that l ∈ f ree(leaves(T)) (i.e.,

l is a free lock at the current global configuration leaves(T)), then (p′ωu, L ∪ {l})
can be the right child of the node (pγu, L). This means that this instance can move
from (pγu, L) to (p′ωu, L ∪ {l}) and hold the lock l.

β4 : If there exists a transition rule pγ
rel(l)
↪→ i p′ω ∈ ∆i, then (p′ωu, L\ {l}) can be the right

child of the node (pγu, L). This means that this instance can move from (pγu, L) to
(p′ωu, L \ {l}) and free the lock l if it is held.

Intuitively, the root of T is the local initial configuration of the initial instance (i.e.,
the instance that is not created on the runtime), each left child in a global run T is a
local initial configuration of a newly created instance. Each rightmost path is a trace of
an instance running in parallel in the global run. A local run of an instance running in
parallel in T is the rightmost path starting from the root or a left child. The definition
of the global runs as trees allows us to know which instance creates a new instance,
where the new instance is created and the local initial configuration of the newly created

4

acq(l2)

acq(l3)

rel(l3)

n1

n2

n3 n6

n4 n7

n5 n8

T

acq(l1)

rel(l3)

acq(l3)

rel(l2)

(II) (III)

acq(l2)

acq(l3)

rel(l3)

n1

n2

n3 n6

n4 n7

n5 n′
8

T ′

acq(l1)

rel(l2)

acq(l3)

rel(l3)

n1 = (p1ω1, ∅)
n2 = (p2ω2, {l1})
n3 = (p3ω3, ∅)
n4 = (p4ω4, {l3})
n5 = (p5ω5, ∅)
n6 = (p6ω6, {l1, l2})
n7 = (p7ω7, {l1, l2, l3})
n8 = (p8ω8, {l1, l2})
n′
8 = (p8ω8, {l1, l3})

(I)

Fig. 1. (a) and (b) are two global runs using locks.

instance. This is important when reasoning about locks. W.l.o.g., we suppose that each
local run in a global run is an infinite sequence of local configurations.

Nested Lock Access. A local run uses locks in a well-nested style iff the local run
releases only the latest acquired lock that has not been released yet by this local run.
A global run of M uses locks in a well-nested style iff each local run of the global
run uses locks in a well-nested style. In this work, we consider L-DPNs that use locks
in a nested style. This is because even reachability, and hence LTL, is known to be
undecidable for pushdown networks that use locks in an arbitary style [13]. We assume
hereafter that locks are accessed in a nested style. W.l.o.g., in this work, we consider
only non-reentrant locks, where a process cannot acquire a lock that it already has (it
has to release it first). Reentrant locks can be simulated with non-reentrant locks [20].

Example 1. Figure 1(II) and Figure 1(III) show two global runs called T and T ′ that
use locks l1, l2 and l3. Each edge is labeled by the corresponding action. The nodes
n1, ..., n8 and n′8 denote the local configurations shown in Figure 1(I). n1(n2n6n7n8)∗

(resp. n1(n2n6n7n′8)∗) is a local run in T (resp. T ′) during which a new instance is created
when moving from n2 to n6. This new instance has the local run n3n4n5. In T , we can
see that locks are accessed in a nested style. While, in T ′, the locks l1 and l2 are not
accessed in a nested style, since the lock l2 is released before the release of the latest
acquired lock l3.

2.2 The Linear Temporal Logic (LTL) and Büchi Automata

From now on, we fix a finite set of atomic propositions AP.

Definition 2. The set of LTL formulas is given by (where ap ∈ AP):

ψ ::= ap | ¬ψ | ψ ∧ ψ | Xψ | ψUψ.

Given an ω-word η = π0π1... over 2AP, let η(k) denote πk, and ηk denote the suffix of η
starting from πk. The notation η |= ψ indicates that η satisfies ψ, where |= is inductively
defined as follows: η |= ap iff ap ∈ η(0); η |= ¬ψ iff η 6|= ψ; η |= ψ1 ∧ ψ2 iff η |= ψ1 and
η |= ψ2; η |= Xψ iff η1 |= ψ; η |= ψ1Uψ2 iff there exists k ≥ 0 such that ηk |= ψ2 and for
every j : 1 ≤ j < k, η j |= ψ1.

5

Definition 3. A Büchi automaton (BA) B is a tuple (G, Σ, θ, g0, F), where G is a finite
set of states, Σ is the input alphabet, θ ⊆ G × Σ ×G is a finite set of transitions, g0 ∈ G
is the initial state and F ⊆ G is a finite set of accepting states.

A run ofB over an ω-word π0π1... is an infinite sequence of states q0q1... s.t. q0 = g0

and (q j, π j, q j+1) ∈ θ for every j ≥ 0. A run is accepting iff it infinitely often visits some
states in F.

Theorem 1. [26] Given a LTL formula f , one can construct a BA B f s.t. Σ = 2AP

recognizing all the ω-words that satisfy f .

3 Single-indexed LTL for L-DPNs

3.1 The Model-Checking Problem

The model-checking problem of L-DPNs against double-indexed LTL properties where
the validity of atomic propositions depends on two or more L-DPDSs is undecidable.
Indeed, model-checking double-indexed LTL properties for pushdown networks even
without interaction with each other is undecidable [13]. Thus, to obtain decidability
results, we consider in this work the model-checking problem of L-DPNs against single-
indexed LTL properties of the form

∧n
i=1 E fi s.t. for every i ∈ {1, ..., n}, fi is a LTL

formula interpreted over the L-DPDS Pi (Formulas of the form f =
∧n

i=1 A fi can be
checked by taking their negation and then model checking for each i : 1 ≤ i ≤ n, the
simpler single-indexed formula E¬ fi for which we only need to check whether each
newly created instance of Pi satisfies E¬ fi or not). From now on, we fix a L-DPN
M = (Act,L,P1, ...,Pn) s.t. for every i, i ∈ {1, ..., n}, Pi = (Pi, Γi, ∆i) and a single-
indexed LTL formula f =

∧n
i=1 E fi such that for every i ∈ {1, ..., n}, fi is interpreted

over the L-DPDS Pi.
Given a labeling function λ :

⋃n
i=1 Pi −→ 2AP that assigns to each control location

a set of atomic propositions and given a global run T of the L-DPN M, a local run
σ = (p0ω0, L0)(p1ω1, L1)... of an instance of Pi running in parallel in T satisfies E fi iff
the ω-word λ(p0)λ(p1)... satisfies fi. T satisfies f iff each local run of each instance of
Pi for i ∈ {1, ..., n} running in parallel in T satisfies E fi. A global initial configuration
G satisfies f iffM has a global run T starting from G such that T satisfies f .

3.2 The Model-Checking Approach

We start by defining L-BDPNs, a kind of L-DPNs with Büchi acceptance condition.

Definition 4. A L-DPN with Büchi acceptance condition (L-BDPN for short) BM is
a tuple (M, F1, ..., Fn) such that M = (Act,L,P1, ...,Pn) is a L-DPN and for every
i ∈ {1, ..., n}, Fi ⊆ Pi is a set of accepting control locations.

Global/local runs in L-BDPN are defined as the ones in L-DPN. A local run of an
instance of Pi in BM is accepting iff this local run infinitely often visits some control
locations in Fi. A global run in BM is accepting iff each local run in this global run is
accepting. LetL(BM) be the set of global initial configurations from whichBM has an

6

accepting global run. A L-BDPN (M, F1, ..., Fn) is called dynamic pushdown network
with Büchi acceptance condition (BDPN for short) ifM is a DPN.

We reduce the problem of checking whether a L-DPNM satisfies a single-indexed
LTL formula f =

∧n
i=1 E fi to the membership problem in L-BDPNs: we will compute a

L-BDPNBM f = (M f , F1, ..., Fn) such that every L-DPDS inBM f is a kind of product
of the L-DPDS Pi with a BA Bi, where Bi exactly accepts all the ω-words that satisfy
fi. We show that BM f has an accepting global run starting from a global configuration
(pω, L) iff (pω, L) satisfies f . Intuitively, determining whether a local run of a L-DPDS
satisfies E fi can be reduced to check whether the ω-word yielded by the local run is
accepted by Bi or not, i.e., whether the corresponding local run in BM f is accepting
or not. Indeed, this is an extension of the automata-based approach for standard LTL
model-checking for PDSs [2, 8].

In the rest of this section, we show how to compute the L-BDPN BM f from the
L-DPNM and the single-indexed LTL formula f =

∧n
i=1 E fi. For every i ∈ {1, ..., n},

let Bi = (Gi, Σi, θi, g0
i , Fi) be the BA recognizing all the ω-words that satisfy fi. We

define the L-BDPN BM f = (M f , F′1, ..., F
′
n) with M f = (Act,L,P′1, ...,P

′
n) such that

for every i ∈ {1, ..., n}, F′i = Pi×Fi, P′i = (Pi×Gi, Γi, ∆
′
i) and ∆′i is computed as follows:

for every (g1, λ(p), g2) ∈ θi, a ∈ Act and p2ω2 ∈ P j × Γ
∗
j , we have:

1. [p, g1]γ
a
↪→ [p1, g2]ω1 ∈ ∆

′
i iff pγ

a
↪→ p1ω1 ∈ ∆i;

2. [p, g1]γ
τ
↪→ [p1, g2]ω1 B [p2, g0

j]ω2 ∈ ∆
′
i iff pγ

τ
↪→ p1ω1 B p2ω2 ∈ ∆i.

Intuitively, for every i ∈ {1, ..., n}, P′i is a product of Pi and the BA Bi.
Bi has an accepting run g0g1... over an ω-word λ(p0)λ(p1)... that correspond-
s to a local run σ = (p0ω0, L0)(p1ω1, L1)... of Pi iff P′i has a local run σ′ =

([p0, g0
i]ω0, L0) ([p1, g1]ω1, L1)... that infinitely often visits some control locations in

F′i . Pi and P′i have the same lock usages. Moveover, for every newly created instance
by a local run of Pi which starts from (p2ω2, ∅) and has to satisfy f j (if p2 ∈ P j), the
corresponding local run of P′i will create a new instance starting from ([p2, g0

j]ω2, ∅)
which has to be accepting. Thus, we obtain the following theorem.

Theorem 2. For every global configuration (pω, L) ∈ Pi × Γ
∗
i × 2L of M, (pω, L)

satisfies f iff BM f has an accepting run starting from ([p, g0
i]ω, L).

4 Membership Problem of L-BDPNs

It is non-trivial to check the membership problem of a L-BDPN BM, as we cannot
independently compute the local configurations from which a L-DPDS has an accept-
ing local run. Indeed, we have to guarantee the lock collaboration between the different
instances in the network. To solve this problem, we introduce lock structures which in-
clude the set of held locks, the set of finally acquired locks, the set of (infinitely) used
locks, the set of initial release locks and release/acquisition histories. We reduce the
membership problem of L-BDPNs to the membership problem of BDPNs by associ-
ating each control location with lock structures and imposing constraints on the lock
structures during the runs of BDPNs so that we can get rid of lock interactions. The

7

membership problem of BDPNs could be checked by individually verifying whether
all the local runs of global runs in BDPNs are accepting. But this problem is not triv-
ial, as the number of local runs is unbounded. To overcome this problem, for every
i ∈ {1, ..., n}, we will compute a kind of automaton Ai such that Ai recognizes all the
local configurations of Pi in BDPN from which Pi has an accepting local run and the
set of local initial configurations of the dynamically created new instances by this local
run. Finally, we show how to check whether a BDPN has an accepting global run from
a global configuration by querying the obtained automata {A1, ...,An}. Let us fix a L-
BDPN BM = (M, F1, ..., Fn) s.t. M = (Act,L,P1, ...,Pn) and for every i ∈ {1, ..., n},
Pi = (Pi, Γi, ∆i). Let us fix an index i for i ∈ {1, ..., n}.

4.1 Lock Structures

Given a global run T of a L-BDPN BM, let T c denote the subtree of T rooted by the lo-
cal configuration c. Along a subtree T c, an acquisition of a lock l without a correspond-
ing release of l is called final acquisition, a release of a lock l without a corresponding
acquisition of l is called initial release, an acquisition of a lock l together with its cor-
responding release is called usage. If a lock l is infinitely often used in T c, then, T c has
an infinite usage of l. A lock structure l̃ of a global run T at a local configuration c is

a tuple (L, A, AH,R,RH,U,
∞

U), where L is the set of locks held by the instance at c, A
(resp. R) is the set of final acquisition (resp. initial release) locks at c along the subtree

T c, U and
∞

U are sets of usage and infinite usage locks at c along T c, AH ⊆ L × L is an
acquisition graph such that (l, l′) ∈ AH iff a usage of l′ occurs after a final acquisition
of l, RH ⊆ L × L is a release graph such that (l, l′) ∈ RH iff a usage of l occurs before
an initial release of l′.

In an accepting global run of BM with lock structure (L, A, AH,R,RH,U,
∞

U), the
following conditions have to hold:

C1 : Each initially-held lock l is neither used nor finally acquired unless there is a cor-
responding initial release of l, i.e., (L \ R) ∩ (U ∪ A) = ∅

C2 : A finally acquired lock l is not finally acquired again nor infinitely used;
C3 : The acquisition graph AH and release graph RH are acyclic.

Intuitively, the set of locks (L \ R) denotes all the initially held locks that will not be
released during the run. Thus, these locks should not be used (L \ R) ∩ U = ∅ nor
finally acquired (L \ R) ∩ A = ∅. It is natural to have that a finally acquired lock cannot
be acquired again nor infinitely used, since it will not be released in the future. The
fact that the graphs RH and AH are acyclic ensures that the acquisition and release of
locks do not have any cyclic dependence. Suppose AH has edges (l1, l2), ..., (lm, lm+1)
for some m > 1 such that l1 = lm+1 (i.e., AH has a cycle), then for every i : 1 ≤ i ≤ m,
T has a final acquisition of the lock li that should be performed before a usage of li+1
(according to the definition of acquisition graphs). On the other hand, the usage of li
should occur before the final acquisition of the lock li. Thus, the final acquisition of the
lock li should be done before a final acquisition of the li+1. Since l1 = lm+1, then, the
final acquisition of l1 should be performed before a final acquisition of l1. This means
that T is not a global run of BM. Therefore, AH should be acyclic. The fact that RH

8

should be acyclic can be explained similarly. Note that acyclic graphs AH and RH can
guarantee that the run do not have any cyclic dependence of locks only if locks are
accessed in a well-nested style.

A lock structure (L, A, AH,R,RH,U,
∞

U) is consistent iff both AH and RH are acyclic

(the criteria C3), and (L \ R) ∩ (U ∪ A) = ∅ (the criteria C1), and
∞

U⊆ U. Let LS be the
set of all the consistent lock structures. Note that, according to the above explanation,
the lock structure of an accepting global run of a L-BDPN BM should be consistent.

4.2 From L-BDPNs to BDPNs

We compute in this section a BDPN BM′ from the L-BDPN BM such that BM has
an accepting global run iff BM′ has an accepting global run. We define the BDPN
BM

′ = (M′, F′1, ..., F
′
n) s.t.M′ = (∅, ∅,P′1, ...,P

′
n), where for every i ∈ {1, ..., n}, F′i =

{(p, L, A, AH,R,RH,U,
∞

U) ∈ Fi × LS | U =
∞

U}, P′i = (Pi × LS, Γi, ∆
′), and ∆′ is

computed as follows: for every consistent lock structure (L, A, AH,R,RH,U,
∞

U) ∈ LS,

α1 : pγ
τ
↪→i p1ω1 ∈ ∆i iff (p, L, A, AH,R,RH,U,

∞

U)γ ↪→i (p1, L, A, AH,R,RH,U,
∞

U)
ω1 ∈ ∆

′
i ;

α2 : pγ
acq(l)
↪→ i p1ω1 ∈ ∆i and l ∈ L iff

α21 : (p, L\ {l}, A∪{l}, AH∪{l}×U,R,RH,U,
∞

U)γ ↪→i (p1, L, A,U,R,RH,U,
∞

U)ω1 ∈

∆′i if l < R ∪ A,

α22 : (p, L \ {l}, A, AH,R \ {l}, (RH \ L × {l}) ∪ {l} × R \ {l},U ∪ {l},
∞

U)γ ↪→i

(p1, L, A, AH,R,RH,U,
∞

U) ω1 ∈ ∆
′
i if l ∈ R;

α3 : pγ
rel(l)
↪→ i p1ω1 ∈ ∆i iff (p, L′, A, AH,R ∪ {l},RH,U,

∞

U)γ ↪→i (p1, L, A, AH,R,RH,

U,
∞

U)ω1 ∈ ∆
′
i and L = L′ \ {l};

α4 : pγ
τ
↪→i p1ω1 B p2ω2 ∈ ∆i iff there exists (∅, A1, AH1, ∅, ∅,U1,

∞

U1) ∈ LS s.t. A ∩

(A1∪
∞

U1) = ∅,
∞

U ∩A1 = ∅ and (p, L, A ∪ A1, AH ∪ AH1,R,RH,U ∪ U1,
∞

U ∪
∞

U1)γ

↪→i (p1, L, A, AH,R,RH,U,
∞

U)ω1 B(p2, ∅, A1, AH1, ∅, ∅,U1,
∞

U1)ω2 ∈ ∆
′
i .

Suppose (L, A, AH,R,RH,U,
∞

U) is the lock structure at the local configuration
(p1ω1ω, L). Intuitively, the global runs of the BDPN BM′ mimic the global runs of
the L-BDPN BM. The lock structures and their relations between local configurations
in the global runs of the BDPN BM′ are used to guarantee the criteria of locks and
lock usage policy in the global runs of the L-BDPN BM. Thus, we can get rid of lock
interactions between instances. The intuition behind each rule is explained as follows.

If the transition rule pγ
τ
↪→i p1ω1 of Pi is fired in a global run of the L-

BDPN BM moving from the local configuration (pγω, L) to the local configuration
(p1ω1ω, L), then the lock structure at (p1ω1ω, L) should be equal to the lock structure

9

at (pγω, L), since the action τ is not a lock-related action. Thus, we add the transi-

tion rule (p, L, A, AH,R,RH,U,
∞

U)γ ↪→i (p1, L, A, AH,R,RH,U,
∞

U) ω1 into P′i for ev-

ery lock structure (L, A, AH,R,RH,U,
∞

U) ∈ LS which allows a global run of BM′ to

move from the local configuration (p, L, A, AH,R,RH,U,
∞

U)γω to the local configura-

tion (p1, L, A, AH,R,RH,U,
∞

U)ω1ω.

If the transition rule pγ
acq(l)
↪→ i p1ω1 of Pi is used in a global run of the L-BDPN BM

moving from the local configuration (pγω, L′) to the local configuration (p1ω1ω, L),
then l should not be held at (pγω, L′) and will be held at (p1ω1ω, L) (i.e., L′ = L\{l} and
l ∈ L) due to the lock usage policy. The infinite usage locks at (pγω, L′) and (p1ω1ω, L)
will be identical, as the local run moves only one step.

Moreover, if l is neither a final acquisition nor an initial release at (p1ω1ω, L) (i.e.,
l < R ∪ A), then l must be a final acquisition at (pγω, L′) and the usage of lock-
s U should be performed after the final acquisition of l. Thus, we add a transition

rule (p, L \ {l}, A ∪ {l}, AH ∪ {l} × U,R,RH,U,
∞

U)γ ↪→i (p1, L, A,U,R,RH,U,
∞

U)ω1 in-
to P′i in Item α21 which allows a global run of the BDPN to move from the local con-

figuration (p, L \ {l}, A ∪ {l}, AH ∪ {l} × U,R,RH,U,
∞

U)γω to the local configuration

(p1, L, A,U,R,RH,U,
∞

U)ω1ω.
Otherwise if there is an initial release of l at (p1ω1ω, L′) (i.e., l ∈ R), then there is

a usage of l at (pγω, L) and there is no initial release of l at (pγω, L) which implies
that the release graph at (pγω, L) does not have any edge in L × {l}, and this usage of l
should be performed before the initial release of locks in R \ {l}, i.e. the release graph at
(pγω, L) is (RH \ L × {l}) ∪ {l} × R. Thus, we add a transition rule (p, L \ {l}, A, AH,R \

{l}, (RH \ L × {l}) ∪ {l} × R,U ∪ {l},
∞

U)γ ↪→i (p1, L, A, AH,R,RH,U,
∞

U)ω1 ∈ ∆′i at
Item α22 which allows a global run of the BDPN to move from the local configuration

(p, L \ {l}, A, AH,R \ {l}, (RH \L× {l})∪ {l} ×R,U ∪ {l},
∞

U)γω to the local configuration

(p1, L, A,U,R,RH,U,
∞

U)ω1ω.

If the transition rule pγ
rel(l)
↪→ i p1ω1 of Pi is fired in a global run of the L-BDPN BM

moving from the local configuration (pγω, L′) to the local configuration (p1ω1ω, L),
then the held lock at (pγω, L′) will be released when moving to (p1ω1ω, L) (i.e.,
L = L′ \ {l}) and l is an initial release at (pγω, L′). The sets of final acquisition lock-
s, acquisition graphs and release graphs, the sets of usage locks and the sets of infi-
nite usage locks are identical at (p1ω1ω, L) and (pγω, L′). Thus, we add the transi-

tion rule (p, L′, A, AH,R ∪ {l},RH,U,
∞

U)γ↪→i (p1, L, A, AH,R,RH,U,
∞

U)ω1 into P′i at
Item α3 which allows a global run of the BDPN to move from the local configuration

(p, L′, A, AH,R ∪ {l},RH,U,
∞

U)γω to the local configuration (p1, L, A,U,R,RH,U,
∞

U
)ω1ω for L = L′ \ {l}.

If the transition rule pγ
τ
↪→i p1ω1 B p2ω2 of Pi is used in a global run of the L-

BDPN BM moving from the local configuration (pγω, L′) to the local configuration
(p1ω1ω, L) and creating a new instance that starts from (p2ω2, ∅), then the sets of held
locks and the sets of initial release locks are identical at (pγω, L′) and (p1ω1ω, L).

We also “guess” the lock structure (∅, A1, AH1, ∅, ∅,U1,
∞

U1) along the subtree root-

10

ed by the new local configuration (p2ω2, ∅), where the set of held locks and the set
of initial release locks at the new local configuration are empty. The lock structure

(∅, A1, AH1, ∅, ∅,U1,
∞

U1) will be abided by this subtree, i.e., the lock usages in the glob-

al run starting from (p2ω2, ∅) should satisfy the lock structure (∅, A1, AH1, ∅, ∅,U1,
∞

U1).
Moreover, the set of final acquisition locks A cannot be finally acquired (A1) nor infinite-

ly used (
∞

U1) by the subtree rooted by (p2ω2, ∅), i.e., A∩ (A1∪
∞

U1) = ∅ (the criteria C2).
Indeed, if some instance of the global run from (p1ω1ω, L) will finally acquire a lock l,
then, the global run starting from (p2ω2, ∅) cannot finally nor infinitely acquire the lock
l. Similarly, the set of infinitely used locks along the subtree rooted by (pω1ω, L) cannot

be finally acquired by the global run starting from (p2ω2, ∅), i.e.,
∞

U ∩A1 = ∅ (the criteria
C2). Therefore, the set of usage (resp. final acquisition, infinite usage, acquisition graph
and release graph) locks at (pγω, L′) is the union of the ones at (p1ω1ω, L) and (p2ω2, ∅)
respectively. Thus, we add the transition rule (p, L, A ∪ A1, AH ∪ AH1,R,RH,U ∪

U1,
∞

U ∪
∞

U1)γ ↪→i (p1, L, A, AH,R,RH,U,
∞

U)ω1 B (p2, ∅, A1, AH1, ∅, ∅,U1,
∞

U1)ω2 in-
to P′i at Item α4 which allows a global run of the BDPN to move from the lo-

cal configuration (p, L, A ∪ A1, AH ∪ AH1,R,RH,U ∪ U1,
∞

U ∪
∞

U1)γω to the local

configuration (p1, L, A,U,R,RH,U,
∞

U)ω1ω and create a new instance starting from

(p2, ∅, A1, AH1, ∅, ∅,U1,
∞

U1)ω2.
To guarantee that the set of infinite usage locks associated with each control location

of the BDPN BM′ is exactly the set of infinite usage locks used in the global run, for

every i ∈ {1, ..., n}, we let F′i be the set {(p, L, A, AH,R,RH,U,
∞

U) ∈ Fi × LS | U =
∞

U}.

Thus, we get the following theorem.

Theorem 3. The L-BDPN BM has an accepting global run iff the BDPN BM′ has an
accepting global run.

4.3 Membership problem of BDPNs

Let us fix a BDPN BM = (M, F1, ..., Fn) s.t. M = (∅, ∅,P1, ...,Pn) and for every
i ∈ {1, ..., n},Pi = (Pi, Γi, ∆i), and fix an index i for i ∈ {1, ..., n}. For every transition rule
of the form p0γ0

τ
↪→i p1γ1B p2ω2, (p2ω2, ∅) is called a dynamically created local initial

configuration (DCLIC). LetDi be the set of DCLICs of the DPDS Pi andD =
⋃n

i=1Di.
Let L(Pi) denote the set of all the tuples (c,D) ∈ Pi × Γ

∗
i × 2Di s.t. Pi has an accepting

local run starting from c and D is exactly the set of local configurations of the newly
created instances during this accepting local run. In this section, we show how to check
whether a BDPN BM has an accepting global run or not. For this, we compute for
every i ∈ {1, ..., n}, a kind of finite automatonAi which exactly accepts L(Pi). Then, we
show how to check whether the BDPN BM has an accepting global run by querying
the automata {A1, ...,An}.

To finitely represent (infinite) sets of local configurations of DPDSs and DCLICs
generated by DPDSs, we use Multi-automata.

11

Definition 5. A Multi-automaton (MA) is a tupleAi = (Qi, Γi, δi, Ii, Acci), where Qi is
a finite set of states, Ii ⊆ Pi is a finite set of initial states corresponding to the control
locations of the DPDS Pi, Acci ⊆ Qi is a finite set of final states, δi ⊆ (Qi×Γi)×2Di×Qi

is a finite set of transition rules.

We write p γ/D
−−−−→i q instead of (p, γ,D, q) ∈ δi, where D is a set of DCLICs. We

define the relation −→∗i⊆ (Qi × Γ
∗
i) × 2Di × Qi as the smallest relation s.t.: (1) q ε/∅

−−→∗i q

for every q ∈ Qi, (2) if q γ/D
−−−−→i q1 and q1

ω/Dk
−−−−→∗i q2, then q

γω/D∪
⋃m

k=1 Dk
−−−−−−−−−−−→∗i q2. LetL(Ai)

be the set of tuples (pω,D) ∈ Pi × Γ
∗
i × 2Di s.t. p ω/D

−−−→∗i q for some q ∈ Acci.

Lemma 1. [23] For every i ∈ {1, ..., n}, we can construct a MAAi in time O(|∆i| · |Γi| ·

|Pi|
3 · 2|Di |) such that L(Ai) = L(Pi).

By Lemma 1, for every i ∈ {1, ..., n}, we can compute a MA Ai such that L(Ai) =

L(Pi). Having the set of MAs {A1, ...,An} in hand, we can check whether the BDPN
BM has an accepting global run starting from a given global initial configuration c ∈
Pi × Γ

∗
i for some i ∈ {1, ..., n} as follows: we check whether there exists D ⊆ D such

that (c,D) ∈ L(Pi) and for every d ∈ D with d ∈ P j × Γ
∗
j , there exists Dd ⊆ D such

that (d,Dd) ∈ L(P j), etc. This condition is recursive. It can be solved, because the
set D of DCLICs is finite. However, this procedure is not efficient. To obtain a more
efficient procedure, we will compute the largest set of DCLICs D f p ⊆ D such that for
every c ∈ D f p with c ∈ Pi × Γ

∗
i for any i ∈ {1, ..., n}, the BDPN BM has an accepting

global run from c. Thus, to check whether or not the BDPN BM has an accepting
global run from c, it is sufficient to check whether or not there exists D ⊆ D f p such that
(c,D) ∈ L(Pi).

Let {A1, ...,An} be the set of MAs s.t. for every i ∈ {1, ..., n}, Ai =

(Qi, Γi, δi, Ii, Acci) is the MA computed by Lemma 1. Intuitively, D f p should be equal
to the set of local configurations c ∈ D s.t. there exists D ⊆ D f p s.t. (c,D) ∈ L(Ai)
with c ∈ Pi × Γ

∗
i . Thus, D f p can be defined as the greatest fixpoint of the func-

tion F(X) = {c ∈ D | ∃D ⊆ X s.t. (c,D) ∈ L(Ai) with c ∈ Pi × Γ
∗
i }. This set

can then be computed iteratively as follows: D f p =
⋂

j≥0 D j, where D0 = D and
D j+1 = {c ∈ D | ∃D ⊆ D j s.t. (c,D) ∈ L(Ai) with c ∈ Pi ×Γ

∗
i }. SinceD×LS is a finite

set, and for every j ≥ 0, D j+1 is a subset of D j, there always exists a fixpoint m ≥ 0
such that Dm = Dm+1. Then, we can get thatD f p = Dm.

For every (c,D) ∈ D×2D, to avoid checking whether (c,D) ∈ L(Ai) with c ∈ Pi×Γ
∗
i

at each step when computing D0,D1, ..., we can compute all these tuples that satisfy
this condition once and store them in a hash table. We can show that whether or not
(c,D) ∈ L(Ai) can be decided in time O(|c| · |δi| · |Qi| · 2|Di |) for every i ∈ {1, ..., n}. Let
I(c) denote the index i of the local configuration c ∈ Pi × Γ

∗
i . Thus, we can get the hash

table in time O(
∑

c∈D(|c| · |δI(c)| · |QI(c)| · 2|DI(c) |)). Given D j and the hash table, we can
compute D j+1 in time O(

∑
c∈D 2|DI(c) |). Thus we can getD f p in time O(

∑
c∈D(|c| · |δI(c)| ·

|QI(c)| · 2|DI(c) | + |D|2 · 2|D|)).

Lemma 2. We can computeD f p in time O(
∑

c∈D(|c| · |δI(c)| · |QI(c)| · 2|DI(c) | + |D|2 · 2|D|))
s.t. for every c ∈ D, the BDPN BM has an accepting global run from c iff c ∈ D f p.

12

From Lemma 1 and Lemma 2, we get that:

Theorem 4. The membership problem of BDPNs is decidable in time O
(∑n

i=1 |∆i| · |Γi| ·

|Pi|
3 · 2|Di | +

∑
c∈D(|c| · |PI(c)|

3 · |ΓI(c)| · 22|DI(c) | + |D|2 · 2|D|)
)
.

The complexity follows the fact that for each i : 1 ≤ i ≤ n, |δi| is at most O(|Pi|
2 ·

|Γi| · 2|Di |) and |Qi| is at most O(|Pi|). From Theorem 4 and Theorem 3, we get that:

Theorem 5. The membership problem of L-BDPNs is decidable in time O(
∑n

i=1 |∆i|·|Γi|·

|Pi|
3 · |LS|4 ·2|Di |·|LS|+

∑
c∈D(|c| · |PI(c)|

3 · |LS|3 · |ΓI(c)| ·22|DI(c) |·|LS|+ |D|2 · |LS|2 ·2|D|·|LS|)).

The complexity follows the fact that for each i : 1 ≤ i ≤ n, |P′i | in the BDPN BM′

is at most O(|Pi| · |LS|), |∆′i | in BM
′ is at most O(|∆i| · |LS|) and the number of DCLICs

of P′i in BM′ is at most O(|Di| · |LS|). From Theorem 5 and Theorem 2, we get that:

Theorem 6. The model-checking problem of L-DPNs against single-indexed LTL is
decidable in time in time O(

∑n
i=1 |∆i| · |Γi| · |Pi|

3 · |LS|4 ·24| fi | ·2|Di |·|LS| +
∑

c∈D(|c| · |PI(c)|
3 ·

|LS|3 · |ΓI(c)| · 23| fi | · 22|DI(c) |·|LS| + |D|2 · |LS|2 · 2|D|·|LS|)).

The complexity follows the fact that for each i : 1 ≤ i ≤ n, fi introduces the factor
2| fi | into |Pi| and |∆i|.

5 Related work

DPNs and L-DPNs: DPN was introduced in [4]. Several other works use DPN and its
extensions to model multi-threaded programs [4, 9, 20, 21, 27]. All these works consider
only reachability issues. Ground Tree Rewrite Systems [10] and process rewrite systems
[5, 22] are two models of multi-threaded programs with procedure calls and thread cre-
ation. However, [22] considers only reachability and [10, 5] consider only subclasses of
LTL. In the work [23], we show that single-indexed LTL and CTL model-checking for
DPNs is decidable and present automata-based approaches for single-indexed LTL and
CTL model-checking for DPNs. However, the model DPN in [23] do not allow com-
munications via locks. In this work, we extend the approach of [23] to single-indexed
LTL model-checking for L-DPNs by introducing lock structures. However, we can-
not extend the results to single-indexed CTL model-checking for L-DPNs. Since the
model-checking problem of L-DPNs against single-indexed CTL will be reduced to
the membership problem of alternating L-BDPNs whose local runs are trees and each
branch of these trees can finally acquire the same locks. Thus, the resulting alternating
L-BDPNs do not use locks in a well-nested style.

Pushdown networks with communication between processes are studied in e.g. [3,
7, 1, 25, 6]. These works consider systems with a fixed number of threads. [17, 18] use
parallel flow graphs to model multi-threaded programs. However, all these works con-
sider only reachability. [28] considers safety properties of multi-threaded programs.

Lock structures: [15] was the first to introduces (forward) acquisition histories that
contain only the set of held locks and the acquisition graphs to check pairwise reacha-
bility properties and a subclass of LTL on pushdown networks communicating via well-
nested locks without thread creation. [13, 14] extends the forward acquisition histories

13

of [15] with backwards acquisition histories (i.e., the release graphs) to check single-
indexed LTL and fragments of LTL and CTL properties for two threads communicating
via well-nested locks. [18] extended the acquisition histories of [15] to check pairwise
reachability properties of programs with reentrant monitors and dynamic thread cre-
ation. [16] proposes an acquisition history based decision procedure to check whether a
pushdown network without dynamic thread creation satisfies properties represented by
a kind of finite automaton. The decision procedure of [16] uses only one reachability
query of each pushdown system. While, in the worst case, [15] has to perform an expo-
nential number of individual reachability queries of each pushdown system to handle a
temporal operator. In order to compute predecessor sets of regular sets of configurations
of L-DPNs, [20] introduces acquisition structures for L-DPNs, an extension of acqui-
sition histories. [20] shows that the computation of backward reachable configurations
of L-DPNs can be reduced to compute the one of DPNs [4]. However, all these works
do not consider dynamic thread creation and/or cannot check more complex properties
that could be expressed in single-indexed LTL formulas.

Following [20], in this work, we introduce lock structures which are an extension of
acquisition structures with the set of infinite usage locks. This is because [20] consider
pairwise reachability whose runs are finite, while this work considers model-checking
single-indexed LTL properties in which the runs of L-DPNs can be infinite (for liveness
properties). However, an infinitely used lock cannot be finally acquired by instances.

[11] introduces bounded lock chains, a generalization of well-nested locks. If the
number of acquired locks between the acquisition of each lock and its corresponding
release is bounded, then, this pushdown network uses locks in terms of bounded lock
chain. [11] shows that pairwise reachability is decidable for pushdown networks with-
out thread creation when the lock chains are bounded. [12] shows that model-checking
for pushdown networks without thread creation against LTL is decidable when LTL
formulas use only the following operators: next-time X, eventually F, infinitely-often
F∞, conjunction ∧ and disjunction ∨, and the problem is undecidable when the LTL
formula use until U or always G operators. [6] introduces another kind of lock access
style, called contextual locking. A program uses locks in terms of contextual locking if
all the acquired locks in each procedure are released before this procedure returns. [6]
proposed a decision procedure to check pairwise reachability for pushdown networks
(without dynamic thread creation) with contextual locking. [19] extends the result of
[6] showing that pairwise reachability for L-DPNs with contextual locking is decid-
able. However, all these works consider only the pairwise reachability problem. It is
unknown whether our approach can check single-indexed LTL properties for L-DPNs
with bounded lock chains or contextual locking. We leave these questions as future
work.

References

1. M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks of
pushdown systems. In CONCUR, pages 356–371, 2008.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata: Ap-
plication to Model Checking. In CONCUR’97. LNCS 1243, 1997.

14

3. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concurrent
programs with procedures. In POPL’03. ACM, 2003.

4. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown systems. In CONCUR, pages 473–487, 2005.

5. L. Bozzelli, M. Kretı́nský, V. Rehák, and J. Strejcek. On decidability of LTL model checking
for process rewrite systems. Acta Inf., 46(1), 2009.

6. R. Chadha, P. Madhusudan, and M. Viswanathan. Reachability under contextual locking. In
TACAS, pages 437–450, 2012.

7. S. Chaki, E. M. Clarke, N. Kidd, T. W. Reps, and T. Touili. Verifying concurrent message-
passing c programs with recursive calls. In TACAS, pages 334–349, 2006.

8. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithm for model check-
ing pushdown systems. In CAV’00, volume 1885 of LNCS, 2000.

9. T. M. Gawlitza, P. Lammich, M. Müller-Olm, H. Seidl, and A. Wenner. Join-lock-sensitive
forward reachability analysis for concurrent programs with dynamic process creation. In
VMCAI, pages 199–213, 2011.

10. S. Göller and A. W. Lin. The complexity of verifying ground tree rewrite systems. In LICS,
pages 279–288, 2011.

11. V. Kahlon. Boundedness vs. unboundedness of lock chains: Characterizing decidability of
pairwise cfl-reachability for threads communicating via locks. In LICS, 2009.

12. V. Kahlon. Reasoning about threads with bounded lock chains. In CONCUR, pages 450–465,
2011.

13. V. Kahlon and A. Gupta. An automata-theoretic approach for model checking threads for
LTL properties. In LICS, pages 101–110, 2006.

14. V. Kahlon and A. Gupta. On the analysis of interacting pushdown systems. In POPL, pages
303–314, 2007.

15. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via locks. In
Computer Aided Verification, 2005.

16. N. Kidd, P. Lammich, T. Touili, and T. W. Reps. A decision procedure for detecting atomicity
violations for communicating processes with locks. In SPIN, pages 125–142, 2009.

17. P. Lammich and M. Müller-Olm. Precise fixpoint-based analysis of programs with thread-
creation and procedures. In CONCUR, pages 287–302, 2007.

18. P. Lammich and M. Müller-Olm. Conflict analysis of programs with procedures, dynamic
thread creation, and monitors. In SAS, pages 205–220, 2008.

19. P. Lammich, M. Müller-Olm, H. Seidl, and A. Wenner. Contextual locking for dynamic
pushdown networks. In SAS, 2013.

20. P. Lammich, M. Müller-Olm, and A. Wenner. Predecessor sets of dynamic pushdown net-
works with tree-regular constraints. In CAV, pages 525–539, 2009.

21. D. Lugiez. Forward analysis of dynamic network of pushdown systems is easier without
order. Int. J. Found. Comput. Sci., 22(4):843–862, 2011.

22. R. Mayr. Process rewrite systems. Inf. Comput., 156(1-2):264–286, 2000.
23. F. Song and T. Touili. Model checking dynamic pushdown networks. In APLAS, pages

33–49, 2013.
24. F. SONG and T. Touili. LTL Model-Checking for Dynamic Pushdown Networks Communi-

cating via Locks. Technical report, ftp://222.73.57.93/CONCUR14.pdf, 2014.
25. T. Touili and M. F. Atig. Verifying parallel programs with dynamic communication struc-

tures. Theor. Comput. Sci., 411(38-39):3460–3468, 2010.
26. M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. J.

Comput. Syst. Sci., 32(2):183–221, 1986.
27. A. Wenner. Weighted dynamic pushdown networks. In ESOP, pages 590–609, 2010.
28. E. Yahav. Verifying safety properties of concurrent java programs using 3-valued logic. In

POPL, pages 27–40, 2001.

15

