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Abstract

This paper presents a “ historical ” formalism for dynamical systems, in its
Hamiltonian version (Lagrangian version was presented in a previous paper). It
is universal, in the sense that it applies equally well to time dynamics and to
field theories on space-time. It is based on the notion of (Hamiltonian) histories,
which are sections of the (extended) phase space bundle. It is developed in the
space of sections, in contradistinction with the usual formalism which works in
the bundle manifold.

In field theories, the formalism remains covariant and does not require a
spitting of space-time. It considers space-time exactly in the same manner than
time in usual dynamics, both being particular cases of the evolution domain.
It applies without modification when the histories (the fields) are forms rather
than scalar functions, like in electromagnetism or in tetrad general relativity.

We develop a differential calculus in the infinite dimensional space of his-
tories. It admits a (generalized) symplectic form which does not break the
covariance. We develop a covariant symplectic formalism, with generalizations
of usual notions like current conservation, Hamiltonian vector-fields, evolution
vector-field, brackets, ... The usual multisymplectic approach derives form it,
as well as the symplectic form introduced by Crnkovic and Witten in the space
of solutions.

1 Introduction

Our historical Hamiltonian formalism is based on the notion of history. Ac-
cording to [24], histories “ furnish the raw material from which reality is con-
structed”.

This follows our previous work ([6], hereafter paper I) which presents a
Lagrangian formalism on the same basis (see an outline in Appendix A). An
history (or kinematical history) is a possible evolution of a dynamical system,
also called a configuration [18]. An history which obeys the dynamical equations
becomes a physical evolution, or particular solution.
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Our approach applies equally well to usual time dynamics (tD) and to co-
variant field theories (FT), and allows further generalizations. These different
contexts (tD and FT) only differ by their evolution domain (see below): the
time line in tD; the space-time in FT. But all expressions or equations are iden-
tical in both cases. Thus space-time in FTs appears on the same footing than
time in tD, with the only difference that it is 4 dimensional rather than mono-
dimensional. In the case of FTs, our formalism remains entirely covariant and
does not require any splitting of space-time.

In addition, it applies without modification to the case where the fields are
not functions, but forms (e.g., on space-time). This applies to electromagnetism
or to general relativity in the tetrad formalism.

In paper I, we have presented its Lagrangian version. Here we present the
Hamiltonian one. The most important result is the existence of a canonical (gen-
eralized) symplectic form which remains entirely covariant. In time dynamics, it
is equivalent to the usual symplectic form. In field theories, it remains covariant
and we show that the multisymplectic formalism may be seen as derived from
it. To mention some general ideas underlying this approach,

• dynamics is defined, not versus time but versus an evolution domain. It
reduces to the time line in tD (a particular case); to space-time for FT’s.
But it is treated exactly in the same manner in both cases.

• An history may be a function on the evolution domain (like a scalar field
on space-time) but also, more generally, a differential form on it; in any
case a section of a particular fiber bundle.

• A particular solution is an history which is an orbit of a [Hamiltonian]
flow in the corresponding bundle. Such flows have the dimension of the
evolution domain. They may be called general solutions.

• Our calculus does not hold in configuration space, or phase space, but
in the space of histories which has infinite dimension It is inspired by
diffeology [14] considerations. It may be seen as generalization of both
[29] and the multisymplectic formalism, and as a synthesis between them.

• In the space of (Hamiltonian) histories, we define a canonical and covariant
(generalized) symplectic form; equivalent to the usual symplectic form
in tD; giving raise to both the multisymplectic form and the symplectic
currents [29] in FTs.

• Covariant field theories (in space-time) and time dynamics appear as two
particular cases of this formalism.

In some sense, our formalism appears as a generalized synthesis between
the multisymplectic geometry (see, e.g., [11]), the “ covariant phase space ”ap-
proaches (see, e.g., [11]), the canonical approach and the geometry of the space
of solutions. It remains entirely covariant.

The section 2 introduces the notion of history (2.1). It defines their prolonga-
tions to velocity-histories and Hamiltonian histories, involved in the Lagrangian
and Hamiltonian formulations of dynamics, and introduces the phase space bun-

dle (2.2). It also explicits our differential calculus in the space of Hamiltonian
Histories (2.4). Section 3 expresses the Hamiltonian Dynamics in its historical
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formulation. It introduces the generalized symplectic form and the evolution
H-vector field (3.1). It derives the universal historical evolution equations (3.2)
and explicits the dynamical solution (3.3). Section 4 gives illustrations, apply-
ing the general formalism to time Dynamics (4.1), and to scalar field theories,
where our formalism is compared to the multisymplectic one (4.2). Section 5
considers conservation (5.1) and symmetries (5.2) It discusses the notions of
[generalized] Poisson brackets and observables (5.3). The last sections apply to
electromagnetism (6) and to first order general relativity (7). An outline of the
historical Lagrangian formalism presented in paper I is given in Appendix A.

2 General framework

Our framework applies equally well to (non relativistic) time dynamics and to
relativistic (covariant) field theories. It is formulated in terms of histories, that
we define below. Shortly, an history is associated to each degree of freedom of
the dynamical system. We treat only the case of an unique degree of freedom;
the generalization to multicomponent-systems is straightforward and is treated
in illustrations below. The case of a form-field rather than a scalar field, like
the electromagnetic potential in Maxwell theory, is treated as a single degree
of freedom, to which correspond an unique (although not scalar-valued) history
(a 1–history); or the tetrad general relativity, where the cotetrads forms eI and
and the spin connection forms ωIJ are also 1–histories. We treat first the scalar
field case and then extend to the form field.

2.1 Histories

A dynamical system is characterized by its configuration bundle C → D.
Here, D is the domain of the theory. In usual time dynamics (tD), this is the
time line IRt, or an interval of it. In relativistic field theories (FT), this is space-
time. We treat both cases equally, and more generally, D is a n-dimensional
differentiable manifold, possibly with a given metric. We label D with arbitrary
coordinates xµ (the unique coordinate t = x0 for the timeline in tD), which
disappear in our final results which are covariant 1. They generate adapted
[local] coordinates in the various fiber bundles we will consider. Our philosophy
is to treatD as some kind of “ n-dimensional timeline ” w.r.t. which the evolution
is expressed.

An element of the fiber is a possible value of the dynamical variable. Most
physical systems admit many degrees of freedom (or components). We treat
the case of an unique component. The generalization to composite fields is
straightforward as it will appear in the examples below. Thus for the particle in
space, an history corresponds to each coordinate as C : t → qi(t); for a scalar

field in space-time, C : (xµ) → C(xµ) generally written ϕ(xµ); for a composite
field, one history for each component φA.

An history (or field-history, or configuration), that we always write C, is
a section 2 of the configuration bundle C: a function on D for the particle
or for the scalar field; but, more generally, a differential form on D like in

1 We define the non covariant forms Vol
def
= dnx, Volµ

def
= ∂µ yVol and Volµα

def
= ∂α, ∂µy

Vol in D, as usual.
2 For mathematical conditions imposed on them, see, e.g., [1].
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electromagnetism or in tetrad general relativity (see below). Thus, the space of

histories C = Sect(C), or possibly a subset of it. The histories which obey the
dynamical equations are the particular solutions.

2.2 The Phase Space Bundle and Hamiltonian Histories

Given an history C, the corresponding velocity-history is its first jet extension

(or prolongation), the pair CV
def
= jC

def
= (C, dC) (with d the exterior

derivative in D) or (C,Cµ) in components. This is a section of the first jet
bundle JC. In paper I, we have developed the Lagrangian historical formalism
in this jet bundle (see A). 3

Its affine dual J ∗C → C. Its bundle manifold, the phase space 4, admits
the adapted [Darboux] coordinates 5 xµ, φ, pµ, π. They act by duality [18] as

〈(xµ, φ, pµ, π), (xµ, φ, vµ)〉 = (pµ vµ + π) Vol.

We see the polymomenta pµ as the dual components of the (n-1)–form over D,

p
def
= pµ Volµ, that we call the polymomentum 6.
The (extended) phase space bundle is the bundle Y = J ∗C → D. A section

is a map

Y = (Xµ, C, P,Π) : xµ → Xµ(xµ) = xµ, C(xµ), P (xµ),Π(xµ),

that we call an Hamiltonian history (hereafter H-history) 7. The components are
expressed in the table 1, where Ωk

D = Ωk(D) is the space of k-forms on D. We
call P the historical momentum. The trivial maps Xµ, defined for convenience,
will appear as the conjugate variables to the Πµ.

Any H-history Y defines a n-dimensional hypersurface in the phase space,
which is simply its image Im(Y ). And Y is a diffeomorphism D → Im(Y ) =
Y (D). When the history is a solution, Im(Y ) is an orbit of the evolution flux
(see below).

We will work in the space of Hamiltonian histories rather than in the phase
space bundle. We first define differential calculus in it.

3 An interesting different point of view [23] considers a field configuration as a section of
the infinite jet bundle J∞C.

4 Different authors use various appellations for this bundle or for its associated manifold:
the covariant phase space bundle, the doubly extended phase space [7], the extended dual
bundle [22], the extended multimomentum bundle [19], the De Donder-Weyl multisymplectic

manifold ...
5 For time dynamiccs, replace xµ by t, φ by q, pµ by p.
6 Equivalently, the pµ are the components of the dual polymomentum ⋆p = pµ dxµ (sum

over indices).
7 It is known that Y may also be seen as the bundle

∧n
2
T∗Q of n-forms over Q which

annihilates two arbitrary vertical vector-fields, see, e.g., [11], [17]. In this case, pµ and π

appear as the coefficients in the expansion of such an n-form.
There is a canonical projection which projects it out to the linear dual [7] Ỹ, forming the

line bundle [22]

ρ : Y → Ỹ : (xµ, ϕ, pµ, π) → (xµ, ϕ, pµ).

Interestingly [22, 3, 8], the (scalar) Hamiltonian may be seen as a section h̃ of that bundle,

which defines the function H on Ỹ through

h̃(xµ, ϕ, pµ) = (xµ, ϕ, pµ, H (xµ, ϕ, pµ)) .

It is equivalent to work in Y or in Ỹ. Both are polysymplectic. For the relation between both
approaches, see also [3, 22, 8].
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Table 1: The components of an hamiltonian history

C D → Ω0
D (xµ) → C(xµ)

P = P ν Volν D → Ωn−1
D (xµ) → P (xµ)

P ν D → Ω0
D (xµ) → P ν(xµ)

Πν D → Ωn−1
D (xµ) → Πν(x

µ)

Π = Πν dxν D → Ωn
D (xµ) → Π(xµ)

Xν dxν D → Ω0
D (xµ) → Xν(xµ) = xν

2.3 Extension to form-fields

Our formalism applies equally well in the case where a field-history C is a r-form,
rather than a function (0-form), on D. We treat explicitly the case r = 1. This
applies to electromagnetism, where C corresponds to the Maxwell potential A;
or to general relativity in tetrad formalism, where histories correspond to the
cotetrad fields eI and to the connection forms ωIJ , see below. We do not
consider separately the components of a form-field, but we treat it globally as
an history C as in the table 2.

The scalar case corresponds to r = 0. When r > 1, the treatment is similar,
with indices replaced by multi-indices (see paper I, and appendix C). The table
2 presents the components of an Hamiltonian history in the case r = 1. In all

formula, juxtaposition implies wedge product in D. We calculate now in
the infinite dimensional space Y of Hamilton–histories.

Table 2: The components of an hamiltonian history

C = Cαdx
α D → Ωr

D (xµ) → C(xµ) = Cα(x
µ) dxα

P = Pµα Volµα D → Ωn−1−r
D (xµ) → P (xµ) = Pµα(xµ) Volµα
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2.4 Differential Calculus with Hamiltonian histories

An Hamiltonian history (H-history) Y is a section of the bundleY. We call Y the
infinite dimensional space of H-histories, and we construct differential calculus
on it 8. We represent such a section (a H-history, a “ point ” of Y) as

Y = (X,C, P,Π) = (Y A),

where we treat the Y A = X,C, P,Π (with A = 1, 2, 3, 4) like four coordinates
in Y9.

We generalize the notions of functions, vector-fields, differential forms... to
H-maps, H-vector-fields, H-forms. This appears necessary to define a correct
calculus. A H–map is an application

F : Y → Ω(M) : Y = (Y A) → F (Y ) = F (Y A).

When F (Y ) ∈ ΩR(M), we call F a [0;R]-map. The Hamiltonian functional H
will appear as a particular [0,n]–map. We write C(Y) = Ω0(Y) the space of
H-maps.

Hereafter, juxtaposition of H-maps will mean their wedge product on D,
always implicit. This gives to C(Y) an algebra structure. Also, the differential
calculus on D is easily lifted to Y through the formula

(dF )(Y ) = d(F (Y )).

We call occasionally d the horizontal derivative, but we do not consider it as
part of the proper differential calculus on Y. We introduce below a genuine
external derivative D in Y, different from d and commuting with it. This is
analog to the double complex structure introduced by [4].

2.4.1 Derivations are vector-fields

We first define derivations of H-maps w.r.t. their arguments Y A, under the form
of basic partial derivative operators ∂A = ∂

∂Y A acting on Y. This is accomplished
through the variation formula (wedge product in D assumed)

δF =
∂F

∂Y A
δY A =

∂F

∂X
δX +

∂C

∂X
δC +

∂F

∂P
δP +

∂F

∂Π
δΠ (1)

=
∂F

∂Xµ
δXµ +

∂C

∂X
δC +

∂F

∂P
δP +

∂F

∂Πµ

δΠµ,

corresponding to the general variation of a H-history

δY = (δX, δC, δP, δΠ) = (δY A).

We call the operators ∂A the basic H-vector-fields in Y. The general H-
vector-field on Y is V = V A ∂A, whose components V A ∈ C(Y) are arbitrary
H-maps. It acts on an H-map F , as V (F ) = V A ∂F

∂Y A (wedge product in D still
implicit) 10.

8 Note that similar approaches ([30], [4]) consider elements of Ω(Sect(ΩD ×D).
9 X holds for the four Xµ; C holds for the infinite set of values C(x) (or Cµ(x) if r 6= 0).

Our notation allows us to manage this infinite set like one unique coordinate; similarly with P .
10 This requires some conditions on the grade of F that we do not detail here.
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2.4.2 H-forms

We define [differential] H-forms in Y through duality. First the basis one-forms

DY A – which mean the collection DXµ,DC,DP,DΠµ – through their actions
on an arbitrary H-vector-field,

〈DY A, V 〉 = V A.

The general one-H-form expands as

α = αA DY A,

whose components αA ∈ C(Y) are arbitrary H-maps (sum over repeated indices
is always assumed). We have

〈α, V 〉 = αA V A;

and the exterior derivative of a H–map F

DF =
∂F

∂Y A
DY A.

This is just an other way to write equ.(1), after realizing that a variation of a
H-history is simply the action of a H-vector-field δ = δA ∂A on it, namely

δY A = δ(Y A) = 〈DY A, δ〉 = δA

(this requires δA to be of the same grade than Y A). When F is a [0,R]-map, we
call DF a [1,R]-H-form; [0,R]-maps are [0,R]-H-forms.

The wedge product of H-forms, ∧ (not to be confused with the wedge product
on D which is always implicit), is defined as antisymmetrized tensor product,
as usual. It generates [2,R]-H-forms, etc. The external derivative D also applies
to [k,R]-forms and generates [k+1,R]-forms. Thus we have the rules expressed
in table 3. Contraction of H-vector-fields with H-form is as usual.

Table 3: Differentials of H-forms

( [k;R]-form) ∧ ( [k’;R’]-form) = [k+k’;R+R’]-form

d ( [k;R]-form) = [k;R+1]-form ;

D ( [k;R]-form) = [k+1;R ]-form .

We have for instance

DH =
∂H

∂Xµ
DXµ +

∂H

∂C
DY C +

∂H

∂P
DY P +

∂H

∂Πµ

DY Πµ

=
∂H0

∂C
DY C +

∂H0

∂P
DY P + dxµ DY Πµ
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where we used equ.(2) in the last term.
These formulas also apply equally well in the case where the histories are

not scalar, i.e., [0,r]-histories rather than [0,0]-histories. We give in appendix
B their explicit development for one-form valued histories, i.e., [0,1]-histories
rather than [0,0]-histories. They generalize easily to the general case of [0,r]-
histories. We give in table 4 the grades of the different H-maps and H-forms
involved (scalar case corresponds to r = 0).

Table 4: The grades of the H-maps and H-forms

H-form H ∂H
∂C

∂H
∂P

DH Ω

grade [0;n ] [0,n-r] [0;r+1] [1;n] [2;n-1]

3 Dynamics and evolution

3.1 The symplectic H-form

The space of histories Y admits the canonical [1;n-1]-Hform

Θ
def
= P DC +Πµ DXµ = Pµ DC Volµ + π DXµ Volµ,

that we call the Poincaré-Cartan H-form [18]. Its [vertical] exterior derivative

Ω
def
= DΘ = DP ∧DC +DΠµ ∧ DXµ,

is a closed and non degenerate [2;n-1]–form on Y, that we call the symplectic

H–form. For a 0-history, Ω = (DPµ ∧ DC) Volµ; for a 1-history, Ω = (DPαµ ∧
DCα) Volµ. For r > 1, the same formulas hold, with indices replaced by multi–
indices. We will see below that it allows us to construct a genuine (scalar-valued)
symplectic form in the space of solutions, which identifies to that of [29].

Under some conditions, a H–map F admits a symplectic gradient ∇ΩF , a
H-vector-field defined through

∇ΩF y Ω = DF.

3.2 Evolution

The Dynamics is described by the historical Hamiltonian11

H = h Vol = H0(C,P ) + Πµ dxµ. (2)

This is a [0;n]-H-map H : Y → Ωn
D.

11 see appendix A for obtaining it as a result of a Legendre transform.
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The evolution vector-field is defined as its symplectic gradient Z = ∇ΩH:

Z y Ω = DH.

We emphasize that there is no analog in the multisymplectic formalism. It
expands as Z = ZA ∂A, and the equation above gives its components through
ZA ΩAB = ∂H

∂Y B , with explicit solution

ZP = −
∂H

∂C
, ZC =

∂H

∂P
, ZXµ

=
∂H

∂Πµ

= dxµ, ZΠµ = −
∂H

∂Xµ
= 0 (3)

(note the difference between xµ and Xµ), where ZP and ZC are [0;n-r]- and
[0,r+1]–Hmaps respectively. This evolution vector-field acts as a derivation
operator on any H–map F , giving the H–map

Z(F ) = ZA ∂F

∂Y A
,

with the components given in equ.(3); in particular the derivatives of the “ co-
ordinates ”, Z(Y A) = ZA. In particular Z(Xµ) = dxµ, Z(Πµ) = 0.

3.3 The dynamical solution

An H–history Y = (Y A) is a real motion (solution) when the evolution vector-
field is tangent to it. This means dY A = Z(Y A) = ZA, i.e., using (3)

dC =
∂H

∂P
; dP = −

∂H

∂C
, dXµ = dxµ, dΠµ = 0. (4)

The two last are identities. We recall that d is the (horizontal) exterior derivative
in D, not be confused with exterior derivative D in Y.

This “ historical ” version of the Hamilton–De Donder–Weyl equations ap-
plies to tD as well to FT. We show below that it leads to the usual dynamical
equations. It includes the case where the field is a form rather than a map (e.g.,
electromagnetism or general relativity), as we show in applications below. For
a multi–component history (field) it holds for each component.

It is easy to check that the previous equations insures stationarity of the
action

∫
D

L, with the Lagrangian H–map (see paper I)

L = P dC −H.

Namely, using the commutativity between d and D,

DL = D(P dC −H) = DP dC − P DdC −DH =

= DP dC − ǫ(d(P DC)− dP DC)− (
∂H

∂C
DC +

∂H

∂P
DP ).

Inserting the motion equations above, this reduces to DL = −d(P Dc), an exact
form in D which gives zero contribution to the integral, QED.
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4 Illustrations

4.1 Application to time Dynamics

In usual dynamics, D is the time line, Vol = dt, Π = π dt and Πµ = Πt = π.
Then

H = 1
2 ⋆P P + U(C) dt+ π dt = h dt,

with h = 1
2 P P +U(C) +π the usual Hamiltonian function; C = q and P = p

are zero-forms (r = 0). Then ∂H
∂C

= ∂h
∂C

dt = U ′(C) dt and ∂H
∂P

= ∂h
∂P

dt = P dt
are both [0;1]-Hmaps. Ω = DP ∧DC+DΠ∧DT is a [2,0]-form (a genuine scalar
valued symplectic form).

Then, (4) immediately gives the usual Hamilton equations (we reintroduce
the familiar notations):

dC = Ċ dt =
∂H

∂P
=

∂h

∂P
dt =⇒ Ċ = q̇ =

∂h

∂p
.

dP = Ṗ dt = −
∂H

∂c
= −

∂h

∂c
dt =⇒ ṗ = −

∂h

∂c
;

with

dT =
∂H

∂Πt

= dt; dπ =
∂H

∂T
= 0. (5)

4.2 Scalar field; Link with Multisymplectic

For classical field theories, D = M is space-time (n = 4). A scalar (r = 0)
field C is usually written ϕ. Then P = Pµ Volµ is a [0,3]-Hmap, with dual

components Pµ, H = h0 Vol + Πµ dxµ is a [0,4]-Hmap. We have

dC = C,µ dxµ, P = Pµ Volµ, dP = Pµ
,α dxα Volµ = Pµ

,µ Vol.

Then ∂H
∂P

= ∂h
∂Pµ dxµ is a [0,1]-Hmap; ∂H

∂C
= ∂h

∂C
Vol is a [0;4]-Hmap. The

symplectic [2,3]-Hform

Ω = DP ∧DC +DΠµ ∧DXµ = DPµ ∧DC Volµ +DΠµ ∧DXµ,

with Volµ a 3-form on space-time D = M (not on Y). Then, equ.(4) implies the
usual Hamilton equations

C,µ =
∂h

∂Pµ
; (Pα),α = −

∂h

∂C
.

Assuming the standard Hamiltonian for scalar field theories,

H = 1
2 ⋆P P + U(C) Vol + 1

2 ⋆Πµ dxµ = (12 Pµ Pµ + U(C) Vol + 1
2 π2) Vol,

we obtain
dC = C,µ dxµ = ⋆P = Pµ dxµ ⇒ C,µ = Pµ;

dP = −
∂H

∂C
= −U ′(C) Vol =⇒ dPµ Volµ = −U ′(C) dxµ Volµ =⇒ Pµ

,µ = C,µµ = −U ′(C).
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4.2.1 Link with Multisymplectic

The multisymplectic form appears as an emanation of our symplectic H-form,
as the 5-form in the phase space bundle manifold Y (not on SY ),

ΩM =
−

dpµ
−

∧ V OLµ

−

∧
−

dϕ+
−

dπ
−

∧ V OL,

where all forms, exterior derivative
−

d and wedge product
−

∧ are in the bundle

manifold Y, V OL
def
= ǫµαβγ

−

dxµ
−

∧
−

dxα
−

∧
−

dxβ
−

∧
−

dxγ and

V OLµ
def
= ǫµαβγ

−

dxα
−

∧
−

dxβ
−

∧
−

dxγ .

4.2.2 Application to r-histories

Exactly the same formalism applies when fields are forms rather than scalar
functions, with indices replaced by multi-indices (see C):

c = cα dxα, dc = cα,µ dxαµ;

P = Pαµ Volαµ, dP = P
αµ

,β Volαµ dβ , H = h Vol,

∂H

∂P
=

∂h

∂Pαµ
dαµ,

∂H

∂c
=

∂h

∂cα
Volα,

giving the Hamilton equations

cα,µ =
∂h

∂Pαµ
; (Pαµ),µ = −

∂h

∂cα
,

where all multi-indexes are antisymmetrized.

5 Conservation and symmetries

5.1 On shell conservation

Interestingly, equ.(4) implies, on shell,

DH =
∂H

∂c
Dc+

∂H

∂P
DP ≃ dc DP − dP Dc

=⇒ DDH = 0 = Ddc DP −DdP Dc = dΩ

after derivation: the generalized symplectic form is conserved on shell. This is
the covariant version of the on shell conservation of the symplectic current in
the multisymplectic formalism.

Since the value of Ω is a (n − 1)-form on D, it can be integrated along
a 1-codimensional hypersurface of D. This provides a canonical scalar-valued
symplectic form on the space of solutions since the on–shell conservation of Ω
implies that this symplectic form does not depend on the choice of the hypersur-
face (assumed Cauchy for FTs). Thus, this provides a canonical (scalar valued)
symplectic form on the space of histories, which identifies with that introduced
by [29], so that our result may be seen as a generalization of their work and its
link with the multi–symplectic formalism.
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5.2 Symmetries

We recall that a solution is a H-history Y verifying Z(Y ) = dY or, in coordi-
nates, ZA = dY A. Any vector-field δ (of convenient grade) defines a variation
δ(Y ) of that history. One may check immediately that the variation of a solution
remains a solution, i.e., that

Z(Y ) = dY =⇒ Z(δ(Y )) = dδ(Y ).

• A symmetry is a Hamiltonian vector-field δ that preserves H :

0 = δ(H) = δ yDH = δ y (Z yDH) = −Z y (δ y ω) = ω(δ, Z).

In coordinates, this implies δA ∂H
∂Y A = 0.

• Being Hamiltonian, δ is a symplectic gradient:

δ y ω = DU.

Then
δ(H) = −Z y (DU) = −Z(U) = 0 :

the quantity U is conserved on shell.

5.3 Generalized Poisson bracket and observables

The main result here is the introduction of the historical symplectic H–form Ω.
Is it possible to define a Poisson-like bracket from it ? The formula above
suggests that the canonical “ variables ” are the forms C and P and that the
bracket of two Hmaps could be defined as

{f, g} =
∂f

∂C

∂g

∂P
−

∂g

∂C

∂f

∂P
= Xf yDg,

involving the multisyplectic gradient Xf such that Xf y Ω = Df .

Table 5: The types of the Hmaps and Hforms involved

c P f,Df g,Dg Ω Xf {f, g}

[0; r] [0;n-r-1] [0;R],[1;R] [0;S],[1;S] [2,n-1] [-1;R+1-n] [0,S+R+1-n]

We give in table 5 the grades of the various quantities involved. The grade
[-1;R+1-n] for the vector-field indicates that the inner product with a [1;K]–
Hform gives a [0;R+1-n+K]–Hmap. This definition requires that the quantities
involved are well defined and we restrict the validity of our bracket to such
cases. This occurs when f and g have both degrees greater or equal to those
of c and P , namely r and n − r − 1; or, alternatively, when f or g does not
depend on the “ canonical variables ”. To illustrate, we have

{P, c} = 1;

12



{H, c} =
∂H

∂P
= dc;

{H, P} = −
∂H

∂c
= dP.

These formulas validate the definition of our bracket. It is a generalization of
that proposed by [15].

It is defined for Hmaps, whose values are forms, rather than scalar functions.
However, an observable is generally considered as scalar-valued, not form-valued.
But any form provides a scalar by integration over a submanifold of adapted
dimension. Thus, it seems a convenient point of view to consider generalized ob-
servables as form-valued, from which non–local scalar observables are extracted
through integration over intermediary submanifolds. This corresponds indeed
to what is done in Loop Quantum Gravity through the introduction of the
Holonomy-Flux algebra.

The observables which commute with the Hamiltonian and with the con-
straints correspond to the complete observables in the sense of [20, 5] (see also
[28]).

6 Application to electromagnetism

The usual treatment of electromagnetism considers the components Aµ of the
electromagnetic form A as the dynamical variables, with the scalar Lagrangian

L = 1
2 Fµν Fµν , where Fµν

def
= ∂µAν − ∂νAµ. Indices are lowered / raised with

the fixed flat Minkowski metric.
1) The usual (non covariant) analysis proceeds by fixing one time coordi-

nate t = x0, so that

L = F 0i (∂0Ai − ∂iA0) +
1
2 F ij (∂iAj − ∂jAi).

We obtain the conjugate momenta P 0 def
= ∂L

∂Ȧ0

= 0 and P i = F 0i = ∂0Ai−∂iA0.

The first relation appears as the primary constraint P 0 = 0 and the second
inverts as ∂0Ai = P i + ∂iA0. Applying a partial Legendre transform leads to
the Hamiltonian

H = λ P 0 + Ȧi P
i − [P i P i + 1

2 F ij (∂iAj − ∂jAi)]

= λ P 0 + (∂iA0) P
i − 1

2 F ij (∂iAj − ∂jAi).

The primary constraint is second class and generates the secondary con-
straint (P i),i = (F 0i),i = 0: the Gauss law. Finally, the motion equations give

Ȧi = (A0)i and Ṗ i = −(Fij)j . This may be synthetized in Fµν
,ν = 0.

2) The (covariant) multisymplectic analysis starts from the same Lagrangian
and, now, associates to each variable Aµ the four polymomentum components
pµν = 1

2 (Fµν − Fνµ). They obey the constraints Cµν = pµν + pνµ = 0. The
Hamiltonian

λµν Cµν − 1
2 pµν pµν ,

leads to the usual equations, via a multisymplectic analysis (see, e.g.[26]).
3) Adopting our formalism, we write L = L Vol = 1

2 dA ⋆dA so that P =
⋆dA, which inverts as dA = ⋆P : there is no constraint and our Hamiltonian
takes the form H = 1

2 P ⋆P .
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This gives the motion equations

dA =
∂H

∂P
= ⋆P ;

dP = 0,

which condense into d⋆dA = 0.

7 Application to canonical gravity

7.1 Dynamics in the first order formalism

The dynamical variables are the cotetrad components eI and the Lorentz con-
nection forms ωIJ , with conjugated polymomenta PI and ΠIJ . We calculated
them in paper I, namely PI = 0 and

ΠIJ = PIJ
def
= ǫIJKL eKL. (6)

They generate primary constraints and we write the Hamiltonian H-form

H = PI V
I+(ΠKL−PKL)W

KL+PI de
I+ΠKL dωKL−ǫIJKL eI eJ (d ωKL+(ωω)KL)

= PI V I + (ΠKL − PKL) W
KL + PI deI −ΠKL(ωω)

KL

with the Lagrange multipliers V I and WKL.
The development of equ.(4) gives the motion equations:

•

deI =
∂H

∂PI

= V I + deI ,

giving V I = 0;

•

dωIJ =
∂H

∂ΠIJ

= W IJ − (ωω)IJ ; (7)

•

dPI = −
∂H

∂eI
= 2 ǫKLIJ eJ WKL. (8)

The two latter combine to give the secondary constraint
dP I = 0 = 2 ǫKLIJ eJ (dωKL+(ωω)KL), leading to zero Ricci curvature;

•

dΠIJ = −
∂H

∂ωIJ
= 2 ǫPQK[I ePQ ωK

J] = 2 ǫNKIJ eNM ωK
M (9)

appears as a secondary constraint giving zero torsion, as can be checked
using identities 6 and 16.
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Appendices

A Outline of paper I

A.1 Velocity–Histories

Histories and velocity-histories are defined as in the text (2.2). We call SV ⊂
Sect(V) the space of velocity-histories (technically, an exterior differential sys-

tem [3]). Since J is canonical, there is a one-to-one correspondence between
histories and velocity-histories.

We express the Lagrangian dynamics in SV rather than in the jet bundle
itself. We treat SV like an infinite dimensional manifold where C and dC
play the role of coordinates. We define H-maps SV → ΩD as generalizations
of functions. They form the algebra Ω0(SV ), and we have defined derivations
w.r.t. their arguments C and dC. We have also defined differential forms on SV ,
forming the spaces Ωr(SV ), and an exterior derivative D : Ωr(SV ) → Ωr+1(SV ),
which commutes with d (occasionally called the horizontal exterior derivative).

Dynamics is described through the Lagrangian functional

L : SV → Ωn
D : CV

def
= (C, dC) → L(CV ),

a H-map over SV , of type [0,n].
We define the historical momentum

P
def
=

∂L

∂(dC)
= Pµ Volµ (10)

as a [0;n-r-1]-Hmap admitting the dual components Pµ. This formula is written
with multi-indexes (see paper I); they reduce to ordinary indices when C is a
0-history; to an antisymmetric pair of indices when C is a 1-history.

Then, applying our differential calculus, we have (wedge products between
forms in D are implicitly assumed)

DL = DC
∂L

∂C
+D(dC) P = DC (

δELL

δC
)− dΘ. (11)

We have defined the EL derivative

δELL

δC

def
=

∂L

∂C
− ǫc d

∂L

∂(dC)
, (12)

with ǫc = (−1)grade of C; and also the historical Lagrange form (or Lagrange
H-form) as the [1; n-1]-form

Θ
def
= −DC P = DC

∂L

∂(dC)
.

The latter gives by derivation the [2; n-1]-form DΘ = DP ∧DC (implicit wedge
product in D) which we call the symplectic H-form (and Θ the generalized
symplectic potential). This is the historical version of the symplectic structure
on TM (see, e.g.[16, 2]). 12

12 or of the pre-sympletic structure of the evolution space.
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An arbitrary variation of an history is seen as the result of the application
of a vector-field δ in SV as

δC = 〈DC, δ〉; δ(dC) = 〈D(dC), δ〉.

This leads to equ.(11). Since the last term in this equation does not contribute to

the action, stationarity corresponds to the Euler-Lagrange equation δEL
L

δC
= 0.

These equations are explicitely covariant. They apply equally well to tD and
FT’s, and they include the case where the C is a r-history, i.e., a form rather
than a function.

A.2 Symmetries

A vector-field δ is a symmetry generator when it does not modifies the action.
This means that it modifies L by an exact form (in D) dX only. Hence, for a
symmetry,

δC (
δELL

δC
)− d(δC P ) = dX.

Defining the Noether current ([n-1]-H-map) j
def
= X + δC P , we have the

conservation law

dj = δC
δELL

δC
≃ 0 (on shell).

Locally, j = dQ which defines the Noether charge density (n−2)-H-map Q [27].
A diffeomorphism of D is obviously a symmetry since in that case δL =

LζL = d(ζ y L), where ζ is the generator.
The historical Legendre transform (see below) will allow the change of vari-

ables (C, dC) ; (C,P ) at the basis of the Hamiltonian formalism.

A.3 Legendre transform

The (usual) Legendre transform transports the dynamics from V to Y. It is
defined as the fiber-preserving map [9]

TL : V → Y : (xµ, ϕ, vµ) ; (xµ, ϕ, pµ, π),

here for a scalar field, in adapted coordinates. 13 It may be non invertible, what
is expressed by primary constraints. We assume now a non degenerate Legendre
transform, constraints are discussed in the examples.

We lift the Legendre transform to the historical Legendre map which applies
to sections, the duality

TL : SV → Y : C = (C, dC) ; Y = (C,P )

between velocity-histories and Hamiltonian histories. This results from the sim-
ple remark that a fiber-preserving map between fiber bundles induces a map
between their spaces of sections. Concretely, the velocity history CV is trans-
formed, by composition with TL, as Y = TL ◦ CV .

13 It admits a restricted version

V ; Ỹ : (xµ, ϕ, vµ) ; (xµ, ϕ, pµ).
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A.4 The historical Hamiltonian

We define the historical Hamiltonian on the historical phase space

H : Y → Ωn(D) : Y → H(Y ) = Λi Γi +Π Vol + P dC − L (13)

(wedge product assumed). In this expression, dC and L are expressed as func-
tionals of C and P , as far as allowed by inversion of the Legendre map, so that H
is a [0;n]–Hmap. The Λi and Γi are Lagrange multipliers and constraints, which
are now defined as Hmaps also (see illustrations in examples). This definition
holds for r–histories.

B Details of Calculations

• For a scalar field, a field-history is a zero-form C on D. The momentum
is a 3 form P = Pµ Volµ (its Hodge dual ⋆P = Pµ dxµ is a 1-form).

The Hamiltonian functional is a [0;4]-H-map H = h Vol. Its external
derivative

DH =
∂H

∂C
DC +

∂H

∂P
DP... =

∂h

∂C
DC Vol +

∂h

∂Pµ
DPµ Vol...,

so that
∂H

∂C
=

∂h

∂C
Vol,

∂H

∂P
=

∂h

∂Pµ
dxµ.

• For a one-form field, a field–history is a one form C = Cα dxα on D. The
momentum is a 2 form P = Pαµ Volαµ.

The Hamiltonian is a [0;4]-H-map H = h Vol. Its external derivative

DH =
∂H

∂C
DC +

∂H

∂P
DP... =

∂h

∂Cα

DCα Vol +
∂h

∂Pαµ
DPαµ Vol...,

so that
∂H

∂C
=

∂h

∂Cα

Volα , ,
∂H

∂P
=

∂h

∂Pαµ
dxµ dxα.

C Multi-index notations

For a r-history we write
C = Cµ dµ,

where µmeans the (antisymmetrized) sequence (µ1, ..., µr) and dµ means dxµ1 ...dxµr .

Similarly, the momentum,

P = P ν Volν = P ν ǫν,ρ dρ; ν
def
= ν1, ..., νr+1,

with ǫν,ρ
def
= ǫν1,...,νr+1,ρ1,...,ρn−r−1

; Volν
def
= ∂ν yVol = ǫν,ρ dρ;

involving the multivector ∂ν = (∂ν1 , ..., ∂νr+1
).

We expand similarly a [0, R]-Hmap as

F = Fα dα.
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It results, e.g.,
∂F

∂C
=

∂Fα

∂Cµ

(∂µ y dα), (14)

∂F

∂P
= ǫνρ

∂Fα

∂P ν
(∂ρ y d

α). (15)

Note that the validity of these formulas implies conditions for the grades,
namely R ≥ r and R ≥ n− r−1 respectively. We will restrict to such situations
sufficient for our purpose, although generalizations are possible.

D An identity

To prove the identity :

ǫJKAB eJI ωK
I = −ǫJ[A MN eMN ωJ

B], (16)

we use
⋆eIJ = 1

2 ǫIJMN eMN ; 1
2 eIJ = −ǫIJMN (⋆eMN ).

Then,

ǫJKAB eIJ ωK
I = 1

2 ǫJKAB ǫIJMN (⋆eMN ) ωK
I = ηBC (⋆eKC) ωKA−ηAC (⋆eKC) ωKB

= −ǫK[BMN eMN ωK
A], QED

Similarly,

ǫIJKL eIJ ωK
A ωAL = −ǫJKMN eIJ ωK

I ωMN . (17)
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