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Porous compaction in transient creep regime and

implications for melt, petroleum, and CO2 circulation

B. Chauveau1 and E. Kaminski1
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[1] Liquid segregation through a porous medium depends on the ability of the matrix to
deform and compact. Earth’s materials have a complex rheology, in which the balance
between the elastic and viscous contribution to the deformation is time-dependent. In this
paper, we propose a Burger-type model to investigate the implications of transient
rheology for viscous compaction of a porous material. The model is characterized by
three dimensionless parameters: (1) the Deborah number, De, defined as the ratio of an
elastic timescale over the compaction timescale, (2) the ratio of the transient and steady
viscosities, lm, and (3) the ratio of the transient and steady elastic moduli, lG. For
De < 10�2 the compaction occurs in the classic viscous mode, and solitary waves
(magmons) are generated. For larger De, compaction is mainly controlled by lm. For small
transient viscosity, compaction occurs in an elastic mode, and shock waves are generated.
For increasing lm, two new regimes are observed, first ‘‘shaggy’’ shock waves and
then ‘‘polytons’’. Shaggy shock waves are characterized by the presence of secondary
peaks at the wave propagation front. The length scale of the peaks is a decreasing function
of lG, and their amplitude decreases along the propagation. In the polytons regime,
the peaks tend to detach and mimic the behavior of solitary waves. Polytons and shaggy
shock waves are expected both in the mantle and in sedimentary basins. Polytons will
require a particular attention as they imply larger extraction velocities and smaller
compaction length scales than the usual magmons.

Citation: Chauveau, B., and E. Kaminski (2008), Porous compaction in transient creep regime and implications for melt, petroleum,

and CO2 circulation, J. Geophys. Res., 113, B09406, doi:10.1029/2007JB005088.

1. Introduction

[2] A knowledge of the physical parameters controlling
the distribution and the transport of liquid in the Earth is
necessary to quantitatively model many key geological
processes. For example, the amount of liquid in a given
rock will modify its physical properties, like its electrical
properties [Revil, 2002a], especially during deformation
[Hirth and Kohlstedt, 1995], thermal convection [Ito et
al., 1999], or even seismic wave propagation [Cooper,
2002; Kaminski, 2006]. The amount of liquid depends both
on the efficiency of the processes that generate the liquid
(melting, diagenesis) and on the characteristics of the
transport phenomenon. The efficiency of the transport
depends on the pressure gradient and on the permeability,
which itself is a function of porosity. Porous flows are
encountered in various geological environments, such as core
formation [e.g., Yoshino et al., 2003], melt extraction from
the convective mantle [e.g., Spiegelman and McKenzie,
1987; Ribe, 1987; Scott, 1988; Schmeling, 2006], or fluid
maturation and migration in sedimentary basins [e.g.,
Connolly and Podladchikov, 1998; Yang, 2000; Suetnova

and Vasseur, 2000]. These various examples share a
common physical framework in which the circulation of a
low-viscosity fluid is controlled by the behavior of a more or
less deformable matrix. The description of the effective
rheology of the porous matrix remains an open question in
the modeling of porous flows.
[3] The corner stone of the theoretical setting for two-

phase flow has been laid by McKenzie [1984], who studied
melt extraction from the mantle using a viscous rheology for
the matrix. Latter studies focused on the various modes of
extraction and showed that solitary waves (magmons) can
propagate through a visco-porous matrix [e.g., Scott and
Stevenson, 1984; Barcilon and Richter, 1986; Spiegelman,
1993a]. More recent studies have focused on the character-
istics of the viscous waves, as a function of the porosity
dependence of shear viscosity [Khodakovskii and Rabinowicz,
1998], or as a function of surface tension effects [Bercovici et
al., 2001; Ricard et al., 2001].
[4] When used to model compaction in sedimentary

basins, which occurs on shorter timescales, the two-phase
flow theory must include viscoelastic effects [e.g., Suetnova
and Vasseur, 2000]. Viscoelastic rheology has also been
taken into account to study potential elastic effects associ-
ated with mantle compaction [Connolly and Podladchikov,
1998; Vassilyev et al., 1998; Kaus and Podladchikov, 2006]
or with seismic wave propagation [Saenger et al., 2005].
These models rely on a description of the viscoelastic
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rheology based on a Maxwell body. A Maxwell body is
characterized by a viscosity and by an elastic modulus, the
ratio of which defines an elastic timescale [Joseph, 1990]. If
the timescale of the viscous compaction is much larger than
the elastic timescale, elastic effects are negligible and
solitary waves, or magmons, are generated [Connolly and
Podladchikov, 1998]. On the other hand, when the two
timescales are close one to another, elastic effects become
dominant and the liquid is extracted by shock waves
[Connolly and Podladchikov, 1998]. These shock waves
stay attached to their source region and present a sharp
porosity reduction at the propagation front. This regime is
likely to occur in sedimentary basins rather than in deep-
Earth environments.
[5] A Maxwell body is only a first-order description of

viscoelastic rheologies that does not encompass all the
characteristics of deformation of Earth materials. Plastic
deformation in laboratory experiments is actually described
in term of ‘‘transient creep’’ divided into three stages [Post,
1977]. Under constant stress, the material first sustains an
instantaneous elastic deformation, then its strain rate con-
tinuously decreases (transient visco-elastic response) until it
reaches a constant value (steady viscous response). A
Newtonian material will display the third steady state
regime only, whereas a Maxwell body will display both
the first (elastic) and third (viscous) responses. None of
these two rheologies is able to reproduce the transient stage.
As liquid circulation through a deformable matrix is asso-
ciated with transient deformations, this intermediate regime
is, however, potentially relevant. In this article, we will

present a systematic study of the behavior of a visco-elastic
matrix during its compaction in transient creep regime, and
discuss its implications for melt, petroleum, and CO2

circulation in the Earth.

2. Transient Creep of Visco-Elastic Materials

[6] Laboratory tests performed under controlled condi-
tions, have been used to study transient rheology [e.g., Post,
1977; Carter and Kirby, 1978]. In high-temperature creep
experiments under constant stress, the sample sustains first
an instantaneous recoverable strain, followed by a plastic
nonrecoverable deformation. The rate of plastic deformation
decreases continuously through a so-called transient regime
until a steady state regime is reached (Figure 1). The total
strain e (t) can be described by the following kind of
relationship [Andrade, 1910; Garofalo, 1965; Post, 1977;
Carter and Kirby, 1978]

�ðtÞ ¼ �0 þ _�s � t þ �T f
t

tr

� �
ð1Þ

where e0 is the instantaneous strain, _es is the steady state
strain rate, and eTf( ttr) is the transient strain, such that
limt!1f(t/tr) = 0, with tr the relaxation timescale and eT a
reference strain.
[7] Transient visco-elastic behaviors as the one described

in equations (1) can be mimicked by mechanical analogues
based on series of springs and dash-pots (Joseph [1990] and
Table 1). Two reference cells are classically defined: the

Figure 1. Creep curve of an olivine rock from a laboratory experiment of Chopra [1997] (plain circles).
The thick line is obtained from the transient creep strain equation (2). The long-dashed line corresponds
to a viscous material, and the short-dashed line corresponds to a Maxwell body for the same steady
viscosity and elastic modulus. None of these two cases are able to reproduce transient creep.
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Maxwell cell (of viscosity ms and elastic modulus Gs),
formed by a spring and a dash-pot in series, and the
Kelvin-Voigt cell (of viscosity mt and elastic modulus Gt),
formed by a spring and a dash-pot in parallel. The sum of a
Kelvin-Voigt cell and a Maxwell cell defines in turn a so-
called Burger’s body (Table 1). The transient creep of a
Burger’s body subject to a constant uniaxial stress s0 can be
analytically expressed as (see Table 1)

�ðtÞ ¼ s0

Gs

þ s0

ms

t þ s0

Gt

1� exp �Gt

mt

t

� �� �
: ð2Þ

where Gs and Gt are the steady state and transient elastic
moduli, ms and mt are the steady state and transient viscosity.
Comparison of equation (2) with equation (1) yields

�0 	 s0=Gs; ð3Þ

_�s 	 s0=ms; ð4Þ

�T 	 s0=Gt; ð5Þ

tr 	 mt=Gt: ð6Þ

These equivalences show how the steady response depends
on the parameters of the Maxwell cell and how the transient
properties depend on the parameters of the Kelvin-Voigt
cell.
[8] A Burgers’ model provides a satisfying fit of exper-

imental data (Figure 1) and is often used in geology to
illustrate the effects of both strain and stress relaxation.
However, more detailed experimental studies [e.g., Cooper,
2002] have found some important limitations on the appli-
cability of Burger’s model to Earth materials. In particular,
the initial transient creep can be somewhat underestimated
in a Burger’s model. A more satisfying fit to the whole set
of experimental data is provided by the so-called Andrade
model, in which the creep is written as

�ðtÞ ¼ s0

Gs

þ s0

ms

t þ �T
t

tr

� �n

; ð7Þ

with n 
 �1/2 [Cooper, 2002]. This model, initially
empirical, is now understood in terms of chemical processes

at grain boundaries [Gribb and Cooper, 1998]. It can also
be represented by a continuous chain of an infinite number
of Kelvin-Voigt cells, each having its own relaxation time
[Cooper, 2002].
[9] The generalization of the rheological equation of an

Andrade viscoelastic material to the compaction process, as
a function of the properties of its (infinite number of)
Kelvin-Voigt cells, is highly challenging. Alternatively, a
Burger’s model can be taken as the simplest version of the
Andrade model (i.e., with one Kelvin-Voigt cell) and can be
used to assess some first-order effects of transient creep on
viscous compaction. If these effects are important, a further
investigation of a complete Andrade model will be neces-
sary, and justified. The easier deciphering of the Burger’s
model will furthermore provide some important insights on
the more complex behavior of the Andrade model.

3. Physical Framework

3.1. Viscous Two-Phase Flow

[10] In the following, we will use the expression ‘‘two-
phase’’ flow to describe the circulation of a fluid (liquid)
through a compacting much more viscous matrix (solid).
For the modeling of viscous compaction, we consider mass
and momentum conservation for the fluid and the matrix.
The conservation of energy will have to be added to study
reactive flows and mass transfer between the two phases
[Spiegelman et al., 2001], which is beyond the scope of this
paper. The mass conservation and momentum equations for
the fluid and the matrix were derived by McKenzie [1984].
If the density of each fluid is a constant, mass conservation
requires

@f
@t

þr � vf f
� �

¼ 0; ð8Þ

@ð1� fÞ
@t

þr � Vsð1� fÞ½ � ¼ 0; ð9Þ

where f is the porosity of the mixture, and vf and Vs are
the fluid and matrix velocities, respectively. Under the
hypothesis that the fluid is much less viscous than the
matrix (mf � ms), the momentum equations comprise a
generalized Darcy’s law,

vf � Vs ¼ � kf

mf f
rP; ð10Þ

Table 1. Mechanical Analogues of a Viscoelastic Materiala

Viscoelastic Body Rheological Equation Strain Under Constant Stress

Maxwell s þ ms

Gs
_s ¼ ms _� � ¼ s0

Gs
þ s0

ms
t

Kelvin-Voigt s ¼ Gt�þ mt _� � ¼ s0

Gt
1� exp � Gt

mt
t

� �h i

Jeffreys s þ ðmt

Gt
þ ms

Gs
Þ _s ¼ ms _�þ

msmt

Gt
�� � ¼ s0

mðsÞ
t þ s0

Gt
1� exp � Gt

mt
t

� �h i

Burgers s þ ðmt

Gt
þ ms

Gs
þ ms

Gt
Þ _s þ msmt

GsGt
�s ¼ ms _�þ

msmt

Gt
�� � ¼ s0

Gs
þ s0

ms
t þ s0

Gs
1� exp � Gt

mt
t

� �h i
aIn the rheological equations, s is the stress and � is the strain; s0 is the constant stress applied during creep experiments. The

two viscosity coefficients ms and mt, and the two elastic moduli Gs and Gt, are defined in the spring and dashpot mechanical
analogue of the viscoelastic bodies.
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and an equation for the viscous compaction of the matrix,

mf Vs

kf
þ ð1� fÞDrg �r � ts ¼ 0; ð11Þ

where P is the fluid pressure in excess to hydrostatic
pressure, mf is the fluid viscosity, Dr the density contrast
between the two phases, g the acceleration of gravity, ts the
stress acting on the matrix, and kf is the permeability. In the
following, will use the Kozeny-Carman relation kf = a2fn

b
,

with a the grain size, b a geometrical constant, and n = 3
(Table 2). Other values are possible for the exponent n,
depending on the nature of the rocks and the characteristics
of the porous network. The influence of n on compaction
has been studied in detail by Spiegelman [1993b].
[11] The definition of the rheology of the matrix boils

down to the expression of the stress tensor ts. The initial
formulation proposed by McKenzie [1984] corresponds to a
‘‘purely’’ viscous matrix,

ts ¼ ms es �
1

3
trðesÞI

� �
þ xtrðesÞI; ð12Þ

where es = (rVs) + (rVs)
t is the strain rate tensor (and tr its

trace), I is the identity tensor, and x is the compaction
viscosity or bulk viscosity. Scott and Stevenson [1984]
proposed a general expression of x as a function of porosity,

x ¼ 1

3

ms

fm ; ð13Þ

with m = 0 or 1. More recently, Bercovici et al. [2001]
demonstrated on the basis of energetic considerations that m
= 1 in the limit of small porosities. This result can be
obtained also from scaling arguments applied to the stress
balance at the interface between the fluid and the matrix.
[12] At the interface between the liquid and the matrix, a

pressure drop DP is generated (1) by surface tension effects
and (2) by the difference of viscosity between the two
phases. In the following we consider fully miscible fluids
and only viscosity differences play a role. At the interface

between a liquid pore and the matrix, the balance of normal
stresses writes

Ps þ ts ¼ Pf þ t f ; ð14Þ

where Ps and Pf are the pressure in the matrix and in the
liquid, respectively, and ts and t f are the normal stress in
the matrix and in the liquid, respectively. The pressure drop
at the interface DP scales then as the difference between the
liquid and matrix normal stresses. For purely viscous fluids,
the normal stress scales as the velocity gradient at the
interface times the fluid viscosity. For a shrinking or
expanding pore of radius a, the velocity gradient at the
interface scales as a�1da/dt, and

tf ;s / mf ;s

1

a

da

dt
: ð15Þ

If the matrix is much more viscous than the liquid (mf �
ms), the pressure drop will scale as

DP ¼ Ps � Pf 
 �ms

1

a

da

dt
: ð16Þ

The size of the pores is related to the local porosity, f 
 a3,
which yields

DP ¼ Ps � Pf 
 �ms

1

f
@f
@t

; ð17Þ

which is similar to the expression obtained by Bercovici et
al. [2001]. From mass balance, in the limit of small porosity,
one gets

@f
@t


 r � Vs; ð18Þ

and thus

DP 
 �ms

1

f
r � Vs: ð19Þ

This pressure drop is similar to the one that would occur in
an equivalent compressible viscous medium with a bulk
porosity x / ms/f, so the rheological equation (12) now
writes

ts ¼ ms es þ
1

f
� 1

3

� �
trðesÞI

� �
; ð20Þ

which is thus consistent with the formalism of Scott and
Stevenson [1984]. We follow the same line of reasoning to
find an expression for the rheological equation of a visco-
elastic porous medium.

3.2. Visco-Elastic Rheology

[13] For a visco-elastic matrix, the time derivative of the
stress and strain appear in the rheological equation which,
for a general Burger-type incompressible material, writes as

ts þ tr1
@ts

@t
þ t2r2

@2ts

@t2
¼ ms es þ tr3

@es
@t

� �
; ð21Þ

Table 2. Table of Model Parameters

Parameters Expressions Dimensions

Reference porosity f0 none
Permeability K0 = f0

na2/b m2

Grain size A m
Tortuosity coefficients n, b none
Steady elastic modulus Gs Pa
Transient elastic modulus Gt Pa
Matrix steady viscosity ms Pa s
Matrix transient viscosity mt Pa s
Viscosity ratio lm = mt/ms none
Elastic modulus ratio lG = Gt/Gs none
Fluid viscosity mf Pa s
Matrix compaction viscosity z = ms/f

m, m = 0 or 1 Pa s
Compaction length dc = (msK0/mf)

1/2 m
Velocity (Darcy’s) V0 = K0/mf(1 � f0)Drg m s�1

Reference matrix stress t0 = msV0/dc Pa
Density contrast Dr kg m�3

Compaction timescale t0 = dc/V0 s
Viscoelastic relaxation time tr = ms/Gt s
Deborah number De = tr/t0 none
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where tri (i = 1,2,3) are elastic relaxation times for the strain
and the stress [Joseph, 1990]. The expression of the
relaxation timescales is obtained from the rheological
parameters of the Burger’s body (Table 1),

ts þ
mt

Gt

þ ms

Gs

þ ms

Gt

� �
@ts

@t
þ msmt

GsGt

@2ts

@t2
¼ mses þ

msmt

Gt

@es
@t

;

ð22Þ

with ms and mt the steady and transient viscosity,
respectively, and Gs and Gt the steady and transient elastic
moduli, respectively. For a porous viscoelastic material, the
viscoelastic behavior will be affected (1) by the intrinsic
viscoelastic response of the matrix and (2) by the pressure
drop (i.e., stress jump) at the interface between the matrix
and the fluid.
[14] We first consider a Kelvin-Voigt model, which cor-

responds to a viscoelastic relaxation of the strain only,

ts ¼ ms es þ tr3
@es
@t

� �
: ð23Þ

At the interface between the matrix and the fluid, the
pressure drop is given by the stress balance as

DP ¼ �ts þ t f : ð24Þ

For a Kelvin-Voigt visco-elastic matrix with a much higher
viscosity than the liquid, the pressure drop is

DP 
 ts 
 �ms

@Vs

@r

� �
r¼a

�mstr3
D

Dt

@Vs

@r

� �
r¼a

; ð25Þ

where D/Dt is the material derivative. Using as above,

@Vs

@r

 1

a

da

dt
; ð26Þ

a 
 f1=3; ð27Þ

da

dt

 r � Vs; ð28Þ

one gets a first-order expression for the pressure drop at the
interface

DP 
 �ms

1

f
r � Vsð Þ � mstr3

1

f
d

dt
r � Vsð Þ: ð29Þ

The resulting rheological equation for the porous matrix is

ts ¼ ms es �
1

3
trðesÞIþ tr3

@

@t
es �

1

3
trðesÞI

� �� �

þ ms

1

f
trðesÞIþ tr3

1

f
@

@t
ðtrðesÞIÞ

� �
; ð30Þ

where we have used tr(es) instead of r � Vs, and where the
second term represents the contribution of the pressure jump
at the interface.
[15] For a general Burger-type viscoelastic porous medium

the visco-elastic behavior will depend (1) on the rate of
change of the stress in the matrix and (2) on the rate of
change of the stress jump (or pressure jump) at the interface
between the matrix and the fluid. This second effect is
described by the trace of the stress tensor, which is not zero
in the compacting medium, and related to the trace of the
strain rate tensor. On the basis of symmetry arguments
between strain and stress, and in order to get a similar
behavior of 1/ftr(ts) and 1/ftr(es) in the limit of zero porosity
(i.e., traceless stress and strain rate tensors) we propose the
following equation,

ts þ tr1
@

@t
ts þ

1

f
� 1

3

� �
trðtsÞI

� �
þ t2r2

@2

@t2
ts þ

1

f
� 1

3

� �
trðtsÞI

� �

¼ m es þ
1

f
� 1

3

� �
trðesÞIþ tr3

@

@t
es þ

1

f
� 1

3

� �
trðesÞI

� �� �
:

ð31Þ

In the limit case of zero porosity and traceless stress and
strain rate tensors, one recovers the equation of a simple
visco-elastic Burger-type material.
[16] In the following, the equation are made dimension-

less using the classic scaling adopted by McKenzie [1984]
and given in Table 2, and simplified in the limit of small
porosities, taking 1/3 � 1/f. This simplification allows
easier numerical solutions and can be relaxed if one wants
to study the evolution of the system at larger porosity. We
also introduce the ratios of transient over steady rheological
parameters:

lm ¼ mt

ms

; ð32Þ

lG ¼ Gt

Gs

: ð33Þ

In one dimension, the resulting conservation equations take
the following form,

@f
@t

¼ @Vsð1=f0 � fÞ
@z

; ð34Þ

vf ¼ �ð1� ff0ÞVs

ff0

; ð35Þ

@ts

@z
¼ 1

K
Vs þ

ð1� ff0Þ
ð1� f0Þ

; ð36Þ

ff0ð Þts þ 1þ lG þ flm
� �

De
@ts

@t
þ De2 lGlm

� � @2ts

@t2

¼ @Vs

@z
þ Delm

@2Vs

@z@t
; ð37Þ
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where in the dimensionless rheological equation of the
porous medium, a new dimensionless number is introduced,
the Deborah number De [Reiner, 1964],

De ¼ ms

lGGst0
¼ ms

Gtt0
: ð38Þ

This number is defined as the ratio of two timescales, an
elastic relaxation timescale tr 	 ms/Gt, and the compaction
timescale t0 (Table 2). To further simplify the equations, as
lG and lm are smaller than 1, because the transient
parameters are smaller than the steady ones [Chopra,
1997], we will also assume 1 + lG + flm 
 1.
[17] Some reference studies of viscous compaction were

performed without taking into account the pressure drop at
the interface between the matrix and the liquid. In that case,
which is not physically consistent (see the detailed discus-
sion by Bercovici et al. [2001]), m = 0 in equation (13) and
the rheological equation writes as

ts þ De
@ts

@t
þ De2 lGlm

� � @2ts

@t2
¼ @Vs

@z
þ Delm

@2Vs

@z@t
: ð39Þ

For the sake of the comparison with these previous
reference studies, we will use the general form

ff0ð Þmts þ De
@ts

@t
þ De2 lGlm

� � @2ts

@t2
¼ @Vs

@z
þ Delm

@2Vs

@z@t
;

ð40Þ

with m = 0 or 1.
[18] The model we propose for a Burger’s porous medium

includes as limit cases the rheologies previously studied in
the literature. For De = 0, the model corresponds to the classic
purely viscous compaction. For De 6¼ 0, lG = 1 and lm = 0,
our formalism is equivalent to the Maxwell rheology used by
Connolly and Podladchikov [1998]. One should note, how-
ever, that in the work of Connolly and Podladchikov [1998],
visco-elasticity is related to compressibility, whereas here
the fluids are incompressible and visco-elasticity corre-
sponds to transient creep of the matrix (with a specific
contribution of the pressure jump at the interface between
the liquid and the matrix). In the full Burger’s formalism
(arbitrary lG), the Deborah number is a function of the
transient elastic modulus Gt and not a function of the steady
elastic modulus Gs as in a Maxwell body (equation (38)).
As the transient elastic modulus Gt is smaller than the
steady one Gs, the Deborah number, and thus the associated
elastic effects, are going to be larger in transient creep than
for a Maxwell body. In the next section we illustrate in
details the implications of the transient creep as a function
of the Deborah number De, and of the viscosity and elastic
modulus ratios, lm and lG.

4. Numerical Modeling of Visco-Elastic
Compaction

[19] We perform 1-D numerical simulations in order to
quantitatively investigate the effects of the dimensionless
parameters of the rheological equation (39). The system of

dimensionless equations (34) to (36) and equation (39) is
numerically solved to calculate the evolution of a finite
Gaussian porosity disturbance

f ¼ 0:2þ 0:8 exp �ðz� 10Þ2
h i

: ð41Þ

Note here that as f is dimensionless, the small porosity
assumption is insured by the value of the porosity-scale f0 =
0.04. A dimensionless porosity of 1 corresponds thus to a
4% liquid fraction. We used a finite difference method with
a second-order scheme in time as in the work of Barcilon
and Richter [1986], and an iterative method for the coupled
variables ts and Vs.

4.1. Reference Calculation

[20] We first performed a set of reference calculations in
the purely viscous regime (De = 0), and in a regime with
dominant elastic effects and no transient creep (De = 0.5, lm
= 0), for m = 0 and m = 1. The classical viscous solution is
illustrated Figure 2a for m = 0 and Figure 2b for m = 1. For
the two cases, solitons are generated and propagate with
constant velocity while maintaining a constant shape. For
m = 1 the amplitude and the velocity are smaller than for
m = 0. A more detailed discussion of the effects of m is
given by Rabinowicz et al. [2002] for a step-like porosity
disturbance.
[21] The elastic solution (De = 0.5) is drawn Figure 2e for

m = 0 and Figure 2f for m = 1. A similar shock wave is
generated in the two cases, as already observed by Connolly
and Podladchikov [1998]. The shock wave stays attached to
its source region and spreads as it propagates. The velocity
of the propagation front thus decreases as a function of time.
For values of De between 10�2 and 10�1, the solution is
intermediate between the two previous end-members, as
illustrated Figures 2c and 2d for De = 5 10�2. A complete
discussion of these cases can be found in the work of
Vassilyev et al. [1998].

4.2. Limit of Small Transient Elastic Modulus, lG !! 0

[22] We have already mentioned that a Maxwell body is a
limit case of the Burger’s formalism for small transient
viscosities (lm ! 0). Another limit case, the Jeffrey’s body,
is defined for small transient elastic moduli (lG ! 0). A
Jeffrey’s body corresponds to the simplest model of a
transient creep that evolves toward a steady viscous regime
[Joseph, 1990]. As shown by the expression of the right
member of equation (39), the viscosity ratio lm controls the
strain relaxation. For too small values of De there are no
elastic effects and the Jeffrey’s model behaves purely
viscously. We thus focus on the calculation results obtained
for intermediate and large De.
[23] Figure 3 shows the propagation of the porosity

disturbance through a Jeffrey’s porous medium with m =
0, for different values of De and lm. For intermediate De
(10�2 < De < 10�1), and small lm (
10�1), the propagation
occurs in an elastic mode and there is no influence of lm
(Figures 2c and 3a). For lm 
 1 (Figures 3b and 3d), the
propagation is equivalent to that in a purely viscous medi-
um, and solitary waves are generated for all De. This result
can be understood by noting that the viscous stress ts =

@Vs

@z
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(independent of De) is a solution of the Jeffrey’s rheological
equation for m = 0,

ts þ De
@ts

@t
¼ @Vs

@z
þ De

@

@t

@Vs

@z

� �
: ð42Þ

[24] The case for large De (De > 0.1) and small lm
(
10�1) is more complex (Figure 3c): the propagation first
starts like in a viscous mode and individual peaks appear.
These peaks are sharper than in the reference viscous case,
as their length scale is controlled by the transient viscosity
which is smaller than the steady one (lm < 1). The
amplitude of the peaks decreases along the propagation by
mass conservation, because the elastic response of the
medium (large De) does not allow the background porosity
to go back to its initial value behind the peaks. This effect

has been also described in the case of a Maxwell body by
Connolly and Podladchikov [1998]. The long-term evolu-
tion of the peaks is thus to disappear and the propagation
will evolve toward a shock wave as in the Maxwell case.
[25] Figure 4 shows the same calculations as in Figure 3

but for m = 1. For small viscosity ratios, lm 
 0.1, the
results are close to the ones found for m = 0 (Figures 3a, 3c,
4a, and 4c). The porosity dependence of viscosity (m = 1)
has, however, a large effect for lm = 1: the viscous stress is
not a solution of the rheological equation anymore and shock
waves are generated instead of solitary waves. For De = 0.05
(Figure 4b) a peak appears at the propagation front, but its
velocity is not large enough (because of the compaction
viscosity) to allow its detachment to form a solitary wave.
For De = 0.5 (Figure 4d), the elastic response of the matrix
balances the effect of the compaction viscosity at the front

Figure 2. Evolution of dimensionless porosity as a function of dimensionless distance for an initial
Gaussian distribution, for three different Deborah numbers and with (m = 1) or without (m = 0) porosity
dependence of the compaction viscosity. For each figure, porosity is shown at t = 0 (dashed line), t = 0.6
(solid black line), t = 1.2, 1.8 and 2.4 (solid gray line), and t = 3 (solid black line.) Elastic propagation
occurs in an elastic mode (shock waves) for De = 0.05 and De = 0.5, whereas the viscous mode (solitary
waves) is obtained for De = 0.
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Figure 4. Evolution of porosity for a Jeffreys body with m = 1 and for different values of De and
viscosity ratio lm. The curves are shown for the same times as in Figure 1. For large De (De = 0.5)
and lm = 1 ‘‘quasi’’ solitary waves are generated.

Figure 3. Evolution of porosity for a Jeffreys body (lG = 0) with m = 0 and for different values of De
and viscosity ratio lm. The curves are shown for the same times as in Figure 1. For any De, lm = 1
produces a viscous compaction.

B09406 CHAUVEAU AND KAMINSKI: POROUS COMPACTION IN TRANSIENT CREEP

8 of 15

B09406



of the peak and favors its detachment. In the limit of very
large De (and lm = 1), the rheological equation will write as

De
@ts

@t
¼ De

@2Vs

@z@t
; ð43Þ

of which the purely viscous stress ts = @Vs/@z is a solution.
Solitary waves will thus form at large De in a Jeffrey’s body,
whereas in the case of a Maxwell body a large De favors the
formation of shock waves. The amplitude of the waves,
however, decreases along their propagation; in the present
case (De = 0.5), it is reduced by a factor 2 when the wave has
traveled over 180 compaction lengths (defined in Table 2).
This is again due to the fact that elasticity prevents the
background porosity from going back to its initial value at
the back of the peak. To illustrate further the ‘‘quasi’’ solitary
waves behavior of the peak, we computed the interaction
between two waves generated by the following initial
porosity profile:

f ¼ 0:2þ 0:8 exp �ðz� 10Þ2
h i

þ 0:4 exp �ðz� 20Þ2
h i

; ð44Þ

with De = 0.5 and l = 1. The result displayed in Figure 5
shows indeed that the ‘‘quasi solitary waves’’ conserve their
shape after their interaction.

4.3. Full Burger’s Model

[26] The interpretation of the behavior of a porous Bur-
ger’s body is not as straightforward as the cases of a
Maxwell body or a Jeffrey’s body. As a matter of fact, the
term associated with the second time derivative of the stress
in the rheological equation (39) introduces a coupling
between the three rheological parameters (De, lm, lG).
We propose in the following a systematic comparison
between the results obtained for a Jeffrey’s model to the
ones obtained for a full Burger’s model in order better to
understand the implications of this coupling. We have

obtained during some preliminary calculations that the
porosity dependence had only a secondary effect and we
will thus focus here on the case m = 1.
[27] Figure 6 shows the propagation of the porosity

disturbance for the full Burger’s model at intermediate De
(De = 5.10�2). The comparison of Figure 6 with Figures 4a
and 4b illustrates the effect of lG. Small-scale additional
peaks appear at the propagation front. Their length scale is a
decreasing function of lG and lm, whereas their number is
an increasing function of lG. The propagation of the wave
as a whole is, however, not much different than that of the
reference shock wave. In the following we will refer to this
propagation mode as ‘‘shaggy’’ shock waves.
[28] The effect of lG at large De is illustrated Figure 7.

The comparison between Figures 7a, 7b, and 4c shows that
for a small viscosity ratio (lm 
 0.1) extra peaks still appear
at the propagation front. Their length scale is a decreasing
function of lG whereas the number of peaks is an increasing
function of lG. For a viscosity ratio lm of order unity, there
is a detachment of the peaks to form a wave train (Figures 7c
and 7d). These peaks can be compared to the ones obtained
for a Jeffrey’s body (Figure 4d). The length scale of the
Burger’s peaks is much reduced, and their amplitude is much
larger than for a Jeffrey’s body, as a function of lG. The
velocity of the Burger’s peaks is also much larger. There is,
however, a similar damping in the Burger case as in the
Jeffrey case, due to the elastic relaxation of the background
porosity at the back of the peak. We have checked that the
Burger’s peaks behave as the Jeffrey’s peaks like ‘‘quasi’’
solitary waves. We will refer to that compaction regime as
‘‘polytons’’ in the following.
[29] As a conclusion, we have obtained two families of

propagation modes in the full Burger’s model. The first
family, obtained for small De (De < 10�2) corresponds to
the classic viscous solitary waves. The second family,
obtained for larger De (De > 10�2) corresponds to a
visco-elastic propagation. As a function of the viscosity
ratio lm and of the elastic modulus ratio lG, three propa-

Figure 5. Interaction between two ‘‘quasi’’ solitary waves for a Jeffrey’s body with m = 1, De = 0.5 and
lm = 1. The curves are shown at t = 1.2 (dashed line), t = 1.44 (light gray line), t = 1.68 (gray line)
and t = 1.92 (black line). The two waves keep a same shape after and before their interaction, like
solitary waves. There is, however, a small damping of their amplitude along their propagation.
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Figure 7. Evolution of porosity for a full Burger’s body with m = 1 and a large Deborah number De =
0.5, and for different values of viscosity ratio lm and elastic modulus ratio lG. The curves are shown
at t = 0 (dashed line), t = 1.5 (thin gray line), and t = 3 (black line). The reference shock wave predicted for
a Maxwell body evolves into a train of peaks of small length scale and large amplitude, or ‘‘polytons’’.

Figure 6. Evolution of porosity for a full Burger’s body with m = 1 and an intermediate Deborah
number De = 0.05, and for different values of viscosity ratio lm and elastic modulus ratio lG. The curves
are shown at t = 0 (dashed line), t = 1.5 (thin gray line), and t = 3 (black line). The reference shock wave
predicted for a Maxwell body evolves into a ‘‘shaggy’’ shock wave presenting additional small-scale
peaks at the propagation front.
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gation modes have been identified: shock waves, ‘‘shaggy’’
shock waves, and a train of ‘‘quasi’’ solitary waves or
‘‘polytons’’. The precise characterization of the two new
propagation modes we have identified in the Burger’s
model (shaggy shock waves and polytons) will require a
more detailed mathematical study and is beyond the scope
of this paper. In the next section we restrict ourselves to the
discussion of first-order implications of the Burger’s model
for the propagation of fluids in the Earth as a function of the
expected values of the rheological parameters (De, lm and
lG.)

5. Discussion

[30] We have shown in the previous section that the
propagation of a porosity disturbance through a Burger’s
porous medium is a function of the Deborah number (De),
the viscosity ratio (lm) and the ratio of elastic moduli (lG).
We first discuss the values expected for these parameters in
the Earth, and then investigate the implications for the
circulation of melt, petroleum and CO2. To keep things
simple, we consider that the compaction viscosity is a
function of the porosity, z / ms/f, which corresponds to
m = 1.

5.1. Values of the Rheological Parameters lm, lG and
De for Geological Materials

[31] Transient rheology of Earth materials can be studied
at different scales, from laboratory experiments to geolog-
ical measurements, such as stress profiles in boreholes
[Gunzburger and Cornet, 2007], postseismic deformations
[Pollitz, 2003] or postglacial rebound [Yuen and Sabadini,
1986]. The inferred values of the ratios of viscosities and
elastic moduli are given in Table 3. One may note that lm is
always strictly smaller than 1 whereas lG is always larger
than 0. This implies that a full Burger’s formalism is indeed
required (and maybe a more complex Andrade model) to
study the compaction of geological materials. The resulting
compaction regime is a function of the Deborah number.
[32] The Deborah number is defined in equation (38). In

this equation, De is a function of the transient elastic
modulus Gt rather than of the steady elastic modulus Gs.
As lG = Gt/Gs � 1, the effective value of the Deborah
number in the full Burger’s model is larger than the
estimations provided in the literature for Maxwell models
in which De is a function of Gs [e.g., Connolly and
Podladchikov, 1998].
[33] For melt extraction in the mantle, we take Gs = 1011

Pa, ms = 1021 Pa s, mf = 1 Pa s,Dr = 500 kg m�3, b = 250, n

Table 3. Rheological Parameters for Earth Materials

Material lG lm Reference Method

Olivine rocks 0.05–0.36 0.17–0.65 Chopra [1997] creep experiments
Dunite Mr. Burnet 0.03 0.15 Post [1977] creep experiments
Wet Olivine 0.019–0.474 0.211–0.79 Mackwell et al. [1985] creep experiments
Upper mantle 1 0.35 Pollitz [2003] postseismic deformation
Argillite 0.1–1 0.01–0.1 Gunzburger and Cornet [2007] creep experiments
Lower crust 1 0.004 Pollitz [2003] postseismic deformation

Figure 8. Effective Deborah number in the mantle as a function of the grain size, for a decreasing ratio
of elastic moduli lG and for a background porosity f0 of 1% and 3%. The transition between viscous and
elastic compaction occurs for De = 0.01. A large grain size, a large background porosity, as well as a
small elastic modulus ratio lG favor visco-elastic compaction.
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= 3, and we estimate De as a function of the grain size a for
different values of lG and f0. The result presented in Figure
8 allows one to define a minimum grain size for which the
visco-elastic threshold (De � 10�2) is reached as a function
of lG and f0. A minimum estimate is obtained for f0 = 0.03
and lG = 0.01, which yields a � 0.05 mm. A maximum
estimate is obtained for f0 = 0.01 and lG = 1, which yields
a � 10 mm. Grain size in the mantle can be obtained by the
study of seismic attenuation in polycrystalline olivine,
which is also due to the visco-elastic behavior of the grains.
By an extrapolation of laboratory measurements, Jackson et
al. [2002] showed that a grain size of few millimeters is
required by seismic attenuation in the mantle. We can thus
conclude that for a realistic value of the reference porosity
and for the values of lG expected in the mantle (Table 3),
visco-elastic effects have to be taken into account in the
modeling of mantle compaction.
[34] Sedimentary basins are the second geological envi-

ronment in which visco-elastic compaction is likely to play
a role, both for the migration of water during diagenesis and
for the migration of petroleum [e.g., Suetnova and Vasseur
2000]. For compaction in sedimentary basins, we take Gs =
1011 Pa, ms = 1021 Pa s, Dr = 1500 kg m�3, a = 1 mm, f =
0.03, b = 250, n = 3, and we estimate De as a function of mf

for different values of lG. The chosen value for Gs is an
upper bound and yields a lower bound for the Deborah
number and visco-elastic effects. We choose here to use mf

as a free parameter, as compaction in a sedimentary basins
is going to be a function of the nature and viscosity of the
fluid expelled: water, light petroleum, or liquid CO2 (mf 

10�3 Pa s), or heavy petroleum (mf 
 103 Pa s). The result
presented in Figure 9 shows that a fluid with a viscosity
larger than 10 Pa s (heavy petroleum) will always propagate
in the viscous mode. On the other hand a fluid with a

viscosity smaller than 0.1 Pa s (light petroleum, CO2) will
always propagate in a visco-elastic mode. The propagation
mode of fluids with an intermediate viscosity will depend
on lG. Visco-elastic effects have thus to be taken into
account at least to quantitatively model low-viscosity fluids
migration at depth in sedimentary basins.

5.2. Regime Diagrams for Visco-Elastic Compaction in
the Earth

[35] For small values of De (De � 10�2), compaction is
purely viscous. Visco-elastic compaction will occur for
larger De, and we present here two regime diagrams that
define the visco-elastic extraction mode for intermediate
and large values of De, as a function of the expected viscosity
and elastic modulus ratios (lm and lG, respectively) for Earth
materials.
[36] Figure 10 shows the regime diagram for large De (De

= 0.5). Three extraction modes are possible, shock waves,
shaggy shock waves, and polytons. The viscosity ratio lm is
the main parameter to define the boundaries between the
three regimes. The transition from shock waves to shaggy
shock waves occurs for lm > 10�2, whereas polytons are
generated for lm > 10�1. The threshold values of lm are a
weak decreasing function of lG. If De is large, polytons are
the most likely mode of compaction in the mantle whereas
shaggy shock waves are more likely in sedimentary basins.
At even larger Deborah numbers, that may be relevant for
sedimentary basins, polytons are also expected.
[37] Figure 11 presents the regime diagram for interme-

diate De (De = 5 10�2). Only two extraction modes are
possible, shock waves and shaggy shock waves. For lG
larger than 0.1 the boundary between the two regimes is
given by lm > 0.1. For lG smaller than about 0.05, only
shock waves occur. For intermediate values of De, com-

Figure 9. Effective Deborah number in sedimentary basins as a function of the viscosity of the fluid
phase, for a decreasing ratio of elastic moduli lG and for a background porosity f0 of 3%. The transition
between viscous and elastic compaction occurs for De = 0.01. A small fluid viscosity as well as a small
elastic modulus ratio lG favor visco-elastic compaction.

B09406 CHAUVEAU AND KAMINSKI: POROUS COMPACTION IN TRANSIENT CREEP

12 of 15

B09406



Figure 11. Compaction regime diagram for Earth materials at intermediate De (De = 0.05) as a function
of viscosity ratio lm and elastic modulus ratio lG. Only two propagation modes can occur for an
increasing lm: shock waves and shaggy shock waves. Typical range of parameters are shown for the
mantle [Chopra, 1997] and sedimentary basins [Gunzburger and Cornet, 2007]. For an intermediate
Deborah number, shaggy shock waves are expected in the mantle whereas regular shock waves are
expected in sedimentary basins.

Figure 10. Compaction regime diagram for Earth materials at large De (De = 0.5) as a function of
viscosity ratio lm and elastic modulus ratio lG. Three propagation modes can occur for an increasing lm:
shock waves, shaggy shock waves and polytons. Typical range of parameters are shown for the mantle
[Chopra, 1997] and sedimentary basins [Gunzburger and Cornet, 2007]. Polytons are expected in the
mantle whereas shaggy shock waves are expected in sedimentary basins.
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paction will always occur in the shock wave regime in
sedimentary basins, whereas mantle compaction will occur
in the shaggy shock wave regime for large values of lG.
Polytons are not expected in the mantle or in sedimentary
basins for intermediate De.

5.3. Geological Perspective

[38] In the eighties, the development of the theoretical
concept of solitary waves associated with viscous compac-
tion [Richter and McKenzie, 1984; Barcilon and Richter,
1986] has changed the view of geodynamicists on melt
propagation in the mantle and the interpretation of geo-
chemical characteristics of lava. The signature of many
subsurface geological processes can be associated with
characteristics of porous solitary waves too [e.g., Revil,
2002b; Revil and Cathles, 2002; Miller et al., 2004;
Fontaine et al., 2003]. Such waves are not predicted by
classic Maxwell models that only produce shock waves at
the large Deborah numbers expected in these geological
environments. Viscous compaction has been advocated to
explain porosity waves in sedimentary basins [Fowler and
Yang, 1999; Brown, 2000]. However, purely viscous com-
paction requires quite restrictive conditions to allow effi-
cient fluid extraction in sedimentary basins [Appold and
Nunn, 2002]. It is furthermore not the dominant deformation
mechanism at the high Deborah numbers expected in
sedimentary basins. Our complete visco-elastic model,
which incorporates both stress and strain relaxation, can
generate a train of quasi solitary waves (polytons) that
mimic the characteristics of viscous waves at large Deborah
number. It thus provides a new framework to better con-
strain and interpret the transport of hydrocarbon. They are
also an important mechanism to consider when testing long-
term geological confinement of CO2. However, some lim-
itations of our model will have to be relaxed first in order to
allow its full quantitative use.
[39] First, the results presented here have been established

by solving a set of 1-D equations. One-dimensional porosity
waves are intrinsically unstable and will evolve toward 2-D
and then 3-D waves [Barcilon and Richter, 1986]. The
characteristics of such 3-D waves are not fully known for a
purely viscous material but they are supposed to form a
large-scale network of high-porosity channels, as a function
of complex interactions between compaction, chemical
reactions and/or shear deformation of the medium [Wiggins
and Spiegelman, 1995; Spiegelman and Kelemen, 2003;
Spiegelman, 2003]. Such a complexity will have to be
included too in a full 3-D visco-elastic model. Second, we
have considered here constant rheological parameters only.
However, both viscosity and elastic moduli are likely to
depend on porosity. The interplay between viscosity and
porosity bears some important implications for the evolution
of the porosity waves, such as described by Khodakovskii
et al. [1995]. The transient elasticity increases with the melt
fraction [Green and Cooper, 1993] which will help the
transition from shaggy waves (intermediate lG) to polytons
(large lG). Such effects are important and will require a
specific study. Third, as already stated in the introduction, a
Burgers’ model is a much simplified representation of the
more complex visco-elastic behavior of geological materi-
als. These materials are likely to be characterized by a
distribution of elastic relaxation timescales, as a function of

the distribution of grain sizes for example [Revil et al.,
2006]. Andrade’s models display a distribution of elastic
relaxation timescales and reproduce the behavior of geo-
logical materials [Cooper, 2002]. However, the generaliza-
tion of an Andrade model to a porous medium remains very
challenging. The results obtained here for a Burger’s model
provide a strong motivation to try to adapt the Andrade’s
formalism to porous medium. They will prove very useful
in the deciphering of the complex behavior of the Andrade’s
model. For example, one may note that Andrade’s models
correspond to smaller transient viscosity than Burger’s
models [Cooper, 2002], which will tend to somewhat
impend the generation of polytons. The generalization of
our formalism to an Andrade model will be the scope of a
next study.

6. Conclusion

[40] The effect of transient creep on the compaction
process in the Earth has been incorporated to a two-phase
flow theory on the basis of a Burger’s model. The rheology
of the porous material is a function of three dimensionless
numbers: (1) the Deborah number, defined by the ratio of an
elastic relaxation timescale over the compaction timescale,
(2) the ratio of the transient viscosity over the steady
viscosity, and (3) the ratio of the transient elastic modulus
over the transient elastic modulus. For a Deborah number
larger than 10�2, visco-elastic effects become important.
Visco-elastic compaction can occur in three different
regimes, as a function of the rheological parameters, shock
waves, shaggy shock waves and polytons. The two last
regimes are characteristic of transient creep.
[41] Large Deborah numbers are expected in sedimentary

basins and in the upper mantle. Visco-elastic effects during
compaction cannot be neglected in general. In the mantle,
for large Deborah numbers corresponding to large grains
sizes, polytons are expected. In sedimentary basins, for
large Deborah numbers corresponding to small fluid vis-
cosity shaggy shock waves are expected. At sufficiently
large Deborah number, the limit compaction regime corre-
sponds to polytons. Polytons are defined as a train of quasi
solitary waves. They thus share some characteristics with
the usual magmons. However, their length scale is smaller
and their amplitude is larger. As a consequence they may
play an important role in the focusing of liquids during their
circulation in the upper mantle and in the crust.
[42] This study has shown the important role played by

both stress and strain relaxation in the compaction process.
These results are valid for a Burgers’ formalism, and they
can be taken as a strong motivation to tackle more consis-
tent, but also more complex, models, such as Andrade’s
model.
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