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SUMMARY    

This dissertation attempts to contribute to our understanding of the antecedents  

to dynamic capability formation by exploring the interaction between the internal and 

external mechanisms firms employ to develop these capabilities.  Each of the three 

chapters highlights the importance of not only considering the heterogeneity of a firm’s 

intellectual capital but also the interaction between this resource and the other 

mechanisms firms can utilize; including spending on research and development, 

undertaking acquisitions, and forming strategic alliances. 

Chapter 1 of the dissertation serves to introduce and synthesize the major 

themes and contributions of my dissertation.  In Chapter 2, I develop a multi-level 

framework of dynamic capabilities formation.  By analyzing the role individuals play in a 

firm’s ongoing innovation efforts, I illustrate not only the process through which dynamic 

capabilities are formed but also how they relate to a firm’s strategy-making process.  In 

particular, I suggest that there are three stages in the process of dynamic capabilities 

formation, through which the firm identifies, acquires, codifies, and eventually 

commercializes new knowledge. My analysis highlights the role key employees play in 

moderating the effectiveness of the developed capabilities and the role average 

employees play in mediating their existence.   

In Chapter 3 of my dissertation I turn to empirically examine, more generally, the 

importance of not only considering the heterogeneity of the intellectual human capital, 

developed in chapter 2, but also the other mechanisms firms employ to access and 

assimilate knowledge that resides outside of the firm.  Following the dynamic capabilities 

perspective, I suggest that antecedents to innovation can be found at the individual, firm, 

and network level.  Accordingly, I advance a set of hypotheses to assess the effect of 
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individual, firm, and network-level antecedents on innovation output.  I then investigate 

whether a firm’s antecedents to innovation lie across different levels.  To accomplish 

this, I propose two competing hypotheses.  I juxtapose the propositions that the 

individual, firm, and network-level antecedents to innovation are substitutes versus 

complements.   

The forth chapter of my dissertation examines several of the interesting findings 

of Chapter 3 in more detail, through the lens of a specific dynamic capability, 

ambidexterity.   To this end, I develop and empirically test a contingency framework of 

ambidexterity across exploration and exploitation activities.  While an exploration-

exploitation lens has been applied to strategic alliances based on their strategic 

motivation, I propose that it can also be applied to a firm’s intellectual human capital 

based on a bifurcation of “star” versus “staff scientists.”  Following a dynamic capabilities 

perspective, I suggest that antecedents to building these capabilities within the same 

activity (either indented for exploration or exploitation) compensate for one another, and 

thus are substitutes.  Conversely, I hypothesize that different dynamic capability 

antecedents across exploration or exploitation activities positively reinforcing one 

another, and thus are complements.  To empirically investigate the relationship between 

different antecedents to dynamic capabilities, I focus on the pharmaceutical firms’ 

adaptation to biotechnology over a 30-year time period, 1974-2003.  In general, I find 

support for the notion that building capabilities within the same activity compensate for 

on another, while ambidexterity across exploration and exploitation enhances a firm’s 

innovative performance.  Finally, my dissertation concludes with Chapter 5, which again 

summarizes the major themes and contributions of my dissertation.  In addition, I offer 

some limitations of the current study as well as areas of interest for future consideration.   

The data utilized in the dissertation is an unusually comprehensive and detailed 

panel dataset that documents the innovation attempts of global pharmaceutical 

companies within the new biotechnology paradigm over a 23-year time period.  In 
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general, my extensive data collection process has produced fine-grained, longitudinal 

data on over 3,100 alliances, 3,500 new drug introductions, 36,000 biotechnology 

patents that have been cited 80,000 times, 147,000 non-biotechnology patents, 171,000 

publishing scientists, 672,000 journal publications, and 9.9 million journal citations.  
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CHAPTER 1 

  INTRODUCTION  

The recent extension of the resource-based view into dynamic markets provides a new 

perspective for analyzing how firms develop new capabilities to cope with shifting 

markets (Teece, Pisano, & Sheun, 1997).  This research reveals that a firm’s ability to 

‘integrate, build, and reconfigure internal and external competencies to address rapidly 

changing environments’ lies at the center of its ability to learn and innovate and thus 

realize potential competitive advantages (Teece et al., 1997: 516).  Thus, these ‘dynamic 

capabilities’ facilitate not only the ability of an organization to recognize a potential 

technological paradigm shift but also to adapt to it through innovation (Cohen & 

Levinthal, 1990; Hill & Rothaermel, 2003; Teece et al., 1997).  An important issue that 

has preoccupied researchers and practitioners is where the locus of such knowledge, or 

‘Shumpeterian’ capital, resides.  The purpose of this dissertation is to shed light on this 

issue, by investigating the nature of the mechanisms firms employ to develop dynamic 

capabilities.       

The key aspect of this construct is that it extends the resource-based view 

(“RBV”) of the firm beyond consideration of simple resource existence, to the more 

complex issues associated with resource emergence.  Thus, while the RBV focuses on 

how organizations select between appropriate resources, dynamic capabilities 

emphasizes resource development and renewal.  While this difference presents 

organizational researchers with unique opportunities to better understand resource 

emergence, it also presents significant theoretical and methodological challenges that 

have resulted in many questioning the efficacy of the construct.  Although the construct 

of dynamic capabilities has its origins in the RBV, its focus on emergence requires that 

researchers move beyond the simple selection models associated with the RBV.  
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Research that utilizes this ‘RBV lens’, by investigating an organization’s choice between 

appropriate dynamic capabilities, is inevitably plagued by endogeneity.  

In this dissertation I suggest that while consideration of selection is important, of 

import is not the choice between capabilities, but rather the choice between the different 

mechanisms that organizations employ to develop and change these capabilities.  This 

distinction is important because it allows for the analysis of the emergent properties of 

dynamic capabilities.  By considering the relationship between these choices I hope to 

both refine as well as extend our understanding of the construct of dynamic capabilities.  

Research investigating this issue has revealed that the relevant knowledge for 

innovation can be located either be developed internally or accessed from external 

network connections.  The choice between internal and external technological sourcing 

is particularly relevant when the firm is attempting to adapt to a new technological 

paradigm, because of the significant investment required to develop or acquire 

knowledge that is new to the firm.  Specifically, firms wishing to innovate in a new 

technological paradigm use their internal human capital asset base to develop key firm-

level researching capabilities and thereby increase the efficiency of its external 

networking efforts.  This five-chapter dissertation contributes to our understanding of the 

antecedents to dynamic capability formation by exploring this interaction between the 

internal and external mechanisms firms employ to develop these capabilities.  Each of 

the chapters highlights the importance of not only considering the heterogeneity of a 

firm’s intellectual capital but also the interaction between this resource and the other 

mechanisms firm’s can utilize, including spending on research and development, 

undertaking acquisitions, and forming strategic alliances.  

A major contribution of my dissertation is that it illustrates the need to incorporate 

the individual level of analysis when investigating the antecedents of dynamic 

capabilities.  This need is best revealed by shifting the focus of analysis temporarily 
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away from the concrete investigation of firm activity to the abstract analysis of how the 

dynamic capabilities construct is positioned within the literature.  As mentioned above, to 

date the construct of dynamic capabilities has been conceptualized as an extension of 

the resource-based view of the firm (RBV) (Eisenhardt & Martin, 2000; Teece et al., 

1997).  Central to RBV is the notion that resources are heterogeneously distributed 

among organizations (Barney, 1991).  Additionally, researchers have theorized that the 

possession of certain valuable, rare, inimitable, and non-substitutable resources can 

allow a firm to achieve a competitive advantage.  The theoretical focus of RBV 

researchers, therefore, has traditionally been at the resource level (Barney, 2001; Teece 

et al., 1997).   In contrast, conceptual research on dynamic capabilities has primarily 

focused at the process or routine level of analysis.  Of concern is that these firm 

processes and routines are themselves a collective action, representing combinations of 

firm resources (Nelson & Winter, 1982).  

To specify a theory solely at the collective or group level, as it is been presented 

in the conceptual work on dynamic capabilities to date, researchers have implicitly 

assumed that the individual members of the group are sufficiently similar with respect to 

the construct in question.  Such uni-level analysis makes two key assumptions: (1) that 

significant variance exists at the focal level of analysis, while other levels of analysis are 

assumed to be homogeneous, and (2) that the focal level of analysis is more or less 

independent from other levels of analysis (Felin & Foss, 2005; Felin & Hesterly, 2007).  

As such, heterogeneity among individual group members is not taken into consideration, 

because a single value or characteristic is considered sufficient to describe the group 

(Klein, Dansereau, & Hall, 1994).  By investigating routines such as R&D, alliance 

formation, or search processes solely at the process or collective level of analysis, 

dynamic capabilities researchers are inherently making the assumption that the 

resources that comprise these processes must be more or less homogeneous (Felin & 



  

4

 
Foss, 2005).  This assumption, however, contradicts the central premise of the resource-

based view that valuable and rare resources are distributed heterogeneously across 

firms.  Further, individual employees are often the very resources that contribute to a 

firm’s competitive advantage (Coff, 1997; Tushman & Katz, 1980; Zucker, Darby, & 

Armstrong, 2002a).   

Thus, it is problematic to ignore the specific role individuals play because firm 

innovative performance is at least partially a function of the value of its human capital 

(Hitt, Bierman, Shimizu, & Kochhar, 2001).  My dissertation builds on the framework of 

Crossan, Lane, and White (1999) which describes the process through which 

organizations process knowledge and thus, learn.  The authors suggest that individuals 

serve not only to facilitate the creation of tacit knowledge, but also aid in the process of 

intuiting the links between the sources of such knowledge. The creation and ownership 

of such tacit knowledge is especially crucial in high-velocity environments (Eisenhardt & 

Martin, 2000).   

The premise that individuals are critical to the formation of dynamic capabilities 

has not gone unchallenged, however.  For example, Levitt and March (1988: 320) claim 

that key routines are “independent of the individual actors who execute them.”  Similarly, 

Cohen and Levinthal (1990) claim that an organization’s ability to acquire, assimilate, 

and apply external knowledge develops cumulatively, and thus tends to be path 

dependent.  These abilities, referred to as a firm’s absorptive capacity, tend to build on a 

firm’s prior investments in its members’ individual absorptive capacities (Lane, Koka, & 

Pathak, 2006).  Therefore, while dynamic capabilities may not be vested in a single 

individual, a key component of their effectiveness, absorptive capacity, does depend 

upon the actions of individuals.  Adding complexity to the issue, prior research has 

demonstrated that not all individuals are equally important in a firm’s innovation efforts 

(Lacetera, Cockburn, and Henderson, 2004; Rothaermel and Hess, 2007; Zucker, 



  

5

 
Darby, and Torero, 2002b).  Explicating this heterogeneity is critical to the understanding 

of the roles individuals play in facilitating organizational innovation.  Specifically, different 

individuals facilitate specific organizational capacities associated with the innovation 

process.  Following Crossan et al. (1999), I suggest that these capacities are related to 

the organization’s ability to intuit and interpret new knowledge, and in turn, allow 

organizations to identify and exploit new opportunities within their respective 

environments.   

As previously indicated, the dissertation consists of three primary chapters, an 

introduction, and conclusion.  Two of the primary chapters investigate the role of the 

individual within the firm empirically, while the other chapter conceptually builds a 

framework of organizational learning and adaptation.  The data utilized in my dissertation 

is summarized within each chapter.  In general, the database is an unusually 

comprehensive and detailed panel dataset that documents the innovation attempts of 

global pharmaceutical companies within the new biotechnology paradigm over a 23-year 

time period.  In general, my extensive data collection process has produced fine-grained, 

longitudinal data on over 3,100 alliances, 3,500 new drug introductions, 36,000 

biotechnology patents that have been cited 80,000 times, 147,000 non-biotechnology 

patents, 171,000 publishing scientists, 672,000 journal publications, and 9.9 million 

journal citations.  I utilize the data to investigate the following model:        
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CHAPTER 2   

A SYSTEM OF DYNAMIC CAPABILITY FORMATION  

2.1 Introduction 

As a matter of survival, organizations in rapidly changing environments need to 

possess the ability to identify and react to changes that originate outside their 

boundaries.  This construct, known as dynamic capabilities, has recently emerged as a 

key topic for researchers interested in explaining how firms adapt to shifting knowledge 

environments.  This research posits that a firm’s dynamic capabilities enable it to 

integrate, build, and reconfigure internal and external competencies to address uncertain 

and changing environments (Teece, Pisano, & Shuen, 1997).  It has been theorized that 

these capabilities can facilitate innovation and adaptation by allowing a firm the 

opportunity to derive economic rents from new and innovative processes, products, and 

services.  Recent theoretical research suggests that these capabilities arise from an 

organization’s ability to both explore for new information and exploit its current 

knowledge base (O'Reilly & Tushman, 2007).  Indeed, a significant amount of research 

has examined the characteristics of such capabilities (Eisenhardt & Martin, 2000; Winter, 

2003), their evolution and role in firm learning (Zollo & Winter, 2002), as well as the 

mechanisms that firms can employ to leverage their effectiveness (Rothaermel & Hess, 

2007).   

Despite the insights offered in the extant literature, some researchers still 

question the validity and even the existence of dynamic capabilities.  Such skepticism is 

warranted, as dynamic capabilities researchers have struggled to answer the 

fundamental question of how these capabilities are formed.  This significant gap our 

understanding is a result of the fact that research has generally failed to consider the 

complex and multi-level nature of dynamic capability formation.  We submit that to 
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deepen our understanding of how an organization forms dynamic capabilities, an 

approach that considers a system of capability formation is vital.  Such a system-level 

analysis allows us to analyze the linkages between each distinct stage in the dynamic 

capability development process beginning with exploration for new knowledge and 

culminating in its exploitation.  We submit that such an analysis requires a multi-level 

approach.  The need for such an approach is illustrated by the fact that a dynamic 

capability itself represents change at the routine or capability level of analysis.  This 

perspective resonates with Helfat, et al.’s (2007: 4) understanding of dynamic 

capabilities as “the capacity of an organization to purposefully create, extend, or modify 

its resource base.”  While a change in an organization’s resource base is a direct result 

of the collective actions of individuals, the outcome of interest herein is the adaptation of 

the organization to an environmental knowledge shift.  Therefore, we suggest that three 

levels of analysis are required to more fully understand both the inputs to and outputs of 

dynamic capabilities: the individual, routine, and organization level.  Thus, a contribution 

of our research is to extend the current focus of dynamic capabilities researchers 

beyond the traditionally used capability level of analysis. While this focus is not 

surprising given that dynamic capabilities are often defined as higher-order capabilities 

or heuristics (Collis, 1994; Teece et al., 1997), viewing the construct through a broader 

lens will shed light on the system through which these capabilities emerge.    

At the micro-level of analysis, we follow Felin and Hesterly (2007) and posit that 

consideration of the inputs to dynamic capabilities requires the analysis of a fundamental 

component of every firm: the individual.  While this focus is not novel, the prior research 

that has considered the role of individuals has focused primarily on the role of middle 

and top managers (Burgelman, 1994; O'Reilly & Tushman, 2007).  While an analysis of 

different management layers clearly improves our understanding of the organizational 

decision making process, it does not directly allow for consideration of how organizations 

explore for new information or exploit current knowledge bases, especially in high-tech 
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industries.  A deeper understanding of these processes is vital, as both exploratory and 

exploitive activities are critical to an organization’s innovative efforts (Eisenhardt & 

Martin, 2000; O'Reilly & Tushman, 2007; Tushman & O’Reilly, 1996; Tushman, Smith, 

Wood, Westerman, & O’Reilly, 2004).  We suggest that to understand the process 

through which organizations sense and react to environmental knowledge shifts requires 

a deeper analysis of the organization’s intellectual human capital.  By considering the 

roles of both star and ‘non-star’ or average employees in the innovative activities of an 

organization we advance a framework that illustrates a system through which dynamic 

capabilities can be developed.   

A systematic approach to the process of dynamic capability formation also 

requires the consideration of the outputs of the process as well.  In the case of dynamic 

capabilities, these outputs need to be analyzed through the more aggregated, 

organizational level of analysis.  The reason for this is because innovation at the process 

or capability level does not necessarily translate into adaptation at the organizational 

level.  This relationship is similar to that described by Helfat et al. (2007) with regard to 

the technical and evolutionary fitness of a dynamic capability.  The authors note that 

technical fitness is a measurement of the effectiveness of the individual capability (e.g., 

a count of the number of new products developed) without regard to its interaction with 

other organizational processes and capabilities.  Technical fitness thus measures an 

organization’s exploratory and exploitive innovative activities, but is only one component 

of the much broader evolutionary fitness, which assesses how well these activities 

enable an organization to integrate the needed modifications to its resource base to 

achieve superior performance in the market place.  Through this lens we suggest that 

the existence of exploratory and exploitive activities within an organization represent a 

necessary but not sufficient condition for the formation of dynamic capabilities.  Without 

activities focused on the integration of these innovative activities, modifications at the 

routine or capability level will not systematically lead to adaptation at the organizational 
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level.  Based on this we suggest that three disparate activities are required if an 

organization is to build dynamic capabilities: exploration, exploitation, and integration. 

To illuminate the roles that individuals play in facilitating these activities, we 

incorporate the construct of boundary spanning (Aldrich & Ruef, 2006; Allen, 1977; Allen 

& Cohen, 1969; Tushman & Katz, 1980) into Crossan, Lane, and White’s (1999) multi-

level framework of organizational learning.  Crossan et al. (1999) offer a general theory 

of organizational learning that links the individual, group, and organizational levels of 

analysis.  Of key interest is the authors’ position that two key aspects of organizational 

learning, the ability to intuit and interpret new knowledge, occur at the individual level.  

As part of our theoretical framework, we develop a typology of individuals, which 

organizations employ to overcome stage-specific knowledge gaps.  This synthesis 

allows us to provide an analysis of how incumbent firms in knowledge-intensive 

industries utilize different individuals to effectuate their continuous adaptation and thus 

innovation efforts.  The boundary condition imposed by this setting is appropriate given 

that the purpose of dynamic capabilities is to allow existing firms to address rapidly 

changing or high velocity environments (Eisenhardt & Martin, 2000; Teece et al., 1997) 

through a continuous change in a firm’s resource base (Helfat, et al. 2007). 

In the spirit of Chen (1996), our theoretical analysis is buttressed by data and 

anecdotal evidence that detail the experiences of incumbent firms in knowledge-

intensive industries that are attempting to build dynamic capabilities.  We begin our 

framework development at the organizational level of analysis by investigating the 

different knowledge gaps an innovating firm faces.  We then turn to a more micro-level of 

analysis to illustrate an important heterogeneity in an organization’s intellectual human 

capital.  It is through this analysis that we develop a typology of individuals based on the 

nature and level of connectivity.  Finally, we explicate how effective dynamic capabilities, 

in terms of technical and evolutionary fitness result when firms use different individuals 
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to span different knowledge gaps.  This analysis is exemplified through the description of 

a successful vaccine development at Merck.   

2.2 Processes, Positions, and Paths 

The purpose of this paper is not to offer another definition of dynamic 

capabilities.  Rather, using the definition of dynamic capabilities by Teece et al. (1997),1 

we seek to illustrate the role individuals play in the formation these firm-level capabilities.  

We develop herein a framework emphasizing that dynamic capabilities are dependent 

on the individuals within the firm and on their respective roles in the innovation process.  

Theoretically, we conceptualize the construct of dynamic capabilities based on a 

synthesis between the knowledge-based view of the firm (Grant, 1996) and the 

absorptive capacity construct (Cohen & Levinthal, 1990).  Support for conceptualizing 

dynamic capabilities as a synthesis between these well-established theoretical lenses is 

found by exploring the oft-ignored decomposition of dynamic capabilities presented by 

Teece et al. (1997).  This decomposition serves as the foundation for our framework 

which illustrates the process through which knowledge is purposefully gathered by and 

processed within firms.   

Teece et al. (1997) decompose dynamic capabilities into processes, positions, 

and paths.  The authors posit that the processes refer to managerial and organizational 

routines or current practices, while the positions refer to the specific assets of the firm, 

including technological know-how, complementary, financial, and reputational assets.  

The final sub-category of dynamic capabilities, a firm’s paths, represents the strategic 

alternatives or opportunities that face a firm.  To better understand the relationship 

between these sub-categories, it is important to conceptualize the knowledge base of a 

                                                

 

1 Teece et al. (1997: 516) define dynamic capabilities “as the firm’s ability to integrate, build, and 
reconfigure internal and external competences to address rapidly changing environments.  Dynamic 
capabilities thus reflect an organization’s ability to achieve new and innovative forms of competitive 
advantage given path dependencies and market positions (Leonard-Barton, 1992).” 
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firm as consisting of stocks and flows (Appleyard, 1996; DeCarolis & Deeds, 1999; 

Dierickx & Cool, 1989).  Through this lens the processes and the positions of a firm can 

be considered to be its stocks of knowledge, while the paths represent changes to the 

flow of knowledge into the firm.  Prior research, however, has focused primarily on the 

firm’s processes and positions, as Teece et al. (1997) identified these as collectively 

making up a firm’s competencies and capabilities.   

This focus has resulted in a lack of understanding of how a firm’s knowledge 

base changes over time, especially in the context of facilitating adaptation to a changing 

environment.  Without consideration of the role and development of a firm’s paths, a 

complete picture of dynamic capability formation cannot be developed, given that in high 

velocity industries the external environment is predominantly the locus of new 

knowledge (Powell, Koput, & Smith-Doerr, 1996).  In changing environments the process 

of dynamic capability formation must be considered to be open in nature (Chesbrough, 

2003).  Such a case indicates that the firm needs a level of connectedness with external 

sources of technological change if it is to recognize environmental knowledge shifts and 

then develop the requisite processes and positions (Appleyard, 2003).  In changing 

environments, the choice of a path determines both the direction and rate of change in 

the firm’s stock of processes and positions.  Thus, without consideration of the firm’s 

strategic paths, the relationship between the sub-categories cannot be fully explored.    

2.3 Obstacles to Dynamic Capability Formation 

Each sub-category of a dynamic capability is unique in both its importance to the 

firm and the process through which it is formed.  In addition to considering of the 

reciprocal relationship between these categories, the overall development of these sub-

categories corresponds directly to sequential steps in the dynamic capability formation 

process.  In particular, there are three significant obstacles that a firm must overcome to 

develop dynamic capabilities: 1) a cognitive gap; 2) an operational gap; and 3) an 
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engineering gap.  Specifically, these obstacles correspond to the ability of a firm to 

develop each of the sub-categories (i.e., paths, processes, and positions) of dynamic 

capabilities, as well as consideration of the reciprocal, and thus learning, aspect of 

dynamic capability formation.  More generally, we suggest that these three knowledge 

gaps are associated with the information conversion process through which an 

organization senses, seizes, and capitalizes on opportunities, and thus maintains 

competitiveness in dynamic environments (Teece, 2007).   

Our analysis provides structure to the relationship between the sub-categories of 

dynamic capabilities, because the order of the gaps is critical to successful adaptation.  

When viewed through the lens of the real options perspective, each stage in the 

innovation process represents a decrease in the uncertainty surrounding the 

technological change.  This notion is similar to Ashby’s (1956) Law of Requisite Variety, 

which suggests that the variety in an internal control system must be equal to or larger 

than the variety of the perturbations in the environment to achieve control.  When 

applied to organizations, Ashby’s theory suggests that a flexible system with many 

options is better able to cope with change than one that is tightly optimized for an initial 

set of conditions (see also Weick, 1976).  The optimized organization may be more 

efficient while the initial conditions hold, but is less likely to both identify and adapt to 

changes in its environment (McKelvey & Aldrich, 1983).  Following this logic, 

organizations need to be sufficiently adaptable to cope with a changing knowledge 

environment.  Individuals can, both directly and indirectly, provide the firm with this 

needed adaptability.  Thus, the individual facilitates the firm’s ability to monitor and cope 

with uncertainty, and by doing so aids the firm in developing dynamic capabilities.       
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Figure 2.1:  A System of Dynamic Capability Formation  

Our model of dynamic capability formation depicted in Figure 2.1 illustrates some 

important but under-researched aspects of the firm innovation process.  Central to this 

process is the notion that the locus of knowledge in many industries is external to the 

firm (Powell et al., 1996).  The means through which this external knowledge is acquired 

and transformed is not a simple, linear process.  Rather, as illustrated by the outward 

arrows in the figure, the process of dynamic capability formation is complex and iterative 

in nature.  These feedback loops illustrate the significant managerial attention and 
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intention that is required if the firm is to build dynamic capabilities.  This intentionality is 

required because the knowledge gaps in the innovation process are not perfectly 

aligned; that is, the flow of knowledge through an organization is not a linear or waterfall 

process.  The imperfect alignment between the knowledge gaps occurs as a result of the 

different characteristics of both the gaps themselves, as well as the resources needed to 

effectively span them.    

2.3.1 The Cognitive Gap 

The first step for a firm developing dynamic capabilities is to gain access to the 

external knowledge environment.  Knowledge held in the external environment can be 

accessed through a large number of different mechanisms, such as informal networks, 

conference attendance, publications in the open literature, patents assigned to other 

organizations, licenses, strategic alliances, joint ventures, and acquisitions (as depicted 

in Figure 1).  Yet, an organizational boundary represents a cognitive gap between 

internal and external sources of knowledge and as such, represents a significant frontier 

for a firm attempting to adapt to a changing environment (Lavie, 2006).  The learning 

that takes place through a connection that individuals have with the external 

environment bridges the cognitive gap, and thus allows for the selection of a path or 

strategic option for the future.  Such a strategic option is similar to the identification 

process of a firm’s emergent strategy (Mintzberg and McHugh, 1985).  Thus, the 

obstacles to innovation are situated at the firm level, while the mechanisms to overcome 

these obstacles are located at the individual level. 

The capability to access external knowledge is termed cognitive or potential 

absorptive capacity in prior conceptual work (Lavie, 2006; Zahra & George, 2002), as 

this capability relates to a firm’s ability to identify changes within its environment through 

insight and awareness of technological change.  Lavie (2006) indicates that this ability 

increases the efficiency with which a firm is able to search and evaluate new strategic 
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alternatives.  A firm’s cognitive absorptive capacity relates directly to the path selection 

explicated by Teece et al. (1997).  Spanning the cognitive gap, therefore, requires not 

only connections to the external environment and the ability to assess the value of the 

new knowledge, but also deep connections within the company and to its top 

management team, because the selection of certain paths can have significant strategic 

ramifications.  

Powell et al. (1996) posit that a firm’s capability to access external knowledge is 

related to a firm’s scope of collaborations.  In contrast to Powell and colleagues, we 

suggest that these interorganizational relationships need to be investigated at the 

individual level, rather than at the alliance or collective level of analysis.  The authors 

themselves seem to support this position by noting, for example, that the CEO of 

Centocor indicated that the number of formal alliances was simply the “tip of the iceberg 

– it excludes dozens of handshake deals and informal collaborations, as well as 

probably hundreds of collaborations by our company’s scientists with colleagues 

elsewhere” (Powell, et al. 1996: 120).   

It is worthwhile to note that within the setting of firm innovation, a firm’s ability to 

identify not only key changes in the knowledge environment but also possible ways of 

addressing these changes has been taken as exogenous to the analysis of dynamic 

capabilities.  The simple routines of Eisenhardt and Martin (2000) seem to arise from 

learning (Zollo & Winter, 2002), but consideration of both the sources of knowledge and 

the mechanisms through which this learning is accomplished are lacking.  This 

represents a concern because if a firm fails to identify a key technological shift within a 

reasonable time window, its ability to effectuate the necessary transformation is reduced.  

The complexity and uncertainty facing the firm is accentuated by the fact that it is often 

the case that the relevant characteristics of the technological shift are unlikely to be 

known, even after their appearance (Anderson & Tushman, 1990; Tushman & Anderson, 

1986).  To address this issue, research on a firm’s ability to identify a technological 
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change has highlighted the role of a firm’s top management team, focusing on the 

connectivity of the key managers to external sources of knowledge (Kaplan, Murray, & 

Henderson, 2003).    

Within pharmaceutical firms, for example, the decision of which path or 

technological alternative a firm selects has long-term financial performance implications 

(Gambardella, 1992; Thomke & Kuemmerle, 2002).  The importance of strategic choice 

is due to the fact that a source of competitive advantage for pharmaceutical firms is its 

ability to develop competencies within a specific treatment area, such as Eli Lilly in the 

field of diabetic therapy or Hoffman-La Roche in the area of anti-anxiety drugs.  The 

firm’s ability to develop a blockbuster drug in a certain therapeutic category depends not 

only on its capability within that specific treatment area, but given the significant lead 

time associated with drug development, also in the firm’s initial decision to follow the 

appropriate path.   

While the selection of a strategic direction is a critical component of the 

innovation process, it acts as a determinant of the effectiveness of the innovation 

process, rather than its existence.  The quality of the innovative process is directly 

related to the firm’s ability to span this gap.  Finally, the capability to span the cognitive 

gap requires not only external knowledge, but also deep firm-specific knowledge.    

2.3.2 The Operational Gap 

Knowledge requires other knowledge.  This truism underscores the importance of 

a firm’s ability to develop the internal competencies needed to effectuate the changes 

identified by spanning the cognitive gap.  Similar to the underlying concept of absorptive 

capacity, this capability relates to the notion that a firm cannot internalize external 

knowledge without cost.  Instead, the identification, assimilation, and exploitation of 

external knowledge requires effort, expertise, and purposeful action on the part of the 

firm (Cohen & Levinthal, 1989).  The codification process entails transforming tacit 
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knowledge into repeatable and stable practices that can be used by the firm for diffusing 

the knowledge within the firm by means of a manual or tool (Nonaka, 1994; Zander & 

Kogut, 1995).  Relating this to the discussion of the decomposition of dynamic 

capabilities, the routines and practices through which firms are able to do this are 

representative of its organizational processes.  These processes represent the requisite 

resources needed to achieve an appropriate fit with a changing external knowledge 

environment (Lavie, 2006), and can include the development of the intellectual property 

associated with the firm’s chosen direction.   

Therefore, the second obstacle in the formation of dynamic capabilities is the 

operational gap.  To span this gap, a firm is required to expand its requisite absorptive 

capacity to understand the knowledge associated with the chosen strategic path.  It is 

through this exploitation of scientific knowledge that the company builds its technological 

core (Thompson, 1967).  This technological core represents the competencies needed 

to ‘crack the code’ of scientific innovation.  The successful accumulation of these needed 

competencies is often represented by the firm’s stock of scientific patents.  Based on this 

notion, the capability to span the operational gap mediates the overall innovation 

process.  Of interest, however, is that possession of the requisite knowledge does not 

guarantee that the organization will be able to assimilate or apply this knowledge. 

Nowhere is this notion more apparent than in the pharmaceutical industry, which 

has seen aggregate R&D expenditures since 1993 increase 250%, while the number of 

new drug submissions to the FDA has fallen by more than 70% (Raynor & Panetta, 

2005).  Given this trend, there has been a movement within the industry to reconfigure 

the R&D process.  As an example, InnoCentive, a wholly owned subsidiary of Eli Lilly, 

offers firms a mechanism to facilitate the development of a technological core, and thus 

bridge its operational gap.  Utilizing a global network of independent researchers, 

InnoCentive acts as a knowledge broker and facilitates the exchange of technological 

know-how, primarily associated with chemistry and biotechnology.  Through this system 
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of open innovation, InnoCentive has realized a success-rate that is higher than 

traditional internal R&D approach, at approximately one-sixth the cost (Raynor & 

Panetta, 2005).  As illustrated by the final gap in the innovation process, however, 

possession of these technological capabilities does not in itself guarantee adaptation or 

continued innovation.     

2.3.3 The Engineering Gap 

It is not necessarily the case that innovation follows directly from the successful 

crossing of the cognitive and operational gaps.  The last step in the innovation process 

relates to the engineering of a firm’s positions through the transformation of its collected 

and codified knowledge into commercially viable products and services.  It is these 

innovations that are the end products of the innovation process and thus should be 

considered as the positions of the firm.  This capability to transform knowledge has been 

ignored frequently, as the process of transforming science into technology has been 

viewed as a waterfall process, through which minimal effort is needed to transform 

knowledge obtained into technology underlying new processes, products, and services 

(Murray, 2002).   In contrast, others argue that the process to span this gap is actually 

quite complex and highly nuanced (Dasgupta & David, 1994; Garud & Rappa, 1994).   

Termed the engineering gap, the process requires that a firm be able to integrate 

disparate communities of practice associated with basic science and those of 

commercially applied technologies (Brown & Duguid, 2001; Murray, 2002).  The 

engineering gap, therefore, separates a firm’s “R,” or internal research, from its “D,” or 

development of technologies.  The engineering gap remains a significant obstacle for 

firms attempting to innovate and thus a critical component of dynamic capability 

formation.  More simply, the relevant question to consider is: can a firm integrate its 

exploratory and exploitive activities?   
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A comparison between the reward structure and knowledge distribution systems 

used in these two communities illustrates why some firms find themselves unable to 

span the gap between science and engineering.  Specifically, the reward system in 

science is based mainly on dissemination of new knowledge through refereed journal 

publications, and exists primarily in research institutions and universities (Murray, 2002).  

This setting is focused on the community of learning and knowledge sharing.  In 

contrast, the activities of the engineering world are focused on developing patentable 

and commercially viable products, processes, or services to generate economic returns.  

The importance of the community knowledge is replaced with concerns of appropriability 

and protection of intellectual property through patent protection, trade secrets, etc. 

The importance of this difference between the science and engineering 

communities is illustrated by examining the characteristics of the knowledge exchange 

between a firm’s departments focused on research and those on development.  A firm’s 

ability to learn from a partnership, for example, is relative to the characteristics of both 

partners involved in an exchange (Lane & Lubatkin, 1998).  More specifically, when 

there is a sufficient level of commonality between the subject firm’s internal research 

program and that of the external research source, knowledge transfer is often more 

successful.  We extend this comparison to include the interaction between disparate 

communities of practice, which are dominated by different metrics of measuring 

performance (Dietz & Bozeman, 2005).  Learning between two communities is posited to 

be greater if there exists a similarity between their dominant logics, knowledge-bases, as 

well as organizational structures and compensation policies (Prahalad & Bettis, 1986).  

Without a sufficient understanding of both the science and engineering communities, 

firms are hampered in attempting to commercialize their codified knowledge.  The 

knowledge required to span the engineering gap usually involves an overlap of scientific 

knowledge and firm procedures and processes for manufacturing. 
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Within the semiconductor industry, the significance of the gap between science 

and engineering is illustrated by the fact that it is often the case that the inventors of a 

new technology are not the ones that profit from the invention (Chesbrough, 2003).  

Fairchild Camera and Instrument’s experience in innovating in the semiconductor 

industry illustrates the potential impediment the engineering gap can pose to innovation.  

Fairchild was a pioneer in the industry and, although an aerial-survey company, through 

leveraging its 600 person research labs, had developed technology unique to the 

semiconductor industry.  Despite this large investment in basic research, Fairchild failed 

to capitalize on its invention because of the tremendous disconnect that existed between 

these labs and the firm’s engineering and production departments.  The geographical 

separation of these departments was augmented by the lack of common design and 

production processes.  Additionally, Chesbrough (2003: 115) notes that “this separation 

was exacerbated by an attitude of intellectual superiority on the part of the lab scientists 

toward the fab(rication) engineers.”          

The preceding section illustrated the knowledge gaps an organization must span 

if it is to develop a dynamic capability.  We next turn to illustrate the activities and 

mechanisms that facilitate the spanning of these gaps.  As a starting point, we consider 

the importance of individuals in the process of dynamic capability formation.  

2.4 Individuals as Building Blocks of Dynamic Capabilities  

It is problematic to ignore the specific role individuals play because a firm’s 

innovative performance is at least partially a function of the value of its human capital 

(Hitt, Bierman, Shimizu, & Kochhar, 2001).  Crossan, et al. (1999) present a multi-level 

framework of organizational learning that incorporates this notion.  The authors argue 

that organizational learning is a multi-level process that begins with individual learning, 

which leads to group learning, and finally to organizational learning.  They argue that 

learning across these levels is linked through bi-directional processes that involve both 
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the creation and application of knowledge. More specifically, they describe four 

processes that connect individual learning to organizational learning: intuiting, 

interpreting, integrating, and institutionalizing.  Further, the authors suggest that 

individuals serve not only to facilitate the creation of tacit knowledge, but also aid in the 

process of intuiting the linkages between different sources of such knowledge. The 

creation and ownership of such tacit knowledge is especially crucial in high-velocity 

environments (Eisenhardt & Martin, 2000).  This highlights the importance of considering 

the role individuals play in facilitating an organization’s development of dynamic 

capabilities.   Using an expanded theoretical lens, it allows researchers to analyze the 

complex interactions between individuals, firm processes, and the changing knowledge 

environment (Tripsas & Gavetti, 2000).    

The premise that individuals are critical to the formation of dynamic capabilities 

has not gone unchallenged, however.  For example, Levitt and March (1988: 320) claim 

that key routines are “independent of the individual actors who execute them.”  Similarly, 

Cohen and Levinthal (1990) argue that an organization’s ability to acquire, assimilate, 

and apply external knowledge develops cumulatively, and thus tends to be path 

dependent.  These abilities, referred to as a firm’s absorptive capacity, tend to build on a 

firm’s prior investments in its members’ individual absorptive capacities (Lane, Koka, & 

Pathak, 2006).  Therefore, while dynamic capabilities may not be vested in a single 

individual, a key component of their effectiveness, absorptive capacity, does depend 

upon the actions of individuals.  Adding complexity to the issue, prior research has 

demonstrated that not all individuals are equally important in a firm’s innovation efforts 

(Lacetera, Cockburn, and Henderson, 2004; Rothaermel and Hess, 2007; Zucker, 

Darby, and Torero, 2002).  Explicating this heterogeneity is critical to the understanding 

of the roles individuals play in facilitating organizational innovation.  Specifically, different 

individuals facilitate specific organizational capacities associated with the innovation 

process.  Following Crossan et al. (1999), these capacities are related to the 
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organization’s ability to intuit and interpret new knowledge; in turn, these abilities allow 

organizations to identify and exploit new opportunities within their respective knowledge 

environments.   

2.4.1 Exploring the Heterogeneity of Individuals  

Prior research relating individuals to firm outcomes has primarily focused on the 

role of key individuals or star employees (Tushman, 1977; Zucker, Darby, & Armstrong, 

2002).  The rationale behind this focus stems from the Lotka-Price Law of scientific 

knowledge distribution, in which Lotka (1926) and Price (1963) hypothesize that 

scientific progress follows an inverse square law.  The Lotka-Price Law proposes that 

the number of scientists publishing n papers is proportional to 1/n2.  This inverse square 

relationship suggests that for every 100 authors producing a single paper, 25 publish two 

papers, 11 publish three, and so forth. This law also indicates that approximately 50 

percent of the papers published during a given period are produced by only 10 percent 

of the actively publishing scientists.  Thus, a star scientist is by an order of magnitude, 

both, more productive and more influential than a non-star (or average) scientist in a 

specific field of research.  As an empirical example of this relationship, Zucker and 

colleagues identified star scientists employed in biotechnology firms.  While the 327 star 

scientists accounted for only 0.75 percent of the total scientific authors in the genomic 

sequence database GenBank, they accounted for 17.3 percent of the published articles, 

with nearly 22 times as many articles as the average scientist.  

Even though elite or star employees are often more intelligent or creative than 

the average employee (Amabile, Conti, Coon, Lazenby, & Herron, 1996; Ernst, Leptien, 

& Vitt, 2000), within biotechnology, a star scientist’s value is driven by his/her level of 

connectedness to external sources of knowledge (Zucker, Darby, & Armstrong, 1998).  

Within this context, star scientists have been shown to affect the location of firm entry 

into new technologies (both new and existing firms in the United States and Japan) 

(Zucker, Darby, & Brewer, 1998) and have a significant positive effect on a wide range of 
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firm-level measures, such as the number of products on the market, publishing 

propensity, and network connections (Audretsch & Stephan, 1996; Lacetera, Cockburn, 

& Henderson, 2004; Zucker, Darby, & Torero, 2002).     

Our own analysis of innovation in the pharmaceutical industry, however, 

illustrates the need to look beyond the role of the elite employees.  We identified a 

population of star scientists in the pharmaceutical industry using a unique dataset and 

measure of stardom.  In particular, we investigated the importance of these star 

scientists by comparing their affect on firm performance with that of non-stars or average 

employees.  For the time period between 1973 (which marks the discovery of 

recombinant DNA, and thus the beginning of the ‘new biotechnology’) and 2003, we 

collected data on nearly 150,000 scientists who published more than 480,000 journal 

articles related to biotechnology, and these articles were cited 9.2 million times.  As a 

measure of stardom, we identified scientists whose publication and citation counts were 

three standard deviations above that of the average (staff) scientist.  We found that the 

851 stars identified in the pharmaceutical industry accounted for only 0.65 percent of the 

population of the publishing scientists but accounted for 15.2 percent of all publications 

and 27.3 percent of all citations. 

It is interesting to note that the publication of research findings is only one aspect 

of the process through which scientific knowledge is codified.  Through the lens of firm 

innovation, patents are frequently viewed as a more appropriate measure of a firm’s 

technological capabilities than publications because they represent knowledge that 

tends to be more codified in nature (Stuart, 2000).  Griliches (1990) suggests that 

patents and publications should not be considered as outputs of the same stage in the 

innovation process.  In a science-driven industry, an organization’s stock of publications 

are real options for future strategic directions (McGrath, 1997).  Publications thus 

represent generally small and numerous investments in basic research, most of which 

do not directly result in commercially viable inventions.  In our data, the average 
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pharmaceutical firm produced over 280 scientific journal publications per year, while 

producing just over 20 biotechnology patents per year.  Thus, patents represent a more 

codified innovative output than publications, which in turn is associated with an 

organization’s attempt to build its technological core.   

As introduced above, Helfat et al. (2007) suggest two principle measurements, 

technical and evolutionary fitness, for evaluating the effectiveness of dynamic 

capabilities. The authors define technical fitness, as measuring how effectively a 

capability performs its function, regardless of how well the capability enables a firm to 

make a living.  We suggest that the stock of publications within a given therapeutic area 

represents an appropriate measurement of the technical fitness of a pharmaceutical 

firm’s drug discovery capability in that area.  By contrast, evolutionary fitness relates to 

broader organizational issues, including survival, growth, and value creation.  Based on 

this conceptualization, we suggest that patents represent an appropriate measurement 

of the evolutionary fitness of a pharmaceutical firm’s drug development capability.  In 

support of the differentiation between publications and patents, Murray and Stern (2004) 

found that the average lag between publication of a journal article and subsequent 

granting of a patent was a little over 3 years (37.5 months).  This distinction is critical 

because it highlights the reason why the innovation process should not be considered 

linear in nature and emphasizes the different roles star and non-star scientists play in the 

innovation process.  Analysis of data from the innovation process in the pharmaceutical 

industry sheds light on two interesting aspects of this non-linearity: first, the stars of 

publishing are not necessarily the stars of patenting.   Second, the distribution of patents 

appears to be more egalitarian in nature than that of publications.        
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Figure 2.2: Distribution of Pharmaceutical Firms’ Authors and Inventors 
by Scientific Publications and Patents in Biotechnology 

Figure 2.2 illustrates that the distribution of inventors’ names on a pharmaceutical 

firm’s biotechnology patents is more egalitarian in nature than that of authors’ names on 

firm publications.  More specifically, we find that within the realm of a pharmaceutical 

firm’s biotechnology patents, the top 1 percent of inventors account for 10.2 percent of 

all of the patents in the sample, while the top 1 percent of authors account for 50.8 

percent of all publications (p < 0.05).  This statistically significant difference, illustrated in 

Figure 2, appears to reflect the lower level of uncertainty associated with the more 

codified knowledge contained in a patent, when compared to the more the basic 

knowledge disseminated in a scientific publication.  This finding is similar to Furukawa 

and Goto (2006) who illustrate that scientists with the highest publication performance 

scores did not apply for a considerably greater number of patents than other researchers 

in their companies.  Instead, these star scientists had a positive effect on the number of 

patent applications filed by their non-star co-authors. Moreover, these star scientists 

served as channels through which external knowledge flows to the average researchers, 

thereby stimulating innovation by non-star scientists.  
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Figure 2.3:  Scientific Journal Publications by Pharmaceutical Firms’ Authors 

Figure 2.3 illustrates the overall trend in star and non-star publication activity over 

time.  The publication count of the stars began to increase in the early 1980’s, shortly 

after the advent of biotechnology.  This period represents a time when the knowledge 

related to using biotechnology for the purpose of drug discovery and development was 

not well dispersed (Gambardella, 1992).  That is, in the early stages of biotechnology 

(mid 1970’s-early 1980’s) the knowledge associated with this nascent technology was 

held by a few key individuals who were critical to a firm’s development of internal 

knowledge base.  As such, the knowledge environment was highly changing as 

pharmaceutical firms struggled to secure the limited sources of knowledge (Zucker & 

Darby, 1997).  The effect of the star scientists appears to peak in the late 1980’s and 

subsequently declines, as this knowledge base became more widely dispersed.   

As an example, the Cohen-Boyer patent disclosing the process recombinant 

DNA (genetic engineering), which was assigned to Stanford University in 1980 (U.S. 

Patent 4,237,224), represented a scientific breakthrough at the time but now is a 

common offering in graduate-level biotechnology courses (Galambos & Sturchio, 1998).  

In Figure 3, this dispersion is illustrated by the steadily increasing count of non-star 



  

29

 
publications, as the total number of publications more than doubled, from 5,233 in 1980 

to 10,740 in 1990.  This trend points to an increasing need of a firm’s average or non-

star employees.  We suggest that this dispersion often results in a shift in the role of 

individuals in the process of dynamic capability formation.  As knowledge disperses 

throughout the environment, a firm’s focus shifts from accessing external information to 

increasing the effectiveness with which such knowledge is codified and commercialized 

within the organization, thus moving dynamically from knowledge exploration to 

knowledge exploitation (March, 1991).   

While extant research has focused on the importance of star employees, we 

posit that the overall process of dynamic capability formation cannot be understood in its 

entirety without explicit consideration of the average or non-star employees.  As 

highlighted by our analysis, ignoring this potential source of unobserved heterogeneity 

can result in overestimating the importance of a firm’s star employees.  Below we 

develop a typology of research employees that illustrates the disparate, yet equally 

important roles that stars and staff scientists play in developing dynamic capabilities.  

2.4.2 Typology of Research Employees as Boundary Spanners 

The typology we present below is based on our examination of the differential 

roles that individuals play in incumbent firms in knowledge-intensive industries.  In 

keeping with the empirical findings above, we consider all the employees involved in the 

innovation process to be a type of boundary spanner.  We focus on all individuals, 

whether researchers, scientists, or engineers, who are directly involved in the innovation 

efforts of the firm.  As each of these individuals plays a critical role in either facilitating 

the codification or flow of knowledge within a firm, we suggest that each of these 

employees should be considered a boundary spanner.  The specific role the boundary 

spanner plays, however, depends on whether an individual is connected to either 

internal or external sources of knowledge.  A significant interaction between the firm’s 
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top management and its research and engineering departments, as developed further 

below, is needed to effectuate innovation.   

The first type of boundary spanner we identify has above average connectivity 

with external sources of knowledge (Allen, 1977).  These individuals are inter-

organizational boundary spanners, given that their role in the organization is to select 

and filter the information entering the organization from external sources (Allen & Cohen, 

1969; Tushman & Katz, 1980).  Similar to the progression of science in society, both too 

much and too little information can stifle the process of scientific advancement.  The 

filtering role played by these individuals is critical because of the breadth and depth of 

information available to an organization. Accordingly, these individuals function as 

gatekeepers and knowledge brokers by facilitating a firm’s ability to identify promising 

areas of focus through connections to external sources of new knowledge within the 

greater scientific community.  We term these individuals science boundary spanners.   

The value of science boundary spanners to a firm stems less from the likelihood 

that these individuals create significant scientific breakthroughs themselves, and more 

from their ability to identify synergies between existing technologies (Schilling, 2005).  

Their ability to make novel connections between knowledge sources and to discern and 

leverage possibilities increases the organization’s entrepreneurial intuition, which in turn 

generates new insights and supports exploration of new knowledge (Crossan et al., 

1999).  Science boundary spanners are most often highly talented individuals, employed 

within a specific department or laboratory of a firm.  Given the time it takes to achieve 

visibility and gain reputation within scientific communities, these individuals tend to be 

senior employees.  These individuals are frequently employed as directors of specific 

product innovations or areas of research and laboratory lead scientists.  

By contrast, there are two types of intra-organizational boundary spanners who 

are able to increase the efficiency of a firm’s communication, given their connectivity 

within an organization (Tushman, 1977).  The need for first type of internal boundary 
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spanner, termed technological boundary spanners, is based on the notion that within an 

organization there exists a need for individuals who are strong researchers but whose 

primary connectivity is with other researchers within the firm.  This type of intra-

organizational boundary spanner differs from the typology discussed above, because the 

importance of these individuals is based on the scale or aggregate effort of the group, 

rather than on the superior effort of any particular individual.  The value provided by 

technological boundary spanners is that they act to effectuate the change identified by 

the firm’s externally-connected science boundary spanners.  These individuals should be 

primarily responsible for the implementation of the strategic path selected by the science 

boundary spanners, in conjunction with top management, and are thus responsible for 

the development of the firm’s intellectual property and technological capabilities.  These 

individuals serve to increase an organization’s expert intuition.   

Whereas entrepreneurial intuition has to do with finding new possibilities for 

future growth, expert intuition provides insight into pattern recognition (Crossan et al., 

1999).  These patterns allow for the transformation of deliberate and planned action into 

tacit knowledge, thus forming expertise (Polanyi, 1967).  Within society, and we suggest 

in an organization as well, this expertise develops more from collective efforts than it 

does from several key experts (Cole & Cole, 1972).  Within this perspective, science 

progresses through the work of the many, rather than the few.  Given that the nature of 

the connectivity of these boundary spanners is directly related to the scale or number of 

such individuals, these boundary spanners should be comprised of the firm’s average (or 

laboratory bench) scientists.  Whether it is from considerations of tenure or talent, a firm 

should structure a segment of its innovation efforts to maximize the efficiency of the 

communication between technological boundary spanners.   

From a functional standpoint these non-stars serve a vital role within the 

organization  (DeLong & Vijayaraghavan, 2003).  Average performers can serve the 

important role of grounding and stabilizing the visionaries within the firm.  Non-stars are 
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often more loyal to the organization and can make up for second-rate functional skills 

through an increased awareness of organizational processes and norms.  These 

individuals often form networks within the firm with other non-star employees, and are 

thus able to increase the effectiveness of intra-firm communication.  Recent empirical 

research illustrates that the role these non-stars play, as complementary resources, is so 

significant as to mediate the effect of star scientists on innovative output (Rothaermel & 

Hess, 2007).  It is for this reason that an organization attempting to build effective 

dynamic capabilities should not be blinded by their star performers at the expense of 

their average employees.   

A second type of intra-organizational boundary spanner, termed 

science/engineering (S/E) boundary spanners, is needed because different departments 

that are each critical to the innovation process often ‘speak’ different languages due to 

different mindsets.  As such, certain key individuals are needed to ‘translate’ between 

different departments within the organization.  For firms in high-velocity environments, 

this translation is most critical between the areas of the firm creating the science 

necessary for invention and those engineering the technology to innovate.   Firms 

attempting to innovate require a resource that enables it to communicate between the 

disparate areas of basic scientific research, engineering, and manufacturing of the final 

innovative product. Based on this description, we suggest that S/E boundary spanners 

serve to increase the organization’s interpretive ability by playing a key role in the firm’s 

ability to actually create or manufacture the product based on the developed intellectual 

property.  This ability requires the organization to develop an understanding of  how to 

turn an invention into a commercializable innovation (Crossan et al., 1999).  This 

capability to integrate disparate activities stems from the creation of a cognitive map, 

based on the experiences of the organization that creates a common language and 

shared meaning between disparate areas of the organization.  It is through this 
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mechanism that S/E boundary spanners increase the efficiency of communication within 

the organization.    

The requisite level of intra-organizational connectivity suggests that these 

individuals tend to be employed in a more general managerial role within the R&D or 

innovation process.  These individuals might be employed as Chief Technology Officer, 

Chief Operating Officer, or Chief Executive Officer.  Given the differences in their type of 

connectivity they possess, the same individual is not likely to occupy the role of both a 

science and S/E boundary spanner.  Exceptions to this may be in limited resource 

conditions, such as small firms, or in extreme velocity environments, when key 

knowledge is held by only a few individuals, as was the case in the early years of 

biotechnology. The final step of our analysis is to illustrate how these types of research 

employees are utilized by incumbent firms to surpass the knowledge gaps that they 

encounter in the process of attempting to develop dynamic capabilities.   

2.5 Building Dynamic Capabilities 

2.5.1 Spanning the Cognitive Gap: Exploring for New Strategic Paths 

Relating this discussion to March’s (1991) development of the exploration-

exploitation framework, surpassing the cognitive gap requires that firm undertakes 

exploratory activities.  We suggest that the effectiveness of its exploratory activities is 

directly related to its science boundary spanners.  This assertion is based on the notion 

that exploratory activities are focused on developing strategic opportunities for the 

organization.  To assess the attributes of the strategic alternatives, information related to 

prior decisions made is combined with information attained from external sources of 

knowledge.  To search out and assess new opportunities, organizations must be able to 

scan, create, learn, and interpret disparate sources of information (Teece, 2007).  Thus, 

the selection of future strategic paths requires a resource that is connected to both the 

external and internal firm networks.  A firm’s science boundary spanners, in conjunction 
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with top management, facilitate a firm’s ability to cross the cognitive gap by selecting 

between options representing future strategic paths.  An organization focused on 

reducing the cognitive gap with the environment is interested in developing connections 

or channels with external sources through which information flows into the organization.  

Connectivity to external sources of knowledge in turn improves the positioning of a firm 

within its network (Powell et al., 1996).     

The critical role that top management teams play in deciding firm strategy when it 

emerges from deep within the organization has been well-developed in the management 

literature (Burgelman, 1994; Kaplan et al., 2003; Tushman & Rosenkopf, 1996).  This 

literature has illustrated that it is important for a firm’s top management team to have 

both the focus and the technical ability to understand the strategic options presented to 

them (Kaplan et al., 2003).  What remain unexamined are the mechanisms that top 

managers employ to gain both the knowledge of the alternatives as well as the ability to 

evaluate them.  This research thus far has been limited to examining the managerial 

social networks, including job mobility and board interlocks (Rao, Davis, & Ward, 2000; 

Uzzi, 1997).  Following the bottom-up perspective advanced by Rosenkopf, Metiu, and 

George (2001), analysis of managerial cognition requires the consideration of the 

interactions between top management teams and the firm’s lower-level, but front-line 

researchers.  Unlike Rosenkopf et al. (2001), however, we posit that these interactions 

should be formalized into organizational routines and structure, rather than be voluntary 

and non-contractual in nature.  The formalization of such a consultancy role helps to 

shed light on how these individuals can increase the entrepreneurial intuition of the 

organization. 

Support for the formalization of the role of science boundary spanners with top 

management is provided by Mintzberg and McHugh (1985), who note that a firm’s 

emergent strategies are often formed through interactions between many people, 

including operating personnel, experts, and advisors.  These experts and advisors not 
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only facilitate the process of selecting between strategic options but also the selection of 

the appropriate mechanisms (e.g., alliances, acquisitions, joint ventures, etc.) that 

should be employed to effectuate the selected strategic path (Ettlie and Pavlou, 2006; 

Rosenkopf et al., 2001).  Given their position within the firm, the science boundary 

spanners, acting as knowledge brokers, should be used as consultants to the top 

management team for the firm to effectively develop the stock of real options 

representing areas of future growth (McGrath, 1997).  This consultancy role allows the 

science boundary spanners to act as the champion of the new path or technology.  Prior 

research has illustrated that the presence of such a technological champion increases 

the likelihood of buy-in from the top management team, which in turn results in greater 

financial and managerial support for the development of that technology (Hargadon & 

Sutton, 1997; Howell & Higgins, 1990).  Additionally, this consultancy with science 

boundary spanners may quicken the process through which new technologies are 

identified, and thus lead to an earlier involvement of top managers in the process of new 

product development.  This earlier involvement is key due to the observed inverse 

relationship over time between top managers’ interest in the new product development 

process (which reaches its peak shortly before product introduction) and the ability to 

influence its direction based on strategic considerations (Schilling, 2005).       

A firm’s science boundary spanners represent a resource that both directly and 

indirectly helps the firm to increase its cognitive absorptive capacity.  Science boundary 

spanners serve to not only select relevant information but also to limit irrelevant 

information from distracting the focus of the firm (Allen & Cohen, 1969).  Their task is 

more often than not to decide which new knowledge not to pursue, rather than to identify 

new knowledge that should underlie a new strategic path.  These boundary spanners 

have been shown to have to a significant positive effect on organizational subunit 

innovative output (Tushman & Katz, 1980).  Well-connected individuals, acting as 

information gatherers and filters, are thus able to guide the organization down selected 
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pathways based on the characteristics of the information disseminated.  Without such 

individuals, the innovation process of a firm would be ‘headless,’ and as such would be 

stifled by either too much or too little pertinent information coming into organizations.  A 

key aspect of the boundary spanner role is creating knowledge conduits from the 

external environment into the firm through selection of alliance partners, acquisition 

targets, or choosing between alternative strategic directions. 

Monsanto’s early experience with university alliances illustrates the extent to 

which the presence of a science boundary spanner, in the form of a star scientist, can 

positively influence the quality of a firm’s external technological sourcing.  In Monsanto’s 

attempt to transform their core business from a chemical to a life sciences company, it 

pursued a number of alliances with universities’ research laboratories (Hill, 2004).  The 

company found one of its first agreements, with Harvard Medical School, to be 

unsatisfying because the Monsanto scientists were unable to gain pre-publication 

access to the research findings and were unable to influence the direction of Harvard’s 

research program.  Subsequently, Monsanto hired star scientist Howard Schneiderman 

(dean of biological sciences at University of California, Irvine, and a leading expert in 

genetic engineering) to head the firm’s research and development efforts.  

Schneiderman was able to influence not only whom Monsanto chose as partners, but 

also was able to negotiate subsequent agreements to give the firm greater access to 

and influence of the research process.  As an example, under Schneiderman, Monsanto 

funded significant projects with key scientists at Washington University in St. Louis and 

Oxford University in the U.K., allowing the universities to hold any resulting patents while 

the company retained exclusive marketing rights.  The decision to invest was made by a 

committee that included a combination of Monsanto and university scientists.  Thus, key 

Monsanto scientists acting as boundary spanners, including Schneiderman, were able to 

guide the company toward research institutions where they felt the basic and applied 

research conducted could provide the most benefit to the firm.   



  

37

 
Another important aspect of the science boundary spanner is the indirect effect 

these individuals often have on an organization, as they frequently adopt a training and 

socialization role within the organization (Tushman & Katz, 1980).  Through this lens, 

boundary spanners facilitate the external communication skills of their colleagues 

through training and coaching on the job.  The activity of science boundary spanners 

enhances the overall cognitive absorptive capacity of the organization by increasing the 

connectedness of other firm employees.  It is through this process that the knowledge 

related to a new technology is disseminated.    

2.5.2 Spanning the Operational Gap: Exploiting the Current Knowledge Base   

By contrast, the spanning of the operation gap requires that the organization 

undertake activities that are focused on exploiting the current knowledge base.  As 

suggested by our systems approach to dynamic capability formation, the firm’s ability to 

identify promising paths is moot, if the firm is unable to effectuate the needed changes 

within the organization.  The exploitive activities within the organization are effectuated 

by its technological boundary spanners.  The importance of these individuals is 

illustrated by the notion that firms wishing to take advantage of research conducted 

outside their organizational boundaries need to invest in absorptive capacity by 

accumulating the knowledge, skills, and organizational routines necessary to identify and 

utilize externally generated knowledge (Cohen & Levinthal, 1990).  These investments in 

a firm’s absorptive capacity are particularly salient if firms are to take advantage of 

upstream advances in fundamental science (Cockburn & Henderson, 1998).  If a firm is 

to be able to sense and react to shifts in the environment it must not only have sufficient 

connections to the external environment, but also the requisite knowledge assets and 

processes to effectuate the needed change.  Relating this to the Crossan et al. (1999) 

framework, this knowledge represents the organization’s expert intuition.  In support of 

the notion that individuals matter to the development of such intuition, Cohen and 
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Levinthal (1990) note that absorptive capacity tends to develop cumulatively as a 

function of the scale of the organization’s intellectual human capital.      

For the firm to surpass the operational gap, therefore, a firm’s investment in 

individuals should be focused on the scale or aggregate efforts of its individuals, rather 

than the few elite employees.  Such scale is needed for the firm to develop the expertise 

to understand the knowledge associated with a chosen strategic path, which is the 

footprint of a strong absorptive capacity.  As such, the firm’s technological boundary 

spanners become critical for a firm to develop the requisite absorptive capacity.  The 

processes developed during this stage serve to further reduce the uncertainties inherent 

to adapting to a shifting knowledge environment.   

The notion that average employees matter represents a shift from the focus of 

prior research that has highlighted the importance of the elite employees.  Support for 

the notion regarding the importance of non-star employees is provided in research 

demonstrating a positive effect of a firm’s overall human and social capital on firm 

performance (Gardner, 2005; Hitt et al., 2001).  Additionally, a firm’s stock of intellectual 

human capital has been shown to be critical to its ability to adapt to a changing 

environment (Cockburn & Henderson, 1998; Rothaermel & Hess, 2007).  As an example 

of this, Henderson and Cockburn (1994) find that locally embedded knowledge and skills 

are a specific competence for the firm and a source of enduring competitive advantage.  

More specifically, the disciplinary focus of groups of scientists within the firm can create 

deeply embedded knowledge that is not easily codified, and is thus difficult to transfer or 

imitate.  In a similar fashion, Leonard-Barton (1992) indicates that the tacit knowledge 

developed by engineers with a specific production process over an extended period of 

time can develop into a source of competitive advantage for the firm.  The specificity of 

the complex learning necessary for a firm to codify the knowledge associated with a new 

technology favors those firms that invest in significant levels of intellectual human 

capital, here conceptualized as the number of non-star employees within a firm. 
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InnoCentive, an initiative matching scientists to R&D challenges posed by 

organizations seeking assistance, supports our contention that successful spanning of 

the operational gap requires a critical mass of non-star employees.  As this example 

illustrates, scale does not necessarily represent the development of an internal 

competency, but rather can be the product of ample connectivity with the external 

scientific environment.  Specifically, by using InnoCentive, an organization attempts to 

build an expertise by opening its R&D process to any scientist, not just researchers 

within the organizational boundaries.  As individuals, the scientists of the InnoCentive 

network are not necessarily stars.  Any researcher, or group of researchers, can submit 

a solution and potentially win a pre-specified reward for solving the problem.  In return, 

these individuals sign over the related intellectual property rights.  The effectiveness of 

this approach is illustrated by the fact that many companies including Boeing, Ciba, 

Dow, DuPont, Novartis, and Procter & Gamble have all joined the InnoCentive network 

exchange.   

The InnoCentive example helps to illustrate the distinction between expert and 

entrepreneurial intuition (Crossan et al., 1999).  More specifically, organizations seeking 

the support of the InnoCentive network are attempting to build their expert intuition.  It is 

important to note that the utilization of this approach cannot directly facilitate the 

development of entrepreneurial intuition.  Such intuition is a pre-requisite for the seeking 

organization, however, as it must have ex-ante knowledge relating to the potential 

solutions.  In addition, if the seeking organization is to derive value from its participation 

in the InnoCentive network, it must be able to clearly define the problem of interest.  

Thus, it remains up to the individual firms or clients of InnoCentive to determine what 

question should be asked or how the knowledge gained should be transformed into 

manufacturing.  

The sequence of how new knowledge enters an organization and is 

subsequently transformed into innovation matters.  More specifically, the cognitive gap 



  

40

 
must be spanned prior to the firm attempting to cross the operational gap.  In a similar 

notion, Zollo and Winter (2002) indicate that codification by itself does not necessarily 

yield benefits to the firm.  They posit that the codification process must not only be done 

correctly for it to benefit the firm, but that the codification process itself can lead to the 

early identification of potential mistakes.  In contrast, it is not the codification process 

that helps to identify mistakes but instead, the final obstacle in the dynamic capability 

formation process, the spanning of the engineering gap.    

2.5.3 Spanning the Engineering Gap: Turning Invention into Innovation 

While exploration and exploitation activities are critical for innovation at the 

process or capability level, additional activities focused on the integration of these 

activities is necessary for organizational adaptation to occur.  As previously discussed, 

activities focused on integration are very difficult for organizations because of the 

significant mismatch between the communities of practice focused on science and those 

on engineering activities.  The mismatch between these different communities can be 

potentially alleviated by the use of boundary spanners.  Compared to the science 

boundary spanners, the value of science/engineering boundary spanners in spanning 

this gap stems from their connectivity within the firm (Tushman & Katz, 1980).  

Specifically, in industries where the locus of knowledge is upstream, S/E boundary 

spanners are critical because they serve to connect the disparate departments relating 

to the discovery of an invention and those relating to engineering the manufacturing of 

the innovation.  As previously mentioned, these individuals increase the efficiency of 

communication within the organization by increasing the organization’s ability to ‘speak’ 

a common language across disparate sources of knowledge.  S/E boundary spanners 

take on an active training and socialization role within the organization (Tushman & Katz, 

1980).   
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S/E boundary spanners are employed to answer such critical questions as: how 

does this invention fit our current business?  Can this invention be effectively and 

efficiently manufactured, and thus turned into innovation?  Can the underlying 

technology be protected?  What will the market reaction to the product be?  It is 

important to note that the S/E boundary spanning role can be filled by specific individuals 

within the firm, or by a process through which the opinions of key individuals in disparate 

departments are compiled together to form a single opinion.     

An example from Intel illustrates how key individuals can fill the S/E boundary 

spanner role as well as instill a culture that fosters the needed level of connectivity 

between business practices. The founders of Intel, Gordon Moore and Robert Noyce, 

had worked at Fairchild and designed the R&D process at Intel specifically to minimize 

the engineering gap.  Intel fostered the S/E boundary spanning nature of its employees 

by assigning each of its new researchers to work for six months in the manufacturing 

department (Chesbrough, 2003).  By contrast, Procter & Gamble (P&G) filled the S/E 

boundary spanning role by developing a process, called the ‘eureka catalog,’ that was 

distributed to key managers in marketing, manufacturing, R&D and others (Huston & 

Sakkab, 2006).  P&G laboratory heads solicit comments from each of these managers 

and formulate general opinions as to whether or not a project should be recommended 

for manufacturing. Both of these approaches appear to be effective in filling the S/E 

boundary spanning role.    

2.5.4 The Feedback Loop: Learning from the Dynamic Capability Formation Process  

The final step in the dynamic capability formation process involves the learning or 

reciprocal nature of the relationship between the sub-categories of dynamic capabilities.  

During this process the firm must transmit the results of the entire formation process 

back to be used for the selection of future firm paths.  This importance stems from the 

notion that for a firm to adapt to a continuously changing knowledge environment, it must 
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be a member of the larger scientific community.  Within the scientific community, a 

member must give, if it is to get.  To gain access to and membership in these 

communities, a firm must be actively involved in the disclosure of new knowledge 

through presentations at conferences and publications in academic journals.  Thus, 

biotechnology or pharmaceutical firms whose members are actively participating in this 

community are more efficient learners and, therefore, have a higher absorptive capacity 

than firms not included in this network (Deeds, 2001).  Depending on whether the 

knowledge created is proprietary (e.g., trade secrets) or open (e.g., publications or 

patents), the knowledge may or may not extend outside the organization.    

Successful management of the learning or feedback loop requires a resource that not 

only has strong intra-organizational connections, but also a fundamental understanding 

of the larger scientific community.  Based on this, the S/E boundary spanners should 

play a significant role in the circulation of information within the firm, while the science 

boundary spanners, in conjunction with top management, should ultimately make the 

decisions as to which information gets released outside of the firm.    

2.6 The Model in Action at Merck 

While the analysis of the individual components of our framework offer interesting 

insights into the formation of dynamic capabilities, the true complexities of the innovation 

process can only be examined when the entire model is analyzed in action.  Merck’s 

successful vaccine research development program in the 1970’s and 1980’s illustrates 

the various important, yet disparate roles played by individuals in an effective dynamic 

capability formation process. 

Merck, one of the most successful pharmaceutical firms in the U.S., can attribute 

its high performance to its superior in-house research capability and drug discovery and 

development processes (Gambardella, 1992).   Head scientists, acting as science 

boundary spanners, have been successful in the recruitment and retention of strong 
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research personnel, in part because they maintain an academic-like atmosphere within 

the company’s research laboratories.  Additionally, by promoting scientists to managerial 

roles within the company, Merck has been able to foster effective S/E boundary 

spanners.  This combination of visionary scientists and strong internal communication 

mechanisms allowed Merck to out-innovate its competitors and develop an effective and 

affordable vaccine for hepatitis B.  As reflected in our framework, the process was not 

linear, but rather iterative as Merck learned from its prior mistakes.   

The hepatitis B vaccine, unlike the vaccines for polio, measles, mumps, and 

rubella, could not be cultivated in cell culture (Galambos & Sewell, 1995).   The 

development of a successful vaccine would require human blood, where only subunits of 

the human virus would be used.  Maurice Hilleman, working as a ‘star’ biologist at the 

Merck Institute for Therapeutic Research, recognized the need to develop an effective 

vaccine for hepatitis B as well as the importance of the possibility of developing a 

vaccine from subunits of the virus.  Hilleman was not the head of the Merck’s Virus and 

Cell Biology Research Department, but was well-connected in the science community, 

and ultimately played a central role in developing the company’s scientific capabilities.  

Based on his positioning and tenure, we suggest that Hilleman was acting in the role of 

science boundary spanner.  Following Hilleman’s chosen path, Merck developed the 

capabilities and knowledge base that was new to both the firm and the industry.  After 

many years of extensive research and testing, Merck developed a subunit hepatitis B 

vaccine made from purified human blood.  By 1981, the serum-based vaccine was made 

available for general use (Patlack, 2000).  

The initial vaccine developed was expensive and had a lead time that was longer 

than any other vaccine at the time.  Production of the hepatitis B subunit vaccine in large 

quantities was hampered by the need for the blood of hepatitis B carriers and the 

realization that the plasma form of the vaccine raised concerns with the public regarding 

its safety in light of the newly discovered AIDS virus (Galambos & Sewell, 1995).  
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Working with the former scientist turned CEO, Roy Valegos, Hilleman realized that the 

current vaccine production would not be practical in meeting demand.  Changing the 

vaccine required that Merck create new connections both within Merck and between its 

research partners.  As CEO and a former research scientist, Valegos was an effective 

S/E boundary spanner and thus was well-aware of many of the other research initiatives 

both at Merck and within the scientific community.  Through this connectivity, he 

recognized the new developments in DNA technology and molecular biology and the 

unique opportunities they offered researchers producing antigens.   

While Hilleman encouraged Merck to spend more than $8 million (roughly $26 

million in 2005 dollars) on upgrading its production facilities, Valegos recognized that 

Merck did not have the necessary capabilities in-house to make large-scale vaccine 

production possible.  Instead, he hired microbiologists and refocused the firm’s labs on 

using this new technology for vaccine research.  Valegos used this new knowledge base 

to establish collaborative research programs with renowned scientist William Rutter at 

the University of California, San Francisco.  This partnership eventually lead to the novel 

technique used to insert genetic information into DNA, termed genetic splicing 

(Galambos & Sewell, 1995).  This new process would both ensure that the vaccine 

contained no contamination from other sources and allowed production of large 

quantities of the vaccine (Patlack, 2000).   Merck spent considerable time and effort to 

develop the internal capability to produce a recombinant yeast-derived antigen, rather 

than the previously developed blood plasma-derived antigen.   

Hilleman, acting as a science boundary spanner, identified the appropriate path 

for Merck to pursue.  Following his advice, Merck devoted significant time and money to 

hire the technological boundary spanners needed to build the new technical capabilities 

and processes necessary to develop this vaccine.  Lastly, acting as the S/E boundary 

spanner, Valegos recognized the need for changes and redirection of the processes if 

effective and efficient manufacturing and development was to take place.  Altogether, 
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these interactions led to Merck’s new innovative position, an improved version of a 

hepatitis B vaccine.  This recombinant vaccine was the first of its kind for use in humans 

and was approved by the U.S. Food and Drug Administration for general use in 1986, 

after nine years of research (Patlack, 2000).  Merck’s Recombivax HB has been 

identified as the sixth largest blockbuster drug to license the Cohen-Boyer recombinant 

DNA patent (Feldman, 2005).   

2.7 Discussion  

We advanced herein a framework that explicates a system of dynamic capability 

formation.  Our point of departure is the contention that the process of continuous firm-

level innovation is hampered by three distinct knowledge gaps relating to the 

development of the sub-categories of dynamic capabilities identified by Teece et al. 

(1997): a cognitive gap, an operational gap, and an engineering gap.  By analyzing how 

individuals can help span these gaps, we shed light on the relationship between elite 

and average employees in the context of firm innovation.  While this relationship has 

primarily been considered to be substitutive or competitive in nature, our analysis 

illustrates that the roles of elite and average employees are actually complementary in 

nature.  Viewed through a sociological lens, this paper offers an extension of the 

Kuhnian paradigm (Kuhn, 1962).  Whereas Kuhn describes a world in which some key 

scientists perform a paradigm-breaking function and a much larger group performs the 

“normal science” that follows, we argue that this perspective also applies to the 

framework of dynamic capability formation within an organization.   

To accomplish this we leverage the construct of boundary spanning within an 

organization, which treats the individual’s level of connectivity as the value-driving 

characteristic.  By positioning this construct within our framework of innovation, we 

highlight that, in addition to the elite employees playing the role of boundary spanners, 

the average employees should also be considered boundary spanners.  To effectively 
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build dynamic capabilities, a firm should construct its innovative efforts to recognize not 

only the existence of these disparate roles, but also leverage their path-dependent 

nature. 

Within the setting of incumbent firms in knowledge-intensive industry, this path-

dependence illustrates that dynamic capabilities can only be built if the knowledge gaps 

are spanned in sequential order.  This order is critical because the first step of the 

process requires the firm to identify the environmental shift of concern, as well as 

discern the appropriate strategies in response.  The activities associated with surpassing 

this gap are exploratory in nature.  The effectiveness of these activities directly relate to 

the technical fitness of the dynamic capability being developed.  We demonstrate that 

the firm’s science boundary spanners are critical to the success of these activities.  

Here, we suggest that there is an inverse relationship between the velocity of an industry 

and the number of individuals with whom the new knowledge resides.  In high-velocity 

environments the new knowledge is initially held only by a few key individuals that can 

leverage a significant connectivity with the external environment.  The initial period after 

the emergence of biotechnology serves as a good illustrator of this relationship (Zucker 

and Darby, 1997b; Zucker, et al. 1998b). 

During the second stage of our framework, technological boundary spanners 

codify the knowledge gained in the first stage to develop the ordinary capabilities 

necessary to effectuate the identified change.  A firm’s technological boundary spanners, 

comprised largely of the firm’s average scientists, serve to develop the technological 

capabilities needed to accomplish this goal.  Given that the focus of these activities is 

often on improving technological and operating efficiencies, these activities are exploitive 

in nature. 

The third stage in the process of dynamic capability formation requires that a firm 

to integrate its new and existing capabilities and processes it has developed in prior 

stages in our framework.  Again, this is accomplished by highly connected individuals or 
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boundary spanners.  These individuals, termed science/engineering boundary spanners, 

are well connected internally within the firm (rather than externally, as in the case with 

science boundary spanners).  These individuals facilitate communication between the 

disparate organizational departments or divisions associated with basic science and 

engineering.  Taken together, the effectiveness of the organization in surpassing these 

two knowledge gaps directly relates to its evolutionary fitness.  Incorporating this notion 

into our system of dynamic capability development illustrates that technical fitness is a 

necessary but not sufficient condition for the organizational growth, survival, and 

competitiveness associated with evolutionary fitness (Helfat, et al. 2007).  Following this 

logic, while star scientists may allow an organization to sense and react to opportunities, 

it is the balance between stars and staff scientists that gives organizations the ability to 

exploit these opportunities.   

In the final stage of the process, the science and S/E boundary spanners of the 

firm transmit knowledge related to the overall process of innovation outwards to 

accomplish knowledge diffusion within the organization, and, where advantageous, 

beyond the organization’s boundaries to participate in the open science community.  The 

amount and destination of this knowledge is determined by the nature of both the 

intellectual property produced as well as the nature of the knowledge environment facing 

the firm.  The information contained in these feedback loops is of critical importance to 

the firm’s ability to evaluate and integrate emergent strategies (Mintzberg & McHugh, 

1985).   

Top management plays two critical roles in the innovation process.  The first role 

comes about through interactions with the firm’s boundary spanners, who serve as 

knowledge brokers for these top managers and thus are central to the decision-making 

process.  The second role played by top managers is in determining how the firm 

allocates its resources between stages of the dynamic capability formation process.  

Given that our typologies of boundary spanners are formalized, their direction and 
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implementation requires managerial attention.  To illustrate this point, we suggest that 

while the process of dynamic capability formation is cyclical, it does not follow that each 

stage is equally important to every firm.  In assessing which of the three disparate 

stages is the most critical in determining the effectiveness of the developed capability, it 

is important to once again investigate the knowledge structure of the underlying 

knowledge environment as well as the strategic direction of the firm.   

For example, in industries where the majority of the velocity comes from 

accessing upstream information for the purposes of differentiating the firm’s product 

offering (e.g., biotechnology and pharmaceuticals) the first step in the process is the 

most critical.  By contrast, when cost is the primary driver of innovation (e.g., wholesale 

retailing), it may be the second step that is critical to the effectiveness of the developed 

capabilities.  Finally, if uncertainty of an industry stems from the ability of a firm to 

successfully and efficiently manufacture the end technology (e.g., semiconductors) the 

final stage in the model is the most critical.  In this case, S/E and technological boundary 

spanners play important roles in dynamic capability formation.   

2.71 Conclusion 

The construct of dynamic capabilities has been met with skepticism.  The 

tautological conceptualization of dynamic capabilities is the primary reason that, in more 

than a decade since its inception, researchers have struggled to use the construct in the 

prescriptive fashion called for by Teece and colleagues (Teece & Pisano, 1994; Teece et 

al., 1997).  This conceptualization results from neglecting the inherent multi-level nature 

of the construct.  Recent research has attempted to overcome this shortcoming by 

investigating the micro-foundations of such capabilities—the skills, processes, 

procedures, and organizational structures that comprise dynamic capabilities (Teece, 

2007).  Of interest, however, is that these processes and procedures themselves 

represent collective actions.  As such, we suggest that the actual micro-foundations of 
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dynamic capabilities are the individuals within the firm (Felin and Hesterly, 2007).  Thus, 

we suggest that the foundations of long run enterprise success may rest in the 

organization’s ability to understand the different roles individuals play in the formation of 

dynamic capabilities.  It is important to note that identification and implementation of 

these roles represents a necessary but not sufficient condition to effective dynamic 

capability formation.  Rather, the formation of effective dynamic capabilities requires that 

the right individuals be inserted into the appropriate roles in the system of capability 

formation.  Therefore, understanding the heterogeneity inherent in the organizational 

intellectual human capital is critical to both the technical and evolutionary fitness of the 

developed capabilities.  

In the spirit of prior conceptual work on dynamic capabilities (Eisenhardt and 

Martin, 2000; Teece, et al. 1997), application of the framework we have developed here 

should allow a firm to adapt or even create continuously changing environments, and 

thereby gain competitive advantage through earning a continuous string of 

Schumpeterian rents based on the introductions of innovative products or services.  The 

systematic nature of capability formation is illustrated by the fact that this evolutionary 

fitness is a function of the technical fitness of its existing capabilities (Helfat et al., 2007).  

Further, technical fitness is itself a function of the organization’s ability to develop 

formalized roles for individuals within the organization’s decision-making process.  To 

this end, we introduce a typology of these different roles that helps explicate how firms 

can identify, modify, and implement emergent strategies.  By developing the inputs and 

outputs of the construct independently, we have moved past the tautological 

conceptualization of dynamic capabilities, thus opening the door for empirical 

researchers to attempt the needed falsification of the dynamic capability formation model 

developed herein. 
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CHAPTER 3  

INNOVATING WITHIN A NEW TECHNOLOGICAL PARADIGM: THE ROLE OF 
INDIVIDUAL, FIRM, AND NETWORK-LEVEL EFFECTS IN BUILDING CAPABILITIES   

3.1 Introduction  

The recent extension of the resource-based view into dynamic markets provides 

a fresh perspective for analyzing how firms develop new capabilities to cope with shifting 

markets.  This theoretical perspective posits that a firm’s ability to “integrate, build, and 

reconfigure internal and external competences to address rapidly changing 

environments” lies at the center of its capability to learn and innovate and thus to realize 

potential competitive advantages (Teece, Pisano, and Shuen, 1997: 516).  Eisenhardt 

and Martin (2000: 1107) suggest that antecedents to dynamic capabilities, which they 

describe to be “processes to integrate, reconfigure, gain and release resources—to 

match and even create market change,” can be found at the individual, firm, or network 

level (see also Teece, et al. 1997).    

Assuming that firms draw on antecedents across different levels to build dynamic 

capabilities, several important but under-explored questions arise, such as: Where is the 

locus of the antecedents to firm-level dynamic capabilities?  Does the locus lie within the 

individual, within the firm, or within networks?  If so, which levels are relatively more 

important?  Or, does the locus of the antecedents to dynamic capabilities lie within the 

intersection of any of these levels?  In other words, does the locus lie across multiple 

levels of analysis?  If the locus of the antecedents to dynamic capabilities lies across 

multiple levels of analysis, are the different mechanisms to innovate complements or 

substitutes?  

In attempting to answer the question pertaining to the locus of the antecedents to 

dynamic capabilities, extant research has generally focused on only one level of 
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analysis, while neglecting other levels of analysis, thus opening the door for spurious 

findings due to unobserved heterogeneity.  In their insightful theoretical treatment of the 

locus of knowledge in value creation, Felin and Hesterly (2005) identify two serious 

problems with the uni-level research approach.  First, concentrating on only one level of 

analysis implicitly assumes that most of the heterogeneity is located at the chosen level, 

while alternate levels of analysis are considered to be more or less homogenous.  

Studies of firm-level heterogeneity assume, for example, that the significant variation 

occurs at the firm-level of analysis, while individuals are more or less homogenous or 

randomly distributed across firms.  Second, when focusing on one level of analysis, 

researchers implicitly assume that the focal level of analysis is more or less independent 

from interactions with other lower- or higher-order levels of analysis.  Firm-level 

heterogeneity, for example, is assumed to be relatively independent from individual- or 

network-level effects.  Taken together, the threats of homogeneity to and independence 

from alternate levels of analysis are serious concerns that can potentially lead to 

spurious empirical findings.  

When studying the dynamics of technological innovation, for example, 

researchers generally analyze incumbent firms as a more or less homogenous group of 

firms or as an industry, thus neglecting to investigate firm-differential performance 

(Christensen, 1997; Foster, 1986; Henderson and Clark, 1990; Tushman and Anderson, 

1986).  Likewise, when analyzing firm-differential performance, researchers invoke 

constructs like resources, competences, capabilities, processes, and routines (Barney, 

1991; Henderson and Cockburn, 1994; Nelson and Winter, 1982; Peteraf, 1993), while 

neglecting individual-level heterogeneity.  Finally, the handful of researchers highlighting 

individual-level heterogeneity as an antecedent to firm-level heterogeneity (Lacetera, 

Cockburn, and Henderson, 2004; Zucker and Darby, 1997a; Zucker, Darby, and Brewer, 
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1998; Zucker, Darby, and Armstrong, 2002), generally discount firm- and network-level 

effects.  

To address the threats of homogeneity and independence common in prior 

research, we develop a multi-level theoretical model that accounts for potential 

heterogeneity at and across three different and distinct levels when predicting innovation 

within a new technological paradigm.  In particular, we integrate potential heterogeneity 

at the individual, the firm, and the network-level of analysis by developing direct- as well 

as moderating-effect hypotheses.  Thus, the three levels of analysis revealed in this 

process of building capabilities are: the individual-level, representing internal 

investments such as employee hiring (Allen and Cohen, 1969; Cockburn and 

Henderson, 1998; Lacetera, et al. 2004; Stuart, Ozdemir, and Ding, 2003; Zucker and 

Darby, 1997), the firm-level, representing internal investments such as research and 

development (R&D) (Almeida, Song, and Grant, 2002; Cockburn and Henderson, 1998; 

Cohen and Levinthal, 1989; Deeds, 2001; Henderson and Cockburn, 1994; Zahra and 

George, 2000), and the network-level, representing external investments such as 

alliances (George, Zahra, and Wood, 2002; Gulati, 1999; Hagedoorn and 

Schankenraad, 1994; Owen-Smith and Powell, 2004; Rothaermel, 2001; Shan, Walker, 

and Kogut, 1994)  

While prior work clearly demonstrates that each of these three distinct levels of 

capability development affect a firm’s ability to innovate through the acquisition of new 

knowledge, each of the three research streams has neglected to consider the challenges 

of homogeneity and independence across levels.  Therefore, their results may be 

spurious due to misattribution (Felin and Hesterly, 2005).  Moreover, such an isolated 

research approach does not help us answer questions pertaining to the relative 

importance of each level, nor does it allow us to address questions concerning 

interactions across different levels.   
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In contrast, the integrative theoretical approach advanced herein enables us to 

not only assess the effect of each level of analysis on innovation in isolation, while 

controlling for potentially confounding lower- or higher-order levels of analysis, but also 

to assess how the three different levels of analysis moderate one another.  Indeed, we 

hope to make our most significant theoretical contribution by analyzing different 

interaction effects across different levels.  This approach enables us to test the 

hypotheses that the different individual, firm, and network mechanisms that build 

dynamic capabilities in the face of radical technological change can be considered as 

complements or substitutes.    

The research setting selected to empirically test such an integrative theoretical 

model across multiple levels of analysis is the global pharmaceutical industry, which 

experienced a radical transformation during the 23-year period between 1980 and 2002.  

Here, we document the attempts of incumbent pharmaceutical companies to build the 

capabilities necessary to innovate within the new biotechnology paradigm.  

Methodologically, we make a contribution in developing and analyzing a novel panel 

dataset that approaches the population of observations across different levels of 

analysis and categories.  Due to exhaustive data collection efforts on our part, in 

combination with the generous support of the U.S. Patent and Trademark office, we are 

fortunate to leverage fine-grained data on over 900 acquisitions, 4,000 alliances, 13,200 

biotechnology patents, 110,000 non-biotechnology patents, 130,000 scientists, 480,000 

publications, and 2.2 million journal citations.  

3.2 Theory and Hypotheses Development  

In the subsequent section, we develop hypotheses pertaining to the role of 

individual, firm, and network-level effects when predicting innovation within a new 

technological paradigm.  We move from a micro-level to a macro-level of analysis by 



  

60

 
beginning with an examination of individual-level effects before analyzing firm- and 

network-level effects.  The development of direct effects hypotheses is necessary to 

assess the effect of each level of analysis on firm innovation, while explicitly controlling 

for confounding levels of analysis.  This approach allows us to challenge the assumption 

of homogeneity across levels that is implicit in most extant research explaining and 

predicting innovation.  After developing the direct effects hypotheses, we concentrate on 

the interactions across levels, where we advance hypotheses highlighting 

complementarity and substitutability across the three different levels under investigation.  

This allows us to assess the validity of the assumption of independence across levels 

that is commonly found in prior research. 

3.1.1 Individual-level Effects  

3.1.1.1 Intellectual Human Capital.  Most of the empirical research investigating 

the locus of innovation focuses primarily on the networks of inter-organizational 

relationships (e.g., Ahuja, 2000; DeCarolis and Deeds, 1999; Hagedoorn, 1993; Shan et 

al., 1994; Powell, Koput, and Smith-Doerr, 1996; Rothaermel, 2001; Stuart, 2000).  

Thus, it is not surprising that both Teece et al. (1997: 518-520) and Eisenhardt and 

Martin (2000: 1108, 1112) explicitly highlight ‘allying’ as a dynamic capability.  Uni-level 

research focuses on alliances and networks, and implicitly assumes not only that lower 

levels (i.e., firm and individual levels) are homogenous, but also a lack of primacy in the 

consideration of the import of the individuals to firm-level heterogeneity (Felin and 

Hesterly, 2005).   

By investigating individual-level effects as a critical antecedent to firm-level 

innovation, we attempt to question the legitimacy of the conjecture of homogeneity 

across levels.  In contrast to the assumption of perfectly competitive factor markets 

(Hirshleifer, 1980), we posit that intellectual human capital can be heterogeneously 

distributed across firms, and thus must be accounted for when investigating firm-level 
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innovation (Barney, 1986; Felin and Hesterly, 2005).  With intellectual human capital, we 

refer to highly skilled and talented employees like research scientists, who hold 

advanced graduate degrees and doctorates.  In our sample of global pharmaceutical 

companies, about 0.5% of all employees fall in this category when we focus on research 

scientists that publish in academic journals. 

We posit that intellectual human capital facilitates a firm’s innovative output within 

a new technological paradigm.  We build on prior research that has investigated the role 

that intellectual human capital plays in helping a firm process and utilize external 

information (Cockburn and Henderson, 1998; Lacetera et al., 2004; Stuart et al., 2003; 

Zucker and Darby, 1997).  This research reveals that while alliances and acquisitions 

can be necessary to a firm’s ability to innovate and adapt, they are often of little value if 

the firm is not able to codify and integrate the external information (Allen, 1977; Allen 

and Cohen, 1969; Levinthal and Cohen, 1990; Tushman, 1977; Tushman and Katz, 

1980).  The importance of highly-skilled human capital was demonstrated by Allen and 

Cohen (1969), who produced convincing evidence for the existence of different coding 

schemes between organizations, specifically between academic institutions and 

corporate R&D facilities.  These different coding schemes create the possibility of 

communication difficulties in knowledge transfer.  This mismatch can be potentially 

alleviated by the use of a few key individuals “who are capable of translating between 

two coding schemes either through personal contact or knowledge of the literature, and 

who can act as bridges linking the organization to other organizations and workers in the 

field” (Allen and Cohen, 1969: 13).  Thus, intellectual human capital can link 

organizations effectively to external information, while enhancing the internal efficiency 

of communication.   

Accordingly, prior research highlights ‘gate keeping’ and ‘boundary-spanning’ as 

possible mechanisms to overcome the difficulties of communicating simultaneously 
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across and within organizations (Allen, 1977; Allen and Cohen, 1969; Tushman, 1977; 

Tushman and Katz, 1980).  Gatekeepers are thus defined as key individuals within a firm 

who are capable of understanding and translating contrasting coding schemes.  

Additionally, individuals acting as gatekeepers are able to span 

organizational/environmental boundaries to act as an information filter by evaluating, 

streamlining, and organizing knowledge flows from external sources (Tushman and 

Katz, 1980).  Gatekeepers and boundary spanners thus facilitate an organization’s ability 

to collect, assimilate, and apply external information in a two-step process.  They are 

able to gather and understand external information, and then to translate and 

disseminate this information into terms that are meaningful and useful to other 

organization members.   

Research also indicates that firm innovative performance is at least partially a 

function of the value of its human capital, which, in turn, is critical to an organization’s 

ability to adapt to a changing environment (Hitt, Bierman, Shimizu, and Kochhar, 2001).  

Thus, organizations are expected to invest more in acquiring, retaining, and training 

intellectual human capital as the value of their human resources increases (Gardner, 

2005).  Such a case has emerged within the realm of the pharmaceutical biotechnology 

industry, where changes in drug discovery and development have enhanced the need 

for the input of scientists who are skilled in a wide variety of disciplines, some of which, 

like molecular biochemistry, are newly emerging (Cockburn, Henderson, and Stern, 

2000; Henderson and Cockburn, 1994).   

To understand intellectual human capital, researchers have investigated the role 

that the development of tacit knowledge plays in a firm’s ability to adapt to new 

technological paradigms.  As an example, Henderson and Cockburn (1994) find that 

locally embedded knowledge and skills among a firm’s intellectual human capital may be 

a competence for the firm and a source of enduring competitive advantage.  More 
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specifically, it is the disciplinary focus of groups of scientists within the firm that can 

create deeply embedded knowledge that is not easily codified, and thus difficult to 

transfer or imitate.  For instance, pharmaceutical firms often develop expertise in specific 

areas, such as Eli Lilly in the field of diabetic therapy or Hoffman-La Roche in the area of 

anti-anxiety drugs (Henderson and Cockburn, 1994).  In a similar fashion, Leonard-

Barton (1992) indicates that the tacit knowledge developed by skilled engineers with a 

specific production process over an extended period of time may develop into a source 

of innovation and thus competitive advantage for the firm.  Taken together, the specificity 

of the complex external and internal learning necessary for a firm to generate innovation 

within a new technological paradigm favors those firms that invest in and maintain 

significant levels of intellectual human capital.  

Hypothesis 1a:A firm’s innovative output within a new technological paradigm is a 

positive function of its intellectual human capital.  

3.1.1.2 Star Scientists.  Numerous empirical and qualitative studies provide 

convincing evidence, however, that not all intellectual human capital is created equally.  

Thus, significant heterogeneity exists even within highly specialized intellectual human 

capital.  Lotka (1926) was one of the first to note a highly skewed distribution pertaining 

to research output among scientists.  When studying scientific publications in chemistry, 

he found that only about 5% of scientists were responsible for more than 50% of the total 

scientific research output.  Such a skewed distribution in research output across 

scientists is also reflected in recent data on patenting activity in U.S. and Japanese 

semiconductor firms (Narin and Breitzman, 1995) as well as patenting output in German 

companies in the chemical, mechanical, and electric industries (Ernst, Leptien, and Vitt, 

2000).  Thus, we suggest that intellectual human capital can be conceptualized as 

consisting of two components: star scientists and non-star scientists.  Here, we 
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hypothesize that there exists a positive and significant relationship between a firm’s star 

scientists and its innovative output, while explicitly controlling for non-star scientists.  

While the analysis of nearly any performance metric will yield high performers, 

the magnitude of the ‘stardom’ of the scientists identified by Zucker and colleagues, for 

example, can be illustrated by the following statistics.  Zucker et al. identified, based on 

publication measures, 327 star scientists in biotechnology (Zucker and Darby, 1997; 

Zucker et al., 2002).  These 327 stars constituted only 0.75% of the population of 

biotechnology scientists, but accounted for 17.3% of all the published articles.  These 

stars published more than 23 times as many articles as the average scientist.  

Within the context of entrepreneurial biotechnology ventures, star scientists have 

been shown to affect the location of firm entry into new technologies (Zucker et al., 

1998) and to exert significant positive effects on a wide range of firm-level measures, 

such as the number of products on the market, publishing propensity, and network 

connections (Audretsch and Stephan, 1996; Zucker, Darby, and Torero, 2002).  Ties to 

stars have also been shown to shorten the time to initial public offering (IPO), and to 

increase the amount of IPO proceeds (Darby and Zucker, 2001).  Thus, the assumption 

of lower-level heterogeneity inherent in most firm-level and alliance research is even 

more questionable when focusing on elite scientists as part of a firm’s intellectual human 

capital.   

A firm’s star scientists not only function as technological boundary-spanners and 

gatekeepers, but also as the organization’s information and knowledge center, and thus 

are critical to firm innovation.  Other important pathways through which star scientists 

can improve the innovative output of firms include positive spillovers to other 

researchers through the changing of behavioral and cultural norms, such as legitimizing 

a stronger focus on basic research, changing the strategic direction of the firm’s 



  

65

 
research and human resource policies, recruiting other like-minded scientists, and so 

forth (Lacetera, et al. 2004).  

Individual-level heterogeneity in the form of star scientists can provide a plausible 

alternative explanation for many firm-level performance variables highlighted in prior 

research.  This assertion is an important one, because it challenges the hypothesis of 

perfectly competitive factor markets (Hirshleifer, 1980).  Assuming perfectly competitive 

markets, rent-generating resources cannot be bought in strategic factor markets, 

because the price of the resource should anticipate its rent-generating potential, and 

thus the rents will be captured by the resource owner (i.e., star scientists) and not by the 

firms who hire the stars.  Therefore, the simple act of hiring additional employees, 

regardless of talent level, cannot in itself result in a significant source of competitive 

advantage.  For example, the mobility of a Nobel prize-winning chemist is likely to result 

in a wage that is reflective of their value-generating capability, thus any rent-generating 

potential is captured by the star scientist and not by the firm employing the star.  

Contrary to the arguments put forth in the treatment of perfectly competitive 

factor markets in neo-classical economics (Hirshleifer, 1980), we propose that star 

scientists can be recruited from the labor market, and that they can be the source of 

firm-level heterogeneity, especially as it pertains to innovative output.  This assertion is 

especially true if firms have different ex-ante expectations of the rent-generating 

potential of a star scientist (Barney, 1986).  Our hypothesis, therefore, follows Barney’s 

(1986) treatment of strategic factor markets, which relaxes the strong assumption of 

perfectly competitive factor markets, and in turn posits that strategic factor markets are 

characterized by an element of imperfections.  Some preliminary evidence for this 

assumption is found in the recent work by Stephan, Higgins, and Thursby (2004), who 

show that in the case of biotechnology IPOs, Nobel laureate scientists allow significant 

rents to accrue to the firms who hired them, because their total compensation packages 



  

66

 
were considerably less than the stock price premium they created based on their 

outstanding scientific reputations.  Thus, the assumption of imperfectly competitive 

strategic factor markets would enable incumbent firms to recruit star scientists, which 

may then be an antecedent to firm-level competitive advantage.  Herein, the effect of 

stars on firm performance is hypothesized to be particularly pronounced when 

incumbents need to innovate within a new technological paradigm.   

Hypothesis 1b:A firm’s innovative output within a new technological paradigm is a 

positive function of its star scientists, controlling for non-star scientists. 

3.1.2 Firm-level Effects  

Following Cohen and Levinthal (1989, 1990), we posit that organizations are 

heterogeneous in their capability to recognize, assimilate, and process external new 

information (see also Zahra and George, 2002).  Thus, we suggest that heterogeneity in 

absorptive capacity across firms partly explains innovative performance differentials, 

especially within a new technological paradigm.  Here, a focus on competences, 

processes, and routines is deliberate in order to highlight the effect of absorptive 

capacity on innovative performance, above and beyond the effects of intellectual human 

capital, especially those of the star scientists discussed above.  

Cohen and Levinthal (1990: 129) emphasize that “absorptive capacity may be 

created as a byproduct of a firm’s R&D investments.”  One important byproduct of 

internal R&D, therefore, is the creation of firm-specific knowledge that enables a firm to 

take advantage of knowledge generated externally (Mowery, 1983).  Tilton (1971: 71), 

for example, observed this phenomenon in the semiconductor industry, and concluded 

that internal R&D “provided an in-house technical capability that could keep these firms 

abreast of the latest semiconductor developments and facilitate the assimilation of new 

technology developed elsewhere.”  Moreover, Rosenberg (1990: 171) underscores the 

importance of internal R&D by stressing that a firm needs “a substantial research 
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capability to understand, interpret and to appraise knowledge that has been placed upon 

the shelf.”  Cohen and Levinthal (1990: 128) consider this capability to generate firm-

specific knowledge under the construct of absorptive capacity, defined as “the ability of a 

firm to recognize the value of new, external information, assimilate it, and apply it to 

commercial ends.”  More recently, Zahra and George (2002: 185) suggest that a firm’s 

overall absorptive capacity is based on two subsets, potential and realized absorptive 

capacity: “Potential capacity comprises knowledge acquisition and assimilation, and 

realized capacity centers on knowledge transformation and exploitation.” 

Underlying the concept of absorptive capacity, therefore, is the notion that a firm 

cannot internalize external knowledge without cost.  Instead, the identification, 

assimilation, and exploitation of external knowledge requires effort, expertise, and 

purposeful action on the part of the firm.  Firms wishing to take advantage of knowledge 

outside their organizational boundaries need to invest in absorptive capacity by 

accumulating the skills, competences, and routines necessary to identify and utilize such 

externally generated knowledge (Cohen and Levinthal, 1989, 1990; Zahra and George, 

2002).  Continuing investments in a firm’s absorptive capacity are necessary, because 

its effectiveness is path dependent, which implies that failure to invest in internal R&D at 

one point in time may foreclose future options in a particular technology (Cohen and 

Levinthal, 1990).  In support of this notion, Helfat (1994a) provides convincing evidence 

for the hypothesis that ongoing R&D investments create a firm-specific capability, whose 

heterogeneous distribution across firms tends to persist over time (Helfat, 1994b).  Thus, 

a firm’s absorptive capacity has the potential to be the kind of valuable, rare, inimitable, 

and non-substitutable resource that can form the basis a firm’s superior innovation 

performance (Barney, 1991; Peteraf, 1993).  Further, a firm’s absorptive capacity has 

become more critical to innovative performance, as many industries have become more 

science-driven; as such, firms are now more compelled to leverage advances in the 
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fundamental sciences (Cockburn, et al. 2000; Narin, Hamilton, and Olivastro, 1997).  

Thus, we suggest that a positive association exists between a firm’s competences, 

processes, and routines to identify and absorb external sources of knowledge and its 

ability to generate innovative output. 

Hypothesis 2: A firm’s innovative output within a new technological paradigm is a 

positive function of its absorptive capacity. 

3.1.3 Network-level Effects 

Significant technological breakthroughs are generally exogenous to firms, 

because no single firm can keep abreast of all technological developments through 

internal R&D.  Indeed, Powell, Koput, and Smith-Doerr (1996) provide support for the 

hypothesis that the locus of innovation in industries characterized by complex and 

rapidly expanding knowledge bases is found in a network of learning composed of 

incumbent firms, new entrants, and research institutions, rather than within the 

boundaries of individual firms.  Thus, to build new capabilities within an emerging 

technological paradigm, incumbent firms frequently need to leverage their external 

networks of alliances and acquisitions.  Networks can provide access to knowledge and 

resources that are not readily available via market exchanges (Gulati, 1999; Gulati, 

Nohria, and Zaheer, 2000).  While the resource-based view of the firm tends to focus on 

the importance of the internal asset base of the firm, researchers have recently posited 

that network relationships may allow a firm to leverage unique resource combinations.  

Dyer and Singh (1998) highlight relation-specific assets, knowledge-sharing routines, 

complementary resources and capabilities, as well as effective governance as 

antecedents to an interorganizational competitive advantage.  It is not surprising, 

therefore, that the ability to leverage external networks to adapt to a rapidly changing 

environment is highlighted by Teece et al. (1997: 518-520) and Eisenhardt and Martin 

(2000: 1108, 1112) as one possible manifestation of a dynamic capability.  Strategic 
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alliances and acquisitions of new technology ventures are generally considered to be 

alternatives to the external sourcing of technological capabilities by incumbent firms (Hill 

and Rothaermel, 2003; Higgins and Rodriguez, 2005; Vanhaverbeke, Duysters, and 

Noorderhaven, 2002).  As such, we investigate how each type of external sourcing 

strategy affects an existing firm’s innovative output within a new technological paradigm. 

3.131 Strategic Alliances.  Strategic alliances are voluntary arrangements 

between firms to exchange and share knowledge and resources with the intent of 

developing processes, products, or services (Gulati, 1998: 293).  It is not surprising that 

strategic alliances are often highlighted as a prime mechanism used by firms in order to 

access external technology, and that alliances have become commonplace as firms try 

to absorb or learn capabilities and knowledge from other firms (Ahuja, 2000; Hagedoorn, 

1993; Powell et al., 1996; Rothaermel, 2001).  There are multiple pathways by which a 

firm’s alliances with providers of new technology can affect its innovative output.  Among 

other benefits, alliances enable partners to share technological knowledge, take 

advantage of scale economies in research, and leverage complementary assets (Teece, 

1992).   

Extant empirical research has provided evidence for the notion that strategic 

alliances enhance innovative output.  With regard to new technology ventures, prior 

studies produce evidence that strategic alliances not only increase patent and new 

product development rates for biotechnology start-ups (Deeds and Hill, 1996; Shan et 

al., 1994), but also predict innovation rates in the semiconductor industry (Stuart, 2000).  

Considering existing incumbent firms rather then start-ups, Ahuja (2000) examined the 

position of chemical firms within a network and found that direct network connections 

had a positive relationship with innovative output.  Thus, we suggest that an incumbent 

firm’s strategic alliances with the providers of new technology, like research universities 
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and new technology ventures, have a positive affect on the firm’s innovative output 

within the new technological paradigm.   

Hypothesis 3a: A firm’s innovative output within a new technological paradigm is a     

positive function of its alliances with new technology providers.  

3.132 Acquisitions.  Acquisitions are an increasingly important strategic tool for 

attaining the external technological know-how to supplement internal R&D efforts in a 

timely manner (Chesbrough, 2003; Ranft and Lord, 2002; Vanhaverbeke et al., 2002).  

We make the assumption that acquisitions are network-level mechanisms, primarily 

because within our sample, the targets acquired by the pharmaceutical firms are, for the 

most part, similar to the firms with which they ally.  That is, the majority of the acquired 

firms are small biotechnology firms focused predominantly on basic research, drug 

discovery, and early stage development.  Acquisitions of small technology ventures are 

not idiosyncratic to biotechnology, since they are commonplace in many other high-

technology industries (Hayward, 2002).  Anecdotal evidence for the significance of 

sourcing R&D through acquisitions is provided by John Chambers, president and CEO 

of Cisco, who states “If you don’t have the resources to develop a component or product 

within six months, you must buy what you need or miss the opportunity” (quoted in 

Bower, 2001: 99). 

Our hypothesis, that acquisitions positively affect firm innovation, is of interest 

because empirical investigations of the issue have been mixed (Gupta and Cao, 2005; 

Hitt, Hoskisson, and Ireland, 1990; Hitt, Hoskisson, Ireland, and Harrison, 1991; Higgins 

and Rodriguez, 2005; Vanhaverbeke et al., 2002).  Research has postulated several 

reasons why R&D acquisitions may actually hinder an organization’s attempt to innovate 

and adapt.  Hitt et al. (1991) indicate, for example, that an acquisition may disrupt an 

organizational culture focused on innovation, and thus reduce overall innovation output.  
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While some research has indicated that acquisitions may actually hinder a firm’s 

attempts at innovation, within the biotechnology industry, large pharmaceutical firms 

often use this mechanism to facilitate innovation (Galambos and Sturchio, 1998).  

Higgins and Rodriguez (2005) find that in order to overcome declining R&D productivity, 

many pharmaceutical firms have successfully innovated by acquiring biotechnology 

ventures.  As an example of how firms consummate acquisitions in an attempt to 

innovate within a new technological paradigm, Hoffman-La Roche in the mid-1980s, 

similar to DuPont and Schering-Plough, began to make acquisitions of small, specialized 

biotechnology firms instead of forming alliances (Galambos and Sturchio, 1998).  

Hypothesis 3b: A firm’s innovative output within a new technological paradigm is a 

positive function of its acquisitions of new technology providers.  

3.1.4 Interactions Across Levels – Complements or Substitutes? 

To address the question whether the locus of innovation lies across multiple 

levels of analysis, we now turn to an investigation of interactions across levels and their 

effects on innovation.  Specifically, we pursue the question of whether the interactions 

across levels complement one another or substitute for each other.  Two activities are 

said to be complements if the marginal benefit of each activity increases in the presence 

of the other activity.  For example, one would suggest that cardio-vascular exercise is 

more effective in reducing the risk of heart disease if combined with a low-cholesterol 

diet, and vice versa.  On the other hand, two activities are said to interact as substitutes 

if the marginal benefit of each activity decreases in the presence of the other activity.  

Here, one would suggest that cardio-vascular exercise and pursuing a low-cholesterol 

diet are substitutes in achieving a lower risk of heart disease.  Please note that while 

cardio-vascular exercise can still have an absolute positive effect on lowering the risk of 
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heart disease, over and above a low-cholesterol diet, the marginal effect of cardio-

vascular exercise is diminished in the substitution scenario, and vice versa.2  Given the 

dearth of prior theoretical and empirical research pertaining to the locus of innovation 

across levels, we advance a complementarity and a substitutability hypothesis in a 

competing fashion.  This approach enables us to expose the competing hypotheses to 

empirical falsification (Popper, 1959).  

3.1.5 Interactions Across Levels – Complements  

3.1.5.1 Interaction between Individual and Firm-Level Effects.  A positive bi-

directional nature of the interaction between individual and firm-level effects is evident 

considering that a firm’s level of absorptive capacity is a function of its prior related 

knowledge (Cohen and Levinthal, 1989, 1990).  Relevant prior knowledge allows the firm 

to recognize the value of new information and to exploit it for commercial ends.  In the 

pharmaceutical industry, the primary source of such knowledge is located upstream in 

the value chain, residing within research universities and new biotechnology ventures.  

Existing pharmaceutical companies must thus possess the requisite intellectual human 

capital to gain access to this research community, assimilate the new knowledge, and 

subsequently apply it to commercial ends, thereby translating potential absorptive 

capacity into realized absorptive capacity (Zahra and George, 2002).   

We posit that an increase in a firm’s level of intellectual human capital results in a 

commensurate increase in a firm’s absorptive capacity, and thus synergistically 
                                                

 

2 Formally: Let xi denote one activity (e.g., recruitment of intellectual human capital) and xj denote a second 
activity (e.g., forming strategic alliances), then these two activities are said to be  

complements if 
j

i

x

x
 > 0, and substitutes if 

j

i

x

x
 < 0.   

Complements and substitutes correspond to interactions in moderated regression analysis, because their 
combined effects differ from the sum of their separate parts.  Specifically, complements are represented by 
positive interaction effects reflecting their synergizing behavior, while substitutes are represented by 
negative interaction effects reflecting their compensating behavior (see Cohen, Cohen, West, and Aiken, 
2003: 255-260). 
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enhances the effectiveness of a firm’s R&D expenditures.  Likewise, a firm that has 

significant R&D expenditures is more likely to experience an increase in the 

effectiveness of its intellectual human capital due to better research facilities, more 

knowledgeable colleagues, and cultural norms and processes that are more conducive 

to innovation (Hitt et al., 1991).  As an example, Groysberg, Nanda, and Nohria (2004) 

found that that when ‘star’ financial analysts switched firms, both the worker and new 

employer saw a decrease in short term performance.  This effect was shown to be 

stronger when the star analyst switched from a higher performing firm to a lower one, 

indicating that there are important firm-level complementary or supporting assets and/or 

processes that are required for an individual employee to realize a high level of 

performance.  In a similar fashion, Lacetara et al. (2004) show that the hiring of star 

scientists positively interacts with firm-level policies, capabilities, routines, and people 

already in place, thus pointing towards potential complementarity between individual and 

firm-level factors.  Song, Almeida, and Wu (2003) investigated the conditions under 

which the mobility of R&D engineers is most likely to facilitate inter-firm knowledge 

transfer.  The authors conclude that ‘learning-by-hiring’ is more likely to occur when the 

hiring firm’s strategy is more focused on exploring technologically distant knowledge 

rather than exploiting its accumulated knowledge, again providing some evidence for 

potential complementarity between individual and firm-level factors.   

Taken together, these observations lead us to suggest that the complex 

interactions between individual and firm-level capabilities have the potential to transform 

resources obtained in strategic factor markets (e.g., the recruitment of scientists) into 

valuable, rare, inimitable, and non-substitutable resource combinations that can form the 

basis of a firm-level innovation advantage (Barney, 1986, 1991; Lacetera, et al. 2004). 

3.152 Interaction between Individual and Network-Level Effects.  We posit that a 

firm’s scientists positively moderate the effects of its alliances and acquisitions on its 
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innovative output.  Stuart et al. (2003) assert that, within the realm of biotechnology 

firms, the breadth of the external networks of academic scientists employed by a firm 

facilitates the organization’s ability to identify and incorporate pertinent university 

research.  The presence of technological gatekeepers and boundary-spanners can help 

offset different coding schemes between organizations, specifically between academic 

institutions and R&D facilities, thereby facilitating communication and knowledge transfer 

between organizations (Allen and Cohen, 1969; Tushman and Katz, 1980).  The effect of 

such gate keeping and boundary spanning is particularly important to firms attempting to 

innovate within a new technological paradigm, because the tacit nature of many new 

discoveries often make it necessary for the inventing scientist to assist in the firm’s 

commercialization process (Stuart et al., 2003).  

The interaction between a firm’s level of intellectual human capital and the effect 

of acquisitions on innovation is emphasized by research revealing that if an acquiring 

firm possesses information relevant to the value of the target’s assets, there is not only a 

greater likelihood of acquirer success, but also a greater probability that this knowledge 

may allow the firm to overcome some of the valuation difficulties that frequently plague 

acquisitions (Higgins and Rodriguez, 2005).  Research also indicates that the success of 

an acquisition is, in part, a function of continuity in top management and key researchers 

before and after an acquisition (Granstrand and Sjölander, 1990).  The acquiring firm is 

often interested in getting specialized, technical knowledge that is often tacit and thus 

difficult to transfer.  Thus, the success of technologically motivated acquisitions has been 

shown to depend significantly on whether or not the key innovators, employees, or 

managers stayed with the firm post acquisition (Ernst and Vitt, 2000).  This finding points 

to a positive interaction between a firm’s star scientists and its use of acquisitions as a 

means of innovation.  
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3.1.5.3 Interaction between Firm and Network-Level Effects.  Without a sufficient 

internal research capacity developed at the firm-level, firms are not likely to recognize 

important developments outside of their existing competences, and thus the ability to 

innovate is limited (Cohen and Levinthal, 1990). This notion is supported by research 

indicating that a level of commonality between the firm’s internal research orientation 

and the external research may be necessary for successful knowledge transfer (Lane 

and Lubatkin, 1998), because alliances are dyadic exchanges between organizations 

searching for diverse sets of knowledge (Gulati et al., 2000).  Moreover, a firm’s relevant 

absorptive capacity also allows the firm to identify promising alliance partners and 

acquisitions targets among the many new entrants attempting to commercialize a new 

technology, and thus increases the focal firm’s chances to innovate (George, et al. 

2002).    

This latter aspect of absorptive capacity is especially pertinent when adapting to 

a new technology, because multiple new technologies or different versions of the same 

underlying technology frequently vie for supremacy until a new dominant design 

emerges (Anderson and Tushman, 1990).  While the global pharmaceutical industry has 

a fairly oligopolistic structure, with only a few dozen firms engaged in proprietary drug 

discovery and development, about 2,000 new organizations emerged to commercialize 

the new biotechnology since its beginnings in mid-1970s (BioScan, diverse years).  

Thus, not only are incumbents with relevant absorptive capacity more attractive as 

partners for biotechnology start-ups, but they are also better positioned to assess the 

quality of the research conducted in new technology ventures.  Some scholars provide 

support for the hypothesis that the pharmaceutical firms possess an informational 

advantage over capital markets in assessing the research quality of biotechnology start-

ups (Lerner, Tsai, and Shane, 2003), thus creating a synergistic effect between a firm’s 

absorptive capacity and its alliances and acquisitions. 
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Hypothesis 4: The interactions between individual and firm-level effects (H4a), between 

individual and network-level effects (H4b), and between firm and network-

level effects (H4c) are positive such that the interactions across levels 

complement one another, and thus increase a firm’s innovative output 

within a new technological paradigm. 

3.1.6 Interactions Across Levels – Substitutes  

A competing hypothesis posits that the different mechanisms to advance 

innovation across the individual, firm, and network levels are substitutes for one another.  

This hypothesis implies that the simultaneous pursuit of innovation across multiple levels 

would actually reduce a firm’s innovation output, at least at the margin.  The theoretical 

foundation for this argument is based on the fact that investments in the various 

innovation antecedents are path-dependent, and as such, require significant 

expenditures on the part of the firm, frequently over an extended period of time (Direckx 

and Cool, 1989; Levinthal and Cohen, 1990).  Moreover, these investments are 

predominantly undertaken to attain the similar end of innovation, and thus the different 

innovation levers may exhibit some element of equifinality.  In support of this notion, 

Cockburn, et al. (2000) demonstrates that while initial conditions were an important 

factor influencing the adaptation of pharmaceutical firms to science-driven drug 

discovery, the firms also exhibited significant variance in their strategic choices and the 

subsequent speed of adaptation.  Thus, from a manager’s perspective, firm innovation 

can be seen as a constraint optimization problem, because firms face limited financial, 

and perhaps more importantly, limited managerial resources combined with short time 

horizons in high-technology industries.  Therefore, a firm attempting to innovate might 
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choose between different innovation antecedents located at different levels, since using 

them in tandem might result in decreased innovative output. 

Therefore, the different innovation levers across multiple levels can be seen as 

distinct, strategic alternatives, and thus as substitutes on the path to attaining firm-level 

innovation.  As an example, Pennings and Harianto (1992) analyzed the U.S. banking 

industry’s attempt to implement ‘home banking,’ and found that the propensity of firms to 

chose one mechanism over the others was history dependent, in the sense that the 

choice was partly determined by the accumulated skills in a specific innovation 

mechanism.  For example, firms that tended to use internal venturing in the past were 

more likely to use internal venturing in the future, while firms that used cooperative 

arrangements in the past were more likely to use them in the future.  In more 

generalizable terms, the authors suggest that some computer, banking, and 

pharmaceutical firms have chosen to innovate through internal corporate ventures, while 

other organizations have based their business model on innovation through either 

acquisitions or alliances (Pennings and Harianto, 1992).  Merck is an example of a 

pharmaceutical firm that has historically chosen to build its research capabilities 

internally, while others, including Hoffman-La Roche and Eli Lilly, have been more 

prolific in terms of using acquisitions and alliances to innovate (Galambos and Sturchio, 

1998).  Thus, firms make significant investments in their chosen mode of innovation, 

because there are fundamental differences between the underlying mechanisms of 

each.   

It is important to emphasize that firms must choose between these strategic 

alternatives, because there often exists a tension between these alternative modes of 

innovation (Pennings and Harianto, 1992; Vanhaverbeke, et al. 2002).  The tension 

between these alternatives is born from the fundamentally different set of skills and 

capabilities that must be developed in order for a firm to effectively innovate.  By using 
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one innovation mechanism repeatedly over time, firms learn by doing, and thus build up 

competences in a specific innovation mechanism (Levitt and March, 1988).  Some firms 

have become proficient in recruiting and retaining star scientists, since they have 

learned how to address the surrounding human resource issues (Galambos and 

Sturchio, 1998; Zucker and Darby, 1997), while others have built firm-level R&D 

capabilities through an ongoing investment strategy (Helfat, 1994a, 1994b).  

Furthermore, other firms have developed alliance capabilities through learning-by-doing 

that allows for superior selection of alliance partners, contracting, monitoring, managing 

and, if necessary, exiting of alliances (Anand and Khanna, 2000; Kale, Dyer, and Singh, 

2002), while others have learned superior acquisition and integration capabilities by 

engaging in multiple acquisitions over time (Haleblian and Finkelstein, 1999; Hayward, 

2002).  Taken together, these observations indicate that firms prefer to leverage the 

innovation mechanism in which they have built up some competence (Pennings and 

Harianto, 1992).  This idea implies that exploitation of the expertise in the preferred 

innovation lever drives out exploration of alternative innovation mechanisms (Levinthal 

and March, 1993). 

By developing expertise in certain innovation mechanisms, switching costs 

between the different mechanisms can be substantial, and thus make the use of more 

than one mechanism cost prohibitive (Levinthal and March, 1993).  Switching costs are 

illustrated by the detrimental effects that substituting disparate modes of innovation can 

have on managerial perceptions and organizational culture.  For example, managers 

may perceive that a significant investment in a network activity is intended to take the 

place of firm-level spending on R&D, marketing, or human resources (Hitt et al., 1990; 

Hitt et al., 1991).  Additionally, Hitt et al. (1990) find that a firm’s acquisitions can 

potentially not only interrupt the R&D process, but also can alter an organizational 

culture focused on innovation and thus lower an employee’s incentive to follow through 
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with the innovation process.  The authors find that acquisitions can reduce both R&D 

expenditures and innovation outputs, thus pointing towards a substitution effect. 

Prior research also indicates that different modes are often substituted for each 

other only when the current mode of innovation is determined to be ineffective.  As an 

example, Higgins and Rodriguez (2005) found that firms that are experiencing 

deterioration in their internal R&D productivity are more likely to engage in an acquisition 

strategy in order to augment their innovation efforts.  In a similar fashion, firms may use 

one mode of innovation to compensate for a lack of experience using another mode 

(Bower, 2001).  For example, the sharing of information and R&D personnel that often 

accompanies alliances can serve to reduce the firm’s need to invest in internal R&D.  

Additionally, alliances with universities can provide the firm with ancillary research 

services that would otherwise have to be developed internally (George et al., 2002).  

Indeed, the authors find that firms with ties to universities have lower R&D costs than 

those lacking such ties.  Taken together, these observations suggest that different 

innovation mechanisms across multiple levels may substitute for one another. 

Hypothesis 5: The interactions between individual and firm-level effects (H5a), between 

individual and network-level effects (H5b), and between firm and network-

level effects (H5c) are negative such that the interactions across levels 

substitute for one another, and thus decrease a firm’s innovative output 

within a new technological paradigm.  

3.3 Methodology 

3.3.1 Research Setting 

To empirically test our multi-level theoretical model concerning the role of 

individual, firm, and network-level effects in building innovative capabilities within a new 

technological paradigm, we chose the global pharmaceutical industry as the research 
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setting for a number of reasons.  The emergence of biotechnology presented a new 

technological paradigm with respect to drug discovery and development for incumbent 

pharmaceutical companies (Pisano, 1997).  The emergence of a new technological 

paradigm provides a “natural laboratory” for researchers, because they can then observe 

whether or not, and if so, how the existing firms have accomplished innovation within the 

new technological paradigm.  Traditionally, drug discovery within the chemical paradigm 

was based on random screening, whereas the new technological paradigm of 

biotechnology is informed by a more science-driven approach, which includes genetic 

engineering, genomics, and molecular biochemistry, among other disciplines.  The 

scientific breakthroughs underlying biotechnology, such as recombinant DNA and 

hybridoma technology, were accomplished in the mid-1970s.  The first new 

biotechnology drugs reached the market for pharmaceuticals in the 1980s.  Since the 

emergence of biotechnology, around 2,000 new organizations have emerged to 

commercialize the new technology (BioScan, diverse years).   

In their attempts to build innovative capabilities within the new biotechnology 

paradigm, the incumbent pharmaceutical firms made extensive use of all of the 

mechanisms described above.  Unlike incumbents in other industries, which are often 

characterized by high levels of sunk costs, pharmaceutical incumbents have made a 

substantial investment in human capital, especially in the recruitment of star scientists 

(Zucker and Darby, 1997a, 1997b).  Some researchers have postulated that through a 

re-focusing of human capital pharmaceutical incumbents have been able to stave off a 

“Schumpeterian destiny” (Galambos and Sturchio, 1998).  Moreover, the pharmaceutical 

industry also exhibits one of the highest historical R&D intensities, since firm 

performance depends on continuous innovation through discovery and development of 

propriety drugs, which creates patent races, temporary monopolies, and winner-take-all 

scenarios (Arthur, 1989).  Additionally, the biotechnology industry has been identified as 
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having one of the highest alliance frequencies (Hagedoorn, 1993) and as an industry 

where firms outsource R&D through acquisitions (Higgins and Rodriguez, 2005).  

Considering these factors, we submit that the global pharmaceutical industry is an 

appropriate setting to test our multi-level theoretical model predicting innovation within a 

new technological paradigm. 

3.3.2 Dependent Variable  

The dependent variable for this study is the innovative output of pharmaceutical 

firms within the new biotechnology paradigm.  We followed prior research that measured 

innovative output by a firm’s patenting rate (e.g., Ahuja, 2000; Hagedoorn and 

Schakenraad, 1994; Henderson and Cockburn, 1994; Shan et al., 1994; Stuart, 2000).  

To specifically assess the pharmaceutical firm’s innovative performance within the new 

biotechnology paradigm, however, we proxied their innovative output by the number of 

biotechnology patents applied for and granted in each year during our study period, 

1980-2002, while explicitly controlling for non-biotechnology patents.  The source for this 

information was the Technology Profile Report maintained by the U.S. Patent and 

Trademark Office (PTO), an agency of the U.S. Department of Commerce.  Due to 

generous support from the PTO, we were able to obtain detailed data on the complete 

population of all biotechnology patents filed by and awarded to the global 

pharmaceutical companies in this sample annually over the 23-year study time frame.  

The PTO compiled these data based on all patents occurring in the biotechnology patent 

classes.3  The average pharmaceutical firm in our sample applied for and was granted 

approximately 6 biotechnology patents per year. 

                                                

 

3 The complete set of biotechnology patent classes consists of: 424 [Drug, bio-affecting and body treating 
compositions (different sub-classes)], 435 [Chemistry: Molecular biology and microbiology], 436 
[Chemistry: Analytical and immunological testing], 514 [Drug, bio-affecting and body treating 
compositions (different sub-classes)], 530 [Chemistry: Natural resins or derivatives; peptides or proteins; 
lignins or reaction products thereof], 536 [Organic compounds], 800 [Multicellular living organisms and 
unmodified parts thereof and related processes], 930 [Peptide or protein sequence], PLT [plants]. 
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Research indicates that patents represent not only an important measure of 

innovative output, but also are an externally validated measure of technological novelty 

(Ahuja, 2000; Griliches, 1990; Henderson and Cockburn, 1994).  Additionally, patents 

have been shown to be critical to success in the pharmaceutical industry and are also 

closely correlated with other performance measures, such as new product development, 

profitability, and market value (Comanor and Scherer, 1969; Henderson and Cockburn, 

1994).  In sum, a pharmaceutical firm which patents heavily in biotechnology can be 

seen as innovative within the new technological paradigm of molecular biology.  

A preliminary argument may point out that the patent data imply a bias in favor of 

U.S. companies; however, the patent literature, especially with respect to biotechnology 

patents, suggests otherwise.  First, the U.S. represents the largest market worldwide for 

biotechnology, and thus it is almost compulsory for firms to first patent in the U.S. before 

patenting in any other country (Albert, Avery, Narin, and McAllister, 1991).  Second, 

firms that are active in biotechnology have a strong incentive to patent in the U.S. 

because intellectual property protection has been consistently supported by U.S. courts 

(Levin, Klevorick, Nelson, and Winter, 1987).    

The reliability of patent count data has been established empirically, because 

prior research shows that patent count data are highly correlated with citation-weighted 

patent measures, thus proxying the same underlying theoretical construct.  The bivariate 

correlation between patent counts and citation-weighted patents has been shown to be 

above 0.77 (p < 0.001) in the pharmaceutical industry (Hagedoorn and Cloodt, 2003), 

which is especially relevant for this study, and above 0.80 (p < 0.001) in the 

semiconductor industry (Stuart, 2000), indicating some generalizability of this assertion.    
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Figure 3.1: Biotechnology Patents Filed By and Assigned To Pharmaceutical 
Companies, 1975-2002  

Figure 3.1 depicts the patenting behavior of the sample pharmaceutical firms in the new 

biotechnology between 1975 and 2002.  Three observations are immediately apparent.  

First, both the time series for biotechnology patents applied and granted are highly 

correlated (r = 0.61, p < 0.001).  Second, the patenting by large pharmaceutical firms in 

biotechnology did not really take off until the mid 1980s.  Third, the 1990s witness an 

acceleration as well as a deceleration in biotechnology patenting.   

3.3.3 Independent Variables  

3.3.3.1 Intellectual Human Capital and Star Scientists.  In their pioneering work 

on entrepreneurial biotechnology ventures, Zucker and her colleagues were one of the 

first to create a measure to proxy “star scientists” (Zucker and Darby, 1997; Zucker et 

al., 1998; Zucker et al., 2002).  Zucker et al. identified a set of 327 star scientists based 

on their outstanding productivity up until April 1990.  The primary criterion for selection 

was the discovery of more than 40 genetic sequences as reported in GenBank (1990), 
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which is a worldwide directory of all articles reporting newly discovered genetic 

sequences.  Following this early time period, Zucker and colleagues identified ‘stars’ as 

scientists that had published 20 or more articles, each reporting one or more genetic-

sequence discoveries.  Recently, Lacetera et al. (2004) identified a star scientist as 

someone whose three year moving average of annual publications was greater than 5 

for at least one year.  To be even more conservative, we applied a more stringent 

definition of stardom than either Zucker et al. (1997) or Lacetara et al (2004).  We 

constructed our star measure as follows. 

We retrieved a sample of 125 pharmaceutical firms, representing the population 

of pharmaceutical firms active in the new biotechnology industry as listed in the various 

volumes of BioScan and in the recap database, maintained by Recombinant Capital, an 

independent research firm specializing in the life sciences.  BioScan and Recombinant 

Capital appear to be the two most comprehensive publicly available data sources 

documenting the global biopharmaceutical industry.  The validity of these data sources 

has been corroborated in prior research when focusing on different questions and 

employing only one of these two sources (e.g., Shan, et al. 1994; Lane and Lubatkin, 

1998; Lerner et al. 2003; Powell, et al. 1996).   

Using this sample of pharmaceutical firms, we then searched the ISI Science 

Citation Index database to identify academic journal articles published between 1980 

and 2004 that had a keyword related to biotechnology research (to exclude non-human 

focused research, e.g., agricultural or veterinarian) and could be unambiguously 

connected with one of the pharmaceutical firms in the sample.  This last step was 

important given the necessity of assuring that each of the authors was affiliated with at 

least one of the pharmaceutical firms.  From the population of over 480,000 academic 

journal articles, we collected the following information: authors, authors’ affiliations, 

article name, number of times cited, keywords, and publication year.  Please note that 



  

85

 
our time period to identify stars is by design somewhat longer than the study period (by 

two years), because this allows us to account for a “rising star” effect to some extent, an 

issue that is particularly pertinent towards the end of the study period due to the 

necessary right censoring inherent in any study attempting to capture a dynamic 

phenomenon. 
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Figure 3.2: Total Annual Publications in Biotech by Pharmaceutical Firms,1979-
2004            
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Figure 3.3: Distribution of Journal Publications in Biotechnology by 
Pharmaceutical Firms, 1973-2004  

Figure 3.2 depicts the total number of annual publications in biotechnology by 

pharmaceutical firms between 1979 and 2004.  The figure reveals that publishing in 

biotechnology by pharmaceutical firms did not take off until 1980.  Since then, one can 

observe a drastic increase in publication activity until the mid 1990s, after which the rate 

of publication declines.  This function has roughly a similar shape to the patenting 

functions introduced earlier; although, compared to patenting, both the increase and 

decline in publishing are less drastic.  Nonetheless, both the publishing and patenting 

functions describe roughly an inverted U, thus highlighting that the study period under 

investigation (1980-2002) indeed captures a time period that represents the global 

pharmaceutical firms’ attempts to innovate within the new biotechnology paradigm. 

Figure 3.3 shows the variance in publication rates in biotechnology by 

pharmaceutical firms.  This graph not only demonstrates the overall high variance 

among the firms’ publication rates, but also its skewed distribution indicates that some 
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firms, like Eli Lilly, Abbott, or Schering Plough, are extremely active in publishing 

biotechnology research. 

Once we completed the process of extracting the information for the 480,000 

journal articles for each pharmaceutical firm, we compiled a list of total authors based on 

their publication record and aggregate times cited.  This query yielded approximately 

130,000 authors, who published an average of 3.8 articles and were cited an average of 

66.4 times.  We then tied back each author to the pharmaceutical firms in our sample 

based on the authors’ affiliations as indicated in the journal article(s).  Thus, the total 

number of a firm’s scientists who published in academic journals was our proxy for a 

firm’s intellectual human capital (Scientists total).  The average firm in the sample 

employed 186 publishing research scientists per year. 

Next, based on the distributions of citations and publications, we identified star 

scientists from the population of scientists using three different, increasingly more 

stringent, approaches.  The first method identified 2,392 “publication stars”: scientists 

who published, on average, more than 27 papers (z-score > 3.0, i.e., 3 standard 

deviations above the mean) during the 25-year period, 1980-2004.  The second 

approach yielded 1,570 “citation stars”: scientists whose publications had been cited at 

least 847 times (z-score > 3.0).  Finally, our last approach was to identify researchers 

that were both publication and citation stars.  This process identified 851 star scientists.  

The 851 stars are less than 0.65% of the total population of scientists, but produced 

15.2% of all publications and accrued 27.3% of all citations.  This implies that the 

average star scientist from this dataset publishes more than 25 times as many articles 

and is cited more than 45 times as often as the average scientist.  Because applying 

both a publication and citation filter represents a stringent and conservative approach to 
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identifying a star, we used it as our proxy for star scientists (Star Scientists).4  This 

process also implies that the difference between scientists total and star scientists is our 

proxy for non-star scientists, which we insert in the regression analysis to isolate the 

effect of star scientists on innovative output more fully.  The mean number of star 

scientists employed at a pharmaceutical firm in a given year was 13.3 over the study 

period.   
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Figure 3.4: Distribution of Total Publications       

                                                

 

4 To the best of our knowledge, this paper is the first to employ citations as an additional filter used to 
identify star scientists.  This is an important improvement over the few pioneering studies, because citations 
are generally seen as demonstrating the quality of the researchers’ work.  Thus, our measure of stardom 
identifies researchers that not only publish at a rate above 3 standard deviations above the mean, but are 
also cited at a rate of 3 standard deviations above the mean.  This stardom measure captures both research 
quantity and quality.   
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Figure 3.5: Distribution of Total Citations  

Figures 3.4 and 3.5 depict the distribution of the authors’ publication and citation counts.  

Given the extreme skewed distribution with an extended right tail, one can instantly 

glean that very few scientists account for a disproportionably large number of 

publications and citations, thus providing visual support for the concept of star scientists. 

3.3.3.2 Absorptive Capacity.  Following the seminal work by Cohen and Levinthal 

(1989, 1990), we proxied a firm’s absorptive capacity by its R&D intensity, defined as 

R&D expenditures divided by sales (R&D Intensity).  This proxy for absorptive has been 

widely used in the literature (e.g., Bierly and Chakrabarti, 1996; Steensma and Corley, 

2000; Tsai, 2001) and is considered reflective of a firm’s focus on discovery and 

innovation.  We obtained the financial data used in this study from a number of sources 

including Compustat, Datastream, and FIS Mergent.  The average pharmaceutical firm 

in the sample spent about 9.5% of its sales on R&D. 
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3.3.3.4 Biotech Alliances.  To document the alliances that the pharmaceutical 

firms had entered with providers of biotechnology research, we tracked each firm’s 

alliances with universities, research institutions, and biotechnology firms (Powell, et al. 

1996).  Moreover, we content-analyzed each alliance description to ensure that the focal 

alliance indeed pertained to the new biotechnology paradigm.  To ensure accurateness 

and completeness of the alliance data, we used various issues of the BioScan industry 

directory and the recap database provided by Recombinant Capital.  BioScan and 

Recombinant Capital are fairly consistent in their reporting.  For example, we found the 

inter-source reliability to be greater than 0.90 when documenting alliances.  The average 

sample firm entered more than two alliances per year with providers of biotechnology 

research.  

3.3.3.5 Biotech Acquisitions.  Following Higgins and Rodriguez (2005), among 

others, we used the SDC Platinum database, published by Thomson Financial, to 

identify the number of biotech acquisitions a pharmaceutical firm had consummated 

during the study period.  Here, we studied each acquisition description in detail to ensure 

that the focal acquisitions were indeed targeted toward the sourcing of R&D.  The 

average pharmaceutical firm in the sample acquired one biotechnology firm every two 

years. 

3.3.4 Control Variables  

3.3.4.1 Non-biotech Patents.  To reduce the threat of unobserved heterogeneity 

when using biotech patents (applied and granted) as dependent variables, it is critical to 

control for non-biotech patents (applied and granted) to avoid spurious findings, because 

firms that patent heavily per se might also patent heavily in biotech, and vice versa. 

Thus, we include the number of non-biotech patents per year as a control variable (Non-

Biotech Patents Applied and Non-Biotech Patents Granted).  These data were obtained 
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from the U.S. PTO.  The average pharmaceutical firm applied for and was granted 

approximately 57 non-biotechnology patents per year.  

3.3.4.2 Time to First Cohen-Boyer Patent Citation.  The Cohen-Boyer patent 

(U.S. Patent 4,237,224), disclosing recombinant DNA technology, is considered to 

represent a fundamental and industry-changing innovation that allowed firms to develop 

new drugs based on genetic engineering (Pisano, 1997).  The time to first citation of the 

Cohen-Boyer patent in a firm’s own patents (backward patent citation) was found to be a 

significant predictor firm innovation (Fabrizio, 2005), and thus provides an indication of a 

firm’s speed of innovation within the new technological paradigm.  As such, we included 

it in our regression models as a control variable.  To identify when a firm first cited the 

Cohen-Boyer patent, if at all, we searched both the U.S. PTO and the NBER patent 

databases (Hall, Jaffe, and Trajtenberg, 2001). 

3.3.4.3 Pharma Firm.  The global pharmaceutical industry consists of specialized 

companies like GlaxoSmithKline, Schering-Plough, or Yamanouchi, which focus on 

proprietary drug discovery and development, as well as more diversified companies, 

most notably chemical companies like Monsanto or DuPont.  A firm’s level of 

diversification, therefore, may influence the extent to which it attempts to innovate within 

the new biotechnology framework.  We controlled for the varying degree of 

diversification by coding the pharmaceutical companies as 1 if the company is a 

specialized pharmaceutical firm, and 0 otherwise.  Specialized pharmaceutical 

companies are firms that are active in SIC 2834 (pharmaceutical preparations 

manufacturing).  However, if a company is active in both SIC 2834 and in SIC 2890 

(chemical products manufacturing), for example, it was coded 0, indicating a higher 

degree of diversification.  More than half of the firms (53%) were fully specialized 

pharmaceutical companies. 
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3.3.4.4 Firm Merged.  Over the last two decades, the pharmaceutical industry 

was characterized by increasing consolidation due to horizontal mergers.  To account for 

this effect, we created a comprehensive “family tree” by drawing on multiple industry 

sources to trace all firms in existence in 2002 back to their various “ancestors” alive in 

1980.  This allowed us to create a dummy variable indicating if a sample firm was the 

result of a horizontal merger or acquisition (1 = firm merged).  About 7% of all sample 

firms engaged in at least one horizontal merger or acquisition during the study period. 

3.3.4.5 Firm Nationality.  We attempted to assess institutional and cultural 

difference by coding for the “nationality” of each pharma firm based on the location of its 

headquarters.  Thus, one indicator variable takes on the value of 1 if the firm is 

headquarted in the U.S. (U.S. Firm), the other indicator variable takes on the value of 1 if 

the firm is headquartered in Europe (European Firm), with an Asian location as the 

reference category.  The global nature of this sample is highlighted by the fact that only 

26% of the firms are headquarted in the U.S., while 37% are European, and the 

remaining 37% are Asian.  Thus, we were able to overcome the U.S. centric bias 

prevalent in prior research. 

3.3.4.6 Firm Performance and Firm Size.  Firm performance and firm size have a 

direct bearing on a firm’s innovative performance (Nohria and Gulati, 1996; Schumpeter, 

1934, 1942).  To control for these effects, we inserted a firm’s Net Income and Total 

Assets into to the regression equations. 

3.3.4.7 Year Fixed Effects.  Since we investigate a 23-year time period, it is 

prudent to control for time-varying factors that affect all firms, including macroeconomic 

conditions.  We thus included annual time dummies for each year, with 1980 being the 

omitted year, and thus serving as reference year.  Such year fixed effects also capture 

secular movements in the dependent variable.  Inserting year dummies is useful, 

because it addresses concerns that underlying secular trends could potentially influence 
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our inference by introducing a simultaneity bias in the relationship between the 

dependent variable, patenting rate, and the main regressors of interest. 

3.3.5 Sample 

The initial sample consisted of 125 pharmaceutical firms drawn form the recap 

database and annual volumes of BioScan.  Based on the availability of panel data 

across the various datasets utilized and the lengthy time period under study, however, 

the final sample was reduced to 81 firms.  It is important to note that the sample firms 

accounted for the vast majority of the sales in the pharmaceutical industry.  Tracking 

detailed pharmaceutical sales is difficult, because firms generally do not report sales 

differentiated by industrial sector.  Nonetheless, we were able to track the detailed 

pharmaceutical sales of 35 sample firms that non-diversified pharmaceutical companies.  

These 35 focused pharmaceutical companies represent only 28% of the initial sample, 

but accounted for 69% of the total sales for pharmaceuticals at the end of our study 

period (IMS Health, 2003).  We are fairly confident that the remaining 46 firms account 

for a minimum 20% of pharmaceutical sales, given the oligopolistic structure of this 

industry.  These data suggest that the sample drawn for this study is indeed 

representative of the global pharmaceutical industry. 

We tracked annual data for each firm, beginning in 1980 until the end of 2002 (23 

x 81 = 1,863 firm-year observations).  The companies in the sample are primarily large 

organizations with a focus on the discovery of proprietary drugs.  Firms in the sample 

include Ajinomoto (Japan), Aventis (EU), and Pfizer (U.S.).  The sampled 

pharmaceutical companies represent a segment of the biotechnology industry that 

engages in research, development, and commercialization of biotechnology therapeutics 

that are placed inside the human body (in-vivo), as opposed to in-vitro therapeutics, 

which are used outside the human body.  While biotechnology affects many different 

industries, the selected industry focus on in-vivo human therapeutics is reflective of its 
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economic importance and potential, its regulatory environment, and its consumer 

market.  In our study, focusing on human therapeutics enabled us to create a 

homogenous sample, while at the same time controlling for industry idiosyncrasies.   

We chose our study period to begin in 1980, because this was the year when 

biotechnology began to “take off” (see Figures 1 and 2).  This can partly be explained by 

three important events that occurred in 1980 (Stuart, et al. 1999: 323): (1) the 

phenomenal successful IPO of Genentech, the first public biotechnology firm, which in 

1980 “set a record for the fastest increase in stock price for an IPO, from $35 at offering 

to $89 in only 20 minutes;” (2) the passage of the Bayh-Dole act, which sanctioned 

university patenting of inventions that resulted from federally funded research programs; 

and (3) the decision of the Supreme Court that life forms can be patented.5  In addition, 

the Cohen-Boyer patent, disclosing recombinant DNA, was granted to Stanford 

University in 1980, which non-exclusively licensed this breakthrough technology freely 

for a nominal fee. 

3.3.6 Estimation Procedures 

The majority of empirical work in strategic management relies on cross-sectional 

data, and therefore does not allow for causal inferences (Hitt, Gimeno, and Hoskisson, 

1998).  Moreover, cross-sectional data are not suitable to answer research questions 

that contain a dynamic component, such as the role of different antecedents to firm-level 

dynamic capabilities and innovation.  To achieve a close match between our theoretical 

model and its empirical test, we chose a longitudinal research design in which we 

followed a given set of companies over time, while leveraging fine-grained panel data.  

The advantages of panel data include allowing the researcher to control for the initial 

values of the dependent variable, recognize time lags, enhance statistical power through 

the investigation of a larger sample size, and reducing the threat of collinearity among 

                                                

 

5 Diamond v. Chakrabarty 447 U.S. 303 (1980). 
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independent variables, which in turn improve the econometric estimates (Hsiao, 2003).    

The dependent variable of this study, a pharmaceutical firm’s patenting rate in 

biotechnology, is a non-negative, integer count variable.  Non-negative, integer count 

variables violate one of the main assumptions of the classical linear regression model, 

as this dependent variable cannot be normally distributed.  For such data, count models 

provide an econometric improvement over the classical linear (OLS) regression models.  

The Poisson estimation is the simplest but most restricted count data model, because it 

assumes equity between the conditional mean and variance.  Social science data, 

however, generally exhibit a greater variance than mean, and are thus characterized by 

over-dispersion.  The over-dispersion in the biotechnology patenting variables are 

highlighted by the fact that the coefficient of variation (standard deviation/mean) is 

greater than 2, implying that the patenting rates differ by more than 200% from the 

averages across firms.  The negative binomial estimation is an extension of the Poisson 

model and provides a mechanism for incorporating over-dispersion while allowing the 

variance to differ from the mean.  In addition, negative binomial regression accounts for 

an omitted variable bias, while simultaneously estimating heterogeneity (Cameron and 

Trivedi, 1986; Hausman, Hall, and Griliches, 1984).  We conducted a test for over-

dispersion that revealed that a negative binomial estimation provides a significantly 

better fit for the data than the more restrictive Poisson model (Gourieroux, Montfort, and 

Trognon, 1984).  A negative binomial regression analysis also represents a more 

conservative estimation procedure.    

In theory, either fixed- or random-effects specification can be used to control for 

unobserved heterogeneity (Greene, 2003).  Thus, we applied a Hausman specification 
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test (1978), and its result revealed that a random-effects estimation is indicated.6  We 

therefore applied the following random-effects negative binomial model: 

!/)/( 1
)exp( 11
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n
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i
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where n is a non-negative integer count variable capturing each pharmaceutical firm’s 

patenting in biotechnology, and thus )/( itnP  indicates the probability that 

pharmaceutical firm i files for or obtains n biotechnology patents in year t.  The 

application of a random-effects negative binomial estimation addresses concerns of 

heterogeneity, and enables us to include covariates that tend to be fairly time invariant, 

such as the firm’s time to first citation of the Cohen-Boyer patent, national origin, or 

degree of diversification (Hsiao, 2003).  Moreover, we submit that through the 

application of the Hausman-specification test and the resulting random-effects 

specification, in combination with a rich set of detailed control variables, we have 

effectively corrected for endogeneity (Hamilton and Nickerson, 2003).  

Hypotheses 4 and 5 suggest, in a competing fashion, that the antecedents to firm 

innovation across levels either complement or substitute one another.  These 

hypotheses indicate the application of hierarchical moderated regression (Cohen, et al. 

2003).  Moderated regression is considered to be a relatively conservative method for 

examining interaction effects, because the interaction terms are tested for significance 

after all direct effects have been entered into the regression equation (Jaccard, Wan, 

and Turrisi, 1990).  

Further, to interpret the results in a meaningful manner and to reduce potential 

collinearity, we standardized all independent variables before entering them into the 

various regression models.  We standardized the independent variables prior to creating 

their cross products to test the moderating hypotheses (Cohen, et al., 2003).  To assess 

                                                

 

6 To assess how sensitive our results are to the reported random-effects specification, we additionally 
applied a fixed-effects estimation.  The results remained robust. 
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the threat of multicollinearity, we calculated the variance inflation factors (VIFs) for each 

coefficient.  The maximum estimated VIF for all direct effects across the two different 

dependent variables was 2.10, and for the interaction effects, it was 7.51.  Thus, in both 

cases the VIFs were well below the recommended ceiling of 10 (Cohen, et al. 2003).  

3.4 Results  

The Table 3.1 in the appendix provides the descriptive statistics and the bivariate 

correlation matrix, while Table 3.2-3.6 present the regression results.  It is important to 

note that, as revealed in Table 3.1, all of the bivariate correlations between the 

independent variables, with the exception of the correlation between total scientists and 

non-star scientists, fall below the 0.70 threshold, thus indicating acceptable discriminant 

validity (Cohen, et al. 2003).  Moreover, the elevated correlation between the total 

number of scientists and non-star scientists is expected, because 99.35% of all 

scientists are non-stars, while only 0.65% are stars.  This elevated correlation is not of 

any concern, furthermore, because these two variables are not entered simultaneously 

in the regression models.  In addition, the key variables of interest exhibit considerable 

variance. 

We applied a hierarchical moderated regression analysis.  We first estimated a 

baseline model including the control variables only for biotech patents applied (Model 1) 

and biotech patents granted (Model 2), respectively.  Each subsequent model 

represents a significant improvement over the respective baseline models at p < 0.01, or 

smaller.  Models 3-6 contain all the direct effects simultaneously necessary to test 

Hypotheses 1-3, while Models 7-10 contain the interaction effects to assess 

Hypotheses 4 and 5.   
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3.4.1 Results – Direct Effect Hypotheses 

The results obtained in Models 3 and 4 provide support for Hypothesis 1a (at p < 

0.01 and p < 0.001, respectively), indicating that a firm’s innovative output within a new 

technological paradigm is a positive function of its intellectual human capital.  Recall that 

we proxied a firm’s intellectual human capital by the total number of its research 

scientists that published in academic journals. 

In Models 5 and 6, we split the total number of scientists into its constituent 

components of non-star and star scientists.  This allows us to assess the effect of star 

scientists on innovative output, above and beyond non-star scientists.  The results 

reveal, however, that a firm’s non-star scientists are positively and significantly 

correlated with a firm’s patenting rate (p < 0.01 and p < 0.001, respectively), while its 

number of star scientists are not.  Thus, we reject Hypothesis 1b, predicting a positive 

relationship between a firm’s stars and its innovation rate. 

Models 3-6 allow us to assess Hypotheses 2 and 3.  Contrary to our hypothesis, 

we find that a firm’s absorptive capacity, proxied by its R&D intensity, is negative and 

significant (at p < 0.01 or smaller in Models 3-6) in predicting a firm’s innovation rate.  

We find marginal support for Hypothesis 3a, suggesting that a firm’s innovative output 

within a new technological paradigm is a positive function of its alliances with new 

technology providers, when proxying innovative output by the number of biotechnology 

patents granted (p < 0.10 in Models 4 and 6).  The acquisition coefficients do not reach 

statistical significance in the fully specified direct effects models (Models 3-6), thus we 

fail to find support for Hypothesis 3b, positing that a firm’s innovation rate is a positive 

function of its acquisitions. 

3.4.2 Results – Interaction Hypotheses 

We proposed two competing interaction hypotheses, which we evaluate in 

Models 7-10.  In Hypothesis 4 we posited that the different innovation antecedents 
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across levels complement one another, while in Hypothesis 5 we suggested that they 

substitute for one another.  We find support for the hypothesis that a firm’s intellectual 

human capital, proxied by its total scientists, and a firm’s absorptive capacity are 

substitutes for one another, because the interaction between these two variables is 

negative and significant (p < 0.05 in Model 7 and p < 0.01 in Model 8).  When splitting a 

firm’s intellectual human capital into star and non-star scientists, the results in Models 9 

and 10 reveal a firm’s non-star scientists and its absorptive capacity, proxied by R&D 

intensity, serve as substitutes for one another (p < 0.05 in Model 9).  In Model 10, we 

find marginal support for the hypothesis that firm’s star scientists and its absorptive 

capacity complement one another (p < 0.10).  Taken together, the results support 

Hypothesis 4a, positing that the individual and firm-level antecedents to innovation are 

substitutes.  This result appears also to hold for the relationship between a firm’s non-

star scientists and its absorptive capacity.  Yet, when investigating the interaction 

between a firm’s star scientists and its absorptive capacity, we find some tentative 

support for Hypothesis 5a, indicating that these two mechanisms complement one 

another. 

When assessing the interaction between individual and network-level 

antecedents, we find that a firm’s intellectual human capital and its biotech alliances 

serve as substitutes, as indicated by the negative and significant interaction terms (p < 

0.01 in Model 7, p < 0.10 in Model 8).  A substitution relationship also appears to hold 

when splitting a firm’s intellectual capital into star and non-star scientists, because the 

interactions remain negative and significant (p < 0.05 in Model 9, p < 0.01 in Model 10).  

Taken together, we find support for Hypothesis 4b, suggesting that individual and 

network-level antecedents to innovation serve as substitutes.  This statement, however, 

needs to be qualified in the sense that it only holds for alliances, and not acquisitions. 
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The results reveal support for Hypothesis 5c, postulating that firm- and network-

level antecedents to innovation are complements.  The interactions between a firm’s 

absorptive capacity and its biotech alliances are positive and significant (p < 0.001 in 

Models 7 and 9, p < 0.01 in Model 8).  The interactions between a firm’s absorptive 

capacity and its biotech acquisitions are also positive and significant (p < 0.10 in Models 

7 and 9, p < 0.05 in Model 10).  A firm’s absorptive capacity and its alliances or 

acquisitions positively reinforce one another in generating innovative output. 

3.4.3 Results of Control Variables 

Some of the results of the control variables are also noteworthy.  We assess 

them in the baseline models 1 and 2.  With regard to the annual indicator variables, we 

see that the year dummies appear to capture a trend acceleration and eventual 

deceleration in biotechnology patenting over time.  Patenting activity accelerates in the 

mid-1980s, while it slows down significantly towards the end of the study.  This 

observation matches closely the graphical depiction of the biotechnology patenting trend 

in Figure 1.   

The results also indicate that firms that are heavily engaged in patenting overall, 

as proxied by their non-biotech patents, are also very active in biotech patenting (p < 

0.001 in both Models 1 and 2).  Including a variable that captures a firm’s overall 

inclination to engage in the focal activity is a common way to control for unobserved 

heterogeneity (Heckman and Borjas, 1980).  The results obtained are assuring as they 

capture unobserved heterogeneity, because they rule out the explanation that the 

findings with regard to the key independent variables might be caused by a firm’s 

strategy focused on innovation.  The results presented above are robust to an 

assessment of a firm’s overall innovation orientation that might lead to variance in a 

firm’s underlying competences, capabilities, or dispositions to patent. 
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Moreover, firms that have exhibited superior performance (p < 0.10) and firm’s 

that have merged during our study period (p < 0.001) are more active in biotech 

patenting.  Larger firms (p < 0.001), and European firms (p < 0.001), tend to be laggards 

with respect to innovation.  Finally, as expected, firms that take a longer time to 

incorporate the breakthrough Cohen-Boyer patent in their firm knowledge (p < 0.001), 

exhibit an overall lower innovation rate within the new biotechnology framework.    

3.5 Discussion  

Following recent theoretical developments emphasizing that the antecedents to 

dynamic capabilities can be found at the individual, firm, and network level of analysis 

(Eisenhardt and Martin, 2000; Teece, et al. 1997), we set out to answer the question 

pertaining to their locus.  Questions pertaining to the locus of dynamic capabilities go to 

the heart of strategic management, as they lead into the question of the locus of 

competitive advantage.  In particular, we were motivated by the question of whether the 

antecedents to dynamic capabilities can be found primarily at a specific level of analysis 

or at the intersection across different levels.  To answer these important but under-

explored questions, we developed a set of hypotheses that were tested on an unusually 

comprehensive and detailed panel dataset tracking the innovative output of existing 

pharmaceutical companies within the newly emerging biotechnology paradigm.  We 

began by developing a set of three direct effect hypotheses to assess the relative 

importance of different antecedents to dynamic capabilities located at different levels of 

analysis.  Since we were careful to include individual, firm, and network-level predictors 

simultaneously in the regression analysis, we could overcome the threat of unobserved 

heterogeneity, frequently documented in prior research (Felin and Hesterly, 2005).   

We found that most of the variance in biotechnology patenting is explained by 

individual and firm-level factors, while network-level factors did not exert a direct effect 
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when applying a traditional 95% significance cut-off.  A firm’s intellectual human capital 

was the strongest predictor of firm patenting.  In particular, when splitting a firm’s 

intellectual human capital into its two components, star and non-star scientists, we found 

that the positive direct effect of intellectual human capital on patenting could be 

attributed to a firm’s non-star scientists, while its star scientists did not exert a direct 

effect on patenting.7  This result is somewhat surprising given that it highlights the 

importance of scale in intellectual human capital, accomplished through a large number 

of rank-and-file scientists, rather than the relevance of elite scientists, which is 

emphasized in the few prior studies in this area (Lacetera, et al. 2004; Zucker, 1997a, 

1997b).  Thus, the role of the star scientist seems to be to help cue the firm to potential 

shifts in the environment (Kaplan, Murray, and Henderson, 2003), rather than to facilitate 

its adaptation to the change itself. 

A possible explanation of the somewhat discrepant findings in our study is that 

prior research neglected to control for non-star scientists when assessing the effect of 

stars on different outcome variables, or that prior research neglected to control for a 

potential heterogeneity across levels by including firm and network-level determinants.  

Given that our results show heterogeneity rather than homogeneity across levels of 

analysis, both scenarios open the door for unobserved heterogeneity, and thus can lead 

to spurious findings and attributional errors.  Considering our detailed and fine-grained 

controls across different levels, we are fairly confident in attributing the direct effect of 

intellectual human capital to non-star scientists. 

We also found that a firm’s R&D intensity, our proxy for firm-level absorptive 

capacity, consistently had a significant negative effect on the pharma firms’ patenting 

                                                

 

7 This result cannot be attributed reasonably to collinearity, because the bivariate correlation between stars 
and non-stars is r = 0.57.  This indicates discriminant validity because the bivariate correlation is well 
below the conventional ceiling of r = 0.70.  Moreover, all variance inflation factors for stars and non-stars 
were below 4.0, thus well below the traditional cut-off ceiling of 10 (Cohen et al., 2003). 
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rate in biotechnology.  This result is surprising, because it runs counter to what we had 

hypothesized.  A first reaction to this finding is that our measure of firm-level absorptive 

capacity is fairly narrow, since the theoretical construct of a firm-level absorptive 

capacity clearly goes beyond firm-level R&D intensity.  Thus, our result might be a 

reflection of an adequate, albeit widely accepted, proxy for absorptive capacity (Cohen 

and Levinthal, 1990).  A second possible explanation for this finding is that although the 

pharmaceutical firms engaged heavily in R&D spending, their R&D dollars were spent 

within the old technological paradigm of chemical screening, thus hampering their 

attempts to innovate within the new biotechnology paradigm.   

Given the strong precedent in the literature documenting a positive effect of a 

firm’s alliances and acquisitions on innovative output (e.g., DeCarolis and Deeds, 1999; 

Higgins and Rodriguez, 2005; Rothaermel, 2001; Shan, et al. 1994), we were surprised 

not to find any strong effects of either alliances or acquisitions on a pharma firm’s 

patenting rate in biotechnology, albeit alliances were found to be marginally significant in 

predicting a firm’s patenting rate as proxied by biotech patents granted.  This result 

confirms our cautionary note expressed above.  Future research must make greater 

strides towards controlling for confounding factors at different levels of analysis, 

especially at the individual level, to avoid spurious results due to unobserved 

heterogeneity (Felin and Hesterly, 2005). 

Going beyond simple, though comparative, direct effects, we next attempted to 

answer the question of whether the locus of the antecedents to dynamic capabilities lies 

within the intersection of any of these levels; in other words, does it lie across multiple 

levels of analysis?  And if the locus of the antecedents to dynamic capabilities is indeed 

found across multiple levels of analysis, are the different mechanisms to innovate 

complements or substitutes?  The results obtained here are interesting in the sense that 

we find support for both a complementarity and a substitutability hypothesis, depending 



  

104

 
on which levels of analysis are interacted with one another.  Given that we found 

significant moderating effects, the direct effects presented above also need to be 

interpreted contingent upon a potential moderating effect, because firms generally 

pursue several innovation mechanisms in tandem. 

Broadly speaking, we found that individual-level antecedents to innovation are 

substitutes to firm or network-level antecedents to innovation, and vice versa, because 

the interactions between a firm’s intellectual human capital and its absorptive capacity 

and its alliances, respectively, were negative and significant.  It is noteworthy that this 

assertion also held when considering non-star scientists, rather than the firm’s entire 

intellectual human capital.  Stars, too, seem to be substitutes for alliances.  This implies 

some equifinality when using individual or firm and network-level mechanisms to 

innovate, because intellectual human capital seems to compensate for R&D intensity 

and alliances, respectively.  On the other hand, we also found support for a 

complementarity hypothesis, because the interactions between a firm’s R&D intensity 

and its alliances and acquisitions were positive and significant.  This implies that firm- 

and network-level mechanisms of innovation positively reinforce one another.  Taken 

together, the antecedents to dynamic capabilities clearly seem to lie across different 

levels of analysis.  This implies that we not only reject the assumption of homogeneity 

across levels, but also that we reject the assumption of independence from different 

levels of analysis (Felin and Hesterly, 2005). 

One could argue that we did not find consistent star effects because our proxy 

definition of a star is too restrictive.  Going beyond prior research that relied only on 

publication productivity (Lacetera, et al. 2004; Zucker, 1997, 1997), we defined a star as 

someone who is above three standard deviations of the mean for both the frequency of 

journal publications and citations.  This result opens the door for the general and 
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important question of how do you define a star?  What criteria should you be looking at?8   

Does it need to be a dichotomous variable as used in prior research, or can we measure 

stardom as a continuous variable?  For example, our variable for intellectual human 

capital is a continuous measure, which exhibited significant predictive power.  Yet, it 

does not account for individual-level heterogeneity.  These are important issues, since 

prior research has highlighted that some companies have policies in place that do not 

allow their employees to publish research findings, which in turn retarded their 

innovation (Henderson and Cockburn, 1994).  It would be helpful if future research could 

resolve some of these issues.   

An important caveat to the interpretation of our results involves the potential 

generalizability of the results.  Specifically, our results may not be applicable beyond our 

setting of large, incumbent pharmaceutical firms.  One reason for this concern centers 

on is considered to be included in the R&D expense of a firm.  This is of concern 

because despite our relatively low correlation between R&D expense and total scientists 

(0.2), general accounting guidelines suggest that the salaries of R&D personnel should 

be included in R&D expense.  My study looks at publishing scientists in pharmaceutical 

firms, which represent only a small subset of the total researching scientists and lab 

employees in large pharmaceutical firms.  My research indicates that the overlap 

between R&D expense and publishing scientists is more significant with smaller firms, 

which have fewer non-publishing research employees.  This suggests that one should 

be cautious in generalizing our results to a sample of smaller firms, even in the 

pharmaceutical industry.     

                                                

 

8 Alternatively, we proxied stars by whether a researcher had received a Nobel Prize in either 
chemistry or medicine, the two fields relevant to our study.  We cross-referenced the list of all 
Nobel Laureates with our author database to assess whether any of the Nobel Laureates had published 
research articles, where they listed a pharmaceutical company as their affiliation.  This process yielded 23 
Nobel Laureates who published 148 papers.  The variance among firms, however, was too little for any 
meaningful econometric analysis. 
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3.6 Conclusion 

In this paper we have made an initial attempt to disentangle the multi-level 

effects associated with the various mechanisms firms use to adapt to a new 

technological paradigm.  Through this analysis, we have made a contribution to our 

understanding of how firms build and refine dynamic capabilities in order to adapt to 

change.  Prior research on the development of dynamic capabilities has focused on the 

collective level, investigating the importance of firm or network-level attributes.  Our 

research demonstrates that individuals matter and that it is inappropriate to attempt to 

investigate firm adaptation and innovation without the consideration of its intellectual 

human capital.  Our investigation of the various interactions between the levels of 

analysis seems to explicate the importance of the individual.  That is, while the 

antecedents to dynamic capabilities occur across different levels, the firm and collective-

level mechanisms are complementary in nature, while human capital seems to 

compensate for firm and network-level mechanisms.  The development of a strong 

intellectual capital base requires time and the commitment of resources that are often 

not available to a firm faced with the demands of adapting to a new technological 

paradigm.  Our research indicates that it is those firms that are able to identify the 

paradigm shift and assemble the requisite human assets that are ultimately capable of 

developing the necessary dynamic capabilities.   

Managers face the added burden of time constraints when attempting to innovate 

within a new technological paradigm.  It is tantamount, therefore, to firm success that a 

manager be able to not only weigh the strengths and weaknesses of the available 

mechanisms, but also to understand and predict how these mechanisms will interact 

when used in tandem.  Faced with the daunting task of adapting to a new technological 

paradigm, however, managers often choose the ‘grab bag’ approach to innovating, 

employing a variety of available mechanisms simultaneously without the knowledge of 
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possible deleterious interaction effects.  Our research demonstrates that, due to the 

constraints imposed on a firm’s financial, managerial, and research-related resources, 

this tandem approach may actually lead to decreases in innovative output.  In other 

words, when investigating the number of mechanisms a manager can employ, more is 

not always better.   
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CHAPTER 3 APPENDIX  

TABLE 3.1: Descriptive Statistics and Bivariate Correlation Matrix   

mean s.d. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 

1. Biotech Patents Applied 5.55 11.90                 

2. Biotech Patents Granted 5.63 11.46 0.606                

3. Net Income (MM$) 32,907 648,153 0.032 0.052               

4. Total Assets (MM$) 10,268 12,211 0.142 0.181 -0.019              

5. US Firm 0.26 0.44 0.121 0.135 -0.036 0.044             

6. EU Firm 0.37 0.48 0.033 0.023 0.066 0.158 -0.462            

7. Firm Merged 0.07 0.26 0.051 0.082 -0.013 0.194 0.104 0.056           

8. Pharma Firm 0.53 0.50 0.053 0.071 0.047 -0.316 -0.096 0.219 -0.129          

9. Time to First Cohen-Boyer 
Patent Citation (years) 6.55 2.90 -0.212 -0.225 -0.069 0.032 -0.107 0.065 -0.036 0.009         

10. Non-Biotech Patents Applied 55.71 104.18 0.237 0.190 0.007 0.535 0.132 0.074 0.004 -0.313 0.010        

11. Non-Biotech Patents Granted 57.90 104.93 0.180 0.228 0.014 0.540 0.146 0.070 0.018 -0.325 0.008 0.927       

12. Scientists (total) 186.46 282.61 0.427 0.455 -0.036 0.232 0.232 0.100 0.381 0.124 -0.159 0.250 0.263      

13. Non-Star Scientists 173.13 260.58 0.414 0.445 -0.036 0.242 0.220 0.120 0.387 0.118 -0.158 0.250 0.266 0.995     

14. Star Scientists 13.34 35.85 0.363 0.356 -0.019 0.084 0.232 -0.077 0.196 0.119 -0.103 0.154 0.138 0.654 0.572    

15. R&D Intensity 0.09 0.07 0.111 0.113 -0.030 -0.065 -0.073 0.230 0.070 0.359 -0.001 -0.035 -0.048 0.197 0.205 0.074   

16. Biotech Alliances 2.41 6.12 0.250 0.155 -0.009 0.121 0.185 -0.004 0.310 0.045 -0.152 0.089 0.043 0.413 0.390 0.417 0.068  

17. Biotech Acquisitions 0.51 1.63 0.183 0.165 -0.013 0.196 0.142 0.056 0.381 0.070 -0.114 0.101 0.080 0.377 0.360 0.360 0.089 0.514  

N = 1,863 firm-years.    
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Table 3.2:  Regression Results 

beta s.e. beta s.e.
Constant -0.0556 (0.2323) 0.1216 (0.2000)
Year is 1981 -0.2720 (0.2896) 0.0079 (0.2281)
Year is 1982 0.1951 (0.2610) -0.2121 (0.2489)

Year is 1983 0.0192 * (0.2799) -0.3389 † (0.2576)
Year is 1984 0.3151 (0.2565) -0.0654 (0.2368)
Year is 1985 0.2037 (0.2629) 0.0539 (0.2297)

Year is 1986 0.3477 † (0.2567) -0.1261 (0.2411)
Year is 1987 0.5408 * (0.2473) 0.0098 (0.2346)
Year is 1988 0.5408 * (0.2511) 0.1316 (0.2267)
Year is 1989 0.5840 ** (0.2372) 0.2129 (0.2096)

Year is 1990 0.8419 *** (0.2276) 0.2738 † (0.1989)
Year is 1991 0.8776 *** (0.2271) 0.5027 * (0.1964)
Year is 1992 0.9167 *** (0.2272) 0.5875 *** (0.1942)
Year is 1993 1.1491 *** (0.2253) 0.7113 *** (0.1918)
Year is 1994 1.4643 *** (0.2265) 0.6142 *** (0.1987)
Year is 1995 1.6436 *** (0.2276) 0.6813 *** (0.1996)
Year is 1996 1.3595 *** (0.2289) 0.7892 *** (0.1968)
Year is 1997 1.4457 *** (0.2268) 1.0444 *** (0.1937)
Year is 1998 1.3906 *** (0.2312) 1.1856 *** (0.1940)
Year is 1999 1.3419 *** (0.2345) 1.1771 *** (0.1983)
Year is 2000 1.0461 *** (0.2403) 0.9651 *** (0.2024)
Year is 2001 0.5101 * (0.2547) 1.1134 *** (0.2026)
Year is 2002 -0.7438 * (0.3270) 0.8589 *** (0.2083)

Net Income 0.0288 † (0.0192) 0.0203 (0.0193)
Total Assets -0.3356 *** (0.0680) -0.2199 *** (0.0619)
US Firm -0.0892 (0.1151) -0.1503 (0.1192)
EU Firm -0.5458 *** (0.1271) -0.8738 *** (0.1321)
Firm Merged 0.1766 *** (0.0333) 0.1085 *** (0.0346)
Pharma Firm -0.0154 (0.0892) 0.0693 (0.0938)
Time to First Cohen-Boyer Patent Citation -0.4259 *** (0.0782) -0.5317 *** (0.0818)
Non-Biotech Patents Applied 0.3927 *** (0.0388) 
Non-Biotech Patents Granted  0.4853 *** (0.0439)
Scientists (total)
Non-Star Scientists
Star Scientists
R&D Intensity
Biotech Alliances
Biotech Acquisitions
Scientists (total) x R&D Intensity
Scientists (total) x Biotech Alliances
Scientists (total) x Biotech Acquisitions
Non-Star Scientists x R&D Intensity
Non-Star Scientists x Biotech Alliances
Non-Star Scientists x Biotech Acquisitions
Star Scientists x R&D Intensity
Star Scientists x Biotech Alliances
Star Scientists x Biotech Acquisitions
R&D Intensity x Biotech Alliances
R&D Intensity x Biotech Acquistions
Log likelihood -2521.08 -2465.30
Chi Square 895.91 *** 705.77 ***
†

 

p < .10* p  < .05; ** p  < .01; *** p  < .001; Standard errors are in parentheses.

Model 1

Biotech Patents Applied

Model 2

Biotech Patents Granted
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Table 3.3: Regression Results 

beta s.e. beta s.e.
Constant 0.0506 (0.2410) 0.1763 (0.2135)
Year is 1981 -0.2723 (0.2859) -0.0215 (0.2305)
Year is 1982 0.1695 (0.2585) -0.2278 (0.2497)

Year is 1983 0.0163 (0.2762) -0.3443 † (0.2578)

Year is 1984 0.0163 † (0.2558) -0.0932 (0.2429)
Year is 1985 0.0163 (0.2689) 0.0448 (0.2347)
Year is 1986 0.3371 (0.2553) -0.1727 (0.2460)
Year is 1987 0.1126 * (0.2464) -0.2178 (0.2372)
Year is 1988 0.3268 * (0.2479) 0.0169 (0.2334)
Year is 1989 0.5573 ** (0.2380) 0.1449 (0.2183)
Year is 1990 0.7944 *** (0.2277) 0.1761 (0.2052)
Year is 1991 0.8201 *** (0.2276) 0.4087 * (0.2050)

Year is 1992 0.8503 *** (0.2287) 0.4935 † (0.2041)
Year is 1993 1.0636 *** (0.2279) 0.6290 *** (0.2025)
Year is 1994 1.3946 *** (0.2298) 0.4831 * (0.2115)
Year is 1995 1.5679 *** (0.2324) 0.5882 ** (0.2143)
Year is 1996 1.2506 *** (0.2355) 0.6405 ** (0.2125)
Year is 1997 1.4089 *** (0.2352) 0.9675 *** (0.2172)
Year is 1998 1.4149 *** (0.2427) 1.2112 *** (0.2159)
Year is 1999 1.3471 *** (0.2456) 1.2829 *** (0.2189)
Year is 2000 1.0901 *** (0.2475) 1.0169 *** (0.2307)
Year is 2001 0.6384 *** (0.2754) 1.3182 *** (0.2320)
Year is 2002 -0.7258 * (0.3818) 0.9886 *** (0.2453)
Net Income 0.0195 (0.0200) 0.0065 (0.0210)
Total Assets -0.3865 *** (0.0729) -0.3384 *** (0.0709)
US Firm -0.2883 * (0.1413) -0.3204 ** (0.1368)
EU Firm -0.6229 *** (0.1541) -0.8459 *** (0.1510)
Firm Merged 0.1582 *** (0.0348) 0.1110 *** (0.0361)
Pharma Firm -0.0791 (0.0975) -0.0088 (0.0980)
Time to First Cohen-Boyer Patent Citation -0.4889 *** (0.0828) -0.5792 *** (0.0843)
Non-Biotech Patents Applied 0.3909 *** (0.0420)  
Non-Biotech Patents Granted  0.4878 *** (0.0489)
Scientists (total) 0.1257 ** (0.0421) 0.1901 *** (0.0457)
Non-Star Scientists 
Star Scientists 
R&D Intensity -0.1225 ** (0.0525) -0.1561 ** (0.0608)

Biotech Alliances 0.0161 (0.0214) 0.0327 † (0.0226)
Biotech Acquisitions 0.0094 (0.0222) -0.0232 (0.0227)
Scientists (total) x R&D Intensity
Scientists (total) x Biotech Alliances
Scientists (total) x Biotech Acquisitions
Non-Star Scientists x R&D Intensity
Non-Star Scientists x Biotech Alliances
Non-Star Scientists x Biotech Acquisitions
Star Scientists x R&D Intensity
Star Scientists x Biotech Alliances
Star Scientists x Biotech Acquisitions
R&D Intensity x Biotech Alliances
R&D Intensity x Biotech Acquistions
Log likelihood -2251.41 -2147.90
Chi Square 914.46 *** 817.81 ***

Improvement over Base ( 2) 18.55 *** 112.04 ***
†

 

p < .10* p  < .05; ** p  < .01; *** p  < .001; Standard errors are in parentheses.

Model 3 Model 4
Biotech Patents Applied Biotech Patents Granted
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Table 3.4: Regression Results  

beta s.e. beta s.e.
Constant 0.0557 (0.2414) 0.1748 (0.2137)
Year is 1981 -0.2727 (0.2861) -0.0212 (0.2304)
Year is 1982 0.1699 (0.2586) -0.2274 (0.2497)

Year is 1983 0.0166 (0.2764) -0.3440 † (0.2578)

Year is 1984 0.3377 † (0.2561) -0.0926 (0.2428)
Year is 1985 0.1120 (0.2692) 0.0447 (0.2347)

Year is 1986 0.3292 † (0.2556) -0.1731 (0.2460)
Year is 1987 0.5178 * (0.2467) -0.0213 (0.2372)
Year is 1988 0.4247 * (0.2481) 0.0154 (0.2336)
Year is 1989 0.5579 ** (0.2382) 0.1449 (0.2182)
Year is 1990 0.7956 *** (0.2280) 0.1756 (0.2052)
Year is 1991 0.8198 *** (0.2279) 0.4090 * (0.2050)
Year is 1992 0.8481 *** (0.2290) 0.4933 ** (0.2041)
Year is 1993 1.0635 *** (0.2280) 0.6292 *** (0.2025)
Year is 1994 1.3931 *** (0.2299) 0.4835 * (0.2115)
Year is 1995 1.5653 *** (0.2326) 0.5891 ** (0.2144)
Year is 1996 1.2458 *** (0.2360) 0.6415 ** (0.2127)
Year is 1997 1.3994 *** (0.2367) 0.9703 *** (0.2181)
Year is 1998 1.4082 *** (0.2435) 1.2129 *** (0.2162)
Year is 1999 1.3398 *** (0.2466) 1.2852 *** (0.2194)
Year is 2000 1.0805 *** (0.2589) 1.0192 *** (0.2312)
Year is 2001 0.6303 * (0.2766) 1.3195 *** (0.2321)
Year is 2002 -0.7361 * (0.3830) 0.9921 *** (0.2464)

Net Income 0.0194

 

(0.0200) 0.0066 (0.0210)
Total Assets -0.3874 *** (0.0731) -0.3369 *** (0.0717)
US Firm -0.2891 * (0.1415) -0.3191 ** (0.1370)
EU Firm -0.6273 *** (0.1546) -0.8448 *** (0.1511)
Firm Merged 0.1583 *** (0.3452) 0.1109 *** (0.0361)
Pharma Firm -0.0773 (0.0975) -0.0102 (0.0985)
Time to First Cohen-Boyer Patent Citation -0.4824 *** (0.0841) -0.5805 *** (0.0849)
Non-Biotech Patents Applied 0.3919 *** (0.0420) 
Non-Biotech Patents Granted  0.4872 *** (0.0491)
Scientists (total)
Non-Star Scientists 0.1278 ** (0.0485) 0.1714 *** (0.0510)
Star Scientists 0.0022 (0.0345) 0.0286 (0.0330)
R&D Intensity -0.1250 ** (0.0531) -0.1552 ** (0.0611)

Biotech Alliances 0.0169 (0.0215) 0.0320 † (0.0231)
Biotech Acquisitions 0.0104 (0.0223) -0.0235 (0.0229)
Scientists (total) x R&D Intensity
Scientists (total) x Biotech Alliances
Scientists (total) x Biotech Acquisitions
Non-Star Scientists x R&D Intensity
Non-Star Scientists x Biotech Alliances
Non-Star Scientists x Biotech Acquisitions
Star Scientists x R&D Intensity
Star Scientists x Biotech Alliances
Star Scientists x Biotech Acquisitions
R&D Intensity x Biotech Alliances
R&D Intensity x Biotech Acquistions
Log likelihood -2251.32 -2147.89
Chi Square 915.06 *** 817.54 ***

Improvement over Base ( 2) 19.15 ** 111.77 ***
†

 

p < .10* p  < .05; ** p  < .01; *** p  < .001; Standard errors are in parentheses.

Model 5 Model 6
Biotech Patents Applied Biotech Patents Granted
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Table 3.5: Regression Results 

beta s.e. beta s.e.
Constant 0.1538 (0.2396) 0.2080 (0.2128)
Year is 1981 -0.2863 (0.2809) -0.0059 (0.2243)
Year is 1982 0.1544 (0.2534) -0.2027 (0.2433)

Year is 1983 -0.0031 (0.2702) -0.3330 † (0.2530)
Year is 1984 0.3179 (0.2503) -0.0709 (0.2378)
Year is 1985 0.1013 (0.2645) 0.0703 (0.2293)
Year is 1986 0.3029 (0.2510) -0.1715 (0.2418)
Year is 1987 0.5088 * (0.2437) 0.0109 (0.2323)

Year is 1988 0.3805 † (0.2457) 0.0365 (0.2299)
Year is 1989 0.5019 * (0.2388) 0.1617 (0.2194)
Year is 1990 0.7226 *** (0.2256) 0.1514 (0.2028)
Year is 1991 0.7512 *** (0.2262) 0.4029 * (0.2037)
Year is 1992 0.7685 *** (0.2275) 0.4876 ** (0.2024)
Year is 1993 0.9611 *** (0.2277) 0.6116 *** (0.2018)
Year is 1994 1.3035 *** (0.2289) 0.4649 * (0.2104)
Year is 1995 1.5131 *** (0.2330) 0.6070 ** (0.2141)
Year is 1996 1.1693 *** (0.2353) 0.6411 ** (0.2126)
Year is 1997 1.3334 *** (0.2380) 1.0332 *** (0.2183)
Year is 1998 1.3001 *** (0.2427) 1.2153 *** (0.2153)
Year is 1999 1.2833 *** (0.2436) 1.3178 *** (0.2154)
Year is 2000 0.9711 *** (0.2567) 1.0388 *** (0.2266)
Year is 2001 0.4998 * (0.2761) 1.2545 *** (0.2310)
Year is 2002 -0.8552 * (0.3846) 1.0109 *** (0.2448)

Net Income 0.0176

 

(0.2000) 0.0067 (0.0206)
Total Assets -0.3708 *** (0.0721) -0.3550 *** (0.0704)
US Firm -0.2897 * (0.1425) -0.3086 * (0.1403)
EU Firm -0.6127 *** (0.1539) -0.8442 *** (0.1509)
Firm Merged 0.1441 *** (0.0351) 0.0932 ** (0.0371)
Pharma Firm -0.0791 (0.0975) 0.0107 (0.1002)
Time to First Cohen-Boyer Patent Citation -0.4772 *** (0.0848) -0.6071 *** (0.0876)
Non-Biotech Patents Applied 0.3879 *** (0.0421)
Non-Biotech Patents Granted 0.5106 *** (0.0490)
Scientists (total) 0.2202 *** (0.0531) 0.2453 *** (0.0552)
Non-Star Scientists
Star Scientists
R&D Intensity -0.1395 ** (0.0557) -0.1246 * (0.0627)

Biotech Alliances 0.0279 (0.0355) 0.0471 † (0.0347)

Biotech Acquisitions 0.0227 (0.0346) -0.6128 † (0.0389)
Scientists (total) x R&D Intensity -0.0919 * (0.0421) -0.1111 ** (0.0396)

Scientists (total) x Biotech Alliances -0.0355 ** (0.0149) -0.0209 † (0.0148)
Scientists (total) x Biotech Acquisitions -0.0160 (0.0154) 0.0019 (0.0165)
Non-Star Scientists x R&D Intensity
Non-Star Scientists x Biotech Alliances
Non-Star Scientists x Biotech Acquisitions
Star Scientists x R&D Intensity
Star Scientists x Biotech Alliances
Star Scientists x Biotech Acquisitions
R&D Intensity x Biotech Alliances 0.1775 *** (0.0502) 0.0544 ** (0.0453)

R&D Intensity x Biotech Acquistions 0.0594 † (0.0402) 0.1267 (0.0466)
Log likelihood -2240.25 -2139.36
Chi Square 976.34 *** 860.74 ***

Improvement over Base ( 2) 80.43 *** 154.97 ***
†

 

p < .10* p  < .05; ** p  < .01; *** p  < .001; Standard errors are in parentheses.

Model 7 Model 8
Biotech Patents Applied Biotech Patents Granted
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Table 3.6: Regression Results   

beta s.e. beta s.e.
Constant 0.1624 (0.2411) 0.2538 (0.2154)
Year is 1981 -0.2881 (0.2808) -0.0032 (0.2235)
Year is 1982 0.1527 (0.2533) -0.2064 (0.2425)

Year is 1983 0.0052 (0.2703) -0.3366 † (0.2518)
Year is 1984 0.3158 (0.2503) -0.0770 (0.2366)
Year is 1985 0.0988 (0.2648) 0.0508 (0.2288)
Year is 1986 0.3026 (0.2512) -0.1846 (0.2413)
Year is 1987 0.4991 * (0.2440) -0.0079 (0.2320)

Year is 1988 0.3622 † (0.2477) -0.0097 (0.2326)
Year is 1989 0.4764 * (0.2412) 0.1526 (0.2205)
Year is 1990 0.7139 *** (0.2264) 0.1133 (0.2035)
Year is 1991 0.7403 *** (0.2274) 0.3591 * (0.2053)
Year is 1992 0.7569 *** (0.2287) 0.4541 * (0.2039)
Year is 1993 0.9517 *** (0.2287) 0.5767 ** (0.2031)
Year is 1994 1.2953 *** (0.2294) 0.4350 ** (0.2106)
Year is 1995 1.5019 *** (0.2340) 0.5770 ** (0.2150)
Year is 1996 1.1576 *** (0.2366) 0.6148 ** (0.2135)
Year is 1997 1.3337 *** (0.2396) 1.0076 *** (0.2191)
Year is 1998 1.2931 *** (0.2450) 1.1576 *** (0.2183)
Year is 1999 1.2709 *** (0.2458) 1.2721 *** (0.2188)
Year is 2000 0.9641 *** (0.2592) 1.0015 *** (0.2287)
Year is 2001 0.4953 ** (0.2766) 1.2216 *** (0.2305)
Year is 2002 -0.8816 * (0.3872) 0.9550 *** (0.2509)

Net Income 0.0178

 

(0.0200) 0.0088 (0.0202)
Total Assets -0.3574 *** (0.0754) -0.3063 *** (0.0759)
US Firm -0.2922 * (0.1423) -0.3129 * (0.1413)
EU Firm -0.6156 *** (0.1548) -0.8599 *** (0.1522)
Firm Merged 0.1436 *** (0.0356) 0.0810 * (0.0374)
Pharma Firm -0.0752 (0.0984) 0.0198 (0.1014)
Time to First Cohen-Boyer Patent Citation -0.4801 *** (0.0862) -0.6063 *** (0.0890)
Non-Biotech Patents Applied 0.3871 *** (0.0421)
Non-Biotech Patents Granted 0.5147 *** (0.0487)
Scientists (total)
Non-Star Scientists 0.2132 *** (0.0560) 0.2352 *** (0.0644)
Star Scientists 0.0105 (0.0489) 0.0192 (0.0539)
R&D Intensity -0.1388 ** (0.0573) -0.1021 * (0.0618)
Biotech Alliances 0.0332 (0.0361) 0.0409 (0.0363)
Biotech Acquisitions 0.0197 (0.0350) -0.0675 * (0.0394)
Scientists (total) x R&D Intensity
Scientists (total) x Biotech Alliances
Scientists (total) x Biotech Acquisitions
Non-Star Scientists x R&D Intensity -0.0906 * (0.0551) -0.1573 (0.0531)
Non-Star Scientists x Biotech Alliances -0.0467 * (0.0233) -0.0164 (0.0230)
Non-Star Scientists x Biotech Acquisitions -0.013 (0.0205) 0.0188 (0.0211)

Star Scientists x R&D Intensity -0.0005 (0.0683) 0.1000 † (0.0715)
Star Scientists x Biotech Alliances 0.0038 (0.0105) -0.0014 ** (0.0103)
Star Scientists x Biotech Acquisitions -0.0007 (0.0090) -0.0095 (0.0088)
R&D Intensity x Biotech Alliances 0.1835 *** (0.0541) 0.0263 (0.0524)

R&D Intensity x Biotech Acquistions 0.0557 † (0.0418) 0.1031 * (0.0507)
Log likelihood -2239.84 -2137.38
Chi Square 977.77 *** 879.96 ***

Improvement over Base ( 2) 81.86 *** 174.19 ***
†

 

p < .10* p  < .05; ** p  < .01; *** p  < .001; Standard errors are in parentheses.

Model 9 Model 10
Biotech Patents Applied Biotech Patents Granted
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CHAPTER 4  

AMBIDEXTERITY AND INNOVATIVE PERFORMANCE: THE ROLE OF 
INTELLECTUAL HUMAN CAPITAL AND STRATEGIC ALLIANCES  

4.1 Introduction  

How do organizations identify and react to changes that originate outside their 

boundaries?  This question is fundamental to both organization theory and strategic 

management.  Organization theory scholars that draw on the organizational learning 

literature suggest that the ability to simultaneously explore new knowledge and to exploit 

existing knowledge allows an organization to continuously adapt to changing 

environments (Levinthal and March, 1993; March, 1991).  The ability of an organization 

to concurrently pursue exploration and exploitation has been described as ambidexterity 

(O’Reilly and Tushman, 2007), because engaging in exploration requires fundamentally 

different routines, processes, and skills than those necessary for exploitation.   

To answer the question of how organizations identify and react to changes that 

originate outside their boundaries, strategy scholars have recently begun to advance a 

dynamic capabilities perspective.  They suggest that a firm’s “ability to integrate, build, 

and reconfigure internal and external competences to address rapidly changing 

environments” lies at the center of its capability to not only adapt to changing 

environments (Teece, Pisano, and Shuen, 1997: 516), but also to introduce favorable 

market change (Eisenhardt and Martin, 2000).  Thus, a dynamic capability has been 

defined as “the capacity of an organization to purposefully create, extend, or modify its 

resources base” (Helfat et. al, 2007: 4).  Key to understanding dynamic capabilities, 

therefore, is the organization’s ability to alter its resource base in a repeatable and 

reliable fashion, as guided by the organization’s strategic intent.   
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In their recent theoretical treatise, O’Reilly and Tushman (2007) synthesized 

these two theoretical perspectives to suggest that ambidexterity is an important dynamic 

capability.  The creation and maintenance of this dynamic capability, therefore, requires 

that an organization not only engages in exploration to create new capabilities, but also 

that the organization builds on and exploits current capabilities as well.  While it is readily 

apparent that managers have at their disposal multiple mechanisms to build dynamic 

capabilities (for an overview see Helfat, et al., 2007), we have virtually no understanding 

of the nuanced contingency effects that arise when different antecedents to dynamic 

capabilities within and across the dimensions of the exploration-exploitation framework 

are employed simultaneously.  The critical theoretical dimension that we highlight, 

therefore, is whether the different dynamic capability mechanisms that firms use to build 

and change their resources are exploratory or exploitative in nature. 

We focus herein on two different mechanisms that firms can employ to build 

dynamic capabilities: 1) recruiting and retaining of intellectual human capital and 2) 

engaging in strategic alliances, while explicitly controlling for acquisitions.  Our choice in 

focusing on these two mechanisms stems from the fact that expertise in these activities 

are representative of dynamic capabilities that allow firms to access and build new 

capabilities in order to change their existing resource base (Gulati, 1998; Cockburn and 

Henderson, 2001), and thus to develop new processes, products, or services.  While 

some of these mechanisms have been studied in isolation in prior research (Zucker and 

Darby, 1997a; Rothaermel, 2001; Gardner, 2005), we know very little about the 

simultaneous effects of these mechanisms on innovative performance in general 

(Rothaermel and Hess, 2007).  We know practically nothing about the simultaneous 

effects of leveraging different types of intellectual human capital and different types of 

strategic alliances in an effort to modify a firm’s existing resources or to create new 

resources. 
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We suggest that both strategic alliances and different types of intellectual human 

capital can be categorized within the exploration-exploitation framework of organizational 

learning.  This decomposition allows us to derive falsifiable hypotheses.  While the 

exploration-exploitation lens has been applied to strategic alliances based on their 

strategic motivation (Koza and Lewin, 1998), we propose that it can also be applied to a 

firm’s intellectual human capital based on a noted bifurcation of “star” versus “staff 

scientists” (Rothaermel and Hess, 2007; Zucker and Darby, 1996).  It has long been 

demonstrated that not all intellectual human capital is created equally (Lotka, 1926), 

indicating that significant heterogeneity exists even within highly specialized intellectual 

human capital.   

We propose that different antecedents to building dynamic capabilities within the 

same activity (either indented for exploration or exploitation) compensate for one 

another, and thus are substitutes.  Conversely, we hypothesize that different dynamic 

capability antecedents across exploration or exploitation activities positively reinforcing 

one another, and thus are complements.  We empirically test this contingency 

framework of ambidexterity across exploration and exploitation on an unusually detailed 

and comprehensive panel of data.  In particular, we followed 108 global pharmaceutical 

firms’ innovative performance in biotechnology for over three decades (1974-2003).  The 

pharmaceutical industry experienced a radical technological transformation with the 

advent of biotechnology based on the arrival of genetic engineering, genomics, and 

other novel research since the mid-1970s (Kenney, 1986; Pisano, 2006).  To track the 

adaptation of incumbent pharmaceutical companies to biotechnology, we leverage fine-

grained longitudinal data on 3,100 alliances, 3,500 new drug introductions, 36,000 

biotechnology patents that have been cited 80,000 times, 147,000 non-biotechnology 

patents, 171,000 publishing scientists, 672,000 journal publications, and 9.9 million 

journal citations.   
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4.2 Theory and Hypotheses Development 

In high velocity industries antecedents to innovation often come from outside of the 

organizational boundaries (Powell, et al., 1996).  Therefore, in such industries, an 

organization’s innovative performance is inextricably linked to its ability to create and 

manage connections with other organizations.  Prior research investigating the 

importance of this connectivity has primarily focused on the important role strategic 

alliances play in developing an organization’s ability to access sources of external 

knowledge (Hagedoorn, 1993; Gulati, 1999; Rothaermel and Deeds, 2004).  It is 

important to note however, that this capability is also related to the firm’s scope of 

collaborations; both formal (strategic alliances) and informal (interpersonal) relationships 

(Powell, et al., 1996).  Thus, analysis of an organization’s connectivity requires 

knowledge not only of its strategic alliances, but also its intellectual human capital, which 

fosters, as indicated by the CEO of Centocor:  “…dozens of handshake deals and 

informal collaborations, as well as probably hundreds of collaborations by our company’s 

scientists with colleagues elsewhere” (Powell, et al. 1996: 120).  Thus, within high 

velocity industries, both strategic alliances and intellectual human capital are 

antecedents to innovation (Rothaermel and Hess, 2007).   

The relationship between these antecedents to innovation is complex because 

the interdependence between them depends on the innovative intent with which they are 

utilized.  This intent relates to the type of knowledge the organization is attempting to 

access.  More specifically, is the organization seeking to explore for new knowledge or 

exploit an existing knowledge base?  This distinction is critical because the relationship 

between exploration and exploitation lies at the foundation of understanding how 

organizations not only gain, but also sustain long term innovative performance 

(Tushman and O’Reilly, 1996).  As we will develop further, the importance of 

understanding this relationship stems from the analysis of both the type of knowledge 
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transmitted and the types of partners an organization attempts to connect with; 

depending on whether its innovative intent of the effort is to exploration or exploitation.  

Our hypotheses development will progress by next briefly describing the explore/exploit 

framework of organizational learning and why it represents an appropriate lens for the 

analysis of organizational connectivity.  Our theoretical development will describe how 

prior research has applied this framework to an organization’s strategic alliances and 

why we suggest it is also appropriate for the analysis of an organization’s human capital.  

Finally, the typology developed through this theoretical argument will be utilized to 

illustrate the differential interaction between alliances and intellectual human capital; 

depending on whether they are focused on exploration or exploitation activities. 

It is important to note that prior research has provided some key insights 

pertaining to exploration and exploitation activities when using the same mechanism, 

i.e., when focusing either on alliances or scientists.  What we lack, however, is a 

nuanced understanding of the contingency effects of different exploration and 

exploitation mechanisms.  In this study, therefore, we focus on the interactions between 

micro- and macro-levels, and thus focus on the different permutations between a firm’s 

intellectual human capital, bifurcated into star and staff scientists, and its strategic 

alliances, dichotomized into exploration alliances and exploitation alliances.  

4.2.1 The Exploration/Exploitation Framework 

March (1991: 71) explained that “exploration includes things captured by terms 

such as search, variation, risk taking, experimentation, play, flexibility, discovery, 

innovation.  Exploitation includes such things as refinement, choice, production, 

efficiency, selection, implementation, execution.”  Thus, the “essence of exploration is 

experimentation with new alternatives,” while the “essence of exploitation is the 

refinement and extension of existing competences.”  Subsequently, Levinthal and March 
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(1993: 105) defined exploration as “the pursuit of new knowledge, of things that might 

come to be known,” and exploitation as “the use and development of things already 

known.”  In order understand the relationship both within and between the organization’s 

functional groups, we next turn to describe how the explore/exploit framework relates to 

both an organization’s strategic alliances, as well as its intellectual human capital.    

4.2.1.1 Strategic Alliances  

In their conceptual treatment, Koza and Lewin (1998) were the first to apply to 

exploration-exploitation framework to a firm’s strategic alliances.  In particular, they 

suggested that alliances can be categorized whether they are entered with the 

motivation to exploit an existing capability or to explore for new opportunities.  In this 

functional view based on the value-adding position of an alliance along the value chain, 

exploration alliances are understood as knowledge-generating R&D alliances, while 

exploitation alliances are understood as knowledge-leveraging production and marketing 

alliances (Lavie and Rosenkopf, 2006).   

Firms that conduct upstream research alliances to discover something new are 

engaged in exploration, allowing the partners to share and acquire tacit knowledge.  

Exploration alliances are usually undertaken with universities and other research 

institutions and are often characterized by high uncertainty and frequent failure 

(Rothaermel and Deeds, 2006).  On the other hand, firms that conduct downstream 

alliances to leverage complementary assets are engaged in exploitation through the 

leveraging of explicit knowledge Teece, 1992).  Unlike exploration alliances, exploitation 

or downstream alliances are generally formed with larger, more well-established firms 

that provide manufacturing capabilities, regulatory know-how, market knowledge and 

access (Rothaermel and Deeds, 2006).   
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When studying alliance formation, Park, et al. (2002) found that, in turbulent 

industries, a firm’s propensity to enter exploration or exploitation alliances relates to its 

resource endowment, with resource-poor firms preferring exploitation over exploration 

alliances.  Rothaermel and Deeds (2004) documented that biotechnology firms that are 

able to conceive of and implement an alliance strategy based on exploration and 

exploitation alliances to form an integrated system of new product development are 

rewarded with enhanced performance.  More recently, Lavie and Rosenkopf (2006) 

demonstrated how firms in the software industry simultaneously balance exploration and 

exploitation in alliance formation across the value chain function of alliances, specific 

partner attributes, and the partners’ network positions. 

Several empirical studies, across different types of firms, industries, and time 

frames, have provided robust support for the viability of applying the exploration-

exploitation lens to strategic alliances (Rothaermel, 2001; Park, et al., 2002; Rothaermel 

and Deeds, 2004; Lavie and Rosenkopf, 2006).  Following this established line of 

theoretical and empirical research, we dichotomize a firm’s strategic alliances into 

exploration and exploitation alliances based on this functional view to reflect their 

differential motivation to leverage different types of knowledge along the value chain. 

4.2.1.2 Intellectual Human Capital 

Sociologists have investigated the disparate roles that individuals of varying 

talent within the scientific community play in the identification, as well as in adopting or 

rejecting new scientific paradigms (Kuhn, 1962).  Such research, however, has 

generated conflicting viewpoints regarding the importance of key individuals to the 

development of scientific knowledge.  A central question to the sociology of science is 

whether science itself advances through the accumulation of marginal contributions from 

large armies of average scientists or through seminal contributions by an eminent few.  

One perspective, referred to as the Ortega Hypothesis (Ortega y Gasset, 1932; Cole and 
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Cole, 1972), supports the former argument by positing that breakthroughs by exceptional 

scientists are built on the shoulders of smaller, incremental discoveries by ‘non-star’ 

researchers.  Accordingly, in his analysis of scientific advancement, Kuhn (1962) 

emphasizes the role of these non-star scientists in ‘mopping up’ after significant 

paradigm shifts, and suggests that this activity is so integral to the progression of 

science that it serves as the basis for normal science itself.   

A second perspective, referred to as the Lotka-Price Law, suggests that a few 

elite scientists are responsible for determining those scientific ideas that are acceptable 

for propagation (Cole and Cole, 1972; Lotka, 1926; Price, 1963).  This research 

suggests that without these scientific ‘stars’, the institution of science itself would sever 

into a multitude of fragmented and disconnected pieces and eventually stifle scientific 

progress altogether.   Polanyi (1963) believes that without these elite scientists, young 

scientists would lack direction because they would be overwhelmed with too many 

conflicting and under-developed theories; Cole and Cole (1973) even go so far as to 

suggest that most of these so-called ‘average’ scientists are expendable, and that 

scientific progress may even be accelerated if there were fewer of these ‘average’ 

scientists because more resources would then be available for the ‘stars’.  

The tension between the Ortega Hypothesis and the Lotka-Price Law can be 

alleviated by considering how scientific knowledge is acquired and codified within the 

setting of a firm’s effort to innovate.  A synthesis of these viewpoints provides not only a 

clearer picture of the role of the individual in a firm’s innovation efforts, but also the 

relationship between different antecedents to innovation.  Building on Kuhn (1962), we 

suggest that rather than being competitive or substitutive in nature, elite and average 

scientists actually play discrete but highly complementary roles in facilitating firm 

innovation.  
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The notion that different individuals play different roles in the innovation process 

has its roots in sociological research that investigates the relationship between a 

scientist’s talent, status, and conformity.  While, it may appear at first glance to be 

tangential to our central argument relating to the explore/exploit framework, synthesizing 

the work of Zuckerman, Phillips, Dittes, and Kelly (Dittes and Kelley, 1956; Zuckerman 

and Phillips, 2001) with the organizational learning literature examining gate-keeping 

and boundary spanning (Allen and Cohen, 1969; Aldrich and Herker, 1977; Tushman, 

1977) allows for insight into the motivations that underpin the roles of the individual 

scientist or researcher within a commercial enterprise.  Within these commercial 

enterprises, the analysis of the overlap between scientific and commercial opportunities 

available to researchers provides a fertile ground for investigation into the similarities 

between the process of organizational learning and the process through which scientific 

revolutions spread in society.  

When scientific and commercial opportunities converge, the skills and 

motivations of individuals will lie on a continuum between scientific (associated with the 

creation and dissemination of tacit knowledge) and commercial opportunities (reflecting 

the commercial interests of the organization).   We suggest that an individual’s position 

on this continuum may in part be due to the status and talent of the individual.  

Specifically, related to Dittes and Kelley (1956), high-status or star actors will tend to be 

confident in their position within the organization and thus often will be emboldened to 

deviate from conventional behavior (Zuckerman and Phillips, 2001).   Within the setting 

of knowledge-intensive, commercial entities, this deviant behavior may involve a more 

active participation in the academic or pure research pursuits of the profession.  The 

importance of this pursuit is that the star actors are more likely to pursue more tacit 

research streams that are a higher risk/reward potential and thus not directly related to 

the dominant research streams of the organization.  Such activities are often rewarding 
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for the individual scientist, but because of the tacit nature of the generated knowledge, 

often do not lead to commercially viable products (Gittelman and Kogut, 2003).  Within 

the organization, these individuals may serve as gatekeepers or boundary spanners.  

These individuals bridge organizational/environmental boundaries to act as information 

filters by evaluating and organizing knowledge flows from external sources.  They are 

able to gather and understand external information, and then to translate and 

disseminate this information into terms that are meaningful and useful to other 

organization members (Allen and Cohen, 1969; Aldrich and Herker, 1977; Tushman, 

1977).        

In contrast to the star researchers, middle status actors (differentiated from low-

status individuals who are not likely to be employed9) do not experience the same level 

of freedom.  Whether because of tenure or talent, these individuals are likely to be more 

conservative given the tensions between their aspirations and fear of 

disenfranchisement (Zuckerman and Phillips, 2001).  We suggest that the middle status 

or staff scientists will pursue activities that are closer to the commercial end of the 

scientific/commercial continuum.  In contrast to the stars, staff scientists are more likely 

to pursue research activities that are more codified in nature and thus more likely to 

result in patents and new products.  In addition, the general conformity of the middle 

status individual suggests that the chosen research or knowledge streams will be more 

inline with that of the organization’s current knowledge base than that chosen by a star 

researcher.  Further, there is an element of institutional restriction which may dictate the 

direction staff researcher projects are allowed to go.  These individuals are often part of 

                                                

 

9  The authors suggest there is an inverted U-shaped relationship between status and conformity, with low-
status actors also feeling free to defy accepted practice because they are excluded regardless of their actions 
(Zuckerman and Philips, 2001)  
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a larger research team, and thus less likely to have as much freedom to pursue their 

own research interests. 

In support for this notion, Furukawa and Goto (2006) documented that the stars 

in science are, as expected based on the Lotka-Price Law, responsible for a 

disproportional large number of publications in scientific journals, but that it is the staff 

scientists, who translate this tacit knowledge into patents, and thus transform tacit 

knowledge not only into codified knowledge, but also knowledge that is legally protected 

and provides a basis for commercial exploitation.  Similarly, Rothaermel and Hess 

(2007) documented that staff scientists fully mediate any effect stars have on a firm’s 

patenting in new technological field.  Both studies seem to implicitly suggest that a 

balance between explorative activities of stars and exploitative activities of staff 

scientists is necessary when building new competences.   

As defined by the Lotka-Price Law, a star scientist is by an order of magnitude, 

both, more productive and more influential than a staff scientist, in a specific field of 

research.  Parallel to the bifurcation of intellectual human capital into star and staff 

scientists, we propose that star scientists are primarily engaged in exploratory work 

through identifying future promising research areas, conducting basic research, and so 

on, while staff scientists tend to be engaged in exploitative work primarily as bench 

scientists in laboratories, for example.  Our identification of star scientists is similar to the 

one made by Furukawa and Goto (2006), where they highlight the importance of 

“corporate scientists,” who are mainly engaged in exploratory activities.  For example, 

the scientific activities by corporate scientists, such as the publication of papers and 

presentation of findings at academic meetings serve to keep these individuals connected 

to the external developments in basic research.  On the other hand, the staff scientists 

were found to be primarily engaged in internal exploitative activities such as codifying 

new basic knowledge gained by corporate scientists into commercially viable patents.  
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Thus, we describe intellectual human capital as consisting of two groups: star scientists, 

who primarily engage in exploration activities, and staff scientists, who primarily engage 

in exploitation activities.  

4.2.2 Dynamic Capability Antecedents Within and Across Exploration and Exploitation 

Functional Groups 

Given exploration and exploitation activities represent fundamentally different strategic 

initiatives, they are often driven by different norms, cultures, and  compensation plans 

(Tushman and O’Reilly, 1996).  Tushman et al.(2004) indicate that the differences 

between the groups focused on exploration and exploitation are so dramatic as to affect 

organizational structure and decentralize the decision making process.  Given this, 

competencies developed through organizational learning relating to an organization’s 

ability to manage its alliances or intellectual human capital may be developed at the 

functional group level (e.g., exploration or exploitation focused group) rather than at the 

firm level.  This suggests that analysis of the relationship between the different 

antecedents to innovation is more appropriately done at the less-aggregated, functional 

group level of analysis.  

Analysis at this level of analysis allows us to investigate the relationship between 

antecedents to innovation both within functional groups as well as between functional 

groups.  Based on this conceptualization, we propose the following typology based on 

the combinations of intellectual human capital and strategic alliances.  As explicated 

above, we understand intellectual human capital to consist of star scientists who 

primarily engage in exploration, and staff scientists who primarily engage in exploitation.  

Further, prior research categorized alliances into exploration or exploitation alliances 

based on their respective strategic intent.  Joining these two categories along 
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exploration-exploitation framework leads to four possible permutations, as depicted in 

Figure 4.1.                

Figure 4.1: Dynamic Capability Antecedents Within and Across Exploration and   
Exploitation  

Of interest here are the northwest/southeast and southwest/northeast diagonals.  The 

northwest quadrant combines star scientists and exploration alliances.  Since both 

activities are targeted towards exploration, we expect them to be substitutive, at the 

margin.  A similar picture emerges in the southeast quadrant, which combines staff 

scientists and exploitation alliances.  Since management intends both for exploitation, 

we expect them to be substitutive, at the margin.  Thus, along the northwest/southeast 

diagonal, we expect substitutive relationships between the different mechanisms that are 

employed to modify and develop a firm’s resource base.  In contrast, we expect 
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complementary relationships along the southwest/northeast diagonal.  In particular, the 

northeast quadrant combines star scientists with exploitation alliances, while the 

southwest quadrant combines staff scientists with exploration alliances.  The 

southwest/northeast diagonal represents ambidexterity due to the simultaneous 

engagement in exploration and exploitation activities.  It is important to note, however, 

that firms that employ star scientists and exploitation alliances and/or staff scientists and 

exploration alliances concurrently in their quest for innovation, must be able to manage 

the trade-offs inherent in the simultaneous pursuit of exploration and exploitation to 

capture the benefits of ambidexterity (O’Reilly and Tushman, 2007).  

4.2.3 Dynamic Capability Antecedents Within Exploration or Exploitation Functional 

Groups  

The propensity of firms to choose one mechanism to either explore or to exploit 

over another tends to be history dependent given the accumulated skills an organization 

develops in a specific innovation mechanism.  Investments in building the various 

dynamic capabilities tend to be path-dependent (Cohen and Levinthal, 1990), and as 

such, early decisions affect outcomes distant in the future due to time compression 

diseconomies (Dierickx and Cool, 1989).  As an example, investing in human resources 

to create an alliance management capability produces different results if this training is 

stretched out over six months with a given budget versus a compressed management 

training format that is executed over two months with a budget thrice the original size.  In 

the pharmaceutical industry, for example, Merck tends to leverage their own star 

scientists when exploring for new therapeutic areas, whereas Lilly tends to rely more on 

exploration alliances (Galambos and Sturchio, 1998).  By developing expertise in certain 

exploration or exploitation mechanisms, such as recruiting and retaining star scientists or 

alliance management, switching costs between the different mechanisms can be 
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substantial, and thus make the use of more than one mechanism difficult and costly 

(Levinthal and March, 1993).  The critical point to this discussion is that given the 

differences between exploration and exploitation activities, these competencies and 

path-dependencies are likely to be functional group- specific, rather than firm-specific in 

nature.  In support of this, prior research suggests that the decentralization of the 

organizational structure may lead to a situation where knowledge stocks within the firm 

may differ across these organizational subunits or functional groups (Lenox and King, 

2004).  

The importance of this point stems from the fact that while there are clearly some 

important differences between staff scientists engaged in knowledge exploration and 

exploitation alliances, there is also some element of equifinality that may be present with 

respect to both the type of knowledge generated and type of partner with which the 

knowledge is shared.  This implies that within the functional groups, investments in 

different exploration or exploitation mechanisms can lead to similar outcomes.  Simply 

put, a firm may be able to acquire and access similar codified knowledge through either 

employing staff scientists or engaging in exploitation alliances.  In a similar sense, 

exploration alliances and star scientists allow a firm to be connected to similar upstream, 

research-focused partners in the hope of gaining highly tacit and new knowledge.   

Previous empirical research documents equifinality in the context of other 

innovative activities.  For example, Cockburn, Henderson, and Stern (2000) illustrate 

how pharmaceutical firms arrive at a similar endpoint with regard to pro-publication 

incentives to disseminate research in scientific journals, used as a proxy for external 

linkages to open science, despite remarkably different starting points and different 

strategic paths.  Cohen and Levinthal (1990: 136) suggest that for knowledge to be 

valuable, it must be “must be fairly diverse to permit effective creative utilization of the 
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new knowledge” by the firm.  Given this, the marginal benefit of investing simultaneously 

in multiple exploration- or exploitation-focused mechanisms will actually be negative. 

Taken together, an element of equifinality, combined with path dependence and 

non-trivial switching costs, leads us to posit that the mechanisms used to build dynamic 

capabilities within exploration or exploitation activities are substitutive in nature, which 

implies that a simultaneous use of different exploration or exploitation mechanisms 

reduces a firm’s innovative performance at the margin.10  This theoretical notion is 

strengthened by the observation that firms tend to have a preference for one exploration 

or exploitation mechanism over another, and thus exhibit a lower cost in their preferred 

mode of executing exploration or exploitation.    

Hypothesis 1a: Different exploration activities substitute for one another, such that the 

interaction between star scientists and exploration alliances is negative, 

and thus decrease a firm’s innovative performance at the margin.  

Hypothesis 1b: Different exploitation activities substitute for one another, such that the 

interaction between staff scientists and exploitation alliances is negative, 

and thus decrease a firm’s innovative performance at the margin.  

Hypothesis 1a can also be expressed in a more technical fashion.  If we define 

star scientists as StarExplore, exploration alliances as AllExplore, and innovative performance 

as , it follows that  

                                                

 

10 Substitutes (and complements) correspond to interactions in moderated regression analysis, because their 
combined effects differ from the sum of their separate parts.  Specifically, substitutes are represented by 
negative interaction  effects reflecting their compensating behavior, while complements are represented by 
positive interaction effects reflecting their synergizing behavior (see Cohen, Cohen, West, and Aiken, 
2003: 255-260).    
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ExploreExploreExploreExploreExploreExploreExploreExplore AllStarAllStarAllStarAllStar ,,,,

,  

where prime indicates that a firm does not engage in that specific activity.  The formula 

states that the innovative performance of firms that engage in exploration through star 

scientists and exploration alliances simultaneously is lower than for firms that engage in 

exploration through either star scientists or exploration alliances, holding all else 

constant.  The same is true if we were to express this substitutive relationship for staff 

scientists and exploitation alliances (Hypothesis 1b).  

4.2.4 Dynamic Capability Antecedents Between Exploration and Exploitation Functional 

Groups 

The overarching hypothesis in the organizational learning literature is that firms 

ought to maintain a balance between exploration and exploitation: “The basic problem 

confronting an organization is to engage in sufficient exploitation to ensure its current 

viability and, at the same time, to devote enough energy to exploration to ensure its 

future viability,” yet, “the precise mix of exploitation and exploration that is optimal is hard 

to specify” (Levinthal and March, 1993: 105).  Accentuating this is the fact that firms are 

generally constrained by their resources, and managers often face a trade-off when 

allocating scarce resources to exploration and exploitation activities.  This perspective 

resonates with the recent theoretical contribution by O’Reilly and Tushman (2007: 2), 

where they defined ambidexterity as “the ability of a firm to simultaneously explore and 

exploit.”  The simultaneous pursuit of exploration and exploitation, however, is difficult to 

accomplish and to maintain, because exploration and exploitation require distinctively 

different organizational designs, with different incentives, cultures, structures, and 

leadership styles (Tushman, et al., 2004).   



  

140

 
A much more commonly observed phenomenon is an organization’s preference 

to focus predominantly on either exploration or exploitation.  Repeated failure, for 

example, tends to drive organizations towards extensive exploration (failure trap).  A 

dynamic of failure turns organizations into “frenzies of experimentation, change, and 

innovation” (Levinthal and March, 1993: 105).  Firms that engage in exploration at the 

expense of exploitation incur the substantial costs of experimentation without reaping the 

commensurate benefits thereof (March, 1991).  These firms, for example, may pursue 

too many distinctly different scientific avenues without developing the competences 

required to exploit any new knowledge gained, and thus fail to transform it into 

commercially viable products, processes, or services.    

While failure tends to lead organizations further down the exploration paths, 

success, on the other hand, tends to reinforce an organization’s existing competence, 

and thus leads to stronger emphasis of exploitation at the expense of exploration.  Firms 

that engage in repeated exploitation run the risk of falling into a competency trap (Levitt 

and March, 1988): firms further enhance their competency in a narrow area, through 

continued incremental innovation, for example, while simultaneously increasing their 

opportunity cost of engaging in exploration (Levinthal and March, 1993).  As this 

dynamic plays out over time, firms become trapped by their own competences with 

potentially devastating consequences, because core competences can turn into core 

rigidities (Leonard-Barton, 1992).  Such a self-destructive dynamic has been 

documented by Sorensen and Stuart (2000), who show that firms in the biotechnology 

and semi-conductor industries that focused more strongly on exploitation at the expense 

of exploration albeit produced more innovations; however, these innovations tended to 

be merely incremental, and thus eventually led to the firms’ obsolescence. 

The ability to be ambidextrous allows a firm to simultaneously explore and 

exploit.  Ambidexterity, however, necessitates accommodating trade-offs in 
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organizational alignments because organizations must manage exploration and 

exploitation activities differently.  Exploitation has short time horizons with fairly reliable 

paybacks based on efficiency and incremental improvements, where exploration has 

long time horizons with unpredictable returns, but also the potential for greater variance 

in outcomes (Benner and Tushman, 2003).  Ambidexterity allows organizations to 

creatively harness this tension to continuously take advantage of changes that originate 

outside their boundaries. 

Managers in ambidextrous firms act as jugglers to simultaneously balance 

experimentation and flexibility with efficiency and structure (O’Reilly and Tushman, 

2007).  While ambidextrous organizational designs can impose higher costs, we suggest 

that the benefits associated with ambidexterity outweigh these costs.  In support of this 

notion, Tushman, et al. (2004) demonstrate that firms that are able to integrate and 

reconcile both exploratory and exploitative activities produced a continuous stream of 

innovations, encompassing both incremental and radical ones and thus accomplished 

higher performance.  Moreover, He and Wong (2004) provide evidence for the notion 

that ambidexterity in exploiting existing product-market positions versus exploring new 

product-market domains enhances firm performance.  Taken together, we propose that 

organizations that pursue ambidexterity through combining exploration and exploitation 

activities achieve better innovation performance.  In our context that relates to firms 

pursuing ambidexterity through star scientists that are engaged in exploration combined 

with exploitation alliances or through staff scientists that are engaged in exploitation 

combined with exploration alliances.    

Hypothesis 2a: Ambidexterity in exploration and exploitation activities complement one 

another, such that the interaction between star scientists and exploitation 
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alliances is positive, and thus increases a firm’s innovative performance at 

the margin.   

Hypothesis 2b: Ambidexterity in exploration and exploitation activities complement one 

another, such that the interaction between staff scientists and exploration 

alliances is positive, and thus increases a firm’s innovative performance at 

the margin.  

As above, Hypothesis 2a can also be expressed in a more technical fashion.  If 

we define star scientists as StarExplore, exploitation alliances as AllExploit, and innovative 

performance as , it follows that  

ExploitExploreExploitExploreExploitExploreExploitExplore AllStarAllStarAllStarAllStar ,,,,

,  

where prime again indicates that a firm does not engage in that specific activity.  The 

formula states that the innovative performance of firms that engage in exploration 

through star scientists and exploitation alliances simultaneously is higher than for firms 

that engage in exploration through either star scientists or exploitation alliances alone, 

holding all else constant.  The same holds true if we were to express this complementary 

relationship for staff scientists and exploration alliances (Hypothesis 2b).  

4.3 Methodology 

4.3.1 Research Setting 

To empirically test our theoretical model relating different dynamic capability 

antecedents within and across exploration and exploitation activities to innovative 

performance, we selected the global pharmaceutical industry as the research setting.  
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The emergence of biotechnology in the mid-1970s presented a new technological 

paradigm with respect to drug discovery and development for incumbent pharmaceutical 

companies (Kenney, 1986; Pisano, 2006).  This new paradigm challenged the traditional 

drug discovery modes associated with random screening in the traditional chemical 

paradigm.  A more scientific approach, including genetic engineering, genomics, and 

molecular biochemistry drives drug discovery and development process associated with 

biotechnology. 

We tracked annual data for 108 incumbent pharmaceutical firms over 30 years, 

beginning in 1974 until the end of 2003 (108 x 30 = 3,240 firm-year observations as 

sampling frame).11  We define an incumbent pharmaceutical firm as a firm that focuses 

on human in-vivo therapeutics and was founded prior to the emergence of 

biotechnology.  This segment of the biotechnology industry is comprised of 

pharmaceutical companies that engage in research, discovery, development, and 

commercialization of biotechnology therapeutics that are placed inside the human body 

(in-vivo), as opposed to in-vitro therapeutics, which are used outside the human body.  

While biotechnology affects many different industries, the focus on in-vivo human 

therapeutics is reflective of its economic importance and potential, its regulatory 

environment, and consumer market.  Moreover, focusing on human therapeutics 

enables us to create a homogenous sample while controlling for industry idiosyncrasies. 

The time frame for our study is appropriate given that the scientific breakthroughs 

underlying biotechnology were accomplished in the mid-1970s.  In 1973, a research 

team led by Stanley Cohen and Herbert Boyer demonstrated that genetic engineering 

through recombinant DNA was possible; since they discovered a set of techniques for 

“cutting and pasting” different DNA fragments outside the human body (in-vitro) (Cohen, 

                                                

 

11 As described further below, given the breadth and number of variables that were used, the size of the 
panel was necessarily adjusted downwards based on the specific model being investigated.   
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et al., 1973).   Subsequently, Georges Köhler and Cesar Milstein (1975) discovered 

monoclonal antibodies, a second important second breakthrough that helped launch the 

biotechnology revolution.  The first new biotechnology drugs reached the market for 

pharmaceuticals in the 1980s.  A review of over 100 annual reports for the sample firms 

revealed that by the early 1980s most of the incumbent pharmaceutical firms were 

pursuing attempts to innovate in the new biotechnology paradigm.  In their attempts to 

modify their existing resource base to build a new innovative capability within 

biotechnology, the incumbent pharmaceutical firms made extensive use of both 

intellectual human capital and strategic alliances (Hagedoorn, 1993; Zucker and Darby, 

1997a).  Considering these factors, we submit that our sample and time frame within the 

global pharmaceutical industry is an appropriate setting to test our theoretical model 

advanced above.  

4.3.2 Empirical Analysis 

In the few prior empirical studies attempting to track dynamic capabilities, their 

existence is often proxied by dependent variables related to the exploration of new 

knowledge, such as simple patent counts in a new area for the firm (Rothaermel and 

Hess, 2007) or by a combination of patent and publication measures (Lacetera, 

Cockburn, and Henderson, 2004).  Ambidexterity, as the key dynamic capability of 

interest in this study, however, requires that an organization not only discovers and 

creates new knowledge, but also that the organization builds on and exploits current 

capabilities as (O’Reilly and Tushman, 2007).  Given their upstream locus in the 

innovative process, it is unlikely that measurements of new knowledge acquisition would 

capture the effects of a firm’s exploitation efforts adequately.   

In an attempt to overcome this shortcoming, we utilize a number of dependent 

variables that represent different knowledge stages along the innovative process, 
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including biotech patent counts, citation-weighted biotech patents, new drug 

development, and adjusted stock market returns.12  The first three dependent variables 

capture different types of knowledge, while market returns capture economic 

performance.  Moreover, we view the new product development cycle as a process of 

discovering new knowledge with the intent of transforming and embodying it in a final 

product (Madhavan and Grover, 1998).  We employ the first three dependent variables 

in an attempt to capture these different types of knowledge.  While simple patent counts 

proxy for more basic knowledge exploration, and citation-weighted patent counts add a 

quality dimension to this measure, the number of new drugs developed is a measure not 

only of successful knowledge exploration, but also successful knowledge exploitation.13 

Using multiple dependent variables that capture different types of knowledge 

underlying innovative performance along the value chain allows us to apply the two 

yardsticks that Helfat et. al (2007) put forth when evaluating the effectiveness of dynamic 

capabilities: technical and evolutionary fitness.  Simply put, technical fitness denotes 

how well a specific capability performs its intended function, holding all else constant.  In 

an illustrative sports analogy imported from track and field, the capability of an athlete to 

perform in the long jump refers to his or her technical fitness.  To beat the respective 

world records, a woman must jump more than 7.52 meters and a man must jump more 

                                                

 

12 Considering multiple different dependent variables along the value chain also helps us to overcome the 
risk of generating idiosyncratic findings based on a single innovation measure, as frequently done in prior 
research.   
13 Prior research demonstrated that a simple count of patents is representative of other measures of 
innovation, including citation-weighted patents, new product development, as well as innovative 
performance (Comanor and Scherer, 1969; Stuart, 2000; Hagedoorn and Cloodt, 2003).  While our data 
indicate that the bivariate correlation between patent counts and citation-weighted patents is, as expected, 
elevated (r = 0.70), it is much lower when correlated other measures of innovative performance, including 
new product development (r = 0.21) and adjusted stock market performance (r = 0.06).  Based on these 
correlations, we suggest that within this setting, an analysis of the innovation process requires more than 
the consideration of simple patent counts.  Using multiple dependent variables to capture different 
dimensions of knowledge exploration and exploitation in the pharmaceutical industry resonates with 
Graham and Higgins’ (2006) recent study showing that a simple relationship between patenting and new 
drug development no longer holds.  
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than 8.95 meters.  In parallel, our first three dependent variables measure the technical 

fitness of firm’s dynamic capabilities: counts of biotech patents, citation-weighted biotech 

patents, and number of new drugs developed, while again holding all else constant.   

While these are all objective measures of innovative performance, they do not 

capture the evolutionary fitness of a firm’s dynamic capabilities, because evolutionary 

fitness refers to how well a dynamic capability enables a firm to perform in the 

marketplace by continuously altering its resource base (Helfat, 2007).  Specifically, 

adaptation to biotechnology requires from pharmaceutical companies to continuously 

change their existing resource base, and thus the evolutionary fitness of their dynamic 

capabilities can be proxied by a market-based performance metric.   

We chose adjusted stock market return (annual firm stock return less return of 

S&P index of global pharmaceutical firms) as the proxy for the evolutionary fitness of a 

firm’s dynamic capabilities, because it captures firm-specific performance rather than 

overall movements of an industry (Kerr and Bettis, 1987).  This measure represents an 

abnormal return to the shareholder; a return above what shareholders would expect to 

receive on the basis of industry risk alone.  This logic is based on the efficient-markets 

hypothesis (Fama, 1976), which assumes that security prices reflect all available 

information.   As such, a stock price change is considered an unbiased estimate of the 

present value of the change in future cash flows to the firm associated with managerial 

actions.  This change in the present value of future cash flows captures the growth, 

value creation and competitive advantage dimension that have been associated with 

evolutionary fitness (Helfat, et al., 2007).  Given the importance of innovation in the 

pharmaceutical industry, we submit that this measure of adjusted stock market return 

represents and a suitable measurement of a firm’s innovative performance.  In addition, 

unlike the proposed measurements of technical fitness outlined above, this proxy of 

evolutionary fitness can be negative.   
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This aspect of the measurement is important because the concept of adaptation 

or evolution is broader than that of the innovation associated with technical fitness.  For 

this reason a measurement of evolutionary fitness must take into account the 

relationship between capabilities, while technical fitness is solely associated with the 

innovation of a particular capability (Helfat, et al., 2007).  As illustrated in this paper, the 

path dependent nature of capabilities indicates that this relationship can often be 

negative.  Finally, by including two of the dependent variables (biotech patenting and 

new product development) to proxy technical fitness in the regression models predicting 

stock market returns, we are able to examine the evolutionary fitness of an 

organization’s dynamic capabilities, while specifically controlling for its technical 

fitness.14  We thus explicitly acknowledge the fact that technical fitness is frequently 

endogenous to evolutionary fitness (Helfat, et al., 2007).  Anecdotally, one of the few 

variables that was found to be positive and significant (p < 0.05) in the stock market 

return models was the count of biotechnology patents.  Numerous prior studies have 

utilized this this measure has been used in numerous prior studies as a dependent 

variable associated with a pharmaceutical firm’s ability to adapt to a new paradigm .      

Table 1 illustrates the different dependent variables and the respective 

regression models that we use to empirically test our hypotheses.  Below, we briefly 

describe each dependent, independent and control variable.  Because we employ 

different dependent variables in different regression estimations, we also include a 

description of several key model-specific controls that we included to further control for 

unobserved heterogeneity.    

                                                

 

14 To address serious concerns of collinearity, citation-weighted biotech patents were excluded from the 
regressions predicting stock market returns given their expected high bivariate correlation with biotech 
patent counts (r = 0.70).  
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Table 4.1: Summary of Model Parameters  

Dependent Variables Key Independent 
Variables 

Interactions  Base Controls 

Count of Biotech Patents, 

Citation-Weighted Biotech 
Patents, 

New Drug Development, 

Adj. Stock Market Returns 

Exploration 
Alliances, 

Exploitation 
Alliances, 

Star Scientists, 

Staff Scientists 

Star Scientists x 
Exploration Alliances, 

Staff Scientists x 
Exploitation Alliances, 

Stars Scientists x 
Exploitation Alliances, 

Staff Scientists x 
Exploration Alliances 

Year Effects, 
Merged Firm, 

Diversified, 
Nationality, 

Net Income, 
Revenues, % Equity 
Alliances, R&D 
Expense, R&D 
Acquisitions 

 

4.3.2.1 Biotech Patent Counts 

A potential methodological contribution of this paper is that we utilize a number of 

dependent variables that represent various knowledge stages along the value chain.  

The most tacit of these outputs is represented by a firm’s patenting rate (e.g., Ahuja, 

2000; Hagedoorn and Schakenraad, 1994; Henderson and Cockburn, 1994; Shan et al., 

1994; Stuart, 2000).  Patents have been a rich source of data for studying innovation 

and technical change (Griliches, 1990).  To specifically assess the pharmaceutical firm’s 

innovative performance within the biotechnology paradigm, we measure innovative 

output by the number of biotechnology patents granted by application year (BPA).  

Tracking patents granted by application date provides a closer link in time between the 

invention and its recording (Hall, Jaffe, and Trajtenberg, 2001).  The time lag between 

the completion of an invention and the patent application date is no more than 2-3 

months (Darby and Zucker, 2007), while the time lag between patent application by the 

firm and granting of the patent by the U.S. PTO is on the average 3 years in the 

population of biotechnology patents.    

To assure that a firm’s patenting in biotechnology is not the result of an 

organization’s overall patenting strategy, we explicitly control for the granting of all non-

biotech patents in a given year.  The source for this information was the Technology 
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Profile Report maintained by the U.S. Patent and Trademark Office (PTO), an agency of 

the U.S. Department of Commerce.  Due to generous support from the U.S. PTO, we 

obtained detailed data on the complete population of all biotechnology patents filed by 

and awarded to the global pharmaceutical companies in this sample annually over the 

30-year study time frame.  The U.S. PTO compiled these data based on a complete set 

of biotechnology patents.15  The average pharmaceutical firm in our sample was granted 

14 biotechnology patents by application year. 

4.3.2.2 Citation-Weighted Biotechnology Patents 

While prior research indicates that patents are an important measure of 

innovative output, innovations vary enormously in their technological and economic 

importance.  Thus, simple patent counts are inherently limited in the extent to which they 

can capture this heterogeneity (Griliches, et al., 1987).  Given this, we collected the 

forward citation-weighted biotechnology patent information (Citation-Weighted BPA) for 

the sample firms following the procedure similar to that used in Hall, Jaffe, and 

Trajtenberg (2005).  Prior research demonstrated that patents that are highly cited 

patents tend to be perceived by experts in a technological area as having been the most 

important inventions in that area (Albert, et al., 1991; Stuart, 1998)     

The data collected allow us to more closely measure the heterogeneity in quality 

and technological novelty in a firm’s patents.  Prior research has found that in general 

citation-weighted stocks of patents are a more accurate predictor of value than simple 

patent counts (Hall, et al., 2001).  In addition, patent citations have been used to proxy 

for spillovers and to describe research trajectories (Jaffe, et al., 1993).  Following Hall et 

                                                

 

15 The complete set refers to biotechnology patents (as identified by the U.S. PTO) in the following patent 
classes: 424 [Drug, bio-affecting and body treating compositions (different sub-classes)], 435 [Chemistry: 
Molecular biology and microbiology], 436 [Chemistry: Analytical and immunological testing], 514 [Drug, 
bio-affecting and body treating compositions (different sub-classes)], 530 [Chemistry: Natural resins or 
derivatives; peptides or proteins; lignins or reaction products thereof], 536 [Organic compounds], 800 
[Multicellular living organisms and unmodified parts thereof and related processes], 930 [Peptide or protein 
sequence], PLT [plants]. 
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al. (2005), our window for the weighting calculation of forward citations was 10 years.  

We submit that this timeframe is appropriate given that prior research suggests most 

citations occur within 10 years of patent granting, with a mode of approximately 3.5 

years (Hall et al. (2005).  We find that only 20% of our patents did not receive any 

citation, compared to the 25% figure reported by Hall et al. (2005).   

These data were obtained primarily through the original as well as updated 

NBER patent data provided by Hall, Jaffe, and Trajtenberg (2001).  In addition, we used 

the U.S. PTO database to both confirm the values obtained from the Hall et al. data and 

to update the measures that were not available for all of our sample firms.  In total, we 

are able to obtain a 10-year citation-weighting window for 86 of our sample firms 

between the years 1974-1997.16    

4.3.2.3 New Product Development 

To investigate outputs of the innovation process that are less explorative but 

more exploitative in nature, we collected data reflecting the count of new drug names 

that enter a pharmaceutical firm’s pipeline in a given year (New Drugs).  These counts 

represent the introduction of a new drug into the firm’s pipeline at the pre-clinical stage 

of development.  We chose this new product development measure to reduce concerns 

associated with the time lags between dependent and independent variables caused by 

the lengthy development and approval process for drugs from discovery to market 

introduction (Galambos and Sturchio, 1998).  The average firm in our sample introduced 

                                                

 

16 While the sample sizes for the regression models employing the citation-weighted biotechnology patents 
(86 firms), new drug development (56 firms), and stock market returns (42 firms) are by necessity less than 
the 108 firms in the sample firm when using biotech patent counts as dependent variable, we are confident 
that this does not introduce a systemic sample selection bias, because the industry structure of the global 
pharmaceutical industry is fairly oligopololistic, and it has become more concentrated over time. As an 
example, we tracked the pharmaceutical sales of 52 sample firms that were not diversified outside 
pharmaceuticals.  The annual revenues of these focused pharmaceutical companies represent only 44% of 
the initial sample but accounted for 75% of the total sales for pharmaceuticals worldwide (IMS Health, 
2003).  Moreover, we also explicitly control for this concentration effect trough tracking horizontal mergers 
between pharma firms in the sample.  We further control explicitly for firm revenues, which captures firm 
growth (both organic and through horizontal mergers; more details on the measures are provided below). 
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just over 6 new drug development indications per year.  While we collected data 

regarding the development of new products associated with biotechnology only, there is, 

at this early stagy of the industry’s evolution, an insufficient number of biotechnology 

products (157) to generate any significant variation in our large-scale panel, and thus we 

could not include this variable in our regression analyses.  We thus had to fall back on 

an examination of the new product development across all therapy areas, which allows 

us to examine the effects of different exploration and exploitation mechanisms on 

building their new product development capability in a more general sense, while the two 

patent measures are specific to biotechnology only.  

We obtained the new product development information from the PharmaProjects 

database, which was available for 56 of our sample firms from 1980-2003.  These data 

are comprised of 4,018 new drug indications with explicit controls for therapy category 

designations (specifically we control for the percentage of firm projects that are related to 

oncology).  Following Guedj and Scharfstein (2004), if a drug compound was associated 

with multiple therapy indications, we counted each therapy indication as a unique drug 

introduction.  We are comfortable with this calculation because under FDA guidelines the 

manufacturer must conduct separate studies to determine if this drug is effective in 

treating diseases associated with the different indications.  Only if the FDA determines 

that there is enough evidence to approve the drug for the indication (treatment of the 

disease) can the manufacturer claim that the drug is effective for the approved 

indication, and use this information to market their new drug to patients and physicians.17  

4.3.2.4 Organizational Financial Performance 

                                                

 

17 Our analysis only includes such ‘on-label’ uses, which can be very difficult to obtain from the FDA.  In 
2004, Pfizer/Warner-Lambert paid $430 million to the federal government to settle a whistleblower case 
that alleged the company engaged in a scheme to promote the epilepsy drug, Neurontin, for ‘off-label’ uses 
such as for patients with bipolar disorder and Lou Gehrig's disease. 
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Finally, to assess the evolutionary fitness of the pharmaceutical companies’ 

dynamic capabilities in the marketplace, we collected data relating to an organization’s 

stock market returns.  We calculated annual returns for each organization as the total 

return (stock price change plus reinvested dividends) weighted by the company's market 

value for a given year (Porac, et al., 1999).18  This method implicitly controls for stock 

splits during the timeframe.  Given the nature of this measurement, our sample of firms 

was reduced to 42 firms with data from 1974-2004.  As previously mentioned, our 

interest was in capturing a measurement that controlled for the stock movement of the 

overall pharmaceutical industry.  As such, we subtracted the annual return from the S&P 

Pharmaceutical Index from our sample firm’s annual return (Adjusted Stock Return).  As 

would be expected, this index contained many of the firms in our sample.  On average, 

firms in our sample had a return of 8.9% over the study period, which was slightly lower 

than the industry average of 9.1%.  The similarity of these numbers lends additional 

assurance that the firms in our sample are representative of the global pharmaceutical 

industry.19  In addition, to control for unobserved heterogeneity associated with the 

specific exchange on which a firm’s stock is traded we included four stock exchange 

dummy variables (Stock Market Exchange).    

4.3.3 Independent Variables 

4.3.3.1 Star and Staff Scientists  

In collecting the information relating to a pharmaceutical firm’s intellectual human 

capital, we followed the process described in detail by Lacetera, et al. (2004) and 

Rothaermel and Hess (2007).  Using several sources including BioScan and 

Recombinant Capital databases, we identified a population of 125 pharmaceutical 

                                                

 

18 The source for the stock return data was the Compustat/Center for Research in Security Prices (CRSP). 
19 A t-test revealed that these means are not statistically significant. 
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firms.20  Using this sampling frame of pharmaceutical firms, we then searched the Web 

of Science ISI database to identify journal publications that appeared between 1974 and 

2005, had a keyword related to science research (excluding social science research and 

non-human focused research, e.g., agricultural or veterinarian), and could be 

unambiguously connected with one of the pharmaceutical firms in the sample.  This last 

step was important given the necessity of assuring that each of the authors was affiliated 

with one of the pharmaceutical firms at the time of the article publication.  From the 

population of over 672,000 publications we collected the following information: author’s 

name, author’s affiliations, journal name, article title, keywords, publication year, number 

of times cited.     

From this extensive database, we compiled a list of authors with an aggregate 

number of publications and times cited for each year.  This query yielded the records of 

over 171,000 authors who on average published 3.9 papers and which were cited 66.3 

times.  We then tied back each author to the pharmaceutical firms in our sample based 

on the authors’ affiliations as indicated in the journal article(s).   

Based on the distributions of citations and publications we identified star 

scientists from the population of scientists.  In particular, we followed Rothaermel and 

Hess (2007) by identifying stars as researchers who had both published and been at a 

rate of three standard deviations above the mean (z-score > 3.0).  To qualify for this elite 

group of star scientists based on the both the quantity and quality of their work, a star 

scientist must have published more than 28 papers during the study period and had to 

                                                

 

20  We constructed a detailed “family tree” for each of these 125 firms for the 1974-2003 time period.  We 
used multiple industry publications to construct the family tree, including Dun and Bradstreet’s ‘Who 
Owns Whom’? and annual Standard & Poor’s Industry Reports.  Through this method, we identified 17 
horizontal mergers among the pharmaceutical firms. Taking the 17 horizontal mergers into account, the 
sample for final analysis is 108 firms. Noteworthy is that we tracked the pharmaceutical firms forward 
beginning in 1974 to avoid a survivor bias.  All 108 firms in the initial sample were included in the sample 
drawn to construct the measures for intellectual human capital.  More details below when we describe 
horizontal mergers by sample firms. 
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be cited at least 861 times.  Based on this intersection, we identified 1,071 scientists 

(Star Scientists).  These stars represent 0.63% of the total population of scientists in this 

sample, but produced 12.2% of all publications and garnered 22.1% of all citations.  This 

made star scientists 19 times more productive in terms of research output and 35 times 

more impactful in terms influencing other scientists’ research. 

We calculated the number of “non-star” scientists employed by a firm by taking 

the difference between the total scientists and star scientists (staff scientists).  The 

average pharmaceutical firm employed about 23 star scientists and 211 non-star 

scientists in a given year over the study period.  Note that our time period to identify 

stars is by design two years longer than the study period to allow us to account, to some 

extent, for a “rising star” effect associated with the potential right censoring of the data.21 

4.3.3.2 Biotech Alliances 

To document the alliances that the pharmaceutical firms had entered with 

different sources of biotechnology knowledge, we tracked each firm’s alliances with 

universities, research institutions, and biotechnology firms (Powell, et al., 1996).  To 

obtain accurate alliance data as possible, we used various issues of the BioScan 

industry directory and the recap database provided by Recombinant Capital.22  BioScan 

and Recombinant Capital appear to be the two most comprehensive publicly available 

data sources documenting alliance activity in the global biopharmaceutical industry, and 

they have been used frequently in prior research, although not together, but in isolation 

(e.g., Shan, et al., 1994; Lane and Lubatkin, 1998; Powell, et al., 1996).  The average 

sample firm entered approximately one biotechnology alliance per year.   

In a next step, we content-analyzed each alliance description to ensure that the 

focal alliance indeed pertained to biotechnology and to decompose a firm’s total biotech 

                                                

 

21 The timeframe for the data used in the regression analysis is 1974-2003. 
22 BioScan and Recombinant Capital are fairly consistent in their reporting.  We found their inter-source 
reliability to be greater than 0.90 when documenting alliances.   
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alliances into exploration and exploitation agreements.  Following a well-established 

coding procedure in prior research (Koza and Lewin, 1998; Rothaermel, 2001; Park, et 

al., 2002; Lavie and Rosenkopf, 2006), we coded grants, research and R&D alliances as 

exploration alliances (Exploration Alliances), since they focus on the basic-research 

oriented upstream knowledge discovery activities of the value chain.  By contrast, we 

identified licensing, development and supply alliances as exploitation in nature 

(Exploitation Alliances), because they focus on the downstream knowledge-leveraging 

activities of the value chain.  Accordingly, we identified 2,041 exploration alliances and 

1,061 exploitation alliances.  Research assistants that were blind to each other and the 

theory to be tested coded the alliance data.  In addition, in an attempt to insure the 

accuracy of this coding, two additional research assistants independently coded 100 

randomly selected alliance agreements.  The inter-rater reliability was 98%, and thus 

well above the recommended threshold of 70% (Cohen, et al. 2003).  

4.3.4 Control Variables 

We include a detailed set of control variables to account for potential 

heterogeneity at the drug, firm, network, and industry level.  The use of several of the 

controls we implemented relating to nationality (US, EU, or Japan), financial 

performance (net income), size (total revenues), and temporal effects (year dummy 

variables) is well-established and has been validated by prior research.  We collected 

financial data from a number of sources including Compustat and annual financial 

reports.  In addition, all financial data is inflation adjusted in constant 2000 U.S. dollars.   

While the controls above are fairly standard in prior research, there are a number 

of unique controls that we included to further reduce the threat of unobserved 

heterogeneity.  Organizations attempting to innovate can choose to either make (R&D 

Expenditures) or buy (R&D Acquisitions) the requisite capabilities.  As such, in order to 
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control for the focus and scale of an organization’s innovative efforts, we included both 

the firm’s R&D expenditures as well as its R&D acquisitions.   In addition, this later 

control is important given that prior research has indicated acquisitions may be 

alternatives to alliances for innovating organizations (Higgins and Rodriguez, 2006).  We 

used the SDC Platinum database, published by Thomson Financial, to identify the 

number of R&D acquisitions a pharmaceutical firm had consummated during the study 

period.  Here, we studied each acquisition description in detail to ensure that 

organizations undertook the focal acquisitions with the intent of sourcing R&D.  The 

average pharmaceutical firm in the sample acquired about one biotechnology firm every 

three years.   

To overcome an unnecessary contamination of the measures for R&D 

expenditures and R&D acquisitions, we identified the magnitude of the R&D spending 

devoted to R&D acquisitions, which accountants label “in-process R&D spending.”23  

The amount of in-process R&D spending in the pharmaceutical industry is around 2.5% 

of total R&D expenditures (Rothaermel and Thursby, 2007).  The commensurate 

expenses for R&D alliances tend to be significantly smaller, since these are mainly 

executed through contractual rather than equity agreements (about 88% of all alliances 

in this sample are contractual).  Thus, the magnitudes of the in-process R&D spending 

devoted to R&D acquisitions and R&D alliances are too small to introduce a systematic 

error. 

Given the consolidation in the pharmaceutical industry over the lengthy study 

period, we created a comprehensive “family tree” to track the merger history of each 

sample firms.  We were thus able to trace back all firms in existence at the end of 2004 

to their various “ancestors” alive in 1974.  We used multiple industry publications to 

                                                

 

23 Compustat defines in-process R&D as “the portion of R&D considered to be ‘purchased’ and written off 
immediately upon acquisition if the R&D items are deemed not to have an alternative use. This item 
includes purchased technology [through acquisitions].” 
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construct the family tree from 1980 onwards, including Dun and Bradstreet’s ‘Who Owns 

Whom?’ and annual Standard & Poor’s Industry Reports.  We further triangulated this 

process through also tracking all pharmaceutical firms in existence in 1974 forward when 

constructing the initial sample for this study.  This procedure enabled us to explicitly 

control for horizontal mergers among sample firms.  About 15% of all sample firms 

engaged in at least one horizontal merger during the study period, and thus we identified 

16 horizontal mergers among the pharmaceutical firms.  Accordingly, we inserted a 

dummy variable that takes on the value of 1 beginning in the year that two firms in the 

sample merged horizontally (1 = Merged Firm).  Both firms are tracked individually until 

the merger year and then all data are joined and updated annually using the new firm’s 

identity.   

Additionally, for all alliances, we collected information regarding whether an 

alliances was based on an equity exchange.  This represents a proxy of a firm’s 

propensity for entering into equity agreements that are considered to be stronger ties 

(Gulati, 1995).  Given that our panel observations are at the firm level, we calculated a 

control variable equal to the percentage of total alliances that are equity agreements (% 

Equity Alliances).  While non-equity alliances are contract-based cooperative 

agreements to exchange knowledge and resources, equity alliances are based on taking 

an equity stake in a partner, exchanging equity, or setting up a third organization as a 

joint venture.  In our sample, about 12% of all alliances are equity based.   

In addition to these controls we also included information regarding the non-

biotech patenting associated with firms that patent heavily in general (Non-biotech 

patents), a pharmaceutical firm’s level of diversification (Diversified), and a ‘strategy’ 

control associated with the first time the organization cited the Cohen-Boyer patent 

(Time to 1st Cohen-Boyer Citation).  This patent is influential, and is often associated 

with the commencement of the biotechnology movement (Fabrizio, 2004).  Finally, our 
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calculations indicate the proportion of oncology projects in the NDA Pipeline and 

PharmaProjects over the time period 1990 to 2001 (4.5%), was significantly less than 

that of other groups.   Given this, we included a control variable equal to percentage of 

sample firm drugs that were identified as oncology projects (% Cancer Drugs).  Table 2 

depicts which additional control variables, based on the respective dependent variable, 

we included in the regression estimations. 

Table 4.2: Additional Model Controls   

Model 1a & 1b Model 2a & 2b Model 3a & 3b Model 4a & 4b 

Dependent 
Variable 

Count of 
Biotech Patents 

Citation-
Weighted 
Biotech Patents 

New Drug 
Development 

Adjusted Stock Market 
Return 

Model-Specific 
Additional 
Controls 

Time to First 
Cohen-Boyer 
Citation 

Time to First 
Cohen-Boyer 
Citation 

% of Cancer 
Drugs 

Stock Market Exchange 
Dummies 

 

Count of Non-
Biotech Patents 

Count of Non-
Biotech Patents  

Count of Biotech and 
Non-Biotech Patents 

    

New Drugs in Pipeline 

 

4.3.5 Estimation Procedure 

Three of the four dependent variables (biotech patents, citation-weighted biotech 

patents and new drug indications) are count variables, and thus take on only non-

negative integer values (e.g., the number of biotech patents or new drugs for a firm in a 

particular year).  Poisson estimation provides a natural baseline model for such count 

data (Hausman, Hall, and Griliches, 1984).  A Poisson specification, however, requires 

that the mean and variance of the event count are equal.  This restrictive assumption is 

unlikely to hold for pooled cross-section count data in the social sciences.  Indeed, we 

conducted tests for over-dispersion on each of three count-data dependent variables 

(Gourieroux, et al., 1984), and found that the data violated the assumption of mean and 
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variance equality.   In such cases, the negative binomial estimation provides a 

significantly better fit for the data than the more restrictive Poisson model.  Negative 

binomial regression accounts for an omitted variable bias, while simultaneously 

estimating heterogeneity (Hausman, et al., 1984; Cameron and Trivedi, 1986).   

Moreover, based on econometric theory, the use of either a fixed- or a random-

effects specification permits one to control for unobserved heterogeneity (Greene, 2003).  

Accordingly, we applied a Hausman specification test (1978), and its results revealed 

that there was not a systematic variation between the random and fixed-effects 

estimations.  Taken together, we applied the following random-effects negative binomial 

model:  

!/)/( 1
)exp( 11

it
n

it nenP it
i

it , 

where n is a non-negative integer count variable capturing each pharmaceutical firm’s 

innovative output and thus technical fitness (i.e., biotech patents, citation-weighted 

biotech patents, or new drug development).  Accordingly, )/( itnP  indicates the 

probability that pharmaceutical firm i develops the expected number of these outputs n in 

year t.  

We estimated the models proxying for a firm’s evolutionary fitness using stock 

market returns as dependent variable.  Given the underlying nature of the dependent 

variable, we applied a generalized least-squares estimation.  As above, we conducted a 

Hausman test, which revealed that a random-effects approach was appropriate for these 

estimations.24  Not only does the application of a random-effects estimation procedure 

addresses concerns of heterogeneity, but it also enables us to include covariates that 

tend to be (fairly) time invariant (Hsiao, 2003), such as the firm’s time to first citation of 

the Cohen-Boyer patent, national origin, or degree of diversification.  Moreover, we 

                                                

 

24 To assess how sensitive our results are to the reported random-effects specification, we additionally 
applied a fixed-effects estimation to all of the models indicated.  The results remained robust. 
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submit that through the application of the Hausman-specification test and the resulting 

random-effects specification, in combination with a rich set of detailed control variables, 

we have effectively addressed endogeneity concerns (Hamilton and Nickerson, 2003).  

Additional robustness checks, including using firm-clustered standard errors and zero-

inflated negative binomial estimations were used and the results reported remained 

robust to these treatments.  

The hypotheses that we developed highlight different dynamic capability 

antecedents within and across exploration and exploitation activities.  Such a theoretical 

approach requires the application of hierarchical moderated regression.  Moderated 

regression is a relatively conservative method for examining the interaction between 

variables, requiring that the interaction terms are statically significant after inclusion of all 

direct effects.  In addition, to enhance the interpretability of the results, we standardized 

all independent variables prior to both entering them into the various regression models 

and creating their cross products to test the interaction hypotheses. As illustrated by 

Table 4.3 in the appendix, all of the bivariate correlations are below the recommended 

0.70 threshold.  To further assess the threat of multicollinearity, we calculated the 

variance inflation factors (VIFs) for each coefficient.  The maximum estimated VIF for 

was 7.2, well below the recommended ceiling of 10 (for a discussion of these issues see 

Cohen, et al., 2003). 

In the estimation of the various regression models we paid significant attention to 

appropriate time lags between our independent and dependent variables.  In an attempt 

to compensate for a potential simultaneity bias and to allow for potential claims of 

causality, we lagged the financial measures (net income, revenues, and R&D 

expenditures) as well as alliances and acquisitions by one year (Hall, et al., 1986; Stuart, 

1998; Gulati, 1999).  We do not lag our measures of star and staff scientists because of 

the close temporal link between the date at which at article was published (this was the 
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basis for our measure of star and non-star scientists) and the innovative output 

associated with the publication (Murray, 2002).25  

4.4 Results 

In the appendix Table 4.3 provides the descriptive statistics and the bivariate 

correlation matrix, while Tables 4.4-4.5 present the regression results using the four 

different dependent variables.  In each case, we first estimated a baseline model 

including the control variables and direct effects only.  Next, we added the interaction 

effects.  Each subsequent model represents a significant improvement over the 

respective baseline models at p < .05, or smaller.  Models 1a-4a each contain all the 

controls as well as model-specific controls as detailed in Tables 4.1 and 4.2, as well as 

all direct effects, while Models 1b-4b contain additionally each of the four interaction 

terms simultaneously to assess the theoretical model advanced. 

Hypotheses 1a and 1b posit that dynamic capability antecedents that represent a 

similar strategic intent in regards to exploration or exploitation (see northwest/southeast 

diagonal in Figure 1) are substitutes.  We thus expect the interaction between star 

scientists and exploration alliances (H1a), as well as the interaction between staff 

scientists and exploitation alliances (H1b) to be negative (and statistically significant). 

We find general support for Hypothesis 1a, because the interactions between star 

scientists and exploration alliances are negative and are statistically significant: In 

Models 1b (p < .10 when predicting biotech patent counts), 2b (p < .001 when predicting 

citation-weighted biotech patents at), 3b (p < .05 when predicting new product 

development), and 4b (p < .01 when predicting adjusted stock market returns).  We find 

                                                

 

25 In stark contrast to the social sciences, where the time lag between initial article submission and 
publication in a journal can take several years, the initial submission to publication lag in the natural 
sciences is rather short.  It is estimated to range, on the average, from three to six months (Stern and 
Murray, 2005). 
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some tentative support for Hypothesis 1b predicting that staff scientists and exploitation 

alliances are substitutes.  All four interactions in Models 1b-4b are negative as predicted, 

however, they reach statistical significance only in Model 1b (p < .05 when predicting 

biotech patents).  

In Hypothesis 2a and 2b, we suggest that ambidexterity across exploration and 

exploitation activities complement one another (southwest/northeast diagonal in Figure 

1).  We thus expect the interactions between star scientists and exploitation alliances 

(H2a) and between staff scientists and exploration alliances (H2b) to be positive (and 

statistically significant).  We find broad support for an ambidexterity hypothesis; all of the 

interactions along the southwest/northeast diagonal are positive as expected, and 

statistically significant in all but one case.  Specifically we find support for 

complementarity between star scientists and exploitation alliances (H2a) in all of the four 

models (at p < .05 or smaller).  In addition, we find support for the complementarity 

between staff scientists and exploration alliances (H2b) in three out of the four models: 

In Models 2b (p< .05 when predicting citation-weighted patents), 3b (p < .01 when 

predicting new product development), and 4b (p<.05 when predicting adjusted stock 

market returns).  Taken in aggregate, these results provide support for the notion that 

ambidexterity across exploration and exploitation enhances a firm’s innovative 

performance.  

We summarized the results in an overview fashion in Table 4.6.  The depiction 

reveals that we find strong support for an ambidexterity hypothesis (H2a-b).  Pursing 

exploration and exploitation simultaneously by leveraging star scientists and exploitation 

alliances, on the one hand, and staff scientists and exploration alliances, on the other, 

enhances innovative performance.  We also find strong support for a substitutability 

hypothesis when firms pursue exploration through star scientists and exploration 
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alliances simultaneously (H1a).  The support for a substitutability effect between staff 

scientists and exploitation alliances (H1b) is tentative at best. 

Table 4.6: Summarized Results of Interaction Models    

Hypothesized Summarized Results 
Interaction Direction M1b

 

M2b

 

M3b

 

M4b

 

Star Scientists x Exploration Alliances - - - - - 

Staff Scientists x Exploitation Alliances - -       

Star Scientists x Exploitation Alliances + + + + + 

Staff Scientists x Exploration Alliances +   + + + 

 

Of particular interest is that the dynamic capability of ambidexterity is important to both 

the technical and evolutionary fitness of the organization.  That is, our results discussed 

above are generally consistent regardless of the innovative output utilized in the model. 

As support for this consistency, seven of the possible eight complementarity hypotheses 

illustrated in Table 6 were supported at a level of p< .05.  Thus, while research asserts 

that dynamic capabilities need not perform equally well on both technical and 

evolutionary fitness measures (Helfat et. al, 2007), our findings suggest that the dynamic 

capability of ambidexterity is reflected in both, a technical as well as an evolutionary 

fitness.  This suggests that while ambidexterity is a critical component of innovation at 

the process or capability level, the market also seems to reward this capability as 

representative of the strong growth opportunities associated with evolutionary fitness.  

As previously indicated, in our model investigating evolutionary fitness of an 

organization’s dynamic capabilities, we explicitly controlled for the technical fitness of the 

dynamic capabilities.  Interestingly, our results in Model 4a and 4b illustrate that the 

market values tacit measurements of technical fitness (e.g., count of biotech patents) in 

its appraisal of an organization’s evolutionary fitness, pointing to the fact that technical 
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fitness is frequently endogenous to evolutionary fitness.  Beyond these direct effects 

however, the results of the interactions in Model 4b clearly highlight the value of 

developing the dynamic capability of ambidexterity.   

4.5 Discussion 

Dynamic capabilities allow organizations to modify their existing resource base to 

ensure continued survival and competitiveness.  At the core of this resource 

transformation is the ability for an organization to simultaneously exploit its current 

capabilities as well as to explore future opportunities (March, 1991; Levinthal and March, 

1993).  We offer a unique theoretical perspective on ambidexterity, and empirical 

validation of the importance of this balance.  In addition, through the use of multiple 

innovative outputs, we are able to decompose the aggregate notion of innovative output 

into the constituent components of technical and evolutionary fitness to offer unique 

empirical insights.  

From a practical perspective, our results point to the need for researchers and 

managers alike to understand the heterogeneity of intellectual human capital and the 

differential roles these individuals play within the organization’s adaptation process.  By 

analyzing this dichotomy of individuals within the exploration-exploitation framework we 

demonstrate that pursuing exploration and exploitation activities in tandem (despite their 

inherent differences and unique managerial challenges) can result in improved 

innovative performance.  As hypothesized, the benefits of this ambidexterity outweigh 

the costs associated with being able to manage the disparate processes of exploration 

and exploitation simultaneously.  This result is interesting because prior research 

illustrates that these costs are not insignificant to the organization.  Specifically, they are 

a result of the different organizational structures, incentives, and competencies that are 
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associated with exploratory and exploitive activities (Nadler and Tushman, 1997; Benner 

and Tushman, 2002; Benner and Tushman, 2003).    

By contrast, we find that the pursuit of redundant mechanisms (e.g., both 

activities represent either exploration or exploitation) simultaneously results in a marginal 

decrease in innovative performance.  This substitutability may be reflective of an 

organization that is overly focused on either exploration or exploitation.  Prior research 

illustrates that pursuing either exploration or exploitation activities, at the cost of the 

other, can have deleterious implications (Levitt and March, 1988; Levinthal and March, 

1993).  Our results suggest that the costs of such a focus apparently outweigh the 

potential benefits that have been posited to exist when there exists a level of 

commonality between alliance partners (Lane and Lubatkin, 1998).  In a study on 

alliance formation in the semi-conductor industry, Stuart (1998) documented that the 

most valuable alliances are those between firms with similar technological foci.  In our 

setting, this would suggest that firms with more star scientists would be able to select 

and manage exploratory alliances.  Our results demonstrate that, in this case, the costs 

of this similarity outweigh its potential benefits. 

In an attempt to further our understanding of the nature of the interdependence 

between different antecedents to dynamic capabilities, we illustrate the importance of 

considering the appropriate level of analysis for two reasons.  The first relates to 

importance of considering the heterogeneity of the individual members of an 

organization’s intellectual human capital base.  In our expansion of the explore/exploit 

framework, we encapsulate the innovative activities of individuals and in doing so 

attempted to synthesize seminal sociological work investigating individual status, talent, 

and conformity with the more applied and aggregated literature focusing on 

organizational learning.  It is through this analysis that we shed light not only on the 

different roles that star and staff scientists play in developing dynamic capabilities but 
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also on the more interesting question of ‘why’.  While we are only able to generalize on 

the motivations of the individual researcher, the notion of an individual’s research 

conformity allows us to view the individual’s knowledge as constituent component of the 

much larger knowledge base of the organization.  It is only once this foundation is in 

place that one is able to aggregate the efforts of the individual so they can 

representative of an organization’s resource and innovative activities.     

The second means through which we highlight the importance of considering the 

appropriate level of analysis relates to the locus of innovation within the organization.  

The work of Tushman, O’Reilly, and colleagues suggests that given the fundamental 

differences between exploration and exploitation, the activities focused on strategic 

directions should reside in different organizational subunits or functional groups.  Based 

on this observation, a study that analyzes innovative activities by aggregating 

exploratory and exploitive intent may suffer from the aggregation bias associated with 

ignoring the potential variance that exists between these disparate activities.  As our 

study has shown, this bias may be especially costly in the analysis of the development of 

capabilities, as their history- and path-dependent nature seems to be functional-group 

specific, rather than firm-specific, as indicated in prior literature.     

4.6 Conclusion 

As this study represents an initial attempt to understand the relationship between the 

antecedents to dynamic capabilities, there are several limitations of our investigation that 

provide fertile ground for future research.  The first of these limitations relates to the 

setting of the study.  We suggest that the pharmaceutical industry represents an 

interesting and appropriate setting for investigating the knowledge acquisition and 

accumulation associated with dynamic capability formation.  However, given the 

idiosyncrasies associated with the biopharmaceutical industry, in terms of the 
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importance of scientific knowledge and new product development, future studies are 

needed to enhance the external validity of our findings.  In a related manner, future 

analyses may also expand on our findings by developing and testing new measurements 

of stardom.  While the bibliographic methodology used in this study is established in the 

literature, future investigations may look to identify stars based on different important 

metrics, including patents, new products developed or potentially other more subjective 

measures of performance.   

Finally, future studies may expand on our methodological contributions.  More 

specifically, research may look for alternative measurements to proxy for technical and 

evolutionary fitness of an organization’s dynamic capabilities.  As indicated above, we 

believe the breadth of measurements used in the current study is appropriate for our 

setting, yet complexity theorists may extend our analysis by looking at fitness 

landscapes, for example.  NK modeling may provide a unique avenue for such a study in 

which the relationship between activities is analyzed in terms of optimization of the 

relationship by assessing local maxima and minima. 

Despite these limitations, we offer that the current paper extends our 

understanding of an important construct in the organization theory and the strategic 

management literatures.  The focus of our investigation has been on understanding the 

relationship between the mechanisms organizations employ to build dynamic 

capabilities. The key aspect of the construct of dynamic capabilities is that it extends the 

resource-based view (RBV) of the firm beyond consideration of simple resource 

existence, to the more complex issues associated with resource emergence and 

resource combinations.  While the RBV focuses on how organizations select between 

appropriate resources, dynamic capabilities emphasizes resource development and 

renewal.  Thus, while consideration of selection is important, of import is not the choice 

between resources, but rather the choice between the different mechanisms that 
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managers employ to develop and change these capabilities.  This distinction is critical, 

because it allows us to more fully understand the origins and performance 

consequences of dynamic capabilities.   

In conclusion, it is important to note that continued survival and any potential 

competitive advantage is not a direct outflow of ambidexterity, but rather ambidexterity 

as dynamic capability allows managers to reconfigure and extend a firm’s resources that 

facilitates survival and performance (Eisenhardt and Martin, 2000; Winter, 2000; O’Reilly 

and Tushman, 2007).  By considering the relationship between these choices, not only 

across different antecedents to dynamic capabilities, but also across different levels of 

analysis, we have attempted to both refine as well as extend our theoretical and 

empirical understanding of the formation of dynamic capabilities.  
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CHAPTER 4 APPENDIX  

Table 4.3: Descriptive Statistics and Correlations  

Mean Median St.Dev Min Max 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
1. Biotech Patents (BPA) 14.3 6.2 21.6 0.0 243.0 
2. Citation-Weighted BPA 54.8 14.2 74.7 1.0 613.0 0.698 

3. New Drugs 6.0 2.2 10.4 0.0 89.0 0.214 0.035 

4. Adj. Stock Return 0.0 0.0 0.2 -0.6 3.5 0.055 0.033 0.016 

5. Merged Firm 0.2 0.2 0.4 0.0 1.0 0.306 0.350 0.353 0.066 
6. Diversified 0.5 0.3 0.5 0.0 1.0 0.080 0.046 0.031 0.060 0.012 
7. US 0.3 0.3 0.5 0.0 1.0 0.217 0.295 0.100 0.117 0.175 -0.073 
8. EU 0.3 0.1 0.5 0.0 1.0 0.083 0.034 0.065 -0.020 0.091 0.094 -0.476 
9. Net Income 710.8 240.2 1575.0 -6680.3 28596.3 0.213 0.276 0.256 0.070 0.147 0.005 0.117 0.007 

10. Revenue 10275.7 5133.1 14807.0 0.0 158768.8 0.198 0.088 0.212 -0.025 0.083 -0.333 0.074 0.175 0.300 
11. % Equity Alliances 0.1 0.2 0.5 0.0 10.0 0.059 0.073 -0.037 -0.013 0.002 -0.008 0.122 -0.010 0.002 0.025 

12. Non-Biotech Patents 41.5 12.3 73.4 0.0 688.0 -0.462 -0.310 -0.192 -0.034 -0.211 -0.386 0.031 0.041 -0.007 0.361 -0.002

13. R&D Expense 627.9 257.8 1473.3 0.0 33433.2 0.220 0.314 0.144 0.059 0.275 0.086 0.089 0.041 0.143 0.048 0.020 0.130 

14. R&D Acquisitions 0.3 0.4 1.2 0.0 30.0 0.295 0.310 0.142 0.023 0.146 -0.035 -0.066 0.161 0.170 0.354 0.003 0.050 -0.167 
15. Cohen-Boyer Citation 23.5 26.3 6.6 0.0 26.0 -0.211 -0.203 0.036 -0.019 -0.021 0.004 -0.062 0.062 -0.008 0.019 -0.026 -0.028 -0.152 0.158 
16. % Cancer Drugs 0.1 0.1 0.2 0.0 1.0 -0.044 -0.037 0.098 -0.042 -0.037 -0.098 -0.025 -0.084 0.002 0.016 -0.090 0.059 -0.030 0.028 -0.112 

17. Exploration Alliances 0.6 0.5 1.4 0.0 17.0 0.352 0.285 -0.047 0.042 0.197 0.017 0.127 0.004 0.101 0.062 0.091 0.104 0.242 -0.223 -0.133 -0.079 

18. Exploitation Alliances 0.3 0.3 1.0 0.0 13.0 0.221 0.229 -0.035 0.054 0.132 0.080 0.095 -0.030 0.051 -0.021 0.043 0.049 0.125 -0.182 -0.140 -0.048 0.515 

19. Star Scientists 23.0 4.4 52.3 0.0 655.0 0.524 0.512 0.092 0.021 0.221 0.197 0.130 -0.067 0.130 -0.001 0.031 0.080 0.188 -0.455 -0.169 -0.051 0.312 0.226 

20. Staff Scientists 211.2 86.3 325.7 0.0 4354.0 0.475 0.517 0.381 0.081 0.286 0.075 0.109 0.058 0.217 0.086 0.015 0.191 0.274 -0.289 -0.178 -0.023 0.317 0.217 0.652

Variables

D
ep

en
de

nt
C

on
tr

ol
In

de
pe

nd
en

t

   



 

                                                                                                                                                                               

       

   

177 

Table 4.4: Regression Results   

Models
beta s.e. beta s.e. beta s.e. beta s.e.

Year Effects Included Included Included Included
Constant -1.0542 (0.2773) -0.9579 (0.2758) 0.0367 (0.2488) 0.2277 (0.4721)
Merged Firm 0.0723 (0.0527) 0.0648 (0.0521) -0.0895 (0.0858) -0.0510 (0.0850)
Diversified 0.1371 (0.1155) 0.1454 (0.1178) -0.0661 (0.1144) -0.0421 (0.1150)
US Firm -0.2591 (0.1596) -0.2552 (0.1594) 0.6208 *** (0.1545) 0.6128 *** (0.1523)
EU Firm -0.4143 ** (0.1639) -0.3484 * (0.1652) 0.4798 ** (0.1744) 0.4932 ** (0.1728)
Net Income -0.0275 (0.0279) -0.0226 (0.0275) 0.0749 (0.0504) 0.0896 * (0.0494)
Total Revenues 0.0614 * (0.0297) 0.0637 * (0.0292) -0.0468 (0.0414) -0.0507 (0.0414)
% Equity Alliances 0.0052 (0.0133) 0.0030 (0.0134) 0.0227 (0.0162) 0.0214 (0.0162)
Non-Biotech Patents -0.3118 *** (0.0165) -0.3210 *** (0.0174) -0.0859 ** (0.0326) -0.0784 ** (0.0323)
R&D Expense 0.0442 (0.0325) 0.0434 0.03198 0.2069 *** (0.0432) 0.2138 *** (0.0423)
R&D Acquisitions -0.0096 (0.0111) -0.0143 (0.0110) -0.0290 (0.0256) -0.0465 * (0.0272)
Time to First Cohen-Boyer Patent Citation -0.0804 * (0.0391) -0.0702 * (0.0395) -0.2057 *** (0.0411) -0.1961 *** (0.0411)
Exploration Alliances 0.0138 (0.0118) 0.0441 *** (0.0137) 0.0268 (0.0205) 0.0356 (0.0242)
Exploitation Alliances 0.0079 (0.0105) -0.0005 (0.0137) 0.0012 (0.0151) -0.0047 (0.0174)
Star Scientists -0.0187 (0.0149) -0.0106 0.0152 -0.0090 (0.0289) 0.0217 (0.0296)
Staff Scientists 0.0609 ** (0.0217) 0.0781 *** (0.0213) 0.1158 ** (0.0448) 0.1256 ** (0.0456)
Star Scientists x Exploration Alliances -0.0091 † (0.0059) -0.0424 *** (0.0126)
Staff Scientists x Exploitation Alliances -0.0165 * (0.0093) -0.0188 (0.0215)
Star Scientists x Exploitation Alliances 0.0121 ** (0.0051) 0.0176 * (0.0103)
Staff Scientists x Exploration Alliances -0.0083 (0.0072) 0.0445 * (0.0217)
Log likelihood -4441.47 -4383.71 -3465.32 -3432.34
Chi Square 1398.23 *** 1424.54 *** 405.50 *** 448.76 ***

Improvement over Base ( 2) 19.25 ***  8.25 **
† p < .10* p < .05; ** p < .01; *** p < .001; Standard errors are in parentheses.

Biotech Patent Count Forward Citation Weighted Biotech Patents
Model 2a Model 2bModel 1a Model 1b
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Table 4.5: Regression Results   

Models 
beta s.e. beta s.e. beta s.e. beta s.e.

Year Effects Included Included Included Included
Constant 2.7414 (0.2340) 2.9258 (0.2525) 0.1156 (0.0703) 0.1395 (0.0713)
Merged Firm 0.1566 (0.1242) 0.2414 * (0.1276) 0.0573 ** (0.0332) 0.0592 ** (0.0337)
Diversified 0.1046 (0.1513) 0.0498 (0.1508) -0.0500 (0.0285) -0.0471 (0.0283)
US Firm 0.3830 * (0.1995) 0.3133 (0.1997) NA NA
EU Firm 0.1902 (0.1988) 0.1579 (0.1967) NA NA
Net Income 0.0267 (0.0346) 0.0229 (0.0342) 0.0400 * (0.0235) 0.0478 * (0.0237)
Total Revenues 0.0928 (0.0752) 0.1137 (0.0741) -0.0758 * (0.0374) -0.0734 * (0.0376)
% Equity Alliances -0.0362 (0.0368) -0.0454 (0.0367) -0.0055 (0.0147) -0.0049 (0.0147)
R&D Expense 0.0335 (0.0400) 0.0502 0.04346 -0.0410 (0.0289) -0.0422 (0.0288)
R&D Acquisitions 0.0287 (0.0209) 0.0271 (0.0206) 0.0002 (0.0092) -0.0016 (0.0092)
Biotech Patents NA NA 0.0312 * (0.0156) 0.0285 * (0.0156)
Non-Biotech Patents NA NA 0.0298 (0.0213) 0.0300 (0.0214)
New Drugs NA NA 0.0076 (0.0129) 0.0029 (0.0130)
Stock Market Exchange Dummies NA NA Included Included
% Anti-Cancer Drugs 0.0480 (0.0415) 0.0424 (0.0411) NA NA
Exploration Alliances -0.0398 * (0.0220) -0.0515 * (0.0285) 0.0092 * (0.0075) 0.0063 (0.0094)
Exploitation Alliances 0.0366 * (0.0193) 0.0291 (0.0324) 0.0005 (0.0067) 0.0027 (0.0097)
Star Scientists -0.0924 *** (0.0281) -0.0916 ** 0.03178 -0.0088 (0.0096) 0.0077 (0.0131)
Staff Scientists 0.0976 *** (0.0278) 0.0970 *** (0.0290) 0.0102 (0.0130) -0.0010 (0.0163)
Star Scientists x Exploration Alliances -0.0228 * (0.0121) -0.0118 ** (0.0043)
Staff Scientists x Exploitation Alliances -0.0087 (0.0109) -0.0052 (0.0045)
Star Scientists x Exploitation Alliances 0.0179 * (0.0080) 0.0058 * (0.0033)
Staff Scientists x Exploration Alliances 0.0287 ** (0.0117) 0.0112 * (0.0055)
Log likelihood (R-Sq in Model 4) -965.55 -939.53 0.25 0.28
Chi Square 801.49 *** 868.85 *** 93.90 *** 103.2 ***

Improvement over Base ( 2) 8.67 **
† p < .10* p < .05; ** p < .01; *** p < .001; Standard errors are in parentheses.

New Drug Development 
Model 3a Model 3b

Adjusted Stock Market Performance
Model 4a Model 4b
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Table 4.7: Incidence Rate Ratios for Interaction Models     

Incidence Factor  

beta

  
Rate Ratio Change    
= exp(beta) = IRR-1 

Biotech Patent Count Model     

Stars X Exploration Alliances NS

      

Staff Scientists X Exploitation Alliances -0.0165

 

* 0.98 -0.02 

Stars X Exploitation Alliances 0.0121

 

** 1.01 0.01 

Staff Scientists X Exploration Alliances NS

           

Citation Weighted Patent Model     

Stars X Exploration Alliances -0.0424

 

*** 0.96 -0.04 

Staff Scientists X Exploitation Alliances NS

      

Stars X Exploitation Alliances 0.0176

 

* 1.02 0.02 

Staff Scientists X Exploration Alliances 0.0445

 

* 1.05 0.05  

    

New Drug Development Model     

Stars X Exploration Alliances -0.0228

 

* 0.98 -0.02 

Staff Scientists X Exploitation Alliances NS

      

Stars X Exploitation Alliances 0.0179

 

* 1.02 0.02 

Staff Scientists X Exploration Alliances 0.0287

 

** 1.03 0.03  

    

Adjusted Stock Market Performance     

Stars X Exploration Alliances -0.0124

 

** 0.99 -0.01 

Staff Scientists X Exploitation Alliances NS

      

Stars X Exploitation Alliances 0.0056

 

* 1.01 0.01 

Staff Scientists X Exploration Alliances 0.0115

 

* 1.01 0.01      

* p < .05; ** p < .01; *** p < .001; Standard errors are in parentheses  

odds ratio is the same as multiplier factor, b/c variables are standardized        
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CHAPTER 5 

CONCLUSION  

By developing a multi-level system of dynamic capability formation, I have 

attempted to demonstrate that dynamic capabilities emerge at the firm-level through 

interactions at the individual level.  In particular, the interactions between different types 

of boundary spanners, in conjunction with top management, allow the formation of 

dynamic capabilities at the firm level.  While this process of dynamic capability formation 

can be initiated through managerial action and formalization of roles, the formation of 

dynamic capabilities need to be explained by the notion of emergence (Goldstein, 1999), 

where the observed outcome at a macro level is the product of the interactions at a 

micro level.  For example, just as interactions among molecules result in cells, 

interactions among neurons result in brains, and interactions among species result in 

ecosystems, interactions among different types of boundary spanners can result in 

dynamic capabilities.   

Emerging properties stem from the interaction of agents, and are not found in 

individual parts of the system.  For instance, a single neuron does not have 

consciousness, but a human brain in its entirety does exhibit consciousness.  The 

resulting dynamic capabilities, therefore, cannot simply be explained by the sum of the 

inputs provided by each individual.  Rather, they exhibit emergent properties arising from 

the continuous interactions of specific boundary spanners attempting to overcome 

different knowledge gaps in the innovation process.  This conclusion echoes Teece’s 

(1982: 44) sentiment that capabilities do not vest in a single individual, nor are they 

capable of being articulated by an individual; rather, they are supra-individual and not 

“reducible to individual memory.” 
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The focus of my dissertation echoes the recent call for a stronger micro 

foundation in strategic management research (Felin and Hesterly, 2005).  Since 

innovation is, by its nature, a knowledge intensive activity, the question turns to the issue 

of how firms learn.  Simon suggests that intellectual human capital, especially the 

recruitment of scientists can be an effective way to learn and innovate, as he 

emphasizes that “all organizational learning takes place inside human heads; an 

organization learns in only two ways: (a) by the learning of its members, or (b) by 

ingesting new members who have knowledge the organization didn’t previously have” 

(Simon, 1991: 125).  The role of individuals in knowledge creation is also highlighted by 

Grant, who argues that “the emphasis upon the role of the individual as the primary actor 

in knowledge creation and the principle repository of knowledge, I believe, is essential to 

piercing the veil of organizational knowledge and clarifying the role of organizations in 

the creation and application of knowledge” (Grant, 1996: 121; italics added).  We find 

that specific individuals, here scientists, have a direct bearing on the innovative 

performance of firms, while controlling for alternative explanations across different 

levels.  This result resonates with Teece’s (2003) recent finding that experts and 

professionals are the locus of knowledge in service-oriented firms.  Taken together, we 

submit that future research needs to consider the role of individuals when studying 

antecedents to a firm’s dynamic capabilities. 

As, previously mentioned, while the setting for this investigation offers unique 

insights into the knowledge acquisition and assimilation process, the numerous 

idiosyncrasies of the pharmaceutical industry call into question the potential 

generalizability of the my findings.  While indeed a limitation of any single-industry study, 

I feel that the question of generalizability can be better thought of as offering insights into 

future areas of investigation.  As I have described within the chapters of my dissertation, 

the findings of this dissertation suggest numerous paths for future consideration.  

Preliminary findings of research into one such path reveal interesting aspects of the 
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nature of ‘stardom’ in science-based industries.  As part of an ongoing research into the 

generalizability of my findings, I have collected the publication record for more than 165K 

authors publishing in over 2,300 biotechnology firms.  As illustrated by the chart below, 

preliminary analysis of this data illustrates that the role of the star scientists may not be 

as idiosyncratic as originally indicated.   

Table 5.1 – Comparison of ‘Stars in Pharmaceutical and Biotechnology Firms 

  

Average Pubs To be a star Stars Times more impactful 

Setting Pubs Cites Pubs Cites # 
% of 
total 

% of all 
pubs 

% of all 
cites Pubs Cites 

Pharma 3.9 66.3 28 861 1071 0.63% 12.20% 22.10% 19.4 35.1 

                  

Biotech 3.3 50.5 24 770 570 0.31% 6.00% 15.80% 19.4 51.0 

  

The figure above reveals a striking similarity between the ‘stardom’ of elite 

scientists in pharmaceutical and biotechnology firms.  T-tests between the means reveal 

no significant (p<0.05) difference between the publication impact of biotech and pharma 

stars but a significant (p<0.05) difference between the citation impact of the different 

stars.  As previously indicated, this result is preliminary but lend support to the ideas 

presented in chapter 2 of the dissertation that examine the role of star scientists through 

the lens of the sociology of science.  The similarity between the populations of scientists 

suggests a connection between these individuals that transcends the boundaries of the 

firm.  Following the work of Merton, Zuckerman, Kuhn and others, this extension of my 

dissertation suggests that while these individuals are employees of organizations, they 

are more importantly actors in the larger institution of the scientific community.  Further 

research within this domain will hopefully help to substantiate and generalize the findings 

and positions of this dissertation. 


