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SUMMARY 

 

In this investigation, the flow friction associated with laminar pulsating flows 

through porous media was numerically studied. The problem is of interest for 

understanding the regenerators of Stirling and pulse tube cryocoolers. Two-dimensional 

flow in a system composed of a number of unit cells of generic porous structures was 

simulated using a CFD tool, with sinusoidal variations of flow with time. Detailed 

numerical data representing the oscillating velocity and pressure variations for five 

different generic porous structure geometries in the porosity range of 0.64 to 0.84, with 

flow pulsation frequency of 40 Hz were obtained, and special attention was paid to the 

phase shift characteristics between the velocity and pressure waves. Based on these 

detailed numerical data, the standard unsteady volume-averaged momentum conservation 

equation for porous media was then applied in order to obtain the instantaneous as well as 

cycle-averaged permeability and Forchheimer coefficients. It was found that the 

cycle-averaged permeability coefficients were nearly the same as those for steady flow, but 

the cycle-averaged Forchheimer coefficients were about two times larger than those for 

steady flow. Significant phase lags were observed with respect to the volume-averaged 

velocity and pressure waves. The parametric trends representing the dependence of these 

phase lags on porosity and flow Reynolds number were discussed. The phase difference 

between pressure and velocity waves, which is important for pulse tube cryocooling, 

depended strongly on porosity and flow Reynolds number. 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

 Currently, the regenerative cryocoolers are widely used in a variety of applications, 

which require high performance and reliability. The regenerators that are found in Stirling 

and pulse tube cryocoolers are typically fine porous structures of various designs, which 

are constructed using wire mesh screens, sintered screens, metal foams, etc. Two relatively 

common regenerator filler materials, wire mesh screens and perforated disks, are shown in 

Figure 1. These screens and disks are packed into the regenerator tubes.  

Cryocooler regeneration is a complicated and poorly-understood field. The utmost 

importance of regeneration for these systems is well-recognized, however. For an optimal 

design of a regenerative cryocooler, it is important to understand the complicated working 

mechanism of the cryocooler system at both component and system levels, and to improve 

the regenerator performance. In view of the importance of regeneration for cryocoolers, 

and the difficulty of detailed experimental measurements, this investigation is aimed at a 

theoretical investigation into the fundamental hydrodynamic phenomena associated with 

oscillating flow in porous media. Since porous structures of various configurations are 

used in regenerators, a generic porous structure is considered. Two-dimensional porous 

structure geometries composed of seven consecutive unit cells are simulated, and detailed 

numerical simulation are performed in order to understand the flow characteristics 

associated with pulsating laminar flow through porous media.  
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(a) Wire mesh                                        (b) Perforated disk 

Figure 1: The typical structure of a porous medium in the regenerators 
(200X magnification), adapted from Harvey [1] 

 
 

1.2 Literature 

 The Forchheimer-extended Darcy equation for the incompressible flow through a 

homogeneous and isotropic porous medium has been widely used in experimental and 

numerical studies on convection heat transfer in a fully saturated porous media. For steady 

flow in a homogeneous porous medium, for example, one can write (Vafai and Tien [2], 

and Hsu and Cheng [3]).  

 

f f
fp u B u u

K
μ

ρ−∇ = +                                                                                       (1) 

 

where:  

K  = Permeability coefficient  

B  = Forchheimer coefficient 

fρ  = Fluid density 
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fμ  = Fluid molecular viscosity 

fp  = Intrinsic volume-average fluid static pressure over a fluid volume fV  

u  = Superficial volume-average fluid velocity over an averaging control volume V  

 

where the volume-averaged properties are defined as:  

 

1

fV

dV
V

ξ ξ= ∫                                                                                                                 (1-a) 

 

where ξ  is any fluid property, V  is the volume of a unit cell, and fV  is the volume of fluid 

within the unit cell. 

Equation (1) is known as the Forchheimer-extended Darcy equation. When the 

velocity is sufficiently small, the Forchheimer term f B u uρ  of Equation (1) becomes 

negligibly small compared to the Forchheimer inertia term, and Equation (1) is reduced to 

the Darcy’s law as follows,  

 

f fp u
K
μ

−∇ =                                                                                                               (2) 

 

Thus, for very low Reynolds number flow through porous media, the pressure gradient is 

proportional to the velocity. 
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Figure 2 shows qualitatively the flow regimes in a homogeneous porous medium. It 

can be seen that there are three flow regimes in laminar flow. At extremely low flow rates, 

surface-interactive force dominates. This flow regime is typically of little interest to most 

applications. Without considering the surface-interactive force dominant flow regime 

which is only observed under very weak flows, the spectrum of laminar flow in porous 

media can be divided into Darcy’s flow and Forchheimer flow regions [4]. The critical 

Reynolds number for the transition from Darcy’s (viscous dominant) flow to Forchheimer 

(inertia dominant) flow, Retran , was examined by many researchers, for example, 

Re ≈tran 4 from Liu et al. [4], 1< Retran <13 from Coulaud et al. [5]. In this study, it is seen 

that the smooth transition around Re ≈tran 7 is observed from Figure 9.  

 

 

 

Figure 2: Flow regions in a porous medium in terms of Reynolds number,  
adapted from Liu et al. [4] 
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Equation (1) is phenomenological. The macroscopic governing equation for flow 

through a porous media can be rigorously derived by volume averaging the microscopic 

governing equation (the Navier-Stokes equation) over the representative element volume 

(REV), and the concept of volume-averaging theory (VAT) is widely used to analyze the 

flow in porous media. The theoretical basis for this and some other approaches is presented 

in a number of studies, namely, Vafai and Tien [2], Hsu and Cheng [3], Amiri and Vafai [6], 

Nakayama [7], Ochoa-Tapia and Whitaker [8], Kaviany [9], Nield and Bejan [10], and 

Whitaker [11]. When variation of fluid density and viscosity are considered to be 

negligible, and the porosity is assumed to be a constant, the volume averaged equation can 

be derived as: 

 

⎛ ⎞⎟⎜∂ ⎟⎜ ⎛ ⎞⎟⎜ ⎟⎜ ⎟+ ⋅ ∇ =⎜ ⎟⎟⎜ ⎟⎜⎜ ⎟⎝ ⎠∂⎜ ⎟⎜ ⎟⎜⎝ ⎠

f

f f

f

u
u u

t
ρ  

( )2 1
pw

ff f
ff fA

f

p u n pI u dA uu
V

ρ
μ μ

ε
=−∇ + ∇ + ⋅ − + ∇ − ∇⋅∫                                  (3) 

 

where: 

fρ  = Fluid density 

fμ  = Fluid molecular viscosity 

I  = Unit tensor 

pwA  = Area of pore walls 

p  = Spatial deviation pressure, fp p p= −  

u  = Spatial deviation velocity, fu u u= −   
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This equation is evidently in need of closure relations in order to be solvable. In order to 

close the aforementioned volume-averaged equation, closure relations modeled by Vafai 

and Tien [2] and Whitaker [11] are used in this study, whereby: 

 

( )2 21 f f f
f f

f f fA
f

n I p u dA uu u B u u
V K

ρ εμ
μ ε ρ

ε
⋅ − + ∇ − ∇⋅ =− − ⋅∫                    (4) 

 

By substituting Equation (4) into (3), the widely-used form of the volume-averaged 

momentum equations in terms of intrinsic velocity can be represented as (Hsu and Cheng 

[3], Vafai and Amiri [12], and Nakayama et al. [13]): 

 

⎛ ⎞⎟⎜∂ ⎟⎜ ⎛ ⎞⎟⎜ ⎟⎜ ⎟+ ⋅ ∇ =⎜ ⎟⎟⎜ ⎟⎜⎜ ⎟⎝ ⎠∂⎜ ⎟⎜ ⎟⎜⎝ ⎠

f

f f

f

u
u u

t
ρ  

2 2=−∇ + ∇ − − ⋅
f f f ff f

f fp u u B u u
K

εμ
μ ε ρ                                                            (5) 

 

where:  

K  = Permeability tensor  

B  = Forchheimer tensor 

f
u  = Intrinsic volume-average fluid velocity over a fluid volume fV  

  

Two important points should be made about this equation. First, the equation in principle is 
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applicable only to quasi-steady (slow transient) conditions. Secondly, although the 

representation of the momentum equation in the above volume-averaged form is a major 

simplification, the elements of the permeability and Forchheimer coefficients still need to 

be specified. These can be found experimentally only for relatively simple configurations 

and boundary conditions. When experimental measurements are problematic, direct 

numerical simulation can be used, and this method is further discussed below. 

 In order to determine the macroscopic transport coefficients in porous media, many 

numerical studies have been performed using an infinite array of unit cells by 

implementing periodic boundary condition. The microscopic numerical results solved 

inside a periodic unit cell were used to obtain the macroscopic transport coefficients. 

Nakayama and Kuwahara [14] and Kuwahara et al. [15] modeled a porous medium in 

terms of obstacles arranged in a regular pattern, and obtained the macroscopic transport 

coefficients by solving the set of the microscopic governing equations using a periodic 

array of square rods and then integrating these microscopic results over a unit cell of the 

porous structure. In the study of Pedras and De Lemos [16], a numerical model was 

developed for turbulent flow in a porous medium represented by an infinite array of 

circular rods. The k -ε  turbulence model was applied in this study, including an additional 

source term in the transport equations for k  and ε . In order to investigate the effects of 

anisotropy, Nakayama et al. [17] used a bundle of rectangular cylinders to form an 

anisotropic porous media (see Figure 3), and determined the permeability and Forchheimer 

tensors, as well as the interfacial heat transfer coefficient, as functions of the macroscopic 

velocity vector and structural parameters. 

 As mentioned above, generic two-dimensional porous media are often represented 
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by an infinite array of parallel solid rods, subject to the cross-flow of the working fluid. 

This flow field configuration is evidently similar to flow over a surface equipped with pin 

fins. A large number of steady flow simulations have been performed to investigate the 

influences of pin fin cross-sectional shapes and arrangements on their pressure drop and 

heat transfer characteristics. Sahiti et al. [18] numerically studied the effect of the shape of 

pin cross-section on the pressure drop and heat transfer of six different pin fins. Sara [19] 

investigated the friction and thermal performance associated with flow through a 

rectangular channel with square cross-section pin fins attached over a flat surface. Jang et 

al. [20] studied the fluid flow and heat transfer over four rows of circular finned-tube heat 

exchangers with staggered arrangement.  

 

 

Figure 3: Coordinate system for periodic model of generic porous media,  
adapted from Nakayama et al. [17] 

 

 Some investigations have indeed considered modeling the flow through pin fins as 

flow in porous media. In this respect, steady, unidirectional and uniform flow over pin fins 
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along rectangular channel has been studied for estimating their permeability and 

Forchheimer coefficients. In the investigations of Kim et al. [21] and Jeng and Tzeng [22], 

for example, pin-fin heat sinks are modeled as a porous medium, and the pressure drop of 

pin fin heat sinks is obtained. The volume-averaged momentum equation is applied to the 

pin-fin heat sinks in order to obtain their macroscopic transport coefficients. Bundles of pin 

fins evidently constitute anisotropic porous media. However, for periodically fully 

developed flow, the pressure gradient along the flow direction is constant, and the flow 

pattern remains uniform. Accordingly, it has been argued that the results of steady, fully 

developed unidirectional flow through a uniform cross-section duct could be extended to 

fully developed flow through homogeneous porous media [23]. The above brief review of 

the literature dealing with the direct numerical simulation of flow in generic porous media 

shows that the previous studies have been focused on steady, unidirectional flow. Little 

attention has been paid to oscillating or periodic flow in porous media. 

 

1.3 Objective and Approach 

 The objective of this study is to investigate by CFD simulations the flow friction 

associated with pulsating laminar flows through porous media. The goal is to compare the 

momentum transfer parameters representing steady and pulsating flow conditions, and 

thereby assess the adequacy of using steady-flow parameters in CFD-based simulation of 

pulsating flows in porous media. Five different generic porous structure geometries in the 

porosity range of 0.64 to 0.84 are analytically generated, and detailed numerical data 

representing the steady-flow and oscillating flow velocity and pressure variations along the 

flow direction are obtained by numerically solving the mass continuity and Navier-Stokes 
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equation using the finite-volume method. The oscillating flow simulations are performed 

at 40 Hz, in order to limit the scope of the parametric simulations. These detailed numerical 

simulations also predict a phase difference between the velocity and pressure waves. In 

separate CFD simulations, the instantaneous permeability and Forchheimer coefficients 

are calculated implicitly for the same porous structures using the volume-averaged 

momentum equation for flow in porous media using the finite-difference method. In the 

latter simulations, the cycle-averaged permeability and Forchheimer coefficients are 

iteratively adjusted so that the predictions of the porous-media based simulations match the 

predictions of the detailed, pore-level numerical simulations. This procedure thus leads to 

the calculation of cycle-averaged permeability and Forchheimer coefficients. The 

cycle-averaged permeability and Forchheimer coefficients of the pulsating flow are 

compared with those for steady flow. Special attention is also paid to the phase shift 

between the velocity and pressure waves, and the capability of the CFD-based analysis of 

the porous media flow predicting the phase shift. 
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CHAPTER 2 

NUMERICAL METHOD 

2.1 Computational Geometry 

 In this study, a two-dimensional generic porous structure is simulated, following 

the methodology of Nakayama and Kuwahara [14], Kuwahara et al. [15], and Nakayama et 

al. [17]. These authors were interested in steady and unidirectional flow, and therefore 

considered infinitely large porous media. The interest of this study is in pulsating flow. 

Accordingly, the porous structure is simulated by an array of seven square rods. In the 

aforementioned steady-flow investigations, the authors typically studied the flow details in 

a single unit cell, using periodic boundary conditions. For pulsating flow, however, a single 

unit cell is not sufficient due to the development of phase shift which makes simple 

periodic boundary conditions along the main flow direction irrelevant. It is for this reason 

that a row of six consecutive unit cells are used in this study. Figure 4 represents the 

computational domain, and a left to right main flow, along the x  coordinate, is considered.  

 

 

Figure 4: Computational domain with boundary conditions 
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The goal of this study is to understand the flow phenomena inside a porous 

structure, where the porous medium’s inlet and exit effects are not present. An easy way to 

eliminate the inlet and exit effects is evidently, to simulate a finite number of unit cells, but 

consider in detail the flow phenomena in a unit cell where the inlet and exit effects are not 

present. Fortunately, past studies have shown that the entrance and exit effects only extend 

for a few unit cells in porous media [9]. Consequently, by using six unit cells in series, and 

investigating in detail the flow in the fifth unit cell, it is believed that the end effects are 

effectively eliminated in the simulation. The simulation results in fact support this 

argument, as will be shown later. 

In order to reduce the number of grid points, the symmetry boundary condition is 

used at the top and bottom boundaries of unit cells, since the flow is symmetric around the 

x-axis.  

The five generic porous structure geometries considered for analysis are shown in 

Figure 5. In all the porous structure geometries depicted in Figure 5, L =10 mm is assumed, 

and the ratio of /H L  is fixed to one, therefore the porosity ε  is found from: 

 

2

1 D
L

ε
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠

                                                                                                                      (6) 

 

The porosity of the structure is adjusted by varying D .  

The five generic porous structures shown in Figure 5 have porosities of 0.84, 

0.7975, 0.75, 0.6975 and 0.64. As mentioned earlier, the length of periodic unit cell L  is 

fixed to 10 mm for all five porous structure geometries, and the size of square rod D  is 

varied from 4 mm for ε=0.84, to 6 mm for ε=0.64. The Reynolds number range of 0.1 to 



 13

1000 is used for the simulation of the steady flow, where Reynolds number is defined 

based on a unit cell length L  as: 

 

Re
f

L
f

u Lρ

μ
=                                                                                                                 (7) 

 

where u  is the superficial volume-average fluid velocity.  

 

 

Figure 5: Different porous structure geometries showing a unit cell of  
continuous porous structures 
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 Figure 6 shows a sample grid systems for the porous structure with ε = 0.84. A grid 

system that represents each unit cell with a 20×40 grid structure is used for ε = 0.84, and 

the same number of grids is maintained for all the other porous structures. Since the 

location of the inlet and outlet can affect the convergence as well as the accuracy of the 

simulations, the inlet and outlet are separated from the computational domain. The buffer 

zone length of 2 L  is used at the inlet. In order to eliminate the effect of the outflow 

boundary condition, a longer buffer zone length of 7 L  is used. It must be emphasized that 

the microscopic Navier-Stokes equation are solved for the instantaneous velocities and 

pressures along the flow direction through the six unit cells, namely, the domain between 

points 1 and 6 in Figure 6. Furthermore, the volume-average microscopic velocities and 

pressures representing each unit cell are used to solve the unsteady volume-averaged 

momentum equation, to be described shortly. 

As mentioned before, two separate sets of conservation equations are solved for the 

system shown in Figure 6. The Navier-Stokes equations are solved for detailed pore-level 

simulations. These will be referred to as the microscopic equations. The results obtained 

with the microscopic equations will provide information that can be used for comparison 

with the results obtained from the solution of volume-average porous media-type equations. 

The latter equations will be referred to as the macroscopic equations. 
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Figure 6: Sample grid system for ε = 0.84 
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2.2 Governing Equations for Microscopic Flow 

 It is assumed that the fluid is incompressible and has constant properties. The 

microscopic governing equations for unsteady laminar incompressible flow can be written 

as follows: 

 

Conservation of mass equation: 

 

0u∇⋅ =                                                                                                                             (8) 

 

where u  is velocity in vector form.  

 

Conservation of momentum equation: 

 

( ) 21
f

f

u u u p u
t

ν
ρ

∂ + ⋅ ∇ = − ∇ + ∇
∂

                                                                                  (9) 

 

where t = time, p = static pressure, fρ = density of the fluid, and fν = kinematic viscosity 

of the fluid. 

 

2.3 Unsteady Volume-Averaged Momentum Equation (Macroscopic Flow) 

 The formulation of the macroscopic conservation equations here will be consistent 

with what is commonly used in porous media literatures (Vafai and Tien [2], Hsu and 

Cheng [3], Amiri and Vafai [6], Nakayama [7], Ochoa-Tapia and Whitaker [8], Kaviany 
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[9], Nield and Bejan [10], and Whitaker [11]). The superficial volume-average fluid 

velocity over an averaging control volume V  is defined as: 

 

1

fV

u u dV
V
= ∫                                                                                                                                          (10) 

 

where V  and fV  denote the averaging control volume and the fluid volume contained 

within the averaging control volume, respectively. The intrinsic volume-average fluid 

velocity over the fluid volume fV  is defined as: 

 

 1

f

f

f V

u u dV
V
= ∫                                                                                                                                    (11) 

 

Therefore, the superficial and intrinsic volume averages are related by 

 

f
u uε=                                                                                                                                                 (12) 

 

where fV
V

ε=  is the volume fraction of the fluid-phase, or the porosity. In this study, V  

will represent the total volume of a unit cell, and fV  will refer to the total fluid volume 

contained in a unit cell (see Figure 4). 

 When variations of fluid density and viscosity are considered to be negligible, the 

widely-used form of the volume-averaged momentum equations in terms of intrinsic 
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velocity can be represented as (Hsu and Cheng [3], Vafai and Amiri [12], and Nakayama et 

al. [13]): 

 

⎛ ⎞⎟⎜∂ ⎟⎜ ⎛ ⎞⎟⎜ ⎟⎜ ⎟+ ⋅ ∇ =⎜ ⎟⎟⎜ ⎟⎜⎜ ⎟⎝ ⎠∂⎜ ⎟⎜ ⎟⎜⎝ ⎠

f

f f

f

u
u u

t
ρ  

2 2=−∇ + ∇ − − ⋅
f f f ff f

f fp u u B u u
K

εμ
μ ε ρ                                                            (5) 

 

The term 
f

f u
K

εμ
 will be referred to as the Darcy term, which accounts for the viscous 

effect. This term depends on the geometry of the porous medium, and is the dominant loss 

term when the intrinsic average velocity 
f

u  is small. The term 2
f

f uμ ∇  is the 

Brinkman term. This term also accounts for the viscous effects, but it is important in the 

interface between the porous medium and other solid boundaries, such as a wall or an 

adjacent fluid region. Away from such boundaries, the Brinkman term is usually negligible 

compared to the Darcy and Forchheimer terms. In this study, it was also noticed that the 

Brinkman term was negligibly small compared to the Darcy and Forchheimer terms. 

Finally, the term 2
f f

f B u uε ρ ⋅  is referred to as the Forchheimer term, which accounts 

for the inertial effects, and becomes dominant when the intrinsic average velocity  
f

u  is 

large. Under macroscopically fully developed flow through a porous medium, the Darcy 

and Forchheimer terms depend only on the geometry of the porous medium, and the 

Forchheimer effect can be negligible when the flow rate through the porous medium 
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becomes vanishingly small. 

 The geometry of the porous structures shown in Figure 6 makes it clear that the x 

coordinate is a principle direction. As a result, when a pressure gradient in the x direction is 

imposed, the flow on a macroscopic scale will also be in the x direction only. Furthermore, 

with respect to a coordinate system that coincides with the principle directions, the tensors 

K  and B  are both diagonal. Thus, Equation (5) can be cast for flow in x direction as: 

 

f f
fx x

f x

u u
u

t x
ρ

⎛ ⎞∂ ∂ ⎟⎜ ⎟⎜ + =⎟⎜ ⎟⎜ ∂ ∂ ⎟⎜⎝ ⎠
                      

2
2

2

f f
f f ffx

f x f xx x x
xx

p u
u B u u

x x K
εμ

μ ε ρ
∂ ∂

=− + − − ⋅
∂ ∂

                                                (13) 

 

where xxK  and xxB  are x components of the diagonal tensors K  and B , respectively. 

In case of steady macroscopic flow in x direction, the volume-averaged momentum 

equation can be cast in terms of the superficial (or Darcy) velocity, 

  

,
,

0
f

f
x f xx st x x

xx st

p
u B u u

x K
μ

ρ
⎛ ⎞∂ ⎟⎜ ⎟⎜=− − + ⎟⎜ ⎟⎟⎜∂ ⎝ ⎠

                                                                            (14) 

 

where: 

,xx stK  = Permeability coefficient along x direction for steady flow  

,xx stB  = Forchheimer coefficient along x direction for steady flow 
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xu  = Superficial volume-average fluid velocity in x direction 

 

Equation (14) is known as the Forchheimer-extended Darcy equation. This equation can be 

written in a nondimensional form as: 

 

2

,
, Re xx st

xx st L

L B L
K

ξ = +                                                                                                                            (15) 

 

where the nondimensional pressure gradient ξ  is defined as: 

 

2

f

f x

p L
x u

ξ
ρ

∂
=−

∂
                                                                                                                            (16) 

 

For the case where the fluid velocity is sufficiently small, Equation (14) is reduced to the 

Dracy’s law, displaying a simple linear relation between the flow velocity and pressure 

gradient along the flow direction: 

 

,

f
f

x
xx st

p
u

x K
μ∂

− =
∂

                                                                                                                              (17) 

 

2.4 Numerical Algorithms 

 The algorithms used for the macroscopic-level equations are now discussed. The 

conservation equations for the microscopic flow are solved using the CFD code FLUENT 
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6.3 [24]. The CFD package options used will be discussed in Section 2.6. When the main 

flow direction is along x-axis, the unsteady volume-averaged momentum equation is [see 

Equation (13)]: 

                      

f f
fx x

f x

u u
u

t x
ρ

⎛ ⎞∂ ∂ ⎟⎜ ⎟⎜ + =⎟⎜ ⎟⎜ ∂ ∂ ⎟⎜⎝ ⎠
 

2
2

,2
,

f f
f f ffx

f x f xx inst x x
xx inst

p u
u B u u

x x K
εμ

μ ε ρ
∂ ∂

=− + − − ⋅
∂ ∂

                                      (18) 

 

where: 

,xx instK  = Instantaneous permeability coefficient along x direction for pulsating flow  

,xx instB  = Instantaneous Forchheimer coefficient along x direction for pulsating flow 

In order to obtain the instantaneous permeability and Forchheimer coefficients, the 

above equation is solved numerically using the finite difference method. The Backward in 

Time and Central in Space (BTCS) numerical scheme is selected for the solution of 

Equation (18). By denoting f
xu and fp  as n

iu  and n
ip , respectively, where n  and i  

are time step and grid point indices, respectively, and considering the Taylor series 

expansions, it can be written as: 

 

( )
1f n n

x i iu u u O t
t t

−∂ −= + Δ
∂ Δ

                                       : first-order backward difference       (19) 

( )21 1

2

f n n
i ip p p

O x
x x

+ −∂ −
= + Δ

∂ Δ
                                   : second-order central difference       (20) 
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( )
( )

2
21 1

22

2f n n n
x i i iu u u u

O x
x x

+ −∂ − +
= + Δ

∂ Δ
                     : second-order central difference       (21) 

 

For the convection term, ( )f f
x xu u x∂ ∂ , five different spatial discretization 

schemes were examined: conservative second-order central difference scheme (CCD), 

nonconservative second-order central difference scheme (CD), nonconservative first-order 

upwind difference scheme (UD1), nonconservative second-order upwind difference 

scheme (UD2), and nonconservative third-order upwind difference scheme (UD3). 

 

( ) ( )
( )

2 2

1 1 2

1 1
2 2

2

n nf
i if x

x

u uu
u O x

x x

+ −−∂
= + Δ

∂ Δ
                      

: conservative second-order central difference (CCD)         (22) 

 

( )21 1

2

f n n
f x n i i

x i

u u u
u u O x

x x
+ −∂ −

= + Δ
∂ Δ

  

: nonconservative second-order central difference (CD)      (23) 

 

( )11
f n n

f x n i i
x i

u u uu u O x
x x

−∂ −= + Δ
∂ Δ

    ( )0u>   

: nonconservative first-order upwind difference (UD1)        (24) 

( )21 23 4
2

f n n n
f x n i i i

x i

u u u uu u O x
x x

− −∂ − += + Δ
∂ Δ

   ( )0u>  

 : nonconservative second-order upwind difference (UD2)    (25) 
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( )31 1 22 3 6
6

f n n n n
f x n i i i i

x i

u u u u u
u u O x

x x
+ − −∂ + − +

= + Δ
∂ Δ

   ( )0u>  

: nonconservative third-order upwind difference (UD3)        (26) 

 

The comparison of different spatial discretization schemes for convection term will 

be discussed in Section 3.2. Based on these comparisions, nonconservative central 

difference scheme (CD) for convection term was selected for the solution of Equation (18).  

By substituting Equations (19)-(21) and (23) into (18), the resulting finite 

difference equation will be  

 

1
1 1

2

n nn n
n i ii i

f i
u uu u u

t x
ρ

−
+ −

⎛ ⎞−− ⎟⎜ ⎟+ =⎜ ⎟⎜ ⎟⎜ Δ Δ⎝ ⎠
 

( )
21 1 1 1

,2
,

2
2

n n n n n
f n n ni i i i i

f i f xx inst i i
xx inst

p p u u u
u B u u

x Kx

εμ
μ ε ρ+ − + −− − +

= − + − − ⋅
Δ Δ

            

( ) ( )2,O t x⎡ ⎤+ Δ Δ⎢ ⎥⎣ ⎦                                                                                                                                (27) 

 

The BTCS implicit scheme applied here thus utilizes a first-order backward 

difference approximation for the time derivative and a second-order central difference 

approximation for the spatial derivatives. It is seen that the BTCS implicit scheme has a 

local accuracy of  ( ) ( )2,⎡ ⎤Δ Δ⎢ ⎥⎣ ⎦O t x , and is unconditionally stable. 

 The calculation procedures for extracting the macroscopic flow permeability and 

Forchheimer coefficients from the microscopic-level solution are now discussed. The 

procedure for steady flow is self-evident, and needs no further discussion. For pulsating 
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flow, similar to the case of steady flow, when the mean flow velocity is very small, the 

Forchheimer term of Equation (27) can be neglected, and the permeability coefficient can 

be obtained. When the mean flow velocity is not vanishingly small, then the permeability 

and Forchheimer coefficients need to be considered both. The permeability can be treated 

as known, because it has by now been found from low-flow simulations, the Forchheimer 

coefficient can then be obtained from Equation (27).  

The calculation procedure to obtain instantaneous permeability and Forchheimer 

coefficients is composed of the following five-step algorithm. 

 

Step 1: obtain the intrinsic volume averaged values of n
iu  and n

ip  at i=1 to 6, and during 

n  time snapshots covering two pulsation cycles from the microscopic-level solution 

results   

 

Step 2: solve the following equation for the n  time snapshots covering two pulsation 

cycles for low-flow simulations, and thereby obtain ,xx instK  

 

1
1 1

2

n nn n
n i ii i

f i
u uu u u

t x
ρ

−
+ −

⎛ ⎞−− ⎟⎜ ⎟+ =⎜ ⎟⎜ ⎟⎜ Δ Δ⎝ ⎠
 

( )
1 1 1 1

2
,

2
2

n n n n n
f ni i i i i

f i
xx inst

p p u u u
u

x Kx

εμ
μ+ − + −− − +

= − + −
Δ Δ

                                                                        (28) 

 

Step 3: obtain the cycle-averaged permeability coefficient, ,xx avgK  
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Step 4: solve the following equation for the n  time snapshots covering two pulsation 

cycles for high-flow simulations, and thereby obtain ,xx instB    

 

1
1 1

2

n nn n
n i ii i

f i
u uu u u

t x
ρ

−
+ −

⎛ ⎞−− ⎟⎜ ⎟+ =⎜ ⎟⎜ ⎟⎜ Δ Δ⎝ ⎠
 

( )
21 1 1 1

,2
,

2
2

n n n n n
f n n ni i i i i

f i f xx inst i i
xx avg

p p u u u
u B u u

x Kx

εμ
μ ε ρ+ − + −− − +

= − + − − ⋅
Δ Δ

                                 (29) 

 

Step 5: obtain the cycle-averaged Forchheimer coefficient, ,xx avgB  

 

The nu , 1nu − , and np  are already calculated values from the microscopic-level equations, 

thus the instantaneous permeability coefficient ,xx instK  can be obtained from Step 2. In Step 

3, the cycle-averaged permeability coefficient is defined as: 

 

1

, ,
o

o

t
f

xx avg xx instt
K f K dt

+
= ∫                                                                                                                       (30) 

 

By substituting ,xx avgK  into Equation (29), the instantaneous Forchheimer coefficient 

,xx instB  is numerically calculated from Step 4. Finally, the cycle-averaged Forchheimer 

coefficient can be obtained from: 

 

1

, ,
o

o

t
f

xx avg xx instt
B f B dt

+
= ∫                                                                                                                        (31) 
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2.5 Boundary and Initial Conditions 

 The inlet boundary is located at a distance 2 L  upstream from the first square rod, 

where the velocity has a uniform profile. The no-slip boundary condition is applied on the 

wall. Since the geometric boundaries and physical conditions are symmetric along the 

x-axis, only half of the physical domain that represents the six unit cells is considered for 

the calculations (see Figure 6). That is, at the top and bottom faces of a unit cell, the normal 

gradients of all variables are prescribed as zero (the symmetry boundary condition). The 

outflow boundary is located at a distance 7 L  downstream from the last square rod where a 

zero-gradient is imposed for all dependent variables. 

 The Re L  range of 0.1 to 1000 is used for the simulation of the steady flow. The 

converged steady-state results are used as the initial values for the relevant unsteady 

calculations. For the simulation of oscillating flow with pulsation frequency of 40 Hz, the 

mean Reynolds numbers based on the mean Darcy velocity, ,Rem L =0.11 and 560, are 

selected for the calculation of the instantaneous permeability and Forchheimer coefficients, 

respectively. The sinusoidal velocity profile applied at the inlet of the computational 

domain in pulsating flow simulations is as follows  

 

( )1 sin 2in mU U a f tπ⎡ ⎤= +⎣ ⎦                                                                                               (32) 

 

where the amplitude of pulsating velocity a  is 0.4, f  = 40 Hz, and the mean value of 

pulsating flow velocities mU  of 0.00016 m/s and 0.818 m/s, which corresponds to the 

mean Reynolds numbers ,Rem L =0.11 and 560, are used for the calculation of the 
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instantaneous permeability and Forchheimer coefficients, respectively. The numerical 

simulations are conducted with air as the working fluid, assuming fρ = 1.225 kg/m3 and 

fμ = 1.7894 × 10-5 kg/(m·s). The sinusoidal pulsating area-averaged velocity at inlet 

boundary is implemented by a User Defined Function (UDF) of FLUENT 6.3 [24], and is 

described in Appendix A.  

 

2.6 Solution Procedure for Microscopic-Level Equation 

 In order to obtain the volume-averaged velocities and pressures at each unit cell of 

generic porous structures, a user defined function (UDF) was coded in the C++ 

programming language (see Appendix A). The two-dimensional structured meshes for five 

different porous geometries were created by using the Gambit 2.2 software [25]. 

 The microscopic governing equations along with the boundary and initial 

conditions are solved by using the CFD code FLUENT 6.3, which is based on the 

finite-volume method. The density-based Navier-Stokes coupled solution algorithm of 

FLUENT solves the governing equations of continuity and momentum simultaneously 

[24]. The first-order upwind discretization scheme is used to treat the convection terms. 

For the diffusion terms, the central difference scheme is used. 

 Detailed numerical data representing the oscillating velocity and pressure 

variations with flow pulsation frequency, 40 Hz, are obtained from the calculation of the 

microscopic governing equations. Then the volume-averaged velocities and pressures of 

each unit cell are used to numerically calculate the instantaneous as well as cycle-averaged 

permeability and Forchheimer coefficients from volume-averaged momentum equation, as 

described in Section 2.5. For this purpose, a program was coded in the programming 
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language, C++. This program, which is depicted in Appendix B, solves the unsteady 

volume-averaged momentum equation implicitly by using the finite difference method 

with BTCS implicit scheme which, as described earlier, uses a second-order derivative in 

space and first-order derivative in time. The convergence of unsteady simulations is also 

checked by the aforementioned UDF. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Steady Flow 

 A convergence criterion of 10-6 was applied to the residuals of the continuity and 

momentum equations. Grid independence studies were carried out for the base case of 

ε=0.75 by checking the volume-averaged pressure gradient at ReL =560. Two grid 

systems with 20×40 and 40×80 per unit cell were generated, and showed nearly identical 

velocity and pressure distributions (see Figure 7). The maximum difference of 

volume-averaged pressure gradient between the two grid systems was within 1%. For  

 

 

                                         20 × 40                                                   40 × 80 

       
(a) velocity vectors 

 
 

                         
(b) pressure contours 

 

Figure 7: Grid independence test for the base case of ε=0.75 with two grid systems 
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(a) 

 

(b) 

Figure 8: Steady-state streamline patterns for (a) ReL =0.11, and (b) ReL =560 
in case of ε=0.75 

 

calculation efficiency, a grid system with 20×40 per unit cell was chosen for all the 

subsequent simulations. 

 Figure 8 represents the typical steady-state streamline patterns in case of ε=0.75 

for (a) ReL =0.11 and (b) ReL =560. To ensure hydrodynamically fully developed 

condition in the flow field, as explained before, the computational domain consists of six 

consecutive unit cells, and the inlet and outlet are sufficiently extended from the 

computational domain. It is seen that for the low Reynolds number flow, a small pair of 

vortices appear between the adjacent square rods. Since streamline patterns are nearly 

similar from the 1st to 6th unit cells, the flow is assumed to have attained a fully developed 

state. For the high Reynolds number flow, the position of the vortex center in the cavity is 

shifted slightly downstream. A large rotating vortex, which rotates in the 

counter-clockwise direction, exists in the cavity, and also a large recirculation vortex is 

formed behind the 6th unit cell.  

The pressure drop characteristics along the flow direction are presented in term of 

the nondimensional pressure gradient ξ  in Figure 9. The nondimensional pressure 

gradient undergoes a large change in the entrance region, and reaches an almost constant 
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value along the flow direction. At very low Reynolds numbers ( ReL <1), it is observed that 

the hydrodynamically fully developed regime is reached just after the 2nd unit cell. 

However, in case of high Reynolds numbers, the pressure gradient still varies slightly from 

the 3rd to 4th unit cells, and the change of pressure gradient from on unit cell to the next is 

decreased as the fully developed condition is reached further downstream. Similar trends 

have also been observed experimentally and numerically by many researchers, including 

Coulaud et al. [5], Sahiti et al. [18], Benarji et al. [26] and Raju and Narasimhan [27]. It 

was found that the change of nondimensional pressure gradient between the 4th and 5th unit 

cells is 0.04% and 1.7% for ReL =35 and 980, respectively. Therefore, the flow after the 4th 

unit cell is considered to be fully developed, and the following results and observations are 

based on the 5th unit cell. 

 

Figure 9: Nondimensional pressure gradient along the flow direction  
with Reynolds number for the steady flow 
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Re 0.11=L                                            Re 560=L  

          
(a) 

          
(b) 

        
(c) 

          
 (d) 

         
 (e) 

Figure 10: Detailed steady-state streamline patterns at the 5th unit cell for (a) ε=0.84,  
(b) ε=0.7975, (c) ε=0.75, (d) ε=0.6975, and (e) ε=0.64 
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Figure 10 shows the detailed steady-state streamline patterns at the 5th unit cell for 

all five different geometries. Since the pressure along the x-axis is larger than that at the 

cavity, the streamlines penetrate into the cavity. As the Reynolds number increases, the 

streamlines become parallel to the x-axis due to the increased inertia. For ReL =0.11 and 

ε=0.84, there exists a small pair of vortices in the cavity. The vortices in the cavity are 

merged into a large rotating vortex with decreasing porosity ε . For ReL =560, there is a 

large circulating vortex in the cavity, the position of whose center is moved downstream 

with increasing porosity. Detailed streamline patterns in similar cavities have also studied 

by Panfilov and Fourar [28] and Lucas et al. [29], with results that were generally 

consistent with the above observations. 

In order to account for the viscous and inertia effects in porous region, Equation 

(14), which is a reduced form of the volume-averaged momentum equation for the steady 

flow, and also known as the Forchheimer-extended Darcy equation, is used. Figure 11 

shows the nondimensional pressure gradient 
ReL

ξ  as a function of the Reynolds number. 

As the Reynolds number decreases and becomes vanishingly small, the inertia effect in 

porous region becomes negligible compared to the viscous effect, thus, for each ε , the 

nondimensional pressure gradient 
ReL

ξ  asymptotically reaches a constant value. That is, 

the flow in this region is controlled by Darcy’s law, thus the permeability coefficient along 

x direction can be obtained from 
2

,Re
=

L xx st

L
K

ξ . For the same Reynolds number, the 

nondimensional pressure gradient increases as the porosity is decreased. 
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Figure 11: Nondimensional pressure gradient (permeability coefficient) as a function of  
Reynolds number for the steady flow 

 

 

Figure 12: Nondimensional pressure gradient (Forchheimer coefficient) as a function of  
Reynolds number for the steady flow 
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 At higher flow rates Darcy’s law becomes inapplicable, and the flow is controlled 

by the Forchheimer-extended Darcy equation. As shown in Figure 12, the nondimensional 

pressure gradient ξ  decreases with increasing Reynolds number, and it increases with 

increasing porosity. The x direction Forchheimer coefficient can be obtained from 

nondimensional pressure gradient 
2

,
, Re xx st

xx st L

L B L
K

ξ = + , shown in Figure 12. It is found 

that, as the Reynolds number increases beyond about 200, the Forchheimer term ,xx stB L  of 

Equation (15) becomes almost constant and independent of Reynolds number, as shown in 

Figure 13. The Forchheimer coefficient was determined by the interpolation of numerical 

data.  

 

 

Figure 13: Forchheimer term as a function of Reynolds number for the steady flow 
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The permeability and Forchheimer coefficients for steady flow are shown in Table 

1, and are compared with the results reported by Nakayama et al. [17]. The latter authors 

performed numerical simulations aimed at deriving closure relations for steady flow in 

generic porous media. Their definition of the generic porous media was similar to Figure 

5(c). Calculated magnitude of permeability coefficient, 
2

,xx st

L
K

=75, for ε=0.75, agrees well 

with 
2

,xx st

L
K

=76 reported by Nakayama et al. [17], who also obtained the coefficient by 

numerical simulation. However, the value of Forchheimer coefficient, ,xx stB L =0.2, from 

[17], was four times larger than ,xx stB L =0.049 obtained in this study. 

 

Table 1: Permeability and Forchheimer coefficients for steady flow 

ε  
2

,xx st

L
K

 ,xx stB L  

0.64 153 0.071 

0.6975 105 0.058 

0.75 75 0.049 

0.7975 55 0.041 

0.84 41 0.036 
 

 

3.2 Pulsating Flow 

For the calculation of unsteady pulsating flow parameters, the time derivatives are 

approximated by the second-order accurate implicit formulation. Pulsating flow 
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Figure 14: Time independence test for the base case of ε=0.75 with the grid size of  
20 × 40 per unit cell 

 

simulations are initiated from an assumed initial condition, and are continued until 

steady-pulsating conditions are achieved. The solutions of the steady flow served as the 

aforementioned initial conditions for the pulsating flow simulations. Similarly to the 

steady flow simulations, two grid systems with 20×40 and 40×80 nodes per unit cell were 

generated, and grid independence was investigated by checking the volume-averaged 

pressure gradients obtained with the two grid systems. It was observed that the maximum 

difference in volume-averaged pressure gradient between the two grid systems was 2.8% at 

the first unit cell. Additionally, the effect of the time step size was studied by using three 

time step sizes tΔ =2.5×10-4 s (T /100), 1.25×10-4 s (T /200) and 6.25×10-4 s (T /400), in 

simulations where the period of oscillation T  was 0.025 s. Figure 14 compares the 

instantaneous area-averaged velocities at inlet and outlet for the base case of ε=0.75 with a 
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grid size of 20×40 per unit cell, for the aforementioned three time step sizes. The results 

show that there is no significant difference among the model predictions for three time 

steps. The errors in mass conservation, which were defined as the percent difference of 

cycle-averaged velocities between inlet and outlet, were 1.01, 0.95, and 0.93% for 

tΔ =2.5×10-4 s, 1.25×10-4 s, and 6.25×10-5 s, respectively.  

The time step size of 1.25×10-4 s (T /200) and a grid size of 20×40 per unit cell are 

used in the forthcoming calculations of unsteady pulsating flow. As mentioned earlier, 

pulsating flow simulations are started from an assumed initial condition, and are continued 

until the values of instantaneous velocities and pressures at Points 1 to 6 reach the cyclic 

steady state condition. In other words, all calculated quantities at t  and t T+  at these two 

points must be exactly the same when cyclic steady state conditions are achieved. The 

instantaneous and volume-averaged velocities and pressures are monitored at points 1 to 6, 

namely the inlet and outlet, and continuously recorded for later calculation. Figure 15 

represents the instantaneous velocities and pressures along the flow direction. These 

calculations have been carried out for each case with a time step size of 1.25×10-4 s 

(T /200), where the period of oscillation T  is 0.025 s, up to 0.375 s of total simulation time. 

Although the calculations are continued during the total time of 0.375 s, the cyclic steady 

state solutions are obtained after 7 cycles of pulsation periods or 0.175 s. The convergence 

criterion was based on the relative error in the oscillating velocity component, which was 

required to be smaller than 10-3. The relative errors of oscillating velocities were 7.1×10-5 

and 1.8×10-4 at points 1 and 2, respectively. The relative errors of the oscillating pressures 

were 6.8 × 10-3 and 9.5 × 10-3 at points 1 and 2, respectively. Furthermore, the mass 

conservation for the computational domain was examined by calculating the percent 
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difference of cycle-averaged velocities between inlet and outlet. As shown in Table 2, for 

the case of ,Rem L =0.11, the errors in mass conservation were less than 0.2%. However, for 

the high Reynolds number case, the errors in mass conservation increased with decreasing 

the porosity, and reached the maximum value of 1.7% for the case of ε=0.64. 

 

 
(a) 

 
(b) 

 
Figure 15: Convergence check for the base case of ε=0.75 with the grid size of  

20 × 40 per unit cell for (a) velocity and (b) pressure 
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Table 2: Mass conservation check: percent differences of cycle-averaged velocities 
between inlet and outlet 

ε  
% difference at 

,Rem L =0.11 
% difference at 

,Rem L =560 

0.64 0.16 1.70 

0.6975 0.10 1.25 

0.75 0.15 0.95 

0.7975 0.20 0.83 

0.84 0.16 0.50 
 
 

 

Figure 16: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating low Reynolds number flow andε =0.84 
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Figure 17: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating low Reynolds number flow and ε =0.7975 
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Figure 18: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating low Reynolds number flow and ε =0.75 
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Figure 19: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating low Reynolds number flow and ε =0.6975 
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Figure 20: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating low Reynolds number flow and ε =0.64 
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Figure 21: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating high Reynolds number flow and ε =0.84 
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Figure 22: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating high Reynolds number flow and ε =0.7975 
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Figure 23: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating high Reynolds number flow and ε =0.75 
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Figure 24: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for the pulsating high Reynolds number flow and ε =0.6975 
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Figure 25: Variation of the instantaneous (a) velocity, and (b) pressure waves along the 
flow direction for pulsating high Reynolds number flow and ε =0.64 
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 As mentioned before, with the selected grid size of 20×40 per unit cell and a time 

step size of 1.25×10-4 s (T /200), where the period of oscillation T  is 0.025 s, the pulsating 

flow calculation up to 0.375 s of total time are continued until the values of instantaneous 

velocities and pressures at Points 1 to 6 reach the cyclic steady state condition. Figures 

16-20 represent the instantaneous velocities and pressures along the flow direction during 

the last two cycles of pulsation (0.005 s) based on the mean Reynolds number ,Rem L =0.11. 

Figures 21-25 show similar results for ,Rem L =560. Although the pulsating inlet velocity is 

sinusoidal, the calculated velocity and pressure waves are not exactly sinusoidal, as shown 

in Figures 16-25. It should be noted that the amplitudes of instantaneous velocity and 

pressure waves are attenuated along the flow direction, and that there exists a considerable 

phase shift between instantaneous velocity and pressure waves. The cycle-averaged 

instantaneous velocities at measured points increase as the porosity decreases, since the 

free flow cross-sectional area of a unit cell ( ) 2−H D  is reduced with decreasing porosity. 

When the porosity decreases, the differences of cycle-averaged instantaneous pressures 

between adjacent two unit cells along the flow direction are increased due to the rising flow 

friction. For the pulsating low Reynolds number flow, there are no significant differences 

among the amplitudes of instantaneous pressure waves at the unit cell center points, 

whereas for high Re, the instantaneous pressure waves are flattened with decreasing 

porosity. 

 Figures 26 and 27 represent the phase shifts VθΔ , PθΔ  and VPθΔ  as functions of 

porosity for pulsating flows. The phase shift of instantaneous velocity (pressure) for a unit 

cell, VθΔ  ( PθΔ ), is determined by averaging the phase differences between Point 1 and 

Point 6 representing the maximum values of the instantaneous velocity (pressure), namely 
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, 6 , 1( ) / 5V V pt V ptθ θ θΔ = −  and , 6 , 1( ) / 5P P pt P ptθ θ θΔ = − . Since the values of the phase shift 

between instantaneous velocity and pressure at Point 1 and Point 6 are different, the phase 

shift VPθΔ  is defined according to: , 1 , 6( ) / 2VP VP pt VP ptθ θ θΔ = Δ + Δ . For pulsating low 

Reynolds number flow, the values of the phase shifts VθΔ  and PθΔ  are about the same 

and decrease gradually with increasing porosity. However, for pulsating high Reynolds 

number flow, PθΔ  increases with increasing porosity, and the phase shifts VθΔ  and VPθΔ  

have their maximum values at ε=0.75 and ε=0.6975, respectively. The phase shifts VθΔ  

and PθΔ  for low Re are about two times larger than those for high Re, whereas the phase 

shifts VPθΔ  for high Re are about six times larger than those for low Re.  

 

 

Figure 26: Phase shifts VθΔ , PθΔ  and VPθΔ  in terms of porosities for pulsating low 
Reynolds number flow 
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Figure 27: Phase shifts VθΔ , PθΔ  and VPθΔ  in terms of porosities for pulsating high 
Reynolds number flow 
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Figure 28: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating low Reynolds number flow 

and ε =0.84 
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Figure 29: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating low Reynolds number flow 

and ε =0.7975 
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Figure 30: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating low Reynolds number flow 

and ε =0.75 
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Figure 31: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating low Reynolds number flow 

and ε =0.6975 
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Figure 32: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating low Reynolds number flow 

and ε =0.64 
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Figure 33: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating high Reynolds number flow 

and ε =0.84 
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Figure 34: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating high Reynolds number flow 

and ε =0.7975 
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Figure 35: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating high Reynolds number flow 

and ε =0.75 
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Figure 36: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating high Reynolds number flow 

and ε =0.6975 
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Figure 37: Variation of the volume-averaged (a) intrinsic velocity, (b) Darcy velocity, and 
(c) intrinsic pressure along the flow direction for the pulsating high Reynolds number flow 

and ε =0.64 
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Figures 28-32 represent the instantaneous volume-averaged velocities and 

pressures at the unit cell centers during the last two cycles of pulsation (0.005 s) based on 

the mean Reynolds number ,Rem L =0.11. Figures 33-37 display similar results for 

,Rem L =560. As mentioned before, the instantaneous volume-averaged velocities and 

pressures at each unit cell center of the generic porous structures are obtained by a user 

defined function (UDF) coded in the C++ programming language. Similar to the 

instantaneous velocity and pressure waves displayed earlier in Figures 16-25, distinct 

phase differences between instantaneous volume-averaged velocities and pressures can be 

seen in Figures 28-37. The instantaneous volume-averaged velocities and pressures are 

also flattened with decreasing porosity. 

 

 

Figure 38: Variation of the instantaneous permeability coefficients due to different spatial 
discretization schemes for convection term 
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Figure 39: Variation of the instantaneous Forchheimer coefficients due to different spatial 
discretization schemes for convection term 

  

 

In order to obtain the instantaneous permeability and Forchheimer coefficients, the 

unsteady volume-averaged momentum equations are solved numerically using the finite 

difference method, as discussed earlier in Section 2.4. For the discretization of convection 

term of Equation (18), the effect of various numerical schemes is examined. In case of 

low-flow simulations, second-order conservative (CCD) and nonconservative (CD) central 

difference schemes are employed to the convection term of Equation (18), and the 

instantaneous permeability of CCD scheme is the same as that for CD scheme (see Figure 

38). For high-flow simulation, upwind discretization schemes (UD1, UD2 and UD3) for 

convection term are examined in addition to central difference schemes (CCD and CD). As 

shown in Figure 39, first-order upwind scheme (UD1) is more diffusive and less accurate 

than UD2 and UD3 schemes, and the instantaneous Forchheimer coefficient of third-order 
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upwind scheme (UD3) shows nearly similar distribution to that of CCD and CD schemes. 

That is, a second-order nonconservative scheme (CD) for convection term has been found 

to be suitable and used for the following high- as well as low-flow simulations.  

The Backward in Time and Central in Space (BTCS) numerical scheme is used for 

the solution of Equation (18). A program was coded by using the C++ programming 

language, and the instantaneous permeability and Forchheimer coefficients during the last 

two cycles of pulsation (0.005 s) were calculated based on the aforementioned microscopic 

flow results (See Figures 40 and 41). For instantaneous permeability coefficients, the 

amplitude as well as cycle-averaged value of permeability coefficient increase with 

decreasing porosity.   

An interesting observation is that in the transient analyses dealing with pulsating 

flow, starting from about 10 to 20 ms, the values of instantaneous Forchheimer coefficient 

were negative, since the left hand side of the unsteady volume-averaged momentum 

equation, Equation (18), which presents the local and convective acceleration terms, is less 

than the pressure drop term in the same equation. When the porosity increases, the portion 

of the cycle, in which the value of instantaneous Forchheimer coefficient is negative, is 

extended. The reason is that the pressure drop term in the volume-averaged momentum 

equation decreased with increasing porosity, whereas the value of left hand side of 

Equation (18) only slightly varies as a result of a change of porosity, in comparison with 

the variation of pressure term of right hand side. The negative values for the Forchheimer 

coefficient is of course a result of the phase shift between the pressure and velocity waves, 

and will appear to be counter-intuitive without proper attention to the phase shift. It should 

also be emphasized that the form of the volume-averaged porous-media momentum 
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equation is theoretically plausible only for quasi-steady (i.e., relatively slow transient) 

processes [9]. For fast transients, theory would indicate that additional, higher-order terms 

may be needed in the equation. Inclusion of such additional higher-order terms is not 

feasible at this time, however, since such terms would require additional, unknown closure 

relations and parameters. The standard Darcy-Forchheimer volume-averaged equations are 

therefore generally used in the analysis of transient processes. The counter-intuitive nature 

of the instantaneous Forchheimer coefficients may also be considered as a reminder that 

instantaneous permeability and Forchheimer coefficients are of little practical value, and 

that attention should instead be focused on cycle-averaged coefficients. 

 The cycle-averaged permeability and Forchheimer coefficients calculated by using 

Equations (30) and (31) are shown in Figures 42 and 43. The cycle-averaged permeability 

coefficients were slightly larger than those for steady flow. However, the cycle-averaged 

Forchheimer coefficients decrease with increasing porosity, and were about two times 

larger than those for steady flow at the same porosity, as shown in Figure 44 and Table 3. 

  

3.2.1 Effect of Geometric Size 

The scope of this study did not include a comprehensive examination of the effect 

of the size scale of the simulated porous structure on the hydrodynamic and phase shift 

phenomena. The importance of this issue is evident, however, and this issue should be 

investigated in the future. A limited study was conducted, however, to examine the effect 

of the size scale on the phase shift phenomena, and is discussed below. The porous 

structure, and the simulated system, were similar to Figure 4. The physical dimensions 

were L=5 mm and D=2.5 mm. Two simulations were performed, one representing a 
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low-flow condition, the other representing a high-flow condition. In order to provide for 

meaningful comparison, the boundary conditions were set such that ,Rem L =0.11 

(equivalent to ,Rem P =0.013) for the low-flow simulation, and ,Rem L =560 (equivalent to 

,Rem P =64.7) for the high-flow simulation. 

Figures 45 and 46 display the velocity and pressure distributions, and 

pressure-velocity phase differences, respectively for the low-flow test. Figure 45 should be 

compared with Figure 18. Comparison among these figures shown that, as a result of 

physical size reduction, the pressure phase difference PθΔ  as well as pressure-velocity 

phase difference VPθΔ  have slightly increased. The velocity phase difference VθΔ  has 

increased only 14%.  

Figures 47 and 48 depict the phase differences for the high-flow case. These should 

be compared with Figure 23. For this case it can be observed that, as a result of physical 

size reduction, the phase differences VθΔ , PθΔ  and VPθΔ  have decreased by 14, 36 and 29 

percent, respectively. 

The above results, although limited in scope, underscore the importance of, and 

need for future investigations addressing the effect of physical scale on the hydrodynamic 

phenomena in a comprehensive manner. 
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Figure 40: Variation of the instantaneous permeability coefficients for different porosities 

 

 

Figure 41: Variation of the instantaneous Forchheimer coefficients for different porosities 
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Figure 42: Comparison of the permeability coefficients between the steady and  
pulsating flow for different porosities 

 
 

 

Figure 43: Comparison of the Forchheimer coefficients between the steady and 
 pulsating flow for different porosities 
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Figure 44: The Forchheimer coefficient ratio of the steady to pulsating flow for  
different porosities 

 

 

 
Table 3: Comparison of permeability and Forchheimer coefficients for  

the steady and pulsating flows 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

ε  
2

,xx st

L
K

 
2

,xx avg

L
K

 ,xx stB L  ,xx avgB L  

0.64 153 159 0.071 0.121 

0.6975 105 113 0.058 0.108 

0.75 75 79 0.049 0.096 

0.7975 55 59 0.041 0.085 

0.84 41 47 0.036 0.077 
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Figure 45: Variation of the instantaneous (a) velocity, and (b) pressure waves for  

low-flow case with ε =0.75, L=5 mm, and D=2.5 mm 
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Figure 46: Comparison of phase shifts for low-flow case  
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Figure 47: Variation of the instantaneous (a) velocity, and (b) pressure waves for  

high-flow case with ε =0.75, L=5 mm, and D=2.5 mm 
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Figure 48: Comparison of phase shifts for high-flow case  
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

4.1 Concluding Remarks 

 The objective of this study was to investigate, by numerical simulation, the 

momentum transfer parameters associated with pulsating laminar flow through porous 

media with a flow pulsation frequency 40 Hz. Five different generic porous structure 

geometries in the porosity range of 0.64 to 0.84 were generated in numerical simulations, 

and detailed numerical data representing the oscillating velocity and pressure variations 

along the flow direction were obtained by solving the microscopic governing equations. 

Consistent with the common practice in the literature, the generic porous structures were 

two-dimensional, and were formed by an array of solid rectangular-cross section rods, 

patterned on a rectangular pitch. The computational domain is comprised of six unit cells in 

series, with the first four unit cells included in order to eliminate the entrance effects. The 

microscopic governing equations were solved by using the CFD code FLUENT 6.3. These 

solutions provided the local and instantaneous velocities and pressures throughout the 

computational domain under steady-pulsating flow conditions. These numerical data were 

then utilized for the calculation of various volume-averaged properties, including the 

average phase shift between the adjacent unit cells with respect to velocity, pressure, and 

the average phase lag between velocity and pressure.  

 The volume-averaged velocities and pressures of each unit cell were used to 

numerically calculate the instantaneous as well as cycle-averaged permeability and 

Forchheimer coefficients for use in the volume-averaged momentum equation. For this 

purpose, a program was coded by using a programming language, C++. This program 
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solves the unsteady volume-averaged momentum equation implicitly by using the finite 

difference method with BTCS implicit scheme which is based on a second derivative in 

space and first derivative in time.  

 The instantaneous permeability and Forchheimer coefficients were then calculated 

implicitly from the volume-averaged momentum equation by using the finite difference 

method. The results confirmed that pulsating flow through porous media leads to phase 

shifts in velocity and pressure. The magnitudes of the phase shifts depended on the 

Reynolds number. The velocity phase shifts VθΔ  and pressure phase shifts PθΔ  for low 

Re were about two times larger than those for high Re, whereas the phase shifts between 

velocity and pressure VPθΔ  for high Re were about six times larger than those for low Re. 

The cycle-averaged permeability coefficients were slightly larger than those for steady 

flow. However, the cycle-averaged Forchheimer coefficients decrease with increasing 

porosity, and were about two times larger than those for steady flow at the same porosity.  

 

4.2 Recommendations for Future Work   

1.  Numerical simulations dealing with smaller pore sizes, representing finer porous 

microstructures that are used in miniature cryocoolers is recommended. In this 

study, the size of a square rod, D, that is used to construct the generalized porous 

medium was varied from 4 mm for ε =0.84, to 6 mm for ε =0.64. These sizes clearly 

do not represent the microporous structures used in modern and future miniature 

cryocoolers.  More realistic simulations with the unit cell sizes corresponding to 

about D=20 µm to 60 µm are recommended for the future work. 

2. Unfortunately, relevant experimental or numerical data which would verify the 
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accuracy of the current simulation results for pulsating flow could not be found in 

the literature. Such data are badly needed. 

3. The potential thermal non-equilibrium between the porous structure and pulsating 

flow in the regenerators of cryocoolers can affect these cryocoolers’ performance.  

Little is known about the extent of such thermal non-equilibria  Therefore, in order 

to understand the solid-fluid heat transfer characteristics, a detailed pulsating flow 

simulation for a generic porous structure geometry has to be performed. Detailed 

numerical data representing the temperature variations for some generic porous 

structure geometries could be obtained from the microscopic energy conservation 

equation. The standard unsteady volume-averaged energy conservation equations 

for porous media can then applied in order to achieve solid surface-fluid heat 

transfer coefficients, the thermal dispersion, etc. 

4. Finally, experimental verification is needed for the accuracy of the permeability, 

Forchheimer and solid surface-fluid heat transfer coefficients for pulsating flow 

that are obtained from pure simulation. 
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APPENDIX A 

FLUENT USER DEFINED FUNCTION 

  

#include "udf.h" 

 

int iter; 

int iter_x; 

int iter_y; 

int iter_time=0; 

 

real u_right[1000]; 

real v_right[1000]; 

real u_top[1000]; 

real v_top[1000]; 

real u_avg_right, v_avg_right; 

real u_avg_top, v_avg_top; 

real p_avg_right, p_avg_left, p_avg_top, p_avg_bottom; 

real ux[10][500000]; // volume-averaged x-velocity 

real uy[10][500000]; // volume-averaged y-velocity 

real uu[10][500000]; // volume-averaged velocity 

real p[10][500000]; // volume averaged pressure 

real u_center[10][500000]; // pulsating velocity at the center of unit cell 

real p_center[10][500000]; // pulsating pressure at the center of unit cell 

 

real converg_u[500000]; // check convergence of velocity 

real converg_p[500000]; // check convergence of pressure 
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real bef_u_center=100000; // dummy value 

real bef_p_center=100000; // dummy value 

 

real y; 

 

int right_buffer; // grid size of right buffer 

int left_buffer; // grid size of left buffer 

int num_unitcell; // grid size of a unit cell 

 

//////////////////////// 

int num_period; // period 

int num_cell;  

int num_center;            

int num_cell_tot; // number of cells in domain 

int num_block; // number of iterative unit cell 

int calc_block; // unit cell number to calculate  

int num_start; // first grid number 

int num_end; // final grid number 

real p_avg_block; // volume-averaged pressure 

 

real pi = 3.141592; 

real uf; // intrinsic average velocity 

real uf_x, uf_y; 

real u;  // darcy velocity 

real phi; // porosity 

real rho=1.225; 

real vis=0.000017894; 
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real ReL; // ReL=(rho*u*L)/vis 

 

FILE *fin; 

FILE *fout1, *fout2; 

 

// Pulsating velocity profile at inlet boundary 

DEFINE_PROFILE(velocity_right, thread, position)  

{ 

  face_t f1; 

  real t = CURRENT_TIME; 

 

  real U = 0.818; 

  real a = 0.4; 

  real w = 2. * 3.141592 * 40.; 

 

  begin_f_loop(f1, thread) 

    {    

      F_PROFILE(f1, thread, position) = U * ( 1. + a * sin(w*t) ); 

 } 

  end_f_loop(f1, thread) 

} 

 

// get flow properties and check convergence 

DEFINE_EXECUTE_AT_END(data_at_current_timestep) 

{ 

 cell_t c, c0, c1; 

 face_t f1, f2; 
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 Thread *c_thread, *t0, *t1, *t2, *t3; 

 Domain *domain = Get_Domain(1); 

 iter_time = iter_time+1; 

 

 num_cell = 1; 

 thread_loop_c(c_thread, domain) 

 { 

  begin_c_loop(c, c_thread)  

  { 

   num_cell = num_cell + 1; 

  } 

  end_c_loop(c, c_thread) 

 } 

 num_cell_tot = num_cell - 1; 

 

 for (calc_block=1; calc_block<=6; calc_block++){ 

  num_start = (right_buffer+left_buffer) + num_unitcell  

   * (calc_block-1) + 1.; 

  num_end = (right_buffer+left_buffer) + num_unitcell  

   * calc_block;  

 

  num_cell = 1; 

  uf_x = 0; 

  uf_y = 0; 

  p_avg_block = 0; 

  thread_loop_c(c_thread, domain) 

  { 
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  begin_c_loop(c, c_thread)  

  { 

  // get volume-averaged velocity and pressure 

  if (num_cell >= num_start && num_cell <= num_end){ 

   uf_x = uf_x + C_U(c,c_thread); 

   uf_y = uf_y + C_V(c,c_thread); 

   p_avg_block = p_avg_block + C_P(c,c_thread); 

    

   // get pulsating velocity and pressure at the center of unit cell 

   if (num_cell == num_start+num_center){ 

    u_center[7-calc_block][iter_time] = C_U(c,c_thread); 

    p_center[7-calc_block][iter_time] = C_P(c,c_thread); 

    

   // check convergence 

    if (iter_time % num_period == 0){ 

     converg_u[iter_time] =  

      (u_center[7-calc_block][iter_time] 

      -bef_u_center)/bef_u_center; 

     converg_p[iter_time] =  

      (p_center[7-calc_block][iter_time] 

      -bef_p_center)/bef_p_center; 

 

     bef_u_center = u_center[7-calc_block][iter_time]; 

     bef_p_center = p_center[7-calc_block][iter_time]; 

    } 

   } 

   num_cell = num_cell + 1; 
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  } 

  else{ 

   num_cell = num_cell + 1; 

  } 

  } 

  end_c_loop(c, c_thread) 

  } 

  uf_x = uf_x / num_unitcell; 

  uf_y = uf_y / num_unitcell; 

  uf = sqrt (uf_x*uf_x + uf_y*uf_y); 

  p_avg_block = p_avg_block / num_unitcell; 

  

  ux[7-calc_block][iter_time] = uf_x; 

  uy[7-calc_block][iter_time] = uf_y; 

  uu[7-calc_block][iter_time] = uf; 

  p[7-calc_block][iter_time] = p_avg_block; 

 } 

 

 // write data file 

 fout1 = fopen("11111_Results.txt", "a"); 

 fprintf(fout1, "iter_time  ux[][]  uy[][]  uu[][]  p[][]   

  u_center[][]  p_center[][]  converg_u[iter_time]  converg_p[iter_time]"); 

 fprintf(fout1, " %d ", iter_time); 

  

 for (iter=1; iter<=6; iter++){ 

  fprintf(fout1, "%g ", ux[iter][iter_time]); 

 } 
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 for (iter=1; iter<=6; iter++){ 

  fprintf(fout1, "%g ", uy[iter][iter_time]); 

 } 

 for (iter=1; iter<=6; iter++){ 

  fprintf(fout1, "%g ", uu[iter][iter_time]); 

 } 

 for (iter=1; iter<=6; iter++){ 

  fprintf(fout1, "%g ", p[iter][iter_time]); 

 } 

 for (iter=1; iter<=6; iter++){ 

  fprintf(fout1, "%g ", u_center[iter][iter_time]); 

 } 

 for (iter=1; iter<=6; iter++){ 

  fprintf(fout1, "%g ", p_center[iter][iter_time]); 

 } 

 fprintf(fout1, "%g %g ", converg_u[iter_time], converg_p[iter_time]); 

  

 fprintf(fout1, "\n"); 

 fclose(fout1); 

} 
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APPENDIX B 

C++ SOURCE CODE FOR NUMERICAL SIMULATION 

 

#include <stdio.h> 

#include <iostream.h> 

#include <fstream.h> 

#include <math.h> 

#include <conio.h> 

#include <iomanip.h> 

#include <process.h> 

#include <stdlib.h> 

#include <io.h> 

#include <time.h> 

#include <string.h> 

 

double vel_inlet[100000]; // flow properties for low-flow simulation 

double Re[100000]; 

double p_1[100000]; 

double p_2[100000]; 

double p_3[100000]; 

double p_4[100000];  

double p_5[100000];  

double p_6[100000]; 

double u_1[100000]; 

double u_2[100000]; 

double u_3[100000]; 
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double u_4[100000]; 

double u_5[100000];  

double u_6[100000];  

 

double vel_inlet_hi[100000]; // flow properties for high-flow simulation 

double Re_hi[100000]; 

double p_1_hi[100000]; 

double p_2_hi[100000]; 

double p_3_hi[100000]; 

double p_4_hi[100000];  

double p_5_hi[100000];  

double p_6_hi[100000]; 

double u_1_hi[100000]; 

double u_2_hi[100000]; 

double u_3_hi[100000]; 

double u_4_hi[100000]; 

double u_5_hi[100000];  

double u_6_hi[100000];  

 

double left_term[100000]; // local + convection terms for low-flow simulation 

double press_term[100000]; // pressure term for low-flow simulation 

double vis_term[100000]; // viscous term for low-flow simulation 

double left_term_hi[100000]; // local + convection terms for high-flow simulation 

double press_term_hi[100000]; // pressure term for high-flow simulation 

double vis_term_hi[100000]; // viscous term for high-flow simulation 

 

double Kf1[100000]; // instantaneous permeability coefficients 
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double bf1[100000]; // instantaneous Forchheimer coefficients 

 

main() 

{ 

 double porosity; 

 

 double pi = 3.141592; 

 double rho, vis; // density and viscosity 

 double L, H, D; // geometry 

  

 int N; 

 int dummy1; 

 double dummy2; 

 int iter; 

 

 double Kf1_avg, bf1_avg; // cycle-averaged permeability  

                          // and Forchheimer coefficients 

  

 rho = 1.225; 

 vis = 1.7894 * pow(10,-5); 

 L = 0.01;  

 H = 0.01; 

 D = 0.005; 

 double time_step = 0.000125; // time-step size 

 

 porosity = (L*H - D*D) / (L*H); 

 cout << "porosity: " << porosity << endl; 
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 char buff[1024]; 

 char next[100]; 

 int numrow; 

  

 FILE *fin, *fout; 

   

 char string_change[1000]; 

 

 int file_num=0;  

 int * time = new int [20000]; 

 

 int IX; 

 

 struct _finddata_t c_file; 

 long hFile; 

  

 ////////////////////////////// 

 ///////////// Gathering data for calculation... 

 ////////////////////////////// 

 // Pressure data for high-flow simulation 

 file_num=0; 

 if( (hFile = _findfirst( "hi__gathered_cycle_pressure_vol_avg.txt",  

  &c_file )) == -1L ){ 

  printf( "No files in current directory!\n" ); 

 } 

 else{ 

  printf( "Listing of files\n" ); 
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  do{ 

   numrow=0; 

   printf( " %-12s\n",c_file.name); 

   fin = fopen(c_file.name,"r"); 

   

   ifstream inpfile(c_file.name); 

       char next[80]; 

     while (inpfile) 

     { 

     if (numrow % 2 == 0){ 

     inpfile.getline(next, 80); 

     fscanf(fin, "%d %lf %lf %lf %lf %lf %lf",  

     &dummy1,&p_1_hi[numrow/2],    

     &p_2_hi[numrow/2],&p_3_hi[numrow/2], 

     &p_4_hi[numrow/2],  &p_5_hi[numrow/2], 

     &p_6_hi[numrow/2]);  

     } 

 

     else { 

      fscanf(fin, "%d %lf %lf %lf %lf %lf %lf",  

     &dummy1,&dummy2, &dummy2,&dummy2, 

     &dummy2,&dummy2,&dummy2);  

     } 

     numrow = numrow+1; 

      

   } 

   file_num = file_num+1; 
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   fclose(fin); 

  }while( _findnext( hFile, &c_file ) == 0 ); 

 _findclose( hFile ); 

 } 

 

 ofstream outfile3333("__hi_press_vol_avg.txt"); 

 for (IX=0; IX<=404; IX++){ 

   outfile3333 << IX << " " << p_1_hi[IX] << " " << 

    p_2_hi[IX] <<" " << 

    p_3_hi[IX] <<" " << 

    p_4_hi[IX] <<" " << 

    p_5_hi[IX] <<" " << 

    p_6_hi[IX] <<endl; 

 } 

 cout << endl; 

 

 // Velocity data for high-flow simulation 

 file_num=0; 

 if( (hFile = _findfirst( "hi__gathered_cycle_velocity_vol_avg.txt",  

  &c_file )) == -1L ){ 

  printf( "No files in current directory!\n" ); 

 } 

 else{ 

  printf( "Listing of files\n" ); 

  do{ 

   numrow=0; 

   printf( " %-12s\n",c_file.name); 
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   fin = fopen(c_file.name,"r"); 

   

   ifstream inpfile(c_file.name); 

       char next[80]; 

     while (inpfile) 

     { 

     if (numrow % 2 == 0){ 

     inpfile.getline(next, 80); 

     fscanf(fin, "%d %lf %lf %lf %lf %lf %lf %lf",  

     &dummy1, &vel_inlet_hi[numrow/2],  

     &u_1_hi[numrow/2], &u_2_hi[numrow/2], 

     &u_3_hi[numrow/2], &u_4_hi[numrow/2], 

     &u_5_hi[numrow/2],&u_6_hi[numrow/2]);  

     } 

 

     else { 

      fscanf(fin, "%d %lf %lf %lf %lf %lf %lf %lf",  

       &dummy1,&dummy2,&dummy2,  

    &dummy2,&dummy2,&dummy2,&dummy2,&dummy2);  

     } 

     numrow = numrow+1; 

      

   } 

   file_num = file_num+1; 

  

   fclose(fin); 

  }while( _findnext( hFile, &c_file ) == 0 ); 
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 _findclose( hFile ); 

 } 

 

 ofstream outfile33332("__hi_vel_vol_avg.txt"); 

 for (IX=0; IX<=404; IX++){ 

   outfile33332 << IX << " " << vel_inlet_hi[IX] << " " << 

    u_1_hi[IX] <<" " << 

    u_2_hi[IX] <<" " << 

    u_3_hi[IX] <<" " << 

    u_4_hi[IX] <<" " << 

    u_5_hi[IX] <<" " << 

    u_6_hi[IX] <<endl; 

 } 

 cout << endl; 

 

 // Pressure data for low-flow simulation 

 file_num=0; 

 if( (hFile = _findfirst( "low__gathered_cycle_pressure_vol_avg.txt",  

  &c_file )) == -1L ){ 

  printf( "No files in current directory!\n" ); 

 } 

 else{ 

  printf( "Listing of files\n" ); 

  do{ 

   numrow=0; 

   printf( " %-12s\n",c_file.name); 

   fin = fopen(c_file.name,"r"); 
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   ifstream inpfile(c_file.name); 

       char next[80]; 

     while (inpfile) 

     { 

    inpfile.getline(next, 80); 

   fscanf(fin, "%d %lf %lf %lf %lf %lf %lf", 

    &dummy1,&p_1[numrow], 

     &p_2[numrow],&p_3[numrow],&p_4[numrow], 

     &p_5[numrow],&p_6[numrow]);  

    numrow = numrow+1; 

   } 

   file_num = file_num+1; 

  

   fclose(fin); 

  }while( _findnext( hFile, &c_file ) == 0 ); 

 _findclose( hFile ); 

 } 

 

 ofstream outfile33331("__low_press_vol_avg.txt"); 

 for (IX=0; IX<=404; IX++){ 

   outfile33331 << IX << " " << p_1[IX] << " " << 

    p_2[IX] <<" " << p_3[IX] <<" " << 

    p_4[IX] <<" " << p_5[IX] <<" " << 

    p_6[IX] <<endl; 

 } 

 cout << endl; 
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 // Velocity data for low-flow simulation 

 file_num=0; 

 if( (hFile = _findfirst( "low__gathered_cycle_velocity_vol_avg.txt",  

  &c_file )) == -1L ){ 

  printf( "No files in current directory!\n" ); 

 } 

 else{ 

  printf( "Listing of files\n" ); 

  do{ 

   numrow=0; 

   printf( " %-12s\n",c_file.name); 

   fin = fopen(c_file.name,"r"); 

   

   ifstream inpfile(c_file.name); 

       char next[80]; 

     while (inpfile) 

     { 

    inpfile.getline(next, 80); 

    fscanf(fin, "%d %lf %lf %lf %lf %lf %lf %lf", &dummy1, 

     &vel_inlet[numrow],&u_1[numrow], 

     &u_2[numrow],&u_3[numrow],&u_4[numrow], 

     &u_5[numrow],&u_6[numrow]);  

    numrow = numrow+1; 

   } 

   file_num = file_num+1; 

  

   fclose(fin); 
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  }while( _findnext( hFile, &c_file ) == 0 ); 

 _findclose( hFile ); 

 } 

 

 ofstream outfile333313("__low_vel_vol_avg.txt"); 

 for (IX=0; IX<=404; IX++){ 

   outfile333313 << IX << " " << vel_inlet[IX] << " " << 

    u_1[IX] <<" " << u_2[IX] <<" " << 

    u_3[IX] <<" " << u_4[IX] <<" " << 

    u_5[IX] <<" " << u_6[IX] <<endl; 

 } 

 cout << endl; 

 

 ////////////////////////////// 

 ///////////// FDM simulation... 

 ////////////////////////////// 

 for (N=2; N<=402; N=N+1){ 

  Re[N] = rho * porosity * u_5[N] * L / vis; 

 } 

  

 for (N=2; N<=402; N=N+1){ 

  Re_hi[N] = rho * porosity * u_5_hi[N] * L / vis; 

 } 

 

 bf1_avg = 0; 

 Kf1_avg = 0; 
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 //// Low-flow simulation for permeability coefficient 

 for (N=2; N<=402; N=N+1){ 

  // conservative second-order central difference for convection term 

  left_term[N] = rho * ( (u_5[N]-u_5[N-1])/time_step  

       + (u_6[N]*u_6[N]-u_4[N]*u_4[N])/L/4. ); 

 

  // nonconservative second-order central difference for convection term 

  left_term[N] = rho * ( (u_5[N]-u_5[N-1])/time_step  

       + u_5[N]*(u_6[N]-u_4[N])/L/2. ); 

 

  press_term[N] = -1.* (p_6[N] - p_4[N])/L/2.;  

  vis_term[N] = vis* ( u_6[N] - 2.*u_5[N] + u_4[N] ) / L / L; 

 

  Kf1[N] = (press_term[N] - left_term[N] + vis_term[N]  

   - porosity*porosity*rho*bf1_avg/L*u_5[N]*u_5[N]) * L * L  

   / vis / (porosity * u_5[N]); 

  if (N>=202){ 

   Kf1_avg = Kf1_avg + Kf1[N]; 

  } 

 } 

  

 Kf1_avg = Kf1_avg / 201.; 

  

 //// High-flow simulation for Forchheimer coefficient 

 bf1_avg = 0; 

 for (N=2; N<=402; N=N+1){ 

  // conservative second-order central difference for convection term 
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  left_term_hi[N] = rho * ( (u_5_hi[N]-u_5_hi[N-1])/time_step  

     + (u_6_hi[N]*u_6_hi[N]-u_4_hi[N]*u_4_hi[N])/L/4. ); 

 

  // nonconservative second-order central difference for convection term 

  left_term_hi[N] = rho * ( (u_5_hi[N]-u_5_hi[N-1])/time_step  

        + u_5_hi[N]*(u_6_hi[N]-u_4_hi[N])/L/2. ); 

 

  // nonconservative first-order upwind difference for convection term 

  left_term_hi[N] = rho * ( (u_5_hi[N]-u_5_hi[N-1])/time_step  

     + u_5_hi[N]*(u_5_hi[N]-u_4_hi[N])/L ); 

 

  // nonconservative second-order upwind difference for convection term 

  left_term_hi[N] = rho * ( (u_5_hi[N]-u_5_hi[N-1])/time_step  

     + (3.*u_5_hi[N]-4.*u_4_hi[N]+u_3_hi[N])/L/2. ); 

 

  // nonconservative third-order upwind difference for convection term 

  left_term_hi[N] = rho * ( (u_5_hi[N]-u_5_hi[N-1])/time_step  

     + (2.*u_6_hi[N]+3.*u_5_hi[N] 

     -6.*u_4_hi[N]+u_3_hi[N])/L/6. ); 

 

  press_term_hi[N] = -1.* (p_6_hi[N] - p_4_hi[N])/L/2.; 

  vis_term_hi[N] = vis* ( u_6_hi[N] - 2.*u_5_hi[N] + u_4_hi[N] ) / L / L; 

    

  bf1[N] = (press_term_hi[N] - left_term_hi[N] + vis_term_hi[N]) 

         *L/rho/(porosity * u_5_hi[N])/(porosity * u_5_hi[N])  

      - Kf1_avg/Re_hi[N]; 

   



 98

 if (N>=202){  bf1_avg = bf1_avg + bf1[N]; } } 

 bf1_avg = bf1_avg / 201.; 

 

 cout << endl; 

 cout << "Kf1_avg: " << Kf1_avg << "   "; 

 cout << "bf1_avg: " << bf1_avg << endl; 

 getch(); 

 

//////////////////////////////////////////////////////////////////  

// write data file 

 ofstream outfile1236("___cycle_results.txt"); 

 outfile1236 << "N   Re[N]   left_term[N]   press_term[N]   vis_term[N]    

  Re_hi[N]   left_term_hi[N]   press_term_hi[N]   vis_term_hi[N]    

  Kf1[N]   bf1[N]" << endl; 

 outfile1236 << "L^2/Kf1_avg" << endl; 

 outfile1236 << "bf1_avg*L" << endl; 

 for (N=2; N<=402; N=N+1){ 

  outfile1236 << N << " " << Re[N] << " " << left_term[N] << " " << 

    press_term[N] << " " << vis_term[N] << " " << 

    Re_hi[N] << " " << left_term_hi[N] << " " << 

    press_term_hi[N] << " " << vis_term_hi[N] << " " << 

    Kf1[N] << " " << bf1[N] << " " << endl; 

 } 

 outfile1236 << "Kf1_avg" << Kf1_avg << endl; 

 outfile1236 << "bf1_avg" << bf1_avg << endl; 

 getch(); 

} 
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