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émanant des établissements d’enseignement et de
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ABSTRACT

Aims. The primordial power spectrum describes the initial perturbations in the Universe which eventually grew into the large-scale
structure we observe today, and thereby provides an indirect probe of inflation or other structure-formation mechanisms. Here, we
introduce a new method to estimate this spectrum from the empirical power spectrum of cosmic microwave background maps.
Methods. A sparsity-based linear inversion method, named PRISM, is presented. This technique leverages a sparsity prior on features
in the primordial power spectrum in a wavelet basis to regularise the inverse problem. This non-parametric approach does not assume
a strong prior on the shape of the primordial power spectrum, yet is able to correctly reconstruct its global shape as well as localised
features. These advantages make this method robust for detecting deviations from the currently favoured scale-invariant spectrum.
Results. We investigate the strength of this method on a set of WMAP nine-year simulated data for three types of primordial power
spectra: a near scale-invariant spectrum, a spectrum with a small running of the spectral index, and a spectrum with a localised feature.
This technique proves that it can easily detect deviations from a pure scale-invariant power spectrum and is suitable for distinguishing
between simple models of the inflation. We process the WMAP nine-year data and find no significant departure from a near scale-
invariant power spectrum with the spectral index ns = 0.972.
Conclusions. A high-resolution primordial power spectrum can be reconstructed with this technique, where any strong local devia-
tions or small global deviations from a pure scale-invariant spectrum can easily be detected.

Key words. methods: statistical – cosmic background radiation – early Universe – inflation – methods: data analysis

1. Introduction

The primordial power spectrum encodes the physics of the early
Universe and its measurement is one of the most important re-
search areas in modern cosmology. Amongst the proposed mod-
els that describe the early Universe, inflation (Guth 1981; Linde
1982) is currently the most favoured one. In this model early
perturbations are produced by quantum fluctuations during the
epoch of an accelerated expansion. These perturbations then
grow into the large scale structure we observe today. The sim-
plest models of inflation predict almost purely adiabatic primor-
dial perturbations with a near scale-invariant power spectrum. In
these models the primordial power spectrum is often described
in terms of a spectral index ns and an amplitude of the perturba-
tions As as

P(k) = As

(
k
kp

)ns−1

, (1)

where kp is a pivot scale. This spectrum represents the initial
conditions set at inflation. The simplest ansatz for characterising
the primordial perturbations is the so-called Harrison-Zel’dovich
(HZ) model, which sets ns = 1 (Harrison 1970; Zel’dovich
1972). This is an exact scale-invariant spectrum and has been
ruled out by different datasets, as will be discussed later. Instead,
the near scale-invariant spectrum with ns < 1 fits the current
observations very well (e.g., Planck Collaboration XXII 2014).
However, numerous models have been proposed for the gener-
ation of the perturbations, predicting deviations from the per-
fectly scale-invariant power spectrum. The simplest are the slow-
roll inflationary models which describe the deviations through

a minimal scale dependence of the spectral index of the power
spectrum, the so-called running αs, formulated as

P(k) = As

(
k
kp

)ns−1+ 1
2αs ln(k/kp)

· (2)

More complex models generating deviations from scale invari-
ance include those with features on the potential (Starobinsky
1992; Adams et al. 2001; Wang et al. 2005; Hunt & Sarkar
2004, 2007; Joy et al. 2008; Pahud et al. 2009; Lerner &
McDonald 2009; Kumazaki et al. 2011; Meerburg et al. 2012;
Ashoorioon & Krause 2006; Ashoorioon et al. 2009), a small
number of e-folds (Contaldi et al. 2003; Powell & Kinney 2007;
Nicholson & Contaldi 2008), or other exotic inflationary mod-
els (Lesgourgues 2000; Feng & Zhang 2003; Mathews et al.
2004; Jain et al. 2009; Romano & Sasaki 2008; Piao et al.
2004; Choudhury et al. 2013; Choudhury & Mazumdar 2014).
Therefore, determining the shape of the primordial power spec-
trum will allow us to evaluate how well these models of the early
Universe compare to the observations, rule out some of the pro-
posed models, and thus will give us a better intuition into the
conditions of the primordial Universe.

A few probes of the physics of the early Universe include
non-Gaussianity, the primordial tensor power spectrum, a cos-
mic gravitational wave background, and a cosmic neutrino back-
ground, none of which have been observed with an acceptable
significance. On the other hand, we can observe P(k) through
the windows of the cosmic microwave background (CMB) and
large scale structure (LSS), which are incredibly important and
powerful insights into the early Universe.
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The recent Planck mission temperature anisotropy data,
combined with the WMAP large-angle polarisation, constrain
the scalar spectral index to ns = 0.9603 ± 0.0073 (Planck
Collaboration XXII 2014), which rules out exact scale invari-
ance at over 5σ. In addition, Planck does not find a statisti-
cally significant running of the scalar spectral index, obtain-
ing αs = −0.0134 ± 0.0090. In Planck Collaboration (XXII
2014) an extensive investigation is performed to see whether
the primordial power spectrum contains any features. They re-
port that a penalised likelihood approach suggests a feature near
the highest wavenumbers probed by Planck at an estimated sig-
nificance of ∼3σ. In addition, a parameterised oscillatory fea-
ture does improve the fit to the data by ∆χ2

eff
≈ 10, however

Bayesian evidence does not prefer these models. On the other
hand, high-resolution CMB experiments, such as the South Pole
Telescope (SPT)1, detect a small running of the spectral index;
−0.046 < αs < −0.003 at 95% confidence (Hou et al. 2014).
In general, any detections of the running of the spectral index
have been small and consistent with zero. Therefore, a highly
sensitive algorithm is required to detect these small deviations.

There are generally two approaches to determine the shape
of the primordial power spectrum, one by parametrisation and
the second by reconstruction. Numerous parametric approaches
that search for features with a similar form to those in com-
plex inflationary models have been performed along with a sim-
ple binning of P(k) (Bridle et al. 2003; Contaldi et al. 2003;
Parkinson et al. 2005; Sinha & Souradeep 2006; Sealfon et al.
2005; Mukherjee & Wang 2005; Bridges et al. 2006; Covi et al.
2006; Hazra et al. 2010; Joy et al. 2009; Verde & Peiris 2008;
Paykari & Jaffe 2010; Guo et al. 2011; Goswami & Prasad
2013). Non-parametric methods, which make no assumptions
about the model of the early Universe, have also been probed
(Hannestad 2001; Wang & Mathews 2002; Matsumiya et al.
2002; Shafieloo & Souradeep 2004; Bridle et al. 2003; Kogo
et al. 2004a; Mukherjee & Wang 2003a,b; Hannestad 2004;
Kogo et al. 2004b; Tocchini-Valentini et al. 2005; Leach 2006;
Shafieloo et al. 2007; Shafieloo & Souradeep 2008; Nagata &
Yokoyama 2008, 2009; Nicholson & Contaldi 2009; Nicholson
et al. 2010; Hazra et al. 2013). For an extensive review on how
to search for features in the primordial power spectrum using
a wide range of methods, refer to the following papers and the
references therein, which provide a sample on non-parametric
reconstruction: deconvolution (Tocchini-Valentini et al. 2006;
Ichiki & Nagata 2009; Ichiki et al. 2010), Richardson-Lucy de-
convolution (Lucy 1974; Richardson 1972; Hamann et al. 2010;
Shafieloo & Souradeep 2008), smoothing splines (Verde &
Peiris 2008; Peiris & Verde 2010; Sealfon et al. 2005; Gauthier
& Bucher 2012), linear interpolation (Hannestad 2004; Bridle
et al. 2003), and Bayesian model selection (Bridges et al. 2009;
Vázquez et al. 2012).

Non-parametric methods are hampered by the non-
invertibility of the transfer function that descries the transfer
from P(k) to CMB (or LSS). Specifically for the CMB power
spectrum, the dependence on the transfer function has the form

Cth
` = 4π

∫ ∞

0
d ln k∆2

` (k)P(k), (3)

where ` is the angular wavenumber that corresponds to an angu-
lar scale via ` ∼ 180◦/θ and ∆`(k) is the angular transfer function
of the radiation anisotropies, which holds the cosmological pa-
rameters responsible for the evolution of the Universe. As the
CMB spectrum is jointly sensitive to the primordial spectrum

1 http://pole.uchicago.edu/spt/index.php

and the cosmological parameters in the transfer function, there
is an induced degeneracy between them. The impact and level
of this degeneracy have been investigated in (Paykari & Jaffe
2010). A joint estimation of the cosmological parameters and
a free form primordial power spectrum would be prohibitively
expensive to perform (as the parameter space can become very
large). As a result, a parametric form of the primordial power
spectrum is assumed when jointly estimating this spectrum along
with the other cosmological parameters. This hides any de-
generacies between the cosmological parameters in the transfer
function and the form of P(k). Thus it is not clear what the sig-
nificance of any features found in the reconstructed P(k) should
be. One way to break this induced degeneracy is by adding extra
information, such as polarisation or LSS data (Hu & Okamoto
2004; Nicholson & Contaldi 2009; Mortonson et al. 2009).

The other hurdle in the estimation of the primordial spectrum
is that this continuous spectrum is deconvolved from discrete
data C`. This causes problems if the primordial power spectrum
contains features that are smaller or comparable to the gridding
in ` (∆` = 1). This limits our ability to fully recover the primor-
dial power spectrum; in the case of the CMB, even a perfect sur-
vey cannot recover the primordial power spectrum completely
(Hu & Okamoto 2004).

Here, we propose a new non-parametric method for the re-
construction of the primordial power spectrum from CMB data
which is based on the sparsity of the primordial power spectra in
a wavelet basis and an appropriate noise modelling of the CMB
power spectrum (Paykari et al. 2012).

In Sect. 2 we present the primordial power spectrum recon-
struction problem and describe the technique we have devel-
oped to perform the reconstruction. Our algorithm is tested on
three sets of simulated spectra and applied to WMAP nine-year
data in Sect. 3. In Sect. 4 we conclude and give some potential
perspectives.

2. Sparse recovery of the primordial power
spectrum

2.1. Empirical power spectrum

A CMB experiment, such as Planck, measures the CMB tem-
perature anisotropy Θ(p) in direction p, which is described as
T (p) = TCMB[1 + Θ(p)]. This anisotropy field can be expanded
in terms of spherical harmonic functions Y`m as

Θ(p) =

∞∑
`=0

∑̀
m=−`

a`mY`m(p), (4)

with a`m being the spherical harmonic coefficients. The CMB
anisotropy Θ(p) is assumed to be Gaussian distributed, which
makes the a`m independent and identically distributed (i.i.d.)
Gaussian variables with zero mean, 〈a`m〉 = 0, and variance

〈a`ma∗`′m′〉 = δ``′δmm′Cth
` , (5)

where Cth
`

is the CMB temperature angular power spectrum in-
troduced in Eq. (3). However, we only observe a realisation of
this underlying power spectrum on our sky, which we can esti-
mate using the empirical power spectrum estimator defined as

Ĉth
` =

1
2` + 1

∑̀
m=−`

|a`m|2, (6)
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where Ĉth
` is an unbiased estimator of the true underlying power

spectrum; this becomes 〈Ĉth
` 〉 = Cth

`
in the case of noiseless CMB

data over full sky.
For a given `, the empirical power spectrum follows a χ2

distribution with 2` + 1 degrees of freedom, as it is a sum of the
squares of independent Gaussian random variables. To account
for this variability, we recast the relation between Ĉth

` and Cth
` as

Ĉth
` = Cth

` Z`, (7)

where Z` =
∑

m |a`m|2/LCth
` , which is a random variable repre-

senting a multiplicative noise distributed according to

LZ` ∼ χ2
L, where L = 2` + 1. (8)

In particular, the standard deviation of the empirical power spec-
trum estimator for a given ` is

√
(2/L) Cth

` .

2.2. Accounting for instrumental noise and partial sky
coverage

So far, we have considered that the CMB anisotropy data was
available on the full sky which is not possible in practice be-
cause of the different Galactic foregrounds. Applying a mask on
the sky results in the a modification of the spherical harmonic
coefficients of the CMB temperature anisotropy,

ã`m =

∫
Θ(p)W(p)Y∗`m(p)dp, (9)

where W(p) is the window function applied to the data. The pres-
ence of the window function induces correlations between the
a`m coefficients at different ` and different m and hence Eq. (5)
is no longer true.

One can define the pseudo power spectrum C̃` as the applica-
tion of the empirical power spectrum estimator on the spherical
harmonic coefficients of the masked sky. When data is contami-
nated with additive Gaussian stationary noise, the pseudo power
spectrum is

C̃` =
1

2` + 1

∑̀
m=−`

|ã`m + ñ`m|2, (10)

where ñ`m are the spherical harmonic coefficients of the masked
instrumental noise.

Following the MASTER method from Hivon et al. (2002),
the pseudo power spectrum C̃` and the empirical power spectrum
Ĉth
` can be related through their ensemble averages,

〈C̃`〉 =
∑
`′

M``′〈Ĉth
`′ 〉 + 〈Ñ`〉, (11)

where M``′ describes the mode-mode coupling between modes
` and `′ resulting from computing the transform on the masked
sky. We note that in this expression 〈Ĉth

`′ 〉 = Cth
`′ and we introduce

the notations

C` = 〈C̃`〉 and N` = 〈Ñ`〉, (12)

where C` and N` refer to the CMB and the noise power spectra
of the masked maps, respectively.

We will also work under the approximation that the pseudo
power spectrum C̃` still follows a χ2 distribution with 2` + 1 de-
grees of freedom and can be modelled as

C̃` = C`Z`, (13)

=

∑
`′

M``′Cth
`′ + N`

 Z`, (14)

where Z` is defined in Eq. (8).

2.3. Formulation of the inverse problem

Here we aim to estimate the primordial power spectrum Pk from
the pseudo power spectrum C̃` computed on a masked noisy map
of the sky.

Equation (14) relates the observables C̃` to the theoretical
CMB anisotropy power spectrum Cth

` , taking into account in-
strumental noise, sample variance, and masking. The theoreti-
cal power spectrum Cth

`
is itself related to the primordial power

spectrum through the convolution operation defined in Eq. (3).
For a finite sampling of the wavenumber k, this convolution can
be recast as a matrix operator T acting on the discretely sampled
primordial spectrum, now referred to as Pk,

Cth
` '

∑
k

T`kPk, (15)

with matrix elements T`k = 4π∆ ln k ∆2
`k, where ∆ ln k is the loga-

rithmic k interval for the discrete sampling chosen in the integra-
tion of the system of equations. Because of the non-invertibility
of the T operator, recovering the primordial power spectrum Pk
from the true CMB power spectrum Cth

`
constitutes an ill-posed

inverse problem. Finally, the complete problem we aim to solve
can be condensed in the following form:

C̃` =

∑
`′k

M``′T`′kPk + N`

 Z`. (16)

We assume that the masked instrumental noise power spectrum
N` is known for a given experiment. It can be computed from
a JackKnife data map or from realistic instrumental noise sim-
ulations. Therefore, in the power spectrum of the data C̃`, only
the primordial power spectrum Pk remains unknown. Here we
assume that the cosmology is known and hence operator T is
known.

The presence of the multiplicative noise Z` further compli-
cates the ill-posed inverse problem of Eq. (15). We address both
the inversion problem and the control of the noise in the frame-
work of sparse recovery. The inversion problem in Eq. (16) can
be regularised in a robust way by using the sparse nature of
the reconstructed signal as a prior. Furthermore, sparse recov-
ery has already been successfully used in the TOUSI algorithm
(Paykari et al. 2012) to handle the multiplicative noise term and
denoise the CMB power spectrum with high accuracy from sin-
gle realisations.

2.4. The TOUSI method

It was shown in Paykari et al. (2012) that the theoretical power
spectrum Cth

`
can be represented with only a few coefficients (i.e.

sparse representation) in a given dictionary (wavelet, DCT, etc.)
and that a sparse regularisation allows us to recover the theoret-
ical power spectrum directly from the measured CMB empirical

A77, page 3 of 10
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power spectrum Ĉth
` , without having to know the cosmological

parameters.
A proper treatment of the non-Gaussian noise on Ĉth

` was
proposed in TOUSI, which is based on the Wahba variance sta-
bilisation transform (VST). After the variance stabilisation is ap-
plied, the noise on Ĉth

` can be treated as an additive Gaussian
noise with zero mean and unit variance. The VST operator T is
defined as

T : x ∈ R+ 7→
ln x − µL

σL
, (17)

where µL = ψ0(L/2) − ln(L/2) and σ2
L = ψ1(L/2), where ψm is

the polygamma function ψm(t) = dm+1

dtm+1 ln Γ(t). We denote Cs
` as

the stabilised empirical power spectrum after applying the VST
and get

Cs
` = T (Ĉth

` ) =
ln Cth

`

σL
+ ε`, (18)

where ε` = (ln Z` − µL)/σL ∼ N(0, 1). We define the inverse
operator of T as

R : x ∈ R 7→ exp(σLx). (19)

Having X` as the unknown power spectrum to be recovered, the
TOUSI method consists of minimising the constrained optimi-
sation problem

min
X`
‖ΦtX`‖1 s.t.

{
X` > 0
S �

(
ΦtT (Y`)

)
= S �

(
ΦtCs

`

)
,

(20)

where Y` = X` + N th
` ; � stands for the Hadamard product (i.e.

entry-wise multiplication) of two vectors; and Φ is the chosen
dictionary. Vector S provides a set of active coefficients (not due
to noise), where S i = 1 if the ith coefficient

(
ΦtT (Y`)

)
i is above

the noise level (i.e. significant) and 0 otherwise. This minimisa-
tion is performed iteratively,

X̃` = R
(
T

(
Yn
`

)
+ΦS �

(
Φt

(
Cs
` − T

(
Yn
`

))))
− N th

` ,

Xn+1
` = P+

(
Φ STλn (ΦtX̃`)

)
, (21)

where n is the iteration number, P+ is a positivity constraint.
The soft thresholding operator STλn has an iteration dependent
threshold level λn and is defined as

∀x ∈ Rn, STλ(x)i = sgn(xi)(|xi| − λ)+. (22)

Full details of the TOUSI algorithm can be found in Paykari et al.
(2012).

2.5. Pk sparse recovery formulation

The problem of reconstructing the primordial power spectrum
is stated in Eq. (16). Solving this problem has three inherent
difficulties: 1) the singularity of the convolution operator T`k,
which makes the inverse problem ill-posed even in the absence
of noise; 2) the multiplicative noise on the power spectrum; and
3) the mask applied to the maps, inducing correlations on the
power spectrum.

To address the inverse problem, we adopt the sparse regular-
isation framework. If the signal to recover, Pk in our case, can be
sparsely represented in an adapted dictionary Φ, then this prob-
lem, known as the basis pursuit denoising BPDN, can be recast
as an optimisation problem. In the case of the inverse problem

stated in Eq. (16), the optimisation problem can be formulated
as

min
X

1
2
‖ C` − (MTX + N`) ‖22 +λ ‖ ΦtX ‖0, (23)

where X is the reconstructed estimate for the primordial power
spectrum Pk. The first term in Eq. (23) imposes a `2 fidelity con-
straint to the data while the second term promotes the sparsity of
the solution in dictionary Φ. The parameter λ tunes the sparsity
constraint.

One can notice that in Eq. (23), only the ensemble mean of
the pseudo power spectrum C` appears (which is unknown) and
not the actual measurements C̃`. This is linked to the second dif-
ficulty; the measurements are contaminated with a multiplicative
noise which cannot be handled with the formulation of Eq. (23).
This formalism holds for measurements contaminated with ad-
ditive Gaussian noise which is not the case of the C̃`. To over-
come this issue, we use the variance stabilisation introduced in
the TOUSI algorithm.

We let R`(X) be the residual between C` and the recon-
structed CMB power spectrum given a primordial power spec-
trum X, C`(X) = (MTX + N`):

R`(X) = C` −C`(X). (24)

We note that R`(X) is the data fidelity term in Eq. (23). Since C`

is unknown, so is R`(X), but we can estimate it from the data C̃`.
We consider the difference:

T (C̃`) −
ln(C`(X))

σL
=

ln(C`) − ln(C`(X))
σL

+ ε`, (25)

=
1
σL

ln
(

C`

C`(X)

)
+ ε`, (26)

=
1
σL

ln
(
1 +

R`(X)
C`(X)

)
+ ε`, (27)

where ε` is the Gaussian noise with zero mean introduced in
Eq. (18). Assuming that the residual R`(X) is small compared
to C`(X), one can linearise the above equation, to a good ap-
proximation, as

T (C̃`) −
ln(C`(X))

σL
'

1
σLC`(X)

R`(X) + ε`, (28)

and

R`(X) ' C`(X)σL

(
T (C̃`) −

ln(C`(X))
σL

)
−C`(X)σLε`. (29)

In this expression, the variance of the noise, i.e. the second term
in the above equation, depends on the current estimate C`(X).
As we need to estimate the variance of the noise propagated to
the wavelet coefficients using Monte Carlo simulations, it would
be too expensive to estimate this every time C`(X) changes.
Therefore, we opted for an additional approximation and replace
the term C`(X)σL by C`(X0)σL, where X0 is now a fixed fiducial
power spectrum which can be the initial guess of the solution.
We can now introduce the estimator R`(X) for R`(X) defined as

R`(X) ≡ C`(X0)σL

(
T (C̃`) −

ln(C`(X))
σL

)
, (30)

which leads to

R`(X) '
C`(X0)
C`(X)

R`(X) + C`(X0)σLε`. (31)
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Unless C`(X0) = C`(X) in the first term, this estimator yields a
biased estimate of the amplitude of R`(X). However, it still ver-
ifies R`(Pth

k ) = 0 and unless the estimated solution X deviates
significantly from X0, the ratio C`(X0)/C`(X) remains limited to
within a few percents. Furthermore, the fiducial power spectrum
X0 can be reset several times to the current estimated X as the
algorithm converges towards a solution, thereby removing any
potential multiplicative bias on the residuals once the algorithm
has converged. On the other hand, the noise on the estimator
R`(X) now has a fixed variance independent of the current es-
timate of the solution X. Replacing this estimator in the data
fidelity term of Eq. (23) eliminates the unknown true anisotropy
power spectrum from the data fidelity term.

Furthermore, we modify the sparsity constraint by applying
a weight for each wavelet coefficient, thus turning the parame-
ter λ in Eq. (23) into Kλi, where i is the coefficient index in the
wavelet domain. In Sect. 2.7, a specific choice of the λi will al-
low us to use a single regularisation parameter K to handle the
non-stationary and correlated noise on the estimator R` in a way
that translates into a significance level threshold for the detection
of features. The optimisation problem solved by PRISM can now
be formulated as

min
X

1
2
‖

1
C`(X0)σL

R`(X) ‖22 +K
∑

i

λi ‖ [ΦtX]i ‖0, (32)

where the pre-factor 1/C`(X0)σL weights the `2 data fidelity
term according to the variance of the noise on the estimator R`.

2.6. The PRISM algorithm

The `0 optimisation problem stated in Eq. (32) cannot be solved
directly. However, the solution can be estimated by solving a
sequence of relaxed problems using the re-weighted `1 minimi-
sation technique Candes et al. (2008). This technique amounts
to solving a sequence of weighted `1 problems of the form

min
X

1
2
‖

1
C`(X0)σL

R`(X) ‖22 +K
∑

i

λi|[WΦtX]i|, (33)

where W is a diagonal matrix applying a different weight for
each wavelet coefficient. This relaxed problem is now tractable
and the solution of the original problem (32) can be approxi-
mated using the iterative algorithm presented in Candes et al.
(2008) to perform the reweighted analysis-based `1 recovery:

1. Set j = 0, for each element of the weighting matrix W set
w

j
i = 1. Set the first guess X0 by fitting a pure scale-invariant

primordial power spectrum to the data C̃`.
2. Solve the weighted `1 problem (33) yielding a solution X j.
3. Compute α j

i = ΦX j and update the weights according to:

w
j+1
i =

 1
|α

j
i |/Kλi

if |α j
i | ≥ Kλi

1 if |α j
i | < Kλi,

(34)

where λi is the standard deviation propagated to the wavelet
coefficients (see Sect. 2.7) and K is a given significance level.

4. Terminate on convergence or when reaching the maximum
number of iterations, otherwise go to step 2.

In practice, we find that three iterations of this procedure are
enough to reach satisfying convergence and de-biasing of our
results and we see no further improvements by performing addi-
tional re-weightings.

To solve the relaxed problem (33) given a weighting ma-
trix W, the popular iterative soft-thresholding algorithm (ISTA)
can be used. This proximal forward-backward iterative scheme
relies on the iteration

X̃n+1 = Xn + µTtMt 1
(C`(X0)σL)2 R`(Xn), (35)

Xn+1 = proxKµ‖λ�WΦt·‖1

(
X̃n+1

)
, (36)

where µ is an adapted step size and proxKµ‖λ�WΦt·‖1
is the prox-

imal operator corresponding to the sparsity constraint. The gra-
dient descent step µ has to verify

0 < µ ≤
2

‖ TtMt(C`(X0)σL)−2MT ‖
, (37)

where ‖ · ‖ is the spectral norm of the operator.
In the absence of a closed-form expression for the proximal

operator, its value can be estimated by solving a nested optimi-
sation problem:{

û = arg min|ui |≤Kµλiwi

1
2 ‖ Φu − x ‖22

proxKµ‖λ�WΦt·‖1
(x) = x −Φû. (38)

We solve this optimisation problem at each iteration of the
algorithm, using the fast iterative soft-thresholding algorithm
(FISTA) Beck & Teboulle (2009), a fast variant of ISTA. The
details of the algorithm solving this weighted problem are pro-
vided in Algorithm 1.

2.7. Choice of wavelet dictionary and regularisation
parameter

As mentioned in the previous section, the regularisation param-
eter K can be set according to a desired significance level. In
Eq. (38), it can be seen that the wavelet coefficients ui are con-
strained within a weighted `1 ball and correspond to the non-
significant part of the signal. In order to place the radius of this
`1 ball according to the expected level of noise for each wavelet
coefficient, we propagate the noise on the estimator R` from
Eq. (36) through the operator ΦTtMt(C`(X0)σL)−2 and estimate
its standard deviation at each pixel and each wavelet scale. In
practice, we estimate this noise level using Monte Carlo simula-
tions of the noise on R`. We set each λi to the resulting standard
deviation for each wavelet coefficient. As a result, coefficients
below Kλi will be considered as part of the noise and one only
need to set a global parameter K to tune the sparsity constraint
according to the noise level. In the following section, we have
chosen to set this parameter at K = 5, thus robustly removing
noise.

The choice of wavelet Φ will have an impact on the per-
formance of the algorithm. In the following study, we use bi-
orthogonal Battle-Lemarié wavelets of order 1 with 9 dyadic
wavelet scales. This choice of wavelet is generic and not specif-
ically tuned to a type of primordial power spectrum. More phys-
ically motivated dictionaries could be used to reconstruct a spe-
cific type of feature predicted by a given theory.

3. Results

3.1. Numerical simulations

To assess the performance of our non-linear Algorithm 1 we
perform a series of reconstructions for three different types of
primordial power spectra: a near scale-invariant spectrum with
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Algorithm 1: Weighted analysis-based Pk sparse recovery
Require:

Pseudo power spectrum of the data: C̃`,
Instrumental noise power spectrum N`,
First guess primordial power spectrum X0,
Sparsity constraint parameter K,
Weights wi for each wavelet coefficients.

1: Initialise C0
` = MTX0.

2: Compute variance σi of noise ∼N(0, 1) propagated to wavelet
coefficients through ΦTtMt(C`(X0)σL)−2 from Monte Carlo
simulations.

3: for n = 0 to Nmax − 1 do
4: R

n
` = C0

`σL

(
T (C̃`) −

ln(MTXn+N`)
σL

)
5: X̃n+1 = Xn + µTtMt(C`(X0)σL)−2R

n
`

6: Computing proxλµ‖WΦt‖1
:

7: Initialise u1 = y0 = ΦtX
n+1

, t1 = 1.
8: for k = 1 to Kmax − 1 do
9: uk = uk + µ′Φ

(
X

n+1
−Φtuk

)
10: yk = uk − STµwiKλi (uk)

11: tk+1 = (1 +

√
1 + 4t2

k )/2

12: uk+1 = yk +
tk−1
tk+1

(yk − yk−1)
13: end for

14: Update of the reconstruction:

15: Xn+1 = X̃n+1 −ΦuKmax

16: end for
17: Return: The reconstructed primordial power spectrum

Pk = XNmax .

ns = 0.972 (Hinshaw et al. 2013), a spectrum with a small run-
ning of the spectral index with ns = 0.972 and αs = −0.017 (Hou
et al. 2014), and a spectrum with ns = 0.972 with a compensated
feature around k = 0.03 Mpc−1. The first two simple models are
the most favoured by the current data and the spectrum with the
feature (investigated in other works, see Nicholson & Contaldi
2009) is only used to demonstrate the ability of the algorithm to
detect and reconstruct isolated features. In all cases, the cosmo-
logical parameters responsible for the evolution of the Universe
in the radiation transfer function are kept the same and accord-
ing to the WMAP nine-year parameters (Hinshaw et al. 2013),
Ωbh2 = 0.02264, Ωch2 = 0.1138, ΩΛ = 0.721, and τ = 0.089.

For a thorough comparison of our simulations to the WMAP
nine-year data we perform the Monte Carlo simulations at the
level of the five WMAP frequency channels, taking into account
the propagation of the instrumental noise through the component
separation and masking steps. For each of the three test primor-
dial spectra we produce a set of 2000 pseudo power spectra C̃`

by processing the simulated channels through the LGMCA com-
ponent separation pipeline (Bobin et al. 2013) before computing
the empirical power spectrum of the masked maps. In detail, the
simulations are produced using the following steps.

– Frequency channels: we simulate CMB maps at the five
WMAP channels at frequencies 23, 33, 41, 61, and 94 GHz.
The frequency dependant beams are perfectly isotropic PSFs
and their profiles have been obtained as the mean value of
the beam transfer functions at each frequency as provided by
the WMAP consortium (nine year version).

Fig. 1. A simulated noisy CMB map at 15 arcmin resolution obtained
from LGMCA and masked with the WMAP kq85 mask. The noise level
corresponds to the WMAP nine-year data. This map was generated from
a CMB power spectrum for a primordial spectrum with ns = 0.972 and
αs = 0.

– Instrumental noise: noise maps for each channel have been
generated as Gaussian realisations of pixel variance maps
obtained by combining the nine one-year full-resolution hit
maps as provided by the WMAP consortium.

– Cosmic microwave background: Gaussian realisations of the
CMB are computed from the three power spectra Cth

` , which
were obtained by applying the radiation transfer function T
to each of the three test primordial power spectra. The trans-
fer function is computed using CLASS2 (Blas et al. 2011)
according to the best-fit WMAP nine-year cosmology. The
CMB signal for each channel is then obtained by applying
the corresponding beam to the simulated CMB map as well
as the HEALPix window for nside of 1024.

– LGMCA Component Separation: full sky 15 arcmin resolu-
tion maps are obtained by applying LGMCA, with the pre-
computed set of parameters (Bobin et al. 2013), to the five
simulated channels for CMB and noise. Noisy full sky maps
are obtained by adding the resulting signal and noise maps.

– Masking: final maps are obtained by applying the WMAP
mask kq85 mask with fsky = 0.75.

The pseudo power spectra are obtained by applying the empiri-
cal power spectrum estimator to the simulated maps. The noise
power spectrum N` is estimated by averaging the 2000 pseudo
spectra of masked noise maps. Figure 1 shows an example of
a masked noisy CMB map obtained from our simulation pro-
cess. Figure 2 shows the pseudo power spectra for the three test
primordial spectra as well as the instrumental noise power spec-
trum estimated from the simulations. The light blue crosses show
one realisation of the pseudo power spectrum for the near scale-
invariant primordial power spectrum and the pink crosses show
the one with a small running. As can be seen, the three differ-
ent CMB spectra lie well within each other’s noise band and
on large and small scales they become almost indistinguishable.
Hence to accurately reconstruct the three underlying primordial
power spectra from these CMB spectra, a very good handle on
both the instrumental noise and the sample variance is required.

3.2. Reconstructions of primordial power spectra

To apply PRISM to the simulated data, we build a transfer func-
tion T′ adapted to the simulations so that it includes the effects
of the 15 arcmin beam from LGMCA and the HEALPix window

2 http://class-code.net/
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Fig. 2. CMB pseudo power spectra for the three types of primordial
power spectra. The solid blue line shows the pseudo spectrum based
on a primordial spectrum with ns = 0.972 and αs = 0. The light blue
crosses show one simulation of this spectrum, computed from the map
in Fig. 1. The red line shows the pseudo spectrum for a primordial
spectrum with ns = 0.972 and αs = −0.017 and the orange line corre-
sponds to a power spectrum with a localised feature at k = 0.03 Mpc−1.
These spectra include the effects of the mask, the 15 arcmin beam, the
HEALPix window for nside of 1024, and the instrumental noise power
spectrum, which is shown by a solid black line.

of nside = 1024. Using the same radiation transfer function T
as computed for the simulations, the resulting transfer matrix T′
can be written as

T′ = BHTQ, (39)

where B = diag(b2
` ) and H = diag(h2

` ) with b` and h` being
the beam and the HEALPix window, respectively. Operator Q
performs a linear interpolation from a logarithmic scale using
838 points to the linear sampling in k of the CLASS trans-
fer function T in the range k ∼ 10−4−0.15 Mpc−1. We also
compute the MASTER coupling matrix Mkq85 corresponding to
the kq85 high-resolution temperature analysis mask used in the
simulations.

We now have all the ingredients necessary in our algorithm:
Mkq85, T′, and Φ, which we use to construct our algorithm and
apply it to the 3× 2000 simulated pseudo power spectra. We use
the same set of hyper parameters in PRISM for three types of
primordial spectra: a Kσ significance level for the sparsity con-
straint with K = 5, three reweightings, and Nmax = 400 iterations
per reweighting.

In Fig. 3a we show the reconstructed primordial spectra in
the range k ∼ 0.001−0.10 Mpc−1. The blue lines show the 2000
reconstructed spectra for the spectrum with ns = 0.972 and αs =
0.0 and the cyan lines show the reconstructions for the spectrum
with ns = 0.972 and αs = −0.017. In each case, the orange line
is the mean of the reconstructions and the red line is the fiducial
one.

The reconstruction of the primordial power spectrum is lim-
ited by different effects on different scales. On very large scales,
there are fundamental physical limitations placed on the recov-
ery of the primordial power spectrum by both the cosmic vari-
ance and the more severe geometrical projection of the modes.
The physical limitations in the radiation transfer function places
an inherent limitation at large scales meaning the primordial
power spectrum cannot be fully recovered on these scales, even
in a perfect CMB measurement. On the other hand, on small
scales we are limited by the instrumental noise. This leaves us

with a window through which we can recover the primordial
power spectrum with a good accuracy. Nevertheless, as can be
seen, for k > 0.015 Mpc−1 the PRISM algorithm can reconstruct
the primordial power spectrum to a great accuracy and easily
distinguishes between the two types of spectra.

Figure 3b shows the 2000 CMB spectra obtained from the
reconstructed primordial power spectra of each type. The blue
lines show the CMB power spectra obtained from the near scale-
invariant primordial spectra and the cyan lines show the ones for
the primordial spectrum with a running. In each case, the orange
line shows the mean of the reconstructions and the red line shows
the fiducial spectrum. Comparing these CMB spectra to the input
simulated ones, shown in Fig. 2, shows the great performance of
the PRISM algorithm.

Figure 4 shows the performance of PRISM in reconstructing
a localised feature in the primordial power spectrum. The green
lines show the 2000 individual reconstructions, the solid orange
line shows the mean of the reconstructions, and the fiducial spec-
trum is shown in red. As can be seen, both the position and the
amplitude of the feature can be recovered with great accuracy.

3.3. Reconstruction from WMAP nine-year CMB spectrum

In the WMAP nine-year analysis (Hinshaw et al. 2013), the cos-
mological parameters in the radiation transfer function are fitted
along with ns and As, hence a power law form for the primor-
dial power spectrum is assumed. This means the transfer func-
tion computed using these best-fit parameters will always allow
a power-law primordial power spectrum to fit the observed data.
However, reconstructing a free form primordial power spectrum
from the data, assuming the fiducial transfer function, allows
us to test this null hypothesis by looking for significant devi-
ations between the reconstructed spectrum from data and the
simulations.

The WMAP nine-year data is processed using LGMCA as
described in Bobin et al. (2013), which is the same pipeline used
to produce the simulations. As mentioned previously, a good
handle on the noise power spectrum is critical in order to yield
an unbiased reconstruction of the primordial power spectrum.
We estimate the noise power spectrum from the WMAP nine-
year data by subtracting the cross-power spectrum from the auto-
power spectrum and applying a denoising, using the TOUSI al-
gorithm. To account for the effect of point sources, which were
not accounted for in the simulations, we add an estimate of the
point sources power spectrum, computed from 100 simulations,
to the estimated noise power spectrum. Figure 5b shows the
pseudo-power spectrum computed from the LGMCA WMAP
nine-year map (blue crosses) and the estimated instrumental
noise power spectrum (solid black line). We note that in theory,
the noise power spectrum could be computed from simulations.
However, after comparing our estimated noise power spectrum
from the 2000 simulations to the actual noise power spectrum in
the WMAP nine-year data we found a small bias that we could
not account for in the simulations. Hence we opted to use the
data itself to estimate the noise power spectrum.

We apply PRISM, with the same hyper parameters as in
the simulations, to the WMAP nine-year LGMCA CMB pseudo
power spectrum. The reconstructed primordial power spectrum
is shown in red in Fig. 5a. In this figure, we overlay the
1σ interval around the mean of reconstructed primordial near
scale-invariant spectrum, obtained from the simulations. The
best-fit power-law power spectrum from WMAP nine-year data
with ns = 0.972 and αs = 0 is shown in yellow, while the
best-fit power spectrum with a running from WMAP nine-year
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(a) Reconstructed primordial power spectra (b) Corresponding CMB pseudo power spectra

Fig. 3. Reconstructions for the primordial power spectra and their corresponding CMB pseudo spectra. In blue we show the 2000 reconstructed
spectra with ns = 0.972 and αs = 0 and in cyan the reconstruction for ns = 0.972 and αs = −0.017. In both cases the mean of the reconstructions
is shown in orange and the fiducial input spectrum is shown in red. As can be seen, for k > 0.015 Mpc−1 PRISM can reconstruct the primordial
power spectra with such accuracy that the two are easily distinguishable, despite their very similar forms in C` space. The shaded regions in
panel b) correspond to the 1σ sample (cosmic) variance, which demonstrates the similarity of the two types of CMB spectra. The quality of the
reconstruction can also be seen in the reconstructed angular power spectra which are extremely close to the theory and well within the 1σ sample
variance intervals.

Fig. 4. Reconstruction of the primordial power spectrum with ns =
0.972, αs = 0.0, and an additional feature around k = 0.03 Mpc−1 shown
in green. The 2000 reconstructions are superimposed with their mean
shown in orange. The fiducial input spectrum is shown in red. As can
be seen, PRISM is able to recover both the position and the amplitude
of the feature with great accuracy.

data with ns = 1.009 and αs = −0.019 is shown in cyan
(Hinshaw et al. 2013). As can be seen, the reconstructed power
spectrum from the data does not exhibit a significant deviation
from the best-fit near scale-invariant spectrum. The small depar-
ture from the 1σ interval at small scales is not significant, espe-
cially since our simulations did not thoroughly take into account
additional effects such as a beam uncertainty and point sources.
To conclude, we find no significant departure from the WMAP
nine-year best-fit near scale-invariant spectrum.

4. Conclusions

The primordial power spectrum describes the initial perturba-
tions in the Universe and so provides an indirect probe of
inflation or other structure-formation mechanisms. The simplest

models of inflation are the most favoured by the data and pre-
dict a near scale-invariant power spectrum with a small running.
One way to measure this spectrum is through the windows of the
CMB data. The problem, however, is that the singular nature of
the radiation transfer function and the joint estimation of the cos-
mological parameters in the transfer function and the primordial
power spectrum, along with the different types of noise sources
impose a limit into the full recovery of the primordial spectrum.
Therefore, devising a technique that is sensitive enough to de-
tect deviations from scale invariance is the key to recovering an
accurate primordial power spectrum.

In this paper we have introduced a new non-parametric tech-
nique, called PRISM, to recover the primordial power spectrum
from masked noisy CMB data. This is a sparse recovery method,
which uses the sparsity of the primordial power spectrum as
well as an adapted modelling for the noise of the CMB power
spectrum. This algorithm assumes no prior shape for the pri-
mordial spectrum and does not require a coarse binning of the
power spectrum, making it sensitive to both global smooth fea-
tures (e.g. running of the spectral index) as well as local sharp
features (e.g. a bump or an oscillatory feature). Another advan-
tage of this method is that, thanks to the clever modelling of
the sample variance on the input angular power spectrum, the
regularisation parameter can be specified in terms of a signal-
to-noise significance level for the detection of features. These
advantages make this technique very suitable for investigating
different types of departures from scale invariance in the primor-
dial power spectrum, whether it is the running of the spectral
index or some localised sharp features as predicted by some of
the inflationary models.

We have investigated the strength of our proposed algorithm
on a set of WMAP nine-year simulated data for three types
of primordial power spectra: a near scale-invariant spectrum,
a spectrum with a small running of the spectral index, and a
spectrum with a localised feature. We have shown that our al-
gorithm can easily recover the three spectra with an excellent
accuracy in the range k ∼ 0.001−0.1 Mpc−1. In addition, the
errors in the recovered spectra are small enough that the three
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(a) Reconstructed primordial spectrum from WMAP nine-year data (b) Corresponding CMB pseudo power spectrum

Fig. 5. Reconstruction of the primordial power spectrum from the LGMCA WMAP nine-year data and its corresponding pseudo spectrum shown
in red. For comparison, we also show the mean of the reconstruction for ns = 0.972 and αs = 0 with a solid dark blue line with the 1σ interval
around the mean shown as a shaded blue region. The WMAP nine-year fiducial primordial power spectrum with ns = 0.972 and αs = 0 is shown in
yellow and in cyan we show the best-fit primordial power spectrum with a running from WMAP nine-year data with ns = 1.009 and αs = −0.019.
In panel b), we plot the LGMCA WMAP nine-year pseudo power spectrum (blue crosses) and the estimated instrumental noise power spectrum
including the point sources power spectrum is shown (solid black line). The very small blue region corresponds to the 1σ interval around the mean
reconstructed spectrum (i.e. blue region in panel a)). As can be seen, we do not detect a significant deviation of the WMAP nine-year data from
the best fit near scale-invariant spectrum.

types of primordial spectra can easily be distinguished in the
range k ∼ 0.015−0.1 Mpc−1. This technique has proved that it
can easily detect small global and localised deviations from a
pure scale-invariant power spectrum and that it is suitable for
distinguishing between simple models of the inflation.

Using PRISM, we have reconstructed a primordial power
spectrum from the LGMCA WMAP nine-year data and have in-
vestigated possible departures from the WMAP nine-year near
scale-invariant spectrum. We have not detected any significant
deviations from this simple model of the primordial power spec-
trum. We have demonstrated the feasibility of using PRISM on
masked CMB data contaminated by instrumental noise. Better
constraints will be obtained in future works by processing
Planck data which provides a much lower instrumental noise,
thus improving the range of scales we are able to probe with
much better accuracy.

To this end, we also acknowledge previous algorithms aimed
at reconstructing the primordial power spectrum with no need
for binning, most of which have been referenced in this paper.
The most recent work is by Hunt & Sarkar (2014), who use the
Tikhonov regularisation to solve the ill-posed inverse problem.
The advantage of this approach is the linear relationship between
the data and estimated primordial power spectrum. Just like our
algorithm, the regularisation parameter has to be determined us-
ing simulations. However, because of the non-stationary noise in
the data it is difficult to obtain a reliable regularisation parame-
ter, whereas the robust noise handling in PRISM makes it easier
to select an appropriate regularisation parameter. Furthermore,
the wavelet regularisation in PRISM has the advantage of pre-
serving the detected features well, which is not the case with
Tikhonov regularisation. Another interesting work is by Hazra
et al. (2013), who use an adapted and improved Richardson-
Lucy algorithm, dubbed MRL, to reconstruct the primordial
power spectrum. Because of the very high level of the instru-
mental noise on small scales in the WMAP nine-year data, the
MRL algorithm takes the unbinned CMB spectrum only for

` < 900. For larger angular scales, ` = 900–1200, a binned CMB
spectrum is used. In addition, because of the possible induced
artefacts in the reconstructed primordial spectrum, a smooth-
ing step may be necessary after the reconstruction is performed.
Henceforth, compared to the MRL algorithm, the advantage of
our algorithm is twofold. One is the ability to use the unbinned
CMB spectrum for the whole multipole range ` = 2–1200 be-
cause of our accurate noise modelling on the CMB power spec-
trum. The other is that there is no need for an additional smooth-
ing step in PRISM, as any residual features in the reconstructions
are statistically significant.

The developed C++ and IDL codes will be released with
the next version of iSAP (Interactive Sparse astronomical data
Analysis Packages) via the website http://cosmostat.org/
isap.html . All results have been obtained using the isap rou-
tine mrs_prism with the following command line:

pk = mrs_prism(Cl, noise=Nl, TransferMat=Mat)

where Cl contains the observed pseudo-power spectrum of the
masked noisy CMB maps, Nl is an estimate of the instrumen-
tal noise power spectrum N`, and Mat is the input transfer ma-
trix which includes the effects of the radiation transfer func-
tion, the mask, the beam, and the HEALPix window (Eq. (39)).
The transfer matrix can be computed using the isap routine
mrs_transfer_matrix and by default the transfer matrix is derived
from the WMAP nine-year best-fit cosmology model.
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