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 Summary 

 
Aluminum hexagonal honeycombs loaded in their tubular direction have extremely 

good mechanical properties, including high stiffness to weight and energy absorption 

capacities. The corresponding load-displacement curve exhibits a long plateau 

accompanied by small fluctuations. These fluctuations are due to the propagation of a 

folding front through the studied sample, which is due to the creation of folds. This 

plateau load makes honeycombs the perfect candidates for use as energy-dissipative 

devices such as bumpers. Previous studies have largely focused on the study of the 

plateau load with less attention given to the length of the folds. However, it will be seen 

that this parameter is crucial for both the complete understanding of the mechanics of the 

folding and the derivation of the plateau load. We present first an introduction to the 

thematic of honeycomb. Then, the first model focuses precisely on the fold length. Two 

hypotheses are considered, a correlation between elastic buckling and folding first and a 

local propagation of the existing fold secondly. The second hypothesis is found to be 

correct, and the results are good for thin foils. For thick foils, a geometric limitation 

occurs, which makes the results less precise. Then, we are able to use the previous 

kinematics for the folding and derive a new set of formulas for the plateau load. The 

results are compared with experimental results and past formulas, and are found to be 

good, especially for thin foils, where our results for the fold length are more precise. 

 

Keywords: cellular materials, metallic hexagonal honeycombs, plate theory, folding front 

wavelength, energy absorption, crushing distance. 
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1. Introduction 

1.1 General presentation of metallic adhesively-joined honeycombs 

Metallic honeycombs, and more generally honeycombs, are one of the most 

efficient light-weight structures used to dissipate energy. They combine high stiffness-to-

weight properties with a crushing load plateau which makes them desirable for a very 

large range of applications, including transportation, aeronautics, and sandwiches 

structures where honeycomb gives its rigidity to the structure. However, their main 

drawback remains their high prices. For example the automobile industry uses simple 

non-connected steel tubes in their crash-box rather than honeycomb, although 

honeycomb would be more efficient in this purpose. Indeed the improvement of the 

properties brought by the use of honeycomb do not balance the higher cost induced for 

this type of applications. Therefore honeycomb remains an expensive and “high-tech” 

solution even our days. Probably its most common use is nowadays for sandwiches of 

small thicknesses, where honeycomb can give a high rigidity and are not too much 

expensive. 

 

 

Fig. 1.1: Presentation of honeycomb, viewed in its tubular direction. 
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The purpose of this thesis is to study the crushing properties of a particular type of 

honeycomb, namely adhesively-bonded honeycomb. This type of honeycomb is made by 

extruding, adhesively bonding, and expanding multiple plates typically composed of 

aluminum or mild steel. The final structure is very similar to a space filling combination 

of tubes as figured in Fig. 1.1. It must be noted that the study presented in this thesis is 

only valid for adhesively bonded honeycombs; brazed honeycombs for instance would 

possess different properties which are not studied here. The aim of this study is to 

characterize the crushing properties of honeycomb when loaded in its tubular direction. A 

test setup is described in the following. A typical force/displacement curve is exhibited in 

Fig. 1.2. The curve is composed of an elastic part which ends when the first fold appears, 

which characterize the peak load. After this peak, honeycombs exhibit a very interesting 

force plateau with small fluctuations. Physically, the plateau is due to the creation of 

folds that propagate throughout the sample while the crushing advances. The first fold 

appears either at the top or at the bottom of the sample. Then, the sample is divided into 

two parts, a crushed part and an uncrushed or intact part. The folding front progresses 

from the top of the sample —if the first fold has appeared here— to the bottom, while folds 

appear one close to the other. When the front has reached the end opposite to the one 

where it started (if it started at the top, when he reaches the bottom), then folds are 

created in the whole sample. Since it is not anymore possible to create folds, the rigidity 

of the structure raises abruptly, which we name densification. We will use in the 

following the configuration of the tests (where a sample is axially crushed by a vertical 

actuator) as the reference: “vertical” will refer to the tubular direction, while “horizontal” 

refers to the two directions perpendicular to the tubular direction. 

Additionally we introduce here the concept of Y element: the Y element, which 

was introduced in Fig. 1.1, is the smallest repetitive pattern to recreate the structure. It 

can be seen in Fig. 1 that this pattern is made of two plates adhesively joined.  
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Fig. 1.2: Typical force/displacement curve for the axial crushing of adhesively-bonded 
honeycomb. 
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1.2 Literature review 

The literature is abundant on the topic of honeycomb. It will be shown that the 

material has been studied in all configurations and strains rates, which means that its 

applications cover a broad range. However, the crushing of hexagonal honeycombs in 

their tubular direction, which is the concern of most applications, is still not understood. 

Let us first introduce some more background information. Honeycombs are part 

of a more general type of materials which are porous structures. These structures can be 

two dimensional (in which case they are called honeycombs) or three dimensional (and 

they are called foams). The main advantage is that this type of structures is a lot lighter 

than the original material they are built from. The drawback is that the properties of the 

resultant material are not as good as the original material. However, for certain 

configurations, the stiffness can be still high (in particular for honeycombs), and the final 

material is highly crushable, while the original material is not. Honeycombs, which are 

two-dimensional structures, present indeed a very high stiffness in their tubular direction 

compared to their weight. This property was the property used for the first historical 

applications of honeycombs, namely aeronautics (wings of planes, notably for the 

American bomber B36) and spatial applications. The first studies of honeycombs focused 

logically on the elastic properties of honeycombs loaded in their tubular direction (Kelsey 

(1958)). The development of honeycombs with more stable crushing properties allowed 

in the 60s and 70s the use of honeycombs as crushable protective cushions. Their main 

use as crushable material nowadays is as bumpers in car-crash testing. This new ability 

was first studied by Mc Farland (1963), who focused on the folding pattern of hexagonal 

honeycombs loaded in their tubular direction. The first deep study of the mechanisms 

included in the folding pattern is due to Wierzbicki (1983) twenty years later. In his 

paper, Wierzbicki refines the work of Mc Farland on axially loaded hexagonal 

honeycombs, introduce new kinematics and conclude with simple formulas for the 

crushing strength and the fold length. However, his derivation of the fold length is based 

on principles that are mechanically not correct; the kinematics field is not coherent; and it 

will be seen that its model lacks of a few ideas like how the folding front propagates 

through the sample. These are the reason why we started this work. Later the work of 

Gibson and Ashby (1988) gives relatively good results for the same problem, but does 
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not study the core of the problem, i.e. the precise kinematics at the micro-structural level. 

Lately a few papers have been released on axially crushed metallic hexagonal 

honeycombs. The most interesting one is from Mohr and Doyoyo (2003). Using 

conservation equations (of mass, energy…) as in fluid mechanics they characterize the 

folding front’s progression in the material while it is continuously crushed. However they 

avoid this way to study the micro-structural crushing kinematics. I also appreciate a paper 

from Aminanda et Castagnie (2005), whose approach consists in considering only the 

junction between the three plates of a Y-element. It will be seen that our model, in which 

a very large part of the total dissipated energy is dissipated in this junction, can explain 

very well their result. However, I totally disagree with the idea of springs for the 

implementation in finite element codes, as proposed by the authors of this paper, and 

would rather prefer an energy approach rather easy to encode. 

In the meanwhile, the increasing use of honeycomb as crash barriers has required 

scientists to study other aspects of its crushing. In particular shear and the effect of high 

strain-rates have been studied extensively, as well as the in-plane properties. These 

aspects are not the focus of this study, we will only give a few references here.  

The problem of the behavior of honeycombs in shear is easier than the 

compression. It was studied by Gibson and Ashby (1988) by energy methods, later by 

Grediac (1993) by finite elements, Hohe et all (1999) using homogenization or Qiao and 

Wang (2005) combining the different techniques. Some experimental papers should also 

be cited, see for example Doyoyo and Mohr (2003) for a nowadays classical setup for the 

shear tests. For the type of applications requiring a good resistance in shear, as well as the 

high speed ones, usually square honeycombs are preferred to hexagonal ones. See for 

example Cote et all (2005) for an experimental and finite element study of this aspect.  

In-plane properties are weak compared to the tubular direction properties (two 

orders of magnitude of difference for the stiffness for example). However, some authors 

have studied that in detail (although I wonder which applications they aim at). The most 

famous is from Papka and Kiriakides (1994), it uses finite elements extensively to predict 

the behavior of hexagonal honeycombs loaded in one of their in-plane directions (the 

strongest one). 
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Finally, the effect of strain rates on any of the previous types of loading has been 

studied. The best study is due to Xue and Hutchinson (2005), where the authors use a 

finite element simulation to propose a continuous medium model for the dynamic 

crushing of square honeycomb loaded in their tubular direction. Some other papers, like 

the one of McShane et all (2005) are also interesting. In this paper the authors compare 

the blast properties of square honeycombs compared to the plain aluminum plate of same 

mass as the honeycomb tested. The honeycomb is found to behave better than the 

aluminum plate, making it a candidate for the protection for blast. There are a multitude 

of papers on the combination of loads, strain rates, using one of the classical methods 

(finite elements and experiments for most of the papers, but also homogenization and 

analysis for the bravest) but they are not the scope of this study so I will stop here. 

However, it must be pointed that of all these papers, the closest to solving the problem of 

the crushing of hexagonal honeycombs loaded in their tubular direction is Wierzbicki’s 

one, which has the limitation we noted before. And this problem remains the heart of the 

behavior of hexagonal honeycombs and their main application. Therefore, this study is 

plainly justified. 

1.3 Prospects of this study 

The prospect of this study is to characterize the complete crushing of hexagonal 

honeycombs loaded in their tubular direction. Remember Fig. 1.2. We start with the 

elastic regime by computing the elastic buckling pattern and comparing with the peak 

stress. Then, we need to characterize the crushing plateau. The previous studies have 

focused on the crushing stress, however it appears that another parameter is important, 

namely the fold length. It needs to be determined to really understand the crushing 

mechanics, and it is very easy to compute another interesting parameter to define the 

energy absorption of a sample, namely the crushing distance, from the fold length. The 

crushing distance is intuitive and can be observed directly from Fig. 1.2: it is the 

difference between the original height of the sample and its height when fully crushed. 

For these two reasons (deeper understanding and derivation of the crushing distance) the 

first part of our study is focused on this parameter. The results are found to be good for 

thin foils, which are the most useful honeycombs for energy application purposes. 

Completing this first study allows us to fully determine the kinematics of the folding 
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process. Then, we are able to study the crushing strength using the results from the fold 

length. The results are found to be very good for thin foils, where we had good results for 

the fold length. For thick foils, the results are better than previous results from past 

studies, but the errors tend to be much larger than for thin foils. Some explanations on the 

reasons for this are given. 
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2. Experiments 

The aluminum honeycomb investigated in this study was manufactured by Hexcel 

Corporation. The specific samples studied were composed of aluminum alloy 5052, with 

(1) cell size 3/16 in. (4.76 mm), mass density 3.1 pcf (49.66 kg/m3) and foil thickness 

0.001 in. (2.54e-2 mm); (2) cell size 5/32 (3.97 mm), mass density 2.6 pcf (41.65 kg/m3) 

and foil thickness 0.0007 in. (1.78e-2 mm). Three tests each were conducted for the 

above two different materials specifications. The dimensions of the specimens were 

146×120×70 mm. Note that the latter dimension corresponds to the tubular direction. The 

samples were placed between two parallel wood plates strengthened with thin aluminum 

plates and compressed along the tubular direction with a custom-designed testing 

machine (Instron 8802, 2×50 kN load cells in the vertical direction). See Fig. 2.1 for an 

example of un-deformed and deformed photographs of the honeycomb sample. The 

experiments were performed under displacement-controlled conditions with a slow 

loading rate of 3 mm/min. The displacement and the resulting load acting on the sample 

were recorded in the Instron-provided data acquisition system. The force-displacement 

curve has already been presented in Fig. 1.2.  

Additionally, we used a non-contact deformation measurement method to get the 

deformation of the walls of the sample. This method uses two cameras in correlation 

working like two eyes, meaning that from two images taken from close positions an 

integrated software computes the displacement field in the three directions (the two 

directions perpendicular to the focal axis directly, the third direction by correlating the 

two images). Figure 2.2 presents an elastic buckling pattern illustrating the way all the 

results were obtained from the cameras. The software always computes the displacement 

field on the whole area of interest. It is then possible to extract data along a given curve 

or line. All the displacement fields obtained in the following sections come from this 

method. The whole crushing process was monitored using two cameras configured in 

correlation as seen in Fig. 2.2 (1392x1040, monochrome, Schneider Optics Xenoplan 

1.4/23mm Compact Series Lenses, distance 114 mm, frame rate 0.5 fps). 
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Fig. 2.1: Photos of the crushing experiment. Figure 2.1 (a) presents the initial setting 
before the load is applied, while Fig. 2.1 (b) presents the sample partially crushed. The 
crushed part, the intact part, as well as the crushing front, can be easily visualized. 
 

(a) 

(b) 
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Fig. 2.2: Extraction of the data using cameras in correlation. It is possible to view the 
displacement in the whole area of interest and therefore to extract the relevant data along 
a given line of the space. 
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3. Phenomenology 

This section is devoted essentially to the understanding of the different stages of 

the crushing of honeycomb, as exhibited in Fig. 1.2. As the honeycomb is continuously 

crushed, the Euler buckling point of the plates is reached. As seen in Fig. 2.2, the 

buckling pattern is characterized by a “sea” of out-of-plane elastic buckles. Once the 

elastic buckles appear, the stiffness of the honeycomb structure decreases with increasing 

displacement until the peak force is reached. Before the peak point, some hinge lines 

appear which prefigure the formation of the first fold. The increase in force induces the 

creation of what civil engineers call a mechanism, allowing large deformations and the 

apparition of the first fold. From this study it will be seen that the hinge lines 

accommodate large deformations and dissipate the elastic bending energy responsible for 

the buckling pattern while initiating the folding process. 

We start the description of the folding pattern by presenting Wierzbicki’s view of 

the folding process, which can be found in Fig. 3.1. It must be stressed out that 

Wierzbicki’s analysis, as well as ours, is based on the idea of the propagation of a 

crushing front throughout the material while it is crushed. The crushing front splits the 

sample into two parts, an uncrushed, intact part and a folded part, and all the deformation 

in the sample is localized in the crushing front. The folding process is characterized by 

the combination of a vertical displacement of the top edges (line A1F1D1), inducing a 

horizontal displacement of the hinge line A2F2D2. Indeed, the angle ψ remains constant 

during the transformation, which requires A2F2D2 moving horizontally (out of its original 

plane). Therefore, the surfaces A1F1F2A2 and A2F2F3A3, which were four rectangles at the 

beginning of the folding process, are transformed into four trapezoids. Note that the 

surface D1F1F2D2, which was bonded by adhesive between two different plates, shows 

some partial delamination. 
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Fig. 3.1: Folding front in Wierzbicki’s work. The thick lines represent hinge lines, the 
dashed one are just the boundaries of the studied part. The notation H will be used in the 
whole paper with the same meaning. 
 
 

The latter presentation has the great advantage of giving a lot of good ideas about 

the folding mechanism: the necessary combination of horizontal and vertical 

displacement for the hinge lines of the crushing front, as well as partial delamination of 

the bonded plates. However, it misses a critical part of the phenomenon, namely the 

dynamics of the propagation. We develop in this section a model which has all these 

characteristics, derived from Wierzbicki’s one. The main defect of Wierzbicki’s model is 

that it analyses each fold alone and does not account for the interaction between the 

active fold and the nucleating fold. A major issue in the analysis is to understand that 

folds can potentially form in two different ways (see Fig. 3.2). If the folds are alternated, 

as figured in Fig. 3.3, then the solution is more energy efficient, because the hinge lines 

A1F1D1 and A3F3D3 are no longer necessary. The understanding of the hinge line is 
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radically modified from this perspective. Indeed, the process is now dynamic: one fold 

induces the next and the folds propagate vertically albeit asymmetrically —the part of the 

material on one side of the fold (top in Fig. 3.3, which is the crushed region) is different 

from the part on the other side (bottom, intact region). 

 

 

 

 
Fig. 3.2: Two ways of folding are possible. Again the thick lines represent hinge lines. 
The thin lines are not plastic, they are the boundaries of the representative element. 
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Fold length

 

 
Fig. 3.3: Starting by Wierzbicki’s model, we alternate the folds; then some hinge lines are 
no longer necessary and we obtain our model (c). Note that some hinge lines have 
disappeared in (c). The folding wavelength has been sketched too. Note that it is twice as 
large for (c) than for (a). 
 

(a) 

(b) 

(c) 
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Another aspect of the propagation is the propagation in the horizontal direction 

(perpendicular to the tubular direction), which is equivalent to explain why the folds form 

a horizontal “fold front”. Figure 3.4 presents different top views (in the tubular direction) 

of the folding process, a possible case and an impossible one. It can be seen that the 

configuration of one fold in the horizontal plane influences the configurations of all its 

close neighbors. The reason for this is that one solution requires much less stretching 

energy from the double thickness plate than the other.  

N1

N2

N3

 

Figure 3.4: Propagation of the fold in the plane perpendicular to the tubular direction. 
Fig. 3.4 (b) is the correct folding mode, although Fig. 3.4 (c) shows an impossible mode 
due to high energies of stretching in the close junctions between the three plates of the Y 
elements. 

(c) 

(b) 
(a) 
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4. Study of the fold length 

4.1 Presentation 

This part of this thesis is devoted to understanding the physical process behind the 

final folding length. Our first and intuitive guess was that the fold length is determined by 

the elastic part of the deformation, i.e. that the buckling pattern was directly responsible 

for the fold pattern. In this vision the fold length would have been the same as the length 

of the buckles in the buckling pattern. It can already be seen that the very local character 

of honeycomb folding does not seem to fit with this assumption. Indeed this condition 

would mean that the folds can appear all at the same time (since the buckling is 

associated to a buckling mode for the whole sample). However the propagation of the 

folds is very local, and it was found that the buckling pattern is not the factor originating 

the folds. Indeed, when the peak force is reached, which coincides with the creation of 

the first fold, the elastic bending energy of the buckling is dissipated in the plastic hinges 

composing the fold. Instead of large elastic deflections for the plates in the whole sample 

(the deflections due to buckling can be seen directly with human eyes), the deformation 

becomes localized in the crushing front. In the rest of the sample (uncrushed region) on 

the other side the deformations become very small (the fluctuations can no longer be 

seen).  

From what was said above we present first a buckling analysis of the honeycomb 

structure, and this for two reasons: (1) it allows us to test the intuitive hypothesis as to 

whether buckling and folding patterns directly correlate, and (2) it allows us to 

characterize the elastic part of the stress strain curve. This hypothesis happens to be 

wrong, so that we had to develop a better understanding of the physics behind the folding 

pattern. This is done as a second step by modifying the boundary conditions of the 

analysis and considering folding as a local propagating phenomenon. However, it will be 

seen that the second type of models is limited by a geometrical limitation in the folding 

pattern. This geometric limit, which can be understood very easily, has been expressed 

here as a limit between thin foils and thick ones. For thin foils, the results from the 

second model predict the correct fold length. However, for thick foils, we were not able 

to predict exactly what happens and only proposed an upper bound for the fold length. 
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The study of the buckling is itself divided into three model, two models where 

only one plate is considered, and one model where the buckling of the total Y element is 

considered. On the contrary, the study of the propagation of localized hinge lines is based 

on a model with only one single plate. 

For all models, we make extensive use of small-deformation thin plate theory 

assuming that there is no delamination between the two bonded plates. This is clearly a 

rational assumption for the buckling models, but it can be not so relevant for the second 

type of model. However we believe that the assumption is still fine because the 

deflections are not large except in the very close surroundings of the fold. In the analysis, 

we also neglect all the out-of-plane plate stresses (stress σ33 as well as the shear stresses 

σ13 and σ23, their resultants and moments for the plates are neglected, where 3 is the 

direction of the thickness of the plate). We further neglect all displacements at the 

junction of the Y-element for the Y-element model. 

4.2 Study of the elastic buckling 

4.2.1 Simply supported case 

We first derive the classical solution of the simply supported case, which is 

intuitive and gives a good understanding of the more complex solutions we derive in the 

following. The model is presented in Fig. 4.1. Let ω  be the lateral deflection of the plate 

strip out of its plane, σ  the applied in-plane stress, x the width direction and y the longest 

direction of the strip, and )1(12 23 ν−⋅⋅= tED the rigidity where E is the Young 

modulus of the material, ν  the Poisson’s ratio. The dimensions of the plate are Λ  

(height), L (width) and t (thickness). The equilibrium equation is given as: 
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Assuming that )sin()(0 Λ= ymxf πωω , the equilibrium equation implies that we can 

write )(xf as: 

)sin()cos()sinh()cosh()( 4321 x
i

Ax
i

AxAxAxf ⋅⋅+⋅⋅+⋅⋅+⋅⋅= ββαα   (4.2.2) 
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where 12 −=i  ( β  is pure imaginary under classical conditions). 
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Fig. 4.1: Presentation of the simply-supported edges model (left), and fixed-edges model 
(right). 
 

The boundary condition (plate simply supported) can be written for the vertical 

edges as 0)2( =± Lω  and( ) 0)2/(22 =±∂∂ Lxω . Hence, the conditions are already 

fulfilled by the edges 0=y  and Ly = . From now on we introduce the notations 

2/' Lαα =  and iL 2/' ββ = . Then the boundary conditions applied to the vertical edges 

can be written: 
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Taking the determinant of this gives the condition  

 

0)'sin()'cos()'sinh()'cosh()''( 222 =−− ββααβα      (4.2.5) 

 

Which only non-trivial solutions are solutions of  

 

02/)'sin()'sin()'cos( == βββ        (4.2.6) 

 

Introducing the parameters DtLK 22 πσ=  (plate “stress”) and LΛ=φ  we can 

write the previous equation as 

 

01
2

sin),( =













−= φ

φ
πφ

m

Km
Kg        (4.2.7) 

 

It is indeed an implicit equation between these 2 parameters, and K will have to be 

found for any given value of φ . However, here we can solve the implicit equation using 

the properties of the sin function and find the final condition 

 

φ
φ m

m

n
K +=

24
          (4.2.8) 

 

This plate stress represents the minimal stress to apply to a plate to see the 

buckling pattern appear. In terms of bifurcation it is the force at the point where the 

bifurcation begins.  

The configuration is found to be )sin()cos(0 Λ= ymLxn ππωω . If one computes 

the energy of that plate the total energy is found to be 0. This means that the 

configuration chosen is a local minimum of the energy; in fact it is the actual buckling 

mode. Therefore the parameter0ω  can’t be determined by a 1st order analysis. This 

explains why the authors choose to minimize the force here, considering that the lower 

force that will be reached will produce the corresponding mode shape.  
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Therefore we have to find the right combination of m and n  in (4.2.8). Obviously 

we have to take 1=n . The determination of m gives either )int( 1−φ or 1)int( 1 +−φ . A 

simple analysis of the corresponding minimum shows that  

 

if )1))(int(int( 111 +< −−− φφφ  then )int( 1−= φm , else 1)int( 1 += −φm   (4.2.9) 

 

In consequence we can predict the number of small waves (buckles) appearing in 

the vertical direction.  

4.2.2 Fixed vertical edges assumption 

We assume now that the vertical edges are fixed (see Fig. 4.1). We don’t need to 

assume that the horizontal edges are fixed too, because first they are very small compared 

to the vertical ones in our case; second we don’t really know the boundary condition on 

these edges, it depends on the conditions of the experiment. The condition in Eq. (4) 

becomes for the fixed case 0)2/( =±Lω  and 0)2/(/ =±∂∂ Lxω . This gives the system: 
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             (4.2.10) 

 

The system can be split into two sub-systems that correspond respectively to the 

symmetric and anti-symmetric solutions (by respect to the vertical axe). We choose to 

keep only the symmetric solution (lower energy) which gives 042 == AA .  

We can again find an implicit equation of the same type as Eq. (4.2.5): 

 

0)'sinh(')'cos()'sin(')'cosh( =+ ααβββα                 (4.2.11) 

 

Which in terms of K and φ  gives the analogous equation to (4.2.7): 
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Note that this equation has infinite number of solutions. We always pick the first 

positive solution, which would correspond to 1=n  in the simply supported case. This 

solution is found for [ ]ππφφπ ;212 ∈−mKm . Therefore, for a given value of φ , 

the equation can be solved and K is found. The main problem is the fact that we don’t 

know what m is. The solution we chose consists of computing all the solutions K for 

growing values of m ( K3,2,1=m ). Once we have computed K for all the acceptable 

values of m we just find the minimum of K on all the values of m.  

The equation (4.2.12) can not be solved analytically so that we implemented it in 

Matlab by using a dichotomy algorithm. We made the choice of mapping the whole range 

of values of φ  and then interpolate between our computed values. We could also have 

only solved for a given value of φ . The structure of the program is given in Fig. 4.2. 

Using the program, we can for a given value of φ  find the corresponding value of m and 

the plate “stress” K. Therefore we are able to characterize the buckling solution of the 

fixed-edges plate. 
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Step 1: create a “map” of the studied space (m,F )

Range of m

Range of FSolver: solve eq (13)

Loop F

Loop m 

Step 2: extract the right data for a given F

Interpolation

Comparison

Loop m 

 

Fig. 4.2: Algorithm used in the study to find the value of m that gives the smallest value 
of K. We map the whole space (m,φ ); then for a given value of φ  we interpolate between 
the values computed before. 
 
 

The final displacement can be written as: 
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Fig. 4.3: Presentation of the Y-element model for the buckling analysis. The boundary 
conditions are given on (b) while the notations are given in (c). [ASIDE: SS stands for 
simply supported while Sym stands for Symmetry conditions.] 
 

4.2.3 Study of the Y-element 

The schematic of Fig. 4.3 presents the geometric quantities in the Y-element. 

Structurally, it is made of two plates bonded together on one of the side. In the following 

analysis, we will model it as three parts of plates bonded together at the junction of the Y 

element; two of them will have simple thickness t, while the bonded part will have 

thickness 2t. For each plate the subscript i will be added to the corresponding quantities 

(deflection iω , rigidity of the plate iD ).  

(a) (b) 

(c) 
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Consider that the displacement iω  is given as a sine function for the vertical 

direction as follows: 

 

)sin()(0 Λ
= ym

xf ii

πωω                   (4.2.14) 

 

where m is an unknown parameter but common for the three plates, and )(xf i  is an 

unknown function and different for each plate. The equilibrium equation (4.2.1) is valid 

for all three plates and gives the solution: 

 

)sin()cos()sinh()cosh()( 4321 i
i

ii
i

iiiiiii x
I

Ax
I

AxAxAxf γβγβγαγα +⋅⋅++⋅⋅++⋅⋅++⋅⋅=     (4.2.15) 

 

The definition of iα  and iβ  is identical as before except that the parameters t and 

D have to be adapted to the plate we are dealing with. This formulation is slightly more 

general than (4.2.2) because the phases iγ  have been added. In the particular case where 

the origin is taken at the middle of the plate (previous studies for simply supported or 

fixed edges) these phases are null, which explains why we did not have to introduce them 

before. However, here the origin is chosen to be the junction between the three plates, so 

that the phases have to be added. 

We now have 12 coefficients ijA  which have to be evaluated using the boundary 

conditions. First we choose a symmetric solution for each plate, using the plane of 

symmetry 2Ly =  (that is, the condition that )2()2( xLfxLf ii −=+  for each plate). 

Therefore, we have the conditions 

 

042 == ii AA                   (4.2.16a) 

2Li =γ                   (4.2.16b) 

 

Using the notations 2' Lii αα =  and iLii 2' ββ = , we can now rewrite Eq. 

(4.2.15) as  
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Note that there are now only six unknowns in our problem. We have to write the 

boundary conditions at the edge 0=x . These are 0)0( ==xω  for all plates (no 

displacements at the junction), Cstx =∂∂ )0(ω  for all plates (the rotation of the plates 

around the edge is constant), and 0=∑ xM  (sum of moments around the vertical edge is 

zero). The moments xM  are computed as ( ) ( )( )2222 yxDM x ∂∂−∂∂−= ωνω . The set of 

conditions can be written as a system of equations which have to simultaneously be 

verified. It is given in Annex. Again the condition is equivalent to equating the 

determinant of the system to zero. Introducing the variables DtLK 22 πσ=  (simple 

thickness plate stress) and LΛ=φ  (ratio of the height of the sample to the cell size), we 

obtain an equation 0),( =φKg  of the type of Eq. 4.2.7. Once again we find the minimum 

of K for a given value of φ , m being a parameter for the solution. The algorithm used is 

the same as before, except that the equation governing it is now the condition given by 

equating the determinant given in Annex 1 to zero. 

It is also easy to show that for this solution the displacement is the same as Eq. 

4.2.13. 

4.2.4 Results and discussion 

Figure 4.4 presents the number of folds computed for the three models as a 

function of the ratio φ . The result could be expected to be “pseudo-linear” since the 

equations of the type 4.2.7 were always functions of the ratio m/φ . The fact that it is a 

step function is due to the integer nature of m. The “linearity” coefficients are 1 for the 

simply supported case, 1.5 for the simply supported case, and 1.11 for the complete Y-

element. This is completely rational, since the Y-element allows the transmission of 

moments at the junction, which can be seen as an average point between simply 

supported (no moments) and fixed edges (no rotations). 
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Y-element case

Simply-supported
-edges case
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Fig. 4.4: Results of the buckling analysis: (a) presents m (number of buckles in the long 
direction of the plate) as a function of φ  (ratio of long length of the plate on its small 
one) for the three cases studied (simply supported, fixed edges and Y-element) and (b) 
presents K (non-dimensional stress) as a function of φ , only for the Y-element study. 

 

Although results were obtained for K as a function of φ , they are presented only 

for the Y-element. Indeed the simply supported case is given directly by Timoshenko 

(b) 
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(1959) while the fixed case is relatively simple to compute. Additionally it does not bring 

any understanding to the model here. It can be seen that the final curve for K is the 

minimum of several curves for each value of m. From this second figure (Y-element case) 

we make the assumption that for 3>φ  (which is fulfilled except for very thin layers of 

honeycomb) we can approach the rigidity by 22.5. Using the definition of K we can 

compute the minimal force needed to initiate the buckling of the structure. Then we can 

compare these results both with our experimental results and with Hexcel manual data. 

The comparison is given in Fig. 4.5. It can be seen that, as expected, the buckling starts 

before the peak stress of the material. The ratio between the peak stress and the buckling 

stress is not constant. It varies between 5% and 100%, with typical values around 15%. It 

tends to be larger for small thicknesses, and smaller for thicker samples. It can be seen 

that the difference between the buckling pattern and the apparition of the first hinge is 

however very noticeable, which most authors don’t consider. 
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Fig. 4.5: Comparison of the minimum buckling stress computed here (solid line) and the 
peak stress given by the material supplier (Hexcel, squares). A good correlation is 
obtained. 

(b) (a) 

(c) (d) 

(e) 
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We now want to explain the hypothesis stating that the buckling pattern and the 

folding pattern are directly correlated. For this we need to derive some additional results, 

including the displacement, stresses and hinges original positions. The displacements 

were already given as )sin()cos(0 Λ= ymLxn ππωω  (simply supported case) and Eq. 

4.2.13 (fixed case and Y-element case). The resulting mode shapes for the simple case 

4=φ  are presented on fig. 4.6a and b for both the simply supported and the fixed edges 

cases. The mode shape for the Y-element has been said to be exactly similar to the fixed 

edges case, except that m is different, it is not presented here. It should be noted that: 

• The number m is different for the different boundary conditions. For the simply 

supported case it is 4, although for the fixed edges case it is 7. The resulting mode 

shapes show a different number of waves. 

• The boundary conditions are clearly different, the slope is null in the fixed edges 

case. 

 

 

 

 

(a) 

y x 

w 
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Fig. 4.6: Out-of-plane displacement for the simply supported case (a) and the fixed case 
(b). 

 

 The plate stresses can be found using Timoshenko (1959). 
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We use a yield criterion of the type of Von Mises: 
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Where in our case σ=tN  is the axial force as computed before, and 
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Fig. 4.7: Von Mised equivalent stress for the simply supported case (a) and the fixed case 
(b). The Y-element case shows the same pattern as (b) since the displacement is similar. 
 
 

Von 
Mises 
Stress 

(a) 

y 
x 

Von 
Mises 
Stress 

 

(b 

y 
x 



39 

The state of stress can be computed and plotted. Since the in-plane stress is 

constant throughout the specimen we just plotted the moment part. Figure 4.7a and b 

present the state of stress (Von Mises equivalent stress) for the plate only simply 

supported and for the plate when the two vertical edges are fixed. Again the Y-element 

case is similar to the fixed edge case (the displacement of each plate of the model is 

exactly similar to the case where the conditions at its boundary would be fixed), so it was 

not plotted. It must be observed that the two figures are drastically different: indeed the 

number m is different, so that the number of waves is different. The other important thing 

to notice is the position of the peaks in the two cases. We focus on peaks on the boundary 

of the sample since there is a stress concentration here due to the combination of the three 

plates joined here. In the simply supported case, the peaks show a complicated pattern, 

they are not found at the same position y on the border and in the middle of the plate 

(they are found for the positions mky Λ=  with mk K.1.,0=  on the border); in the fixed 

case they are found for mky Λ+= )21(  with 1.1.,0 −= mk K , which corresponds 

exactly to the positions of the top of the waves. The perfect correlation between stress 

and strain allows us to make the hypothesis that the hinge lines appear at the positions of 

the peak displacements on the junction between the three plates. Then, there is a perfect 

correlation in this hypothesis between the buckling pattern and the folding pattern. The 

folding length, as defined in the next part, can be computed here as Hbuckling 4=λ  with H 

given by 22.2/2/ LmH =Λ= . Therefore the folding length in this hypothesis becomes: 

 

555.0/Lbuckling =λ                    (4.2.20) 

 

It must be noted that it does not depend on the specimen height, which is probably 

only true for specimens with a sufficiently large height. 
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4.3 Folding wavelength based on the propagation of localized plastic hinges 

The observation as well as the quantitative results showed us that our intuition 

was in fact wrong. We had to develop a new model, which is presented in this part. We 

present first the experimental results that allowed us to get deeper understanding, to go as 

a second step to the modeling phase. The results are good for thin foils, which are our 

main focus. 

4.3.1 Experimental observations 

This part will include the results for honeycombs with very thin walls as well as 

those with thicker walls. Indeed the observation of the different samples during the 

experiments shows very different folding processes. Thus, different types of models are 

needed. The first case is the case of thin-walled honeycombs. The construction of the 

model is based on observations from image correlation given in Fig. 4.8. This figure 

presents the out-of-plane displacement of a stripe of material during the quasi-static 

crushing of the material. The lower limit of the analysis is the folded part of the 

honeycomb, since the cameras are unable to correlate regions of the material with very 

large strains and can not recognize planar areas. It must be pointed out before any further 

analysis that the elastic buckling pattern has totally disappeared from Fig. 4.8, while it 

induced large deformations before the appearance of the first fold (see Fig. 2.2). This is 

not an effect of scaling since the two scales are coherent. Therefore, the elastic energy 

stored as bending energy during the buckling pattern has been dissipated by the first fold. 

This means that the buckling pattern has little to no influence at all on the folding process 

and in particular on the folding wavelength. This result is rather non-intuitive; it will be 

checked numerically at the end of this section. Figure 4.8 shows that the folds seem to 

propagate according to the following process: 

• The previous fold is closing up. This is characterized by an increase in the 

angles of rotation on both sides of the horizontal hinge line which creates the 

fold. This is accompanied with larger out-of-plane displacements at the 

position of the hinge line. 

• As the out-of-plane displacements become large in the fold surroundings, they 

induce large stresses in the other parts of the plate. The plastic limit is reached 
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on the boundary and the stresses there produce an extension of the vertical 

hinge line along the junction between the plates (in the Y element).  

• The stresses also reach the plastic limit in the middle of the plate, starting a 

new horizontal hinge line. 

• Next, the force increases until the vertical hinge lines connect with the 

horizontal ones, allowing the folding mechanism to start. 

 

 
Fig. 4.8: Images obtained from the cameras illustrating the folding process. For all 
images W is the out-of-plane displacement using the same scale. They are ordered by 
increasing displacements. The right boundary disappears as the fold front progresses in 
the core of the sample. 

 

(a) 

(b) (c) (d) 
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Here, we briefly describe how we measure the folding wavelength. It is based on 

counting the number of folds in a completely crushed sample. We cut a very thin part of 

the honeycomb sample that is totally folded and stretch it by hand. The number of folds 

can then be counted very easily. As can be seen in Fig. 3.3, a fold comprises one 

horizontal hinge line like A2F2D2 and is comprised between two horizontal hinge lines. 

Note that the fold length in Wierzbicki’s model is half of the fold length in mine.  

4.3.2 Analysis for thin foils 

The basic assumptions made in Section 4.2 are retained for the analysis in this sub-

section. It has been concluded by the careful examination of the crushing process that the 

creation of a hinge line implies an important out-of-plane deflection that is directly 

responsible for the next fold. The aim of this part is to model this and find out 

analytically where the next hinge lines appear by computing the plastic stresses induced 

in the model. Our set of boundary conditions will have to account for the studied effect. 

The schematic of the analysis is presented in Fig. 4.9. We choose to study only one plate 

at a time because it is not easy to adapt the following analysis directly to a Y 

configuration. The studied plate is the double thickness one, because we believe that this 

plate is the determining factor for the folding length. The limitation of the analysis to 

only one plate is clearly a limitation of the present analysis. We assume that the 

displacement of the plate is given as: 

 

)()cos(0 yf
L

xπωω =          (4.3.1) 

where )(yf  is an unknown function. Note that this assumption is very different from 

the previous one, which was deduced from using the boundary conditions in the 

elongated direction. In the present case, we do not know beforehand the shape of the 

plate in the elongated direction due to the boundary conditions (to be given in detail 

later). We assume that the shape of the plate is a cosine in the small direction, because it 

is primarily symmetric. However the hypothesis that we can separate the variables here is 

a very strong one, which is mainly responsible for the potential inaccuracy of the model.  
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SS
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)cos()0( 0 Lxπωω =

SS  

Fig. 4.9: Schematic of the delamination-based model for the analysis of the folding 
wavelength for samples with thin plates. Note that the plate shown has double thickness. 
The curve figured at the bottom of the plate figures an out-of-plane deflection (not a 
change in the shape of the plate, which remains rectangular). 
 

From the equilibrium equation (Eq. 4.2.1) come the following equations: 

 

yryryryr eAeAeAeAyf 4321
4321)( +++=       (4.3.2) 
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Introducing the classic parameter DtLK 22 πσ= , we obtain:  
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Depending on the value of K, the roots are either imaginary, have a real part or are 

real. We will give details of the different cases after introducing the boundary conditions. 

The four boundary conditions are as follows:  

• for the edge Λ=y (top edge), the boundary condition is not so important. We 

will use either fixed boundary condition or simply supported. This means that 

0)( =Λ=yω  and either 0)( =Λ=∂∂ yyω  or 0)(22 =Λ=∂∂ yyω . 

• for the edge 0=y , we assume a cosine deflection, i.e. )cos()0( 0 Lxπωω =  

and complete with a simply supported type of boundary by stating that the 

moments on the boundary are zero. This gives 

( ) ( ) 0)0()0( 2222 ==∂∂+=∂∂ yxyy ωνω . 

For the vertical boundaries the conditions are already implied by the form chosen 

for w. We can now start our analysis of the results by distinguishing the different cases 

implied by the value of K. 

 

Case 1: 4>K  

In this case the roots are imaginary, the function )(yf can be written as 

 

)sin()cos()sin()cos()( 14231211 LysALysALysALysAyf ππππ +++=  (4.3.5) 

where )14(122/1 −±−= KKKs . The function is therefore non-attenuated, 

which does not fit with the experimental values of K and intuition. Therefore, this case is 

ignored in what follows. 

 

Case 2: 4<K  

In this case we have to rewrite 2
ir  as: 
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Note that we can write θπ 2222 I
i eLr ⋅=  and consequently θπ I

i eLr ±⋅±= . Using 

trigonometric identities, it is easy to find all the quantities we need as 21)2cos( K−=θ , 
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)41()2sin( KK −=θ , 41)cos( K−=θ  and 4)sin( K=θ . The function )(yf  can 

now be rewritten as: 

 

( )
( ))4sin()4cos(

)4sin()4cos()(

43
/4/1

21
/4/1

LyKALyKAe

LyKALyKAeyf
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π

++

+=
−−

−

   (4.3.7) 

 

The boundary conditions can be written into a system given in Appendix 2. Note 

a major difference in the solution: here, we do not have a buckling problem as before, 

which required finding a bifurcation point. This meant finding a different solution than 

the trivial solution 0=X  to a problem of the type 0=AX  (A matrix, X vector of 

unknowns). Here, the problem can be written as BAX =  and we have to find the trivial 

solution BAX 1−= . It is easy to solve this system approximately in the case of plates 

with a large ratio LΛ=φ . Then the terms φπ 4/1 Ke −−  become negligible in front of the 

terms φπ 4/1 Ke − . Subsequently, we have 021 == AA , as well as 13 =A  and 

( ) )41(/214 KKKA −−−= ν . Note that the solution is identical for the fixed end 

condition and the simply supported one for the edge Λ=y . Therefore, the unique 

solution is (slightly approximated, the real solution can easily be computed): 
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LyKeyf LyK πνππ  (4.3.8) 

 

This function has been plotted in Fig. 4.10 for the values 1=K  (red) and 3=K . 

We have now to describe what is exactly needed to create the next fold. Therefore, we 

have to study the state of stress in the plate. The plate stresses were given in 4.2.18, the 

plastic criterion in 4.2.19. Figure 4.11 presents a plot of the Von Mises stress for the 

previous two values of K. It can be seen that the figures are very different when K is 

smaller or larger than 2. If it is smaller, the stresses are nearly uniform on a line Csty = , 

from which it is difficult to deduce anything. However, for all cases we have a local 

maximum of the stress at the negative peak (observed at the middle of the plate for y=0.7 
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for the case K=3). We believe that the next hinge line starts in this position while the 

creation of the folding mechanism is facilitated by the fact that the vertical boundaries of 

the plate become plastic very fast (the stresses are very large in these boundaries, and 

three plates are joined at the boundaries, which concentrates the stresses even more). The 

precise minimum of the Eq. (4.3.8) gives the value of 2H. Therefore, the folding 

wavelength for thin foils mechλ  is 
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Figure 4.10: Displacement field for the cases K=3 (top) and K=1 (bottom). In both cases, 
there is a local minimum after the initial peak, it is just difficult to see on the second plot 
because it is so attenuated. 
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Fig. 4.11: Equivalent Von Mises stress for the cases K=3 (top) and K=1 (bottom). The 
case K=3 has a local maximum of the stress corresponding to the valley in Fig. 4.10a, at 
the center of the plate. 
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4.3.3 Thick foils 

For samples with thicker walls it appears that the fold length is limited by the 

geometry of the problem. According to the previous theory, thicker walls imply larger 

folding wavelengths. However, a few drawings of the folding pattern show that the 

folding wavelength has a physical or geometric limit that we have to account for. Figure 

4.12 presents different views of a sample when L is continuously decreased, which is in 

effect equivalent to increasing t. In this figure, the top view is presented as before in Fig. 

4.3, while for the side view, we represent the hinge lines of a fold on an original non-

folded configuration. It can be seen that there is a geometric limit to the folding 

wavelength.  
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Side view (folded pattern projected on unfolded material)

Limit   Case

 

 

Fig. 4.12: Top views and side views of studied elements for decreasing cell sizes. The 
geometric limit is easy to identify on the right. The top view is identical to Fig. 4.3. The 
side view represents the folding pattern on an un-deformed configuration. 
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Fig. 4.13: Study of the geometric limit. The condition comes from writing the 
compatibility condition along the horizontal fold axis. 

 

The computation of this limit is based on the sketches from Fig. 4.13. It is easy to 

see that the condition is: 

 

3

L
H <                     (4.3.10) 
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If we account for the thickness effects, stating that the fold can not reach the angle 

2/ψ  of Fig. 4.13 because of the thickness of the material, we are led to: 

 

t
L

H +<
3

                    (4.3.11) 

 

To determine which of the two models has to be used for the computation of the 

folding wavelength, it is easy to find a criterion. We simply base our analysis on the fact 

that the first computation (for honeycomb made of thin plates) is based on a complete 

mechanics approach, whereas the second is a simple geometric limit. Therefore, as long 

as it is possible, the material will behave in the range of the mechanical model. As soon 

as it becomes geometrically impossible, the other model has to be used. That is to say, we 

use for H the minimum of the two solutions found before, Eqs (4.3.9) and (4.3.11). Thus, 

the folding wavelength for thicker foils geoλ is given by  

 

t
L

geo 4
3

4 +=λ                    (4.3.12) 

 

It must be noted that this second result corresponds only to a geometric limitation. 

However, we did not model this aspect of the problem here, which explains why our 

results do not fit with this limitation for thick foils. 

4.4 Results and discussion 

The comparison of the theories with experimental data is presented in Fig. 4.14. 

We also compare the data with Wierzbicki’s (1984) folding height formula: 

 

3 2821.0 tLH =                    (4.3.13) 

 

Note that a folding wavelength in Wierzbicki’s model .Wierzbλ  is the height 2H: 

 

3 2
. 642.1 tLWierzb =λ                    (4.3.14) 
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It can be seen that for samples with thin plates, our results are satisfactory, with a 

difference of 4.5 % for both 2.29 mm sample and 2.75 mm sample. Wierzbicki’s model, 

as well as the buckling model, is not satisfactory. This shows first that the buckling 

pattern is not responsible for the fold length.  

For thick samples, our computation, which is based here on the geometric limit, 

becomes inaccurate. Once again, it means that Eq. (4.3.12) is only a limitation but is not 

the result of the model of a physical behavior. The real understanding of the mechanics 

for thicker foils is a necessary future task. Our observations on thick samples show that 

some different buckling modes, which are of higher energy in the thinner foils and 

therefore not interesting, are generated for thick foils. From what we observed on the 

thick plates’ samples, the folds are no longer horizontal but wavy. We believe that for 

ratios t/L lower than 2e-2, these modes do not occur. Nevertheless, the model is plainly 

satisfactory, for a broad range of ratios t/L.  

The previous results allow us to study a major parameter for the design of energy 

absorbers, which is the crushing distance (see Fig. 1.2). This parameter is in effect the 

difference between the original height of the sample and the height when densification 

occurs. From the previous results it is easy to derive the crushing distance 0l : 

 

λ
t

l
40

00

Λ
−Λ=                    (4.3.15) 

 

Indeed one fold corresponds to the thickness 4t, due to the superposition of the 

plates in the double thickness region. This result allows computing directly the energy 

dissipated by a given sample by multiplying the length 0l  by the crushing strength. 

Therefore it is a major parameter for the design of honeycomb energy absorbers. 
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Fig. 4.14: Result of our study on the folding wavelength compared to our three set of 
experiments. The bars are in this order experimental result, result from the local model 
(part 4.3, Eq. 4.3.9), Wierzbicki’s result (Eq. 4.3.14) and buckling result for the Y-
element (Eq. 4.2.20). 
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4.5 Conclusions 

The folding wavelength of ultra-light adhesive-joined honeycombs has been 

evaluated. It was found that partial delamination at highly stressed weaker sections of the 

honeycomb initiates the folding process and consequently leads to an accurate prediction 

of the folding wavelength. Although the correlation between buckling and folding 

patterns is rather intuitive, it is found that the hypothesis based on this assumption highly 

overestimates the folding wavelength. The present theory should be used keeping in mind 

its limitation for thicker plates when the fold front becomes highly irregular and the 

concept of fold length becomes highly local. However, for crushable ultra-light 

honeycombs, the result obtained in this paper is significant because it gives a better 

understanding of the folding kinematics, and allows the design of small layers of 

honeycomb, in which the crushing length is critical. Above all, it predicts the crushing 

distance, which helps to predict how much energy can be dissipated by the material. 

Therefore, the outcome of this work is significant for practical designs of lightweight 

components with crushable honeycomb cores. 
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5. Crushing regime  
5.1 Introduction 

The previous part has given us in depth understanding of what happens when the 

fold forms, especially in front of the folding front. Some side results have been derived, 

in particular the buckling strength and the crushing length. It is now time to study the 

bulk of the problem, which is the plateau stress. This part will use the results from section 

4 as well as the understanding brought by Section 3. We use an energetic approach 

stating that the external energy is only due to the applied external crushing force and 

equating this energy to the energy dissipated in the plastic hinges for the folding of one 

fold. Thanks to periodicity the study is restrained to a Y-element and even further. Let’s 

start now with the detail of the process. Keeping in mind our final objective, which is to 

evaluate the energy dissipated in the folding process for one fold, a classical mechanics 

approach would include the following: 

1) Defining the precise geometry of the plastic region. 

2) Defining the velocity field and the corresponding strain rates. 

3) Using the plasticity flow rule to obtain stresses from velocities.  

4) Computing the work at any time and deduce the total energy dissipated during the 

whole process. 

However, we have here a set of problems which limits the precision of the work 

we can do by hand: 

1) We don’t know the exact geometry of the plastic region (microscopic phenomena) 

and therefore, have no option but to assume it. This means that in our model we 

assume the radii of curvatures; these radii are very small and would require 

measurements with an in-situ microscope to obtain an empirical law.  

2) The velocity field is dependant on the geometry we use. We assume the geometry, 

and then assume a velocity field coherent with our geometry. 

3) In plate theory, there is nothing like a plastic flow rule. Therefore, we will assume 

the direction of the stress and use the yield criterion to find its amplitude. 

With the above considerations, we will be able to compute the energies. It can be 

noticed that this process is highly dependant on our intuition about the stresses, geometry, 
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and velocity field. This is probably the biggest limitation of our model, since most of the 

phenomena are microscopic and are not observed. 

In addition, some other limitations arise from the following hypothesis: 

(a) We work on a simplified thin plate model while neglecting the effects of the 

thickness. 

(b) We study only the in-plane stresses. The out-of plane stress 33σ , as well as the 

“shear” stresses, 13σ  and 23σ  for the plate. are neglected. This is fine for very thin 

foils, which are the main focus of this paper. 

(c) In the final balance of energy we neglect two sources of dissipation of energy, 

which are the energy necessary to break the bond between the plates and the heat 

produced by the folding process. We believe that these energies are negligible in 

comparison to the plastically dissipated energies. 

(d) The material (typically aluminum or mild steel) is modeled as perfectly plastic. 

This is reasonable for aluminum but not for steel. 

(e) We do not study 3D effects in the sense that in the real, non-modeled world, 

sections are only partially plastic. However, in our model, we always assume that 

a section is either not plastic at all ( 0σσ <  everywhere) or totally plastic ( 0σσ =  

everywhere). This is reasonable as long as the size of the plastic zone is large 

compared to the thickness of the plates. 

5.2 Geometry  

We showed in Section 3 that our model evolves from Wierzbicki’s by alternating 

the folds. However, it is also deeply asymmetric in the sense that the side of the 

horizontal hinge line which is on the already folded side is very different than the side on 

the intact part of the sample. For the analysis, it is however possible to neglect this aspect 

locally and use a symmetrical model similar to Wierzbicki’s model, with a few 

adaptations to our new understanding. Considering that the Y element presented in Fig. 

1.1 is made up of two plates bonded together, it is possible to build a model with only one 

plate. Indeed, the center of our study will be plastic dissipation in the plastic croissant 

(defined later), and for this aspect the two plates are exactly identical. However, for the 

study of the horizontal hinge lines, we will have to go back to the complete Y element. 
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Our model is presented in Fig. 5.1. The hinge lines in our model are shown as thick lines, 

while for the limits of the studied element we use dashed lines. Note that in our model the 

lines 111 DFA  and 333 DFA  are not plastic. The plastic regions are detailed in Fig. 5.2, 

where the arrows represent the local velocity field.  

 

 

Figure 5.1: Notations used in this paper. We study only one plate from a Y element. The 
main angle used in the study is α , the angle between the vertical direction and the plate 
in a vertical cut. 
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Figure 5.2: Detail of the plastic region. The arrows represent the local velocity field. The 
bold lines represent the plastic hinge lines, while the dashed lines are just the limits of the 
fold (not plastic) 

 

The plastic regions comprise the following: 

(a) one horizontal hinge line corresponding to 222 DFA  in Fig. 5.1. The horizontal 

hinge line is responsible for the folding of the material. Note that there are no 

other horizontal hinge lines, although we have the same basic element as 

Wierzbicki. 

(b) one large vertical plastic zone, which we think can be approached by a sort of 

croissant. This plastic croissant corresponds to the hinge line 21FFF  in Fig. 5.1.  

A few comments are necessary here: 

(a) As stated before, the studied figure admits a horizontal symmetry plane. 

Therefore, we will study only the top half of the depicted figure.   

(b) The croissant part is made in our model of an ensemble of horizontal curves. The 

radii of curvature will vary in the horizontal plane as well as in the vertical 

direction. That is, unlike Wierzbicki’s model, it is not axis-symmetric. Indeed the 

profile of the horizontal centers of curvature is not the line 21FF (it is instead a 
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curve which ends in 1F  and 2F , one can be persuaded by looking at the sketch of 

the top view of the folding process).  

In the following we will focus on the study of the croissant, which requires more 

work. Unless directly stated, we will always study the croissant. 

Let us now determine mathematically the geometry of the plastic croissant. We 

choose to use cylindrical coordinates, the point M  will be found by its horizontal radius 

of curvature Hr , horizontal angle θ , and vertical distance to the origin y  (direction 

perpendicular to the horizontal direction and coplanar to it in the plane of the plate); the 

origin is taken at the horizontal symmetry plane, since we study only the top half of Fig. 

5.1). The velocity field we assume allows us to consider that two points from the same 

initial horizontal section remain in the same horizontal plane. Therefore, we replace y  by 

the parameter 0y  which is the same coordinate but at the beginning of the folding 

process, when 0=α  (we have )cos(0 α⋅= yy ).  

The range of the variables for the top-half of the croissant is: 

 

],0[0 Hy ∈           (5.2.1) 

],[ ψψθ −∈           (5.2.2) 

 

Let’s first assume that the radius of curvature is constant in the horizontal plane. 

The radius of curvature is chosen as 

 

)1( 0
0 H

y
rrH −⋅=          (5.2.3) 

 

where 0r  is the horizontal curvature of the plate in F2 (where this curvature is at its 

maximum).This formulation is approximated for the middle of the plate (where there is 

rotation around the horizontal axis). 
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5.3 Velocity field 

We use here the original idea of Wierzbicki (see Fig. 5.3). We thus write the 

velocity field at a point M  defined by 0y  and θ  as: 

 

zV
H

X
H uvu

v
u

v
v −−−−−−−−==== θψψ )tan()sin(

       (5.3.1) 

)()cos( 0yHvH −= αα &  and )()sin( 0yHvV += αα &      (5.3.2) 

 

Hv  is the observed horizontal velocity, as shown in Fig. 5.3. This represents a pure 

rotation around point O’ in the horizontal plane. Both the horizontal and vertical 

velocities are taken as linear functions of the vertical coordinate 0y . 

This velocity field can be considered as being composed of a convective part 

zVXH uvuv −)sin(ψ  and a local velocity )tan(ψθuvH  responsible for the deformation 

of the plate. It can be seen that the velocity of the horizontal center of curvature is given 

by the convective part only, so that we consider only the other part for the computation of 

the strain rates. One can rewrite the local velocity as 

 

θθθ ω
ψ

uru
v

uvv H
H

tlocal &−=−=−=
)tan(

      (5.3.3) 

 

which corresponds to a simple rotation of rate ω& , around the center of curvature 

O. Now we modify the previous hypothesis that the radius of curvature does not change 

in the horizontal plane. We use instead the following hypothesis: 

 

)1)(
2

()( 0

H

y
rrrH −∆+=

ψ
θθ        (5.3.4) 

 

2)( maxmin rrr +=  is the average of )(θHr  and minmax rrr −=∆  is the variation of )(θHr  

The two parameters maxr  and minr  will be determined later. The radius of 

curvature depends linearly on θ  and is taken to be bigger on the edge of the croissant 
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which is moving forward. This accounts for the moments that are much higher close to 

this edge and therefore induce much larger rotation. We make the assumption that the 

velocity field computed before is not much changed by the modification of the horizontal 

geometry (except that the vector θu  is changed). 

 

 
 

Figure 5.3: Horizontal speeds. The speeds are composed of a convective speed and a 
local speed responsible of the deformation. 
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We can compute now the strain rates and the rates of change of curvatures for the 

croissant (the horizontal hinge lines will be studied separately). The only needed strain 

rates will be, as shown in the next part, the horizontal strain rate 11ε&  and rate of change of 

curvature 11κ& (one corresponds to the local horizontal tangent direction of the plate). One 

finds: 
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∂
∂

= H

H

t r

r

v
211&           (5.3.5) 

θ
κ

∂

∂
=

)1(

11
H

H

t r

r

v
&          (5.3.6) 

 

5.4 Plastic flow 

Note that these fields are local, i.e. they depend on both θ  and 0y . We can now 

express the plastic flow rule condition for plates and apply it to our problem. N 

corresponds to the plate resultants while M corresponds to the plate moments (both are 

integrals of the local stress field σ  throughout the thickness of the plate). 

For a thin, totally plastic plate, the yield criterion is 
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MNf        (5.4.1) 

 

We would have to use the flow rule to find the direction of the force in 3D. 

However, we can’t use that in a plate theory (no general flow rule). We replace this by a 

set of assumptions. For the croissant, we make the assumption that the stress is mainly in 

the horizontal tangent direction, since the deformation of the croissant is mainly 

horizontal. The only part where this assumption is a problem corresponds to the middle 

of the croissant, where there is an important change in the vertical curvature. We neglect 

this aspect. Additionally, we neglect in the croissant 22N , 12N , as well as 22M and 12M  

(where 2 corresponds to the tangent pseudo-vertical direction for the plate, while 1 
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corresponds to the horizontal direction for the plate); we still have two general 

stresses 11N  and 11M  related by Eq. 5.4.1. We justify this by assuming that the forces that 

stretch the croissant in the horizontal direction are the ones that effectively make it move 

and therefore are the largest. 

We now compute the state of stress in any point of the croissant. Using the 

hypothesis of fully plastic sections, the moment 11M  and axial force 11N  can be 

expressed as functions of the radius of curvature. See Fig. 5.4 for a model of the forces in 

a section, where the forces have been drawn directly at the place of a section. 
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Therefore, the moment is much more important when the radius of curvature is 

small, while the axial force is dominant when the radius of curvature grows. 

 

s0

-s0

 
 

 
Figure 5.4: Representation of the stresses for a typical section in the direction of the 
thickness. The curved lines represent the limits of the plate. 
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Let us compute now the strain and stress fields for the horizontal hinge line 

222 DFA . This problem is a typical hinge line problem, and we use the common 

hypothesis of perfectly plastic sections. Therefore, the deformation is localized in an 

originally very thin stripe, which undergoes large deformations as the hinge line rotation 

grows larger. The hinge line is presented in Fig. 5.5 for an advanced deformation of the 

hinge line. Locally, the deformation is only due to stretching, the radius of curvature is 

constant.  Hence, we need to compute the strain rate for the horizontal hinge lines. One 

gets: 

 

ααε && ⋅= )cos(11          (5.4.4) 

 

The plastic stress is thought to be only a tensile force equal to 0σ . 

 

 
 
Figure 5.5: Representation of the plastic region for the horizontal hinge lines. The grey 
region figures the plastic region. The deformation is localized originally in a very thin 
layer, which undergoes very large deformations. 
 

 

Before we go into the final computation of the dissipated energies, we have to 

determine our radii of curvature minr  and maxr  for the plastic croissant. In the best case we 

would study that using a microscope. However, it is very difficult to do and we finally 
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chose to take values that appear coherent with the rest of the study. Hence, we will 

welcome any further study of this parameter. We chose in this study radii of curvatures 

2min tr =  and 25.1 trmzx = . This corresponds to a region where the axial forces are 

dominant. 

5.5 Plastic dissipation in the plastic croissant 

We compute in this part the work at any time by integrating the local work and 

deduce the energy by integrating in time. As mentioned before, we split the plastic zone 

into two parts, Zone 1 which is the croissant, and Zone 2 which is the horizontal hinge 

line. Because of symmetry, we compute the energy dissipated in the top half of the 

structure, which corresponds to the height H  using the notations of Fig. 5.1. 

The energy dissipated in the croissant is given as: 

 

∫ ⋅+⋅= dSMNW )( 11111 κε &&         (5.5.1) 

 

where the surface element is given as 0)cos( dydrdS H θα=  

Using Eq. (5.2.1), (5.2.2), (5.3.4), (5.3.5), (5.3.6), (5.4.2) and (5.4.3), and 

performing the integration one gets  
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This energy is the energy dissipated for the half of the plastic croissant illustrated in Fig. 

5.2.  

5.6 Fold length 

The folding length H is given in Section 4 of this report as the minimum of the 

two following functions (5.6.1) and (5.6.2): 
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The function (5.6.2) corresponds to small ratios thickness t on cell size L1, it 

comes from a mechanical analysis of the deformations of the sample under particular 

boundary conditions. On the contrary, Eq. (5.6.1) is due to only to geometric limitations 

in the folding process. Indeed a precise analysis has been conducted for the small 

thicknesses but not for the large ones, therefore Eq. (5.6.2) is a precise result while Eq. 

(5.6.1) is only an upper boundary for H. 

5.7 Plastic dissipation in the horizontal hinge lines 

For the dissipation due to the horizontal hinge lines, we refer to Fig. 5.6. The 

hinge line is idealized using the perfectly plastic assumption as a very thin layer of plastic 

material which undergoes large deformations. Let us suppose that the length of the hinge 

line does not change. Then, for a given angle of rotation of the hinge line α  the 

dissipation can be written as: 

 

ασσσ 2
000 tLSLdldSE lineplasticline === ∫       (5.7.1) 

 

The corresponding work is therefore ασ &
2

0 tLW line= , and if we include some 

potential changes in the length of the hinge line, then we obtain:  
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Figure 5.6: Hinge line for the two cases of Eq. (5.6.2) (mechanic limit: (a)) and (5.6.1) 
(geometric limit: (b)). This schematics is the final state when the fold is completely 
folded. The top two schematics are top views (in the tubular direction) while the two 
bottom views are side views (perpendicular to the tubular direction). 

 

 

We need now to describe precisely what the geometry of the different hinge lines 

is. Two cases have to be considered because of the two potential cases of the computation 

of the hinge line (equations (5.6.1) and (5.6.2)). These two cases are the usual case and 

the case where a geometric limit appears (they are both illustrated in Fig. 5.6, which 

presents the top and side views of the studied element for the two cases). The side view is 

projected on the un-deformed configuration. We use the notations introduced previously. 

(a) 

(b) 
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In all cases, we can count two horizontal hinge lines in plates of thickness t 

numbered 1 and 2 in Fig. 5.6. Depending on the case, there is or not at the end of the 

folding an additional hinge line 3 in the plate of thickness 2t. It can be seen that the sum 

of the lengths of the hinge lines 1 and 2 at the end of the folding process is ∆+ 22L  

where 2/)(3 tH −=∆ . In the case where there is a double thickness hinge line, its final 

length is ( ) 2/)(31 tHL −− . We make the assumption that during the folding process the 

lengths are linear functions of the folding angle, i.e. the length of the sum of hinge lines 1 

and 2 is πα /222 ∆+L  and the length of hinge line 3 is πα /)(32/1 tHL −−  in the 

normal case and 2/)/21(1 πα−L  in the case where the geometric limit appears. 

Using (5.7.2), the dissipated energy in the horizontal hinge lines is computed as: 
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5.8 Crushing force 

The dissipated energies for the Y element are the energy dissipated in the croissant 

(remember we only computed the energy dissipated in one half of one plastic croissant, 

although the Y element comprises two complete croissants) and the energy dissipated in 

the horizontal hinge lines. That is: 

 

214 EEEtot +=          (5.8.1) 

 

The crushing force is derived by considering that the total energy dissipated for 

one fold comes from the external work from the vertical applied force.  
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nomS  is the horizontal  tributary surface corresponding to the Y element. It can be seen 

that this surface is double of the area covered by the Y only, due to the holes of the 

structure. This gives the flowing final relation: 

 

nom
tot HS

E
4

1=σ          (5.8.4) 

 

5.9 Results and discussion 

All the results are given here using the hypothesis LLL == 21  and 3πψ = . The 

results are compared with the results given by Hexcel Corp in the HexWeb® Honeycomb 

Attributes and Properties. The values from Hexcel are simply converted to the standard 

international unit system. The result of the comparison is given in Fig. 5.7. Note that the 

analytic values obtained with Eq. (5.6.2) are presented with a bolder line while the results 

using Eq. (5.6.1) are given using a dotted line.  

The results are very interesting for samples which use Eq. (5.6.2), but are not so 

close for samples using Eq. (5.6.1). For most values the error is less than 10% for the 

results using Eq. (5.6.2) as compared to Hexcel tests, and for all less than 25%. For 

results using Eq. (5.6.1) some large errors appear, as seen in Fig. 5.7.  

We believe that our results are very satisfactory for honeycomb made of thin foils, 

which are also the most useful ones for applications needing light-weight materials. For 

thicker plates, the result for the fold length given by Eq. (5.6.1) is only an upper 

boundary, which was not relevant with the measures we made for thick samples. We 

believe that thicker samples require a different analysis, since the folding mode is 

different. An observation of a folded sample in this case shows that the folds tend to be 

slanted and not horizontal. This is allowed by the large thicknesses that allow the creation 

of some different folding patterns. Therefore, a new analysis would be required to fully 

understand the fold length in the case of the thick plates. It could be beneficial then to 

study if this theory still gives good results or not for the modified fold length (in the thick 

plates’ case).  
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Figure 5.7: Comparison of the crushing stresses. The bold lines correspond to the case 
where we use Eq. (5.6.2) (thin plates) while the dotted ones correspond to the case where 
we use Eq. (5.6.1). The bold line gets longer as L gets larger, since the limit between the 
two cases depends only, when the material is fixed, of the ratio t/L. 
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The equation obtained by Wierzbicki for the crushing strength is as follows: 

 

( ) 3/15
061.8

1
Lt

Snom

σσ =         (5.9.1) 

 

It can be seen that it constantly underestimates the crushing stress by factors 

comprised between 15% and 40%. The present model for thin plates is a lot more precise 

than Wierzbicki’s model and should be used alone. For thick plates, for most cases it is 

closer to the data than Wierzbicki’s result.  

 

Steps needed to compute the sustained crushing strength according to the present 

model are as follows: 

1) Determine which case (Eqs. (5.6.1) or (5.6.2)) has to be used. Use an estimate 

(interpolation between known values) or an experimental result for σ , deduce 

K through Eq. (5.6.3). Compute H through Eq. (5.6.1) and (5.6.2) and 

determine which case is the right one. It is also possible to assume which case 

it is using the results of this study and by computing the ratio Lt /  of the 

samples. In this study we found that samples with ratio larger than 1.50e-2 are 

found to show the geometric limit. However this is only valid for this alloy, but 

can be used as a first approximate. 

2) Compute 1E  through (5.5.3), 2E  through either (5.7.3) and deduce totE .  

3) Compute nomS  through (5.8.3) and end up with σ  using (5.8.4). 

5.10 Conclusions 

We present in this part of the thesis a model to compute the sustained crushing 

strength of adhesively-bonded metallic honeycombs that are used for shock and energy 

absorption. The derivation uses an energetic balance between the external and internally 

dissipated works. This requires definitions of proper geometry, kinematics, and stress 

field. The results are found to be very satisfactory for honeycombs with thin walls, which 

are also the most common in light-weight applications. For honeycombs made with 

thicker foils, the result is found to be less precise but to improve the past results. A more 
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precise study of these honeycombs would probably be necessary. However, it would face 

one of the main limitations of this paper, which is the hypothesis of totally plastic 

sections. The second limitation is the difficulty of studying one of the parameters of the 

problem, which is the radius of curvature of the plate in the plastic region. This parameter 

is a crucial one, and had to be assumed in this study.
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Appendix 

1) System solved in Section 4.2 for the Y-element 
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2) System solved in Section 4.3 
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