
 HONEYNET DESIGN AND IMPLEMENTATION

A Thesis

Presented to

The Academic Faculty

By

Diane Artore

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science in

Computer Science

Georgia Institute of Technology

May 2008

HONEYNET DESIGN AND IMPLEMENTATION

 Approved by:

 Dr Wenke Lee, Advisor

 College of Computing

 Georgia Institute of Technology

 Dr Mustaque Ahamad

 College of Computing

 Georgia Institute of Technology

 Dr Jonathon Giffin

 College of Computing

 Georgia Institute of Technology

 Date Approved: December 26, 2007

iii

ACKNOWLEDGMENTS

A number of people have helped me in many ways to complete this work. I would like

to personally thank:

• My advisor, Dr. Wenke Lee, who gave me the opportunity to work in the

Georgia Tech Information Security Center (GTISC), and who accepted to advise

me all along my work.

• Guofei Gu and Christoper Lee, both PhD Candidates, for their time, support and

advice.

• The remaining committee members of my thesis: Dr. Mustaque Ahamad,

director of the GTISC, and Dr Jonathon Giffin, Assistant Professor.

• My parents and family, my friends Kreston Barron, Sophie Govetto, and Simon

Budin, who supported me from France.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...iii

LIST OF TABLES... vi

LIST OF FIGURES ..vii

LIST OF ABBREVIATIONS..viii

SUMMARY... ix

CHAPTER 1 - INTRODUCTION.. 1

1.1 Motivations ... 1

1.2 The Goals .. 2

1.2.1 Botnets - why monitoring?... 2

1.2.2 Data Collection - why and how?.. 2

1.3 The project .. 4

1.3.1 Design a honeynet architecture .. 4

1.3.2 Data Collection and Analysis... 4

1.4 The steps to take ... 5

CHAPTER 2 - LITERATURE REVIEW... 7

2.1 Honeynet Design... 7

2.2 Data Collection ... 8

2.3 Our approach.. 8

CHAPTER 3 - IRC BOTS.. 9

3.1 Bots ... 9

3.1.1 What is a bot?... 9

3.1.2 Actions ... 10

3.1.3 Geography.. 10

3.1.4 Underground market .. 11

3.2 IRC bots .. 12

CHAPTER 41 - HONEYNET DESIGN .. 14

4.1 General Scheme .. 14

4.2 Downloading Malwares .. 14

4.3 The Manager – Analyzer .. 15

4.3.1 Mechanisms ... 15

4.3.2. Components .. 16

CHAPTER 5 - HONEYNET IMPLEMENTATION ... 18

5.1 Drones... 18

5.2 The Manager ... 18

5.2.1 Scripts... 18

5.2.2. Components .. 21

v

5.2.2.1 The infected client... 21

5.2.2.2 DNS... 22

5.2.2.3 Finding the right port... 22

5.2.2.4 Anonymization .. 22

5.2.2.5 The “fake” server and the honeyclient 23

5.2.2.6 The database.. 24

CHAPTER 6 - RESULTS... 25

6.1 Example 1 : A typical botnet .. 25

6.2 Example 2: Similar Bots ... 26

6.3 Example 3: A Romanian botnet.. 29

CHAPTER 7 - CONCLUSIONS.. 31

7.1 IRC botnet characteristics... 31

7.2 IRC botnet activities ... 31

7.3 What remains to do? ... 32

APPENDIX A: Scripts.. 34

APPENDIX A: Scripts.. 34

APPENDIX B: DNSMASQ CONFIGURATION FILE .. 44

vi

LIST OF TABLES

Table 1 Antivirus use habits- McAfee/NCSA – oct 07 .. 1

Table 2 Automated actions performed by bots - Symantec.. 10

Table 3 Underground market - Symantec - Sept 07 ... 11

Table 4 Bots and IRC characteristics.. 26

vii

LIST OF FIGURES

Figure 1 Iterative approach ... 6

Figure 2 How botnets work .. 9

Figure 3 Location of IRC C&C in 2005 – Symantec ... 10

Figure 4 Location of underground market IRC C&C in 2005.. 11

Figure 5 Example of DDoS attack.. 13

Figure 6 General scheme of the Honeynet.. 14

Figure 7 IRC redirection ... 15

Figure 8 Database design.. 17

Figure 9 Scripts ran by the Analyzer/Manager ... 20

Figure 10 Host and Guest OS communication ... 21

Figure 11 Connection to scorti1.dns2.go port 7000.. 25

Figure 12 Regular commands on the channel... 26

Figure 13 Norman Sandbox's results for 229139812ba261f3f92e48cf46198e41 27

Figure 14 Norman Sandbox's results for 5263ca991b04f7f49705f27637b33930.......... 28

Figure 15 Norman Sandbox' results for 8759c53ef7d4c0df5e2f5beaf4503b4b 28

Figure 16 Norman Sandbox's results for c8d93194977484ffc397b8903d846304 29

Figure 17 Alex's profile on the hi5 website .. 30

viii

LIST OF ABBREVIATIONS

IRC Internet Relay Protocol

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

C&C Controls and Commands

DDoS Distributed Denial of Service

ix

SUMMARY

Over the past decade, webcriminality has become a real issue. Because they allow the

botmasters to control hundreds to millions of machines, botnets became the first-choice

attack platform for network attackers, to launch distributed denial of service attacks,

steal sensitive information, and send spam emails.

This work aims at designing and implementing a honeynet, specific to IRC bots. Our

system works in 3 phases: (1) binaries collection, (2) simulation, and (3) activity

capturing and monitoring. Our phase 2 “simulation” uses an IRC redirection to extract

the connection information thanks to an IRC redirection (using a DNS redirection and a

fakeserver). In phase 3, we use the information previously extracted to launch our

honeyclient, which will capture and monitor the traffic on the C&C channel.

Thanks to our honeynet, we create a database of the activity of IRC botnets (their

connection characteristics, commands on the C&C…), and hope to learn more about

their behavior and the “underground market” they create.

1

CHAPTER 1

INTRODUCTION

1.1 Motivations

With an increasing number of people using the Internet and companies developing more

and more online services, web criminality has become a real issue. A few years ago,

hackers would focus on webservices directly (like attacking bank webservers), or

hacking into users’ computers, just for entertainment. Those attacks lately shifted to

attacking users directly. Indeed, companies pay real attention to their services, and

allocate resources to work on preventing those problems. Therefore it is easier for the

hackers to focus on users, who are not aware of those threats, or not fighting them. They

will for example try to steal users’ login and password to their online banking website

rather than trying to hack the bank server directly. The table below shows the results of

a study on users’ behavior, published by McAfee, comparing the evolution of Antivirus

updating habits of users, in 2004, 2005 and 2007. It demonstrates that though users tend

to be more aware of the threats, still 50% of users do not have an up-to-date Antivirus or

even any Antivirus software at all.

Table 1 Antivirus use habits- McAfee/NCSA – oct 07

2004 2005 2007

Percent of respondents who claim to have up to date AV protection 71% 68% 92%

Percent of respondents who either have no anti-virus protection or

have not updated their protection within the past week
67% 56% 49%

By infecting computers, hackers have at their disposal thousands or millions of

machines, that constitute a network of zombies, a world-wide infrastructure that can be

used to send spam, launch DDoS, or even generate a wide underground market selling

2

users’ credit card numbers, and users’ internet habits (i.e, specific advertisement)

Botnets became the first-choice attack platform for the network attackers, to launch

distributed denial of services attacks, steal sensitive information and send spam emails.

Now that webdevelopers and webmasters have been educated about Internet threats, it is

time to educate users about the dangers of the Internet, and provide them with the

appropriate tools.

1.2 The Goals

1.2.1 Botnets - why monitoring?

Many studies are currently being conducted about how to prevent botnets and malwares

from infecting users’ computers. These active approach studies analyze botnets’

behaviors, and aim at defining rules about whether binaries should be executed (either

with signature-based or heuristics approaches).

For our work, we decided to have a passive approach, and monitor botnets, rather than

preventing them from executing. Our goal is to have a tool that can passively monitor

communication channels. Instead of making a decision about their nature, we will let

them execute and monitor their behavior. We aim at studying their goals and trying to

define general trends or common characteristics.

1.2.2 Data Collection - why and how?

Our study focuses on IRC botnets, which are still the majority of live botnets, the main

reason being that they are easy to deploy (by using a channel on an online IRC server,

or setting up one with available source code). They also let the botmaster communicate

easily and in real time with the bots (compared to HTTP-based bots – see chapter 3),

and have a better view of the zombies it controls (compared to peer-to-peer based bots –

see chapter 3).

3

To collect the data, we designed a honeynet that spies the traffic on the IRC channels,

using a simple IRC client, after extracting the IRC information from the binaries.

• Servers’ lifetime

The C&C used by the botmaster are either channels on public IRC servers, or on servers

they set up themselves. In both cases, the C&C don’t stay online long. Whether they

change the domain name or switch to another server after achieving their goal (e.g.

launching a DDoS), botmasters want to make sure they maintain control of their

zombies and therefore stay undetected.

When one wishes to look at a given bot to study the action it performs, the C&C might

already be down. Therefore it is precious to log the traffic while it is still up, for later

revision. This can be useful for researchers, who want to study IRC botnet

characteristic’s, botmasters’ habits and goals, but also for law enforcement. By

collecting as much information as possible on each of those botnets, we can find

common patterns to link attacks to one another.

• Lightweight solution

Contrary to most approaches so far, our solution does not monitor machines running the

binaries. We execute them in a virtual environment, extract the information to connect

to the C&C, and then connect to it thanks to an IRC client. Therefore, the machine runs

an IRC client only. With our solution, there is no risk of infecting other machines or

performing undesired operations. When executing the binaries, one can prevent

performing malicious activities (spreading to other machines, spending spam…), but it

requires extra workload. Indeed, we would have to define a list of rules, and check the

outbound traffic. This is particularly hard to do, given that we can not know ahead of

time what the binary will do. If this could be done easily, we would only have to apply

those rules to user’s computers to make sure no one performs malicious activities.

4

1.3 The project

1.3.1 Design a honeynet architecture

We have to design the architecture of the honeynet, so that it can perform the following

actions:

• Catch the binaries

We want to collect as many binaries as possible on the Internet, to test them to

determine whether or not they are IRC bots.

• Extract C&C information thanks to IRC redirection

We want to be able to extract the connection information to the IRC sever. This is

done by redirecting the infected machine’s traffic to a “fakeserver” we designed,

which will mimic the IRC server the bots want to connect to (more details in

Chapter 4).

• Save activity on C&C

We want to save the activity on the C&C (i.e. log the information exchanged as well

as the pattern of the communication).

• Create a database of botnets’ activities, for further analysis

The information about the binaries we collect (whether they are bots, their

connection characteristics and their activities) will be saved in a database. Using this

database will allow an easier treatment and analysis of the data than a simple

logging system.

1.3.2 Data Collection and Analysis

Below is the information we want to collect thanks to our Honeynet:

• Connection information

5

We will extract all the connection information to the IRC channel (server’s name,

server’s IP, port to connect to, nickname, username, password to the server if any,

channel, and password to the channel if any).

• Resources exchanged on the C&C

All the commands exchanged on the C&C will be saved, and we want to extract

specific information, such as hacking resources (e.g. rootkits) or websites (profiles,

binary updates…).

• Malicious activities - “Underground” market

Botmasters often use the channels as a way to advertise for malicious activities.

Analyzing the logs will allow us to study what data the “underground market” is

mostly concerned about.

• Raise alarms on given keywords

In most cases, IRC commands are not encrypted, and use quite intuitive names.

Therefore, we can define some basics keywords (scan, advscan, ddos….) and do a

dynamic analysis on the IRC traffic to raise alarms. This will not allow us to prevent

all attacks, but it is a first step.

1.4 The steps to take

• Honeynet - Design

First, we have to define the architecture of the honeynet, based on the components

we need (the virtual environment, the DNS sever and the fakeserver for the IRC

redirection module…) and the features we want to have (analysis of the logs,

database to save information…). This architecture is detailed in Chapter 4.

• Honeynet - Implementation

To make sure our tool works, we decided to have an iterative approach. We’ll

implement the components one after the other, adding features step by step (see

6

Figure 1 below). For example, we will first implement the components related to the

IRC redirection, and test them. Once it works, we will add the honeyclient, the

dynamic analysis of the traffic, and then the database.

Figure 1 Iterative approach

Yes

Yes
No

No

Implement the components

Test

Works

?

Debug

Done ?

Begin Analysis

Define the architecture

7

CHAPTER 2

LITERATURE REVIEW

More and more studies focus on botnets, trying to find ways to prevent systems from

being infected (active approaches). Others try to directly monitor command and control

traffic (passive approaches). Our work is based on observing and capturing botnet

traffic, so the following gives a summary of the current similar studies. The detailed

references of the papers cited are listed at the end of the document.

A Honeynet by definition is a system put on a network to capture binaries, and monitor

the outbound traffic to C&C severs. Different systems have been designed to achieve

this goal. One of the initial studies is the one performed by the German Honeynet

Project, capturing and studying about 100 bonets, and publishing their reports in the

suite of papers “Know Your Enemy”.

2.1 Honeynet Design

In “The Zombie Roundup: Understaning, Detecting, and Disrupting Botnets”, Evan

Cooke and Farnam Jahanian used a honeypot to study bot behavior, using vulnerable

Windows XP and Windows 2000, letting them connect directly to the real server

through the Internet. In “Shark : Spy Honeypot with Advanced Redirection Kit”, Ion

Alberdi et al also use a redirection of the infected machine’s traffic to a fakeserver they

designed. They collect the binaries with Nepenthes, do the simulation, but they don’t

use the fakeserver to extract the C&C connection information, but to get the IP, port,

and bot type (IRC..). They use this information to update the rules of their gateway,

allowing the bot to communicate with the outside or not. The approach closest to ours is

the one conducted by Moheeb Abu Rajad et al in “A multifaced approach to

Understanding the Botnet phenomenon”. They use Nepenthes to collect the binaries, use

8

an IRC server to do extract the IRC information, and then connect the real IRC server

with their IRC tracker. Their approach aims at studying botnets structures and size more

than the underground activity related to them.

2.2 Data Collection

Regarding the type of data we want to collect, the approach closest to ours is the one

realized by Jianwei Zhuge et al in “An investigation on the Botnet Activites”. In this

paper they focus on the commands sent on the C&C channel, and on the location of the

infected hosts and the victims of attacks, with a special attention to DDoS.

Another relevant paper is one by Jason Franklin et al, “An inquiry into the Nature and

Causes of the Wealth of Internet Miscreants”, in which they focus on financial data

stealing (i.e. credit card fraud, identity theft, spamming, phishing, online credential

theft, and the sale of compromised bots) and tries to understand the motives for the bot

activities.

2.3 Our approach

Our study combines the advantages of some of the studies mentioned above. Indeed, we

chose to use a fakeserver to do the simulation (advantages explained later) and study the

IRC characteristics as well as the underground market the bots generates.

9

CHAPTER 3

IRC BOTS

In this Chapter, we will define what botnets are, give an introduction to their activities

(actions, geographic repartition), and then focus on IRC botnets.

3.1 Bots

3.1.1 What is a bot?

Like all malwares, bots install themselves silently to a victims’ computer, without their

consent. The particularity of bots is that they include a client that will connect to a

Command and Control server, and then quietly wait for orders from that server. The

C&C channel provides the botmasters with a very easy and quick way to communicate

with the machines they infect.

The infected computers are called zombies, as they quietly wait for orders from the

botmaster. The figure below shows the different steps in a bot’s life (taken from

“Zombies and Botnets - trends and issues in crime and criminal justice” by Kim-Kwang

Raymond Choo).

Figure 2 How botnets work

10

3.1.2 Actions

A botmaster can control and launch attacks instantaneously from millions of machines,

by sending one single command line in the C&C channel. The table below shows the

most common actions a bot can perform.

Table 2 Automated actions performed by bots - Symantec

Sending Stealing DoS (Denial of Service) Clickfraud

Launching denial of service (DoS) attacks against a

specified target. Cybercriminals extort money from

Web site owners, in exchange for regaining control of

the compromised sites.

Frauders use bots to boost

Web advertising billings by

automatically clicking on

Internet ads.

They send:

- spam

- viruses

- spyware

They steal personal and private

information and communicate it

back to the malicious user:

- credit card numbers

- bank credentials

- other sensitive personal

information

More commonly, however, the systems of everyday

users are the targets of these attacks -- for the simple

thrill of the botherder.

3.1.3 Geography

Bots are world-wide threats. The Internet allows people from any country to perform

actions on web servers anywhere in the world. Below is a map from Symantec, showing

the repartition of the C&C in 2005. Though the US is still number 1, Asia develops

tremendously and has more and more C&C nowadays. Due to lack of infrastructure,

Africa is still not in not very active.

Figure 3 Location of IRC C&C in 2005 – Symantec

11

Below is a chart showing the location of the underground market IRC C&C in 2005,

completed by the Australian Institute of Technology.

Figure 4 Location of underground market IRC C&C in 2005

 Australian Institute of Technology

3.1.4 Underground market

The C&C channels are a way for people to exchange information anonymously and sell

malicious data. Here are the results of a study conducted by Symantec that shows the

type of data sold on C&C channels. The top 2 are credit cards and bank accounts,

showing the nature of the traffic shifted from entertainment purposes to stealing and

selling user’s personal financial information.

Table 3 Underground market - Symantec - Sept 07

12

3.2 IRC bots

Nowadays there are three main categories of bots:

• IRC-based

They are the most common bots. See the description below.

• HTTP-based

These bots are programmed to either retrieve or post pages at a given time, or at

every given period or time. Like the IRC-based botnets, they are centralized

networks.

• Peer-to-peer based

The peer-to-peer protocol is sometimes used by HTTP and IRC botnets to

spread, but it can also be used to communicate and propagate orders. These bots

are called peer-to-peer bonets. It has many advantages compared to centralized

networks; a bot only knows the peers it is connected to. Therefore it is much

harder to disrupt.

Internet Relay Chat (IRC) is a standard protocol for real-time messages exchanged over

the Internet. IRC follows a client-server model in which a client connects to an IRC

server, which can peer with other servers to form an IRC network. To connect to such a

network, an IRC client first issues a DNS request to look up the address of the IRC

server it wants to connect to. After connecting to the server, the client identifies itself

with an IRC nickname. IRC servers might have password authentication to access the

server itself and/or the channels. After joining a channel, clients can exchange public

messages (broadcast to all clients connected to the channel) and private messages

(transmitted from the client to the destination client without being displayed on the

channel).The IRC bots are the most used (easier to set up, better control on the

zombies).

13

Below is a figure showing a DDoS attack. It shows only 4 zombies, but obviously when

the number of bots is consequent, it is easy to take down a website (the botmaster only

has to send one request to the IRC server). One request from the botmaster reaches the

whole “army” of zombies, and they all contact the webserver.

Steps:

1: The botmaster sends a DDoS order on the C&C, with the IP of the server to take

down. (either instantaneously or at a given time)

2: The zombies, all connected to the IRC server, receive the order.

3: The IRC client embedded in the bot reads the order, and issues a connection request

to the Web Server (as soon as they receive the order, or at a given time, if specified in

the order).

4: All the requests reach the webserver.

Figure 5 Example of DDoS attack

14

CHAPTER 4

 HONEYNET DESIGN

For each binary, we have a 3 phase-approach: (1) binary collection, (2) simulation

execution (care of the C&C traffic redirection, see below), and (3) capturing and

monitoring the traffic on the real C&C channel.

4.1 General Scheme

Below is the architecture of the Honeypot we want to deploy.

It has three majors components: the Drones (to collect the binaries), the Analyzer (to

extract the connection information), and the Manager (to handle the IRC redirection, see

below). A detailed description of every component is given in section 4.2.

Figure 6 General scheme of the Honeynet

4.2 Downloading Malwares

Malwares are downloaded thanks to

• The drones

The drones are the machines in charge of collecting malwares. They are

connected to the Internet and have or simulate vulnerabilities that malwares can

15

exploit. When infected, the URLs to the binaries are sent to the binaries

collector.

• The binaries collector

The binaries collector receives the URLs from the drones and will download the

corresponding binaries. It has to check the MD5 to ensure that binary storage is

not repetitious.

4.3 The Manager – Analyzer

The manager supervises the IRC direction. It monitors the components to decide

whether the binaries correspond to an IRC bot, and if so extract the connection

information.

4.3.1 Mechanisms

Below are the mechanisms of our redirection, in the case of an IRC bot. When

executing a non-bot binary, only step 1 occurs.

Figure 7 IRC redirection

Steps:

1: Execution of the binary in the virtual environment.

2: The client issues a DNS request.

3: The DNS answers with the address of the fakeserver.

16

4: The infected tries to connect to the “fakesever” to port p

5: The machine answers with a reset TCP message, and by sniffing the traffic we get the

port p

6: We start the server on port p

7: The client initiates an IRC connection (the detail of the messages is given in Chapter

5)

8: After the simulation is done, and the information is parsed, the honeyclient starts and

connects to the real IRC server.

4.3.2. Components

• The infected client

The infected client is a virtual environment in which to run the binaries. If we are

dealing with an IRC bot, it will issue a DNS request to get the IP of the IRC server, and

then try to connect to it.

• DNS

The DNS’s role is to both redirect all the request of the infected client’s to our

fakeserver, and save the request the client issued. The honeyclient will need the

information to be able to connect to the real IRC server.

When a DNS request is issued, the DNS will reply with the address of our fakeserver.

The infected machine will then try to connect to it. By watching the traffic we are able

to tell which port the client is trying to connect to, and then start the fakeserver on the

correct port. It is ready to receive the connection from the infected client.

• The “fake” server

The fakeserver is the server the infected client will try to connect to, thanks to the

redirection from the DNS server. This server does not need to be a real IRC server. It

17

needs to have the basic features to get the connection information (NICK, USER, PASS,

JOIN…).

We noticed that the NICKs are sometimes not totally random. When an infected

machine tries to connect and the NICK is already used, the other nicknames might have

a given pattern (e.g., if asadg is already taken, they would try asadg_, then asadg__ ….).

Therefore, we decide in our honeypot to retrieve 5 different NICKs from the infected

client, in case the honeyclient tries one already in use.

• The honeyclient

It connects to the real C&C server thanks to the information provided by the

communication between our server and the infected machine.

The client is not infected; therefore there is no risk of infecting other machines, or

performing unwanted actions. The problem with this approach is that we may not be

able to answer the server’s commands correctly. This could be detected by the

botmaster, who could therefore disconnect/ban us from the channel.

• The database

The database will save all relevant information concerning the binaries and the scenario

we run. Below are the tables we designed:

Figure 8 Database design

1..n 1 1 0..1 Binaries

id

date

bin_name

bin_type

Logs

id

date

time

bot_id

command

id

date

binary_name

machine_type

nick

channel

server_name

server_IP

server_pass

pass_chan

port

Bots

18

CHAPTER 5

HONEYNET IMPLEMENTATION

The overall system is running on Linux, a machine in the GTISC lab.

5.1 Drones

The implementation so far uses Nepenthes, an automated malware collection platform

that simulates known vulnerabilities in machines running the Windows OS, which is

running on a box in the Georgia Tech honeynet address spaces.

Nepenthes vulnerability modules require knowledge about weaknesses, so that it can

simulate a dialog of how the virus will exploit the weakness, gain the needed

information to download the file and send the attacker just enough information so that

he does not realize the trick. Nepenthes is quite useful to capture new exploits for old

vulnerabilities.

The exploits it downloads are stored in a “binary” folder, each binary’s name being the

MD5 checksum associated with it. The Nepenthes box is located on the honeynet space,

and our simulation machine is located in the GTISC, on the school’s network. We

download the binaries everyday from the Nepenthes box to the simulation machine

through a SSH session.

5.2 The Manager

5.2.1 Scripts

The scripts to execute and monitor the simulation are written in bash. The source code is

given in Appendix B. Below is a summary on how they work.

We download the binaries from the Nepenthes box to our bin/ directory everyday at

00:01 am. We launch the simulations at 1:00 am. At 11:50 pm, we update the database

by parsing the logs and adding newly captured binaries.

19

• watch.sh

It looks in the directory bin/ for new files. If there are new files, for each binary, it

launches the script newproc.sh. When the simulation is done, it stops the IRC server, the

tcpdump (in case we did not get any packet from the simulation). We loop for all the

new binaries in the folder.

• newproc.sh

It adds the .exe extension to the binary, copies it into the shared folder, in which the

windows running in VMware will look for when it boots. Then it launches process.sh

• process.sh

This script starts the simulation, by launching the getport.sh and launchvm.sh scripts.

• getport.sh

It starts tcpdump to capture the first 5 packets coming from 192.0.0.2 to 192.0.0.1 with

the RST field set to 1. If it successfully captures these packets, it extracts the port and

starts the server on that port (for 20 seconds).

• launchvm.sh

This script starts the virtual machine and allows it to run for 90 seconds. After that time,

it restores the machine to a trusted snapshot (taken before the execution of the binary).

• isbotnet.sh

This script will check the results of the simulation to determine if we found a bot. It will

label the folder containing the logs with the “nobot” or “bot”, log the date of the

simulation, and update the database.

• postvm.sh

This script will parse all the logs from the previous execution to extract the information

needed by the honeyclient. If it is a bot, and we successfully found the port, the script

looks for the DNS query, the NICK, USER, JOIN used, and checks for a server or

20

channel password. It starts the honeyclient with all those parameters. As we connect

from the school’s network, we want to make our connection anonymous. To do so, we

use the tools tor and socat (described in 5.2.2.5). The script postvm.sh also looks for an

available port, launches socat on that port, and relays this information to the

honeyclient. We also update the database with information about the new bot we just

discovered.

Below is the figure showing how the scripts interact. The script parsing the logs to

update the database with the daily commands does not appear on this figure.

Figure 9 Scripts ran by the Analyzer/Manager

newproc.sh

Renames and copies the binary to

the shared folder

watch.sh

Looks into bin/

proc.sh

Launches the

simulation

getport.sh

Launches tcpdump to get the port

If successful, launches the

fakeserver on that port

launchvm.sh

Starts the virtual machine

Stops it after 90 seconds

Restores it to a trusted state

isbotnet.sh

Decides whether we have a bot

Updates the databes

postvm.sh
Extracts the useful information

Updates the database

Starts socat on an available port

Starts the honeyclient

finddnsname.sh

Extracts the dns name from the dsnmasq logs

stoptcpdump.sh

To make sure tcpdump

is stopped

stopserver.sh

To make sure

server is stopped

21

5.2.2. Components

5.2.2.1 The infected client

The infected client is a virtual environment, using VMware Workstation, running

Windows. I chose VMware for its ease of use, and the practical command lines

available:

vmrun start "/home/diane/vmware/windows/Windows XP Professional.vmx" &

sleep 90

vmrun stop "/home/diane/vmware/windows/Windows XP Professional.vmx"

vmrun revertToSnapshot "/home/diane/vmware/windows/Windows XP

Professional.vmx" Snapshot-clean/Snapshot-binary

After each execution of a binary, when the simulation is done, the system is restored to

a trusted state (a snapshot taken before the simulation).

The machine address’s is 192.0.0.1, and the Linux’s address is 192.0.0.2. In the network

configuration, we set the DNS to be 192.0.0.2. Therefore we are sure the virtual

machine will connect to our DNS and get the IP of our fakeserver.

The virtual machine and the Linux host are connected through the VMnet1. The Linux

machine is the gateway for the VMware to access the Internet, but we block the feature,

to make sure there is not traffic to the outside world. On the VMnet1, there are only our

Linux host and the windows guest. The host system Linux and the guest OS share a

common folder. VMware has a feature that allows the guest OS to access files located in

the host machine. Therefore, we use this feature to create a folder in which we put the

binary to execute. We added a script in the windows machine, which looks into the

shared folder when the machine boots, copies the .exe of that folder, and executes it.

Figure 10 Host and Guest OS communication

192.0.0.2

shared folder

vmnet0

192.0.0.1

VMware

22

5.2.2.2 DNS

To realize the DNS redirection, I used the lightweight DNSmasq software. It is very

easy to configure. The DNS is on the machine 192.0.0.2. It is configured to redirect the

infected client to our fakeserver, so it will reply with “192.0.0.2” to any query it

receives. The configuration file is given in Appendix C.

5.2.2.3 Finding the right port

To find the right port, we sniff the traffic on the Linux Machine, using the software

TCPDUMP. We know that the client will try to connect to the server on a port p. As the

server is not running yet (because we don’t know yet what port it is supposed to use),

the client will try to initiate a connection, and our host machine will reject that attempt.

Therefore, we only have to look at the traffic, and capture the packets from the IP

192.0.02 to the IP 192.0.0.1, whoso RST byte in the TCP header is set to 1:

./tcpdump -c 5 -i vmnet1 'dst host 192.0.0.2 and tcp[13]=20' –nn

Then with a simple parsing command, we can extract the port that the client is trying to

connect to, and start our IRC fakeserver on that port.

5.2.2.4 Anonymization

As explained in 5.2.1, the machine we are using at the moment is located in the GTISC

lab, and has a static IP address in the Georgia Tech network. Because we do not want

botmasters to learn about our activities or IPs, we will use anonymization tools, called

tor and socat.

Tor is the “onion router”. It allows anonymous web browsing, instant messaging,

remote login, and any application based on the TCP protocol, by encrypting incoming

and outgoing communications and bouncing them around.

Socat is a multipurpose relay for bidirectional byte streams and transfers data between

them. Data channels may be files, pipes, devices (terminal or modem, etc.), or sockets

(Unix, IPv4, IPv6, raw, UDP, TCP, SSL). We will use it here to relay our socket

23

connection to our C&C server. Here is an example of how it works. If we want to

connect to irchacker.com on port 6667, we will use the command line below in our

scripts, assuming our tor application is set up to listen on localhost port 9050:

 socat TCP4 :LISTEN:5050,fork SOCKS4A:localhost:irchacker.com:6667,

socksport=9050

Therefore, connecting to localhost, port 5050, would then be equivalent to connecting to

irchacker.com, port 6667, via Tor.

Both socat and tor are installed in the Linux Host machine available through our

research lab. Basically, we have to redirect the traffic from the honeyclient to socat

through a port we define for each new bot we want to study. Then we start socat on that

port, and redirect all its traffic to tor.

5.2.2.5 The “fake” server and the honeyclient

The fakeserver and the honeyclient are implemented using C.

• The server

As we explained before, the client only needs to have the basic features of the IRC

server. We handle the messages PASS, NICK, JOIN, USER, CHAN, and MODE. Once

the connection is established, the server logs all the messages sent by the client.

• The client

Our client needs the following arguments to start: the server to connect to, the port to

connect to, the port to use, the directory in which to log the traffic, the password of the

server (if none, the argument will be “null”), the nickname, the channel, the 4 users

field, the mode of the connection (+x, +i….), and the password of the channel (if none,

the argument will be “null”).

As we explained before we are using an anonymization tool, so the server we will give

the client will be localhost. The port to use and the port to connect to are the ports that

24

the script postvm.sh found. That script also configured those ports so that the redirection

is done through tor.

The client connects to the server. When it receives the join confirmation, it sends a

WHO for that channel to have a list of member. Then the client will passively listen to

the traffic on the channel (answering to the PING requests it receives). The traffic is

logged in the log file, which is parsed every day to update the database

5.2.2.6 The database

The database is done using MySQL Server, according to the description made in section

4.3.2. We access the data thanks to the MSQ Query Browser.

25

CHAPTER 6

RESULTS

In this part we will show examples of data we collected, with samples of the logs we

captured, and the information we extracted from them.

6.1 Example 1 : A typical botnet

Below is an example of a connection to a typical botnet. We see that this particular

malicious IRC server currently has 2257 users connected, to 2257 potential zombies.

The topic of the channel is “.advscan asn445 160 3 0 -r –s”, so the bot is ordered to scan

other machines as soon as it connects to the channel.

Figure 11 Connection to scorti1.dns2.go port 7000

On that channel, every 5 or 7 minutes, for 2 hours, the botmaster ordered the bots to

connect to the website freeweb to download new binaries (see figure below). We can

also see the commands “.login “, “.k”, “.c”, or even “H4CK3D” , used with various

26

parameters. Our approach does not allow us to know what those functions actually do,

as we do not execute the binary on our machine.

Figure 12 Regular commands on the channel

6.2 Example 2: Similar Bots

We noticed that sometimes a botnet will spread through binaries having different MD5

checksums. The bots will connect to the same IRC server, or use the same channel

names. Here are a few examples:

Table 4 Bots and IRC characteristics

27

We see in the table that for example the binaries

“5263ca991b04f7f49705f27637b33930” and “229139812ba261f3f92e48cf46198e41”

have different MD5’s, but both lead to connection to the server home.nadj.us, to the

channel #dd#. We used the Norman Sandbox (web interface) to study the binaries and

see if they were detected. Below are the results we obtained. The two binaries are

detected as Spybots, but although the analysis of 229139812ba261f3f92e48cf46198e41

tells us the binary is infected, no malware is detected during the analysis of

5263ca991b04f7f49705f27637b33930

Figure 13 Norman Sandbox's results for 229139812ba261f3f92e48cf46198e41

28

Figure 14 Norman Sandbox's results for 5263ca991b04f7f49705f27637b33930

“c8d93194977484ffc397b8903d846304” and “8759c53ef7d4c0df5e2f5beaf4503b4b”

will try to connect to the channel #FAAK# of the scroti1.dns2go.com. Below are the

results we obtained using Norman Sandbox. In both cases, the analysis could not be

successfully conducted because of the presence of “anti-debug/emulation code”. Thanks

to the signature, the Norman Sandbox tells us the two bots belong to two different

categories of bots: SDbot, and SPybot.

Figure 15 Norman Sandbox' results for 8759c53ef7d4c0df5e2f5beaf4503b4b

29

Figure 16 Norman Sandbox's results for c8d93194977484ffc397b8903d846304

In the examples above, we were able to find common characteristics to bots that were

not detected by classic antivirus analysis. By connecting attacks together, we have a

better idea of its extent.

6.3 Example 3: A Romanian botnet

This botnet was captured thanks to one of the computers in the honeynet space of

Georgia Tech. The machine was compromised on July the 16th, and kept running until

mid-august, when the machine crashed and would not reboot. A lot of information was

exchanged on the C&C channel. The botmasters were Romanian, most of them

teenagers, apparently trying to learn about hacking techniques. One of the hackers,

using the pseudo “MrLinux’, seemed to be the leader of the group, providing the others

with malicious tools that they requested. Below are some parts of their discussions.

This group used the C&C to chat a lot, and we even came across one of the hacker’s

hi5 (a social networking website) profile.

:Deliric1!~asadfg@asadfg.users.undernet.org PRIVMSG #asadfg

:http://searching-perfection.hi5.com

30

In total, there were 7 profiles exchanged, below is the capture of Alex’s profile, one of

the most active chatters of the group:

Figure 17 Alex's profile on the hi5 website

Several attacks were launched from the botnets, attacking a wide range of websites,

such as American .gov websites (e.g. www.fda.gov, www.spc.noaa.gov, www.tsp.gov),

French websites (e.g. www.caramail.lycos.fr, www.tf1.fr,), British websites (e.g.

www.met-office.gov.uk, www.screenselect.co.uk, www.livedepartureboards.co.uk, ,

www.ticketmaster.co.uk, www.reghardware.co.uk), Hungarian websites (e.g.

www.freeweb.hu), and German websites (e.g. www.freeware.de)…

31

 CHAPTER 7

CONCLUSIONS

In this chapter we will give some general remarks/conclusions about the data and

binaries we have collected so far. By collecting more binaries/bots, we can draw more

conclusions.

7.1 IRC botnet characteristics

Here are a few remarks regarding the data IRC/network characteristics of the bots we

captured:

- All the bots we collected are IRC bots. We have not seen any HTTP-based or peer-to-

peer bots so far.

- Some malwares with different md5 try to connect to the same C&C. Sometimes they

are only updated versions of the viruses, sometimes they are identified as different

malwares by antivirus softwares.

- Most botnets do not make use of the regular IRC port (e.g. we had bots connecting to

7000 or 65520). One of the conclusions of the authors in “The Zombie roundup:

Understanding, detecting and disrupting botnets” is that the ports used are always above

the regular port 6667, but we found bots using ports below 6667 (e.g. one of the bot’s

we discovered used the port 3211 of the C&C server).

- Updates of the binaries are ordered at a regular period of time. The newer versions are

not recognized by antiviruses, so updating the binaries helps keep the bots undetected

(e.g. if the binaries are updated before the antiviruses are).

7.2 IRC botnet activities

Regarding the activity on the bots:

32

- The goals of the botnets can be very different from one bot to the other. In Chapter 6,

we gave two opposite examples: a totally automated and “neutral” bot (as in no personal

communication on the C&C channel), and a bot mainly administered by teenagers, to

learn hacking techniques and for shear entertainment.

- C&C are used to send commands to the zombies/bots, but also to communicate.

Whether the botmasters only chat or exchange information, they do use the C&C

channel, so logging the traffic provides us with very sensitive information about who

they are, and the goals of their botnets. On a law-enforcement perspective, logging this

data is very crucial.

- Addresses of malicious websites are exchanged on the C&C channels. By dynamically

parsing the commands we receive, we can create a database of malicious websites.

7.3 What remains to do?

Here is a list of things that remain to be done to improve the system we developed:

• Move the entire system to the honeyspace

This would simplify the process of retrieving the binaries. Moreover, this would lighten

the connection to the C&C server, as we would not have to use anonymization tools

(this have to be discussed though, as we do not want the botmasters to learn about the

range of IP addresses we use).

• Adding more machines to collect binaries

To have relevant results, we need to study as many binaries as possible. The Nepenthes

box is a start but it catches only binaries exploiting known vulnerabilities. We should

add more machine on the honeynet.

• Listing the malicious websites

By dynamically analyzing the messages on the C&C channel, we can provide a list of

malicious websites. They are most commonly websites that botmasters will use to

33

distribute the binaries’ updates, or share rootkits…. In the example 2 of chapter 6,

hackers exchanged links to their profiles on a social network. This example is not

representative of all bots, but taking a copy of the webpages exchanged on the C&C can

be very useful.

• Set up SSH access for database access

We should set up a SSH access to the machine hosting the database, so that people have

access to it and can look at the data we captured.

34

 APPENDIX A: SCRIPTS

watch.sh

#!/bin/bash

ifconfig vmnet1 192.0.0.1

/etc/init.d/dnsmasq start

cd /home/diane/HoneynetProject/

#while [true]; do

 for i in $(ls bin); do

 #there is a new file

 echo There is a new binary: $i

 ls data/ | grep $i

 #we check if the binary has already been treated

 found=0

 if [$found != "0"];then

 echo "Binary already in the database"

 else

 #echo found egal a 0

 #we launch the handling process

 ./newproc.sh $i

 cd /home/diane/HoneynetProject/

 ./finddnsname.sh $i

 sleep 10

 ./stopserver.sh

 ./stopnewproc.sh

 ./stoptcpdump.sh

 sleep 10

 fi

 done

 echo No new file

 ./isbotnet.sh

#done

newproc.sh

#!/bin/bash

cd /home/diane/HoneynetProject/

#on cree un dossier dans data/

mkdir data/$1/

chmod a+w data/$1/

35

#mois=$(ls -all bin/$j | cut -d " " -f 6 | cut -d "-" -f 2)

#jour=$(ls -all bin/$j | cut -d " " -f 6 | cut -d "-" -f 3)

#on copie l'exec dans data/ et aussi dans shared folder/

#dossier=$mois$jour-$j

cp -p bin/$1 data/$1/

mv bin/$1 "shared folder"/$1.exe

chmod a+rw "shared folder"/$1.exe

#on lance le process de gestion

./process.sh $1 > /home/diane/HoneynetProject/data/$1/simulation

rm "/home/diane/HoneynetProject/shared folder/"$1".exe"

process.sh

#on lance la virtual machine, pour avoir le port et les infos de

connexion

./getport.sh $1 &./launchvm.sh

getport.sh

#!/bin/bash

-nn for non translating port to their name (i.e. no ircd for port

6667)

tcp[13]=20 happends when the tcp flags are set to ack and rst

cd /home/diane/tcpdump-3.9.5/

./tcpdump -c 5 -i vmnet1 'dst host 192.0.0.2 and tcp[13]=20' -nn >

/home/diane/HoneynetProject/data/$1/logtcpdump

PORT="null"

for i in $(cat /home/diane/HoneynetProject/data/$1/logtcpdump); do

 TEMP=${i:0:10}

 TEMP2=${i:10:14}

 if [$TEMP = "192.0.0.1."]; then

 PORT=$TEMP2

 #echo un port du doc est $PORT

 fi

done

if [$PORT != "null"]; then

 #echo The port is $PORT

 echo $PORT > /home/diane/HoneynetProject/data/$1/PORT

 cd /home/diane/HoneynetProject/fakeserver/src/

 ./fakeserver $PORT $1 & sleep 20

 cd /home/diane/HoneynetProject/

fi

36

launchvm.sh

#!/bin/bash

echo Launching the virtual machine

vmrun start "/home/diane/vmware/windows/Windows XP Professional.vmx" &

sleep 90

vmrun stop "/home/diane/vmware/windows/Windows XP Professional.vmx"

echo Stopping the virtual machine

vmrun revertToSnapshot "/home/diane/vmware/windows/Windows XP

Professional.vmx" Snapshot-clean/Snapshot-binary

echo Restoring the virtual machine for next use

finddnsname.sh

#!/bin/bash

cat /var/log/daemon.log | grep "dnsmasq" | grep "from 192.0.0.2" >

data/$1/dnslog.log

RECORD="no"

for i in $(cat data/$1/dnslog.log); do

 if [$RECORD = "yes"]; then

 SORTIE=$i

 echo $SORTIE > data/$1/servername

 fi

 if [$i = "query[A]"]; then

 RECORD="yes"

 else

 RECORD="no"

 fi

done

stopserver.sh

#!/bin/bash

STOP="null"

for i in $((ps ax | grep ./fakeserver |grep -v grep)); do

STOP=$i

kill $STOP

exit

done

stoptcpdump.sh

#!/bin/bash

STOP="null"

37

for i in $((ps ax | grep ./tcpdump |grep -v grep)); do

STOP=$i

echo $STOP

kill $STOP

exit

done

iserror.sh

#!/bin/bash

#va labeller les dossiers pas encore bot ou non-bot

#demarre toutes les connections clientes

cd /home/diane/HoneynetProject/

for i in $(ls data | grep nobot); do

 #we are gonna look if there is an erro in the simulation

 nberror=$(cat data/$i/simulation | grep Error | wc -l)

 if [$nberror != 0]; then

 #on a une erreur

 #on remet le bin dans le /bin

 nom=$(echo $i | cut -d "-" -f 3)

 echo le nom est $nom

 cp -p data/$i/$nom bin/

 #on copie tout le dossier dans HoneynetProject/error

 mv data/$i error/$i

 fi

done

isbotnet.sh

#!/bin/bash

cd /home/diane/HoneynetProject/

for i in $(ls data | grep -v bot); do

 #we are gonna look if there is a IRC connection

 FOUND="no"

 for j in $(ls data/$i/); do

 if [$j = "PORT"];then

 FOUND="yes"

 fi

 done

38

 #nom=$(echo $i | cut -d "-" -f 3)

 mois=$(ls -all data/$i/$i | cut -d " " -f 6 | cut -d "-" -f 2)

 jour=$(ls -all data/$i/$i | cut -d " " -f 6 | cut -d "-" -f 3)

 if [$FOUND = "yes"]; then

 echo bot dans $i

 #echo on a un bot dans $i

 #on labelle le dossier

 dossier=$mois$jour-bot-$i

 #echo on va labeller $dossier

 mv data/$i data/$dossier

 ./postvm.sh $i

 fi

 if [$FOUND = "no"]; then

 dossier=$mois$jour-nobot-$i

 #echo on va labeller $dossier

 mv data/$i data/$dossier

 #rm -r data/$i data/$dossier

 fi

done

for i in $(ls data | grep bot | grep -v nobot); do

 ./postvm.sh $i

done

postvm.sh

#!/bin/bash

cd /home/diane/HoneynetProject/data/$1/

HOST=127.0.0.1

USER=root

PASS=PASS

DB=Botnets

#Find the PORT

RECORD="no"

PORT="null"

if [-f PORT]

then

 for i in $(cat PORT); do

 PORT=$i

 done

 #Find the right SERVER NAME

 IRCSERVER="null"

 #cd /home/diane/HoneynetProject/

 #./finddnsname.sh $1

 cd /home/diane/HoneynetProject/data/$1/

39

 for i in $(cat servername); do

 IRCSERVER=$i

 echo the server is $i

 done

 # on va tester si le server IRC est en ligne

 j=$(ping -c 1 $IRCSERVER | wc -l)

 if [$j = 0]; then

 echo IRC Server offline - Pas de connection honeyclient

 else

 echo The server is alive

 #If we found a port, i.e. if the irc trick worked:

 #if [$PORT != "null"]; then

 #on retire les espaces moches des logs

 tr -d '\015\032' <logserver > logserver2

 chmod a+rw logserver2

 #Find the SERVER PASS, if there is one

 RECORD4="no"

 PASS_SERVER="null"

 for i in $(grep PASS logserver2); do

 if [$RECORD4 = "yes"]; then

 TEMP=$PASS

 PASS_SERVER=$TEMP" "$i

 fi

 if [$i = "PASS"];then

 RECORD4="yes"

 else

 RECORD5="no"

 fi

 done

 #Find the right NICK

 RECORD="no"

 NICK="null"

 for i in $(grep NICK logserver2); do

 if [$RECORD = "yes"]; then

 NICK=$i

 fi

 if [$i = "NICK"]; then

 RECORD="yes"

 fi

 done

 #Find the right USER

 RECORD2="no"

 USER="null"

 NBUSER=0

 for i in $(grep "USER " logserver2); do

 if [$RECORD2 = "yes"]; then

 TEMP=$USER

 TEMP2=$NBUSER

 USER=$TEMP" "$i

 NBUSER=$(($TEMP2+1))

 fi

 if [$i = "USER"];then

40

 RECORD2="yes"

 USER=""

 NBUSER=0

 fi

 done

 #Find the right CHAN, and the CHAN PASS if there is one

 RECORD3="no"

 RECORD5="no"

 RECORD6="no"

 JOIN="null"

 PASS_CHAN="null"

 for i in $(grep JOIN logserver2); do

 if [$RECORD5 = "yes"]; then

 PASS_CHAN=$i

 RECORD5="no"

 RECORD6="yes"

 fi

 if [$RECORD3 = "yes"] && [$RECORD6 = "no"]; then

 JOIN=$i

 RECORD5="yes"

 fi

 if [$RECORD3 = "no"];then

 if [$i = "JOIN"];then

 RECORD3="yes"

 fi

 fi

 done

 #Find the mode MODE, if there is one

 RECORD7="no"

 RECORD8="no"

 MODE="null"

 for i in $(grep MODE logserver2); do

 if [$RECORD8 = "yes"]; then

 MODE=$i

 RECORD7="no"

 fi

 if [$RECORD7 = "yes"] && [$RECORD8 = "no"]; then

 RECORD8="yes"

 fi

 if [$RECORD7 = "no"];then

 if [$i = "MODE"];then

 RECORD7="yes"

 fi

 fi

 done

 if [$NICK = "null"];then

 echo No nick defined...

 else

 echo The nick is $NICK

 fi

41

 if [$NBUSER = 0];then

 echo No user defined...

 fi

 if [$NBUSER != 0] && [$NBUSER != 4];then

 echo User is missing arguments...

 else

 echo The user is $USER

 fi

 if [$JOIN = "null"];then

 echo No chanel defined...

 else

 echo The channel is $JOIN

 fi

 if [$PORT = "null"];then

 echo No port found...

 else

 echo The port is $PORT

 fi

 if [$MODE = "null"];then

 echo No mode defined

 else

 echo The mode is $MODE

 fi

 if [$IRCSERVER = "null"];then

 echo No irc server defined...

 else

 echo The irc server is $IRCSERVER

 fi

 #generation du port client, entre les ports 7000 et 9000

 ok="n"

 while ["$ok" != y]; do

 RANGE=2000

 number=$RANDOM

 let "number %= $RANGE"

 let PORT_CLIENT="$number"+7000

 i=$(netstat | grep $PORT_CLIENT | wc -l)

 if [$i = 0]; then

 echo port client $PORT_CLIENT libre

 ok="y"

 else

 echo port client $PORT_CLIENT occupe

 fi

 done

 if [$NICK != "null"] && [$JOIN != "null"] && [$NBUSER

= "4"] && [$IRCSERVER != "null"] && [$PORT != "null"] ; then

 echo The server is $IRCSERVER, with port $PORT

 if [$PASS_SERVER = "null"]; then

42

 echo No server password

 else

 echo The server password is $PASS

 fi

 if [$PASS_CHAN = "null"]; then

 echo No chan password

 else

 echo The channel password is $PASS_CHAN

 fi

 #we launch the socat application to redirection to

tor and then the internet

 # on regarde si on a deja une socat vers ce

server/port:

 j=$(ps ax | grep socat | grep $IRCSERVER:$PORT | wc -

l)

 #echo le nombre de ligne est $j

 if [$j = 0]; then

 echo socat pas lance vers ce serveur/port

 #si pas deja lance:

 #generation du port de redirection, entre 4000

et 5000

 ok="n"

 while ["$ok" != y]; do

 RANGE=1000

 number=$RANDOM

 let "number %= $RANGE"

 let PORT_SOCAT="$number"+3000

 i=$(netstat | grep $PORT_SOCAT | wc -l)

 if [$i = 0]; then

 echo port socat $PORT_SOCAT libre

 ok="y"

 else

 echo port socat $PORT_SOCAT occupe

 fi

 done

 #on lance socat

 echo Launching socat

 socat TCP4-listen:$PORT_SOCAT,fork

SOCKS4A:localhost:$IRCSERVER:$PORT,socksport=9050&

 HOST=127.0.0.1

 USER=root

 PASSDB=PASS

 DB=Botnets

 nom=$(echo $1 | cut -d "-" -f 3)

 date=$(echo $1 | cut -d "-" -f 1)

 #on regarde si deja rempli:

 nombre=$(mysql -u$USER -h$HOST --

password=$PASSDB -Bse "SELECT * FROM Bot WHERE binary_name='$nom'" $DB

| wc -l)

 echo $nombre

 if [$nombre = 0]; then

 echo bot du $date

 echo chanpass $PASS_CHAN

43

 solution=$(mysql -u$USER -h$HOST --

password=$PASSDB -Bse "INSERT INTO Bot(date, binary_name,

machine_type, nick, channel, server_name, server_pass,pass_chan, PORT)

VALUES ('$date', '$nom','Win', '$NICK', '$JOIN', '$IRCSERVER',

'$PASS_SERVER','$PASS_CHAN','$PORT')" $DB)

 else

 echo deja dedans

 fi

 #we launch the honeyclient, to connect to the

server

 echo Lauching honeyclient on port $PORT of

server $IRCSERVER

 cd /home/diane/HoneynetProject/honeyclient/src/

 ./honeyclient localhost $PORT_SOCAT

$PORT_CLIENT $1 $PASS_SERVER $NICK $JOIN $USER $MODE $PASS_CHAN &

 #> /home/diane/HoneynetProject/data/$1/honeylog

&

 #<server> <port> <directory> <pass server>

<nick> <chan> <us1> <us2> <us3> <us4> <mode> <pass_chan>

 #

 cd /home/diane/HoneynetProject/

 else

 echo Socat deja lance vers ce serveur/port

 fi

 else

 echo The server redirection did not get enough

information to launch the honeyclient - Honeyclient not launched

 fi

 fi

else

 echo Pas de port defini - On ne teste pas les parametres d

identification

fi

echo " "

echo FIN

echo " "

44

APPENDIX B: DNSMASQ CONFIGURATION FILE

Configuration file for dnsmasq.

Format is one option per line, legal options are the same

as the long options legal on the command line. See

"/usr/sbin/dnsmasq --help" or "man 8 dnsmasq" for details.

Never forward plain names (without a dot or domain part)

domain-needed

Never forward addresses in the non-routed address spaces.

bogus-priv

Uncomment this to filter useless windows-originated DNS requests

which can trigger dial-on-demand links needlessly.

Note that (amongst other things) this blocks all SRV requests,

so don't use it if you use eg Kerberos.

This option only affects forwarding, SRV records originating for

dnsmasq (via srv-host= lines) are not suppressed by it.

#filterwin2k

Add other name servers here, with domain specs if they are for

non-public domains.

#server=/localnet/192.168.0.1

Add local-only domains here, queries in these domains are answered

from /etc/hosts or DHCP only.

#local=/localnet/

Add domains which you want to force to an IP address here.

The example below send any host in doubleclick.net to a local

webserver.

address=/#/192.0.0.1

If you want dnsmasq to listen for DHCP and DNS requests only on

specified interfaces (and the loopback) give the name of the

interface (eg eth0) here.

Repeat the line for more than one interface.

interface=vmnet1

Or you can specify which interface _not_ to listen on

#except-interface=

Or which to listen on by address (remember to include 127.0.0.1 if

you use this.)

listen-address=192.0.0.1

listen-address=127.0.0.1

If you want dnsmasq to provide only DNS service on an interface,

configure it as shown above, and then use the following line to

disable DHCP on it.

#no-dhcp-interface=

On systems which support it, dnsmasq binds the wildcard address,

even when it is listening on only some interfaces. It then discards

requests that it shouldn't reply to. This has the advantage of

working even when interfaces come and go and change address. If you

want dnsmasq to really bind only the interfaces it is listening on,

uncomment this option. About the only time you may need this is when

running another nameserver on the same machine.

#bind-interfaces

45

If you don't want dnsmasq to read /etc/hosts, uncomment the

following line.

#no-hosts

or if you want it to read another file, as well as /etc/hosts, use

this.

#addn-hosts=/etc/banner_add_hosts

Set this (and domain: see below) if you want to have a domain

automatically added to simple names in a hosts-file.

#expand-hosts

Set the domain for dnsmasq. this is optional, but if it is set, it

does the following things.

1) Allows DHCP hosts to have fully qualified domain names, as long

as the domain part matches this setting.

2) Sets the "domain" DHCP option thereby potentially setting the

domain of all systems configured by DHCP

3) Provides the domain part for "expand-hosts"

#domain=thekelleys.org.uk

Uncomment this to enable the integrated DHCP server, you need

to supply the range of addresses available for lease and optionally

a lease time. If you have more than one network, you will need to

repeat this for each network on which you want to supply DHCP

service.

#dhcp-range=192.168.0.50,192.168.0.150,12h

This is an example of a DHCP range where the netmask is given. This

is needed for networks we reach the dnsmasq DHCP server via a relay

agent. If you don't know what a DHCP relay agent is, you probably

don't need to worry about this.

#dhcp-range=192.168.0.50,192.168.0.150,255.255.255.0,12h

This is an example of a DHCP range with a network-id, so that

some DHCP options may be set only for this network.

#dhcp-range=red,192.168.0.50,192.168.0.150

Supply parameters for specified hosts using DHCP. There are lots

of valid alternatives, so we will give examples of each. Note that

IP addresses DO NOT have to be in the range given above, they just

need to be on the same network. The order of the parameters in these

do not matter, it's permissble to give name,adddress and MAC in any

order

Always allocate the host with ethernet address 11:22:33:44:55:66

The IP address 192.168.0.60

#dhcp-host=11:22:33:44:55:66,192.168.0.60

Always set the name of the host with hardware address

11:22:33:44:55:66 to be "fred"

#dhcp-host=11:22:33:44:55:66,fred

Always give the host with ethernet address 11:22:33:44:55:66

the name fred and IP address 192.168.0.60 and lease time 45 minutes

#dhcp-host=11:22:33:44:55:66,fred,192.168.0.60,45m

Give the machine which says it's name is "bert" IP address

192.168.0.70 and an infinite lease

#dhcp-host=bert,192.168.0.70,infinite

Always give the host with client identifier 01:02:02:04

46

the IP address 192.168.0.60

#dhcp-host=id:01:02:02:04,192.168.0.60

Always give the host with client identifier "marjorie"

the IP address 192.168.0.60

#dhcp-host=id:marjorie,192.168.0.60

Enable the address given for "judge" in /etc/hosts

to be given to a machine presenting the name "judge" when

it asks for a DHCP lease.

#dhcp-host=judge

Never offer DHCP service to a machine whose ethernet

address is 11:22:33:44:55:66

#dhcp-host=11:22:33:44:55:66,ignore

Ignore any client-id presented by the machine with ethernet

address 11:22:33:44:55:66. This is useful to prevent a machine

being treated differently when running under different OS's or

between PXE boot and OS boot.

#dhcp-host=11:22:33:44:55:66,id:*

Send extra options which are tagged as "red" to

the machine with ethernet address 11:22:33:44:55:66

#dhcp-host=11:22:33:44:55:66,net:red

Send extra options which are tagged as "red" to

any machine with ethernet address starting 11:22:33:

#dhcp-host=11:22:33:*:*:*,net:red

Send extra options which are tagged as "red" to any machine whose

DHCP vendorclass string includes the substring "Linux"

#dhcp-vendorclass=red,Linux

Send extra options which are tagged as "red" to any machine one

of whose DHCP userclass strings includes the substring "accounts"

#dhcp-userclass=red,accounts

Send extra options which are tagged as "red" to any machine whose

MAC address matches the pattern.

#dhcp-mac=red,00:60:8C:*:*:*

If this line is uncommented, dnsmasq will read /etc/ethers and act

on the ethernet-address/IP pairs found there just as if they had

been given as --dhcp-host options. Useful if you keep

MAC-address/host mappings there for other purposes.

#read-ethers

Send options to hosts which ask for a DHCP lease.

See RFC 2132 for details of available options.

Note that all the common settings, such as netmask and

broadcast address, DNS server and default route, are given

sane defaults by dnsmasq. You very likely will not need any

any dhcp-options. If you use Windows clients and Samba, there

are some options which are recommended, they are detailed at the

end of this section.

For reference, the common options are:

subnet mask - 1

default router - 3

DNS server - 6

broadcast address - 28

47

Override the default route supplied by dnsmasq, which assumes the

router is the same machine as the one running dnsmasq.

#dhcp-option=3,1.2.3.4

Set the NTP time server addresses to 192.168.0.4 and 10.10.0.5

#dhcp-option=42,192.168.0.4,10.10.0.5

Set the NTP time server address to be the same machine as

is running dnsmasq

#dhcp-option=42,0.0.0.0

Set the NIS domain name to "welly"

#dhcp-option=40,welly

Set the default time-to-live to 50

#dhcp-option=23,50

Set the "all subnets are local" flag

#dhcp-option=27,1

Send the etherboot magic flag and then etherboot options (a string).

#dhcp-option=128,e4:45:74:68:00:00

#dhcp-option=129,NIC=eepro100

Specify an option which will only be sent to the "red" network

(see dhcp-range for the declaration of the "red" network)

#dhcp-option=red,42,192.168.1.1

The following DHCP options set up dnsmasq in the same way as is

specified

for the ISC dhcpcd in

http://www.samba.org/samba/ftp/docs/textdocs/DHCP-Server-

Configuration.txt

adapted for a typical dnsmasq installation where the host running

dnsmasq is also the host running samba.

you may want to uncomment them if you use Windows clients and Samba.

#dhcp-option=19,0 # option ip-forwarding off

#dhcp-option=44,0.0.0.0 # set netbios-over-TCP/IP nameserver(s)

aka WINS server(s)

#dhcp-option=45,0.0.0.0 # netbios datagram distribution server

#dhcp-option=46,8 # netbios node type

#dhcp-option=47 # empty netbios scope.

Send RFC-3397 DNS domain search DHCP option. WARNING: Your DHCP

client

probably doesn't support this......

#dhcp-option=119,eng.apple.com,marketing.apple.com

Send RFC-3442 classless static routes (note the netmask encoding)

#dhcp-option=121,192.168.1.0/24,1.2.3.4,10.0.0.0/8,5.6.7.8

Send encapsulated vendor-class specific options. The vendor-class

is sent as DHCP option 60, and all the options marked with the

vendor class are send encapsulated in DHCP option 43. The meaning of

the options is defined by the vendor-class. This example sets the

mtftp address to 0.0.0.0 for PXEClients

#dhcp-option=vendor:PXEClient,1,0.0.0.0

Set the boot filename and tftpd server name and address

for BOOTP. You will only need this is you want to

48

boot machines over the network.

#dhcp-boot=/var/ftpd/pxelinux.0,boothost,192.168.0.3

Set the limit on DHCP leases, the default is 150

#dhcp-lease-max=150

The DHCP server needs somewhere on disk to keep its lease database.

This defaults to a sane location, but if you want to change it, use

the line below.

#dhcp-leasefile=/var/lib/misc/dnsmasq.leases

Set the DHCP server to authoritative mode. In this mode it will

barge in

and take over the lease for any client which broadcasts on the

network,

whether it has a record of the lease or not. This avoids long

timeouts

when a machine wakes up on a new network. DO NOT enable this if

there's

the slighest chance that you might end up accidentally configuring a

DHCP

server for your campus/company accidentally. The ISC server uses the

same

the same option, and this URL provides more information:

http://www.isc.org/index.pl?/sw/dhcp/authoritative.php

#dhcp-authoritative

Run an executable when a DHCP lease is created or destroyed.

The arguments sent to the script are "add" or "del",

then the MAC address, the IP address and finally the hostname

if there is one.

#dhcp-script=/bin/echo

Set the cachesize here.

cache-size=256

Normally responses which come form /etc/hosts and the DHCP lease

file have Time-To-Live set as zero, which conventionally means

do not cache further. If you are happy to trade lower load on the

server for potentially stale date, you can set a time-to-live (in

seconds) here.

#local-ttl=

If you want dnsmasq to detect attempts by Verisign to send queries

to unregistered .com and .net hosts to its sitefinder service and

have dnsmasq instead return the correct NXDOMAIN response, uncomment

this line. You can add similar lines to do the same for other

registries which have implemented wildcard A records.

#bogus-nxdomain=64.94.110.11

If you want to fix up DNS results from upstream servers, use the

alias option. This only works for IPv4.

This alias makes a result of 1.2.3.4 appear as 5.6.7.8

#alias=1.2.3.4,5.6.7.8

and this maps 1.2.3.x to 5.6.7.x

#alias=1.2.3.0,5.6.7.0,255.255.255.0

For debugging purposes, log each DNS query as it passes through

dnsmasq.

log-queries

49

REFERENCES

Computer Security Research: MsAfee Avert Labs Blog -

http://www.avertlabs.com/research/blog/index.php/2007/10/

(last accessed 10/07)

Symantec – Bots and Botnets: A growing threat -

http://www.symantec.com/norton/theme.jsp?themeid=botnet

(last accessed 10/07)

Kim-Kwang Raymond Choo (2007). “Zombies and Botnets”. Trends and issues in

crime and criminal justice -

http://www.aic.gov.au/publications/tandi2/tandi333t.html

(last accessed 10/07)

Symantec Security Responses – Cybercrime: Bots and Cybercrime -

http://www.symantec.com/avcenter/cybercrime/bots_page2.html

(last accessed 10/07)

Symantec Corp – Internet Security Threat Report -

http://www.symantec.com/business/theme.jsp?themeid=threatreport

 (last accessed 10/07)

Andreas Moser, C. K. a. E. K. (2007). "Exploring Multiple Execution Paths for

Malware Analysis." Oakland'07

Cunningham, C. C. Z. a. R. (2006). "Honeypot-Aware Advanced Botnet Construction

and Maintenance." International Conference on Dependable Systems and

Networks (DSN).

David Brumley, C. H., Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin

Poosankam, Dawn Song, Heng Yin "Bitscope: Automatically Dissecting

Malicious Binaries."

David Dagon, C. C. Z., and Wenke Lee (2006). "Modeling Botnet Propagation Using

Time Zones." 13th Annual Network and Distributed System Security

Symposium (NDSS).

Evan Cooke, F. J., and Danny McPherson (2005). "The Zombie Roundup:

Understanding, Detecting, and Disrupting Botnets." Proc. of Workshop on Steps

to Reducing Unwanted Traffic on the Internet (SRUTI'05), July 2005.

Guofei Gu, P. P., Vinod Yegneswaran, Martin Fong, Wenke Lee (2007). "BotHunter:

Detecting Malware Infection Through IDS-Driven Dialog Correlation." In

Proceedings of the 16th USENIX Security Symposium (Security'07).

50

Heng Yin, D. S., Manuel Egele, Christopher Kruegel, and Engin Kirda (2007).

"Panorama: Capturing System-wide Information Flow for Malware Detection

and Analysis." CCS'07.

Holger Dreger, A. F., Michael Mai, Vern Paxson, Robin Sommer (2006). "Dynamic

Application-Layer Protocal Analysis for Network Intrusion Detection." Proc.

USENIX Security Symposium.

Ion Alberdi, E. A., Philippe Owezarski, and Vincent Nicomette (2007). "Shark: SPhy

Honeypot with Advanced Redirection Kit."

Jason Franklin, V. P., Adrian Perrig, and Stefan Savage "An Inquiry into the Nature and

Causes of the Wealth of Internet Miscreants." Proceedings of 14th ACM CCS.

Jianwei Zhuge, X. H., Jinpeng Guo, Dongzhi Cao, Yonglin Zhou, Zhiyuan Ye, and Wei

Zou (2007). "An Investigation on the Botnet Activities."

Manuel Egele, C. K., and Engin Kirda (2007). "Dynamic Spyware Analysis." Usenix

Annual Technical Conference 2007.

Moheeb Abu Rajab, J. Z., Fabian Morose, and Andreas Terzis (2006). "A multifaceted

Approach to Understanding the Botnet Phenomenon." In Proceedings of ACM

SIGCOMM/USENIX Internet Measurement Conference (IMC).

Paul Bacher, M. K., Thorsten Holz, Maximillian Dornseif, and Felix Freiling (2006).

"The Nepenthes Platform: An Efficient Approach to Collect Malware." RAID

2006.

Paul Bacher, T. H., Markus Kotter, and Georg Wicherski (2005). "Know your Enemy:

Tracking Botnets."

The Honeynet Project (2005). "Know your Enemy: Honeynets."

www.honeynet.org/papers/honeynet/

The Honeynet Project (2005). "Know your Enemy: Motives."

www.honeynet.org/papers/motives/

The Honeynet Project (2005). "Know your Enemy: Phishing."

www.honeynet.org/papers/phishing/

Kim-Kwang Raymond Choo (2007). “Zombies and Botnets”. Trends and issues in

crime and criminal justice -

http://www.aic.gov.au/publications/tandi2/tandi333t.html

Racine, S. (2004). "Analysis of Internet Relay Chat Usage by DDoS Zombies." Master's

Thesis.

Skoudis, T. L. a. E. (2006). "On the Cutting Edge: Thwarting Virtual Machine

Detection."

Wang, X. J. a. X. (2007). ""Out-of-the-box" Monitoring of VM-based High Interaction

51

Honeypots." In Proceedings of the 10th International Symposium on Recent

Advances in Intrusion Detection (RAID 2007).

Weidong Cui, J. K., and Helen J. Wang "Discover: Automatic Protocol Reverse

Engineering from Network Traces."

J. Oikarinen, D. Reed. “Internet Relay Chat Protocol”, RFC 1459.

C.Kalt. “Internet Relay Chat: Architecture”, RFC 2810.

C.Kalt. “Internet Relay Chat: Channel Management”, RFC 2811.

C.Kalt. “Internet Relay Chat: Client Protocol”, RFC 2812.

C.Kalt. “Internet Relay Chat: Server Protocol”, RFC 2813.

IRC RFC - http://www.irchelp.org/irchelp/rfc/rfc.html (last accessed 10/07)

IRC: Numeric List - http://www.alien.net.au/irc/irc2numerics.html (last accessed 10/07)

Nepenthes - finest collection - http://nepenthes.mwcollect.org/ (last accessed 10/07)

Honeytrap: trap attacks in your network - http://honeytrap.mwcollect.org/

(last accessed 10/07)

Tcpdump - http://www.tcpdump.org/tcpdump_man.html (last accessed 10/07)

VMware - http://www.vmware.com/ (last accessed 10/07)

VMware “Command Line Applications” -

http://www.vmware.com/support/ws55/doc/ws_learning_cli_vmrun.html

(last accessed 10/07)

Ethereal: A Network Protocol Analyzer - www.ethereal.com/ (last accessed 10/07)

The Undernet IRC network – www.undernet.org (last accessed 10/07)

Project Malfease - malfease.oarci.net/ (last accessed 10/07)

Socat – Multipurpose relay - http://www.dest-unreach.org/socat/

(last accessed 10/07)

Tor: Un système de connexion anonyme à Internet - http://www.torproject.org/

(last accessed 10/07)

