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Summary

Aluminum hexagonal honeycombs loaded in their tabdlirection have extremely
good mechanical properties, including high stiffiés weight and energy absorption
capacities. The corresponding load-displacementvecuexhibits a long plateau
accompanied by small fluctuations. These fluctuetiare due to the propagation of a
folding front through the studied sample, whichdise to the creation of folds. This
plateau load makes honeycombs the perfect candidateuse as energy-dissipative
devices such as bumpers. Previous studies havelyafgcused on the study of the
plateau load with less attention given to the Iermftthe folds. However, it will be seen
that this parameter is crucial for both the conglatderstanding of the mechanics of the
folding and the derivation of the plateau load. Wesent first an introduction to the
thematic of honeycomb. Then, the first model fosuseecisely on the fold length. Two
hypotheses are considered, a correlation betwestiecbuckling and folding first and a
local propagation of the existing fold secondly.eTéecond hypothesis is found to be
correct, and the results are good for thin foiler Enhick foils, a geometric limitation
occurs, which makes the results less precise. Tiwenare able to use the previous
kinematics for the folding and derive a new seffasmulas for the plateau load. The
results are compared with experimental results @ast formulas, and are found to be

good, especially for thin foils, where our resitisthe fold length are more precise.

Keywords: cellular materials, metallic hexagonal honeyconpitste theory, folding front

wavelength, energy absorption, crushing distance.
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1. Introduction

1.1 General presentation of metallic adhesively-joinethoneycombs

Metallic honeycombs, and more generally honeyconalns, one of the most
efficient light-weight structures used to dissipatergy. They combine high stiffness-to-
weight properties with a crushing load plateau Wwhigakes them desirable for a very
large range of applications, including transpooiati aeronautics, and sandwiches
structures where honeycomb gives its rigidity te gtructure. However, their main
drawback remains their high prices. For exampleaw®mobile industry uses simple
non-connected steel tubes in their crash-box ratthem honeycomb, although
honeycomb would be more efficient in this purpokeleed the improvement of the
properties brought by the use of honeycomb do at@nze the higher cost induced for
this type of applications. Therefore honeycomb rnesyan expensive and “high-tech”
solution even our days. Probably its most commanissnowadays for sandwiches of
small thicknesses, where honeycomb can give a hgtity and are not too much

expensive.

Fig. 1.1: Presentation of honeycomb, viewed itiutsilar direction.



The purpose of this thesis is to study the cruspiogerties of a particular type of
honeycomb, namely adhesively-bonded honeycomb. types of honeycomb is made by
extruding, adhesively bonding, and expanding miditiplates typically composed of
aluminum or mild steel. The final structure is veignilar to a space filling combination
of tubes as figured in Fig. 1.1. It must be noteat the study presented in this thesis is
only valid for adhesively bonded honeycombs; brazedeycombs for instance would
possess different properties which are not studiece. The aim of this study is to
characterize the crushing properties of honeycomémwoaded in its tubular direction. A
test setup is described in the following. A typit@ice/displacement curve is exhibited in
Fig. 1.2. The curve is composed of an elastic warth ends when the first fold appears,
which characterize the peak load. After this pdelneycombs exhibit a very interesting
force plateau with small fluctuations. Physicalllge plateau is due to the creation of
folds that propagate throughout the sample white dlushing advances. The first fold
appears either at the top or at the bottom of &mepde. Then, the sample is divided into
two parts, a crushed part and an uncrushed ortiptat. The folding front progresses
from the top of the samplef the first fold has appeared herto the bottom, while folds
appear one close to the other. When the front dashed the end opposite to the one
where it started (if it started at the top, whenrbaches the bottom), then folds are
created in the whole sample. Since it is not angnpassible to create folds, the rigidity
of the structure raises abruptly, which we namesifieation. We will use in the
following the configuration of the tests (whereaanple is axially crushed by a vertical
actuator) as the reference: “vertical” will referthe tubular direction, while “horizontal”
refers to the two directions perpendicular to titmutar direction.

Additionally we introduce here the concept of Yreént: the Y element, which
was introduced in Fig. 1.1, is the smallest repetipattern to recreate the structure. It
can be seen in Fig. 1 that this pattern is madeoiplates adhesively joined.
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1.2 Literature review

The literature is abundant on the topic of honeyolhwill be shown that the
material has been studied in all configurations atrdins rates, which means that its
applications cover a broad range. However, thehongsof hexagonal honeycombs in
their tubular direction, which is the concern ofshapplications, is still not understood.

Let us first introduce some more background infdroma Honeycombs are part
of a more general type of materials which are pgstnuctures. These structures can be
two dimensional (in which case they are called lyoombs) or three dimensional (and
they are called foams). The main advantage istthsittype of structures is a lot lighter
than the original material they are built from. Tdr@wback is that the properties of the
resultant material are not as good as the origmaterial. However, for certain
configurations, the stiffness can be still highgarticular for honeycombs), and the final
material is highly crushable, while the originalteréal is not. Honeycombs, which are
two-dimensional structures, present indeed a vagly &tiffness in their tubular direction
compared to their weight. This property was thepprty used for the first historical
applications of honeycombs, namely aeronautics gsviof planes, notably for the
American bomber B36) and spatial applications. flifs¢ studies of honeycombs focused
logically on the elastic properties of honeycontdzdeed in their tubular direction (Kelsey
(1958)). The development of honeycombs with moablst crushing properties allowed
in the 60s and 70s the use of honeycombs as crespeadiective cushions. Their main
use as crushable material nowadays is as bumpearcrash testing. This new ability
was first studied by Mc Farland (1963), who focusedhe folding pattern of hexagonal
honeycombs loaded in their tubular direction. Thst fdeep study of the mechanisms
included in the folding pattern is due to Wierzhi¢k983) twenty years later. In his
paper, Wierzbicki refines the work of Mc Farland @xially loaded hexagonal
honeycombs, introduce new kinematics and concludd simple formulas for the
crushing strength and the fold length. However,dasvation of the fold length is based
on principles that are mechanically not correat; kmematics field is not coherent; and it
will be seen that its model lacks of a few ide&® Ihow the folding front propagates
through the sample. These are the reason why wiedtthis work. Later the work of
Gibson and Ashby (1988) gives relatively good rsstdr the same problem, but does

11



not study the core of the problem, i.e. the prekisematics at the micro-structural level.
Lately a few papers have been released on axialished metallic hexagonal
honeycombs. The most interesting one is from Mohd ®oyoyo (2003). Using
conservation equations (of mass, energy...) as id fluechanics they characterize the
folding front’s progression in the material whitds continuously crushed. However they
avoid this way to study the micro-structural crughkinematics. | also appreciate a paper
from Aminanda et Castagnie (2005), whose approacisists in considering only the
junction between the three plates of-alement. It will be seen that our model, in which
a very large part of the total dissipated energgissipated in this junction, can explain
very well their result. However, | totally disagredth the idea of springs for the
implementation in finite element codes, as propdsgdhe authors of this paper, and
would rather prefer an energy approach rather easgicode.

In the meanwhile, the increasing use of honeycosmbrash barriers has required
scientists to study other aspects of its crushimgparticular shear and the effect of high
strain-rates have been studied extensively, as aslthe in-plane properties. These
aspects are not the focus of this study, we wily gve a few references here.

The problem of the behavior of honeycombs in shisareasier than the
compression. It was studied by Gibson and Ashbg&l®y energy methods, later by
Grediac (1993) by finite elements, Hohe et all @99sing homogenization or Qiao and
Wang (2005) combining the different techniques. 8@xperimental papers should also
be cited, see for example Doyoyo and Mohr (200Bafaoowadays classical setup for the
shear tests. For the type of applications requigimgod resistance in shear, as well as the
high speed ones, usually square honeycombs arerpg@fto hexagonal ones. See for
example Cote et all (2005) for an experimental famte element study of this aspect.

In-plane properties are weak compared to the tuhidilection properties (two
orders of magnitude of difference for the stiffnéssexample). However, some authors
have studied that in detail (although | wonder whapplications they aim at). The most
famous is from Papka and Kiriakides (1994), it Us@e elements extensively to predict
the behavior of hexagonal honeycombs loaded inadnieir in-plane directions (the

strongest one).
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Finally, the effect of strain rates on any of tlreypous types of loading has been
studied. The best study is due to Xue and Hutchir2005), where the authors use a
finite element simulation to propose a continuousdimm model for the dynamic
crushing of square honeycomb loaded in their tubdileection. Some other papers, like
the one of McShane et all (2005) are also intergstin this paper the authors compare
the blast properties of square honeycombs compartek plain aluminum plate of same
mass as the honeycomb tested. The honeycomb igl fourbehave better than the
aluminum plate, making it a candidate for the prttm for blast. There are a multitude
of papers on the combination of loads, strain raiesg one of the classical methods
(finite elements and experiments for most of thpeps, but also homogenization and
analysis for the bravest) but they are not the sooipthis study so | will stop here.
However, it must be pointed that of all these pap#re closest to solving the problem of
the crushing of hexagonal honeycombs loaded i thbular direction is Wierzbicki's
one, which has the limitation we noted before. Amd problem remains the heart of the
behavior of hexagonal honeycombs and their maidicgtion. Therefore, this study is
plainly justified.

1.3 Prospects of this study

The prospect of this study is to characterize tmplete crushing of hexagonal
honeycombs loaded in their tubular direction. RetmemFig. 1.2. We start with the
elastic regime by computing the elastic bucklingtgga and comparing with the peak
stress. Then, we need to characterize the crughlaigau. The previous studies have
focused on the crushing stress, however it appgbatsanother parameter is important,
namely the fold length. It needs to be determinedeally understand the crushing
mechanics, and it is very easy to compute anothterdsting parameter to define the
energy absorption of a sample, namely the crustlisignce, from the fold length. The
crushing distance is intuitive and can be obserdedctly from Fig. 1.2: it is the
difference between the original height of the sagoid its height when fully crushed.
For these two reasons (deeper understanding anditi@n of the crushing distance) the
first part of our study is focused on this parameiée results are found to be good for
thin foils, which are the most useful honeycombs émergy application purposes.
Completing this first study allows us to fully detene the kinematics of the folding

13



process. Then, we are able to study the crushneggih using the results from the fold
length. The results are found to be very goodtior toils, where we had good results for
the fold length. For thick foils, the results arettbr than previous results from past
studies, but the errors tend to be much larger thiathin foils. Some explanations on the

reasons for this are given.
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2. Experiments

The aluminum honeycomb investigated in this studg wanufactured by Hexcel
Corporation. The specific samples studied were asag of aluminum alloy 5052, with
(1) cell size 3/16 in. (4.76 mm), mass density 3ci (49.66 kg/m) and foil thickness
0.001 in. (2.54e-2 mm); (2) cell size 5/32 (3.97 y)nmass density 2.6 pcf (41.65 kgjm
and foil thickness 0.0007 in. (1.78e-2 mm). Threstd each were conducted for the
above two different materials specifications. Thmehsions of the specimens were
146x120%x70 mm. Note that the latter dimension apwads to the tubular direction. The
samples were placed between two parallel wood pkttengthened with thin aluminum
plates and compressed along the tubular directith & custom-designed testing
machine (Instron 8802, 2x50 kN load cells in thetigal direction). See Fig. 2.1 for an
example of un-deformed and deformed photographshefhoneycomb sample. The
experiments were performed under displacement-glbedr conditions with a slow
loading rate of 3 mm/min. The displacement andréselting load acting on the sample
were recorded in the Instron-provided data acqarsisystem. The force-displacement
curve has already been presented in Fig. 1.2.

Additionally, we used a non-contact deformation sugament method to get the
deformation of the walls of the sample. This methusgés two cameras in correlation
working like two eyes, meaning that from two imadaken from close positions an
integrated software computes the displacement fieldhe three directions (the two
directions perpendicular to the focal axis directhe third direction by correlating the
two images). Figure 2.2 presents an elastic bugkbattern illustrating the way all the
results were obtained from the cameras. The saftalvays computes the displacement
field on the whole area of interest. It is thengible to extract data along a given curve
or line. All the displacement fields obtained ire tfollowing sections come from this
method. The whole crushing process was monitor@ugusvo cameras configured in
correlation as seen in Fig. 2.2 (1392x1040, morwde; Schneider Optics Xenoplan

1.4/23mm Compact Series Lenses, distance 114 ramefrate 0.5 fps).

15



@

Fig. 2.1: Photos of the crushing experiment. Figlre (a) presents the initial setting
before the load is applied, while Fig. 2.1 (b) prgs the sample partially crushed. The
crushed part, the intact part, as well as the angstont, can be easily visualized.

16
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3. Phenomenology

This section is devoted essentially to the undedstey of the different stages of
the crushing of honeycomb, as exhibited in Fig. AR the honeycomb is continuously
crushed, the Euler buckling point of the platesraached. As seen in Fig. 2.2, the
buckling pattern is characterized by a “sea” of-oldplane elastic buckles. Once the
elastic buckles appear, the stiffness of the hom@ycstructure decreases with increasing
displacement until the peak force is reached. Betbe peak point, some hinge lines
appear which prefigure the formation of the firsidf The increase in force induces the
creation of what civil engineers call a mechaniaitgwing large deformations and the
apparition of the first fold. From this study it llivibe seen that the hinge lines
accommodate large deformations and dissipate #sti@bending energy responsible for
the buckling pattern while initiating the foldinggeess.

We start the description of the folding patterngogsenting Wierzbicki’'s view of
the folding process, which can be found in Fig.. 3tlmust be stressed out that
Wierzbicki’'s analysis, as well as ours, is basedtloa idea of the propagation of a
crushing front throughout the material while itcisished. The crushing front splits the
sample into two parts, an uncrushed, intact pattaafolded part, and all the deformation
in the sample is localized in the crushing frorteTolding process is characterized by
the combination of a vertical displacement of thp edges (lineA:FiD1), inducing a
horizontal displacement of the hinge liAg=2D-. Indeed, the anglg/remains constant
during the transformation, which requirgg-2D> moving horizontally (out of its original
plane). Therefore, the surfac&s-1F2A2 and A2F2FsAs, which were four rectangles at the
beginning of the folding process, are transformeiw ifour trapezoids. Note that the
surfaceD:F:F2D2, which was bonded by adhesive between two diftepdates, shows

some partial delamination.

18



Fig. 3.1: Folding front in Wierzbicki’s work. Thénitk lines represent hinge lines, the
dashed one are just the boundaries of the stu@digdThe notatiorH will be used in the
whole paper with the same meaning.

The latter presentation has the great advantage/ioig a lot of good ideas about
the folding mechanism: the necessary combination hofizontal and vertical
displacement for the hinge lines of the crushirnty as well as partial delamination of
the bonded plates. However, it misses a criticat pathe phenomenon, namely the
dynamics of the propagation. We develop in thigieeca model which has all these
characteristics, derived from Wierzbicki’'s one. Thain defect of Wierzbicki’'s model is
that it analyses each fold alone and does not atdow the interaction between the
active fold and the nucleating fold. A major issnethe analysis is to understand that
folds can potentially form in two different waysésFig. 3.2). If the folds are alternated,
as figured in Fig. 3.3, then the solution is monergy efficient, because the hinge lines

AlF1D:1 and AsFsDs are no longer necessary. The understanding of thgeHhine is
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radically modified from this perspective. Indeelde fprocess is now dynamic: one fold
induces the next and the folds propagate vertiebgit asymmetrically —the part of the
material on one side of the fold (top in Fig. 3aich is the crushed region) is different
from the part on the other side (bottom, intactoej

Fig. 3.2: Two ways of folding are possible. Agalre tthick lines represent hinge lines.
The thin lines are not plastic, they are the bouedaf the representative element.

20



Fold eng>

(b)

Fig. 3.3: Starting by Wierzbicki’'s model, we altata the folds; then some hinge lines are
no longer necessary and we obtain our model (c}e Nleat some hinge lines have
disappeared in (c). The folding wavelength has Isketched too. Note that it is twice as

large for (c) than for (a).
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Another aspect of the propagation is the propagatiothe horizontal direction
(perpendicular to the tubular direction), whiclecuivalent to explain why the folds form
a horizontal “fold front”. Figure 3.4 presents @ifént top views (in the tubular direction)
of the folding process, a possible case and an seiple one. It can be seen that the
configuration of one fold in the horizontal planéliiences the configurations of all its
close neighbors. The reason for this is that oretisa requires much less stretching

energy from the double thickness plate than theroth

Figure 3.4: Propagation of the fold in the planeppadicular to the tubular direction.
Fig. 3.4 (b) is the correct folding mode, althoug. 3.4 (c) shows an impossible mode
due to high energies of stretching in the closefons between the three plates of the
elements.
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4. Study of the fold length

4.1 Presentation

This part of this thesis is devoted to understagpdire physical process behind the
final folding length. Our first and intuitive gueg&s that the fold length is determined by
the elastic part of the deformation, i.e. that bekling pattern was directly responsible
for the fold pattern. In this vision the fold lehgtvould have been the same as the length
of the buckles in the buckling pattern. It can athg be seen that the very local character
of honeycomb folding does not seem to fit with thssumption. Indeed this condition
would mean that the folds can appear all at theeséime (since the buckling is
associated to a buckling mode for the whole sampleyvever the propagation of the
folds is very local, and it was found that the Hirgk pattern is not the factor originating
the folds. Indeed, when the peak force is reacivich coincides with the creation of
the first fold, the elastic bending energy of theelding is dissipated in the plastic hinges
composing the fold. Instead of large elastic deéitbes for the plates in the whole sample
(the deflections due to buckling can be seen dyreith human eyes), the deformation
becomes localized in the crushing front. In the cégthe sample (uncrushed region) on
the other side the deformations become very snfad fluctuations can no longer be
seen).

From what was said above we present first a bughkdimalysis of the honeycomb
structure, and this for two reasons: (1) it allowgsto test the intuitive hypothesis as to
whether buckling and folding patterns directly etmte, and (2) it allows us to
characterize the elastic part of the stress stramve. This hypothesis happens to be
wrong, so that we had to develop a better undetstigrof the physics behind the folding
pattern. This is done as a second step by modif{tiregboundary conditions of the
analysis and considering folding as a local propagghenomenon. However, it will be
seen that the second type of models is limited lgg@metrical limitation in the folding
pattern. This geometric limit, which can be undsost very easily, has been expressed
here as a limit between thin foils and thick onésr thin foils, the results from the
second model predict the correct fold length. Hosvetor thick foils, we were not able
to predict exactly what happens and only proposedpper bound for the fold length.

23



The study of the buckling is itself divided intoréle model, two models where
only one plate is considered, and one model whHedtickling of the tota¥ element is
considered. On the contrary, the study of the pyapan of localized hinge lines is based
on a model with only one single plate.

For all models, we make extensive use of smallidedftion thin plate theory
assuming that there is no delamination betweerivtbebonded plates. This is clearly a
rational assumption for the buckling models, butah be not so relevant for the second
type of model. However we believe that the assumnpis still fine because the
deflections are not large except in the very ckseoundings of the fold. In the analysis,

we also neglect all the out-of-plane plate streg¢sgessozs as well as the shear stresses

oiz and gz, their resultants and moments for the plates aglected, where 3 is the
direction of the thickness of the plate). We furtmeglect all displacements at the

junction of theY-element for thé/-element model.

4.2 Study of the elastic buckling

4.2.1 Smply supported case

We first derive the classical solution of the signglupported case, which is
intuitive and gives a good understanding of theemmmmplex solutions we derive in the
following. The model is presented in Fig. 4.1. lcetbe the lateral deflection of the plate

strip out of its planeg the applied in-plane stressthe width direction angl the longest
direction of the strip, andD = E[d%/12[{1-v?)the rigidity whereE is the Young
modulus of the materialy the Poisson’s ratio. The dimensions of the plate A&
(height),L (width) andt (thickness). The equilibrium equation is given as:

6“a)+2 'w  d'w_ ol dw

ox* ox? y* oy* D Egyz (4.2.1)

Assuming thatw= ), f (x)sin(msz/A), the equilibrium equation implies that we can

write f(X) as:

f (xX) = A [eosh@ [X) + A, [$inh(@ [X) + A Ed:osé [X) + A, E'Bin(iﬁ [X) (4.2.2)
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With a:mm\/li A gt (4.2.3)
B A mr \ D

wherei® = - 1(f is pure imaginary under classical conditions).

SS SS

SS FX

—7

y y
. U
0 O
SS SS
Fig. 4.1: Presentation of the simply-supported sdgedel (left), and fixed-edges model
(right).

The boundary condition (plate simply supported) banwritten for the vertical
edges asw(+L/2)=0 and(azw/axz)(iL/Z):O. Hence, the conditions are already
fulfiled by the edgey= Oandy=L. From now on we introduce the notations
a'=alL/2 and B'=AL/2i. Then the boundary conditions applied to the valtedges

can be written:

coshg@') -sinh(@') cos(3') -sin(s8') A 0

coshg@') sinh(@"') cos(3') sin(s8') A _ 0 (4.2.4)
a’*cosh@') -a“sinh@') B?cosB) -pB7%sin(B) || A 0
a’*cosh@') a“sinh@') pB%cosB) pB?sinB) ||A]| |0
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Taking the determinant of this gives the condition

- (a”-B"%)?cosh@")sinh@") cos(B")sin(B') =0 (4.2.5)
Which only non-trivial solutions are solutions of

cos(B')sin(B') =sin(5')/2=0 (4.2.6)

Introducing the parameter = otL?/77°D (plate “stress”) andp=A/L we can

write the previous equation as

g(K,qo):sin(M Ego—llzo (4.2.7)
2pV m

It is indeed an implicit equation between thesa@ameters, and will have to be

found for any given value of . However, here we can solve the implicit equatising

the properties of the sin function and find theafioondition

L m (4.2.8)

This plate stress represents the minimal stresappy to a plate to see the
buckling pattern appear. In terms of bifurcationsitthe force at the point where the

bifurcation begins.

The configuration is found to b& = ¢, cosfi7x/L)sin(m7y/A) . If one computes

the energy of that plate the total energy is foundbe 0. This means that the
configuration chosen is a local minimum of the gyeiin fact it is the actual buckling
mode. Therefore the parametgr can’t be determined by a™lorder analysis. This
explains why the authors choose to minimize theddrere, considering that the lower

force that will be reached will produce the cor@sging mode shape.
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Therefore we have to find the right combinationno&nd n in (4.2.8). Obviously
we have to take= .1The determination oingives eitherint(g™ dr int(p™) +1. A

simple analysis of the corresponding minimum shthas

if < \/int(qa’l)(int(go‘l) +1) thenm=int(¢™"), elsem=int(¢ ')+ 1 (4.2.9)

In consequence we can predict the number of smelew (buckles) appearing in

the vertical direction.

4.2.2 Fixed vertical edges assumption

We assume now that the vertical edges are fixesl Kgg 4.1). We don't need to
assume that the horizontal edges are fixed to@usecfirst they are very small compared
to the vertical ones in our case; second we deally know the boundary condition on
these edges, it depends on the conditions of tperewent. The condition in Eq. (4)
becomes for the fixed cagseg(tL/2) = addda/ox(xL/2) = 0. This gives the system:

cosh@) —-sinh(@") cos(B3) =-sin(8') || A 0

cosh@') sinh(@") cos(3') sin(8') || A _ 0 (4.2.10)
—-a'sinh@') a'cosh@') pB'sin(B) B'cos@B) || A 0 o
a'sinh@') a'cosh@') -p'sin(8') pB'cosi3) || A, 0

The system can be split into two sub-systems thatespond respectively to the
symmetric and anti-symmetric solutions (by resgecthe vertical axe). We choose to

keep only the symmetric solution (lower energy) abhgivesA, = A, =0.
We can again find an implicit equation of the saype as Eq. (4.2.5):

cosh@')B'sin(8') + cos(5')a'sinh@') =0 (4.2.11)

Which in terms oK and ¢ gives the analogous equation to (4.2.7):
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7¢_1

g(K,p = |-M tan 7 \/Rqo—l +tan M,/Eqﬁl =0 (4.2.12)
\/Rw 290\ m 29\ m
m

Note that this equation has infinite number of sohs. We always pick the first

positive solution, which would correspond to= irlthe simply supported case. This

solution is found fOI’m]T/Z(D\/\/?(D/m—lD[]T/Z;]ﬂ. Therefore, for a given value af,

the equation can be solved alkds found. The main problem is the fact that we’'ton
know whatm is. The solution we chose consists of computingha solutionsK for
growing values ofm (m=123...). Once we have computdd for all the acceptable
values ofm we just find the minimum df on all the values ah.

The equation (4.2.12) can not be solved analyticadl that we implemented it in
Matlab by using a dichotomy algorithm. We madedheice of mapping the whole range
of values of¢ and then interpolate between our computed vaMés could also have
only solved for a given value of. The structure of the program is given in Fig..4.2
Using the program, we can for a given valuegofind the corresponding value ofand
the plate “stressK. Therefore we are able to characterize the bugldimlution of the

fixed-edges plate.
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Step 1: create a “map” of the studied space (m,%)

Loop m

Loo
b¢ Range of m

Solver: solve eq (13) Rangf of ¢
|

Step 2: extract the right data for a given ¢

Loopm

Interpolation

A 4

Comparison

Fig. 4.2: Algorithm used in the study to find th@lwe ofm that gives the smallest value
of K. We map the whole spaas,(); then for a given value af we interpolate between

the values computed before.

The final displacement can be written as:

cosh @"2—)

W=, _COS(BI)Th@'!S cos([;’ ) Sm(mny) (4.2.13)
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Fig. 4.3: Presentation of théelement model for the buckling analysis. The baupd
conditions are given on (b) while the notations @gireen in (c). [ASIDE: SS stands for
simply supported while Sym stands for Symmetry cions. |

4.2.3 Sudy of the Y-element
The schematic of Fig. 4.3 presents the geometrantifies in theY-element.
Structurally, it is made of two plates bonded tbgeton one of the side. In the following
analysis, we will model it as three parts of plateaded together at the junction of the
element; two of them will have simple thickngsswhile the bonded part will have
thickness2t. For each plate the subscripwill be added to the corresponding quantities

(deflection w , rigidity of the plateD, ).
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Consider that the displacement is given as a sine function for the vertical

direction as follows:
W =a,t (x)sin(%) (4.2.14)

wherem is an unknown parameter but common for the thilegeg andf, (x )is an

unknown function and different for each plate. Huiilibrium equation (4.2.1) is valid

for all three plates and gives the solution:

fi(x)=A1EcoshcnmmwBinh(atkw)wgfctosétkwiwmBsin(%mm (4.2.15)
The definition ofa; and £ is identical as before except that the paramétansl

D have to be adapted to the plate we are dealiny Whis formulation is slightly more

general than (4.2.2) because the phgsdsave been added. In the particular case where

the origin is taken at the middle of the plate ypvas studies for simply supported or
fixed edges) these phases are null, which explaimswe did not have to introduce them
before. However, here the origin is chosen to leguhction between the three plates, so
that the phases have to be added.

We now have 12 coefficients, which have to be evaluated using the boundary

conditions. First we choose a symmetric solution éach plate, using the plane of
symmetry y = L/2 (that is, the condition thaf, (L/2+ x) = f,(L/2—x) for each plate).

Therefore, we have the conditions

A,=A,= (4.2.16a)
Y = |_/2 (4.2.16Db)

Using the notationsa’,=a;L/2 and ' =£L/2i, we can now rewrite Eq.

(4.2.15) as
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f.(x)=A; E:os){a'i E(JZ—LX —1)} +A, Etos{,é"i [(]Q —1)) (4.2.17)

Note that there are now only six unknowns in owbpem. We have to write the

boundary conditions at the edge= . These arew(x=0)= O0for all plates (no
displacements at the junctiondw/dx (0) =Cst for all plates (the rotation of the plates

around the edge is constant), aE:IM . =0 (sum of moments around the vertical edge is

zero). The moment$/ , are computed adl, = —D((8%w/0x?)-v(0%w/dy?)). The set of
conditions can be written as a system of equatishgh have to simultaneously be
verified. It is given in Annex. Again the conditioils equivalent to equating the
determinant of the system to zero. Introducing vaeiables K = otL?/77°D (simple
thickness plate stress) agd= A/L (ratio of the height of the sample to the celejiave
obtain an equatiogy(K,¢) = 0f the type of Eqg. 4.2.7. Once again we find theimum
of K for a given value of¢, m being a parameter for the solution. The algoritisad is

the same as before, except that the equation gageinis now the condition given by
equating the determinant given in Annex 1 to zero.

It is also easy to show that for this solution thgplacement is the same as Eq.
4.2.13.

4.2.4 Results and discussion

Figure 4.4 presents the number of folds computedttie three models as a
function of the ratiog. The result could be expected to be “pseudo-linseuce the
equations of the type 4.2.7 were always functionthe ratio ¢/ m. The fact that it is a
step function is due to the integer naturenofThe “linearity” coefficients are 1 for the
simply supported case, 1.5 for the simply suppodase, and 1.11 for the compléte
element. This is completely rational, since the |&fvent allows the transmission of
moments at the junction, which can be seen as a&mag® point between simply

supported (no moments) and fixed edges (no rotsition

32



80

70 -
60
Number 4.
of
buckles 40+
m
30 r
20+
10
o ‘ ‘ ‘ ‘
0 10 20 30 40
Ratio of height to cell size
31
30+ B
29+ :
x 28+ B
=
(@]
c 27t .
o
N o8t |
9
S
o 25 .
24+ ]
237 M |

[\ 4
N

0 5 0 15 20 25 30 35
Ratio of height to cell size

40

435

50

Fixed-edges case
Y-element case

Simply-supported
-edges case

(@)

(b)

Fig. 4.4: Results of the buckling analysis: (a)sgrgs m (number of buckles in the long
direction of the plate) as a function gf (ratio of long length of the plate on its small
one) for the three cases studied (simply suppofieed edges and-element) and (b)
presentsK (non-dimensional stress) as a functiorggfonly for theY-element study.

Although results were obtained firas a function ofg, they are presented only

for the Y-element. Indeed the simply supported case is gdiegctly by Timoshenko

33



(1959) while the fixed case is relatively simplectompute. Additionally it does not bring
any understanding to the model here. It can be #e@nthe final curve foK is the
minimum of several curves for each valuemfFrom this second figuré&/'{element case)

we make the assumption that fer>  (8hich is fulfilled except for very thin layers of

honeycomb) we can approach the rigidity by 22.5ng/ghe definition ofK we can
compute the minimal force needed to initiate thekbog of the structure. Then we can
compare these results both with our experimentallte and with Hexcel manual data.
The comparison is given in Fig. 4.5. It can be stbam, as expected, the buckling starts
before the peak stress of the material. The rataéen the peak stress and the buckling
stress is not constant. It varies between 5% a@&olvith typical values around 15%. It
tends to be larger for small thicknesses, and smédr thicker samples. It can be seen
that the difference between the buckling patterd toe apparition of the first hinge is

however very noticeable, which most authors doortsider.
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Fig. 4.5: Comparison of the minimum buckling stresmputed here (solid line) and the
peak stress given by the material supplier (Hexsglares). A good correlation is
obtained.
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We now want to explain the hypothesis stating thatbuckling pattern and the
folding pattern are directly correlated. For thie meed to derive some additional results,
including the displacement, stresses and hingagnati positions. The displacements

were already given as& = w,cosfi/x/L)sin(m7y/A) (simply supported case) and Eg.

4.2.13 (fixed case and-element case). The resulting mode shapes forithgeles case
¢ =4 are presented on fig. 4.6a and b for both the Isisypported and the fixed edges
cases. The mode shape for Wielement has been said to be exactly similar tdfikeel
edges case, except tmais different, it is not presented here. It shdudnoted that:

* The numbem is different for the different boundary conditiorior the simply
supported case it is 4, although for the fixed sdggese it is 7. The resulting mode
shapes show a different number of waves.

* The boundary conditions are clearly different, shape is null in the fixed edges

case.
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Fig. 4.6: Out-of-plane displacement for the simglypported case (a) and the fixed case

(b).

The plate stresses can be found using Timoshelr8&9y.

0w 2w _ ‘w 0w _ 2w
M. =-DI +v[%7) My——DEQVEgX—2+ay2)andMXy-DE(l—V)E-IgXTy (4.2.18)

ox?

We use a yield criterion of the type of Von Mises:

NZ 62 DNI 2
c(N,M) =t_2+ o (4.2.19)
Where in our casdl/t = ¢ is the axial force as computed before, and
2 _ 2 2 2
M*=M7+M/-M, M, +3IM, (4.2.20)
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Fig. 4.7: Von Mised equivalent stress for the symglpported case (a) and the fixed case
(b). TheY-element case shows the same pattern as (b) siecksplacement is similar.
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The state of stress can be computed and plottette She in-plane stress is
constant throughout the specimen we just plottedntoment part. Figure 4.7a and b
present the state of stress (Von Mises equivalaess for the plate only simply
supported and for the plate when the two verticlgjes are fixed. Again thé-element
case is similar to the fixed edge case (the digptent of each plate of the model is
exactly similar to the case where the conditiongsaboundary would be fixed), so it was
not plotted. It must be observed that the two ®guare drastically different: indeed the
numbem is different, so that the number of waves is défe. The other important thing
to notice is the position of the peaks in the tweeas. We focus on peaks on the boundary
of the sample since there is a stress concentragondue to the combination of the three
plates joined here. In the simply supported case,peaks show a complicated pattern,
they are not found at the same positioon the border and in the middle of the plate

(they are found for the positiogs= kA/m with k= 0.1....m on the border); in the fixed
case they are found foy=(k+1/2)A/m with k=0.1....m-1, which corresponds

exactly to the positions of the top of the waveke Perfect correlation between stress
and strain allows us to make the hypothesis thahthge lines appear at the positions of
the peak displacements on the junction betweerhtiee plates. Then, there is a perfect
correlation in this hypothesis between the bucklpagtern and the folding pattern. The

folding length, as defined in the next part, carcobmputed here ag, ;. =4H with H

given byH =A/2m=L /222 Therefore the folding length in this hypotheststmes:

A =L /0555 (4.2.20)

buckling

It must be noted that it does not depend on theisa height, which is probably
only true for specimens with a sufficiently largedht.

39



4.3 Folding wavelength based on the propagation of lotaed plastic hinges

The observation as well as the quantitative reslitsved us that our intuition
was in fact wrong. We had to develop a new modaiclvis presented in this part. We
present first the experimental results that allowsdo get deeper understanding, to go as
a second step to the modeling phase. The resdtgauod for thin foils, which are our

main focus.

4.3.1 Experimental observations

This part will include the results for honeycombighwery thin walls as well as
those with thicker walls. Indeed the observationttod different samples during the
experiments shows very different folding proces3éwis, different types of models are
needed. The first case is the case of thin-wall@deficombs. The construction of the
model is based on observations from image coroglagiven in Fig. 4.8. This figure
presents the out-of-plane displacement of a stopenaterial during the quasi-static
crushing of the material. The lower limit of theaysis is the folded part of the
honeycomb, since the cameras are unable to canedgtons of the material with very
large strains and can not recognize planar areasudt be pointed out before any further
analysis that the elastic buckling pattern haslljotisappeared from Fig. 4.8, while it
induced large deformations before the appearantieeofirst fold (see Fig. 2.2). This is
not an effect of scaling since the two scales ateeent. Therefore, the elastic energy
stored as bending energy during the buckling paties been dissipated by the first fold.
This means that the buckling pattern has littladanfluence at all on the folding process
and in particular on the folding wavelength. Thesult is rather non-intuitive; it will be
checked numerically at the end of this sectionufég4.8 shows that the folds seem to
propagate according to the following process:

* The previous fold is closing up. This is charaaed by an increase in the
angles of rotation on both sides of the horizohtage line which creates the
fold. This is accompanied with larger out-of-pladesplacements at the
position of the hinge line.

* As the out-of-plane displacements become larghkerfdld surroundings, they

induce large stresses in the other parts of thte.plde plastic limit is reached
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on the boundary and the stresses there producetansen of the vertical
hinge line along the junction between the plategi{e Y element).

* The stresses also reach the plastic limit in theédiei of the plate, starting a
new horizontal hinge line.

* Next, the force increases until the vertical hidgees connect with the
horizontal ones, allowing the folding mechanisnstiart.
W [rrn]
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Fig. 4.8: Images obtained from the cameras illtisigathe folding process. For all
imagesW is the out-of-plane displacement using the sanaéesdhey are ordered by

increasing displacements. The right boundary disargpas the fold front progresses in
the core of the sample.
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Here, we briefly describe how we measure the fgdimvelength. It is based on
counting the number of folds in a completely cruskample. We cut a very thin part of
the honeycomb sample that is totally folded anetslrit by hand. The number of folds
can then be counted very easily. As can be seefign 3.3, a fold comprises one
horizontal hinge line likeA2F2D2 and is comprised between two horizontal hingesline

Note that the fold length in Wierzbicki’'s modelhalf of the fold length in mine.

4.3.2 Analysisfor thinfoils

The basic assumptions made in Section 4.2 areneetdor the analysis in this sub-
section. It has been concluded by the careful exatioin of the crushing process that the
creation of a hinge line implies an important ofiplane deflection that is directly
responsible for the next fold. The aim of this pa&tto model this and find out
analytically where the next hinge lines appear byputing the plastic stresses induced
in the model. Our set of boundary conditions wdlvk to account for the studied effect.
The schematic of the analysis is presented in4&f).We choose to study only one plate
at a time because it is not easy to adapt the viollp analysis directly to a
configuration. The studied plate is the doublekhess one, because we believe that this
plate is the determining factor for the folding d&m The limitation of the analysis to
only one plate is clearly a limitation of the pnesenalysis. We assume that the

displacement of the plate is given as:

W= w, cos(%) f(y) (4.3.1)

where f (y )is an unknown function. Note that this assumpisovery different from
the previous one, which was deduced from using ibandary conditions in the
elongated direction. In the present case, we doknow beforehand the shape of the
plate in the elongated direction due to the boundanditions (to be given in detall
later). We assume that the shape of the plateasme in the small direction, because it
is primarily symmetric. However the hypothesis tvatcan separate the variables here is

a very strong one, which is mainly responsibletifi@ potential inaccuracy of the model.
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Fig. 4.9: Schematic of the delamination-based mddelthe analysis of the folding

wavelength for samples with thin plates. Note thatplate shown has double thickness.

The curve figured at the bottom of the plate figue out-of-plane deflection (not a
change in the shape of the plate, which remairtamgalar).

From the equilibrium equation (Eq. 4.2.1) comeftilwing equations:

f(y) = Aieﬁy + Azefzy + A38r3y + A4ef4y (4.3.2)
o a 7\
r_2 = — - |+ = - 4.3.3
' (ZD sz \/(ZD sz L* ( :
Introducing the classic parameti€r= atLZ/nzD , We obtain:
2= (1_£ji K(E_lj (4.3.4)
L 2 4
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Depending on the value &, the roots are either imaginary, have a real aare
real. We will give details of the different casdterintroducing the boundary conditions.

The four boundary conditions are as follows:

» for the edgey = A (top edge), the boundary condition is not so imgrartWe
will use either fixed boundary condition or sim@ypported. This means that
a(y=A) =0 and eithedw/dy(y = A) =0 or d%w/dy?*(y =A\) =0.

« for the edgey = Qwe assume a cosine deflection, ig0) = w, cos@x/L)

and complete with a simply supported type of boupndsy stating that the
moments on the boundary are zero. This gives
(0%w/ay? )y = 0) +v(0a/ax? )y = 0) = 0.

For the vertical boundaries the conditions areaalyemplied by the form chosen

for w. We can now start our analysis of the results istirdjuishing the different cases

implied by the value oK.

Case 1K >4

In this case the roots are imaginary, the functidy) can be written as

f(y) = A cos@s, y/L) + A, sin(7s, y/L) + A, cos(s, y/L) + A, sin(rs, y/L) (4.3.5)

where s, = \/K/Z—lt K(K/4-1) . The function is therefore non-attenuated,

which does not fit with the experimental valueKaodind intuition. Therefore, this case is

ignored in what follows.

Case 2K <4

In this case we have to rewritg as:

r’ :i2|:[1—5}i | K[l—ﬁﬂ (4.3.6)
L 2 4

Note that we can write® = 77/ [&'*° and consequently =+77/L [&*'?. Using

trigonometric identities, it is easy to find alktiquantities we need a®ps@d) =1-K/2,
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sin(26) =K (@-K/4), cos@) =,/1-K/4 andsin@) =,/K/4. The functionf(y )can

now be rewritten as:

f(y) =KL (A cosry /K4 y/L) + A, sin(z/K/4 y/L))
+e me’L(A3 cos(r,[K/4 y/L) + A, sin(,[K /4 y/L)) @.37)
The boundary conditions can be written into a sysggven in Appendix 2. Note
a major difference in the solution: here, we do Inate a buckling problem as before,
which required finding a bifurcation point. This am finding a different solution than
the trivial solution X = Oto a problem of the typeAX = @A matrix, X vector of
unknowns). Here, the problem can be writtenfa6 = B and we have to find the trivial

solution X = A™B. It is easy to solve this system approximatelyhia case of plates

with a large ratiop=A/L. Then the terms ™*"'* become negligible in front of the
terms e™'*_ Subsequently, we haveA =A, =0, as well as A,= 1and

A, =(1-v-K/2)/,/JK(@-K/4) . Note that the solution is identical for the fixedd

condition and the simply supported one for the edge/A. Therefore, the unique

solution is (slightly approximated, the real sapatican easily be computed):

f(y)=e Wy’{cos(m/ 4y/L)+ —— sm(m/ /4y/ L)] (4.3.8)

1/K(1 K/4

This function has been plotted in Fig. 4.10 for YaduesK =1 (red) andK = 3
We have now to describe what is exactly neededdate the next fold. Therefore, we
have to study the state of stress in the plate.pléie stresses were given in 4.2.18, the
plastic criterion in 4.2.19. Figure 4.11 presentgl@ of the Von Mises stress for the
previous two values oK. It can be seen that the figures are very diffeveinenK is

smaller or larger than 2. If it is smaller, theesBes are nearly uniform on a lige= Cst ,

from which it is difficult to deduce anything. Hower, for all cases we have a local

maximum of the stress at the negative peak (obdaavéhe middle of the plate fg=0.7
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for the caseK=3). We believe that the next hinge line startghis position while the
creation of the folding mechanism is facilitatedthg fact that the vertical boundaries of
the plate become plastic very fast (the stressewveny large in these boundaries, and
three plates are joined at the boundaries, whiclceatrates the stresses even more). The
precise minimum of the Eq. (4.3.8) gives the vabfe2H. Therefore, the folding

wavelength for thin foilsd, ., is

K/4-\1-K/4
Arecn = 2L | aTAN aK/a-1-K] +77 (4.3.9)
/K /4 a1-K/4+/K/4
—_ —_ 2 3 3
whereq = 1-v-K/2 K = o2tL D= E2t)° _ 2Et

JK@-K/4)' 2D "7 1200-v?)  31-v?)’
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(b)

Figure 4.10: Displacement field for the cages3 (top) andK=1 (bottom). In both cases,
there is a local minimum after the initial peakisijust difficult to see on the second plot
because it is so attenuated.
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Fig. 4.11: Equivalent Von Mises stress for the sda&e3 (top) andK=1 (bottom). The
caseK=3 has a local maximum of the stress corresponidirthe valley in Fig. 4.10a, at
the center of the plate.
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4.3.3 Thick foils

For samples with thicker walls it appears that fibld length is limited by the
geometry of the problem. According to the previdlwsory, thicker walls imply larger
folding wavelengths. However, a few drawings of fo&ling pattern show that the
folding wavelength has a physical or geometric tithat we have to account for. Figure
4.12 presents different views of a sample whda continuously decreased, which is in
effect equivalent to increasingin this figure, the top view is presented as befa Fig.
4.3, while for the side view, we represent the hitiges of a fold on an original non-
folded configuration. It can be seen that thereaigeometric limit to the folding

wavelength.
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Top view
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Side view (folded pattern projected on unfolded material)

Fig. 4.12: Top views and side views of studied &etsa for decreasing cell sizes. The
geometric limit is easy to identify on the righthdtop view is identical to Fig. 4.3. The
side view represents the folding pattern on an efierdhed configuration.
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Fig. 4.13: Study of the geometric limit. The comait comes from writing the
compatibility condition along the horizontal foldig.

The computation of this limit is based on the sketcfrom Fig. 4.13. It is easy to

see that the condition is:

H < (4.3.10)

L
NE
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If we account for the thickness effects, statirgg the fold can not reach the angle

Y 12 of Fig. 4.13 because of the thickness of the nafave are led to:

H<—+t (4.3.11)

To determine which of the two models has to be dsethe computation of the
folding wavelength, it is easy to find a criteriaVe simply base our analysis on the fact
that the first computation (for honeycomb madehof fplates) is based on a complete
mechanics approach, whereas the second is a sgaptaetric limit. Therefore, as long
as it is possible, the material will behave in thege of the mechanical model. As soon
as it becomes geometrically impossible, the othedehhas to be used. That is to say, we
use forH the minimum of the two solutions found before, E48.9) and (4.3.11). Thus,

the folding wavelength for thicker foild ., is given by

A= 4 (4.3.12)

geo \/5
It must be noted that this second result correspamdly to a geometric limitation.

However, we did not model this aspect of the pnobleere, which explains why our

results do not fit with this limitation for thiclofls.

4.4 Results and discussion
The comparison of the theories with experimentad dsa presented in Fig. 4.14.

We also compare the data with Wierzbicki’s (19843ling height formula:
H = 0.82K/tL? (4.3.13)

Note that a folding wavelength in Wierzbicki's mbdk,,,,, is the height &:

Ay, = LOARL? (4.3.14)
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It can be seen that for samples with thin plates results are satisfactory, with a
difference of 4.5 % for both 2.29 mm sample and 2nfn sample. Wierzbicki’'s model,
as well as the buckling model, is not satisfactdrliis shows first that the buckling
pattern is not responsible for the fold length.

For thick samples, our computation, which is basedk on the geometric limit,
becomes inaccurate. Once again, it means that4Ej1R) is only a limitation but is not
the result of the model of a physical behavior. Té& understanding of the mechanics
for thicker foils is a necessary future task. Obsearvations on thick samples show that
some different buckling modes, which are of higkeergy in the thinner foils and
therefore not interesting, are generated for tlials. From what we observed on the
thick plates’ samples, the folds are no longer zwmnral but wavy. We believe that for
ratiost/L lower than2e-2, these modes do not occur. Nevertheless, the megdhinly
satisfactory, for a broad range of ratifis

The previous results allow us to study a major p&tar for the design of energy
absorbers, which is the crushing distance (see ). This parameter is in effect the
difference between the original height of the samghd the height when densification

occurs. From the previous results it is easy tovdehe crushing distandg:

(4.3.15)

Indeed one fold corresponds to the thickness 4, tduthe superposition of the
plates in the double thickness region. This realidtws computing directly the energy

dissipated by a given sample by multiplying thegténl, by the crushing strength.

Therefore it is a major parameter for the desighafeycomb energy absorbers.
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Fig. 4.14: Result of our study on the folding warejth compared to our three set of
experiments. The bars are in this order experinheéatalt, result from the local model
(part 4.3, Eq. 4.3.9), Wierzbicki's result (Eq. 448) and buckling result for the Y-
element (Eq. 4.2.20).
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4.5 Conclusions

The folding wavelength of ultra-light adhesive-jeth honeycombs has been
evaluated. It was found that partial delaminatibhighly stressed weaker sections of the
honeycomb initiates the folding process and conseiiyleads to an accurate prediction
of the folding wavelength. Although the correlatidetween buckling and folding
patterns is rather intuitive, it is found that tgothesis based on this assumption highly
overestimates the folding wavelength. The predesdry should be used keeping in mind
its limitation for thicker plates when the fold ffobecomes highly irregular and the
concept of fold length becomes highly local. Howevéor crushable ultra-light
honeycombs, the result obtained in this paper gsifstant because it gives a better
understanding of the folding kinematics, and allothe design of small layers of
honeycomb, in which the crushing length is criticabove all, it predicts the crushing
distance, which helps to predict how much energy loa dissipated by the material.
Therefore, the outcome of this work is significdot practical designs of lightweight

components with crushable honeycomb cores.
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5. Crushing regime

5.1 Introduction
The previous part has given us in depth understgnali what happens when the

fold forms, especially in front of the folding frorSome side results have been derived,

in particular the buckling strength and the crughiength. It is now time to study the
bulk of the problem, which is the plateau stresgs part will use the results from section

4 as well as the understanding brought by SectiolVv8 use an energetic approach

stating that the external energy is only due todpplied external crushing force and

equating this energy to the energy dissipated énpllastic hinges for the folding of one
fold. Thanks to periodicity the study is restrainedaY-element and even further. Let's
start now with the detail of the process. Keepmgnind our final objective, which is to
evaluate the energy dissipated in the folding meder one fold, a classical mechanics
approach would include the following:

1) Defining the precise geometry of the plastic region

2) Defining the velocity field and the correspondintigas rates.

3) Using the plasticity flow rule to obtain stressemi velocities.

4) Computing the work at any time and deduce the #&ralgy dissipated during the
whole process.

However, we have here a set of problems which dirthie precision of the work
we can do by hand:

1) We don’t know the exact geometry of the plastiagoegmicroscopic phenomena)
and therefore, have no option but to assume its f@ans that in our model we
assume the radii of curvatures; these radii arg senall and would require
measurements with an in-situ microscope to obtaiamapirical law.

2) The velocity field is dependant on the geometryuse. We assume the geometry,
and then assume a velocity field coherent withgaametry.

3) In plate theory, there is nothing like a plastmaflrule. Therefore, we will assume
the direction of the stress and use the yield rooreto find its amplitude.

With the above considerations, we will be abledmpute the energies. It can be

noticed that this process is highly dependant anirduition about the stresses, geometry,
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and velocity field. This is probably the biggesniiation of our model, since most of the
phenomena are microscopic and are not observed.

In addition, some other limitations arise from fokowing hypothesis:
(& We work on a simplified thin plate model while neging the effects of the

thickness.

(b)  We study only the in-plane stresses. The out-ofi@lstresso,,, as well as the
“shear” stressesy,, ando,, for the plate. are neglected. This is fine foryvérin

foils, which are the main focus of this paper.

(c) In the final balance of energy we neglect two sesrof dissipation of energy,
which are the energy necessary to break the botwkba the plates and the heat
produced by the folding process. We believe thas¢henergies are negligible in
comparison to the plastically dissipated energies.

(d)  The material (typically aluminum or mild steel)nisodeled as perfectly plastic.
This is reasonable for aluminum but not for steel.

(e) We do not study 3D effects in the sense that inrda, non-modeled world,

sections are only partially plastic. However, i awdel, we always assume that

a section is either not plastic at aif € g, everywhere) or totally plastiax = g,

everywhere). This is reasonable as long as the dizbe plastic zone is large

compared to the thickness of the plates.

5.2 Geometry

We showed in Section 3 that our model evolves fildrarzbicki’s by alternating
the folds. However, it is also deeply asymmetrictlie sense that the side of the
horizontal hinge line which is on the already faldade is very different than the side on
the intact part of the sample. For the analysis, iftowever possible to neglect this aspect
locally and use a symmetrical model similar to \¥mecki's model, with a few
adaptations to our new understanding. Considehag theY element presented in Fig.
1.1 is made up of two plates bonded together,pbssible to build a model with only one
plate. Indeed, the center of our study will be ptadissipation in the plastic croissant
(defined later), and for this aspect the two plates exactly identical. However, for the

study of the horizontal hinge lines, we will hawedo back to the completé element.

57



Our model is presented in Fig. 5.1. The hinge linesur model are shown as thick lines,
while for the limits of the studied element we dseshed lines. Note that in our model the

lines AF,D, and A,F,D, are not plastic. The plastic regions are detaiteérig. 5.2,

where the arrows represent the local velocity field

e-1---Hi7] Folded region ==—

Figure 5.1: Notations used in this paper. We sty one plate from & element. The
main angle used in the studyas, the angle between the vertical direction andpiage
in a vertical cut.
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Figure 5.2: Detail of the plastic region. The arsorepresent the local velocity field. The
bold lines represent the plastic hinge lines, wttikedashed lines are just the limits of the
fold (not plastic)

The plastic regions comprise the following:

(@)  one horizontal hinge line correspondingAd-,D, in Fig. 5.1. The horizontal
hinge line is responsible for the folding of theteral. Note that there are no
other horizontal hinge lines, although we have Hane basic element as
Wierzbicki.

(b)  one large vertical plastic zone, which we think d¢enapproached by a sort of
croissant. This plastic croissant correspondsedihge lind= FF, in Fig. 5.1.

A few comments are necessary here:

(@ As stated before, the studied figure admits a botael symmetry plane.
Therefore, we will study only the top half of thepicted figure.

(b) The croissant part is made in our model of an eb&ewf horizontal curves. The
radii of curvature will vary in the horizontal pkas well as in the vertical
direction. That is, unlike Wierzbicki’s model, & not axis-symmetric. Indeed the

profile of the horizontal centers of curvature @t the line F,F, (it is instead a
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curve which ends irF, andF,, one can be persuaded by looking at the sketch of

the top view of the folding process).

In the following we will focus on the study of tleeoissant, which requires more
work. Unless directly stated, we will always stutlg croissant.

Let us now determine mathematically the geometryhefplastic croissant. We
choose to use cylindrical coordinates, the paihtwill be found by its horizontal radius

of curvaturer,, horizontal angled, and vertical distance to the origin (direction

perpendicular to the horizontal direction and coplato it in the plane of the plate); the
origin is taken at the horizontal symmetry plane¢cs we study only the top half of Fig.
5.1). The velocity field we assume allows us tosider that two points from the same

initial horizontal section remain in the same honial plane. Therefore, we replageby
the parametery, which is the same coordinate but at the beginmhghe folding
process, whem = Qwe havey =y, [tos@ ).

The range of the variables for the top-half of th@ssant is:

Yo O[O, H] (5.2.1)
o0[-y.y] (5.2.2)

Let's first assume that the radius of curvaturedastant in the horizontal plane.

The radius of curvature is chosen as
ry =1, (=22 (5.2.3)
H o H L

wherer, is the horizontal curvature of the plateRn(where this curvature is at its

maximum).This formulation is approximated for théddie of the plate (where there is

rotation around the horizontal axis).
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5.3 Velocity field
We use here the original idea of Wierzbicki (seg. H.3). We thus write the

velocity field at a pointM defined byy, and & as:

Vi

: Uy _V—ng -
sinE) tan)

%y, (5.3.1)

v, =cos@)a(H -y,) andy, =sin@)a(H +vy, ) (5.3.2)

v,, is the observed horizontal velocity, as shown ig. 5.3. This represents a pure
rotation around point O’ in the horizontal planeotlB the horizontal and vertical
velocities are taken as linear functions of theigal coordinatey,.

This velocity field can be considered as being cosepd of a convective part
v, U, /sin@) - v, u, and a local velocity,, u,/tan¢) responsible for the deformation
of the plate. It can be seen that the velocityhef horizontal center of curvature is given

by the convective part only, so that we considdy tme other part for the computation of

the strain rates. One can rewrite the local veyoa#t

— — VH — .
Viga = —ViUp =— Up = —Ty My (5.3.3)

— tany) —

which corresponds to a simple rotation of rate around the center of curvature
O. Now we modify the previous hypothesis that thaius of curvature does not change

in the horizontal plane. We use instead the follmpiypothesis:

r,(6) = (r +Ar %)(1—%) (5.3.4)

r= (rn *Tmax)/2 is the average of, (6) andAr =r,, — .., is the variation ofr, (6)

The two parameters,, and r, will be determined later. The radius of

X

curvature depends linearly ofh and is taken to be bigger on the edge of the saois
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which is moving forward. This accounts for the maortsethat are much higher close to
this edge and therefore induce much larger rotatida make the assumption that the
velocity field computed before is not much changgdhe modification of the horizontal

geometry (except that the vectoy is changed).

Figure 5.3: Horizontal speeds. The speeds are csetpof a convective speed and a
local speed responsible of the deformation.

62



We can compute now the strain rates and the ratelsamge of curvatures for the
croissant (the horizontal hinge lines will be sadliseparately). The only needed strain
rates will be, as shown in the next part, the tamial strain ratet,, and rate of change of
curvaturexy, (one corresponds to the local horizontal tangergiction of the plate). One

finds:

v, or
& =é—; (5.3.5)
(7 )
=Y y (5.3.6)
r,
54 Plastic flow

Note that these fields are local, i.e. they depemdboth & and y,. We can now
express the plastic flow rule condition for platasd apply it to our problemN
corresponds to the plate resultants wiMlecorresponds to the plate moments (both are

integrals of the local stress field throughout the thickness of the plate).
For a thin, totally plastic plate, the yield criter is
N2

f(N, M)—N—+

0

MI 1-0 (5.4.1)

0

We would have to use the flow rule to find the difen of the force in3D.
However, we can’t use that in a plate theory (noegal flow rule). We replace this by a
set of assumptions. For the croissant, we makaskemption that the stress is mainly in
the horizontal tangent direction, since the defdroma of the croissant is mainly
horizontal. The only part where this assumptioa {groblem corresponds to the middle
of the croissant, where there is an important ceanghe vertical curvature. We neglect

this aspect. Additionally, we neglect in the craisN,,, N,,, as well asM,,andM,,

(where 2 corresponds to the tangent pseudo-verticattion for the plate, while 1
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corresponds to the horizontal direction for thetg)tawe still have two general
stressed\,, andM,; related by Eq. 5.4.1. We justify this by assuntimat the forces that
stretch the croissant in the horizontal directiom the ones that effectively make it move
and therefore are the largest.

We now compute the state of stress in any pointhef croissant. Using the
hypothesis of fully plastic sections, the momemt, and axial forceN,, can be
expressed as functions of the radius of curvatee. Fig. 5.4 for a model of the forces in

a section, where the forces have been drawn djratthe place of a section.

ZWOEH:NO@ if r, <t/2

N, = _ (5.4.2)
o, =N, if r,>t/2
? 4m,* AR

M, = |00 B - =M -0 i sy 5.4.3)

t? :
0 if r, >t/2

Therefore, the moment is much more important witnenradius of curvature is

small, while the axial force is dominant when thdius of curvature grows.

Figure 5.4: Representation of the stresses forp&al section in the direction of the
thickness. The curved lines represent the limitthefplate.
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Let us compute now the strain and stress fieldsttier horizontal hinge line
AF,D,. This problem is a typical hinge line problem, am& use the common

hypothesis of perfectly plastic sections. Therefdhe deformation is localized in an
originally very thin stripe, which undergoes lamgformations as the hinge line rotation
grows larger. The hinge line is presented in Fi§.f6r an advanced deformation of the
hinge line. Locally, the deformation is only duestietching, the radius of curvature is

constant. Hence, we need to compute the stragnfoatthe horizontal hinge lines. One

gets:
&, = cos@) Ley (5.4.4)

The plastic stress is thought to be only a terisilee equal tag, .

f

/

Figure 5.5: Representation of the plastic regiantli@ horizontal hinge lines. The grey
region figures the plastic region. The deformatiodocalized originally in a very thin
layer, which undergoes very large deformations.

Before we go into the final computation of the ghated energies, we have to

determine our radii of curvatune,, andr,,, for the plastic croissant. In the best case we

would study that using a microscope. However, wasy difficult to do and we finally
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chose to take values that appear coherent withrébe of the study. Hence, we will
welcome any further study of this parameter. Wesehia this study radii of curvatures

r.. =t/2 and r_, =15t/2. This corresponds to a region where the axiale®rare

dominant.

5.5 Plastic dissipation in the plastic croissant

We compute in this part the work at any time byygnating the local work and
deduce the energy by integrating in time. As memibbefore, we split the plastic zone
into two parts, Zone 1 which is the croissant, Zode 2 which is the horizontal hinge
line. Because of symmetry, we compute the energgighted in the top half of the
structure, which corresponds to the heightusing the notations of Fig. 5.1.

The energy dissipated in the croissant is given as:
W, = [(N 2, + M [k,)dS (5.5.1)

where the surface element is givend&= r,, cos@)d&ly,

Using Eq. (5.2.1), (5.2.2), (5.3.4), (5.3.5), (5)3.(5.4.2) and (5.4.3), and
performing the integration one gets

2 2
Wl=4|_| ar - r it Mocosz(a')d'+ZM N, cos’(a)a (5.5.2)
tan@) | ;2 —pr2 3t? 3ttangy)
2 2
g=AA 1 Iy 2 A (5.5.3)
tan@/) | y“—ar2 3t 6 ttan)

This energy is the energy dissipated for the hiathe plastic croissant illustrated in Fig.
5.2.

5.6 Fold length
The folding lengthH is given in Section 4 of this report as the minimaf the
two following functions (5.6.1) and (5.6.2):
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L

=Tg+t (5.6.1)
_ L aK/4-1-K/4
i 2 |K/4 {ATAN(wl— K/4+\/K/4J+ﬂ} (5.6.2)
Whereqg :M K = J2“—12 D= E HZt)S _ 2Et3 (5.6.3)

JKA-K /4" n°D | 12-v?)  31-v?)

The function (5.6.2) corresponds to small ratioskiesst on cell sizel,, it
comes from a mechanical analysis of the deformatiminthe sample under particular
boundary conditions. On the contrary, Eq. (5.6sldlue to only to geometric limitations
in the folding process. Indeed a precise analysis been conducted for the small
thicknesses but not for the large ones, therefare(k6.2) is a precise result while Eq.
(5.6.1) is only an upper boundary fdr

5.7 Plastic dissipation in the horizontal hinge lines

For the dissipation due to the horizontal hingedinwe refer to Fig. 5.6. The
hinge line is idealized using the perfectly plastssumption as a very thin layer of plastic
material which undergoes large deformations. Letuppose that the length of the hinge
line does not change. Then, for a given angle &dtian of the hinge linea the

dissipation can be written as:

E = [0,dldS = 0L Syasic = oLyt (5.7.1)

line“~plastic line

The corresponding work is therefow =g L, t°¢, and if we include some

line

potential changes in the length of the hinge lthen we obtain:

W=0g,L

line

t2d+00%t2d (5.7.2)
oa

67



Figure 5.6: Hinge line for the two cases of Eq6(®) (mechanic limit: (a)) and (5.6.1)
(geometric limit: (b)). This schematics is the firstlate when the fold is completely
folded. The top two schematics are top views (i@ timbular direction) while the two
bottom views are side views (perpendicular to thmular direction).

We need now to describe precisely what the geonuodttiye different hinge lines
is. Two cases have to be considered because bofithpotential cases of the computation
of the hinge line (equations (5.6.1) and (5.6.Z))ese two cases are the usual case and
the case where a geometric limit appears (theybatk illustrated in Fig. 5.6, which
presents the top and side views of the studiedesiéfior the two cases). The side view is

projected on the un-deformed configuration. Wethsenotations introduced previously.
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In all cases, we can count two horizontal hingedinn plates of thickness
numbered 1 and 2 in Fig. 5.6. Depending on the,dhsee is or not at the end of the
folding an additional hinge line 3 in the platetibickness2t. It can be seen that the sum

of the lengths of the hinge lines 1 and 2 at thé ehthe folding process i, +2A
where A = \/§(H —t)/2. In the case where there is a double thicknesgeHine, its final

length is(L1 —\/§(H —t))/2. We make the assumption that during the foldiraress the
lengths are linear functions of the folding anglke, the length of the sum of hinge lines 1
and 2 isL, + 2A2a/r and the length of hinge line 3 I§/2—J§(H —t)a/m in the
normal case andl, 1-2a /) /2 in the case where the geometric limit appears.

Using (5.7.2), the dissipated energy in the hottiabiminge lines is computed as:

E, = Not(gL2 + Llﬂ—\/ég(H —t)) for the mechanical limit (5.7.3a)
m m o
E, = Not(E(L2 +L,) +\/§Z(H —t)} for the geometric limit (5.7.3b)

5.8 Crushing force

The dissipated energies for thi@lement are the energy dissipated in the croissant
(remember we only computed the energy dissipatezhenhalf of one plastic croissant,
although theY element comprises two complete croissants) ancileegy dissipated in
the horizontal hinge lines. That is:

E, =4E, +E, (5.8.1)

tot

The crushing force is derived by considering tlinat total energy dissipated for

one fold comes from the external work from the icaitapplied force.

E. =W, =0S,,,2H (5.8.2)

S = 22 + Zsing)L, costy) (5.8.3)
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S

om IS the horizontal tributary surface correspondingheY element. It can be seen
that this surface is double of the area coveredhieyY only, due to the holes of the

structure. This gives the flowing final relation:

1
O=Ey— 5.8.4
TS (5.84)

nom

59 Results and discussion

All the results are given here using the hypothésis L, =L and¢ = 77/3. The

results are compared with the results given by degorp in the HexWeb® Honeycomb
Attributes and Properties. The values from Hexcelsamply converted to the standard
international unit system. The result of the corgmar is given in Fig. 5.7. Note that the
analytic values obtained with Eq. (5.6.2) are pnése with a bolder line while the results
using Eq. (5.6.1) are given using a dotted line.

The results are very interesting for samples whisé Eq. (5.6.2), but are not so
close for samples using Eq. (5.6.1). For most \salhe error is less than 10% for the
results using Eg. (5.6.2) as compared to Hexces$,tesxd for all less than 25%. For
results using Eq. (5.6.1) some large errors appsaseen in Fig. 5.7.

We believe that our results are very satisfactorjnbneycomb made of thin foils,
which are also the most useful ones for applicatioeeding light-weight materials. For
thicker plates, the result for the fold length givby Eqg. (5.6.1) is only an upper
boundary, which was not relevant with the measwesmade for thick sample¥Ve
believe that thicker samples require a different analysis, since the folding mode is
different. An observation of a folded sample in this caseanshthat the folds tend to be
slanted and not horizontal. This is allowed byltrge thicknesses that allow the creation
of some different folding patterns. Therefore, avraalysis would be required to fully
understand the fold length in the case of the tipieites. It could be beneficial then to
study if this theory still gives good results ot far the modified fold length (in the thick

plates’ case).
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— Analytic results: thin plates (Eq. 17)
---- Analytic results: thick plates (Eq. 18)
--- Wierzbicki's results (Eq. 26)

= Experimental result (Hexcel Corp)
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Figure 5.7: Comparison of the crushing stresses. @did lines correspond to the case

where we use Eq. (5.6.2) (thin plates) while theetbones correspond to the case where
we use Eqg. (5.6.1). The bold line gets longeL @ets larger, since the limit between the

two cases depends only, when the material is figkthe ratiot/L.
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The equation obtained by Wierzbicki for the crughstrength is as follows:

o=—1 861, (t°L)" (5.9.1)

It can be seen that it constantly underestimatesctiashing stress by factors
comprised between 15% and 40%. The present modtHifoplates is a lot more precise
than Wierzbicki’'s model and should be used alome.tRick plates, for most cases it is

closer to the data than Wierzbicki's result.

Steps needed to compute the sustained crushimgstraccording to the present
model are as follows:
1) Determine which case (Egs. (5.6.1) or (5.6.2)) toalse used. Use an estimate
(interpolation between known values) or an expenialeresult foro , deduce
K through Eq. (5.6.3). Computél through Eq. (5.6.1) and (5.6.2) and
determine which case is the right one. It is alsssfble to assume which case
it is using the results of this study and by cormputthe ratiot/L of the
samples. In this study we found that samples vatio darger than 1.50e-2 are
found to show the geometric limit. However thiordy valid for this alloy, but
can be used as a first approximate.

2)  ComputeE, through (5.5.3)E, through either (5.7.3) and deduEsg, .
3) ComputeS,,, through (5.8.3) and end up with using (5.8.4).

5.10 Conclusions

We present in this part of the thesis a model tmpagte the sustained crushing
strength of adhesively-bonded metallic honeyconhlas &re used for shock and energy
absorption. The derivation uses an energetic balaetwveen the external and internally
dissipated works. This requires definitions of mogeometry, kinematics, and stress
field. The results are found to be very satisfactor honeycombs with thin walls, which
are also the most common in light-weight applicgaioFor honeycombs made with
thicker foils, the result is found to be less psedbut to improve the past results. A more

72



precise study of these honeycombs would probablydeessary. However, it would face
one of the main limitations of this paper, whichtie hypothesis of totally plastic

sections. The second limitation is the difficullystudying one of the parameters of the
problem, which is the radius of curvature of that@lin the plastic region. This parameter

is a crucial one, and had to be assumed in this dystu
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Appendix

1) System solved in Section 4.2 for thielement

[ cosh(a 1) cos(Bl) 0 0 0 0 } A11
0 0 cost‘(az) cos(Bz) 0 0 A12
0 0 0 0 cosh(a) cos(B2) A | 0
—ay@inh(ag)  Basin(py) agsinhag)  -Bysin(py) 0 0 Ayl
—0(1Binh(0(1) B]_Bin(ﬁl) 0 0 Gzﬁinh(dz) —Bzﬁin(ﬁz) A31
_Dl(al)zcost‘(al) Dl(Bl)zcos(Bl) Dz(az)zcost‘(az) DZ(BZ)ZCOS(BZ) Dz(az)zcosh(az) DZ(BZ)ZCOS(BZ)_ A32

msr @ msr @ miT @ msr @ E(2t)° Et®
wWherea, = 1+ K 2 a0, =" 14k 2 g =" |k @ -1, =T |yk 2 -1, D, = D, =
Y2 m "’ 2p 2m A 20 m A 2¢ 2m to121-v?) 2 12-v?)

2) System solved in Section 4.3

1 0 1 0 AL 1
1—% K 1—% 1—% K 1—% A y

2
e cos(p) e~ sin(p) e “cos(p) e “sin(p) A = 0
_ed[coS(B)(l-g) —sin(B)EjK 1—% } eo‘[sin(B)(l—g + cos(B)EjK 1—5 } e_o‘[cos(B)(l—g) + sin(B)EjK 1—% } e‘“[—sin(B)(l—gj + cos(B)EyK 1-% } Aj 0

Wherea = mpy1-K /4, = n{p\/K—/4
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