HONEYNET DESIGN AND IMPLEMENTATION

A Thesis
Presented to
The Academic Faculty

Diane Artore

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science in
Computer Science

Georgia Institute of Technology
May 2008

HONEYNET DESIGN AND IMPLEMENTATION

Approved by:

Dr Wenke Lee, Advisor
College of Computing
Georgia Institute of Technology

Dr Mustaque Ahamad
College of Computing
Georgia Institute of Technology

Dr Jonathon Giffin

College of Computing
Georgia Institute of Technology

Date Approved: December 26, 2007

ACKNOWLEDGMENTS

A number of people have helped me in many ways to complete this work. I would like

to personally thank:

e My advisor, Dr. Wenke Lee, who gave me the opportunity to work in the
Georgia Tech Information Security Center (GTISC), and who accepted to advise
me all along my work.

¢ Guofei Gu and Christoper Lee, both PhD Candidates, for their time, support and
advice.

e The remaining committee members of my thesis: Dr. Mustaque Ahamad,
director of the GTISC, and Dr Jonathon Giffin, Assistant Professor.

e My parents and family, my friends Kreston Barron, Sophie Govetto, and Simon

Budin, who supported me from France.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt sttt ettt sttt s 11
LIST OF TABLES ... oottt sttt e vi
LIST OF FIGURES ..ottt ettt ettt vii
LIST OF ABBREVIATIONS ...ttt viii
SUMMARY .ttt ettt ettt sttt et sae ettt sae et e e nae e X
CHAPTER 1 - INTRODUCTION.......coitiiiiiiiieiieeieeeteee ettt 1
1.1 MOTIVALIONS <.ttt ettt ettt st e e st sane e e e eane 1
1.2 THhE GOALS ..ttt ettt st et e s e 2
1.2.1 Botnets - Why mMONItOTING?.......eeiiiiiiiiiieiiieeieeeiee et 2

1.2.2 Data Collection - Why and hOW?...........coooiiiiiiiiiiiieeie e 2

1.3 THE PIOJECT ettt ettt et ettt ettt et e st e e st e e abeeebeeesnbbeeearees 4
1.3.1 Design a honeynet architeCturecveeeveeerieeeniieeeriieerieeerreeesieeeeevee s 4

1.3.2 Data Collection and ANalysiS........ccceevveeriiieeriiieeniieenieeerieeeseeeesireeeevee e 4

1.4 The StEPS 10 TAKEeeeeiiiieiiieiiiieetee ettt ettt e e e 5
CHAPTER 2 - LITERATURE REVIEW ..ot 7
2.1 HONEYNEE DIESIZN....ceiiiiiiiiiiiiiieeiiee ettt ettt ettt et e s 7
2.2 Data COIECHION ...ttt ettt ettt et ettt e st e esaae s 8
2.3 OUE APPIOACK. ..ccouiiiiiiie ittt sttt ettt e e 8
CHAPTER 3 - IRC BOTS ...ttt et 9
Bl BOS ottt sttt e ene e 9
3.1.1 What 18 @ DO ...t 9

312 ACTIONS ottt ettt sttt 10

T G B € 110 21 o) 1 2RSSR 10

3.1.4 Underground mMarketcoccueerruieeriiieeniiieeniieeniteeeite ettt s 11

B2 TRE DOLS -ttt ettt ettt et e sbb e et e bee e b e nare e 12
CHAPTER 41 - HONEYNET DESIGNcooiiiiiiiiniiienienteeeeeseee et 14
4.1 General SChEMEcc.uiiiiiiiiiieeee ettt 14
4.2 Downloading MalWaresccooiiiiiiiiiiiiieiiieeeiieeeieeete et 14
4.3 The Manager — ANALYZETccccveeeiieeiiieeiieeeriee e eteeeeeeereeesbeeesbeeesereeennseeens 15
4.3.1 MECRANISITIS ...cviiiiiiiiiiiiieeieeeeeeete ettt s 15

4.3.2. COMPONCILSveeeniiieeiieeeireeesiteesteeesseeesseeessseeessseeessseesssseessseesssseesssessnnes 16
CHAPTER 5 - HONEYNET IMPLEMENTATIONcccoooiiiiiiiiieieeieeeeeeeeeie e 18
ST DIONES ..ttt et 18
5.2 THEe MANAZETcooueiiiiiiieiiee ettt ettt et st e st e e st e et eeabee e 18
T 63 4 o £ RPN 18

5.2.2. COMPONENLSeeeniiieeniiieeiiieeiteeeitee ettt e et e e sttt e sbeeesbteesabeessabeessabeesanneesanne 21

v

5.2.2.1 The INFECtEd CLIENT ... i ieieieeeeeee et 21

5222 DNS et 22

5.2.2.3 Finding the right POIt.........ccceeviuieeriiieeiiieeiee et e 22

5.2.2.4 ANONYMIZALION ...cvvviieiiiiiiiiieiiteeriee ettt ee et eeiree e e e e 22

5.2.2.5 The “fake” server and the honeyclient...........c.cccecvveevveeenveennen. 23

5.2.2.6 The database.........ccceeervieiiiiiiniieeieeeiee et 24

CHAPTER 6 - RESULTS ...ttt ettt et saeas 25
6.1 Example 1 : A typical DONEtc.eeeiiiiiiiiiiiiieeeieeeeeee e 25
6.2 Example 2: SImilar BOtScccueiiiiiiiiiiiciiceieeee ettt 26
6.3 Example 3: A Romanian botnet...........ccocueiriiiiniiiiniiiieniieeieeeiee e 29
CHAPTER 7 - CONCLUSIONS ...ttt ettt saeas 31
7.1 IRC botnet CharaCteriStICSuueirurieriieeiiieeriee ettt et e 31
7.2 TRC DOLNEE ACHIVILIES ..eeruvieiieeiieiieiiie ittt ettt ettt et e st et esareebee e 31
7.3 What remains t0 dO7cooouiiiiiiiiiieeeieee et e 32
APPENDIX A SCIIPES. .ettetieiiieiierieeie ettt ettt ettt et et ste et et e et et entesaeeseeaeesaean 34
APPENDIX A SCIIPLS..etiiuitiiiiieiiiie ettt et ettt ettt e st te e st e et e s st e e sabeesaeeas 34
APPENDIX B: DNSMASQ CONFIGURATION FILE......ccccocveiiiiiieiieieneeeeeeen 44

LIST OF TABLES

Table 1 Antivirus use habits- MCAfee/NCSA — 0Ct 07 ..ccoueeeviiniiriienieeiieniccecnieeeene 1
Table 2 Automated actions performed by bots - Symantec............cceeeeevvieernieennneennnne. 10
Table 3 Underground market - Symantec - Sept 07ccceeeviiiiiiieniieeniieeiieeeieeeeee 11
Table 4 Bots and IRC CharacCteristiCs........cocuerruiiriirrienieiiienieeteesee et 26

Vi

LIST OF FIGURES

Figure 1 Iterative approachoccuiieiiiiiiiiecieeeeeee et 6
Figure 2 HOW DONEts WOTKcc..oiiiiiiiiiiiiiiiiceee ettt 9
Figure 3 Location of IRC C&C in 2005 — Symantecccccvveerveeerveeenieeenreeereeennes 10
Figure 4 Location of underground market IRC C&C in 2005.........ccccvveevvieerveenrnreeennen. 11
Figure 5 Example of DDOS attackcccuieeiiiiiiiiiiniieeciee e 13
Figure 6 General scheme of the HOneynet............cccoeeeviieiiiieniiieniie e 14
Figure 7 IRC redir@CtiONeeeuiieeiiiieeiiieeiie ettt st e stee e tee e beeeseaeeesaeeensaeeneseeennnas 15
Figure 8 Database deSI@Nccccueeeiiiieeiiiiieiieeeiieeciee ettt e reeeereeeia e e eareeeeneeenneas 17
Figure 9 Scripts ran by the Analyzer/Manager...........c.cccoveerieeiienieniienieeeenieeieeeeen 20
Figure 10 Host and Guest OS COMMUNICALIONeeevvieeriieeriieeiieerieeereeeireeeeree e 21
Figure 11 Connection to scortil.dns2.g2o port 7000..........cceeevveeeriiieeriieeerieeereeeree e 25
Figure 12 Regular commands on the channel.............cccooooiieiiiiiniieciieeeecceeee e, 26
Figure 13 Norman Sandbox's results for 229139812ba261{3{92e48cf46198e41 27
Figure 14 Norman Sandbox's results for 5263ca991b04{7f49705f27637b33930.......... 28
Figure 15 Norman Sandbox' results for 8759¢53ef7d4c0df5e2f5beaf4503b4b............. 28
Figure 16 Norman Sandbox's results for c8d93194977484{fc397b8903d846304 29
Figure 17 Alex's profile on the hiS WebSiteccccveviiiieriiiieeiieeie e 30

Vil

IRC

DHCP

DNS

C&C

DDoS

LIST OF ABBREVIATIONS

viii

Internet Relay Protocol

Dynamic Host Configuration Protocol
Domain Name Service

Controls and Commands

Distributed Denial of Service

SUMMARY

Over the past decade, webcriminality has become a real issue. Because they allow the
botmasters to control hundreds to millions of machines, botnets became the first-choice
attack platform for network attackers, to launch distributed denial of service attacks,
steal sensitive information, and send spam emails.

This work aims at designing and implementing a honeynet, specific to IRC bots. Our
system works in 3 phases: (1) binaries collection, (2) simulation, and (3) activity
capturing and monitoring. Our phase 2 “simulation” uses an IRC redirection to extract
the connection information thanks to an IRC redirection (using a DNS redirection and a
fakeserver). In phase 3, we use the information previously extracted to launch our
honeyclient, which will capture and monitor the traffic on the C&C channel.

Thanks to our honeynet, we create a database of the activity of IRC botnets (their
connection characteristics, commands on the C&C...), and hope to learn more about

their behavior and the “underground market” they create.

X

CHAPTER 1

INTRODUCTION

1.1 Motivations
With an increasing number of people using the Internet and companies developing more
and more online services, web criminality has become a real issue. A few years ago,
hackers would focus on webservices directly (like attacking bank webservers), or
hacking into users’ computers, just for entertainment. Those attacks lately shifted to
attacking users directly. Indeed, companies pay real attention to their services, and
allocate resources to work on preventing those problems. Therefore it is easier for the
hackers to focus on users, who are not aware of those threats, or not fighting them. They
will for example try to steal users’ login and password to their online banking website
rather than trying to hack the bank server directly. The table below shows the results of
a study on users’ behavior, published by McAfee, comparing the evolution of Antivirus
updating habits of users, in 2004, 2005 and 2007. It demonstrates that though users tend
to be more aware of the threats, still 50% of users do not have an up-to-date Antivirus or

even any Antivirus software at all.

Table 1 Antivirus use habits- McAfee/NCSA — oct 07
2004 2005 2007

Percent of respondents who claim to have up to date AV protection | 71% 68% 92%

Percent of respondents who either have no anti-virus protection or

O, O, O,
have not updated their protection within the past week 67% | 56% | 49%

By infecting computers, hackers have at their disposal thousands or millions of
machines, that constitute a network of zombies, a world-wide infrastructure that can be

used to send spam, launch DDoS, or even generate a wide underground market selling

users’ credit card numbers, and users’ internet habits (i.e, specific advertisement)
Botnets became the first-choice attack platform for the network attackers, to launch
distributed denial of services attacks, steal sensitive information and send spam emails.
Now that webdevelopers and webmasters have been educated about Internet threats, it is
time to educate users about the dangers of the Internet, and provide them with the
appropriate tools.

1.2 The Goals
1.2.1 Botnets - why monitoring?
Many studies are currently being conducted about how to prevent botnets and malwares
from infecting users’ computers. These active approach studies analyze botnets’
behaviors, and aim at defining rules about whether binaries should be executed (either
with signature-based or heuristics approaches).
For our work, we decided to have a passive approach, and monitor botnets, rather than
preventing them from executing. Our goal is to have a tool that can passively monitor
communication channels. Instead of making a decision about their nature, we will let
them execute and monitor their behavior. We aim at studying their goals and trying to
define general trends or common characteristics.
1.2.2 Data Collection - why and how?
Our study focuses on IRC botnets, which are still the majority of live botnets, the main
reason being that they are easy to deploy (by using a channel on an online IRC server,
or setting up one with available source code). They also let the botmaster communicate
easily and in real time with the bots (compared to HTTP-based bots — see chapter 3),
and have a better view of the zombies it controls (compared to peer-to-peer based bots —

see chapter 3).

To collect the data, we designed a honeynet that spies the traffic on the IRC channels,
using a simple IRC client, after extracting the IRC information from the binaries.

e Servers’ lifetime

The C&C used by the botmaster are either channels on public IRC servers, or on servers
they set up themselves. In both cases, the C&C don’t stay online long. Whether they
change the domain name or switch to another server after achieving their goal (e.g.
launching a DDoS), botmasters want to make sure they maintain control of their
zombies and therefore stay undetected.

When one wishes to look at a given bot to study the action it performs, the C&C might
already be down. Therefore it is precious to log the traffic while it is still up, for later
revision. This can be useful for researchers, who want to study IRC botnet
characteristic’s, botmasters’ habits and goals, but also for law enforcement. By
collecting as much information as possible on each of those botnets, we can find
common patterns to link attacks to one another.

e Lightweight solution

Contrary to most approaches so far, our solution does not monitor machines running the
binaries. We execute them in a virtual environment, extract the information to connect
to the C&C, and then connect to it thanks to an IRC client. Therefore, the machine runs
an IRC client only. With our solution, there is no risk of infecting other machines or
performing undesired operations. When executing the binaries, one can prevent
performing malicious activities (spreading to other machines, spending spam...), but it
requires extra workload. Indeed, we would have to define a list of rules, and check the
outbound traffic. This is particularly hard to do, given that we can not know ahead of
time what the binary will do. If this could be done easily, we would only have to apply

those rules to user’s computers to make sure no one performs malicious activities.

1.3 The project

1.3.1 Design a honeynet architecture

We have to design the architecture of the honeynet, so that it can perform the following

actions:

Catch the binaries

We want to collect as many binaries as possible on the Internet, to test them to
determine whether or not they are IRC bots.

Extract C&C information thanks to IRC redirection

We want to be able to extract the connection information to the IRC sever. This is
done by redirecting the infected machine’s traffic to a “fakeserver” we designed,
which will mimic the IRC server the bots want to connect to (more details in
Chapter 4).

Save activity on C&C

We want to save the activity on the C&C (i.e. log the information exchanged as well
as the pattern of the communication).

Create a database of botnets’ activities, for further analysis

The information about the binaries we collect (whether they are bots, their
connection characteristics and their activities) will be saved in a database. Using this
database will allow an easier treatment and analysis of the data than a simple

logging system.

1.3.2 Data Collection and Analysis

Below is the information we want to collect thanks to our Honeynet:

Connection information

We will extract all the connection information to the IRC channel (server’s name,
server’s 1P, port to connect to, nickname, username, password to the server if any,
channel, and password to the channel if any).
Resources exchanged on the C&C
All the commands exchanged on the C&C will be saved, and we want to extract
specific information, such as hacking resources (e.g. rootkits) or websites (profiles,
binary updates...).
Malicious activities - “Underground” market
Botmasters often use the channels as a way to advertise for malicious activities.
Analyzing the logs will allow us to study what data the “underground market” is
mostly concerned about.
Raise alarms on given keywords
In most cases, IRC commands are not encrypted, and use quite intuitive names.
Therefore, we can define some basics keywords (scan, advscan, ddos....) and do a
dynamic analysis on the IRC traffic to raise alarms. This will not allow us to prevent
all attacks, but it is a first step.

1.4 The steps to take
Honeynet - Design
First, we have to define the architecture of the honeynet, based on the components
we need (the virtual environment, the DNS sever and the fakeserver for the IRC
redirection module...) and the features we want to have (analysis of the logs,
database to save information...). This architecture is detailed in Chapter 4.
Honeynet - Implementation
To make sure our tool works, we decided to have an iterative approach. We’ll

implement the components one after the other, adding features step by step (see

Figure 1 below). For example, we will first implement the components related to the
IRC redirection, and test them. Once it works, we will add the honeyclient, the

dynamic analysis of the traffic, and then the database.

Define the architecture

A

Implement the components

A 4

,—P Test

Begin Analysis

Figure 1 Iterative approach

CHAPTER 2

LITERATURE REVIEW

More and more studies focus on botnets, trying to find ways to prevent systems from
being infected (active approaches). Others try to directly monitor command and control
traffic (passive approaches). Our work is based on observing and capturing botnet
traffic, so the following gives a summary of the current similar studies. The detailed
references of the papers cited are listed at the end of the document.

A Honeynet by definition is a system put on a network to capture binaries, and monitor
the outbound traffic to C&C severs. Different systems have been designed to achieve
this goal. One of the initial studies is the one performed by the German Honeynet
Project, capturing and studying about 100 bonets, and publishing their reports in the
suite of papers “Know Your Enemy”.

2.1 Honeynet Design

In “The Zombie Roundup: Understaning, Detecting, and Disrupting Botnets”, Evan
Cooke and Farnam Jahanian used a honeypot to study bot behavior, using vulnerable
Windows XP and Windows 2000, letting them connect directly to the real server
through the Internet. In “Shark : Spy Honeypot with Advanced Redirection Kit”, Ion
Alberdi et al also use a redirection of the infected machine’s traffic to a fakeserver they
designed. They collect the binaries with Nepenthes, do the simulation, but they don’t
use the fakeserver to extract the C&C connection information, but to get the IP, port,
and bot type (IRC..). They use this information to update the rules of their gateway,
allowing the bot to communicate with the outside or not. The approach closest to ours is
the one conducted by Moheeb Abu Rajad et al in “A multifaced approach to

Understanding the Botnet phenomenon”. They use Nepenthes to collect the binaries, use

an IRC server to do extract the IRC information, and then connect the real IRC server
with their IRC tracker. Their approach aims at studying botnets structures and size more
than the underground activity related to them.

2.2 Data Collection
Regarding the type of data we want to collect, the approach closest to ours is the one
realized by Jianwei Zhuge et al in “An investigation on the Botnet Activites”. In this
paper they focus on the commands sent on the C&C channel, and on the location of the
infected hosts and the victims of attacks, with a special attention to DDoS.
Another relevant paper is one by Jason Franklin et al, “An inquiry into the Nature and
Causes of the Wealth of Internet Miscreants”, in which they focus on financial data
stealing (i.e. credit card fraud, identity theft, spamming, phishing, online credential
theft, and the sale of compromised bots) and tries to understand the motives for the bot
activities.

2.3 Our approach
Our study combines the advantages of some of the studies mentioned above. Indeed, we
chose to use a fakeserver to do the simulation (advantages explained later) and study the

IRC characteristics as well as the underground market the bots generates.

CHAPTER 3
IRC BOTS
In this Chapter, we will define what botnets are, give an introduction to their activities
(actions, geographic repartition), and then focus on IRC botnets.
3.1 Bots
3.1.1 What is a bot?
Like all malwares, bots install themselves silently to a victims’ computer, without their
consent. The particularity of bots is that they include a client that will connect to a
Command and Control server, and then quietly wait for orders from that server. The
C&C channel provides the botmasters with a very easy and quick way to communicate
with the machines they infect.
The infected computers are called zombies, as they quietly wait for orders from the
botmaster. The figure below shows the different steps in a bot’s life (taken from

“Zombies and Botnets - trends and issues in crime and criminal justice” by Kim-Kwang

Raymond Choo).

o Bet programs turn victimn 9 Bots connect zombies 9 Cormmand and control
computers into zombies to controllers servers (2.g. rogue IRC
once installed servers) are controlled

L by botret controllers
— — b
Ld
- it /Ay N
d
- X
.-fx..

9 Zombies then exscute e Commands are sent to zombies

these commands (e.g. launch a DDoS attack, send mass spam)

Figure 2 How botnets work

3.1.2 Actions

A botmaster can control and launch attacks instantaneously from millions of machines,

by sending one single command line in the C&C channel. The table below shows the

most common actions a bot can perform.

Table 2 Automated actions performed by bots - Symantec

Sending Stealing DoS (Denial of Service) Clickfraud
They send: They steal personal and private Launching denial of service (DoS) attacks againsta |Frauders use bots to boost
- spam information and communicate it specified target. Cybercriminals extort money from Web advertising billings by
- viruses back to the malicious user: Web site owners, in exchange for regaining control of |automatically clicking on
- spyware - credit card numbers the compromised sites. Internet ads.

- bank credentials
" More commonly, however, the systems of everyday
- other sensitive personal .
information users are the targets of these attacks -- for the simple
thrill of the botherder.
3.1.3 Geography

Bots are world-wide threats. The Internet allows people from any country to perform

actions on web servers anywhere in the world. Below is a map from Symantec, showing

the repartition of the C&C in 2005. Though the US is still number 1, Asia develops

tremendously and has more and more C&C nowadays. Due to lack of infrastructure,

Africa is still not in not very active.

% of Bot Command & Control Servers
B 10 2 3 40 SO 60 70 g9 99 108

usA I
Canada

Korea

China W
Germany [

Figure 3 Location of IRC C&C in 2005 — Symantec

10

Below is a chart showing the location of the underground market IRC C&C in 2005,

completed by the Australian Institute of Technology.

100

90

0]

70

60

81

50

40

30

20

[] .

7 6

2

1 1 1

o
United States Sweden

Canada Germany France

United Netherlands Bulgaria Israel Hungary
Kingdom

Figure 4 Location of underground market IRC C&C in 2005

3.1.4 Underground market

Australian Institute of Technology

The C&C channels are a way for people to exchange information anonymously and sell

malicious data. Here are the results of a study conducted by Symantec that shows the

type of data sold on C&C channels. The top 2 are credit cards and bank accounts,

showing the nature of the traffic shifted from entertainment purposes to stealing and

selling user’s personal financial information.

Table 3 Underground market - Symantec - Sept 07

Rank

1

@ N @ o B

w

10

Item

Credit Cards

Bank Accounts

Email passwords
Mailers

Email Addresses

Proxies

Full Identity

Scams

Social Security Numbers

Compromised Unix Shells

11

Percentage

22%

21%

Range of Prices
$0.50 - §5
530 - 3400
51-85350
58-510
$2/MB - $4/MB
$0.50 - 33
510 - 3150
$10/week
$5-57

$2-810

3.2 IRC bots
Nowadays there are three main categories of bots:
. IRC-based
They are the most common bots. See the description below.
o HTTP-based
These bots are programmed to either retrieve or post pages at a given time, or at
every given period or time. Like the IRC-based botnets, they are centralized
networks.
. Peer-to-peer based
The peer-to-peer protocol is sometimes used by HTTP and IRC botnets to
spread, but it can also be used to communicate and propagate orders. These bots
are called peer-to-peer bonets. It has many advantages compared to centralized
networks; a bot only knows the peers it is connected to. Therefore it is much
harder to disrupt.
Internet Relay Chat (IRC) is a standard protocol for real-time messages exchanged over
the Internet. IRC follows a client-server model in which a client connects to an IRC
server, which can peer with other servers to form an IRC network. To connect to such a
network, an IRC client first issues a DNS request to look up the address of the IRC
server it wants to connect to. After connecting to the server, the client identifies itself
with an IRC nickname. IRC servers might have password authentication to access the
server itself and/or the channels. After joining a channel, clients can exchange public
messages (broadcast to all clients connected to the channel) and private messages
(transmitted from the client to the destination client without being displayed on the
channel).The IRC bots are the most used (easier to set up, better control on the

zombies).

12

Below is a figure showing a DDoS attack. It shows only 4 zombies, but obviously when
the number of bots is consequent, it is easy to take down a website (the botmaster only
has to send one request to the IRC server). One request from the botmaster reaches the
whole “army” of zombies, and they all contact the webserver.

Steps:

1: The botmaster sends a DDoS order on the C&C, with the IP of the server to take
down. (either instantaneously or at a given time)

2: The zombies, all connected to the IRC server, receive the order.

3: The IRC client embedded in the bot reads the order, and issues a connection request
to the Web Server (as soon as they receive the order, or at a given time, if specified in
the order).

4: All the requests reach the webserver.

Figure 5 Example of DDoS attack

13

CHAPTER 4

HONEYNET DESIGN

For each binary, we have a 3 phase-approach: (1) binary collection, (2) simulation
execution (care of the C&C traffic redirection, see below), and (3) capturing and
monitoring the traffic on the real C&C channel.

4.1 General Scheme
Below is the architecture of the Honeypot we want to deploy.
It has three majors components: the Drones (to collect the binaries), the Analyzer (to
extract the connection information), and the Manager (to handle the IRC redirection, see

below). A detailed description of every component is given in section 4.2.

H i
¢ Binaries
1 Collector |

Figure 6 General scheme of the Honeynet

4.2 Downloading Malwares
Malwares are downloaded thanks to
o The drones
The drones are the machines in charge of collecting malwares. They are

connected to the Internet and have or simulate vulnerabilities that malwares can

14

exploit. When infected, the URLs to the binaries are sent to the binaries
collector.
. The binaries collector
The binaries collector receives the URLs from the drones and will download the
corresponding binaries. It has to check the MDS5 to ensure that binary storage is
not repetitious.
4.3 The Manager — Analyzer
The manager supervises the IRC direction. It monitors the components to decide
whether the binaries correspond to an IRC bot, and if so extract the connection
information.
4.3.1 Mechanisms
Below are the mechanisms of our redirection, in the case of an IRC bot. When

executing a non-bot binary, only step 1 occurs.

@ —
—

e Gt
_—— lnfected Client -
o ST 4 o > r s "";ﬁ-['
. Z \‘. (@ i} i H:-.H_—"'—'~—."" ;
(4 "_In" {a ".I '.I |I o s
J Z =~ \'& | ¢ ?"|| Malicious IRC sever
+‘ f i .-‘\
' 192.0.0.2
DNS y2 @

____";.—b- Haoneyclient

Fakeserver
Lo

Figure 7 IRC redirection

Steps:

1: Execution of the binary in the virtual environment.

2: The client issues a DNS request.

3: The DNS answers with the address of the fakeserver.

15

4: The infected tries to connect to the “fakesever” to port p

5: The machine answers with a reset TCP message, and by sniffing the traffic we get the
port p

6: We start the server on port p

7: The client initiates an IRC connection (the detail of the messages is given in Chapter
5)

8: After the simulation is done, and the information is parsed, the honeyclient starts and
connects to the real IRC server.

4.3.2. Components

¢ The infected client

The infected client is a virtual environment in which to run the binaries. If we are
dealing with an IRC bot, it will issue a DNS request to get the IP of the IRC server, and
then try to connect to it.

e DNS

The DNS’s role is to both redirect all the request of the infected client’s to our
fakeserver, and save the request the client issued. The honeyclient will need the
information to be able to connect to the real IRC server.

When a DNS request is issued, the DNS will reply with the address of our fakeserver.
The infected machine will then try to connect to it. By watching the traffic we are able
to tell which port the client is trying to connect to, and then start the fakeserver on the
correct port. It is ready to receive the connection from the infected client.

e The “fake” server

The fakeserver is the server the infected client will try to connect to, thanks to the

redirection from the DNS server. This server does not need to be a real IRC server. It

16

needs to have the basic features to get the connection information (NICK, USER, PASS,
JOIN...).

We noticed that the NICKs are sometimes not totally random. When an infected
machine tries to connect and the NICK is already used, the other nicknames might have
a given pattern (e.g., if asadg is already taken, they would try asadg_, then asadg__).
Therefore, we decide in our honeypot to retrieve 5 different NICKs from the infected
client, in case the honeyclient tries one already in use.

¢ The honeyclient

It connects to the real C&C server thanks to the information provided by the
communication between our server and the infected machine.

The client is not infected; therefore there is no risk of infecting other machines, or
performing unwanted actions. The problem with this approach is that we may not be
able to answer the server’s commands correctly. This could be detected by the
botmaster, who could therefore disconnect/ban us from the channel.

e The database

The database will save all relevant information concerning the binaries and the scenario

we run. Below are the tables we designed:

Binaries 0.1 1 Bots 1 1.n Logs
id id id
date date date
bin_name binary_name time
bin_type machine_type bot_id
nick command
channel
server_name
server_IP
server_pass
pass_chan
port

Figure 8 Database design

17

CHAPTER 5
HONEYNET IMPLEMENTATION

The overall system is running on Linux, a machine in the GTISC lab.

5.1 Drones
The implementation so far uses Nepenthes, an automated malware collection platform
that simulates known vulnerabilities in machines running the Windows OS, which is
running on a box in the Georgia Tech honeynet address spaces.
Nepenthes vulnerability modules require knowledge about weaknesses, so that it can
simulate a dialog of how the virus will exploit the weakness, gain the needed
information to download the file and send the attacker just enough information so that
he does not realize the trick. Nepenthes is quite useful to capture new exploits for old
vulnerabilities.
The exploits it downloads are stored in a “binary” folder, each binary’s name being the
MDS5 checksum associated with it. The Nepenthes box is located on the honeynet space,
and our simulation machine is located in the GTISC, on the school’s network. We
download the binaries everyday from the Nepenthes box to the simulation machine
through a SSH session.

5.2 The Manager
5.2.1 Scripts
The scripts to execute and monitor the simulation are written in bash. The source code is
given in Appendix B. Below is a summary on how they work.
We download the binaries from the Nepenthes box to our bin/ directory everyday at
00:01 am. We launch the simulations at 1:00 am. At 11:50 pm, we update the database

by parsing the logs and adding newly captured binaries.

18

o watch.sh

It looks in the directory bin/ for new files. If there are new files, for each binary, it
launches the script newproc.sh. When the simulation is done, it stops the IRC server, the
tcpdump (in case we did not get any packet from the simulation). We loop for all the
new binaries in the folder.

. newproc.sh

It adds the .exe extension to the binary, copies it into the shared folder, in which the
windows running in VMware will look for when it boots. Then it launches process.sh

° process.sh

This script starts the simulation, by launching the getport.sh and launchvm.sh scripts.

. getport.sh

It starts tcpdump to capture the first 5 packets coming from 192.0.0.2 to 192.0.0.1 with
the RST field set to 1. If it successfully captures these packets, it extracts the port and
starts the server on that port (for 20 seconds).

o launchvm.sh

This script starts the virtual machine and allows it to run for 90 seconds. After that time,
it restores the machine to a trusted snapshot (taken before the execution of the binary).

. isbotnet.sh

This script will check the results of the simulation to determine if we found a bot. It will
label the folder containing the logs with the “nobot” or “bot”, log the date of the
simulation, and update the database.

o postvin.sh

This script will parse all the logs from the previous execution to extract the information
needed by the honeyclient. If it is a bot, and we successfully found the port, the script

looks for the DNS query, the NICK, USER, JOIN used, and checks for a server or

19

channel password. It starts the honeyclient with all those parameters. As we connect

from the school’s network, we want to make our connection anonymous. To do so, we

use the tools tor and socat (described in 5.2.2.5). The script postvm.sh also looks for an

available port, launches socat on that port, and relays this information to the

honeyclient. We also update the database with information about the new bot we just

discovered.

Below is the figure showing how the scripts interact. The script parsing the logs to

update the database with the daily commands does not appear on this figure.

watch.sh

A 4

Looks into bin/

newproc.sh

Renames and copies the binary to

the shared folder

v

proc.sh
Launches the
simulation

/\

getport.sh

Launches tcpdump to get the port
If successful, launches the

fakeserver on that port

launchvm.sh

Starts the virtual machine
Stops it after 90 seconds
Restores it to a trusted state

A 4

stopserver.sh
To make sure
server is stopped

A 4

A

y

stoptcpdump.sh
To make sure tcpdump
is stopped

ishotnet.sh
Decides whether we have a bot
Updates the databes

A

y

finddnsname.sh

Extracts the dns name

from the dsnmasq logs

20

A

y

postvin.sh
Extracts the useful information
Updates the database
Starts socat on an available port
Starts the honeyclient

Figure 9 Scripts ran by the Analyzer/Manager

5.2.2. Components

5.2.2.1 The infected client

The infected client is a virtual environment, using VMware Workstation, running
Windows. I chose VMware for its ease of use, and the practical command lines

available:

vmrun start "/home/diane/vmware/windows/Windows XP Professional.vmx" &
sleep 90

vmrun stop "/home/diane/vmware/windows/Windows XP Professional.vmx"

vmrun revertToSnapshot "/home/diane/vmware/windows/Windows XP
Professional.vmx" Snapshot-clean/Snapshot-binary

After each execution of a binary, when the simulation is done, the system is restored to
a trusted state (a snapshot taken before the simulation).

The machine address’s is 192.0.0.1, and the Linux’s address is 192.0.0.2. In the network
configuration, we set the DNS to be 192.0.0.2. Therefore we are sure the virtual
machine will connect to our DNS and get the IP of our fakeserver.

The virtual machine and the Linux host are connected through the VMnetl. The Linux
machine is the gateway for the VMware to access the Internet, but we block the feature,
to make sure there is not traffic to the outside world. On the VMnetl, there are only our
Linux host and the windows guest. The host system Linux and the guest OS share a
common folder. VMware has a feature that allows the guest OS to access files located in
the host machine. Therefore, we use this feature to create a folder in which we put the
binary to execute. We added a script in the windows machine, which looks into the

shared folder when the machine boots, copies the .exe of that folder, and executes it.

192.0.0.2
shared folder <« 192.0.0.1

vmnet) <«—»| VMware

Figure 10 Host and Guest OS communication

21

5.2.2.2 DNS

To realize the DNS redirection, I used the lightweight DNSmasq software. It is very
easy to configure. The DNS is on the machine 192.0.0.2. It is configured to redirect the
infected client to our fakeserver, so it will reply with “192.0.0.2” to any query it
receives. The configuration file is given in Appendix C.

5.2.2.3 Finding the right port

To find the right port, we sniff the traffic on the Linux Machine, using the software
TCPDUMP. We know that the client will try to connect to the server on a port p. As the
server is not running yet (because we don’t know yet what port it is supposed to use),
the client will try to initiate a connection, and our host machine will reject that attempt.
Therefore, we only have to look at the traffic, and capture the packets from the IP

192.0.02 to the IP 192.0.0.1, whoso RST byte in the TCP header is set to 1:
./tcpdump -c¢ 5 —-i vmnetl 'dst host 192.0.0.2 and tcp[13]=20' -nn

Then with a simple parsing command, we can extract the port that the client is trying to
connect to, and start our IRC fakeserver on that port.

5.2.2.4 Anonymization

As explained in 5.2.1, the machine we are using at the moment is located in the GTISC
lab, and has a static IP address in the Georgia Tech network. Because we do not want
botmasters to learn about our activities or IPs, we will use anonymization tools, called
tor and socat.

Tor is the “onion router”. It allows anonymous web browsing, instant messaging,
remote login, and any application based on the TCP protocol, by encrypting incoming
and outgoing communications and bouncing them around.

Socat is a multipurpose relay for bidirectional byte streams and transfers data between
them. Data channels may be files, pipes, devices (terminal or modem, etc.), or sockets

(Unix, IPv4, IPv6, raw, UDP, TCP, SSL). We will use it here to relay our socket

22

connection to our C&C server. Here is an example of how it works. If we want to
connect to irchacker.com on port 6667, we will use the command line below in our

scripts, assuming our tor application is set up to listen on localhost port 9050:

socat TCP4 :LISTEN:5050,fork SOCKS4A:localhost:irchacker.com:6667,
socksport=9050

Therefore, connecting to localhost, port 5050, would then be equivalent to connecting to
irchacker.com, port 6667, via Tor.

Both socat and tor are installed in the Linux Host machine available through our
research lab. Basically, we have to redirect the traffic from the honeyclient to socat
through a port we define for each new bot we want to study. Then we start socat on that
port, and redirect all its traffic to tor.

5.2.2.5 The “fake” server and the honeyclient

The fakeserver and the honeyclient are implemented using C.

o The server

As we explained before, the client only needs to have the basic features of the IRC
server. We handle the messages PASS, NICK, JOIN, USER, CHAN, and MODE. Once
the connection is established, the server logs all the messages sent by the client.

. The client

Our client needs the following arguments to start: the server to connect to, the port to
connect to, the port to use, the directory in which to log the traffic, the password of the
server (if none, the argument will be “null”), the nickname, the channel, the 4 users
field, the mode of the connection (+x, +i....), and the password of the channel (if none,
the argument will be “null”).

As we explained before we are using an anonymization tool, so the server we will give

the client will be localhost. The port to use and the port to connect to are the ports that

23

the script postvm.sh found. That script also configured those ports so that the redirection
is done through tor.

The client connects to the server. When it receives the join confirmation, it sends a
WHO for that channel to have a list of member. Then the client will passively listen to
the traffic on the channel (answering to the PING requests it receives). The traffic is
logged in the log file, which is parsed every day to update the database

5.2.2.6 The database

The database is done using MySQL Server, according to the description made in section

4.3.2. We access the data thanks to the MSQ Query Browser.

24

CHAPTER 6

RESULTS

In this part we will show examples of data we collected, with samples of the logs we
captured, and the information we extracted from them.

6.1 Example 1 : A typical botnet
Below is an example of a connection to a typical botnet. We see that this particular
malicious IRC server currently has 2257 users connected, to 2257 potential zombies.
The topic of the channel is “.advscan asn445 160 3 O -r —s”, so the bot is ordered to scan

other machines as soon as it connects to the channel.

04-0ct-07 10:43 A USER ibnbaa 0 0 (USA | 989877004-0ct-07 10:43 AM NICK USA | 989877004-0ct-07 10:43 AM :ibookschool 001 USA | 989877 Welcome to the
ool OHAILChatz server USA | 989877

04-0ct-07 10:43 AM ibookschool 002 USA | 989877 Your host is ibookschool, running version 5.5.2653

04-0ct-07 10:43 AM ibookschool 003 USA| 989877 (This server was created Sep 9 2000 at 01:20:51 PDT

04-0ct-07 10:43 AM tibookschool 004 USA | 989877 ibookschool 5.5.2653 aioxz abcdefhiklmnoprstuvioz

04-0ct-07 10:43 AM iibookschool 251 USA | 989877 :There are 2257 users and 2230 invisible on 1 servers

04-0ct-07 10:43 AM ribookschool 253 USA | 989877 49 runknown connection (s)

04-0ct-07 10:43 AM iibookschool 254 USA| 289877 2 ichannels formed

04-0ct-07 10:43 Asd ibookschool 255 USA| 989877 | have 2257 clients and O servers

04-0ct-07 10:43 AM ribookschool 265 USA | 989877 Current local users: 2257 Max: 3906

04-0ct-07 10:43 &AM ribookschool 266 USA | 989877 :Current global users: 2257 Max: 4538

04-0ct-07 10:43 AM ibookschool 375 USA | 989877 - jbookschool Message of the Day -

04-0ct-07 10:43 AM iibookschool 372 USA| 989877 - oé<- O] M= >

04-0ct-07 10:43 Asd ibookschool 372 USA| 989877 ©- 012

04-0ct-07 10:43 Ad ibookschool 372 USA| 989877 - oo OWELCOME TO HAILChatz: irc. ABOSALT .net

04-0ct-07 10:43 Asd ribookschool 372 USA| 989877 @- 012

04-0ct-07 10:43 AM iibookschool 372 USA| 989877 - oé<- O] 3HOf==mmmm e >

04-0ct-07 10:43 AM ibookschool 376 USA | 989877 End of /MOTD command

04-0ct-07 10:43 Ab MODE USA | 989877 +xio04-0ct-07 10:43 AM JOIN #faak# saad.o04-0ct-07 10:43 AM WHO #faak#o0d-0ct-07 10:43 AM ibookschool 501 USe
04-0ct-07 10:43 AM (USA| 989877 MODE USA | 989877 i+

04-0ct-07 10:43 Ad (USA | 989877!~ibnbaa@89.112.2.176 JOIN #FALKS

04-0ct-07 10:43 AM ibookschool 332 USA | 989877 #FAAKH . advscan asnddh 160 30 -r -5

04-0ct-07 10:43 A ribookschool 353 USA | 989877 @ #FAAKH (USA | 989877

04-0ct-07 10:43 Aé ribookschool 366 USA | 989877 #FAAKS (End of FMAMES list.

04-0ct-07 10:43 AM ribookschool 352 USA | 989877 #faak# ~ibnbaa 89.112.2.17¢6 ibookschool USA | 989877 H 10 USA| 989877
04-0ct-07 10:43 AM :ibookschool 315 USA | 989877 #faak# :End of SWHO list

04-0ct-07 10:45 AM PING :ibookschool

04-0ct-07 10:45 AWM PONG :ibookschoal

Figure 11 Connection to scortil.dns2.go port 7000

On that channel, every 5 or 7 minutes, for 2 hours, the botmaster ordered the bots to
connect to the website freeweb to download new binaries (see figure below). We can

also see the commands “.login “, “.k”, “.c”, or even “H4CK3D” , used with various

25

parameters. Our approach does not allow us to know what those functions actually do,

as we do not execute the binary on our machine.

04-0ct-07 12:28 PM
04-0ct-0F 12:28 PM
04-0ct-0F 12:28 PM
04-0ct-07 12:28 PM
04-0ct-07 12:28 PM
04-0ct-07 12:28 PM
04-0ct-07 12:28 PM
04-0ct-07 12130 PR
04-0ct-0F 12:30 P
04-0ct-07 12:30 PM
04-0ct-07 12:30 PM
04-0ct-07 12:30 PM
04-0ct-07 12:30 PM
04-0ct-07 12:30 PM
04-0ct-07 12130 PM
04-0ct-07 12:30 PM
04-0ct-07 12:30 PM

DOOSITalnternetlsen@admin,
:DOOSITsInternetUsen@admin,
DO0sITsInternetlser@adrmin.
DO0sITsinternetser@adrmin.
:DOOS!I TsinternetUsern@admin,
:DOOS!I TsinternetUsern@admin,
:DOOSI TsinternetUser@admin,
DOOS!ITalnternetsen@admin,
D00 TsInternetUsen@admin,
DO0sITsinternetser@adrmin.
DO0sITsIinternetser@adrmin.
:DOOS!I TsinternetUsen@admin,
:DOOS!I TsinternetUsern@admin,
:DOOSI TsInternetUser@admin,
DODSITalnternetlsen@admin,
:DOOSITsInternetUsen@admin,
DO0sITslinternetlser@adrmin.

comm PRIVMSG #FAAKSE |
com PRIVSGE #FAAKSE ¢
com PRIVSGE #FAAKSE .
com PRIVESG BFLAKSE
com PRIVESG #FAAKSE
com PRIVESG #FAAKS ¢
com PRIVESGE #FAAKSE |,
comm PRIVMSG #FAAKSE |
com PRIVMEG #FAAKSE @
com PRIVSGE #FAAKSE

com PRIVMEG #FAAKE
com PRIVMSG #FAAKE

com PRIVMSG #FLAKH

com PRIVIMSG #FALEKH

com PRIVMEG #FLAKE
com PRIVRSG #FLLKE
com PRIVRSG #FLLKE

H3CK3D cool

login coal

c coal

k. coal

NEH

adwscan dcom135 25 5 0033 .30% -F -5

advscan asn335 25 5 0 K. 0K -F -5

H4CK3D cool

ccoal -5

k. coal -5

».login cool

CMATEL http: s fwesnr, freeweebtomn . coms saber22/ ABD exe fsooGf.exe 1
32111 http: s fuene, freewebtown. com/f lahugGos ABD, exe fscoGfexe 1
LMAZEL http:d Pwewwr, freeweebtown, comflahuge0/ ABO, exe fscodf.exe 1
(432111 http:f Pueweer, freewebtown.com/ saber22/ AB D, exe fsooff.exe 1
Jpldg1o0 http: s Feesw, freewabtown . com /s lahugf O/ ABD, exe fecoff.exe 1
Jpldgto http s e, freevwebtown . com/ lahugB0/ 8B 0, exe foooff.exe 1

Figure 12 Regular commands on the channel

6.2 Example 2: Similar Bots

We noticed that sometimes a botnet will spread through binaries having different MD5

checksums. The bots will connect to the same IRC server, or use the same channel

names. Here are a few examples:

id

hinary_name

machine_type

San1bc07a2895368 187229423240 |

210 3

MW

2093a088cb 1575097 1 3aectic5T7d64967d [Win
214 044 ec02ocddalel6dbceesTefbd13d [Win
2076524550203 cdba%e531025fcaf 38770 E [Win
211c8d93194 977484 397hBI034846304 [Win
2121229139812ba26 131924 Bef1 619841 [Win
204 15263ca%2 1b04f7RI9705£27637h335930 [Win
202875%c53ef7d4c0df5e2f5beafd 50304 [Win
201/6739c690353e0c5a843caalf5366fee]l [Win
200515aBf26b034 1a2fRalfe536aafB5a60 [Win
19%93b2ee3c057bide6a2 1404 55630202070 [Win
1983363749980 d9adEd16855c Beded®S5 [Win
197 HEB654409efdd40533bb 324 16258591 Win
196 H18523adb 7247360066 c3d1a55db 23 [Win
195[c26£29421c 178606 1245 0ecce56Taa [Win

nick channel Server_name

FEE-383323812 #dd home najd.us

TEA7501554289 HEA A #scorti] dnsdgo.com

ozdoouxs ity |prozum rogalasy.pl
TEA|3563057 148 #F A AT #zaberd ircaforum. cotmn
USA|1710715557 #F A AW #[scortil dnsPgo. com

FTTT295030807 #dd hotne najd.us
FEE-852789218 |#dd hotme najd.us

USA|1650251837 #FA AR #scorti]. dns2go. com
USA|962858198 1 #F A AR #saberd ireqforum, com

U5 A|540764 wfaaldt |saberarcaforum com
FTTT205892735 [#dd hotne najd us
TEA[720558 wiaak# normal serverus
[fo]64164205 o saberd ircoforum. com
TEA|17258791 #Rfsusié irc fsturchat org
TEA|989877 #faal# |zaber.srcaforum com

Table 4 Bots and IRC characteristics

26

We see in the table that for example the binaries
“5263ca991b04£7f49705£27637b33930” and *“229139812ba261f3f92e48cf46198e41”
have different MD35’s, but both lead to connection to the server home.nadj.us, to the
channel #dd#. We used the Norman Sandbox (web interface) to study the binaries and
see if they were detected. Below are the results we obtained. The two binaries are
detected as Spybots, but although the analysis of 229139812ba261{3f92e48cf46198e41
tells us the binary is infected, no malware is detected during the analysis of

5263ca991b04£7f4970527637b33930

2291393122261 F3f02e43cf4619804 1 INFECTED with W32/8pyhot, gen3 (Signature:
W32/Spybot BXIVI)

(

Letectionlnfy |

* Bandboz name: W32/Epybot gen3

* Bignature narne: W32 3pyhot BEIVE
* Comypressed: YES

* TL3 hooks: MO

* Executable type: Application

* Executable file structire: OK

[General information]
* Drope files in % WINS T3 folder,
* File length: 276480 biytes.
* WD hash: 229139581 Thal6 1£302ed Sefd 6105041

[.Changss to filesystern |
* Creates file CiMenpo bat.
* Creates file CVWINDOWSNS VS TERMINWENGE 32 cotm.
* Deletes file Yoternpahl reg.
* Deletes file %a0.

[Changes to registry |
* Creates key "HELNMWG o ftware ProducthlameProduct D"

[Processfarindow information |
* Creates process "CACWD. EXE".
* Creates a poutes 149009,
* Creates process "CAWIND OWESSYSTERIDWSHNGE 2 com".

[mignature Seatning |
* Ctenpo. bat (5804 bytes) ; WinRED, 4.
* CAWIND OWSS YSTEMIZMENGR. 32 com (276480 hytes) . Wi2/Spybot BXIDL

Figure 13 Norman Sandbox's results for 229139812ba261f3f92e48cf46198e41

27

2263090 hO4FFRAGTOSEXTE3Th 35930 - Mot detected by Sandbox (Signature:
W32 Spybot BOO

[Detectionlnfo]
* Sandbox name: MO MWMATWARE
* Signature name: W32/Spybot BOON
* Compressed: TES
#TLE hooles: O
* Executable type: Application
* Executable file structure: OE

[General information]
* File length: 1228380 bytes,
* D5 hash: 5263ca®9 0471497052763 7033930

Figure 14 Norman Sandbox's results for 5263ca991b04£7f49705f27637b33930

“c8d931949774841fc397b8903d846304” and “8759c53ef7d4c0df5e2f5Sbeaf4503b4b”
will try to connect to the channel #FAAK# of the scrotil.dns2go.com. Below are the
results we obtained using Norman Sandbox. In both cases, the analysis could not be
successfully conducted because of the presence of “anti-debug/emulation code”. Thanks
to the signature, the Norman Sandbox tells us the two bots belong to two different

categories of bots: SDbot, and SPybot.

aiafcaZeffddc0dfbe2fobh eatd 50304k - Mot detected by Sandbox (Signature:
W32{5pybot. CEVE)

Detectionlnfo]
* Zandbox name: O MATWARE

* Signature name: W32 5pybot CEVE
* Compressed: TES

*TLE hooks: MO

* Executable type: Application

* Executable file structure: O

eneral information |

* Anti debuglemulation code present.

* Display message box (Themida) - An internal exception cccured (Address:
Oz0059EFCBIPlease, contact supporti@oreans.com. Thank youl

*File length: 355520 bytes.

*WD5 hash: 875%9c33ef7ddc0df5e2f5beafd 503bdb.

- Afficher le texte des messages précédents -

Processiwindow information |
* Terminates AV software.

Figure 15 Norman Sandbox' results for 8759c53ef7d4c0df5e2f5beaf4503b4b

28

cad931 9497 AR 30 ThEINTdR462304 - Mot detected by Sandbox (Signature: SDEot gens)

DetectionInfo |
* Sandbox name: MO WATWARE

* Signature name: SDBot gend
* Compressed: YES

*#*TLE hooles: O

* Executable type: Application
* Executable file structure: O

General information |

* Ant1 debugiemulation code present.

* Display message box (Thermida) | An internal exception occured (Address:
0xz0058C45DPlease, contact supporti@oreans.com. Thank yvoul,

*File length: 216096 bytes,

* DS hash: cBA9312457 7484 307HER0345463504,

Figure 16 Norman Sandbox's results for c8d93194977484ffc397b8903d846304

In the examples above, we were able to find common characteristics to bots that were
not detected by classic antivirus analysis. By connecting attacks together, we have a
better idea of its extent.
6.3 Example 3: A Romanian botnet

This botnet was captured thanks to one of the computers in the honeynet space of
Georgia Tech. The machine was compromised on July the 16th, and kept running until
mid-august, when the machine crashed and would not reboot. A lot of information was
exchanged on the C&C channel. The botmasters were Romanian, most of them
teenagers, apparently trying to learn about hacking techniques. One of the hackers,
using the pseudo “MrLinux’, seemed to be the leader of the group, providing the others
with malicious tools that they requested. Below are some parts of their discussions.

This group used the C&C to chat a lot, and we even came across one of the hacker’s

hi5 (a social networking website) profile.

:Deliricl!~asadfg@asadfg.users.undernet.org PRIVMSG #asadfg
:http://searching-perfection.hi5.com

29

In total, there were 7 profiles exchanged, below is the capture of Alex’s profile, one of

the most active chatters of the group:

Alex 1 Profile (@ views) Last login: Jul 23, 2007

Profile Friencs Photos iclen S ook Journal Groups

View all 2 friends

Figure 17 Alex's profile on the hi5 website

Several attacks were launched from the botnets, attacking a wide range of websites,
such as American .gov websites (e.g. www.fda.gov, www.spc.noaa.gov, Www.tsp.gov),
French websites (e.g. www.caramail.lycos.fr, www.tfl.fr,), British websites (e.g.
www.met-office.gov.uk, www.screenselect.co.uk, www.livedepartureboards.co.uk, ,
www.ticketmaster.co.uk, www.reghardware.co.uk), Hungarian websites (e.g.

www.freeweb.hu), and German websites (e.g. www.freeware.de)...

30

CHAPTER 7

CONCLUSIONS

In this chapter we will give some general remarks/conclusions about the data and
binaries we have collected so far. By collecting more binaries/bots, we can draw more
conclusions.

7.1 IRC botnet characteristics
Here are a few remarks regarding the data IRC/network characteristics of the bots we
captured:
- All the bots we collected are IRC bots. We have not seen any HTTP-based or peer-to-
peer bots so far.
- Some malwares with different mdS try to connect to the same C&C. Sometimes they
are only updated versions of the viruses, sometimes they are identified as different
malwares by antivirus softwares.
- Most botnets do not make use of the regular IRC port (e.g. we had bots connecting to
7000 or 65520). One of the conclusions of the authors in “The Zombie roundup:
Understanding, detecting and disrupting botnets” is that the ports used are always above
the regular port 6667, but we found bots using ports below 6667 (e.g. one of the bot’s
we discovered used the port 3211 of the C&C server).
- Updates of the binaries are ordered at a regular period of time. The newer versions are
not recognized by antiviruses, so updating the binaries helps keep the bots undetected
(e.g. if the binaries are updated before the antiviruses are).

7.2 IRC botnet activities

Regarding the activity on the bots:

31

- The goals of the botnets can be very different from one bot to the other. In Chapter 6,
we gave two opposite examples: a totally automated and “neutral” bot (as in no personal
communication on the C&C channel), and a bot mainly administered by teenagers, to
learn hacking techniques and for shear entertainment.
- C&C are used to send commands to the zombies/bots, but also to communicate.
Whether the botmasters only chat or exchange information, they do use the C&C
channel, so logging the traffic provides us with very sensitive information about who
they are, and the goals of their botnets. On a law-enforcement perspective, logging this
data is very crucial.
- Addresses of malicious websites are exchanged on the C&C channels. By dynamically
parsing the commands we receive, we can create a database of malicious websites.

7.3 What remains to do?
Here is a list of things that remain to be done to improve the system we developed:
. Move the entire system to the honeyspace
This would simplify the process of retrieving the binaries. Moreover, this would lighten
the connection to the C&C server, as we would not have to use anonymization tools
(this have to be discussed though, as we do not want the botmasters to learn about the
range of IP addresses we use).
. Adding more machines to collect binaries
To have relevant results, we need to study as many binaries as possible. The Nepenthes
box is a start but it catches only binaries exploiting known vulnerabilities. We should
add more machine on the honeynet.
o Listing the malicious websites
By dynamically analyzing the messages on the C&C channel, we can provide a list of

malicious websites. They are most commonly websites that botmasters will use to

32

distribute the binaries’ updates, or share rootkits.... In the example 2 of chapter 6,
hackers exchanged links to their profiles on a social network. This example is not
representative of all bots, but taking a copy of the webpages exchanged on the C&C can
be very useful.

. Set up SSH access for database access

We should set up a SSH access to the machine hosting the database, so that people have

access to it and can look at the data we captured.

33

APPENDIX A: SCRIPTS

watch.sh

#!/bin/bash

ifconfig vmnetl 192.0.0.1
/etc/init.d/dnsmasq start

cd /home/diane/HoneynetProject/
#while [true]; do
for i in $(1ls bin); do

#there is a new file
echo There i1s a new binary: $i

1ls data/ | grep $i

#we check if the binary has already been treated

found=0

if [S$Sfound != "O0"];then

echo "Binary already in the database"

else
#echo found egal a O

#we launch the handling process
./newproc.sh $i

cd /home/diane/HoneynetProject/
./finddnsname.sh $i

sleep 10

./stopserver.sh
./stopnewproc.sh
./stoptcpdump. sh

sleep 10

fi
done

echo No new file
./isbotnet.sh

#done

newproc.sh
#!/bin/bash
cd /home/diane/HoneynetProject/
#on cree un dossier dans data/

mkdir data/$1/
chmod a+w data/$1/

34

#mois=S$(ls -all bin/$j | cut -d " " —-f 6 | cut -d "-" —-f 2)
#jour=$(ls -all bin/$j | cut -d " " —-f 6 | cut -d "-" —-f 3)

#on copie l'exec dans data/ et aussi dans shared folder/
#dossier=Smois$jour—57j

cp -p bin/$1 data/$1/

mv bin/$1 "shared folder"/$1l.exe

chmod a+rw "shared folder"/$1.exe

#on lance le process de gestion
./process.sh $1 > /home/diane/HoneynetProject/data/$1/simulation

rm "/home/diane/HoneynetProject/shared folder/"$1".exe"

process.sh

#on lance la virtual machine, pour avoir le port et les infos de
connexion
./getport.sh $1 &./launchvm.sh

getport.sh

#!/bin/bash

—nn for non translating port to their name (i.e. no ircd for port
6667)
tcpl[l3]1=20 happends when the tcp flags are set to ack and rst

cd /home/diane/tcpdump-3.9.5/

./tcpdump -c¢ 5 -1 vmnetl 'dst host 192.0.0.2 and tcp[13]=20' -nn >
/home/diane/HoneynetProject/data/$1/logtcpdump

PORT="null"
for i in $(cat /home/diane/HoneynetProject/data/$1/logtcpdump); do

TEMP=${1:0:10}
TEMP2=${1:10:14}
if [$STEMP = "192.0.0.1."]; then
PORT=S$TEMP?2
#echo un port du doc est S$PORT
fi

done

if [SPORT != "null"]; then
#echo The port is $PORT
echo $PORT > /home/diane/HoneynetProject/data/$1/PORT
cd /home/diane/HoneynetProject/fakeserver/src/

./fakeserver SPORT $1 & sleep 20
cd /home/diane/HoneynetProject/

35

launchvm.sh

#!/bin/bash
echo Launching the virtual machine

vmrun start "/home/diane/vmware/windows/Windows XP Professional.vmx"
sleep 90

vmrun stop "/home/diane/vmware/windows/Windows XP Professional.vmx"
echo Stopping the virtual machine

vmrun revertToSnapshot "/home/diane/vmware/windows/Windows XP
Professional.vmx" Snapshot-clean/Snapshot-binary

echo Restoring the virtual machine for next use

finddnsname.sh

#!/bin/bash

cat /var/log/daemon.log | grep "dnsmasq" | grep "from 192.0.0.2" >
data/$1/dnslog.log

RECORD="no"

for 1 in $(cat data/$1/dnslog.log); do
if [SRECORD = "yes"]; then
SORTIE=S$1
echo $SORTIE > data/$1/servername
fi
if [$i = "query[A]"]; then
RECORD="yes"
else
RECORD="no"
fi

done

stopserver.sh

#!/bin/bash
STOP="null"
for 1 in $((ps ax | grep ./fakeserver |grep -v grep)); do
STOP=S$1
kill $STOP
exit
done

stoptcpdump.sh

#!/bin/bash
STOP="null"

36

&

for 1 in $((ps ax | grep ./tcpdump |grep -v grep)); do
STOP=S$1

echo $STOP

kill $STOP

exit

done

iserror.sh

#!/bin/bash

#va labeller les dossiers pas encore bot ou non-bot
#demarre toutes les connections clientes

cd /home/diane/HoneynetProject/

for i in $(1ls data | grep nobot); do
#we are gonna look if there is an erro in the simulation
nberror=$(cat data/$i/simulation | grep Error | wc -1)

if [Snberror != 0]; then
#on a une erreur

#on remet le bin dans le /bin
nom=$ (echo $i | cut -4 "-" -f 3)
echo le nom est $nom

cp -p data/$i/$nom bin/

#on copie tout le dossier dans HoneynetProject/error
mv data/$i error/$i

fi

done

isbotnet.sh

#!/bin/bash
cd /home/diane/HoneynetProject/
for i in $(1ls data | grep -v bot); do

#we are gonna look if there is a IRC connection
FOUND="no"

for j in $(1ls data/$i/); do
if [$3 = "PORT"];then
FOUND="yes"

fi
done

37

done

for i in $(1ls data | grep bot | grep -v nobot);

done

#nom=$ (echo $i | cut -4 "-" -f 3)

mois=$(ls -all data/$i/$i | cut -d " "
jour=$(ls -all data/$i/$i | cut -4 " "

if [SFOUND = "yes"]; then
echo bot dans $i
#echo on a un bot dans $i

#on labelle le dossier
dossier=$mois$jour-bot-$i
#echo on va labeller S$dossier
mv data/$i data/S$dossier
./postvm.sh $i

fi

if [$FOUND = "no"]; then
dossier=$mois$jour—-nobot-S$1i
#echo on va labeller S$dossier
mv data/$i data/S$dossier
#rm -r data/$i data/$dossier

fi

./postvm.sh $1i

postvm.sh

#!/bin/bash

cd /home/diane/HoneynetProject/data/$1/

HOST=127.0.0.1
USER=root
PASS=PASS
DB=Botnets

#Find the PORT
RECORD="no"
PORT="null"

if [
then

-f PORT]

for i in $(cat PORT); do
PORT=S51
done

#Find the right SERVER NAME
IRCSERVER="null"

#cd /home/diane/HoneynetProject/
#./finddnsname.sh $1

cd /home/diane/HoneynetProject/data/$1/

38

do

cut -d
cut -d

-f 2)
-f 3)

for i in $(cat servername); do
IRCSERVER=S$1
echo the server is $i
done

on va tester si le server IRC est en ligne
j=$(ping -c 1 $IRCSERVER | wc -1)
if [$J = 0 1; then
echo IRC Server offline - Pas de connection honeyclient
else
echo The server is alive

#If we found a port, i.e. if the irc trick worked:
#if [SPORT != "null"]; then

#on retire les espaces moches des logs
tr -d '\015\032' <logserver > logserver2
chmod a+rw logserver?2

#Find the SERVER PASS, if there is one
RECORD4="no"

PASS_SERVER="null"

for 1 in $(grep PASS logserver2); do

if [SRECORD4 = "yes"]; then
TEMP=S$PASS
PASS_SERVER=STEMP" "S$i

fi

if [$1 = "PASS"];then
RECORD4="yes"

else
RECORD5="no"

fi

done

#Find the right NICK

RECORD="no"

NICK="null"

for 1 in $(grep NICK logserver2); do

if [SRECORD = "yes"]; then
NICK=$1

fi

if [$1 = "NICK"]; then

RECORD="yes"
done

#Find the right USER
RECORD2="no"

USER="null"
NBUSER=0
for 1 in $(grep "USER " logserver2); do
if [SRECORD2 = "yes"]; then
TEMP=$USER
TEMP2=$NBUSER
USER=S$TEMP" "$i
NBUSER=S ((STEMP2+1))
fi
if [$1i = "USER"];then

39

RECORD2="yes"
USER=" "w
NBUSER=0
fi
done

#Find the right CHAN, and the CHAN PASS if there

RECORD3="no"

RECORD5="no"

RECORD6="no"

JOIN="null"

PASS_CHAN="null"

for 1 in $(grep JOIN logserver2); do

if [SRECORD5 = "yes"]; then
PASS_CHAN=S1
RECORD5="no"
RECORD6="yes"

fi
if [SRECORD3 = "yes"] && [SRECORD6
JOIN=S$1i
RECORD5="yes"
fi
if [SRECORD3 = "no"];then
if [$1 = "JOIN"];then
RECORD3="yes"
fi
fi

done

#Find the mode MODE, if there is one
RECORD7="no"

RECORD8="no"

MODE="null"

for i in $(grep MODE logserver2); do

if [SRECORD8 = "yes"]; then
MODE=$1
RECORD7="no"
fi
if [SRECORD7 = "yes"] && [$RECORDS8
RECORD8="yes"
fi
if [SRECORD7 = "no"];then
if [$i1 = "MODE" 1];then
RECORD7="yes"
fi
fi
done
if [SNICK = "null"];then
echo No nick defined...
else
echo The nick is S$NICK
fi

40

is one
"no"]; then
"no"]; then

if [SNBUSER = 0];then
echo No user defined...

fi
if [SNBUSER != 0] && [SNBUSER != 4];then
echo User is missing arguments...
else
echo The user is S$USER
fi
if [SJOIN = "null"];then
echo No chanel defined...
else
echo The channel is S$JOIN
fi
if [SPORT = "null"];then
echo No port found...
else
echo The port is S$SPORT
fi
if [SMODE = "null"];then
echo No mode defined
else
echo The mode is S$MODE
fi
if [SIRCSERVER = "null"];then
echo No irc server defined...
else
echo The irc server 1is S$IRCSERVER
fi

#generation du port client, entre les ports 7000 et 9000

ok="n"
while ["$ok" !=vy]; do
RANGE=2000
number=$RANDOM
let "number %= SRANGE"
let PORT_CLIENT="S$number"+7000
i=$ (netstat | grep S$PORT_CLIENT | wc -1)
if [$1 = 0]; then
echo port client S$PORT_CLIENT libre
Ok:"y"
else
echo port client S$PORT_CLIENT occupe
fi
done
if [SNICK !'= "null"] && [$SJOIN != "null"] && [SNBUSER
"4"] && [SIRCSERVER != "null"] && [SPORT != "null"] ; then

echo The server is $IRCSERVER, with port $PORT

if [$SPASS_SERVER = "null"]; then

41

echo No server password

else
echo The server password is S$SPASS
fi
if [S$SPASS_CHAN = "null"]; then
echo No chan password
else
echo The channel password is $PASS_CHAN
fi

#we launch the socat application to redirection to
tor and then the internet
on regarde si on a deja une socat vers ce

server/port:
j=$(ps ax | grep socat | grep S$SIRCSERVER:S$PORT | wc -
1)
#echo le nombre de ligne est $7j
if [$j = 0 1; then
echo socat pas lance vers ce serveur/port
#si pas deja lance:
#generation du port de redirection, entre 4000
et 5000
ok="n"
while ["$ok" != vy 1; do

RANGE=1000

number=$RANDOM

let "number %= S$SRANGE"

let PORT_SOCAT="S$number"+3000

i=$ (netstat | grep S$PORT_SOCAT | wc -1)

if [$1 = 0]; then
echo port socat S$PORT_SOCAT libre
Ok:"y"
else
echo port socat S$PORT_SOCAT occupe
fi
done

#on lance socat

echo Launching socat

socat TCP4-listen:S$SPORT_SOCAT, fork
SOCKS4A:localhost: SIRCSERVER: $SPORT, socksport=9050&

HOST=127.0.0.1
USER=root
PASSDB=PASS
DB=Botnets

nom=$ (echo $1 | cut -d "-" —f 3)
date=$(echo $1 | cut -d "-" —f 1)

#on regarde si deja rempli:

nombre=$ (mysql -u$SUSER -hS$HOST —-
password=$PASSDB -Bse "SELECT * FROM Bot WHERE binary_name='S$nom'" $DB
| we -1)

echo $nombre

if [S$Snombre = 0]; then

echo bot du $date
echo chanpass S$PASS_CHAN

42

solution=$ (mysgl —-uS$SUSER —-h$HOST —-
password=$PASSDB —-Bse "INSERT INTO Bot (date, binary_name,
machine_type, nick, channel, server_name, server_pass,pass_chan, PORT)

VALUES ('S$date', 'S$nom', 'Win', 'SNICK', 'S$JOIN', 'SIRCSERVER',
'SPASS_SERVER', 'SPASS_CHAN', "SPORT')" SDB)

else

echo deja dedans

fi

#we launch the honeyclient, to connect to the
server

echo Lauching honeyclient on port $PORT of
server S$IRCSERVER

cd /home/diane/HoneynetProject/honeyclient/src/

./honeyclient localhost S$PORT_SOCAT

SPORT_CLIENT $1 S$PASS_SERVER S$NICK $JOIN S$SUSER S$SMODE S$PASS_CHAN &

#> /home/diane/HoneynetProject/data/$1/honeylog
&

#<server> <port> <directory> <pass server>
<nick> <chan> <usl> <us2> <us3> <us4> <mode> <pass_chan>

#

cd /home/diane/HoneynetProject/

else
echo Socat deja lance vers ce serveur/port
fi
else
echo The server redirection did not get enough
information to launch the honeyclient - Honeyclient not launched
fi
fi
else
echo Pas de port defini - On ne teste pas les parametres d
identification
fi
echo " "
echo FIN
echo n n

43

APPENDIX B: DNSMASQ CONFIGURATION FILE

Configuration file for dnsmasqg.

Format is one option per line, legal options are the same
as the long options legal on the command line. See
"/usr/sbin/dnsmasq —--help" or "man 8 dnsmasq" for details.

$= oHE o 3 3

Never forward plain names (without a dot or domain part)
domain-needed

Never forward addresses in the non-routed address spaces.
bogus-priv

Uncomment this to filter useless windows-originated DNS requests
which can trigger dial-on-demand links needlessly.

Note that (amongst other things) this blocks all SRV requests,

so don't use it if you use eg Kerberos.

This option only affects forwarding, SRV records originating for
dnsmasqg (via srv-host= lines) are not suppressed by it.
#filterwin2k

Add other name servers here, with domain specs if they are for
non-public domains.
#server=/localnet/192.168.0.1

Add local-only domains here, queries in these domains are answered
from /etc/hosts or DHCP only.
#local=/localnet/

Add domains which you want to force to an IP address here.

The example below send any host in doubleclick.net to a local
webserver.

address=/#/192.0.0.1

If you want dnsmasqg to listen for DHCP and DNS requests only on
specified interfaces (and the loopback) give the name of the
interface (eg eth0) here.

Repeat the line for more than one interface.

interface=vmnetl

H= o o

Or you can specify which interface _not_ to listen on
#except—-interface=

Or which to listen on by address (remember to include 127.0.0.1 if
you use this.)

listen-address=192.0.0.1

listen—-address=127.0.0.1

If you want dnsmasg to provide only DNS service on an interface,
configure it as shown above, and then use the following line to
disable DHCP on it.

#no-dhcp-interface=

On systems which support it, dnsmasqg binds the wildcard address,

even when it is listening on only some interfaces. It then discards

requests that it shouldn't reply to. This has the advantage of

working even when interfaces come and go and change address. If you

want dnsmasqg to really bind only the interfaces it is listening on,

uncomment this option. About the only time you may need this is when
running another nameserver on the same machine.

#bind-interfaces

44

If you don't want dnsmasq to read /etc/hosts, uncomment the

following line.

#no-hosts

or if you want it to read another file, as well as /etc/hosts, use
this.

#addn-hosts=/etc/banner_add_hosts

Set this (and domain: see below) if you want to have a domain
automatically added to simple names in a hosts-file.
#expand-hosts

Set the domain for dnsmasg. this is optional, but if it is set, it
does the following things.

1) Allows DHCP hosts to have fully qualified domain names, as long
as the domain part matches this setting.

2) Sets the "domain" DHCP option thereby potentially setting the

domain of all systems configured by DHCP

3) Provides the domain part for "expand-hosts"
#domain=thekelleys.org.uk

Uncomment this to enable the integrated DHCP server, you need

to supply the range of addresses available for lease and optionally
a lease time. If you have more than one network, you will need to

repeat this for each network on which you want to supply DHCP

service.

#dhcp-range=192.168.0.50,192.168.0.150,12h

This is an example of a DHCP range where the netmask is given. This
is needed for networks we reach the dnsmasg DHCP server via a relay
agent. If you don't know what a DHCP relay agent is, you probably

don't need to worry about this.
#dhcp-range=192.168.0.50,192.168.0.150,255.255.255.0,12h

This is an example of a DHCP range with a network-id, so that
some DHCP options may be set only for this network.
#dhcp-range=red, 192.168.0.50,192.168.0.150

Supply parameters for specified hosts using DHCP. There are lots

of valid alternatives, so we will give examples of each. Note that
IP addresses DO NOT have to be in the range given above, they just
need to be on the same network. The order of the parameters in these
do not matter, it's permissble to give name,adddress and MAC in any
order

e

Always allocate the host with ethernet address 11:22:33:44:55:66
The IP address 192.168.0.60
#dhcp-host=11:22:33:44:55:66,192.168.0.60

Always set the name of the host with hardware address
11:22:33:44:55:66 to be "fred"
#dhcp-host=11:22:33:44:55:66, fred

Always give the host with ethernet address 11:22:33:44:55:66

the name fred and IP address 192.168.0.60 and lease time 45 minutes
#dhcp-host=11:22:33:44:55:66,fred, 192.168.0.60,45m

Give the machine which says it's name is "bert" IP address

192.168.0.70 and an infinite lease
#dhcp-host=bert,192.168.0.70, infinite

Always give the host with client identifier 01:02:02:04

45

the IP address 192.168.0.60
#dhcp-host=id:01:02:02:04,192.168.0.60

Always give the host with client identifier "marjorie"
the IP address 192.168.0.60
#dhcp-host=id:marjorie, 192.168.0.60

Enable the address given for "judge" in /etc/hosts

to be given to a machine presenting the name "judge" when
it asks for a DHCP lease.

#dhcp-host=judge

Never offer DHCP service to a machine whose ethernet
address is 11:22:33:44:55:66
#dhcp-host=11:22:33:44:55:66, ignore

Ignore any client-id presented by the machine with ethernet

address 11:22:33:44:55:66. This is useful to prevent a machine
being treated differently when running under different OS's or
between PXE boot and OS boot.
#dhcp-host=11:22:33:44:55:66,1d:*

Send extra options which are tagged as "red" to
the machine with ethernet address 11:22:33:44:55:66
#dhcp-host=11:22:33:44:55:66,net:red

Send extra options which are tagged as "red" to
any machine with ethernet address starting 11:22:33:
#dhcp-host=11:22:33:*:*:* net:red

Send extra options which are tagged as "red" to any machine whose
DHCP vendorclass string includes the substring "Linux"
#dhcp-vendorclass=red, Linux

Send extra options which are tagged as "red" to any machine one
of whose DHCP userclass strings includes the substring "accounts"
#dhcp-userclass=red, accounts

Send extra options which are tagged as "red" to any machine whose
MAC address matches the pattern.
#dhcp-mac=red, 00:60:8C:*:*:*

If this line is uncommented, dnsmasq will read /etc/ethers and act
on the ethernet-address/IP pairs found there just as if they had

been given as —--dhcp-host options. Useful if you keep

MAC-address/host mappings there for other purposes.

#read-ethers

Send options to hosts which ask for a DHCP lease.

See RFC 2132 for details of available options.

Note that all the common settings, such as netmask and

broadcast address, DNS server and default route, are given

sane defaults by dnsmasqg. You very likely will not need any

any dhcp-options. If you use Windows clients and Samba, there
are some options which are recommended, they are detailed at the
end of this section.

For reference, the common options are:

subnet mask - 1

default router - 3

DNS server — 6

broadcast address - 28

46

Override the default route supplied by dnsmasqg, which assumes the
router is the same machine as the one running dnsmasq.
#dhcp-option=3,1.2.3.4

Set the NTP time server addresses to 192.168.0.4 and 10.10.0.5
#dhcp-option=42,192.168.0.4,10.10.0.5

Set the NTP time server address to be the same machine as
is running dnsmasqg
#dhcp-option=42,0.0.0.0

Set the NIS domain name to "welly"
#dhcp-option=40,welly

Set the default time-to-live to 50
#dhcp-option=23, 50

Set the "all subnets are local" flag
#dhcp-option=27,1

Send the etherboot magic flag and then etherboot options (a string).
#dhcp-option=128,e4:45:74:68:00:00
#dhcp-option=129,NIC=eeprol00

Specify an option which will only be sent to the "red" network
(see dhcp-range for the declaration of the "red" network)
#dhcp-option=red, 42,192.168.1.1

The following DHCP options set up dnsmasg in the same way as is
specified

for the ISC dhcpcd in

http://www.samba.org/samba/ftp/docs/textdocs/DHCP-Server—
Configuration.txt

adapted for a typical dnsmasqg installation where the host running

dnsmasqg is also the host running samba.

you may want to uncomment them if you use Windows clients and Samba.

#dhcp-option=19, 0 # option ip-forwarding off
#dhcp-option=44,0.0.0.0 # set netbios-over-TCP/IP nameserver (s)
aka WINS server (s)

#dhcp-option=45,0.0.0.0 # netbios datagram distribution server
#dhcp-option=46, 8 # netbios node type

#dhcp-option=47 # empty netbios scope.

Send RFC-3397 DNS domain search DHCP option. WARNING: Your DHCP
client

probably doesn't support this......
#dhcp-option=119,eng.apple.com,marketing.apple.com

Send RFC-3442 classless static routes (note the netmask encoding)
#dhcp-option=121,192.168.1.0/24,1.2.3.4,10.0.0.0/8,5.6.7.8

Send encapsulated vendor-class specific options. The vendor-class

is sent as DHCP option 60, and all the options marked with the

vendor class are send encapsulated in DHCP option 43. The meaning of
the options is defined by the vendor-class. This example sets the

mtftp address to 0.0.0.0 for PXEClients
#dhcp-option=vendor:PXEClient,1,0.0.0.0

Set the boot filename and tftpd server name and address
for BOOTP. You will only need this is you want to

47

boot machines over the network.
#dhcp-boot=/var/ftpd/pxelinux.0,boothost,192.168.0.3

Set the limit on DHCP leases, the default is 150
#dhcp-lease-max=150

The DHCP server needs somewhere on disk to keep its lease database.
This defaults to a sane location, but if you want to change it, use
the line below.

#dhcp-leasefile=/var/lib/misc/dnsmasq.leases

Set the DHCP server to authoritative mode. In this mode it will
barge in

and take over the lease for any client which broadcasts on the
network,

whether it has a record of the lease or not. This avoids long
timeouts

when a machine wakes up on a new network. DO NOT enable this if
there's

the slighest chance that you might end up accidentally configuring a
DHCP

server for your campus/company accidentally. The ISC server uses the
same

the same option, and this URL provides more information:

http://www.isc.org/index.pl?/sw/dhcp/authoritative.php
#dhcp-authoritative

Run an executable when a DHCP lease is created or destroyed.
The arguments sent to the script are "add" or "del",

then the MAC address, the IP address and finally the hostname
if there is one.

#dhcp-script=/bin/echo

Set the cachesize here.
cache-size=256

Normally responses which come form /etc/hosts and the DHCP lease
file have Time-To-Live set as zero, which conventionally means

do not cache further. If you are happy to trade lower load on the
server for potentially stale date, you can set a time-to-live (in
seconds) here.

#local-ttl=

If you want dnsmasg to detect attempts by Verisign to send queries

to unregistered .com and .net hosts to its sitefinder service and

have dnsmasg instead return the correct NXDOMAIN response, uncomment
this line. You can add similar lines to do the same for other

registries which have implemented wildcard A records.
#bogus—-nxdomain=64.94.110.11

If you want to fix up DNS results from upstream servers, use the
alias option. This only works for IPv4.

This alias makes a result of 1.2.3.4 appear as 5.6.7.8
#alias=1.2.3.4,5.6.7.8

and this maps 1.2.3.x to 5.6.7.x
#alias=1.2.3.0,5.6.7.0,255.255.255.0

For debugging purposes, log each DNS query as it passes through
dnsmasq.
log—-queries

48

REFERENCES

Computer Security Research: MsAfee Avert Labs Blog -
http://www.avertlabs.com/research/blog/index.php/2007/10/
(last accessed 10/07)

Symantec — Bots and Botnets: A growing threat -
http://www.symantec.com/norton/theme.jsp?themeid=botnet
(last accessed 10/07)

Kim-Kwang Raymond Choo (2007). “Zombies and Botnets”. Trends and issues in
crime and criminal justice -
http://www.aic.gov.au/publications/tandi2/tandi333t.html
(last accessed 10/07)

Symantec Security Responses — Cybercrime: Bots and Cybercrime -
http://www.symantec.com/avcenter/cybercrime/bots_page2.html
(last accessed 10/07)

Symantec Corp — Internet Security Threat Report -
http://www.symantec.com/business/theme.jsp?themeid=threatreport
(last accessed 10/07)

Andreas Moser, C. K. a. E. K. (2007). "Exploring Multiple Execution Paths for
Malware Analysis." Oakland'07

Cunningham, C. C. Z. a. R. (2006). "Honeypot-Aware Advanced Botnet Construction
and Maintenance." International Conference on Dependable Systems and
Networks (DSN).

David Brumley, C. H., Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, Dawn Song, Heng Yin "Bitscope: Automatically Dissecting
Malicious Binaries."

David Dagon, C. C. Z., and Wenke Lee (2006). "Modeling Botnet Propagation Using
Time Zones." 13th Annual Network and Distributed System Security
Symposium (NDSS).

Evan Cooke, F. J., and Danny McPherson (2005). "The Zombie Roundup:
Understanding, Detecting, and Disrupting Botnets." Proc. of Workshop on Steps
to Reducing Unwanted Traffic on the Internet (SRUTI'05), July 2005.

Guofei Gu, P. P., Vinod Yegneswaran, Martin Fong, Wenke Lee (2007). "BotHunter:
Detecting Malware Infection Through IDS-Driven Dialog Correlation." In
Proceedings of the 16th USENIX Security Symposium (Security'07).

49

Heng Yin, D. S., Manuel Egele, Christopher Kruegel, and Engin Kirda (2007).
"Panorama: Capturing System-wide Information Flow for Malware Detection
and Analysis." CCS'07.

Holger Dreger, A. F., Michael Mai, Vern Paxson, Robin Sommer (2006). "Dynamic
Application-Layer Protocal Analysis for Network Intrusion Detection." Proc.
USENIX Security Symposium.

Ion Alberdi, E. A., Philippe Owezarski, and Vincent Nicomette (2007). "Shark: SPhy
Honeypot with Advanced Redirection Kit."

Jason Franklin, V. P., Adrian Perrig, and Stefan Savage "An Inquiry into the Nature and
Causes of the Wealth of Internet Miscreants." Proceedings of 14th ACM CCS.

Jianwei Zhuge, X. H., Jinpeng Guo, Dongzhi Cao, Yonglin Zhou, Zhiyuan Ye, and Wei
Zou (2007). "An Investigation on the Botnet Activities."

Manuel Egele, C. K., and Engin Kirda (2007). "Dynamic Spyware Analysis." Usenix
Annual Technical Conference 2007.

Moheeb Abu Rajab, J. Z., Fabian Morose, and Andreas Terzis (2006). "A multifaceted
Approach to Understanding the Botnet Phenomenon." In Proceedings of ACM
SIGCOMM/USENIX Internet Measurement Conference (IMC).

Paul Bacher, M. K., Thorsten Holz, Maximillian Dornseif, and Felix Freiling (2006).
"The Nepenthes Platform: An Efficient Approach to Collect Malware." RAID
2006.

Paul Bacher, T. H., Markus Kotter, and Georg Wicherski (2005). "Know your Enemy:
Tracking Botnets."

The Honeynet Project (2005). "Know your Enemy: Honeynets."
www.honeynet.org/papers/honeynet/

The Honeynet Project (2005). "Know your Enemy: Motives."
www.honeynet.org/papers/motives/

The Honeynet Project (2005). "Know your Enemy: Phishing."
www.honeynet.org/papers/phishing/

Kim-Kwang Raymond Choo (2007). “Zombies and Botnets”. Trends and issues in
crime and criminal justice -

http://www.aic.gov.au/publications/tandi2/tandi333t.html

Racine, S. (2004). "Analysis of Internet Relay Chat Usage by DDoS Zombies." Master's
Thesis.

Skoudis, T. L. a. E. (2006). "On the Cutting Edge: Thwarting Virtual Machine
Detection."

Wang, X. J. a. X. (2007). ""Out-of-the-box" Monitoring of VM-based High Interaction

50

Honeypots." In Proceedings of the 10th International Symposium on Recent
Advances in Intrusion Detection (RAID 2007).

Weidong Cui, J. K., and Helen J. Wang "Discover: Automatic Protocol Reverse
Engineering from Network Traces."

J. Oikarinen, D. Reed. “Internet Relay Chat Protocol”, RFC 1459.

C.Kalt. “Internet Relay Chat: Architecture”, RFC 2810.

C.Kalt. “Internet Relay Chat: Channel Management”, RFC 2811.

C.Kalt. “Internet Relay Chat: Client Protocol”, RFC 2812.

C.Kalt. “Internet Relay Chat: Server Protocol”, RFC 2813.

IRC RFC - http://www.irchelp.org/irchelp/rfc/rfc.html (last accessed 10/07)

IRC: Numeric List - http://www.alien.net.au/irc/irc2numerics.html (last accessed 10/07)
Nepenthes - finest collection - http://nepenthes.mwcollect.org/ (last accessed 10/07)

Honeytrap: trap attacks in your network - http://honeytrap.mwcollect.org/
(last accessed 10/07)

Tcpdump - http://www.tcpdump.org/tcpdump_man.html (last accessed 10/07)

VMware - http://www.vmware.com/ (last accessed 10/07)

VMware “Command Line Applications” -
http://www.vmware.com/support/ws55/doc/ws_learning_cli_vmrun.html
(last accessed 10/07)

Ethereal: A Network Protocol Analyzer - www.ethereal.com/ (last accessed 10/07)

The Undernet IRC network — www.undernet.org (last accessed 10/07)

Project Malfease - malfease.oarci.net/ (last accessed 10/07)

Socat — Multipurpose relay - http://www.dest-unreach.org/socat/
(last accessed 10/07)

Tor: Un systeme de connexion anonyme a Internet - http://www.torproject.org/
(last accessed 10/07)

51

