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ABSTRACT

Aims. Understanding the formation of binary and multiple stellar systems largely comes down to studying the circumstances under
which a condensing core fragments (or not) during the first stages of the collapse. However, both the probability of fragmentation and
the number of fragments seem to be determined to a large degree by the initial conditions. In this work we explore this dependence
by studying the fate of the linear perturbations of a homogeneous gas sphere, both analytically and numerically.
Methods. In particular, we investigate the stability of the well-known homologous solution that describes the collapse of a uniform
spherical cloud. One problem that arises in such treatments is the mathematical singularity in the perturbation equations, which
corresponds to the location of the sonic point of the flow. This difficulty is surpassed here by explicitly introducing a weak shock
next to the sonic point as a natural way of connecting the subsonic to the supersonic regimes. In parallel, we perform adaptive mesh
refinement (AMR) numerical simulations of the linear stages of the collapse and compare the growth rates obtained by each method.
Results. With this combination of analytical and numerical tools, we explore the behavior of both axisymmetric and non-axisymmetric
perturbations. The numerical experiments provide the linear growth rates as a function of the core’s initial virial parameter and as a
function of the azimuthal wave number of the perturbation. The overlapping regime of the numerical experiments and the analytical
predictions is the situation of a cold and large cloud, and in this regime the analytically calculated growth rates agree very well with
the ones obtained from the simulations.
Conclusions. The use of a weak shock as part of the perturbation allows us to find physically acceptable solutions to the equations
for a continuous range of growth rates. The numerical simulations agree very well with the analytical prediction for the most unstable
cores, while they impose a limit of a virial parameter of 0.1 for core fragmentation in the absence of rotation.

Key words. stars: formation – ISM: clouds

1. Introduction

By now it is well understood that stars form out of the gravita-
tional condensation of cold and dense molecular cores, which
are very structured in density and in velocity (Larson 1981;
Falgarone & Phillips 1990). In parallel, it has also been ar-
gued that most stars live in binaries or multiple systems (e.g.,
Duquennoy & Mayor 1991; Goodwin et al. 2007). It is therefore
natural to assume that owing to these internal velocities and den-
sity enhancements, a core typically fragments at a certain stage
of its collapse and eventually produces two or more stars.

From an observational perspective, the matter can be eluci-
dated by registering the degree of multiplicity at different stages
of the core contraction. Most data for early stellar multiplicity
are available for Class I/II objects, in other words, for proto-
stars with almost no trace of their initial envelope left (Ghez
et al. 1993; Patience et al. 2002; Duchêne et al. 2004, 2007).
But, to clarify the dependence on the initial physical properties
and internal structure of a core, one must allude to even ear-
lier phases in the collapse (Class 0 objects), when the protostars
are still largely embedded in their parental core (Andre et al.
1993, 2000). Although challenging because of the obscuration
from the envelope, there have been numerous attempts to con-
strain stellar multiplicity that early in the collapse stage of a core
(Chen et al. 2008; Girart et al. 2009; Duchêne et al. 2004, 2007;
Jørgensen et al. 2007). The results show an increase in the num-
ber of fragments from the Class 0 to the Class I stage, which is

evidence that suggests that fragmentation is favored either in the
Class 0 stage or very shortly afterward (Maury et al. 2010).

There have been also numerous theoretical studies, both of
the collapse process and of the fragmentation during collapse.
Ebert (1955) and Bonnor (1956) independently derived an ana-
lytic criterion for a static isothermal sphere to be stable against
gravitational collapse. In their numerical simulations of collaps-
ing, initially uniform isothermal spheres, Larson (1969) and
Penston (1969) found a one-dimensional, self-similar solution
(called LP solution or flow in the following). If x is the self-
similar variable of the profile, this solution describes a cloud
with a flat density profile that turns into a x−2 dependence to-
ward infinity and a velocity profile proportional to x. It was later
discovered by Shu (1977) that this solution is a member of a
whole family of self-similar collapse solutions, many of which
contain critical points. In that paper, he arrived at the conclusion
that an initially centrally condensed cloud will collapse from
the inside out, establishing an expansion wave. This behavior
was integrated into a more complete picture of the collapse and
the behavior of self-similar collapse solutions by Whitworth &
Summers (1985).

The stability of the collapse solutions is understood to a
much lesser extent. For the case of a static, uniform, presureless
spherical cloud, Hunter (1964) showed that there is an unstable
shell mode that grows like (t0 − t)−1, where t is the time and t0
the time at which collapse occurs.
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Hanawa & Matsumoto (1999, HM99 in the following) per-
formed a stability analysis of the LP flow using a shooting
method. In this type of analysis, one starts integrating the equa-
tions from one boundary and varies some parameters until the
solution at the other boundary matches the desired conditions
there. They came to the conclusion that the solution is stable
overall, with the exception of a slowly growing l = 2 mode
(where l the azimuthal wave number of a spherical harmonic
perturbation) with a growth rate of 0.354. This very weak in-
stability is consistent with the analysis by Ori & Piran (1988),
who derived a stability criterion for self-similar isothermal col-
lapse flows that is based on the gradient of the radial velocity
close to the critical point. According to that criterion, a homoge-
neous isothermal sphere is an unstable configuration that could
naturally converge to a (generally much stabler) Larson-Penston
type flow.

While quite interesting, this result poses a few questions.
One is that the growth rate is rather slow, so it is unclear whether
perturbations can really grow sufficiently (see Sect. 5). Another
issue is that only the l = 2 mode was found to be unstable,
since HM99 report the nonexistence of eigenvectors for higher
values of l. Finally, no total eigenvector has been calculated for
the spherical mode. Altogether, this suggests that the stability
analysis of a collapsing cloud is not yet complete.

On the other hand, there is abundant literature on numeri-
cal simulations of the fragmentation of rotating and/or turbulent
cores. Boss & Bodenheimer (1979) studied the fate of an l = 2
perturbation on a collapsing core, and Burkert & Bodenheimer
(1993) repeated the experiment, finding that a filament connect-
ing the fragments should develop. (This experiment has been re-
peated many times since and is used extensively as a code testing
tool.) A criterion for fragmentation in the presence of rotation
was provided by the semi-analytical work of Tohline (1981),
quantifying thermal support with the virial parameter α and the
rotational versus gravitational energy in the cloud with the cor-
responding parameter β. The quantity αβ has since been used
repeatedly to delimit the conditions for fragmentation (Miyama
et al. 1984, Hachisu & Eriguchi 1984, Tsuribe & Inutsuka 1999,
Tohline 2002, for instance), and it was found that αβ < 0.1−0.2
typically leads to fragmentation.

At the same time, increasingly more complex direct simu-
lations of the collapse and fragmentation processes have been
performed, including the internal and external thermal pressure
of the core, rotation (Myhill & Kaula 1992; Cha & Whitworth
2003; Matsumoto & Hanawa 2003; Hennebelle et al. 2004;
Machida et al. 2008; Commerçon et al. 2008), magnetic fields
(Banerjee & Pudritz 2006; Price & Bate 2007; Hennebelle &
Teyssier 2008; Boss & Keiser 2013), and turbulence (Klessen
et al. 1998; Klessen & Burkert 2001; Offner et al. 2008; Bate
2009; Joos et al. 2013), which seem to affect the number of frag-
ments and their separation. Girichidis et al. (2011) conducted a
parameter study in which they varied the initial density profile
of the core and the level of turbulence. They provide evidence
of the strong influence of the mean radial density profile to the
result of the collapse.

Given the abundance and complexity of the existing models
for fragmentation, it is somewhat surprising that there is so little
to be said for the stability of a solution that is as simple as the ho-
mologous, uniform, isothermal collapse. It is clear that this solu-
tion has limited applicability to real cores, which are sometimes
far from isothermal spheres and do host turbulent motions and
magnetic fields, which are all potentially important and complex
effects that can substantially alter the behavior of the solution.
However, a study of its linear stability offers important insight

into the principal mechanisms causing fragmentation, since it
does not suffer from the complexity of nonlinear effects and can
contribute to the overall understanding of core collapse.

In the present paper we rectify by performing a linear sta-
bility analysis of this flow. Our study shows that the homolo-
gous solution is indeed unstable and we obtain the correspond-
ing growth rates. This analysis is presented in Sects. 2 and 3.
In the fourth section we present numerical simulations of a uni-
form dense core subject to a spherical perturbation and we look
for the range of parameters for which it is unstable. We mea-
sure the growth rate of the shell mode (a spherically symmetric
perturbation), as well as higher-order spherical harmonic pertur-
bations and find them to be in good agreement with the result
of our linear analysis. The fifth section discusses the implica-
tions of our results and proposes further interpretation. The sixth
section concludes the paper.

2. Stability analysis: the spherical case

2.1. Equations and self-similarity

We investigate the stability of a collapsing isothermal sphere
against linear perturbations. Given the symmetry of the prob-
lem, we start with the equations of hydrodynamics in spherical
coordinates in one dimension:

∂tρ +
∂r(r2ρur)

r2
= 0,

∂tur + ur∂rur = −C2
s
∂rρ

ρ
− ∂rψ, (1)

1
r2
∂r(r2∂rψ) = 4πGρ,

where ρ the gas mass density, ur the radial velocity, and ψ the
gravitational potential. It is well known (Larson 1969; Penston
1969; Shu 1977) that this system admits self-similar solutions of
the form

X =
r

Cs(t0 − t)
,

R(X) = 4πG(t0 − t)2ρ(r, t), (2)

U(X) =
ur(r, t)

Cs
,

Φ(X) =
ψ(r, t)

C2
s
,

where the density R, the radial velocityU, and the gravitational
potential, Φ are functions of the self-similar variable X, Cs is
the sound speed, and G the gravitational acceleration. Among
the various solutions known in the literature the simplest is the
homologous solution

R0 =
2
3
,

U0 = α0X = −2
3

X, (3)

φ0 =
R0

6
X2,

which describes a cloud with a uniform density R0 and a velocity
field proportional to X with a slope α0. Clearly, like other self-
similar profiles, this solution is only valid within certain spatial
and temporal limits, as both the mass and the velocity diverge for
large values of X. In addition, in a real collapse situation there
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is a rarefaction wave propagating outwards (Tsuribe & Inutsuka
1999; Truelove et al. 1997), which breaks the self-similarity. In
order then for this solution to remain valid the gas has to be cold
enough for the collapse to happen before the rarefaction wave
can reach the center. Then Eqs. (3) can be used to describe the
inner parts of the cloud.

The simplicity of this profile and the fact that it describes
the center of a cold core quite accurately make it a popular ini-
tial condition for numerical simulations (Larson 1969; Price &
Bate 2007; Commerçon et al. 2008; Boss & Keiser 2013, for ex-
ample). It is therefore both interesting and relevant to perform a
stability analysis of this solution and to confront the analytical
results with numerical simulations.

We first look for perturbations of the form

R(r, t) = R0(X) + δR(X)(t0 − t)−σ,
U(r, t) = U0(X) + δU(X)(t0 − t)−σ, (4)

φ(r, t) = φ0(X) + δφ(X)(t0 − t)−σ,

where R0, U0, and φ0 denote the equilibrium state and δR(X),
δU(X), and δφ(X) the perturbed quantities. The quantity σ in
the exponent is assumed to be positive and represents the growth
rate of the perturbation. Inserting these expressions into Eqs. (1),
we get

(σ + 2)δR + XδR′ +
R0

X2
∂X(X2δU) +

α0

X2
∂X(X3δR) = 0, (5)

(σ + α0)δU + (1 + α0)XδU′ = −δR′

R0
− δφ′, (6)

δφ′′ +
2δφ′

X
= δR, (7)

with primes denoting the spatial derivatives. Combining Eqs. (5)
and (7), one can show that

δφ′ =
1

1 − σ (R0δU + (1 + α0)XδR) +
K
X2
, (8)

where K is a constant chosen to ensure the continuity of δφ.
From Eqs. (3), (5), (6), we get

δR′ =
1

3 − X2/3
(
σXδR + (8/3 − 2σ)δV − 2δφ′

)
, (9)

which together with Eqs. (6) and (8) allows us to solve the sys-
tem. Once the boundary conditions have been specified, a nu-
merical integration is carried out by a standard Runge-Kutta
scheme.

2.2. Inner boundary and the critical point

The boundary conditions for the perturbation at X � 0 are
given by

δR → R1 = cst,

δU → −σR1

2
X, (10)

where cst is a constant. So by simply specifying a constant value
for R1 we can integrate the system of Eqs. (6) and (8) for differ-
ent values of σ.

One complication to this otherwise straightforward approach
is that the system possesses a critical point at Xcrit = 3, where
the gas becomes supersonic with respect to the self-similar pro-
file. The presence of such a boundary poses a restriction to our

numerical solutions, since only the ones which cross it can be
considered physically acceptable.

It is easy to show that the system (5)–(7) has two exact solu-
tions that resemble these boundary conditions and are given by

δR = R1 = cst, (11)

δU = −σR1

2
X, (12)

σ = 1 or −2
3
· (13)

While mathematically acceptable, these solutions offer little
physical insight: they merely describe a variation of the mean
density. They are, however, mathematically acceptable, since
they remain small at any X with respect to the perturbed
solutions.

Apart from these trivial forms, the integrations of the system
of Eqs. (6) and (8) we performed for different values of σ gave
no other solutions able to cross the critical point.

2.3. Shock conditions

From the above discussion it becomes clear that a more general
form of the perturbation should exist which allows for physically
meaningful solutions to the corresponding perturbation equa-
tions and which does not suffer from the issue of critical point
crossing.

To begin with, one can imagine a core whose size is much
larger than the sonic radius. In this case the perturbation can be
restricted to the supersonic parts, where X is much greater than
the critical value. For a cloud this large we are essentially in the
same regime as the cold cloud described by the homologous col-
lapse solution (Eqs. (3)), where gravitational collapse happens
before thermal pressure effects have had time to break the self-
similarity. We expect then that the behavior of the perturbations
will be similar to the general t−1 growth found by Hunter (1964)
for the case of a cold cloud.

In order to integrate the solution for the outer parts of the
cloud, we need a physically meaningful boundary condition at
the vicinity of the critical point. We thus seek solutions that in-
clude a shock. In the vicinity of the critical point, the velocity
of the fluid is by definition transonic with respect to the self-
similar profile, so an arbitrary weak shock can naturally hap-
pen in this area. Note that, although the spatial derivatives of the
density and velocity fields are infinite at the shock, all fields re-
main small if the shock is weak. Therefore, such a discontinuity
indeed generates a linear perturbation.

Let the shock be located at Xshock = Xcrit+δX where δX > 0.
This is the location where the unperturbed solution, given
by δR = 0, δU = 0 is connected to a state given by the Rankine-
Hugoniot (RH) conditions, which in the frame of reference of
the shock are(

ur,1 − Vshock
) (

ur,2 − Vshock
)
= C2

s ,

ρ2

ρ1
=

(ur,1 − Vshock)2

C2
s

, (14)

where Vshock is the velocity of the shock and subscripts 1 and 2
mark the pre- and post- shock quantities, respectively.

The velocity of the flow with respect to the self-similar pro-
file is given by α0X+X = X/3. Thus at Xshock, the Mach number
can be expressed as M = Xshock/3 = 1 + δX/3. In the frame
of the shock, the gas from the subsonic region is entering super-
sonically into the shock and therefore constitutes the pre-shock
medium whose density is amplified.
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Since we consider that the subsonic region is unperturbed,
the expressions for ρ1 and ur,1 that enter the jump conditions in
Eqs. (14) are simply given by Eqs. (2) and (3).

By replacing we get
(
1 +

δX
3

) (
1 +

δX
3
+ δU(t0 − t)−σ

)
= 1,

δR(t0 − t)−σ + R0

R0
=

(
1 +

δX
3

)2

· (15)

At the limit of a weak shock, we can expand these relations
and get

δU(t0 − t)−σ = −2
3
δX,

δR(t0 − t)−σ =
2R0δX

3
=

4
9
δX. (16)

As the perturbation develops it moves toward larger δX, so the
density increases and the shock becomes stronger.

Since the perturbed density remains zero up to the position
of the shock, the constant K in Eq. (8) must be chosen in such a
way that δφ′(Xshock) = 0.

2.4. Limit at large radii

In order to identify the physically relevant solutions, the
asymptotic behavior at large X must also been known. From
Eqs. (5)–(7), it is easy to infer that there must be an asymptotic
behavior of the form

δR → R∞X−v−1, (17)

δU → U∞X−v, (18)

where the exponent v in Eqs. (17) and (18) should be chosen
such that the asymptotic form satisfies Eqs. (5)–(7). By insert-
ing expressions (17) and (18) into Eqs. (5)–(7) and dropping the
thermal pressure term, which is negligible at large X, we obtain
two linear equations for R∞ and U∞, which depend on σ and v.
By demanding that the determinant of this system be zero, we
get the two solutions for v:

v = 3σ − 4,

v = 3σ + 1. (19)

We thus recover the exact homologous solution mentioned
above, since when σ = 1 or −2/3, we get v = −1, which
means U ∝ X and R = cst. On closer inspection we also see that
the first branch (v = 3σ − 4) diverges most rapidly. Since math-
ematically it is required that v > −1 for the solutions to behave
well towards infinity, it follows that σ > 1. When 1 < σ < 4/3,
the velocity diverges at infinity but still remains everywhere
negligible with respect to the perturbed solution.

2.5. Numerical integration

The shock is now essentially the low-X boundary for the numer-
ical integration, so we only need to specify its position δX from
the critical point in order to define the boundary conditions. This
value must be small in order to ensure linearity.

As shown by Eqs. (16), the exact values of δU and δR are
not important (they depend on t0, which can be freely chosen)
but their ratio is fixed.

Starting from a location close to zero (specifi-
cally Xs = 10−2), and using a step dX = 10−3, we integrate the

Fig. 1. Density (top panel) and velocity (bottom panel) fields of the so-
lutions for various values of σ. For values of X smaller than the position
of the shock (X < Xsh � 3), the density and the velocity are unperturbed,
i.e. δR = δV = 0. The solid lines show the solutions for the system of
Eqs. (5)–(7) For comparison, solutions to the same equations but with-
out the thermal pressure term are shown with the dotted lines.

perturbation equations up to X = 100. We have checked that the
solutions are well resolved and converged.

Figure 1 shows the density and the velocity fields for vari-
ous values of the growth rate, σ. The solid lines show the solu-
tions of Eqs. (5)–(7) and the dotted lines show the solutions for
the same system of equations when the thermal pressure is sup-
pressed. The latter case corresponds to a cold cloud and is given
for comparison.

The velocity and the density fields vary rapidly in the vicinity
of the shock, X � 3. The velocity, which is negative, increases
and the density decreases. At X � 4−5, the behavior of the den-
sity changes: it starts decreasing much less rapidly and it quickly
reaches the asymptotic behavior expressed by Eqs. (17) and (18).

The behavior of the velocity is slightly more complex. For
σ < 4/3, it decreases for X > 4−5 as expected from the asymp-
totic form (Eqs. (17) and (18)). For 4/3 < σ < 1.6, the ve-
locity eventually decreases and tends towards zero after a small
increase. Again, this is in good agreement with the expected
asymptotic profile. In contrast, for larger values of σ, the be-
havior is identical, only the velocity becomes positive just af-
ter the shock at X � 3−5, which means that the perturbation is
expanding.

Based on this form of the perturbations, we believe that the
regime 1 < σ < 4/3 corresponds to the most physically relevant
solutions. For smaller σ, the velocity diverges at large X and
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is therefore not really a perturbation with respect to the unper-
turbed solution. When σ > 4/3, the velocity quickly tends to
zero, meaning that it is very localized around the shock. Finally,
when σ >� 1.7, the velocity becomes positive. This situation
probably corresponds to somehow artificial perturbations that
are unlikely to represent a physically relevant case.

This conclusion remains almost identical for the cold case
since for σ < 4/3 the velocity diverges toward large X while for
σ >� 1.8, the density becomes negative at X >� 5.

To summarize, we find that linear perturbations that include
a weak shock in the vicinity of the sonic point present physically
acceptable behavior if the growth rate is larger than unity. As the
growth rate becomes larger than 4/3, the form of the eigenvectors
suggests that the corresponding perturbation is unlikely to occur:
the velocity field rapidly converges toward zero, implying that
the perturbation is isolated in the sonic region.

3. Stability analysis: the non-axisymmetric modes

The instability of a shell-like structure is an important result, but
if we care about the formation of multiple fragments we must
also consider non-spherically shaped perturbations. In this sec-
tion we present the stability analysis for non-spherically sym-
metric modes. Since the method is practically the same as the
spherical case, here we will only highlight the differences.

3.1. Equations

The fluid equations for a self-gravitating gas in spherical
coordinates and three dimensions are:

∂tρ +
∂r(r2ρur)

r2
+

1
r sin θ

∂θ(sin θρuθ) +
1

r sin θ
∂φ(ρuφ) = 0,

∂tur + ur∂rur +
uθ
r
∂θur +

uφ
r sin θ

∂φur −
u2
θ + u2

φ

r
=

− C2
s
∂rρ

ρ
− ∂rψ, (20)

∂tuθ + ur∂ruθ +
uθ
r
∂θuθ +

uφ
r sin θ

∂φuθ +
uruθ

r
− u2

φ

r tan θ
− =

C2
s

r
∂θρ

ρ
− 1

r
∂θψ,

∂tuφ + ur∂ruφ +
uθ
r
∂θuφ +

uφ
r sin θ

∂φuφ +
uruφ

r
=

− C2
s

r sin θ

∂φρ

ρ
− 1

r sin θ
∂φψ,

1
r2
∂r(r

2∂rψ) +
1

r2 sin θ
∂θ(sin θ∂θψ) +

1

r2 sin2 θ
∂2
φ2ψ = 4πGρ,

where ur, uθ, and uφ denote the velocities along each of the
spherical coordinates r, θ and φ. To study the stability of the
homologous solution with respect to non-spherical modes, we
look for perturbations of the form (HM99):

R(r, θ, φ, t) = R0(X) + δR(X)Ym
l (θ, φ)(t0 − t)−σ,

U(r, θ, φ, t) = U0(X) + δU(X)Ym
l (θ, φ)(t0 − t)−σ,

V(r, θ, φ, t) = δV(X)
1

l + 1
∂θY

m
l (θ, φ)(t0 − t)−σ, (21)

W(r, θ, φ, t) = δV(X)
1

l + 1
1

sin θ
∂φYm

l (θ, φ)(t0 − t)−σ,

φ(r, θ, φ, t) = φ0(X) + δφ(X)Ym
l (θ, φ)(t0 − t)−σ,

where V and W are the angular velocities and δV(X), δW(X)
are the corresponding perturbations in the self-similar frame
and Ym

l (θ, φ) are the usual spherical harmonics. As in the study
of HM99, the equations for δV and δW are identical so the per-
turbations are given the same amplitude, δV(X). Replacing these
expressions into Eqs. (20), we get

(σ + 2 + 3α0)δR + (1 + α0)XδR′ + R0δU ′ +
2R0

X
δU

− lR0

X
δV = 0, (22)

(σ + α0)δU + (1 + α0)XδU′ = −δR′

R0
− δφ′, (23)

(σ + α0)δV + (1 + α0)XδV ′ = − (l + 1)
X

(
δR
R0
+ δφ

)
(24)

δφ′′ +
2δφ′

X
− l(l + 1)

X2
δφ = δR. (25)

Thus, the system of Eqs. (22)–(25) consists of three first-order
ordinary differential equations and one second-order ordinary
differential equation. Like in the spherical case, we solve it using
a standard Runge-Kutta method.

3.2. Inner boundary and shock condition
in the non-axisymmetric case

The boundary conditions of Eqs. (22)–(25) at X � 0 are given by

δR → R1Xl,

δU → U1Xl−1, (26)

δV → V1Xl−1,

δψ → ψ1Xl,

where

R1 = const.

(l + 1)U1 = lV1, (27)

φ1 = −R1

R0
− U1

(
σ + α0

l
+ (1 + α0)

l − 1
l

)

for the system to have a solution. Equations (22)–(25) admit a
family of solutions that resemble these boundary conditions and
are given by Eqs. (26) and

R1 = 0,

(l + 1)U1 = lV1, (28)

φ1 =
1
l

(σ + α0 + (1 + α0)(l − 1))U1.

The situation here resembles what we found for the spherical
problem: while these solutions are mathematically acceptable,
they diverge at large X so they do not represent physical solu-
tions. Nonetheless, they will play an important role in finding a
solution, as we will show later.

It is easy to see that this system also admits a critical point
located at Xcrit = 3. Again, the only solutions that satisfy the in-
ner boundary conditions and cross the critical point are the trivial
ones stated by Eqs. (28), which for l > 2 diverge at infinity.

Following the same line of thought, we look for solutions
that present a shock at the vicinity of the critical point, Xshock =
Xcrit + δX where δX > 0. The unperturbed solution given
by δR = 0, δU = 0 is connected to a post-shock state given
by the Rankine-Hugoniot conditions. The same applies to the
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other variables δV , δφ and δφ′. They are all assumed to be zero
in the inner part before the shock. These variables however are
continuous so they are also equal to zero immediately after the
shock.

The Rankine-Hugoniot conditions are identical to the spher-
ical case. The same calculations then lead to

δUYm
l (θ, φ)(t0 − t)−σ = −2

3
δX,

δRYm
l (θ, φ)(t0 − t)−σ =

2R0δX
3
=

4
9
δX. (29)

This implies that the surface of the shock itself is spherical only
at the zeroth order. At the first order, the shock surface is de-
scribed by a spherical harmonic, Ym

l .

3.3. Limit at large radii for non-axisymmetric modes

From Eqs. (22)–(25), it is easy to infer that the asymptotic be-
havior towards infinity is

δR → R∞X−v− 1,

δU → U∞X−v, (30)

δV → V∞X−v,
δφ → φ∞X−v+ 1.

By inserting these expressions into Eqs. (22)–(25) we obtain a
fourth-order polynomial whose four roots are:

v = 3σ − 4,

v = 3σ + 1, (31)

v = −l + 1,

v = l + 2.

The two first roots are the same ones we obtained before. The
third branch, v = −l + 1, leads to a strong divergence with l,
with the exception of the value l = 2 for which it leads to the
same asymptotic behavior as the solution stated by Eqs. (3). This
asymptotic form is associated to the solution stated by Eqs. (28)
and it is, generally speaking, unphysical.

However, if this branch is linearly combined with the solu-
tion (28) in such a way that their asymptotic behaviors compen-
sate, the new solution can be made to present a physically ac-
ceptable asymptotic behavior described by the root v = 3σ − 4,
like in the spherical case. It is again required that v > −1, so we
must have σ > 1. Also, the condition that the velocity go to 0 at
large X implies again that σ > 4/3.

To summarize, in order to get physically meaningful pertur-
bations of the exact solution stated by Eqs. (3), we need to com-
bine the solution stated by Eqs. (28) with the solution obtained
by applying the Rankine-Hugoniot conditions at the vicinity of
the critical point in such a way that the linear combination does
not diverge too strongly.

If S l is the desired solution and φ1 is the value of the linear
combination in Eqs. (28), then before the shock the solution is
given by Eqs. (26) and (28). At the shock position the solution
must satisfy the jump relations stated by Eqs. (29). The differ-
ence with the spherical case is that here ur,1 is not zero, but given
by Eqs. (28). This leads to

δUYm
l (t0 − t)−σ = −2

3
δX − U1Xl− 1

shockYm
l (t0 − t)−σ,

δRYm
l (t0 − t)−σ = 2R0

(
δX
3
+ U1Xl− 1

shockYm
l (t0 − t)−σ

)
, (32)

while

δV = V1Xl− 1
shock,

δφ = φ1Xl+1
shockYm

l . (33)

Thus S l is a linear combination of the two above solutions. This
is made clearer by writing

δUYm
l (t0 − t)−σ = −2

3
δX′ + U1Xl−1

shockYm
l (t0 − t)−σ,

δRYm
l (t0 − t)−σ =

2R0

3
δX′, (34)

where δX′ = δX+U1Xl−1
shockYm

l (t0− t)σ. We see that the first terms
of the right-hand side of Eqs. (34) are identical to Eqs. (29),
while the second terms are compatible with Eqs. (28).

It is interesting that, unlike in the spherically symmetric
problem, here the perturbations cannot vanish in the subsonic
region. Since gravity is a non-local force, these perturbations
are induced inside the subsonic region by the non-axisymmetric
density distribution of the supersonic region.

Strictly speaking, since the spherical harmonics Yl
m also

take negative values, there are locations where expressions (29)
and (34) place the shock in the subsonic regions of the core.
In order for the shock to always be outside the critical point
or, in other words, in order for δX to always be positive, these
expressions should contain a spherically symmetric term. This
can be achieved by combining the non-axisymmetric perturba-
tions with the spherically symmetric perturbation described by
Eq. (13) for σ = 1, so essentially adding an extra term, constant
in (θ, φ), in Eqs. (29)–(34) that describe the Rankine-Hugoniot
conditions. We have omitted such a term for the sake of simplic-
ity, but the subsequent analysis would remain identical. Indeed,
we have verified that the solutions depend only weakly on the
inner boundary conditions.

3.4. Results for the non-axisymmetric modes

As in the spherical case, here as well we specify a position for
the shock δX small enough to ensure linearity. We use a step
dX = 10−3 and integrate up to X = 104. At the high X limit
we divide the potential by Xl+ 1, which yields the parameter φ1
(see Eq. (33)). To obtain S l then we subtract the unphysical so-
lution (28) from the result of the numerical integration and re-
cover the expected asymptotic behavior for values of X smaller
than 104. An artifact of this subtraction is that, when X � 104 the
potential goes abruptly to zero. The integration to larger values
of X compared to the spherical problem enables us to discard the
diverging term while maintaining a physical behavior for a large
enough range of X values.

Figures 2–4 show the density R, radial and azimuthal veloc-
ities U and V and the gravitational potential φ for the azimuthal
wave numbers l = 2, 3 and 4 respectively and for a series of
growth rates σ. These profiles show the solutions described by
Eqs. (28) in the inner subsonic regions, then a shock in the neigh-
borhood of the critical point Xc � 3 and finally a behavior at
large X consistent with the asymptotic analysis above and similar
to the spherically symmetric case.

Although not identical, the three modes behave similarly to
the spherically symmetric example. The values of the various
fields tend to be smaller for larger l because the gravitational po-
tential has stiffer spatial variations in the azimuthal directions,
which lowers the resulting force inside the subsonic regions.
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Fig. 2. From top to bottom, density R, radial velocity U, azimuthal ve-
locity V and gravitational potential φ for the l = 2 mode and for a series
of growth rates.

Like in the simple one-dimensional case, here as well higher val-
ues of σ lead to sharply peaked profiles around the shock posi-
tion. This appears to suggest that the physically relevant values
of σ are between 1 and �1.5, but at the same time, there does
not seem to be an obvious way of deciding whether a particu-
lar growth rate is expected or preferred. For this reason and also
for the sake of verifying the reliability of the present approach,
we perform numerical simulations, which are presented in the
following section.

4. Stability of collapsing cores in numerical
simulations

The above analysis is complemented with a series of numerical
experiments, consisting of collapsing cores with different initial
ratios of gravitational to thermal energy (virial parameter α), and
different initial perturbations. These simulations are a very effi-
cient way to witness the behavior of a linearly perturbed core
in the full complexity that three-dimensionality entails, meaning
the inclusion of the azimuthal and vertical velocity components.

Fig. 3. Same as Fig. 2 for the l = 3 mode.

It also allows us to probe the limit for fragmentation as the ther-
mal support of the core increases.

4.1. Code and initial conditions

The simulations are performed with the publicly available
Adaptive Mesh Refinement (AMR) code RAMSES (Teyssier
2002), which solves the equations of hydrodynamics on a
Cartesian grid with a second-order Godunov scheme and comes
with wide range of options for the simulated physical pro-
cesses. In this case we take advantage of its AMR capabili-
ties by requiring that the Jeans length be always resolved with
at least 20 grid cells. An isothermal equation of state is used
throughout.

The initial condition of each simulation is a core of uniform
density ρ0, equal to 4×10−18 g cm−3, and uniform temperature T ,
equal to 10 K. To this profile we add a linear perturbation, given
by

δρ =
[
ε1 cos (kr · 2πr/Lc) · (1 + ε2Ym

l (θ, φ)
]

(35)

where kr = 0.25 is the radial wavenumber of the perturba-
tion, r is the distance from the core center, Lc is the core outer
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Fig. 4. Same as Fig. 2 for the l = 4 mode.

radius and ε1, ε2 the amplitudes of each component of the per-
turbation, which, according to the case, have values from 0.05
to 0.1. The core resides in a uniform medium of pressure and
density 100 times smaller than the core’s interior.

For all these simulations we employ periodic boundary con-
ditions; when self-gravity is involved, such boundaries can po-
tentially affect the evolution of the system, so the core is placed
at the center of the computational volume, at a distance of two
core radii from each box side. This was shown to be enough to
avoid boundary effects by convergence tests we performed for
the largest core.

4.2. Stability as a function of cloud parameters

In this study of the core stability, we vary only two parameters:
the azimuthal wave number l of the spherical harmonics and
the virial parameter of the core, which gives the thermal over
gravitational energy ratio in the core and is defined as

α =
15c2

s

8πGρ0L2
c
, (36)

Fig. 5. Contours of the log nH in units of mH cm−3 along the yz plane.
From top to bottom: l = 0, l = 1, l = 2 and l = 3 modes for virial
parameter α = 0.006. The units along each axis are parsecs and tff stands
for free-fall time.

where cs is the sound speed in the core interior. Here the temper-
ature of the core is held constant and α is varied by changing the
radius R of the core. We have not varied the radial wavenumber
of the perturbation, which means the l = 0 case is a single shell
around the center of the core.

Some examples of the core behavior are shown in Figs. 5
and 6, where we show density contour plots of a cut along the
yz plane in the middle of the simulation box for different times
of each simulation. For low virial parameters (largest cores,
α < 0.15) the density peaks are more and more enhanced with
respect to the background, which, as the collapse continues, can
lead to the formation of as many objects as the peaks of the
initial perturbation. In the intermediate virial parameter regime
(0.15 < α < 0.6), the perturbations are erased by the expanding
rarefaction wave and the core collapses into one single fragment.
In the large virial parameter regime (0.6 < α, smallest cores) the
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Fig. 6. Contours of the log nH in units of mH cm−3 along the yz plane.
From top to bottom: l = 2 mode for virial parameters α = 0.1, α = 0.2
and α = 0.8. Like in Fig. 5, units along each axis are parsecs and tff
stands for free-fall time.

core is no longer held by gravity and re-expands under the influ-
ence of its thermal pressure.

4.3. Growth rates

The growth rate of the initial perturbation is measured as the
rate of change of δρ/ρ0, where δρ = ρmax − ρ0. Here ρmax is
defined as the maximum density in the core and ρ0 as the cen-
tral density of the core at each instant. The time is normalized
as t′ = 1 − t/tff , where t the actual time in the simulation and
tff the initial free-fall time of the core, tff = 3π/32Gρ0, where
ρ0 the initial density of the core. In practice, we plot the loga-
rithm of these quantities and calculate a least-square fit to the
linear regime of the plot. The slope of this fit is the negative of
the growth rate we are after. To make it clearer, if the denote the
growth rate with σ, like in the analytical treatment of the pre-
vious sections, then (δR/R0) = (δR/R0)0 t′σ (see Eq. (4) for the
definition of the quantities, with the exception of t′, which here
denotes the simulation time). By taking the logarithm of this re-
lation one can clearly see that σ becomes the slope of a linear
relation between log (δR/R0) and log (t′). But since in our nota-
tion time is negative, we must also take the negative of the slope
as the growth rate of the instability.

Some growth rates thus calculated are shown plotted in
Figs. 7–9.

Following a simple line of thought, we expect the highest
growth rates to appear for the smallest l, since the azimuthal flow

Fig. 7. Growth rates for α = 0.006 mode for azimuthal wave numbers l.

of material is then focused on a smaller number of fragments,
which can therefore grow faster. At the limit of very high l on the
other hand, one expects to recover σ values similar to the l = 0
case, since a very large number of fragments in the azimuthal
direction is roughly equivalent to a continuous shell structure.

Figure 7 shows the growth rates for the case of the largest
core, with a virial parameter of α = 0.006. For the low-l regime
(approximately 0 < l < 10), the growth rates inferred from the
simulations are above the value of 1, in excellent agreement with
the analytical prediction of the previous sections. Also, the high-
est growth rates are observed for l = 1 and l = 2, in accordance
with the simple prediction just above. But for very high values
of l, instead of tending towards the value of σ for l = 0 the
growth rates in the simulations fall below unity. This disagree-
ment can probably be attributed to a lack of angular resolution.

Figures 8 and 9 show growth rates for the same azimuthal
wavenumber (l = 0 and l = 2, respectively), but for different
virial parameters α. Both figures show a similar pattern: a de-
crease in the growth rate as the virial parameter increases, which
can be understood as an increasing thermal stability of the core.
As thermal pressure becomes important, the rarefaction wave is
increasingly more efficient in weakening the perturbation, to the
point that, for large enough α, it does not grow anymore.

At this point we should mention that it was impossible to
locate the weak shock in the simulations, due to the very limited
resolution in the central parts of the core (the region with X < 3
was only resolved with three to five cells). This makes a direct
comparison of the eigenvectors very challenging. Nonetheless,
the excellent agreement of the growth rates obtained with two
such different methods is very encouraging.

5. Discussion and implications

The most important result of the present work is that a homolo-
gously collapsing cloud is prone to a shell instability due to its
self-gravity, even for non-axisymmetric perturbations with large
azimuthal wave numbers. This instability develops relatively fast
when the cloud has little thermal support, showing growth rates
typically larger than 1 and up to 1.2–1.3 for l = 2. These growth
rates decrease when the thermal support increases and eventually
reach zero, meaning that the cloud is not expected to undergo
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Fig. 8. Growth rates of the l = 0 mode for various virial parameters α.

Fig. 9. Growth rates of the l = 2 mode for various virial parameters α.

fragmentation, at least not through the shell-like mode studied
here.

It is important to contrast this result with the analysis of
HM99 for the LP solution. In their study, only the l = 2 mode is
unstable and it grows like �(t0 − t)−0.354. Since the density ρ is
proportional to (t0− t)−2, this implies that the perturbation grows
like �ρ0.175. Therefore, a perturbation starting with an amplitude
ε � 0.1 should become nonlinear (ε � 1), only when the den-
sity within the cloud has grown by 101/0.175 � 5 × 105. This
is such a significant density increase that this instability may
never happen. Take for example a dense core with a peak density
of 105 cm−3. According to the HM99 growth rate, the density
perturbation should become nonlinear only when the density is
about 5 × 1010 cm−3. At these densities the cloud is not ex-
pected to be isothermal anymore since dust is already opaque
to its radiation.

In contrast, if the core is cold enough, the shell mode may
grow as �(t0 − t)−1 and therefore as �ρ0.5 This would imply that
a 10% amplitude perturbation in a core of mean particle density

of 105 cm−3 becomes nonlinear for a density of about 107 cm−3,
which is entirely reasonable.

Since the LP flow also describes a very fast collapse, the
question arises why do the two types of solutions present such
different fragmentation properties? We believe the answer relies
on the tidal forces, which differ much in the two cases (see also
Jog (2013) for an analysis of the effect of tidal forces on the
Jeans stability criterion).

To illustrate this, let us consider a core whose density profile
is ρ = Ar−p and a perturbation δρ of characteristic size δr. A
fluid particle located at the edge of the perturbation, i.e. at a dis-
tance δr from the perturbation center, is subject to the perturbed
gravitational force,

δFsg � −GδM/δr2, (37)

where δM = 4π/3δr3ρ, as well as to the tidal forces, that is the
gradient of the gravitational force produced by the mean density.
The gravitational acceleration within the core is ag = GM(r)/r2

with M = (4π/3)(A/(3− p))r3−p and

ag = −4π
3

G
A

3 − p
r1−p· (38)

Thus the tidal force is

δFt = δρ(ag(r + δr) − ag(r)) = −4π
3
ρδρG

1 − p
3 − p

δr· (39)

The fluid particle at the edge of the perturbation feels a total
gravitational force equal to

δFtot = δFsg + δFt =
4 − 2p
3 − p

δFsg. (40)

Thus the tidal force modifies the effective gravity of the pertur-
bation. We can identify the following regimes for the values of
the exponent p in the equilibrium profile:

– If p = 0, then δFtot = 4/3dFsg, which means that the tidal
force enhances the gravitational instability because it com-
presses the perturbation.

– If p = 1, then δFtot = dFsg and the tidal force has no effect.
– If p = 1.5, then δFtot = 2/3dFsg, in other words the tidal

force works against total gravity because it tends to shear the
fluid elements apart.

– Finally, if p = 2, then δFtot = 0 and the tidal force cancels
the gravitational force of the perturbation. In this case, only
nonlinear or non-axisymetric perturbations can develop.

This short analysis suggests that the homologously collaps-
ing, uniform density solution is more prone to the gravitational
shell instability that the Larson-Penston solution, which presents
an r−2 density profile at large radii. This result is also in excellent
agreement with both the analytical and the numerical findings
presented in this work.

Our results concerning the role of the equilibrium profile in
the fate of the perturbations are also compatible with the nu-
merical simulations performed by Girichidis et al. (2011). These
authors performed a series of simulations of massive turbulent
cores, in which they vary the initial density profiles of the clouds.
In particular, they found that when the density is initially uni-
form or given by a Bonnor-Ebert density profile, the cloud frag-
ments in many objects. On the contrary, if the density profile
is initially proportional to r−2, only one or very few fragments
form. This is entirely consistent with the above interpretation of
the tidal forces.
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In terms of understanding the origin of stellar multiplicity,
where do the above results leave us? In short, our study comple-
ments a large volume of previous literature on the subject of core
fragmentation, which so far has been mostly dealing with rotat-
ing or turbulent environments. This, of course, is justified by the
very structured kinematics typically observed in pre-stellar cores
(Goodwin et al. 2007, for a partial review), which very often do
show irrefutable rotation signatures (Goodman et al. 1993).

And although there is little doubt that rotation does lead to
fragmentation, here we suggest a “thermal” type of fragmen-
tation that does not require any initial rotation. In a large and
cold enough cloud, if its density profile is flat, perturbations
will grow to become nonlinear, eventually leading to fragmenta-
tion. The fragments, unlike in cases with rotation, which produce
tens to hundreds of AU separations, (Hennebelle et al. 2004;
Commerçon et al. 2008, for example) will be located at dis-
tances of more than 1000 AU during the first core collapse, with
a possibility of migrating inward at later stages and, with the on-
set of rotation, become binaries, like observed, for example in
the simulations of Hennebelle & Teyssier (2008) for magnetized
rotating environments.

Although limited in their application due to the idealized
character of the setup, the results of this study are useful, both for
predicting the behavior of initially flat, quiescent cores at a stage
of their collapse almost inaccessible observationally, but also,
very importantly, fot deciphering the behavior of more complex,
dynamical models.

6. Conclusions
We have calculated the form of linear perturbations for the
self-similar flow that describes the homologous collapse of an
isothermal sphere. The calculation was done by introducing a
weak shock at the sonic point of the flow and integrating the cor-
responding perturbation equations from that location to infinity
with a Runge-Kutta scheme. The problem was treated in one
dimension for the case of a spherical shell and in three dimen-
sions for non-axisymmetric perturbations. Results of this analy-
sis follow.

– Using a shock at the critical point of the self-similar
profile allows the calculation of physically meaningful
perturbations.

– In the spherical case, physically acceptable solutions form a
continuum with growth rates σ > 1.

– The non-spherical modes exhibit growth rates similar to the
shell mode. This implies that it is the shell mode that drives
the instability, with the higher order modes growing on top
of it and providing the multiplicity of the fragments.

In parallel, we performed direct numerical simulations of a col-
lapsing uniform isothermal sphere with a linear perturbation,
varying the degree of thermal support (quantified by the ratio
of thermal to gravitational energy, or virial parameter α) and the
shape of the initial perturbation. For the case of smallest ther-
mal support we tried (α = 0.006), the growth rates estimated
from the simulations are in perfect accordance to the analytical
expectations.

By increasing the degree of thermal support, we find that the
density peaks grow slower and slower with respect to the back-
ground, while for larger values of the virial parameter the density
contrast decreases with time. This suggests that eventually, non-
rotating cores with 0.15 < α < 0.6 would collapse to a single
object, while for larger values of α they would re-expand.

Our results suggest the existence of a “thermal” type of
fragmentation for cold, large clouds that does not require the

presence of initial rotation and that can produce very widely
separated fragments at the early stages of the collapse.
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