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SUMMARY

Translinear circuits are circuits in which the exponential relationship between the out-

put current and input voltage of a circuit element is exploited to realize various differential

or algebraic equations. The precise exponential characteristic of the Bipolar Junction Tran-

sistor (BJT) and other devices has been responsible for the increase in popularity of this

branch of analog circuits and has stimulated research geared towards implementation of not

only linear, but also nonlinear systems in the analog domain. Also, the basic concept of

using the exponential characteristic of certain circuit elements has been used in other pop-

ular analog components such as bandgap references, Proportional to Absolute Temperature

(PTAT) circuits, and constant-gm biasing circuits.

This thesis is concerned with a subclass of translinear circuits, in which the basic

translinear element has an output current that is exponentially related to a weighted sum

of its input voltages. This multiple-input translinear element (MITE) can be used for the

implementation of the same class of functions as traditional translinear circuits. The volt-

age addition that gives rise to multiplication of currents in traditional translinear circuits is

replaced by weighted summation through a capacitive voltage divider. The implementation

of algebraic or (algebraic) differential equations using MITEs can be reduced to the imple-

mentation of the so–called product–of–power–law (POPL) relationships, in which an output

is given by the product of inputs raised to different powers. Hence, the synthesis of these

POPL relationships, and their optimization with respect to the relevant cost functions, are

very important in the theory of MITE networks.

In this thesis, different constraints on the topology of these POPL networks that result in

desirable system behavior are explored and different methods of synthesis, subject to these

constraints, are developed. The constraints are usually conditions on certain matrices of the

network, which characterize the weights in the relevant MITEs. Some of these constraints

are related to the uniqueness of the operating point of the network and the stability of the

network. Conditions that satisfy these constraints are developed in this work. The cost

functions to be minimized are the number of MITEs and the number of input gates in each

MITE. A complete solution to POPL network synthesis is presented here that minimizes

xv



the number of MITEs first and then minimizes the number of input gates to each MITE.

A procedure for synthesizing POPL relationships optimally when the number of gates is

minimal, i.e., 2, has also been developed here for the single–output case. A MITE structure

that produces the maximum number of functions with minimal reconfigurability is developed

for use in MITE field–programmable analog arrays. The extension of these constraints

to the synthesis of linear filters is also explored, the constraint here being that the filter

network should have a unique operating point in the presence of nonidealities. Synthesis

examples presented here include nonlinear functions like the inverse tangent function and

the gaussian function which find application in analog implementations of particle filters.

Synthesis of dynamical systems is presented here using the examples of a Lorenz system and

a sinusoidal oscillator. The procedures developed here provide a structured way to automate

the synthesis of nonlinear algebraic functions and differential equations using MITEs.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Translinear Circuits

The term translinear circuit was coined by Barrie Gilbert [1] to refer a class of bipolar

junction transistor (BJT) circuits whose behavior depended upon the transconductance of

a BJT being a linear function of its collector current. Such a property is essentially because

the collector current is exponentially related to the base-emitter voltage. The modern usage

of the term [2] generalizes this to include MOSFETs in the subthreshold region, which ex-

hibit exponential behavior. Roughly speaking, a translinear circuit is one that utilizes the

exponential behavior of some of its elements, called translinear elements, for the circuit func-

tion. Gilbert’s translinear principle [1], also known as the static translinear principle [3], is

the fundamental principle for implementing static or memoryless systems. Mathematically,

this is just a circuit version of the well-known fact the logarithm of a product of numbers

is the sum of the individual logarithms. A systematic approach to the analysis and synthe-

sis of static translinear circuits was done by Seevinck [4]. Using the translinear principle,

numerous static functions like four-quadrant multipliers, two-quadrant dividers, sinusoidal

frequency multipliers, vector magnitude operations, trigonometric functions, taylor series

expansions have been synthesized [5, 4, 6, 7].

Dynamic translinear circuits are translinear circuits that include capacitors and can be

used for the implementation of ordinary differential equations. The dynamic translinear

principle [3] is essentially an application of the fact that the derivative of an exponential

function is proportional to the function itself. Using this property, it is possible to implement

systems whose input-output relationship is linear but the circuit operation internally is

nonlinear. This class of filters, called as log-domain filters or exponential state-space filters,

were first introduced by Robert Adams who presented a first-order log-domain filter. A

synthesis methodology for these filters was given by Douglas Frey [8,9]. Mulder et al. [10,3]

established the dynamic translinear principle along with an extension of Seevinck’s synthesis

procedures to dynamic translinear circuits.
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Figure 1.1. Symbol for a n-input multiple-input translinear element (MITE).

1.2 The Multiple-Input Translinear Element

The multiple-input translinear element (MITE) is a generalization of the BJT introduced

by Bradley Minch [11,12]. A large class of linear and nonlinear systems can be implemented

as MITE circuits [13,14,15,16,17,18,19,20,21,22]. In particular, all the functions that can

be implemented by classical translinear circuits can be implemented using MITEs.

Definition 1.2.1 The n–input MITE, as represented in Figure 1.1, is a (n+1)-port circuit

element characterized by

Ii = 0 (i ∈ [1 : n])

In+1 = Is exp [κ
(w1V1 + w2V2 + · · ·wnVn)

UT

],
(1.1)

where Ii and Vi are the port currents and port voltages. Is is a pre-exponential scaling

current and UT = kT
q is the thermal voltage. κ is a dimensionless scaling factor. The wis

are nonnegative weight coefficients, usually integers.

w ,
∑n

i=1 wi is called the fan-in of the MITE [19]. A MITE with a fan–in of n is called a

n−MITE. In particular, a 2−MITE is a MITE with fan–in 2.
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1.2.1 MITE implementations

As Equation (1.1) implies, a simple way to implement a MITE using the previously known

translinear elements like a BJT or a subthreshold MOSFET is by using a multiple-input

summer and the translinear element in cascade as shown in Figure 1.2(a) and (d). In the

scheme in (a), the BJT (MOSFET) is in the common-emitter (common-source) configu-

ration while in the scheme in (d), it is in a common-base (common-gate) configuration.

The earliest circuits resembling MITE circuits used resistive dividers for the multiple-input

summer in the configuration in Figure 1.2(a) [23,24]. However, in current technologies, ca-

pacitor dividers are preferred due to area considerations. For the scheme in Figure 1.2(a),

different configurations can be generated depending upon whether the summer is passive

or active as shown in Figure 1.2(b) and (c), respectively. A popular implementation is the

cascoded floating-gate MOSFET used in a common source configuration in Figure 1.3. The

cascode transistor increases the output resistance of the floating-gate MOSFET and also

helps in programming the floating-gate MOSFET [25]. An exemplary implementation of

Figure 1.2(d) is shown in Figure 1.2(e) [26]. As can be seen from the implementations,

the summer performance is considerably improved when the capacitances used in the sum-

mer are made of unit capacitances. Hence, the weight coefficients in a MITE are usually

restricted to be nonnegative integers.

1.3 Product–of–power–law Networks

A function f : Rn 7→ R is called an algebraic function if there is a polynomial p in

n + 1 real variables such that p(y, x1, x2, . . . , xn) = 0, where x1, x2, . . . , xn ∈ R and y =

f(x1, x2, . . . , xn). If f is expressible by radicals, then it can be computed in a finite number

of steps using only sums, products, and by raising a variable to known rational powers. If

such is not the case, then y has to be found from p(y, x1, . . . , xn) = 0 by means of feedback,

which again involves the basic operations of sums, products, and powers. In translinear

circuits, a sum of two or more currents is obtained using Kirchoff’s current law (KCL) by

simply joining the respective wires. The difference of two currents is obtained through a

current mirror. Hence, only a product of variables raised to different powers is needed.

The relevant MITE network implementing this is now discussed. The treatment given here
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Figure 1.3. Cascoded floating-gate implementations of MITEs. The PFET implementation in
(a) is the practical one; the NFET implementation in (b) is often used for illustrative purposes.
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Figure 1.4. The general form of the MITE network implementing a POPL function. The
output currents are a product of the input currents raised to different powers.
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follows [12]. The mathematical notation used in the following as well as in the remainder

of the thesis is described in the last section of the thesis.

Consider the MITE network in Figure 1.4. The weight coefficient matrices X = [xij ]

and Y = [yij ] are called the input and output connectivity matrices, respectively. Using

Equation (1.1), the relationship between I = [Ik], I
′ = [I ′k], and V = [Vk] is arrived at. The

parameters Is, and κ are the same for all the MITEs in the circuit. It is clear that

log

{
Iq

Is

}
=

κ

UT

n∑

k=1

xqkVk q ∈ [1 : n]

log

{
I ′p
Is

}
=

κ

UT

n∑

k=1

ypkVk p ∈ [1 : l],

(1.2)

which can be written in matrix form as

log

{
I

Is

}
=

κ

UT
XV

log

{
I′

Is

}
=

κ

UT
Y V

(1.3)

It follows that if the input connectivity matrix X is invertible,

log

{
I′

Is

}
= Y X−1 log

{
I

Is

}
(1.4)

Define Λ = Y X−1. Removing the logarithms from Equation (1.4), it is clear that

I ′p
Is

=
n∏

q=1

{
Iq

Is

}Λpq

I ′p = I
1−Pn

q=1 Λpq

s

n∏

q=1

I
Λpq
q

(1.5)

If X, Y are such that Λ = Y X−1 satisfies, for each p,
∑n

q=1 Λpq = 1 that can be written

compactly as

Λ1n = 1l, (1.6)

then it can be concluded that

I ′p =
n∏

q=1

I
Λpq
q (1.7)

Definition 1.3.1 A MITE network as in Figure 1.4 characterized by a nonsingular input

connectivity matrix and an output connectivity matrix is called a product–of–power–law

(POPL) network. The output currents are products of the input currents raised to different

powers as shown in Equation (1.7).
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It should be noted that the functional relationship is independent of Is, κ, and UT

and hence is independent of temperature as long as the assumption that Is and κ are the

same for all the MITEs is satisfied. Conditions under which this assumption holds will be

discussed now.

The analysis of floating-gate MOSFETs in the subthreshold region relevant to MITE

networks is done in [11,12]. For the NFET floating-gate shown in Figure 1.3(b), the current

Id, neglecting the dependence on the drain voltage, is given by

Id = I0 exp

{
κ′Q

C ′
TUT

}
exp

{
κ′

C ′
TUT

n∑

k=1

CkVk

}
, (1.8)

where Ck is the floating-gate capacitance connected between Vk and the floating gate.

κ′ = Cox/(Cox + Cdep), Cox and Cdep being the oxide capacitance and the depletion-layer

capacitance of the MOSFET, respectively. Q is the charge on the floating node and C ′
T is

given by

C ′
T ,

CoxCdep

Cox + Cdep
+ Cb +

n∑

k=1

Ck + Cfg-s + Cfg-d + κ′Cfg-d, (1.9)

where Cb, Cfg-s, and Cfg-d are the parasitic capacitances coupling onto the floating gate from

the substrate, source, and the drain, respectively. We define wk , Ck/C, where C is some

reference capacitance and is commonly the unit capacitance that each of the floating-gate

capacitances are made up of. Comparing Equation (1.8) with Equation (1.1), it is clear

that Is = I0 exp
{

κ′Q
C′

TUT

}
and κ = κ′Q/(C ′

TUT).

In order that all the MITEs in Figure 1.4 have the same Is, the charge Q on the floating

gate needs to be controllable. This is achieved by means of programming [25] a floating-gate

MOSFET. Even if I0 is not the same for all MITEs, Q can be changed to account for the

error so that Is is made the same.

It is clear that κ depends on C ′
T which in turn depends on the floating-gate capacitances

Ck. Assuming that the parasitic capacitances are equal for each MITE, it follows from

Equation (1.9) that for κ to be the same for all MITEs, the values of
∑n

k=1 Ck should

be the same. If the reference capacitance C is taken to be the same for all MITEs, the

condition that
∑n

k=1 wk should be the same for all MITEs is obtained. By definition, this

is the fan-in of each MITE. Hence, it can be concluded that for κ to be the same for all

MITEs in Figure 1.4, the fan-in of all the MITEs should be the same.
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Figure 1.5. Stability analysis of the POPL network. Capacitances are attached from each node
Vi to ground. The currents through the gates of all MITEs are neglected.

Definition 1.3.2 [11]. The MITE network in Figure 1.4 is said to have a balanced fan-in

or simply is balanced if the fan-in
∑

k wk is the same for all MITEs in the network. The

common fan-in of all the MITEs is called the fan-in of the network.

The following theorem is proved in [17,12]:

Theorem 1.3.1 (Balanced Fan-In Theorem) If a POPL MITE network as shown in

Figure 1.4 is balanced, then the power matrix Λ of the network satisfies Equation (1.6), viz.

Λ1n = 1l.

1.3.1 Stability of the Operating Point of POPL Networks

The stability of a POPL network depends upon the position assumed for the parasitic ca-

pacitances. In practice, the floating-gate capacitances themselves, along with the parasitic

gate–source capacitance are the dominating capacitances. The resulting conditions depend

upon the value of the capacitances and the transconductances of the MITEs. The analy-

sis becomes much simpler if the significant parasitic capacitances are taken to be situated

between ground and the drain of each MITE. This analysis is done in [12]. An abridged

version of the derivation along with a discussion of the implied conditions on the connec-

tivity matrices of the POPL network is given in this section. The nonnegligible parasitic

capacitances Ci are assumed to be present from each Vi in Figure 1.5 to ground. For the

8



stability analysis, the currents through the input gates of the MITEs along with their out-

put conductances are neglected. Because of this, the “output” MITEs do not contribute to

the stability of the network. Small signal analysis gives the following:

gmi(
n∑

j=1

xijvj) + sCivi = 0 i ∈ [1 : n] (1.10)

For a ideal MITE,

gm =
∂I

∂V
=

∂

∂V

(
Is exp(

κV

UT
)

)
=

κI

UT
> 0

and hence the stability depends both on the input currents and the parasitics in the MITE

network. Dividing each equation in Equation (1.10) by gmi and writing the set of equations

in matrix form, one gets (X+sT )v = 0, where v = [vi] and T = diag(τ1, τ2, . . . , τn) is defined

by τi = Ci/gmi. It should be noted that the diagonal matrix T > 0. The characteristic

polynomial, as defined in [27], of this network is thus given by det(X + sT ) = 0. Since

det(T ) 6= 0, the characteristic polynomial can be written as det(sI − (−T−1X)) = 0. For

the network to be stable, the eigenvalues of −T−1X are therefore required to lie in the open

left–half s–plane. Since the eigenvalues of −M are the negatives of the eigenvalues of M ,

it can be concluded that the eigenvalues of T−1X are required to be in the open right–half

plane. This condition is useful only if the values of Ci and gmi are known. Since only those

networks whose stability is independent of both these sets of parameters are important, the

condition should be valid for all diagonal matrices T > 0. Thus the following theorem is

arrived at:

Theorem 1.3.2 A necessary condition for a POPL MITE network to be stable irrespective

of the value of input currents and parasitic capacitances is that its input connectivity matrix

should be D-stable.

By definition, M is a D-stable matrix if DM has eigenvalues in the open right–half s-plane

for all diagonal matrices D ≥ 0.

1.3.2 Sensitivity Considerations

In this section, we consider the sensitivity of the power matrix Λ to the floating-gate ca-

pacitances determining the connectivity matrices X and Y . This section is a presentation

of the analysis given in [12].
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Each non-negative integral weight wk attached to a voltage Vk in a MITE is given by

wk = Ck/C, where Ck is the floating-gate capacitance attached to Vk. C is usually the

unit capacitance out of which Ck is composed of and is usually the same for all MITEs in

a particular MITE network. In practice, each unit capacitance C has the value C + ∆Ckj ,

where the ∆Ckj ’s are independent identically distributed random variables with zero mean

and standard deviation σC .

Hence the new weight w′
k can be given as

w′
k =

Ck

C
=

∑wk
j=1(C + ∆Ckj)

C
= wk +

∆Ck

C
(1.11)

Here the random variable ∆Ck ,
∑wk

j=1 ∆Ckj has zero mean and variance given by
∑wk

j=1 σ2
C =

wkσ
2
C . The power matrix Λ = Y X−1 now changes to (Y + ∆Y )(X + ∆X)−1.

∆Λ = (Y + ∆Y )(X + ∆X)−1 − Y X−1

= (∆Y − Λ∆X)(X + ∆X)−1

≈ (∆Y − Λ∆X)X−1,

(1.12)

where the approximation in the last step is valid if we assume that the random matrix ∆X

is bounded and that σC is sufficiently small.

For evaluating the variance of ∆Λ, the following simple result is useful:

Lemma 1.3.1 If the elements of A = [aik] ∈ Mp,q and B = [bkj ] ∈ Mq,r are random

variables such that for all i ∈ [1 : p], j ∈ [1 : r], s, k ∈ [1 : q]

E1 aik and bsj are independent

E2 For s 6= k, either aik, ais and/or bkj , bsj have zero mean and are independent,

then E(C ◦ C) = E(A ◦ A)E(B ◦ B), where C = AB, E(.) denotes the expectation value of

the random variable or matrix in the parentheses, and ◦ denotes the Hadamard product or

the element-wise product of matrices. It should be noted that E1 is satisfied if one of A or

B is a constant matrix.

Proof : We will prove the lemma for the case when aik and ais are independent and leave

the similar other case to the reader. It therefore follows from E2 that E(aikais) = E(a2
ik)δks.
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Let C = AB = [cij ].

E(c2
ij) = E

[
(

q∑

k=1

aikbkj)(

q∑

s=1

aisbsj)
]

= E
[ q∑

k,s=1

aikaisbkjbsj

]

=

q∑

k,s=1

E
[
aikais

]
E
[
bkjbsj

]
(from E1)

=

q∑

k,s=1

E
[
a2

ik

]
δksE

[
bkjbsj

]

=

q∑

k=1

E
[
a2

ik

]
E
[
b2
kj

]
�

In ∆Λ = (∆Y − Λ∆X)X−1, E1 is obviously satisfied. E2 is satisfied because ∆yik −
∑n

t=1 Λit∆xtk has zero mean and since distinct elements of Y and X are independent. It

should also be noted that E1 and E2 are also satisfied in the product Λ∆X. The variance

of ∆Λ is then given by

E(∆Λ ◦∆Λ) = E
[
(∆Y − Λ∆X) ◦ (∆Y − Λ∆X)

]
E(X−1 ◦X−1)

= E
[
∆Y ◦∆Y − 2∆Y ◦ (Λ∆X) + (Λ∆X) ◦ (Λ∆X)

]
(X−1 ◦X−1)

=
[
E(∆Y ◦∆Y )− 2E(∆Y ) ◦ E(Λ∆X) + E[(Λ∆X) ◦ (Λ∆X)]

]
(X−1 ◦X−1)

=
[
(σ2

C/C2)Y + (Λ ◦ Λ)E(∆X ◦∆X)
]
(X−1 ◦X−1)

=
σ2

C

C2

[
Y + (Λ ◦ Λ)X

]
(X−1 ◦X−1)

1.4 Previous synthesis methods

1.4.1 Synthesis of Static MITE Networks

The synthesis problem of POPL networks is the problem of finding suitable input and output

connectivity matrices for a given power matrix Λ. The previous synthesis procedures for

POPL networks are discussed in [12,19,17,18,21,22]. All of these concentrate on synthesizing

each output equation in 1.7 separately. Two network transformations that are important

in this regard are consolidation and completion.

11



1.4.1.1 Consolidation

Once a MITE network is found for each equation in a set of equations using the above

methods, consolidation is used to remove redundant MITEs. This is done by identifying

MITEs that have the same drain current and have identical input voltages connecting to

their gates.

1.4.1.2 Completion

Completion is a process of transforming a MITE network that is not balanced into a balanced

one. This is done in [12] by finding the MITE with the maximum fan–in and then adding

enough weights to other MITEs so that all of them have the same fan–in. The extra weights

are typically connected to one of the controlling voltages that are already present in the

MITE network.

A few points are to be noted in this regard:

1. The fan–in of the balanced MITE network arrived at after completion using the pro-

cedures in [12, 19] usually cannot be lesser than that of the MITE with the largest

fan–in in the unbalanced network. This will be improved upon by the generalized

completion theorem in Chapter 3.

2. According to the completion theorem in [19,22], the extra controlling voltage obtained

during the process of adding weights to the MITEs can be connected to any of the

controlling voltages already present in the unbalanced MITE network. It will be shown

in Chapter 2 that this can sometimes lead to multiple operating points.

If consolidation is not possible for all voltages, then the final network has copies of the

input currents flowing through different MITEs and then the procedure is not optimal with

respect to the number of MITEs. On the other hand, these methods can potentially reduce

the fan–in, and it follows from [19,12] that it can be reduced to the minimum possible value

of 2. However, no procedure has been suggested to minimize the number of MITEs once

the fan–in is fixed at some value.

A brief discussion of these synthesis methods now follows. The description is consider-

ably simpler if these methods are presented using the formulation of the synthesis problem

12



of POPL networks to be derived in Chapter 3. The reader is asked to refer to Section 3.3

in order to understand the discussion below.

As these methods are applicable without consolidation to the single–output case alone,

we can assume that the power matrix Λ is a 1× n row-vector. Hence, the translinear loop

matrix A = [ai] = [Λ − 1] is a 1 × (n + 1) row-vector. In Chapter 3, it is shown that the

solution networks we are searching for are described by the connectivity matrix Z satisfying

AZ = 0, which in this case is simply Z =
[
X
Y

]
. Writing Z in terms of its columns as

Z = [z1 z2 . . . zn], it follows that each column of Z needs to found amongst the solutions of

the linear diophantine equation Az = 0, where z ∈ Nn+1.

The synthesis strategies in [12] search for solutions for Az = 0 that have exactly two

nonzero entries. If z = [zi] and if zs and zt are the only nonzero components of z (s, t ∈ [1 :

n + 1]), then we have aszs + atzt = 0. Since z is a nonnegative vector, it follows that as

and at must necessarily have opposite signs. If we multiply A by a suitable integer to make

all of its elements integers, then zs = lcm(|as|, |at|)/|as| and zt = lcm(|as|, |at|)/|at| are the

two basic solutions of aszs + atzt = 0 with every other solution being an integer multiple of

this. Hence, we define ẑs,t ∈ Nn+1 as

[ẑs,t]j =





lcm(|as|, |at|)/|as| if j = s

lcm(|as|, |at|)/|at| if j = t

0 if j ∈ [1 : n + 1] \ {s, t}

(1.13)

Also, let N , {i ∈ [1 : n + 1] |Λi > 0} and D , {i ∈ [1 : n + 1] |Λi < 0}

1.4.1.3 Two-layer networks synthesis procedure

1. First construct Z = [z1 z2 . . . zn] with

zi =





ẑi,n+1 if i ∈ N

ẑi,ti if i ∈ D,

(1.14)

where ti is chosen so that ti ∈ N for every i ∈ D.

2. Let W = ‖∑n
i=1 zi‖∞, which is simply the maximum row sum matrix norm of a

matrix [28]. This is physically the fan–in of the MITE with the largest fan–in in the
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network. The MITE network is now completed so that the fan–in of the network is W .

Let k be the index of the controlling voltage to which the extra weights are connected

in each MITE. The final connectivity matrix Z̃ can be written as Z̃ = [z̃1 z̃2 . . . z̃n]

with

z̃i =





zi if i 6= k

W1n −
∑n

s=1 zs otherwise

(1.15)

1.4.1.4 Cascade networks

First, the inputs are renumbered such that the elements of N are less than those in D.

Within N and D themselves, the indices can be arranged randomly. Therefore, let N =

[1 : k] and D = [k + 1 : n], where k ≤ n.

1. Define z1 = ẑ1,n+1

2. i := 1. While i ≤ min(k, n− k), do:

• zi+k = ẑi+k,i

• If i + 1 ≤ k, zi+1 = ẑi+1,i+k

• i := i + 1

3. If 2k < n, then for all i such that k < i ≤ n− k, define zi+k = ẑi+k,1.

4. if 2k > n, then for all i such that n− k + 1 < i ≤ k, define zi = ẑi,n+1.

5. Let W = ‖∑n
i=1 zi‖∞. The MITE network is now completed so that the fan–in of

the network is W . Let s be the index of the controlling voltage to which the extra

weights are connected in each MITE. The final connectivity matrix Z̃ can be written

as Z̃ = [z̃1 z̃2 . . . z̃n] with

z̃i =





zi if i 6= s

W1n −
∑n

j=1 zj otherwise

(1.16)

The cascade network can be used to show the existence of a 2-MITE implementation for

any POPL equation with the assumption that any number of copies of input and output

14
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3 I ′

n−1 I ′
n

I ′
n+1

Figure 1.6. The cascade network implementing the equation
Qn′

k odd
I ′

k =
Qn′

k even
I ′

k.

currents can be used [29]. To show this, it is enough to prove that a single–output POPL

equation can be implemented using 2-MITEs as the other equations can be implemented

as separate 2-MITE networks using copies of input currents. By raising all the powers

to a common integer, it is easy to see that we need to implement
∏n+1

i=1 Iai
i = 1, where

∑
ai = 0 and the ai’s are integers. By expanding Iai

i as
∏ai

j=1 Ii, if ai > 0, and as
∏|ai|

j=1 I−1
i

if ai < 0, the equation can be reduced to the form
∏n′

k=1
k odd

I ′k =
∏n′

k=1
k even

I ′k which is the

standard translinear loop equation form. The circuit shown in Figure 1.6 implements this

equation for the case when an+1 = ±1. It should be noted that for other values of an+1,

current mirrors need to be used to ensure that the these currents match the output current.

1.4.2 Synthesis of Dynamic MITE Networks

Let the dynamical system to be implemented be given by

ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

(1.17)

where u(t) is the input to the system, x(t) is the state, and y(t) is the output of the

system. The previously existing synthesis procedures for dynamic systems using MITEs

[30,16,22,31,32,33] are discussed in brief below.

1.4.2.1 Exponential transformation

The variables x, u, and y are first scaled so that they can be written as the ratio of currents

Ix = [Ixi], Iu = [Iui], and Iy = [Iyi] to some unit current. We will still refer to the right-

hand side of the transformed system equations by f and g, even though the notation is

exact only for a linear system. To implement dynamical systems, the existing methods
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all make use of the exponential state-space transformation. Here the idea is to transform

the given system İx = f(Ix, Iu) by making a state variable change from Ixi to Vi through

Ixi = αi exp(βiVi), where αi and βi do not depend on time and αi > 0. It should be

noted that the variable Ixi is always constrained to be positive because of the nature of the

transformation. If it is otherwise, assuming that Ixi(t) is bounded below by −Ia, we can

apply the same exponential-state transformation to Ixi + Ia. If Ixi is not bounded below

or if the lower bound −Ia is not known, then one can split Ixi into two positive signals I+
xi

and I−xi satisfying some differential constraint such as the geometric constraint [31, 32, 34]

so that the number of state variables and equations is doubled. In other words, the two

equations corresponding to the ith equation İxi = fi(Ix, Iu) are found by solving

d

dt
(I+

xi − I−xi) = fi(Ix, Iu)

d

dt
(I+

xiI
−
xi) = I2

b − I+
xiI

−
xi

(1.18)

for İ+
xi and İ−xi, where Ib is a time-independent positive current. Bidirectional input signals

Iui(t) can again be appropriately shifted if it is bounded with a known bound. Otherwise,

an algebraic geometric constraint can be used to split the input signal Iui(t) into two input

signals I+
ui(t) and I−ui(t) [3]:

I+
ui(t)− I−ui(t) = Iui(t)

I+
ui(t)I

−
ui(t) = I2

b

(1.19)

It should be noted that Equation (1.19) is implementable using MITEs, as will be shown

in Chapter 6. From the discussion above, it is clear that it can be assumed, without loss of

generality, that Ix(t) and Iu(t) are always positive. Hence, by noting that İxi = βiIxiV̇i, we

get the set of equations βiV̇i = fi(Ix, Iu)/Ixi.

1.4.2.2 MITE implementation

For some appropriately chosen capacitor value Ci, we get CiV̇i = (Ci/βi)fi(Ix, Iu)/Ixi. The

signal CiV̇i represents the current through a capacitor of value Ci. If fi is a polynomial

function of Ix and Iu, then we can always find functions f+
i (Ix, Iu) and f−

i (Ix, Iu) such

that they satisfy fi = f+
i − f−

i and are always positive for any Ix and Iu – this can be

done by simply grouping the positive and negative monomials. The same is true when
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fi(Ix, Iu) = p(Ix, Iu)/q(Ix, Iu), where p and q are polynomials and q is positive for the

values of Ix and Iu that we are interested in. Two cases arise, depending upon whether βi

is positive or negative:

Case 1: βi > 0

The current equation to be implemented is CiV̇i + (Ci/βi)f
−
i = (Ci/βi)f

+
i . The synthesis

of this equation is shown in Figure 1.7(a). The noninverting output structure obeys the

relation

Ixi = Is exp
(
κ(wiVi + w′

iVref)/UT

)
, (1.20)

where the weight w′
i attached to the time-independent voltage Vref is chosen so that the

MITE network is balanced. Clearly, αi = Is exp(κw′
iVref/UT) and βi = κwi/UT.

Case 2: βi < 0

The current equation to be implemented is CiV̇i +(Ci/|βi|)f+
i = (Ci/|βi|)f−

i . The synthesis

of this equation is shown in Figure 1.7(b). The inverting output structure is required

to generate the negative βi. To find βi and αi for this structure, we have the following

equations:

Ixi = Is exp

(
κ

UT
(wiVint + w′

iVref)

)

Ib = Is exp

(
κ

UT
(wi1Vint + w′

i1Vi)

) (1.21)

Eliminating Vint, we get

Ixi = I
wi/wi1

b I1−wi/wi1
s exp

(
κ

UT
(−wiw

′
i1

wi1
Vi + w′

iVref)

)
, (1.22)

where the weights are as shown in Figure 1.7(b). The assumption that the MITE network

is balanced leads to wi + w′
i = wi1 + w′

i1. Clearly, αi = I
wi/wi1

b I
1−wi/wi1
s exp (κw′

iVref/UT)

and βi = −κwiw
′
i1/(wi1UT). In particular, if wi = wi1, it follows that w′

i = w′
i1, αi =

Ib exp (κw′
iVref/UT), βi = −κw′

i/UT, and

Ixi = Ib exp

(
κw′

i

UT
(−Vi + Vref)

)
. (1.23)

It should be noted that the static translinear block in Figure 1.7 can use both V = [Vj ]

and Ix = [Ixj ] to generate the desired output currents. Further, the output currents can

be generated from a single connected static MITE block and not necessarily through two
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Vref
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i

w′

i

wi1
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i1

Ix

Ix

Ix

Ix

Ib

V

V

V

V

Ci

Ci

(Ci/βi)f
+
i (Ix, Iu)/Ixi

(Ci/βi)f
+
i (Ix, Iu)/Ixi

(Ci/|βi|)f+
i (Ix, Iu)/Ixi

(Ci/|βi|)f+
i (Ix, Iu)/Ixi

Figure 1.7. The MITE implementation of the ith equation in the set of equations İx = f(Ix, Iu).
The state variable Ixi is transformed into Vi through Ixi = αi exp(βiVi). The noninverting output
structure for βi > 0 is shown in (a) and the inverting output structure for βi < 0 is shown in
(b). The static MITE networks take as inputs the vector variables Ix and V and produces
outputs (Ci/βi)f

+
i /Ixi and (Ci/βi)f

−

i /Ixi.
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disconnected blocks as shown in Figure 1.7. As an example, the synthesis of a MITE first-

order lowpass filter, given in [30], is described below. The equation to be implemented is

τ İy + βIy = αIx. (1.24)

If an inverting output structure is assumed with wi = wi1 = 1 and a fan–in of 2, it follows

that Iy = Ib exp (κ(−Vy + Vref)/UT). Hence, we get İy = −IyV̇yκ/UT. Thus , we need to

implement CV̇y = − (CUT/(τκ)) (αIx/Iy) + βCUT/(τκ). Defining Iτ1 = βCUT/(τκ) and

Iτ2 = αCUT/(τκ), it is clear that the current equation that needs to be implemented is

C
dVy

dt
+

Iτ2Ix

Iy
= Iτ1

A static MITE circuit is needed to implement

Ip =
Iτ2Ix

Iy
=

Iτ2

Ib

Ix

exp(κ(Vref − Vy)/UT
.

A simple set of deductions from this equation leads us to the standard solution. We can

choose Ib as any positive current we want, as long as it is time-independent. Hence, if Iτ2 is

a time-independent current, it follows that we can choose Iτ2 = Ib. Secondly, if we feed the

input current Ix to a diode-connected 2-MITE with Vx as the drain voltage and Vref as the

other input-gate voltage, then it implies that Ip is simply Is exp (κ(Vx + Vy)/UT), which is

the drain current of a MITE with gate voltages Vx and Vy. The final lowpass filter structure

is shown in Figure 1.8. Clearly, it obeys the equation

CUT

κ
İy + Iτ1Iy = Iτ2Ix, (1.25)

where Iτ2 is necessarily time-independent. Further, it should be noted that at no point did

we need to restrict Iτ1, or equivalently β, to be independent of time. The fact that the

current Iτ1 need not be constant for the equation to hold is important and will be used for

the development of a new synthesis procedure for dynamic systems in Chapter 6.
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Figure 1.8. The standard MITE first–order lowpass filter. The filter obeys the equation
(CUT)/κİy + Iτ1Iy = Iτ2Ix.
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CHAPTER 2

CONDITIONS ON MATRICES ASSOCIATED WITH MITE

CIRCUITS

The objective of this chapter is the derivation of certain conditions that will be im-

posed on different matrices associated with MITE networks for synthesis purposes. These

conditions follow from a consideration of the deviation in the transfer characteristic of the

practical MITE from the desired exponential behavior. These are divided into two cases,

namely those conditions that originate from the static non-ideal behavior of the practical

MITE and those that originate from dynamic non-ideal behavior of a practical MITE due

to the presence of parasitic capacitances. The ideal MITE expression is valid only in the

subthreshold saturation region. These networks typically have multiple feedback loops and

hence, if not synthesized properly, will have multiple operating points not predicted by the

ideal relationship. In particular, the output resistance of a MITE cannot be neglected even

if the output resistance is small or zero in the exponential region if it is significant in other

regions. Conditions on the topology of a general MITE network are presented that ensure

that the operating point, if it exists, is unique. Hence, we find that the operating point

predicted by the ideal MITE expression is the only one under these conditions. Besides the

static characteristics, parasitic capacitances or the floating-gate capacitances themselves

affect the stability of a static MITE circuit. In particular, for a POPL MITE network, con-

ditions on the input connectivity matrix have been derived so that the equilibrium point is

stable for all input currents.

2.1 Static Modeling of the Nonideal MITE

By definition, the ideal MITE, shown in Figure 2.1(a), is a n + 1-port element with the

constitutive equations:

Ii = 0 (i ∈ [1 : n])

In+1 = Is exp(
κ

UT
(w1V1 + w2V2 + · · ·+ wnVn)),

(2.1)

where κ is a dimensionless constant; Is and UT are scaling constants. A practical MITE

implementation using a floating-gate MOSFET approximates a ideal MITE reasonably only
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when the MOSFET is in the subthreshold saturation region. Using only the ideal expression

in Equation (2.1) for analysis has two disadvantages:

1. Circuits designed to have a unique operating point using the ideal model need not

behave so in practice.

2. Circuits designed to have a monotonic input-output relationship using the ideal model

need not behave so in practice.

The two criteria are related since the statement that there is an input-output relationship in

a MITE circuit itself implicitly assumes that there is a unique output, and hence a unique

operating point, for a given input. Also, sufficient conditions that imply the existence of a

unique operating point in a circuit generally assume monotonicity of at least some of the

blocks [35].

Hence, there is a need for a model of a MITE that covers all the regions where the

floating-gate MOSFET might operate. Also, since a MITE has implementations other than

the simple floating-gate one, our general model should model most of the these also. A

general model of the MITE in Figure 2.1(a) taking into account the behavior in different

regions of the MITE is the following, w ,
∑n

i=1 wi being the fan–in of the MITE:

Ii = 0 (i ∈ [1 : n])

In+1 = f(w1V1 + w2V2 + · · ·+ wnVn, Vn+1),

(2.2)

where the function f : (0, wVDD) × (0, VDD) 7→ (0,∞) is continuously differentiable and

satisfies

gm ,
∂f

∂x
(x, y) > 0 go ,

∂f

∂y
(x, y) ≥ 0 (2.3)

for all x ∈ (0, wVDD) and y ∈ (0, VDD). The function gm will be called as the transconduc-

tance of the MITE and go is clearly the output conductance of the MITE. These assumptions

naturally follow from MOSFET modeling, if the MITE is considered as a voltage divider

whose output is connected to the gate of a NFET. All the MITE circuits of interest here

have PFETs with their source and bulk connected to VDD, as shown in Figure 2.1(b). Such
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Figure 2.1. (a) Symbol for a n-input MITE. (b) Symbol of a PFET modeled by Equation (2.11).
The same symbol is used for a cascoded PFET.

PFETs will be modeled by

Ig = 0

Id = g(Vg, Vd),

(2.4)

where the function g : (0, VDD) × (0, VDD) 7→ (0,∞) is continuously differentiable and

satisfies

gm , −∂g

∂x
(x, y) > 0 go , −∂g

∂y
(x, y) ≥ 0 (2.5)

for all x, y ∈ (0, VDD). The functions gm and go are clearly the transconductance and the

output conductance of the PFET. Cascoded MITEs or PFETs have a similar characteristic

and will be represented by the same symbols.

2.2 Mathematical Preliminaries

The following theorem is got from well-known ideas in [36,37].

Theorem 2.2.1 Let U be a convex subset of Rn. Let f : U 7→ Rn be a C1 function

satisfying the following condition:

∀y, z ∈ U, det(K(y, z)) 6= 0

where [K(y, z)]ij ,

∫ 1

0

∂fi

∂xj
((1− α)y + αz)dα

or, equivalently K(y, z) =

∫ 1

0
Jf ((1− α)y + αz)dα

(2.6)
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Then f is injective i.e., one-one on U .

Proof If z,y ∈ U , then the line segment joining the two points is in U . Then, by the

Fundamental Theorem of Calculus,

fi(z)− fi(y) =

∫ 1

0

d

dα
(fi((1− α)y + αz))dα

=

∫ 1

0

n∑

j=1

(zj − yj)
∂fi

∂xj
((1− α)y + αz)dα

=
n∑

j=1

[K(y, z)]ij(zj − yj)

Hence, f(z)−f(y) = K(y, z)(z−y). Since K(y, z) is an invertible matrix by the hypothesis

of the theorem, f(z) = f(y) implies y = z. Therefore, f is injective on U . �

The theorem given below is proved by induction in [38].

Theorem 2.2.2 For each positive integer n, the multiaffine function

c0 + c1d1 + c2d2 + · · · cndn + c12d1d2 + · · · cn−1,ndn−1dn + · · ·+

ci1,i2,...,ikdi1di2 · · · dik + · · · c1,2,...,nd1d2d3 · · · dn (2.7)

is nonzero for all positive values of the variables d1, d2, . . . , dn if and only if at least one of

the coefficients ci1,i2,...,ik is nonzero and all the nonzero coefficients have the same sign.

2.2.0.3 Some Definitions [39]

A matrix M ∈Mn(R) is called a

1. P -matrix if all of its principal minors are positive.

2. P0-matrix if all of its principal minors are nonnegative.

3. P+
0 -matrix if all of its k-by-k principal minors are nonnegative with at least one

positive for each k.

4. D-stable matrix if DM has eigenvalues in the open right–half s-plane for all diagonal

matrices D ≥ 0.

The set of n × n real P -matrices, P0-matrices, P+
0 -matrices, and D-stable matrices will

be denoted by Pn(R), P0n(R), P0+
n (R), and Dn(R), respectively. If F ⊆ R, then Pn(F),
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P0n(F), P0+
n (F), and Dn(F) are defined to be Pn(R)∩Mn(F), P0n(R)∩Mn(F), P0+

n (R)∩

Mn(F), and Dn(R)∩Mn(F), respectively. When F is not specified, it will be taken to refer

to R.

2.3 POPL Networks

The general POPL network [12] is shown in Figure 1.4. It is clear that, since the output

MITEs do not load the input MITEs, the uniqueness of the operating point is determined

solely by the input side; i.e., by the input connectivity matrix X = [xij ] [12].

Before going into the analysis of this network using the general MITE model described

in Section 2.1, let us analyze the circuit assuming that the input currents are restricted so

that the MITEs in the input section of the POPL network are in the subthreshold region.

Let us further assume that these MITEs are floating-gate NFETs that are not cascoded. It

should be noted that since the drain voltage of each MITE is determined by the circuit itself

by feedback, there is always the possibility of the MITE being in the nonsaturation region,

unlike in the case of a normal MOSFET. From [12,11], the drain current of the MITE can

be written as

Id =
W

L
I0 exp

{
κ′Q

CTUT

}
exp

{
n∑

k=1

κ′Ck

CT

Vk

UT

}[
exp

{
Vd

VA

}(
1− exp

{
− Vd

UT

})]
(2.8)

where the constants are defined in the same way as in Equation (1.8) in Section 1.3. CT is

given by

CT ,
CoxCdep

Cox + Cdep
+ Cb +

n∑

k=1

Ck + Cfg-s + Cfg-d, (2.9)

Comparing Equation (2.8) with Equation (2.1), we find that the nonideal floating-gate

NFET MITE can be modeled as

Ii = 0 (i ∈ [1 : n])

In+1 = Is exp(
κ

UT
(w1V1 + w2V2 + · · ·+ wnVn))

[
exp

{
Vn+1

VA

}(
1− exp

{
−Vn+1

UT

})] (2.10)

The current sources shown are usually PFETs that are cascoded or otherwise with the gate

voltage fixed at some value in the range (0, VDD) and the source connected to VDD. For

the sake of simplicity, we will assume that the PFETs are not cascoded and that their
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constitutive equation in the subthreshold region is given by

Ig = 0

Id = Isp exp(
κp(VDD − Vg)

UT
)
[
exp(

VDD − Vd

VAp
){1− exp(−VDD − Vd

UT
)}
] (2.11)

If the gate voltage of the current source Ii is Vgi, then KCL gives

Is exp(
κ

UT
(

n∑

j=1

xijVi))
[
exp

{
Vi

VA

}(
1− exp

{
− Vi

UT

})]

= Isp exp(
κp(VDD − Vgi)

UT
)
[
exp(

VDD − Vi

VAp
){1− exp(−VDD − Vi

UT
)}
]

(2.12)

Taking logarithms on both sides and noting that Isp exp(
κp(VDD−Vgi)

UT
) is simply the ideal

value Ii of the ith current source, we get

n∑

j=1

xijVj + hi(Vi) = bi (i ∈ [1 : n]) (2.13)

where bi = UT/κ log(Ii/Is) and hi is defined by

hi(Vi) =
UT

κ
log

[
exp {Vi/VA}

(
1− exp {−Vi/UT}

)

exp {(VDD − Vi)/VAp}
(
1− exp {−(VDD − Vi)/UT}

)
]

(2.14)

By noting that each factor in the numerator of the function inside the logarithm is an

increasing function of Vi and that the factors of the denominator are decreasing functions

of Vi, we can conclude that hi is an strictly increasing function of Vi. Also, it should be

noted that hi is a function of only Vi. Equation (2.13) can be written in matrix form as

XV + H(V ) = B (2.15)

where the variable V = [Vi] is taken from the set (0, VDD)n and H(V ) = [hi(Vi)]. This

equation is popular in nonlinear circuit theory as evidenced by the number of papers dealing

with it in [35]. However, the case dealt with usually is the one where the solution is searched

on Rn, where Palais’ theorem [38] is used to prove the existence and uniqueness of the

solution. Clearly, this is not directly applicable here. It is shown in Corollary 1 of Theorem

3 in [40] that Equation (2.15) has an unique solution if X is a P0 matrix, if any solution

exists at all (Though we do not deal with it here, the existence of an operating point in this

case can be proved using the results of [41]). A simple proof, from [40], follows:
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Theorem 2.3.1 Let X ∈ Mn(R) be a P0 matrix. Let hi : (0, VDD) 7→ R be strictly mono-

tonically increasing for all i ∈ [1 : n]. Let H : (0, VDD)n 7→ Rn be defined by [H(V )]i = hi(Vi)

and let B be any vector in Rn. Then, the equation XV +H(V ) = B has at most one solution

in (0, VDD)n.

Proof If, on the contrary, two solutions V and V̂ exist, then it follows that X(V − V̂ ) +

H(V )−H(V̂ ) = 0. The ith element of H(V )−H(V̂ ) is hi(Vi)−hi(V̂i). Now, if Vi 6= V̂i, then

di = [hi(Vi) − hi(V̂i)]/(Vi − V̂i) is a positive real number and if Vi = V̂i, hi(Vi) − hi(V̂i) =

di(Vi − V̂i) holds for any positive di. Hence, it follows that H(V ) − H(V̂ ) = D(V − V̂ )

for some diagonal matrix D > 0, which implies that (X + D)(V − V̂ ). However, X + D is

nonsingular since X is a P0 matrix [40], which contradicts the assumption of two distinct

solutions. �

It should be noted that the form XV + H(V ) = B is arrived at only because of

the assumption that the drain current current expression of the ith MITE is of the form

exp{α∑j xijVj}fi(Vi). There is no reason that this should be the case, and hence the need

for the general models given in Equation (2.2) and Equation (2.4). We now prove that even

using these general models, for uniqueness of the operating point, it suffices that X be a P0

matrix and a nonsingular matrix.

In the general case, KCL gives us the following:

fi

( n∑

j=1

xijVj , Vi

)
− gi(Vgi, Vi) = 0 (i ∈ [1 : n]), (2.16)

where fi represents the drain current for the ith MITE and gi is the drain current of the ith

current source as discussed in Section 2.1. Since the circuit is to operate with the MITEs in

the region of near-exponential behavior and the current sources with large output resistance,

it is assumed that the Vgi are such that there is a set {Vi} satisfying the above equation in

the desired region. Now, to show that this solution is unique, it is enough to show that the

function F : (0, VDD)n 7→ Rn is injective, where

Fi(V1, V2, . . . , Vn) = fi

( n∑

j=1

xijVj , Vi

)
− gi(Vgi, Vi)

The Jacobian matrix of F is given by

∂Fi

∂Vj
= gmixij + goniδij + gopiδij ,
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where gmi and goni are the transconductance and the output conductance of the ith MITE,

respectively, as defined in Equation (2.3). The function gopi is the output conductance of

the PFET current source. It should be noted that the gms and the gos depend on the Vjs.

If goi , goni + gopi, then as defined in Section 2.2, for y, z ∈ (0, VDD)n,

[K(y, z)]ij =
[∫ 1

0
gmi((1− α)y + αz)dα

]
xij

+
[∫ 1

0
goi((1− α)y + αz)dα

]

= ĝmi(y, z)xij + ĝoi(y, z)

Since y, z ∈ (0, VDD)n and (0, VDD)n is a convex subset of Rn, gmi((1− α)y + αz) > 0 and

goi((1−α)y+αz) ≥ 0 for all α ∈ [0, 1]. Therefore, ĝmi(y, z) > 0 and ĝoi(y, z) ≥ 0. In other

words, the diagonal matrix Ĝm = diag(ĝm1, ĝm2, . . . , ĝmn) > 0 and is hence invertible and

the diagonal matrix Ĝo = diag(ĝo1, ĝo2, . . . , ĝon) ≥ 0. Clearly, the matrix K can be written

as K = ĜmX + Ĝo.

det(K) 6= 0⇔ det(Ĝm) det(X + Ĝ−1
m Ĝo) 6= 0

⇔ det(X + D) 6= 0,

where the diagonal matrix D = Ĝ−1
m Ĝo ≥ 0. Hence, a sufficient condition for the POPL

network of Figure 1.4 to have a unique operating point is that det(X + D) 6= 0 for all

diagonal matrices D ≥ 0. In order to characterize the matrices with the above property,

the following equivalence, which is given and proved as Theorem 5 in [42], is used:

Theorem 2.3.2 If M is a real square matrix, then det(M + D) 6= 0 for every diagonal

matrix D ≥ 0 if and only if M is a P0-matrix and det(M) 6= 0.

Hence, the following can be concluded:

Theorem 2.3.3 The operating point of the POPL network in Figure 1.4 is unique if the

input connectivity matrix X satisfies the following conditions:

1. det(X) 6= 0; i.e., X is invertible.

2. The principal minors of X are nonnegative; i.e., X is a P0-matrix.
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If the ideal MITE expression has been used instead of the generic model, the necessary

and sufficient condition for the operating point to be unique would have been just the first

condition; i.e., det(X) 6= 0. That this condition is not sufficient in practical circuits is shown

by the following example:

Example 2.3.1 Consider the POPL equations:

Io1 = I−1
i1 I2

i3

Io2 = I−1
i2 I2

i3

(2.17)

Two circuits that produce the above input-output equation according to the ideal MITE

expression are shown in Figure 2.2(a) and Figure 2.2(d). In the terminology of [12], the

matrix of powers is given by

Λ =



−1 0 2

0 −1 2




Ideally, both circuits are realizations of Equation (2.17) since they satisfy Λ = Y1X
−1
1 =

Y2X
−1
2 [12], where X1 and Y1 are the input and output connectivity matrices for the circuit in

Figure 2.2(a) and X2 and Y2 are the corresponding matrices for the circuit in Figure 2.2(d).

Specifically,

X1 =




2 1 0

1 2 0

1 1 1




Y1 =




0 1 2

1 0 2




and

X2 =




1 2 0

0 1 2

1 1 1




Y2 =




1 0 2

2 1 0




It is clear that all the principal minors of X1 are positive while the principal minor
∣∣ 1 2
1 1

∣∣

of X2 is clearly negative. Hence, X1 satisfies the conditions of Theorem 2.3.3 while X2

does not. Both X1 and X2 are invertible and hence, the ideal condition for uniqueness

(assuming the ideal MITE expression) is satisfied for both circuits. To determine via simu-

lations if the circuits shown have a unique operating point or not, the transfer characteristic
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Figure 2.2. Example comparing the uniqueness criterion in Theorem 2.3.3 and the ideal unique-
ness criterion. (a) Two circuits implementing Io1 = I−1

i1 I2
i3; Io2 = I−1

i2 I2
i3. (b) Circuits for finding

the open-loop transfer characteristics. (c) Plots of the open-loop circuits for Ii2 varied loga-
rithmically from 50nA to 500nA.

(TC) method, alternatively called the positive feedback structure (PFBS) method described

in [43,44,45,46], is used. The loop is broken at a convenient point and the open-loop transfer

characteristic is calculated. If it is known that the open-loop circuit has a unique operat-

ing point, then the points of intersection of the open-loop transfer characteristic with the

straight line of slope unity gives all the operating points of the closed-loop circuit. A way

to break the loop in the circuits is shown in Figure 2.2(b) and Figure 2.2(e). That the

open-loop circuits have a unique operating point (in the voltage range (0, VDD)) follows

from a simple application of the fact that strictly monotonic functions from an interval of

R into R are one-one.

A plot of the open-loop characteristics of the circuits for different values of Ii2 is shown

in Figure 2.2(e) and Figure 2.2(f). It is clear that the circuit in Figure 2.2(a) has a unique

operating point for all the chosen values of Ii2 while the other circuit has three operating

points for some values of the current Ii2. Hence, it is clear that the uniqueness condition

derived using the ideal MITE expression is not sufficient in practical circuits and that a

more general condition like the one in Theorem 2.3.3 is required.
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2.4 The General MITE Network

The implementation of any (linear or nonlinear) ordinary differential equation as a MITE

network will result in a set of equations either of the form Ici =
∑

j I ′j −
∑

j Ij or 0 =

∑
j I ′j −

∑
j Ij , where Ici is the current through a capacitance and Ij , I

′
j are (positive)

currents that are generated from MITEs and/or PFET current sources. The dc circuit of

this MITE network is obtained by setting Ici = 0 which results in the set of equations :

∑

j

Iij = (
∑

j

I ′ij − Ibi2) + Ibi1 i ∈ [1 : n] (2.18)

where the Ibs refer to the PFET current sources. The dc circuit of a general MITE network

is shown in Figure 2.3. It has m MITEs that are split into n blocks, each block representing

an equation in Equation (2.18). In the ith block, the PFETs Mi1 and Mi2 generate the bias

currents Ibi1 and Ibi2. The current mirror formed by the PFETs Mi and M ′
i provide the

current (
∑

j I ′ij − Ibi2) in Equation (2.18).

The network topology is characterized by two matrices A = [aij ] and X = [xij ] defined

by

aij =





1 if the drain of the MITE Qj is Vi.

−1 if the drain of the MITE Qj is connected

to Vi through a current mirror.

0 otherwise

xjk = The weight through which Vk is connected

to the MITE Qj .

(2.19)

The MITE Qj is said to be attached to the voltage Vi if aij 6= 0. By substituting the

expressions for the drain current in the MITEs and the PFETs as given in Section 2.1, it is

easy to see that the ith block contributes two equations:

m∑

j=1
aij=1

fj

(∑n

k=1
xjkVk, Vi

)
= g′i(Vgi, Vi) + gi1(Vgi1, Vi)

gi(Vgi, Vgi) + gi2(Vgi2, Vgi) =
m∑

j=1
aij=−1

fj

(∑n

k=1
xjkVk, Vgi

)
.
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Hence, defining

Fi(V1, Vg1, . . . , Vn, Vgn) =
m∑

j=1
aij=1

fj

(∑n

k=1
xjkVk, Vi

)

− g′i(Vgi, Vi)− gi1(Vgi1, Vi)

Fgi(V1, Vg1, . . . , Vn, Vgn) = gi(Vgi, Vgi) + gi2(Vgi2, Vgi)

−
m∑

j=1
aij=−1

fj

(∑n

k=1
xjkVk, Vgi

)
,

(2.20)

the function F : R2n 7→ R2n (with the indices ordered as 1, g1, 2, g2, . . . , n, gn) representing

the 2n-equations in the 2n-variables is obtained. The elements of Ri and Rgi in the Jacobian

matrix of F are given by

∂Fi

∂V
=





m∑
aij=1

gmjxjk if V = Vk, k 6= i

m∑
aij=1

gmjXji + goi if V = Vi

0 if V = Vgk, k 6= i

g′mgi if V = Vgi

(2.21)

∂Fgi

∂V
=





−
m∑

aij=−1
gmjxjk if V = Vk

0 if V = Vgk, k 6= i

−gmgi − gogi if V = Vgi,

(2.22)

where goi and gogi are the sum of the (nonnegative) output conductances of all the MITEs

and PFETs connected to the nodes Vi and Vgi, respectively, and hence are nonnegative. The

functions gmj , g′mgi, and gmgi are the transconductances of the MITE Qj , the PFET M ′
i , and

the PFET Mi, respectively, and are positive. Finding the K matrix, as defined in Theorem

2.2.1, for this function is equivalent to replacing each gm and each go in Equation (2.21)

and Equation (2.22) by the corresponding ĝm and ĝo, like in the POPL network case. It

should be noted that Cgi has only two nonzero entries, corresponding to Ri and Rgi. A

row transformation Ri 7→ Ri +
ĝ′mgi

ĝmgi+ĝogi
Rgi results in a matrix with only one nonzero entry

in Cgi, which means that only a single lower-order determinant needs to be evaluated.

Repeating the row transformation for each i, a n×n matrix K ′ is obtained whose elements
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are given by

[K ′]ik =

m∑

j=1

aijbjxjk + diδik,

where di = ĝoi ≥ 0 and bj > 0 is either ĝmj or ĝmj ĝ
′
mgi/(ĝmgi + ĝogi) depending on whether

aij is nonnegative or negative. Thus, K ′ = ABX + D, where B = diag(b1, b2, . . . , bm) and

D = diag(d1, d2, . . . , dm). Hence, the following theorem is proved:

Theorem 2.4.1 The operating point of the network in Figure 2.3 is unique if the matrices

A and X defined in Equation (2.19) are such that det(ABX + D) 6= 0 for all diagonal

matrices B > 0 and D ≥ 0.

2.5 Robust Criteria for Uniqueness of the Operating Point

The idea behind deriving the sufficiency conditions given in Theorems 2.3.3 and 2.4.1 is

that one need not worry about the nonideality of the MITE(s) and depend only on the

weights and the topology for deciding the uniqueness of the operating point. However, the

weights themselves have been assumed to not vary. The weights are usually decided by cer-

tain capacitance ratios in practice and hence they can be assumed to be “quite” accurate,

especially since they are usually integral multiples of an unit capacitance. However, one

must still make sure that “very small” differences do not change a network satisfying the

uniqueness conditions to one that does not. It should be noted that the uniqueness condi-

tions reduce to checking whether some matrices have a nonnegative or positive determinant.

It is clear from Bolzano’s theorem that since the determinant function is multiaffine and

hence a continuous function of its elements, a positive determinant implies that changing

the elements by a sufficiently small amount still preserves the sign. Hence, one needs to

check for robustness only for the case of matrices with a zero determinant. In this case, it

can be shown that if all the elements of the matrix are allowed to be perturbed, then the

determinant becomes negative no matter how small the perturbation. However, assuming

that all the elements can be perturbed neglects the fact that elements of these matrices

correspond to the weights connecting certain voltages in the network to MITEs. The errors

in the input capacitances (which determine the weight) connecting a voltage to a MITE are

the actual cause of this perturbation. In practice, only those voltages that have a nonzero
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weight connecting to a MITE are connected to the input capacitances. Though a zero weight

is shown in the MITE symbol, in practice it is not connected through an input capacitance

and hence the question of an error in this capacitance value does not arise. Hence, only the

nonzero elements of the matrices under consideration need be perturbed. In this respect,

the following theorem is proved:

Theorem 2.5.1 If M ∈ Mn(R) and det(M) = 0, then the determinant of M remains

nonnegative under a perturbation of its nonzero elements if and only if each term in the

standard determinant expansion of det(M) is zero, in which case the determinant of the

perturbed matrix is also zero.

The following lemma, proved in Appendix 2.A, is needed to prove Theorem 2.5.1:

Lemma 2.5.1 If f : Rn 7→ R is such that

1. f is multiaffine i.e., for each variable xi,

f(x1, . . . , xn) = g(x1, . . . , xi−1, xi+1, . . . , xn) + xih(x1, . . . , xi−1, xi+1, . . . , xn)

2. f(0) = 0

3. There exists a δ > 0 such that whenever x = (x1, . . . , xn) ∈ Rn is such that ‖x‖∞ ,

max(|x1|, . . . , |xn|) < δ, then f(x) ≥ 0,

then f = 0; i.e., f(x) = 0 for all x ∈ Rn. In particular, the coefficient of xi1xi2 · · ·xik

(k < n) in f is 0.

Proof A perturbation of the nonzero elements of M = [mij ] can be represented as

M ′(ε) = [mij(1 + εij)]; it should be noted that the zero elements are not perturbed in this

case. The determinant of M ′ is given by the standard determinant expansion

f(ε) , detM ′ =
∑

σ

signσ
n∏

i=1

{
miσ(i)(1 + εiσ(i)

}

=
∑

σ

signσ

{
n∏

i=1

miσ(i)

}{
n∏

i=1

(1 + εiσ(i))

}
,

(2.23)

where the sum runs over all n! permutations σ of [1 : n] and signσ is 1 or −1 according

to whether σ is an even or odd permutation, respectively. It is clear that f is multiaffine
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because the degree of εij is at most 1 which follows from the determinant of a matrix

being multiaffine with respect to the matrix elements. Also, f(0) = det M ′(0) = detM =

0. Further, if it is assumed that perturbing the nonzero elements of M by a sufficiently

small amount leaves its determinant nonnegative, then the assumption is essentially that

f(ε) = detM ′(ε) satisfies Condition (3) of Lemma 2.5.1. By Lemma 2.5.1, f = 0. By

Equation (2.23), the coefficient of
∏n

i=1 εiσ(i) is
∏n

i=1 miσ(i) which is 0 by the last conclusion

of Lemma 2.5.1. Hence, each term in the standard determinant expansion of det M , given

by
∏n

i=1 miσ(i), is 0 if detM is to remain nonnegative under an arbitrarily small perturbation

of the nonzero elements of M . The converse statement is obvious from Equation (2.23). �

Applying Theorem 2.5.1 to the criterion in Theorem 2.3.3, the following criterion is

arrived at for a POPL network to have a (robust) unique operating point:

Theorem 2.5.2 The operating point of a MITE POPL network is unique and remains

unique under a sufficiently small perturbation of the MITE input capacitances if the input

connectivity matrix X satisfies the following conditions:

1. det(X) 6= 0; i.e., X is invertible.

2. The principal minors of X are nonnegative; i.e., X is a P0-matrix.

3. If the principal minor corresponding to a submatrix X ′ is zero, then every term in

the standard determinant expansion of X ′ is zero.

A matrix satisfying conditions (2) and (3) of Theorem 2.5.2 will be called a “robust” P0

matrix, abbreviated to RP0-matrix. Specifically,

Definition 2.5.1 A matrix M ∈Mn(R) will be called a RP0-matrix if:

1. M is a P0-matrix.

2. If the principal minor corresponding to a submatrix M ′ is zero, then every term in

the standard determinant expansion of M ′ is zero.

The set of all n× n real RP0-matrices will be referred to as RP0n(R).
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Hence, the set of matrices that satisfy the robust Theorem 2.5.2 is nothing but GLn(R) ∩

RP0n(R), where GLn(R) is the set of nonsingular real n× n matrices.

Similarly, a “robust” version of P0+
n , RP0+

n can be defined by simply replacing P0 in

Definition 2.5.1 by P+
0 . It can be shown that RP0+

n = P0+
n ∩ RP0n. Since all principal

minors of a P -matrix are positive, a sufficiently small perturbation of any element, not

necessarily the nonzero ones only, still preserves the sign of the principal minors and hence

a “robust” version of Pn is Pn itself. The following inclusions clearly hold:

Pn ⊆ RP0+
n ⊂ RP0n ⊆ P0n Pn ⊆ RP0+

n ⊆ P0+
n ⊂ P0n (2.24)

Finally, a theorem about the relationship between Pn and RP0n is presented below:

Theorem 2.5.3 A n × n real matrix has a positive diagonal and is a RP0-matrix if and

only if it is a P -matrix. In other words, RP0n ∩ {X ∈Mn(R) | diag(X) > 0} = Pn.

Proof If X ∈ RP0n(R) ∩ {X ∈ Mn(R) | diag(X) > 0}, then all principal minors are

nonnegative. Let X ′ = [x′
ij ] be a k × k principal submatrix (k ≤ n) with zero determinant.

By definition, every term in the standard determinant expansions of X ′ must be zero. Since

diag(X) > 0, it follows that diag(X ′) > 0 as the diagonal elements are X ′ are also in the

diagonal of X. Hence, there is at least one nonzero term in the determinant expansion of

X ′, given by x′
11x

′
22 · · ·x′

kk. This contradicts the assumption that det(X ′) = 0. Hence, all

the principal minors of X are positive; i.e., X ∈ Pn.

Conversely, if X = [xij ] ∈ Pn, diag(X) > 0 since each diagonal element xii of X

is a principal minor (xii = X({i})). Also, Pn ⊂ RP0n from the inclusion relations in

Equation (2.24). Hence, Pn ⊆ RPn ∩ {X ∈Mn(R) | diag(X) > 0}. �

Theorem 2.5.3 tells us that if we assume that the input connectivity matrix X has a

positive diagonal, then the only way that a POPL network has a unique operating point

that remains insensitive to floating-gate capacitor mismatch is when X is a P -matrix. It

should be noted that being a P -matrix is stronger than being a RP0-matrix or a P0-matrix.

Further, requiring all the principal minors of X to be positive makes the unique operating

point property insensitive to a sufficiently small change in any element of X, irrespective of

whether that element is zero or nonzero.
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2.6 Stability of the Operating Point of POPL Networks

MITE implementations require a multiple-input voltage summer. In the absence of good

large resistors occupying small area in current technologies, the use of capacitors for this

voltage summation is inevitable. The use of these input capacitors increases the order of

the system and hence the stability of the system becomes an issue. As shown in Chapter 1,

an analysis of the stability of the POPL networks exists in literature; however, it is limited

by the fact that that it does not take into account the input capacitors as the whole input

capacitor network is replaced by parasitic capacitors from each node to ground. Also, the

capacitors are included only in the input MITEs; the output MITEs are not taken into

account for stability considerations in this analysis. In this section, we derive conditions for

stability that take these effects into account; but first, we mentions some known results on

D-stability.

There are no known finitely verifiable necessary and sufficient conditions for D-stability

for order greater than 3. Several sufficient conditions are given in [47]. The following

theorem, proved in [39], states an important necessary condition:

Theorem 2.6.1 A D-stable matrix is a P+
0 -matrix; i.e., Dn(R) ⊆ P0+

n (R)

From the definitions of different types of matrices in Section 2.2.0.3, the following inclusions

are easily observed:

Dn ⊆ P0+
n ⊂ P0n Pn ⊆ P0+

n ⊂ P0n (2.25)

Equality in the above inclusions is not valid in general except for D1,2 = P0+
1,2. For n = 3,

the following characterization of Dn exists [48] (slightly rephrased from the original version):

Lemma 2.6.1 Let A = [aij ] be a real 3 × 3 matrix. Let mi be the cofactor of aii for

i = 1, 2, 3. Let ∆ =
(∑3

i=1

√
(aimi)

)2
− det(A). Then, A is D-stable if and only if

1. A is a P+
0 matrix, which in this case reduces to a11, a22, a33, m1, m2, m3 being non-

negative and a11 + a22 + a33, m1 + m2 + m3, and det(A) being positive.

2. ∆ ≥ 0

3. If ∆ = 0, then for some i ∈ {1, 2, 3}, aiimi is zero with one of aii, mi being nonzero.
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A useful sufficient for D-stability is diagonal stability.

Definition 2.6.1 A matrix M ∈ Mn(R) is said to be diagonally stable if it has a positive

diagonal Lyapunov solution i.e., there exists a diagonal matrix P > 0 such that PM +MT P

is positive definite.

While there is no “finite characterization” for diagonal stability too, there is a numerical

procedure for doing so because to test if there is a positive diagonal matrix P > 0 such that

PM +MT P is positive definite is to check the feasibility of a linear matrix inequality (LMI)

and there are polynomial-time algorithms for solving this (for example, through MATLAB’s

LMI Control Toolbox). A MATLAB code for testing diagonal stability using this toolbox

is given in [49].

2.6.1 New stability criterion for POPL networks

The D-stability test was arrived at using the assumption that the only significant capaci-

tances of interest are capacitances from each node to ground. We will consider a different

model which has the D-stability criterion as a limiting case, but in general takes into account

both the physical floating-gate capacitances, variously called as the “input capacitances”

or the “control-gate capacitances”, as well as the parasitic capacitances in the floating-gate

MOSFET itself. For this, we will analyze a POPL network by linearizing the circuit around

some operating point, which is clearly equivalent to doing a small-signal ac analysis to find

the characteristic equation.

The small-signal model we are assuming is based upon the derivation of the model of a

subthreshold floating-gate MOSFET given in [12] and mentioned in Chapter 1. In case a

cascode transistor is present, the drain of the floating-gate MOSFET is largely fixed. Hence,

the error is small in assuming that any capacitance present between the floating-gate and

the drain is simply a capacitance between the floating-gate and ground. The model is shown

in Figure 2.4. Here, Cp is equal to (CoxCdep)/(Cox + Cdep) + Cb + Cfg-s + Cfg-d. The output

resistance of the MITE is not used in the small-signal model here mainly because the input

MITEs are diode-connected by a nonzero weight, i.e., xii > 0 is an usual assumption in

the synthesis. If X ∈ Mn(R) and Y ∈ Ml×n(R) are the input and output connectivity

matrices, the matrix Z =
[
X
Y

]
will be called the connectivity matrix. We define m = l+n. To
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Figure 2.4. The small-signal equivalent model used for analyzing the stability properties of a
POPL MITE network. vg is the small-signal floating-gate voltage. C is the unit capacitance
that the floating-gate capacitances are made of. Cp is the sum of the capacitances from the
floating-gate to bulk, source, and drain. As a first-order approximation, the other capacitances
in the network are neglected.

find the characteristic equation, we will determine the nodal admittance matrix [50] of the

circuit, which is a standard procedure. It should be noted that for stability considerations,

the controlled source in a output MITE does not enter the equations; hence we number the

nodes starting with the drains of the input MITEs (size n) followed by the floating-gate

voltages of the MITEs.

The nodal admittance matrix Y (s) is then found out to be

Y (s) =




sC diag(ZT1m) G− sCZT

−sCZ sC diag(Z1n) + sCpIm


 (2.26)

Here G = [gm 0n×l], where gm is the n×n diagonal matrix whose iith element is gmi, the gm

of the ith input MITE. Also, when v is a vector, diag(v) refers to the square matrix with

v as the diagonal. In order that the POPL network be stable, we want the characteristic

equation det(Y (s)) = 0 to have roots in the open left–half s–plane. Note that the presence

of the cutset of capacitors in the model leads to presence of m roots for the characteristic

equation at the origin. The remaining roots, however, need to be in the open left–half

s–plane.

Some simplifications can be made to the characteristic equation. Assuming that the

POPL network is balanced, it follows that diag(Z1n) = WIm, where W is the fan–in of the
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network. The determinant of a matrix can be represented as the product of the determinant

of a principal submatrix and the determinant of its Schur complement [28]. Hence, we have

det(Y (s)) = det(sC diag(Z1n) + sCpIm)

det
(
sC diag(ZT1m)− (G− sCZT )(sC diag(Z1n) + sCpIm)−1(−sCZ)

)

= smCm(W +
Cp

C
)m det

(
sC(diag(ZT1m)− ZT Z

W + Cp/C
) +

[gm 0n×l]

W + Cp/C

[
X

Y

])

= smCm(W +
Cp

C
)m det

(
sC(diag(ZT1m)− ε

W
ZT Z) +

gmX

W + Cp/C

)

= smCm(W +
Cp

C
)m det(X)/Wn det

(
sC(W diag(ZT1m)− εZT Z)X−1 + D

)

(2.27)

Here ε , W/(W + Cp/C) clearly lies between 0 and 1 , and D = gm

W+Cp/C is clearly a

diagonal matrix with a positive diagonal. We have therefore proved the following result:

Theorem 2.6.2 The POPL network described by the connectivity matrix Z is stable for all

values of input currents if and only if F (ε) = (W diag(ZT1m) − εZT Z)X−1 is a D-stable

matrix, where ε = W/(W + Cp/C) and Cp = (CoxCdep)/(Cox + Cdep) + Cb + Cfg−s + Cfg−d.

It can be observed that the condition described in Theorem 2.6.2 differs from the stability

condition in Theorem 1.3.2 in the following ways:

1. The output connectivity matrix enters the stability criterion in Theorem 2.6.2 through

Z but is absent in Theorem 1.3.2. Clearly, this is a result of neglecting the “loading”

of the output MITEs in Theorem 1.3.2.

2. The condition in Theorem 2.6.2 depends upon the value of the parasitic capacitance

from the floating gate to ground. As ε tends to 0, we find that the network is stable if

X−1 and consequently, X, is D-stable. Hence, the earlier condition in Theorem 1.3.2

is a limiting case of Theorem 2.6.2 as ε tends to zero or equivalently, as Cp −→∞.

As mentioned before, F is D-stable if it is diagonally stable. When the exact value of ε is

not known, it is desirable to verify the diagonal stability of F when ε belongs to the set

[ε1, ε2]. Here, the fact that F is linear in ε can be used to obtain the following sufficient

condition:
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Lemma 2.6.2 F (ε) is D-stable for all ε ∈ [ε1, ε2] if F (ε1) and F (ε2) are simultaneously

diagonally stable i.e., there is a diagonal matrix P > 0 such that both F (ε1)P + PF (ε1)
T

and F (ε2)P + PF (ε2)
T are positive definite.

It should be noted that verifying the above condition reduces to checking the feasibility of

a LMI.

2.7 Appendix 2.A

In this appendix, Lemma 2.5.1 is proved. A function f : R 7→ R is said to be affine if for

all x ∈ R, f(x) = a + bx (for some constants a, b ∈ R). A function f : Rn 7→ R is said to be

multiaffine if it is affine in each variable; i.e., for each variable xi,

f(x1, . . . , xn) = g(x1, . . . , xi−1, xi+1, . . . , xn) + xih(x1, . . . , xi−1, xi+1, . . . , xn)

A equivalent definition would be to define a multiaffine function as a polynomial in which

every variable has degree at most 1.

Claim 2.7.1 If f : Rn 7→ R is such that

1. f is multiaffine

2. f(0) = 0

3. There exists a δ > 0 such that whenever x = (x1, . . . , xn) ∈ Rn is such that ‖x‖∞ ,

max(|x1|, . . . , |xn|) < δ, then f(x) ≥ 0,

then f = 0. In particular, the coefficient of xi1xi2 · · ·xik (k ≤ n) in f is 0.

Proof The lemma is proved by induction on n. When n = 1, f(x1) = a + bx1 for some

a, b ∈ R. f(0) = 0 implies a = 0 and hence f(x1) = bx1. When |x1| < δ, f(x1) ≥ 0.

However, if b 6= 0, then by choosing x1 = − sign(b)δ/2, f(x1) = −|b|δ/2 < 0 is obtained,

which contradicts the requirement that f(x1) ≥ 0. Hence, b = 0 and the basis for induction

is proved.

By the multiaffinity of f , there exist functions g, h : Rn−1 7→ R such that

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xnh(x1, . . . , xn−1)
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It will be shown that g and h satisfy the constraints in the lemma so that by induction,

g = h = 0 and hence f = 0. First, consider g(x1, . . . , xn−1), which by the above expression

is given by f(x1, . . . , xn−1, 0). Clearly, g is multiaffine since f is. Also, g(0, . . . , 0) =

f(0, . . . , 0) = 0. Further, let δ > 0 be such that ‖x‖∞ < δ implies f(x) ≥ 0. If <

x1, . . . , xn−1 > is such that max(|x1|, . . . , |xn−1|) < δ, then it is clear that

max(|x1|, . . . , |xn−1|, 0) < δ, which shows that g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) ≥ 0. By

induction, g = 0. Hence,

f(x1, . . . , xn) = xnh(x1, . . . , xn−1) (2.28)

Clearly, h is multiaffine. Choose < x1, . . . , xn−1 > such that max(|x1|, . . . , |xn−1|) < δ.

Clearly, both xn = δ/2 and xn = −δ/2 satisfy max(|x1|, . . . , |xn−1|, |xn|) < δ and hence,

from Equation (2.28),

δ

2
h(x1, . . . , xn−1) ≥ 0

−δ

2
h(x1, . . . , xn−1) ≥ 0

Since δ > 0, the above implies that for all < x1, . . . , xn−1 > such that

max(|x1|, . . . , |xn−1|) < δ, h(x1, . . . , xn−1) = 0, which satisfies Condition (3) of the lemma

trivially. This also shows that h(0, . . . , 0) = 0, which is simply Condition (2). By induction,

h = 0. Hence, f = 0. The coefficient of xi1xi2 · · ·xik (k ≤ n) in f is 0 if any of the indices

i1, i2, . . . , ik are equal. This is because the degree of each variable is at most 1 in a mul-

tiaffine function. If the indices are distinct, then the coefficient is simply ∂kf
∂xi1

∂xi2
···∂xik

(0)

which is 0 since f is the zero function. �
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CHAPTER 3

SYNTHESIS OF MITE TRANSLINEAR LOOPS

3.1 Translinear Loops

It was observed in the section on translinear circuits that translinear loops form a important

part of the implementation of equations using translinear circuits. The implementation of

a system of translinear loop equations using MITE circuits is now discussed [17].

A system of translinear–loop equations (STLE) is defined as a relationship between

current variables I1, I2, . . . , Im of the form

Ia11
1 Ia12

2 · · · Ia1m
m = 1

Ia21
1 Ia22

2 · · · Ia2m
m = 1

...
...

Ial1
1 Ial2

2 · · · Ialm
m = 1

(3.1)

The matrix A = [aij ] represents the powers to which the currents are raised and will

be referred to as the translinear loop matrix. Since the powers of interest usually are

rational numbers, it follows that without loss of generality, A ∈ Ml,m(Z) can be assumed.

Dimensional consistency requires that

m∑

j=1

aij = 0 i ∈ [1 : l],

which can be written in a more compact manner as

A1m = 0 (3.2)

Taking logarithms on both sides of Equation (3.1),

A log(I) = 0 (3.3)

It is clear that for purposes of synthesis, it can be assumed that the rows of A are linearly

independent. This is just another way of stating that there are no redundant equations in

Equation (3.1). Hence, the following is assumed:

Convention 3.1.1 If A is a translinear loop matrix, then A is full-row-rank; i.e., rankA =

l.
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3.1.0.1 Input-Output Separation

Since rank(A) = l, l linearly independent columns of A, indexed by γ, can be chosen. If

β = [1 : l], then the matrix A(β, γ) is a nonsingular square matrix. Equation (3.3) can

thus be written as A(β, γ) log(I(γ))+A(β, γ′) log(I(γ′)) = 0, where by definition, the vector

I(γ′) represents the currents in I indexed by the indices not in γ. Thus,

log(I(γ)) = −A(β, γ)−1A(β, γ′) log(I(γ′)). (3.4)

This means that the n currents in I(γ′) can be taken to be inputs and the l currents in I(γ) to

be outputs to the MITE network. This formulation is nothing but the POPL formulation

of Chapter 1. It is also clear that the POPL relationship can be written as a STLE by

simply dividing each equation in Equation (1.6) by the corresponding output current. The

difference between the two formulations is that in a STLE, the input and output currents

are not explicitly separated. However, since all the criteria related to the uniqueness of

the operating point and the stablility of the POPL network explicitly require a separation

of the current signals into input and output currents, any synthesis taking into account

these criteria should also take this difference into account. For this reason, the following

convention will be followed with respect to system of translinear loops:

Convention 3.1.2 The currents in the STLE are numbered so that the currents meant to

be inputs to the MITE network have lower indices than the currents meant to be outputs.

In other words, the currents I1, I2, . . . , In are the inputs to the system and the currents

In+1, In+2, . . . , Im are the outputs, where n = m − l. For this assumption to be valid, the

matrix A(β, γ) must be nonsingular, where γ = [n + 1 : m] and β = [1 : l].

The purpose of this chapter is to describe the synthesis of MITE networks so that given

the matrix A, the currents through the MITEs satisfy the relation in Equation (3.3). The

resultant MITE network is optimal in a certain sense that will be described. This will be

followed by the synthesis subject to the constraints in Chapter 2. It is shown that the

synthesis of MITE networks is connected to the study of linear diophantine equations. This

connection is explored and the results pertaining to the field of diophantine equations is

used in the synthesis.
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Figure 3.1. The canonical MITE network used to implement STLE Equation (3.1). The voltages
V1, V2, . . . , Vn are generated by “diode” connecting them to the respective drains of the input
MITEs with currents I1, I2, . . . , In.

3.2 Reformulation of POPL Networks

Consider the MITE network in Figure. 3.1. The matrix Z = [zij ] ∈ Mm,n(N), called the

connectivity matrix, represents the nonnegative integer weight coefficients connecting the

voltages V = [Vi] ∈ Rn to the MITEs. By definition, log
{

Ii
Is

}
= κ

UT

∑n
j=1 zijVj , which can

be written as

ZV =
UT

κ
log

{
I

Is

}
(3.5)

In practice, the voltages V will be generated from the circuit itself by means of drain

connections. The circuit thus obtained is clearly no different from a POPL network. Here,

the Z matrix is simply a way to represent the input and output connectivity matrices of

POPL networks as a single matrix. For instance, if the currents are ordered so that the

first n are inputs and the next l = m − n currents are outputs, and if X and Y are the

input and output connectivity matrices, respectively, then the connectivity matrix of this

network is clearly Z =
[
X
Y

]
; i.e., the first n rows of Z form X and the next l rows form Y .

3.3 The Synthesis Problem

The synthesis problem is the reverse problem of the analysis presented in the last section;

the objective is to find a suitable connectivity matrix Z ∈Mm,n when the translinear loop

matrix A ∈Ml,m(Z) is given. In other words, it is desired that the set {Is exp(κU/UT)|U =

ZV for some V ∈ Rn}, representing the set-theoretic relation determined by Z, be the
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same as the set {I ∈ Rm | A log(I) = 0}, which represents the STLE. Consider the vector

U = [Ui] ∈ Rm defined by

Ui ,
UT

κ
log(

Ii

Is
) =

UT

κ
log(Ii)−

UT

κ
log(Is) (3.6)

Therefore, U = UT
κ log(I)− UT

κ log(Is)1m. Clearly, I satisfies A log(I) = 0 iff

AU =
UT

κ
A log(I)− UT

κ
log(Is)A1m = 0 (3.7)

The desired set equality can now be expressed as the requirement that {U|U = ZV for some V ∈

Rn} = {U ∈ Rm | AU = 0}. The former is the range, Im(Z), of Z and the latter is the

kernel, ker(A), of A. Hence, Im(Z) = ker(A) is desired. The following result gives an

equivalent characterization of this requirement.

Claim 3.3.1 Im(Z) = ker(A) if and only if AZ = 0 and rank(Z) = nullity(A).

Proof : If Im(Z) = ker(A), then for any V ∈ Rn, (AZ)V = A(ZV) = 0. Thus the linear

transformation AZ = 0, which means that the matrix AZ is 0. Clearly, Im(Z) = ker(A)

implies that the dimensions of these sets are also equal, which means rank(Z) = nullity(A).

Conversely, AZ = 0 means that an arbitrary element ZV of Im(Z) satisfies A(ZV) =

(AZ)(V) = 0; i.e., Im(Z) ⊆ ker(A). Since the dimensions of these two sets are equal,

Im(Z) cannot be a proper subspace of nullity(A); i.e., Im(Z) = ker(A). �

If Conventions 3.1.1 and 3.1.2 are taken into account, then the rank(Z) = nullity(A) = n

requirement can be shown to reduce to Z being of the form
[
X
Y

]
, where X ∈ Mn,n(N) is

nonsingular. Taking into account these constraints as well as the ones in [12, 51] described

in Chapter 2, the synthesis problem can be restated as

Given A ∈Ml,m(Z). If γ = {n + 1, n + 2, . . . , m} and β = [1 : l], A(β, γ) is nonsingular.

Problem Find a matrix Z ∈Mm,n(N) satisfying:

P1 AZ = 0.

P2 Z1n = w1m for some w ∈ N. This ensures that the MITE network is balanced [19,17].

P3 If α = [1 : n], then X = Z(α, α) is nonsingular. This implies that rank(Z) =

nullity(A).
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P4 X is a RP0 matrix; i.e., X ∈ RP0n(R). This ensures that the operating point of the

MITE network is unique and that it is not affected by perturbations in the floating–

gate capacitance values.

P5 X is D-stable; i.e., the eigenvalues of DX lie in the right–half s–plane for all diagonal

matrices D with a positive diagonal. This implies that the MITE network is stable in

the sense described in [12].

Conditions P4 and P5 assume that voltage Vi is connected to the drain of the MITE with

current Ii, for i ∈ [1 : n].

Some of the important parameters that need to be minimized are the number of MITEs

and the fan–in of each MITE. Increasing either of these parameters usually results in a

increase in chip area. For the same floating–gate capacitance value, if the fan–in is increased,

the maximum frequency of operation of the circuit decreases. The synthesis methods in

[12,18,19] are mainly for implementing each equation in the STLE separately. Once a MITE

network is found for each equation, consolidation is used to remove redundant MITEs based

on identifying voltages with the same value from different MITE networks. If consolidation

is not possible for all voltages, then the final network has copies of the input currents

flowing through different MITEs and hence the procedure is not optimal with respect to

the number of MITEs. On the other hand, these methods can potentially reduce the fan–in,

and it follows from [19, 12] that the fan–in can be reduced to the minimum possible value

of 2. However, there is no procedure to minimize the number of MITEs once the fan–in is

fixed at some value.

The optimal synthesis procedure presented here aims at synthesizing the STLEs as a

whole rather than synthesizing each equation separately. The synthesis procedure is optimal

in the following sense:

1. The minimum number of MITEs required for implementing Equation (3.1), viz. m, is

attained.

2. The minimum fan–in is obtained amongst all MITE networks with m MITEs imple-

menting the translinear–loop equations.
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3.4 Operating Point Uniqueness and Stability

Condition P4 and P3 ensure that the POPL network has a unique operating point. In

view of Theorem 2.5.3, if Z or X is also required to have a positive diagonal, then it is

equivalent to assuming that X is a P -matrix. Hence, for synthesis purposes, instead of P4,

the condition P4´below shall be used:

P4´ X is a P -matrix; i.e., all principal minors of X are positive.

While directly testing all the principal minors for being nonnegative is, in general, of order

O(n32n), an algorithm of order O(2n) for testing if a matrix is a P -matrix or not has been

proposed [52] which is used in the synthesis procedure. By Theorem 2.6.1, the condition P5

is actually a sufficient condition for P4 and P3 but does not imply P4 ;́ i.e., that X is a P -

matrix. However, no finitely verifiable necessary and sufficient condition exists for checking

D-stability [39], though there are useful sufficient conditions [47]. Hence, the synthesis

algorithm to be proposed is incomplete in the sense that it might result in MITE networks

for which we cannot test for stability, if it cannot be tested by the available conditions.

3.5 Solution Methodology

The solution(s) of the synthesis problem taking into account conditions P1, P2, and P3 is

first discussed.

If Z is written in terms of its columns; i.e., Z = [z1z2 . . . zn], then AZ = [Az1Az2 . . . Azn].

Then the problem (P1, P2, and P3) is equivalent to finding a set {zi}ni=1 with zi ∈ Nm so

that the following are satisfied:

R1 Azi = 0 i ∈ [1 : n]

R2 Σn
i=1zi = w1m

R3 The vectors {zi} are linearly independent. This is equivalent to the vectors {xi} being

linearly independent, where xi = zi([1 : n]).

Some observations based on the conditions specified so far now follow.
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Theorem 3.5.1 If Z = [z1 z2 · · · zn] satisfies P1, P3, P4/P4 ,́ and P5, where the elements

of Z are nonnegative real numbers, then so does Z ′ = [α1z1 α2z2 · · ·αnzn], where the αis

are positive real numbers.

Proof : zi ≥ 0 implies αizi ≥ 0. A(αizi) = αiAzi = 0; i.e., P1 is satisfied. Further, if

∑n
i=1 γi(αizi) = 0, then since the vectors {zi} are linearly independent, γiαi = 0, which

implies γi = 0. If D′ = diag(α1, α2, . . . , αn), then Z ′ = ZD′. Clearly, X ′ = XD′ where

X, X ′ are the corresponding input connectivity matrices. The principal submatrices of X ′

are given by the principal submatrices of X multiplied by a appropriate diagonal matrix.

Hence, the sign of a principal submatrix, indeed of any term in the determinant expansion is

preserved. This shows that P4/P4́ is satisfied. If the diagonal matrix D > 0, it is invertible

and hence XD has the same eigenvalues as DX. Thus, the eigenvalues of DXD′ are the

same as those of XD′D = XD′′, where the diagonal matrix D′′ = D′D > 0. By definition,

XD′ is also a D-stable matrix. Hence, P5 is satisfied. �

Interpretation: The theorem states that multiplying all the weights connected to a par-

ticular voltage Vi by some constant does not change the circuit behavior if the effects of

incompletion are neglected.

Lemma 3.5.1 If {z1, z2, . . . , zn} is linearly independent and xi = zi([1 : n]), the relation

1n =
∑n

i=1 γixi holds for some γi. Then the set {z′1, z′2, . . . , z′n} is linearly independent,

where

z′i = βi1m + zi i = 1, 2, . . . , n, (3.8)

if the βis satisfy 1+
∑

i βiγi 6= 0. In particular, if γi ≥ 0, then the βis can be any nonnegative

real number.

Proof : Let
∑n

i=1 αiz
′
i = 0. This implies that

∑n
1 x′

i = 0, where x′
i = z′i([1 : n]). Then

n∑

i=1

αix
′
i = 1n

n∑

i=1

αiβi +
n∑

i=1

αixi

=
n∑

i=1

(cγi + αi)xi , where c =
n∑

i=1

αiβi.

Since the vectors {zi} are linearly independent, it follows that the vectors {xi} are lin-

early independent, and hence αi = −cγi. Therefore, c = −c
∑n

i=1 γiβi, and hence c(1 +
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∑n
i=1 γiβi) = 0. By the conditions of the theorem, 1 + γiβi 6= 0, which implies that c = 0.

Hence, αi = −cγi = 0, which means that {z′i} is a linearly independent set. �

Interpretation: The theorem states that adding a constant weight to all the weights

connected to a voltage Vi does not change the circuit behavior apart from the effects of

incompletion, as before.

Theorem 3.5.2 (Completion Theorem) If z1, z2, . . . , zn−1 with zi ∈ Nm are such that

A1 Azi = 0 i = 1, 2, . . . , n− 1,

A2 The vectors {z1, z2, . . . , zn−1,1m} are linearly independent,

then z1, z2, . . . , zn satisfies R1, R2, and R3 with w = ‖∑n−1
i=1 zi‖∞ , max

∑n−1
i=1 zi, where

zn = w1m −
∑n−1

i=1 zi.

Proof : Let S = {z1, z2, . . . , zn}. zn ∈ Nm by the definition of w. Clearly, Azn =

wA1m −
∑n−1

i=1 Azi = 0, because of A1 and (3.2). Hence, S satisfies R1. R2 is valid by

the definition of zn. To check R3, let
∑n

i=1 αizi = 0. Using the definition of zn, this is

equivalent to
∑n−1

i=1 (αi−αn)zi+αnw1m = 0. By A2, it follows that αnw = 0 and αi−αn = 0

for i ∈ [1 : n − 1]. We can conclude that w 6= 0; for otherwise, all the zi are zero, which

contradicts A2. It is clear that αn = 0, which implies αi = 0. Hence, R3 is also satisfied by

S. �

Hence, the problem of satisfying R1, R2, and R3 reduces to the problem of finding

z1, z2, . . . zn−1 satisfying A1 and A2. On the other hand, if n linearly independent vectors

are already obtained, then the task of choosing n − 1 vectors satisfying the conditions of

the Completion Theorem is simplified by the following Corollary:

Corollary 3.5.1 Let the set {z1, z2, . . . , zn} with zi ∈ Nm satisfy R1 and R3. Let xi =

zi([1 : n]). Since the set {xi}ni=1 forms a basis for Rn, there exist unique numbers γi so

that 1n =
∑n

i=1 γixi. If γk 6= 0, then {z1, . . . , zk−1, zk+1, . . . , zn} satisfies A1 and A2.

The vector γ = [γi] can be obtained as X−11n, where X is the input connectivity matrix

corresponding to Z = [z1 z2 . . . zn].

Proof : Let γk 6= 0. A1 is valid by R1, so only A2 need be shown. Let
∑n

i6=k αizi+αk1m =

0. This implies
∑n

i6=k(αi + αkγi)zi + αkγkzk = 0. By R3, αkγk = 0 and αi + αkγi = 0 for
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i ∈ [1 : n], i 6= k. Since γk 6= 0, it follows that αk = 0 and hence αi = 0, which shows that

A2 is satisfied. �

Interpretation: This theorem is to be used for cases when the circuit topology obtained

satisfies all the conditions except R2. Such networks in which the number of inputs to

each MITE is not the same for all MITEs are called incomplete networks. The completion

procedure that applies directly to the circuit itself is as follows:

1. Take initial i = 1.

2. For each MITE, remove all connections to Vi.

3. Sum all the remaining weights connected to each MITE. Find the maximum of all

such sums and call it wi.

4. Repeat steps 2 and 3 for each integer i from 1 to n.

5. Choose an index, say k, so that wk is the least of all the wis. This index k should

satisfy the hypothesis of the theorem, namely γk 6= 0.

6. Removing all the previous connections to Vk, reconnect Vk back to each MITE, the

corresponding new weight to each MITE being: wk−(sum of all other weights to the

MITE).

The network is complete now, with the number of inputs to each MITE being wk. The

difference between this theorem and the existing completion theorem [22] is that in the

latter the requirement is that w1m = ‖∑n
j=1 zj‖∞. Since the zjs are nonnegative vectors,

the completion theorem given here gives a smaller, or at most the same, number of inputs

to each MITE.

Using the above theorems, a very simple synthesis procedure can be given [53]. This

does not result, in general, in minimal fan–in networks, which is dealt with in Section

3.9. However, it has the advantage that while the minimal fan–in network suffers from the

unavailability of effective D-stability tests, the simple algorithm results in a network that

is D-stable.
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3.6 Simple Synthesis Procedure

The procedure described in this section is applicable to only those STLEs that are in POPL

form; i.e.,

In+p =
n∏

q=1

I
Λpq
q p = 1, 2, . . . , l, (3.9)

where the power matrix Λpq is given by the Λ = Y X−1. In general, Λ ∈ Ml,n(Q) and is

related to the corresponding translinear loop matrix A by the following

A = [Λ − Il] (3.10)

Since A1m = 0, it follows that Λ1n = 1l. Conversely, for synthesis, the given power matrix

Λ must have rational elements and must satisfy Λ1n = 1l.

Though the following synthesis procedure is applicable to any general power matrix, for

illustrative purposes, the function below is synthesized:

I4 = I1I
1/2
2 I

−1/2
3

I5 = I2
1I2I−2

3

(3.11)

Clearly,

Λ =




1 1/2 −1/2

2 1 −2




In general, the POPL function is given as the n× l power matrix Λ. First, m = n+ l MITEs

are drawn, the first n being called input MITEs and the next l being called the output

MITEs. The drain voltage of the ith input MITE is called Vi. The connectivity matrices

are then obtained through the following steps:

1. Diode connect each input MITE. In other words, each Vi is connected to the corre-

sponding input MITE i.e., the ith MITE, through a unit weight. Connect each Vj to

the (n + i)th MITE through a weight Λij . This is equivalent to taking

Z̃ =




In

Λ


 z̃i =




ei

Λei




where ei is the n×1 unit column vector with 0 everywhere except at the ith row. The

MITE network for the example at this stage is shown in Figure. 3.2(a). Note that a

zero weight represents no connection.
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2. If any of the weights connected to the voltage Vj are negative, add a constant weight

to each of the weights connected to Vj so that the weights are nonnegative. Repeat

this for all the voltages. In effect, a new set of column vectors given by

zi = βi1m +




ei

Λei


 i ∈ [1 : n]

is defined where βi = max(0,−min({Λki|k = 1, 2, . . . l)}). In the example, it is

clear that 2 should be added to all the weights connected to V3 to make the weights

nonnegative, which gives the MITE network in Figure. 3.2(b).

3. If the weights connected to the voltage Vj are not integers, multiply all the weights

connected to a voltage Vj so that the weights become so. In terms of column vectors,

if zi has non-integer values as its components, multiply it by a suitably chosen αi.

Typically, αi is the least common multiple of all denominators of the ith column of Λ

i. e., Λei. The new vectors are

z′i = αizi = βiαi1m +




αiei

αiΛei


 i ∈ [1 : n]

In this example, α1 = 1;α2 = 2;α3 = 2 so that the resultant MITE network is as in

Figure. 3.2(c).

4. If the network is incomplete, use the completion theorem to get a complete network.

Hence, the final choice of vectors is given by

z′′i =





βiαi1m +




αiei

αiΛei


 i 6= k

(w −∑n
j 6=k βjαj)1m −

∑n
j 6=k




αj ej

αj Λej


 i = k

(3.12)

In our example, applying the theorem, the smallest w is achieved for k = 3, for which

w = 4. Our final MITE network in Figure. 3.2(d) has total number of weights to each

MITE equal to 4.
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Figure 3.2. Synthesis of the MITE network implementing I4 = I1I
1/2
2 I

−1/2
3 ; I5 = I2

1I2I
−2
3 de-

scribed in steps 1−4. The MITE network in (a) is obtained by assuming the input connectivity
matrix to be the identity and the output connectivity matrix to be Λ. The weights in (a) are
rendered nonnegative by adding a weight 2 to all weights connected to V3, which results in
the network in (b). The nonnegative weights in (b) are converted into nonnegative integers
by multiplying all weights connected to V2 and V3 by 2, which results in (c). The final network

in (d) is obtained by using Theorem 3.5.2 i.e., the completion theorem.
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3.6.0.2 Justification

The vectors ei are linearly independent, and hence the vectors z̃i =
[

ei
Λei

]
are linearly

independent. Further, as 1n =
∑n

i=1 ei, and Λ1n = 1l, 1m =
∑n

i=1 z̃i and hence the

conditions of Lemma 3.5.1 are satisfied with γi = 1 > 0. Hence, the choice of zi in step

2 satisfies R3. Further, βi in step 2 is chosen so that zi are nonnegative. In step 3, the

multiplication by αi is justified by Theorem 3.5.1 and the choice of αi makes sure that

zi ∈ Nm. Theorem 3.5.1 is now applicable because for any choice of k in step 4,

(
n∑

i=1

βi + 1)1m =
n∑

i=1

1

αi
z′i

∴ γi =
1

αi

( 1∑
i βi + 1

)
6= 0, i ∈ [1 : n]

Hence, k can be chosen to be any integer between 1 and n.

3.6.0.3 Stability

For proving the D-stability of X, the following theorem is needed:

Theorem 3.6.1 Given that τi > 0, ηi, ξi ≥ 0, all the zeros of the polynomial g(λ) have

negative real parts where

g(λ) =
n∏

j=1

(λτj + 1) +
n∑

i=1
i6=k

{
(λτiηi + ξi)

n∏

j=1
j 6=k,i

(λτj + 1)
}

Proof : The theorem is proved for the case when the τis are distinct and when ηi 6= ξi;

the remaining cases can be easily shown to reduce to the this case. It is clear that for this

case λ = −1/τi is not a root of g(λ) = 0 and hence the roots of g(λ) = 0 coincide with those

of g(λ)/
∏

j 6=k(λτj + 1) = 0. If σ = <e(λ), then

<e
( g(λ)∏

j 6=k(λτj + 1)

)
= στk + 1 +

∑

i6=k

|λτi|2ηi + στi(ξi + ηi) + ξi

|λτi + 1|2

Therefore, if σ ≥ 0, <e(g(λ)/
∏

j 6=k(λτj + 1)) > 0. Hence, if σ ≥ 0, g(λ) 6= 0. �

Theorem 3.6.2 The input connectivity matrix X of the MITE network obtained by the

synthesis procedure described in steps 1-4 is D-stable for any choice of k in step 4.

Proof : Let X be the input connectivity matrix with column vectors x′′
i = z′′i ([1 : n])

as given in Equation 3.12 and T be the diagonal matrix with diagonal elements τi. By
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properties of determinants,

det(λT + X) = (λτk + W )
n∏

i6=k

(λτi + αi) +
n∑

i6=k

{
αiβiλ(τk − τi)

n∏

j 6=k,i

(λτj + αj)
}

= γ
[ n∏

j=1

(λτ ′
j + 1) +

n∑

i6=k

{
(λτ ′

iηi + ξi)
n∏

j 6=k,i

(λτ ′
j + 1)

}]

where γ = (W −∑i6=k αiβi)
∏n

j 6=k αj

τ ′
i =





τi/αi i 6= k

τk/(W −∑i6=k αiβi) i = k

ηi = βiτ
′
k/τ ′

i ; ξi = αiβi/(W −∑n
j 6=k αjβj). Given that by construction, W −∑i6=k αiβi ≥

αj ≥ 1, the last equation satisfies the required conditions in Theorem 3.6.1. Hence, by

Theorem 3.6.1, the characteristic polynomial of −T−1X has only roots with negative real

parts. �

Since the objective is to minimize the fan–in w, it seems intuitively obvious that it

suffices to “minimize” the zi in some sense. This notion is made precise in the following.

3.7 Linear Diophantine Equations

Let us consider the linear Diophantine equation

Given A ∈Ml,m(N)

Problem Find S = {z ∈ Nm|Az = 0}

There exists a finite subset H of the solution set S, called the Hilbert basis or the set of

minimal solutions of the diophantine equation, such that every element of S can be written

as a nonnegative integral combination of the elements of H. The elements of H are minimal

in the sense that if u ∈ H, then there is no other v ∈ S, v 6= 0 such that u� v, where by

definition, for some m × 1 vectors a = [ai] and b = [bi], a � b means that ai ≥ bi for all

indices i with strict inequality for at least one index.

Various algorithms exist for finding the set of minimal solutions [54]. The algorithm used

here is the so-called ABCD algorithm [55, 56]. A simplified description of the algorithm is

given here.
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In the case of a single equation Ax =
∑m

i=1 aixi = 0, the search for minimal solutions

can be done using the algorithm below, due to Fortenbacher: start with the standard basis

for Nm, and if at some stage x = [xi] ∈ Nm is not a solution,

if
∑m

i=1 aixi < 0 and aj > 0, then increment xj by 1.

if
∑m

i=1 aixi > 0 and aj < 0, then increment xj by 1.

This can be written as

C1 If Ax.Aej < 0, then increment xj by 1.

If after incrementing, x is greater than ( i.e., �) any previous solution, then it is removed.

Of course, if Ax = 0, it is added to the minimal solution set. The ABCD algorithm extends

the previous algorithm to systems of linear equations by applying the same restriction C1

for the case when A is a matrix, with Ax.Aej interpreted as a scalar product of Ax and Aej .

It is shown that the process stops after a finite number of steps and that all the minimal

solutions, and only the minimal solutions are found. The actual algorithm to be used here

is a more efficient refinement of the above idea [55,56].

3.8 Existence and Construction of Solution

The following theorem shows that minimal fan–in POPL MITE networks can be constructed

using the vectors in the minimal solution set H.

Theorem 3.8.1 (Construction Theorem)

1. There exist vectors z1, z2, . . . , zn−1 with zi ∈ H satisfying A1 and A2 given in Theorem

3.5.2.

2. The minimum possible fan–in is also obtained as wmin = min{‖∑n−1
i=1 zi‖∞| zi ∈ H};

i.e., the fan–in can be minimized by appropriately choosing elements of H, which is a

finite set compared to the solution set S = {z ∈ Nm|Az = 0}, which is infinite.

Proof of 1: The proof proceeds in two steps. First, it is proved that z1, z2, . . . , zn−1 can be

chosen from Nm. Next, it is shown that a solution exists in H.
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By Convention 3.1.1, rank(A) = l, hence nullity(A) = m− l = n. Since A ∈Ml,m(Q), it

can be considered as a linear transformation from Qm onto Ql. Hence, {z ∈ Qm| Az = 0},

which is the corresponding kernel of this linear transformation, has dimension n. Since

A1m = 0, a basis for {z ∈ Qm| Az = 0} can be constructed by suitably appending n − 1

more vectors z′1, z
′
2, . . . , z

′
n−1. Hence, n linearly independent vectors z′1, z

′
2, . . . , z

′
n−1,1m

from Qm satisfying Az = 0 are obtained. It is clear that by multiplying all the z′is by

the least common multipliers of their elements, it can be assumed that z′i ∈ Zm. Let −ci

be the most negative integer amongst the components of z′i. The set {z′1 + c11m, z′2 +

c21m, . . . , z′n−1 + cn−11m,1m} is clearly a subset of Nm and can be easily shown to be

linearly independent. Since A(z′i + ci1m) = Az′i + ciA1m = 0, it has been shown that

{zi}n−1
i=1 ⊂ Nm satisfying A1 and A2 can be chosen.

By the definition of H, each zi constructed above can be written as a nonnegative linear

combination of elements v1,v2, . . .vk of H. Hence, zi =
∑k

j=1 αijvj , where αij ∈ N. Let

xi = zi([1 : n]) and ui = vi([1 : n]). By R3, det[x1 x2 · · ·xn−1 1n] 6= 0, because of the

linear independence of z1, . . . , zn−1. Since the determinant is a linear function of each of the

column vectors, det[x1x2 · · ·xn−11n] can be written as a linear combination of determinants

of the form det[ui1 ui2 · · · uin−1 1n], where i1, i2, . . . , in−1 are integers between 1 and k. All

these determinants cannot be zero, else det[x1x2 · · ·xn−11n] = 0. Hence, there exist vectors

vi1 ,vi2 , . . . ,vin−1 in H such that they satisfy A1 and A2. This proves part 1.

Proof of 2: Let {z1, z2, . . . , zn−1} ⊂ Nm satisfying A1 and A2 have the minimum possible

fan–in; i.e., ‖∑n−1
i=1 zi‖∞ = wmin; such an element exists because of the well-ordering princi-

ple. If {zi}n−1
i=1 is not a subset of H, then since A1 is satisfied, each zi =

∑k
j=1 αijvj , where

αij ∈ N. Proceeding as in the previous part, it can be shown that for some i1, i2, . . . , in−1,

the vectors vi1 ,vi2 , . . . ,vin−1 satisfy A1 and A2. However, since vij is part of the nonneg-

ative linear expansion of zj , it must be true that αjij > 0. Hence, zj � vij , which implies

that
∑n−1

j=1 zj �
∑n−1

j=1 vij . Since, each of the vectors involved are nonnegative, it is clear

that wmin ≥ ‖
∑n−1

j=1 vij‖∞. By the definition of wmin, ‖
∑n−1

j=1 vij‖∞ = wmin. �

The above theorem provides a method to generate MITE networks with minimum fan–in.
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3.9 Optimal Synthesis Algorithm

Given A ∈Ml,m(Z). A(β, γ) is nonsingular.

Initalize the fan–in value w by using the fan–in obtained from the algorithm in [53]. Let

the set of minimal connectivity matrices V := ∅, initially.

Step 1 Find H, the finite set of minimal solutions of Az = 0 using the ABCD algorithm

[55,56].

Step 2 Choose S′ := {z1, z2, . . . , zn−1} ⊂ H.

Step 3 Find the fan–in w′ := ‖∑n−1
i=1 zi‖∞. If w′ > w, go to Step 2.

Step 4 Check if S′ satisfies A2. If no, go to Step 2 else use Theorem 3.5.2 to find S := {zi}ni=1

satisfying R1, R2 and R3.

Step 5 Check if a permutation σ of [1 : n] exists such that the matrix Z := [zσ(1)zσ(2) · · · zσ(n)]

satisfies P4́ . If not, go to Step 2. If yes, let B be the set of such Z matrices satisfying

P4 .́

Step 6 If w′ = w, then V := V⋃B. If w′ < w, then V := B.

Step 7 If all possibilities of S′ in Step 2 are not exhausted, repeat the sequence from Step 2.

Step 8 Check if X = Z([1 : n], [1 : n]) satisfies the sufficiency and necessary conditions for

D-stability [47,39] for all Z ∈ V. If X is shown to be not D-stable, V := V \ {Z}.

3.10 Example

Let a MITE implementation be required for the STLE I1I
−2
2 I2

3I−1
6 = 1; I1I

−2
2 I3I5I

−1
7 = 1;

I1I
−2
2 I2

4I−1
8 = 1, which is required in the construction of a rms-to-dc converter [18]. Here

A =




1 −2 2 0 0 −1 0 0

1 −2 1 0 1 0 −1 0

1 −2 0 2 0 0 0 −1



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When the synthesis algorithm is used, the corresponding minimal solutions set H, written

as a matrix, and the corresponding MITE network connectivity matrix Z are

H =




2 0 0 0 0 1 1 0

1 1 1 0 0 0 1 0

0 1 2 1 0 0 1 0

0 1 1 0 0 0 1 1

0 1 0 0 1 0 0 0

0 0 2 2 0 1 1 0

0 0 0 1 1 1 0 0

0 0 0 0 0 1 1 2




Z =




2 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 2 0 0

0 0 1 0 1

0 0 0 2 0




Clearly, wmin = 2. It can be verified that this Z satisfies P1-P5. Synthesis by means of

other methods [18,53] gives a non-minimal fan–in of 3.

3.11 Appendix 3.A

3.11.1 MATLAB code for the simple synthesis procedure in Section 3.6

function [Z1,W] = MITE(A)

%Purpose: Use old synthesis procedure to generate a set of connectivity

% matrices Z1 and # of input gates in each MITE given by W, given

% the translinear loop power matrix A

%

% Input: A: integer matrix satisfying sum(A,2)=0; represents TL power

% matrix

%

% Output: Z1: Z1(:,:,k) is a connectivity matrix generated by the old

% method producing the translinear loop equations

% W: W=sum(Z1(:,;,k),2)

% convert the TL power matrix to product of power law equations format

[l,m]=size(A); n=m-l;

L=-A(:,n+1:m)\A(:,1:n);

Lnum=abs(det(A(:,n+1:m)))*L;
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Lden=abs(det(A(:,n+1:m)))*ones(l,n);

G=gcd(Lnum,Lden);

Lnum=Lnum./G; Lden=Lden./G;

Z1=zeros(m,n);% output put to zero if eqn is dimensionally incorrect

W=0;

% check if equation is dimensionally correct

if A*ones(m,1)==zeros(l,1)

lcmLden=Lden(1,:);

for j=2:l

lcmLden=lcm(lcmLden,Lden(j,:)); %get the lcm of ith col of Lden

end

%using the simple synthesis procedure

Z=[eye(n);L];

b=max(zeros(1,n),-min(Z,[],1));

b1=ones(m,1)*b;

lcm1=ones(m,1)*lcmLden;

Z=Z+b1;

Z=Z.*lcm1;

W1=ones(1,n);

for i=1:n

W1(i)=max(sum(Z,2)-Z(:,i));

end

W=min(W1);

IX=find(W1==W);

s=0;

%consolidation (balancing)

for k=1:length(IX)

B=Z;

B(:,IX(k))=W*ones(m,1)-sum(Z,2)+Z(:,IX(k));
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t=0;

for j=1:s

if Z1(:,:,s)==B, t=1; break; end

end

if t==0, s=s+1; Z1(:,:,s)=B; end

end

Z1=round(Z1); W=round(W);

end

3.11.2 MATLAB code for finding the solution(s) Z given translinear loop ma-
trix A

function Z=MITE_solve(A,Wmin,FILEN,opnomax)

% Z=MITE_solve(A,Wmin,FILEN,opnomax)

%Purpose: takes the TL power matrix and gives the minimal connectivity matrices

% with # of input gate greater than equal to Wmin. The input

% connectivity matrix is required to be a P matrix.

% Additionally, it also checks whether the output-input equations

% are monotonic in the powers specified by C and outputs the

% matrices satisfying monotonicity

% Inputs:

% A: integer matrix satisfying sum(A,2)=0;

% input currents are specified first and then output currents

% e.g the TL equations I_1^2 I_2 I_3^(-3)=1 and I_1 I_2 I_4^(-2)=1

% where I_1 and I_2 are the inputs. Here, A=[2 1 -3 0; 1 1 0 -2]

%

% Wmin: lower bound on # of input gates to each MITE

% DEFAULT=2

% sol_no_max: approximate number of solution matrices desired

% DEFAULT=inf

63



% FILEN: number of solutions obtained after which the matrices are

% stored in a data file

% DEFAULT=10000

% Outputs: Z: three-dimensional array such that Z(:,:,k) is a connectivity matrix

% of a MITE network implementing the TL equation represented by A.

% Z(i,j,k) is simply the weight connecting the voltage V_j to

% the i th MITE (in the k th solution)

% In Z(:,:,k), the rows (corresponding to each MITE) are numbered so that

% input currents are given first and then the outputs

% solving for minimal non-negative integer vectors of Ax=0

B=contejean(A);

n=size(A,2)-size(A,1);

% giving default values to Wmin and C

if nargin<2, Wmin=1; end

% using the old synthesis procedure to get Wmax= an initial estimate of W

[Z,Wmax]=MITE(A);

%generate the Z matrix chhilbas= choose_hilbert_basis

if nargin<5,opnomax=inf;end

if nargin<4, FILEN=10000;end

[Z,W]=chhilbas(B,n,Wmax,Wmin,FILEN,opnomax);

3.11.3 MATLAB code for finding the hilbert basis of A

function B=contejean(A,ymax)

% Purpose: finds the minimal non-negative integer vectors x satisfying Ax=0

% Input A: integer matrix

% Output B: matrix each of whose column is a minimal vector satisfying Ax=0

U=A’*A;

[p,q]=size(A);

64



P=zeros(q,q); F=zeros(q,q);

for i=1:q

P(q-i+1,i)=1; F(q-i+2:q,i)=ones(i-1,1);

end

B=[];

while ~isempty(P)

y=P(:,end); w=F(:,end);

P(:,end)=[]; F(:,end)=[];

if all(A*y==0), B=[B y]; continue; end

s=0;

for i=1:size(B,2)

if vgeq(y,B(:,i)), s=1; break; end

end

if s==1, continue; end

for j=q:-1:1

if ((w(j)==0) & (y’*U(:,j)<0))

P=[P y];

P(j,end)=y(j)+1;

F=[F w];

if nargin==2

if (P(j,end)==ymax(j)), F(j,end)=1;end

end

w(j)=1;

end

end

end

3.11.3.1 MATLAB code for vgeq:

function q=vgeq(x,y)

% Inputs: x and y are vectors of the same dimension
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% q=1 if the elements of x-y are nonnegative with at least one positive

% element

if length(x)~=length(y)

q=2;

return % 2=error

end

if any(x<y), q=0; return; end

if any(x>y), q=1; return; end

q=0;

3.11.4 MATLAB code for forming solution matrices Z from hilbert basis

function [Z1,W]=chhilbas(B,n,Wmax,Wmin,sol_no_max,FILEN)

% [Z1,W]=chhilbas(B,n,Wmax,Wmin,sol_no_max,FILEN)

% Purpose: To choose vectors from B to form a consolidated MITE network(s)

% such that the input connectivity matrix is a P matrix

% Inputs:

% B: matrix whose columns are all minimal vectors of the linear

% diophantine equation

% n: The number of input currents in the MITE network= # of columns of the

% translinear loop matrix -# of rows of the translinear loop matrix

% Wmax: initial estimate on # of input gates to each MITE i.e there

% should exist a solution with this no of input gates

% Wmin: lower bound on # of input gates to each MITE

% The first two inputs are necessary; the default values of

% the last two are Wmin=2 and Wmax=max(sum(B,2))

% sol_no_max: approximate number of solution matrices desired

% FILEN: number of solutions obtained after which the matrices are

% stored in a data file

% Outputs: Z: 3-d array such that Z(:,:,k) is a solution matrix

% Convention: For translinear loop minimal vectors, the the input currents
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% are given first and then the outputs (in a column)

% Initialization

if nargin<6, FILEN=10000; end

if nargin<5, sol_no_max=inf;end

if nargin<4, Wmin=1; end

if nargin<3, Wmax=max(sum(B,2)); end

if Wmax<Wmin, Wmax=Wmin; end

[m,t]=size(B);

umax=(t-n+2):t;

u=1:(n-1);

W=Wmax;

v=1:n;

P=perms(v); q=factorial(n);

V=[]; V1=[];

% loop going through the (t choose n-1) vectors to check for

% invertibility/unique operating point property of the resulting consolidated

% MITE network

while (u(1)<=(t-n+2))

W1=max(sum(B(:,u),2));

X=B(1:n,u);

%rank condition check

if ((W1<=W) && (Wmin<=W1)) && (det([X ones(n,1)])~=0)

if W1<W

V=u;

W=W1;

else

V=[V;u];

end
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end

if u(n-1)<t %Case (1) u(n-1)<t

u(n-1)=u(n-1)+1;

continue

else % Case (2) u(n-1)=t

s=max(find(umax-u));

if isempty(s), break; end

if isequal(s,1), u(s)+1, end

u(s)=u(s)+1;

u(s+1:n-1)=(u(s)+1):(u(s)+n-s-1);

end

end

save(’chhilbasint.mat’,’V’);

size(V)

count=0;

ind=0;

while ~isempty(V)

u=V(1,:);

X=B(1:n,u);

a=W*ones(n,1)-sum(X,2);

X=[X a];

u1=[u t+1];

p=0;

U=[];

% check whether X is a permutation of a P matrix

% when W=2, it is enough to check diag(X)>0 and det(X)~=0

if W==2

for j=1:q

c=P(j,:);
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if all(diag(X(:,c))>0)

p=p+1;

U(p,:)=u1(c);

end

end

else

for j=1:q

c=P(j,:);

if any(diag(X(:,c))<=0) || (det(X(:,c))<=0), continue; end

if Ptest(X(:,c))

p=p+1;

U(p,:)=u1(c);

end

end

end

V(1,:)=[];

V1=[V1;U];

count=count+size(U,1);

if (isfinite(sol_no_max)) && ((FILEN*(ind)+count)==sol_no_max), break;end

if count==FILEN

ind=ind+1

save([’chhilbasmat’,num2str(ind),’.mat’],’V1’);

V1=[];

count=0;

end

end

V=V1;

for i=ind:-1:1

load([’chhilbasmat’,num2str(ind),’.mat’],’V1’);

V=[V1;V];
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end

clear V1 U p P X c q u1 a u s W1 count ind

% Finding the connectivity matrices from the matrix of indices

B(:,t+1)=zeros(m,1);

k=1;

Z1=[];

for i=1:size(V,1)

Z2=B(:,V(i,:));

w=find(V(i,:)==t+1);

if ~isempty(w)

Z2(:,w)=W*ones(m,1)-sum(Z2,2);

end

tst=0;

for j=1:k-1

if isequal(Z2,Z1(:,:,j)), tst=1; break; end

end

if tst==0, Z1(:,:,k)=Z2; k=k+1; end

end

For testing whether a matrix is a P -matrix or not, we use the recently developed test

by Tsatsomeros, the MATLAB code of which is given at

http://www.sci.wsu.edu/math/faculty/tsat/files/matlab/ptest3.m )

3.12 Conclusion

A new synthesis procedure for implementing systems of translinear–loop equations using

MITEs is presented. This procedure results in minimal number of MITEs and the minimal

obtainable fan–in for the minimum number of MITEs. The relationship between minimal

fan–in of MITE networks and minimal solutions of linear Diophantine equations is shown.

The resulting MITE networks have a unique operating point and their unconditional sta-

bility is tested with available methods.
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CHAPTER 4

SYNTHESIS OF 2-MITE POPL NETWORKS

Any translinear circuit, at the fundamental level, requires the synthesis of translinear

loops. Mathematically speaking, the synthesis of the following set of equations is required:

I ′i =

n∏

j=1

I
Λij

j , i = 1, 2, . . . , l (4.1)

where
∑n

j=1 Λij = 1. A standard circuit called the product–of–power–law (POPL) network,

shown in Figure 4.1(a), is used to implement these kinds of equations [19]. Two features

of this network contributing to its size are the number of MITEs and the number of input

gates i.e., the fan–in, of a MITE. The requirement of κ being the same for all MITEs

translates to all the MITEs in a MITE network having the same fan–in [11]. Synthesis

procedures that aim at reducing the number of MITEs are described in [53, 57]. This

chapter, in contrast, concentrates on MITE networks with the minimum possible fan–in,

namely 2. MITE circuits designed using the ideal expressions do not always have unique

or stable operating points [51,12]. These properties are shown to be automatically satisfied

for 2-MITE POPL networks under some mild assumptions in Section 4.2. 2-MITE POPL

networks are then analyzed using a graph-theoretic formulation and shown to belong to a

particular class of digraphs in Section 4.3. It is shown that the uniqueness and stability

of the operating point can be decided simply by counting the number of edges in directed

I1 I2 In
V1 V2 Vn

I ′1 I ′2 I ′l

x11

x12

x1n

x21

x22

x2n

xn1

xn2

xnn

y11

y12

y1n

y21

y22

y2n

yl1

yl2

yln

Figure 4.1. The general form of the MITE network implementing a POPL function. The
output currents are a product of the input currents raised to different powers.
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circuits in the digraph. The inverse of the input connectivity matrix X and the power-

matrix is determined from the digraph itself. Necessary conditions for a power-matrix Λ

to be implementable as a 2-MITE POPL network are then developed in Section 4.4. They

are extended to sufficient conditions in the case of a POPL MITE network with a single

output in Section 4.5. The synthesis of arbitrary POPL equations using 2-MITE networks

with minimal number of MITEs used is discussed in Section 4.6. 2-MITE POPL networks

in a reconfigurable framework are dealt with in Section 4.7. An ideal basic structure for

use in the MITE FPAA is discussed here. A general Coates graph analysis that is expected

to pave the way for the synthesis of multiple-output 2-MITE POPL networks is given in

Section 4.8 followed by a detailed catalog of graphs corresponding to 2-MITEable POPL

functions with two outputs in Section 4.9.

4.1 Mathematical Preliminaries

The terminology for directed graphs (digraphs) used here mostly follows [58]. A 1-factor of

a digraph G is a spanning subgraph of G which is regular of degree 1 (i.e., both in-degree

and out-degree is 1 for all vertices). A 1-factorial connection from i to j of a digraph G is

a spanning subgraph G which contains a directed path P from i to j and a set of vertex-

disjoint directed circuits that include all the vertices of G other than those in P . If x and

y are vertices in a directed path P such that there is a directed subpath from x to y, then

xPy denotes this subpath and x̄Py denotes the subpath from x to y excluding the initial

vertex x. The weight w(H) of a subgraph H of a weighted digraph G is the product of the

weights of the edges in H.

4.2 Uniqueness and stability of Operating Point

In this section, we show that 2-MITE POPL networks have a unique and stable operating

point under the assumption that its input connectivity matrix has a positive diagonal.

A POPL network is determined by the input-connectivity matrix X = [xij ] and the out-

put connectivity matrix Y = [yij ], as shown in Figure 4.1(a). An input-output relationship

of the form given by Equation (4.1) with Λ = Y X−1 results when X is nonsingular. In

particular, a 2-MITE POPL network also satisfies

72



1. X1n = 21n and Y 1n = 21l, because the fan–in is two.

2. xij , yij ∈ {0, 1, 2}, since xij and yij are nonnegative integers.

The synthesis problem is the reverse process, that of finding suitable matrices X and Y

given Λ. We will say that Λl×n or Equation (4.1) is 2-MITEable if a 2-MITE POPL network

satisfies Equation (4.1) without using any copies of the input currents i.e., the number of

MITEs is l + n.

Ideally, the necessary and sufficient condition for the circuit in Figure 4.1(a) to have

an unique operating point is “det(X) 6= 0”. The multiple feedback loops present in MITE

circuits can, however, cause multiple operating points [51]. The following condition suffices

to ensure that the operating point is unique:

P1 X is nonsingular and is a P0-matrix, i.e., X has nonnegative principal minors.

This implies, in particular, that xii ≥ 0.

A POPL MITE network described by the input-connectivity matrix X is stable in the sense

of [12] if:

P2 X is D-stable, i.e., DX must be positive-stable for all diagonal matrices D with

positive diagonal.

X satisfies P1 if it satisfies P2 [39]; however, there is no known finitely testable character-

ization for D-stability for matrices of order greater than three.

We will show that for 2-MITE networks, the following assumption suffices to satisfy

both P1 and P2.

Assumption 1 The input connectivity matrix X of a POPL network has a positive diag-

onal and is nonsingular.

From Theorem 2.5.3, the above assumption along with the requirement of a unique operating

point that is “robust” with respect to floating-gate capacitor mismatch leads to the following

strengthened version of P1:

P1’ X is a P -matrix.
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For a 2-MITE POPL network, xii(> 0) is either 1 or 2. Since the rows of X sum to 2, we can

write X = In + X̂, where X̂ has exactly one nonzero entry, namely 1, in each row. Hence,

for every row k, we can define a α(k) such that [X̂]kα(k) is one. Clearly, X is row diagonally

dominant, though not necessarily strictly row diagonally dominant. The following theorem

then implies that X is D-stable.

Theorem 4.2.1 If A = [aij ] ∈ Mn is nonsingular, row-diagonally dominant, and has a

positive diagonal, then A is D-stable. In particular, A is a P0 matrix.

Proof : Consider DA = [diaij ] where the diagonal matrix D has dii > 0. Gerv̌sgorin’s

theorem [39] tells us that the eigenvalues of DA lie in the union of n discs

G(DA) =
n⋃

i=1

{λ ∈ C : |λ− diaii| ≤
n∑

j 6=i

|diaij |} (4.2)

The conditions diaii > 0 and diaii ≥
∑n

j 6=i|diaij | imply that each of the discs lies in the open

right half s-plane with the possible exception of including 0. However, the case λ(DA) = 0

would imply that det(A) = 0, which has been excluded by hypothesis. �

The non-strict row-diagonal dominance property is not preserved under arbitrarily small

perturbations of the elements of X and hence the above proof cannot be used to show that

the D-stability is true in the presence of errors in the elements of X. It is shown in Appendix

4 that X is diagonally stable, which implies D-stability. Diagonal stability is maintained

under small perturbations of the elements of X [49], and hence the D-stability is also

preserved.

4.3 2-MITE network graphs

In this section, the structure of the Coates graphs of the input connectivity matrices of

2-MITE POPL networks is analyzed.

Restricting both the number of MITEs and the fan–in of a MITE also restricts the

possible power matrices that are obtainable from a POPL network. If the fan–in is fixed at

2, it is necessary to find out which powers are obtainable before increasing the number of

MITEs suitably. To this end, we take a graph theoretic approach to determine Λ = Y X−1
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for a 2-MITE network. To find X−1, we use the method of Coates graphs [58]. Every

A = [aij ] ∈ Mn corresponds to a weighted digraph Gc(A) with vertices {1, 2, . . . , n} such

that there is a directed edge (j, i) from j to i with weight aij if aij 6= 0. The graphical

representation of the input-section of a 2-MITE network will then be the Coates graph

Gc(X) of its input-connectivity matrix X. As mentioned before, X can be written as

X = In + X̂, where X̂ will be called the reduced input-connectivity matrix of the network.

It should be noted that an equivalent simpler description of the input-section of a 2-MITE

network is through the Coates graph Gc(X̂) of its reduced input-connectivity matrix, which

is formed essentially by removing all the self-loops of unit weight in Gc(X) and by converting

a self-loop of weight 2 into a self-loop of unit weight. This is now illustrated through an

example.

Example: Consider the MITE circuit in Figure 4.2(a). The input and output connec-

tivity matrices X and Y are given by

X =




1 0 1 0 0

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1




Y =

[
0 0 0 0 2

]
(4.3)

The Coates graphs Gc(X) and Gc(X̂) are shown in Figure 4.2(b) and (c), respectively. We

will show in the later sections that the power matrix Λ can be found by inspection and is

shown along in curly braces near each node.

Theorem 4.3.1 If X is the input-connectivity matrix of a 2-MITE POPL network, then,

1. Each component G of Gc(X̂) has a unique directed circuit; self-loops being directed

circuits of length 1.

2. If the directed circuit in the digraph G is contracted to a single vertex v, then the

resulting digraph G̃ is a rooted tree with v as the root i.e.,

• The undirected graph underlying the digraph G̃ is a tree.
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{1}

{−1}

{−2}

Figure 4.2. (a) A single-output 2-MITE network. (b) The Coates graph Gc(X) of the input–

connectivity matrix X of the network (c) The Coates graph Gc( bX) of the reduced input-con-

nectivity matrix bX.
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(a) (b)

C C

Figure 4.3. (a) A component of the Coates graph Gc(X) of the input-connectivity matrix X of

a 2-MITE POPL network with directed circuit C. (b) The Coates graph Gc( bX) of the reduced

input-connectivity matrix of the same network
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• For every vertex w 6= v, there is a directed path from v to w.

Proof of 1: Every vertex i in Gc(X̂) has in-degree 1, and if (j, i) ∈ E, then j = α(i).

Hence, we can define the parent α(i) and a sequence of ancestors {αk(i)} for every vertex

i. If vertex j 6= i is an ancestor of vertex i, then we say j ≺ i. We define j � i to mean that

either j ≺ i or j = i. For any vertex i, consider the sequence {i, α(i), α(α(i)), . . . }. Since

there are only n vertices, the sequence cannot have distinct elements, and hence there exists

a vertex j and an integer p > 0 such that αp(j) = j. This corresponds to a directed circuit

of length at most p in Gc(X̂) and implies that the sequence of ancestors of any vertex i

eventually leads to a directed circuit C. It is easy to see that for a vertex i, there is only

one directed circuit in {αk(i)}. We will say that i is descended from C.

The relation of being descendants of the same directed circuit is clearly an equivalence

relation. We will show that the equivalence classes are the vertex sets of components of

Gc(X̂). If not, there is a undirected path P beginning from an equivalence class and ending

in a different equivalence class. It is clear that there is an edge (j, i) ∈ P where the vertices

j and i belong to different equivalence classes. However, this implies that j ≺ i and hence

j must be descended from the same directed circuit as i, which contradicts the definition

of the classes. Each equivalence class being obviously connected, it follows that each is a

component of Gc(X̂).

Proof of 2: If the directed circuit in a component G is contracted into a single vertex

v to form G̃, it follows that the sequence of ancestors of any vertex i in G that was not in

the directed circuit now ends at v. Hence, there is a directed path from v to each vertex in

G̃.

We will now show that G̃ has a tree as its underlying graph. This is accomplished by

showing that if there is a undirected circuit in G, then it must be a directed circuit. Since

each component G is associated with an unique directed circuit which gets contracted in

G̃, this proves that there is no undirected circuit in G̃. Let C ′ be a circuit in the graph

underlying G as shown in Figure 4.4(a). Let (i1, i2) be the directed edge corresponding to

an arbitrarily chosen edge in C ′. Let i3, i4, . . . , ik be the remaining vertices in C ′ so that for

every s ∈ {2, . . . , k−1}, exactly one of (is, is+1) and (is+1, is) is an edge in G. Also, exactly
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(a) (b)

i1 i2

i3

i4

im−1 im−1im im

im+1 im+1

Figure 4.4. (a) The circuit C′ used in the proof of 2 in Theorem 4.3.1. It is a hypothetical
undirected circuit assumed to exist in the graph underlying G. The directed edge (i1, i2) is
assumed to exist in G. (b) The proof shows that if we assume (im−1, im) to be a directed edge
in G, then (im, im+1) has to be the directed edge connecting im and im+1 in G.

one of (ik, i1) or (i1, ik) is an edge in G. Let (im−1, im) be in G. (im+1, im) cannot be an

edge in G, since that would mean that the in-degree of im is not 1. Thus, we find that if

(im−1, im) is an edge in G, then so is (im, im+1). We have chosen (i1, i2) to be in G. Hence,

by induction, (im, im+1) is in G for m ∈ {1, 2, . . . , l − 1}. This argument can be extended

to show that (ik, i1) must also be in G. Thus, we have proved that if C ′ is an undirected

circuit in G, then the edges in C ′ must correspond to a directed circuit in G. Therefore, G̃

has a tree for its underlying graph. From the definition of the rooted tree, this completes

the proof. �

This characterization of 2-MITE POPL networks enables us to find simple expressions for

X−1, as given below.

4.4 Necessary conditions

Using Coates graph analysis [58], we now derive expressions for X−1 and Λ = Y X−1. The

determinant of X ∈Mn is given by

det(X) =
∑

H

(−1)n−LH w(H) (4.4)
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where H is a 1-factor of Gc(X), and LH is the number of directed circuits in H. The

cofactor ∆ij of xij is given by

∆ii =
∑

H

(−1)n−1−LH w(H)

∆ij =
∑

Hij

(−1)n−1−L′

H w(Hij), i 6= j
(4.5)

where H is a 1-factor in the graph obtained by removing i from Gc(X), Hij is a 1-factorial

connection in Gc(X) from vertex i to vertex j, and LH and L′
H are the numbers of directed

circuits in H and Hij , respectively.

If Gc(X) is not connected, then by reordering the rows and columns of X, we can

write X as a direct sum of matrices Xi that are connected; each such matrix represents a

component of Gc(X). Since X−1 is the direct sum of the individual inverses, for finding

X−1, it suffices to assume that Gc(X) is connected.

Some definitions are in order:

Definition 4.4.1 When n is a nonnegative integer, we define (−)n to be (−1)n. (−)∞ is

defined to be 0.

Definition 4.4.2 The distance d(i, j) is defined as the length of the shortest directed path

from vertex j to vertex i, if a directed path exists. If no directed path exists from j to i,

then d(i, j) is defined to be ∞. d(i, i) is defined to be 0.

Theorem 4.4.1 Let Gc(X̂) be the Coates graph of X̂, where X = In + X̂. If Gc(X) is

connected, and C is the unique directed circuit in Gc(X̂) with k edges in it, then

det(X) = 1 + (−1)k+1 (4.6)

Clearly, X is nonsingular if and only if k is odd in which case det(X) = 2. X−1 is then

given by

[X−1]ij =
[adj(X)]ij
det(X)

=





(−)d(i,j) if j is not in C

1
2(−)d(i,j) if j is in C,

(4.7)

where the distance d(i, j) is defined with respect to either Gc(X̂) or Gc(X).
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CC

(a) (b)

Figure 4.5. Calculation of det(X) using Equation (4.4). The edges in the 1-factors in Gc(X)
are shown with continuous edges while the edges not belonging to the 1-factor are shown by
dotted edges. (a) The 1-factor formed by all self-loops in Gc(X). (b) The 1-factor formed by
C and the self-loops attached to vertices not in C.

Proof: The theorem will be proved for the case k > 1. The proof for the case when

k = 1 i.e., when the directed circuit C is a self-loop, is almost identical and is left to the

reader.

Calculation of det(X):

From the definition of a 1-factor, we need to find a set of vertex-disjoint circuits that

include all the vertices in Gc(X). As the only directed circuits in Gc(X) are the self-loops

attached to each vertex and the directed circuit C, it follows that there can be only two

possible 1-factors in Gc(X):

1. The set of all self-loops attached to each vertex in Gc(X). This is shown in Fig-

ure 4.5(a).

2. The union of C and the set of all self-loops attached to each vertex in Gc(X) \ C, as

shown in Figure 4.5.

In the first case, w(H) = 1 and LH = n. In the second case, we still have w(H) = 1 but
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i

i

i

(a) (b) (c)

Figure 4.6. Calculation of ∆ii using Equation (4.5). The edges in the 1-factors in Gc(X) \ i
are shown with continuous edges while the edges not belonging to the 1-factor are shown by
dotted edges. (a) When i ∈ C, all self-loops in Gc(X)\ i form the only 1-factor. (b) When i /∈ C,
all self-loops in Gc(X) \ i form one of the two 1-factors. (c) When i /∈ C, the second 1-factor is
formed by C and the self-loops in Gc(X) \ i attached to vertices not in C.

LH = 1 + n − k, since the self-loops of only n − k vertices are taken into account. Hence,

by using Equation (4.4), we get det(X) = (−1)n−n × 1 + (−1)n−(n−k+1) × 1 = 1 + (−1)k+1,

proving the first part of the theorem.

Calculation of ∆ii:

Case 1: i ∈ C

In this case, if we remove i from Gc(X), the only 1-factor is the set of self-loops attached to

all the remaining vertices, so that w(H) = 1 and LH = n− 1. Hence, using Equation (4.5),

we find that ∆ii = (−1)n−1−(n−1) × 1 = 1. This is shown in Figure 4.6(a).

Case 2: i /∈ C

Here, if we remove i from Gc(X), the two 1-factors are:

1. The set of all self-loops attached to each vertex in Gc(X) \ i. Here w(H) = 1 and

LH = n− 1. This is shown in Figure 4.6(b).

2. The union of C and the set of all self-loops attached to the vertices in Gc(X) \ {i, C}.

Here w(H) = 1 and LH = n− 1− k + 1 = n− k. This is shown in Figure 4.6(c).

Hence, ∆ii = (−1)n−1−(n−1) + (−1)n−1−(n−k) = 1 + (−1)k+1. Since X−1 exists only if k is

odd, it follows that in that case, ∆ii = 2.
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Calculation of ∆ji:

Case 1: j ∈ C

See Figure 4.7(a). Here, it is clear that there is always a directed path from j to i, in

accordance with Theorem 4.3.1. Hence there is only one 1-factorial connection, containing

all the self-loops in the vertices that are not in the directed path. Since d(i, j) + 1 is the

number of vertices in the directed path from j to i, it follows that L′
H = n − d(i, j) − 1.

Hence, from Equation (4.5), ∆ji = (−1)n−1−(n−1−d(i,j)) × 1 = (−1)d(i,j).

Case 2: j /∈ C and there is no directed path from j to i

See Figure 4.7(b). In this case, d(i, j) = ∞. There is no 1-factorial connection from j to i

and hence ∆ji = 0 = 2(−)d(i,j).

Case 3: j /∈ C and there is a directed path from j to i

See Figure 4.7(c) and (d). In this case, by Theorem 4.3.1, there is a unique directed path

Pji. Here, there are two 1-factorial connections:

1. The set of all self-loops attached to each vertex in Gc(X) \ Pji. Here w(Hij) = 1 and

L′
H = n− 1− d(i, j).

2. The union of C and the set of all self-loops attached to the vertices in Gc(X)\{Pji, C}.

Here w(Hij) = 1 and L′
H = n− (d(i, j) + 1)− k + 1 = n− k − d(i, j).

Hence, ∆ji = (−1)n−1−(n−1−d(i,j)) + (−1)n−1−(n−k−d(i,j)) = (−1)d(i,j)(1 + (−1)k+1). When

k is odd, we have ∆ji = 2(−1)d(i,j).

In general, it is clear that ∆ji = 2(−)d(i,j) if j /∈ C and ∆ji = (−)d(i,j) otherwise. Since

det(X) = 2 for a nonsingular X and (X−1)ij = ∆ji/ det(X), the conclusion stated by the

theorem follows. �

To find Λ = Y X−1, since Y 1n = 21l, it follows that every row in Y contains either a

1 in two different columns or a 2 in a single column; the other elements in the row being

0. Hence, we can write yij = δjβ(i) + δjγ(i), where β(i) and γ(i) denote the columns with
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(a) (b)

(c) (d)

Figure 4.7. Calculation of ∆ji using Equation (4.5). The edges in the 1-factorials involved are
shown with continuous edges while the edges not belonging to the 1-factorials are shown by
dotted edges. (a) When j ∈ C, Pji and all self-loops in Gc(X) \ Pji form the 1-factorial. (b)
When j /∈ C and there is no path from j to i, then no 1-factorial exists. (c) When j /∈ C and
there is a Pji, a 1-factorial is formed by Pji, and the self-loops in Gc(X) \ Pji. (d) When j /∈ C
and there is a Pji, another 1-factorial is formed by Pji, C and the self-loops in Gc(X) \ C ∪ Pji.
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nonzero entries in the ith row of Y . From this, we have

Λij =
n∑

k=1

yik[X
−1]kj

=

n∑

k=1

[δkβ(i)[X
−1]kj + δkγ(i)[X

−1]kj ]

= [X−1]β(i)j + [X−1]γ(i)j

(4.8)

Thus, we have

Λij =





(−)d(β(i),j) + (−)d(γ(i),j) if j is not in C

1
2((−)d(β(i),j) + (−)d(γ(i),j)) if j is in C.

(4.9)

The following general observations can be made from Equation (4.9): If Λ is 2-MITEable,

then

• The only possible values for (−)d(i,j) are −1, +1 and 0. Hence it follows that

Λij ∈ {−2,−1, 0, 1, 2}, if j is not in C

Λij ∈ {−1,−1

2
, 0,

1

2
, 1}, if j is in C

(4.10)

• The same column in Λ cannot have both a ±2 and a ±1/2. This is clear from the

above. Thus, Λ =
(

1 −1 .5 .5
−2 1 2 0

)
is not 2-MITEable.

• For the ith row, if Λij is ±1/2, then it means that j is in C and that there is a directed

path from j to either β(i) or γ(i) but not both. From Theorem 4.3.1, it follows that

β(i) and γ(i) belong to two different components.

• If the ith row has a ±2, then from Equation (4.9), it follows that β(i) and γ(i) belong

to the same component.

• From the last two observations, it follows that the same row in Λ cannot have both a

±2 and a ±1/2. Thus, Λ = [1 1 .5 .5 − 2] is not 2-MITEable.

• If the ith row does not have a ±1/2, then it means that β(i) and γ(i) both belong to

the same component. For, if they belonged to different components, then Λij = ±1/2

when j is in the nonempty directed circuits of the two components.
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4.5 Single-Output POPL Networks

This research has not resulted in an optimal synthesis procedure for multiple-output systems

of translinear equations using 2-MITE POPL networks. “Optimality” is used in the sense

that there is no guarantee that the synthesis procedure to be presented in the next section

produces a 2-MITE POPL network with the minimum possible number of MITEs. However,

as will be shown in this section, a single translinear equation can be synthesized optimally

using 2-MITEs. For the single-output case, the synthesis strategy to be followed here is as

follows:

Problem Synthesize Io =
∏n

j=1 I
Λj

j , where
∑m

j=1 Λj = 1.

1. If Λ is 2-MITEable, then the problem is solved.

2. If Λ is not 2-MITEable, then use multiple copies of the input currents {Ij} to produce

a Λ̃ that is 2-MITEable. In other words, each power Λj is split into different powers

such that

Λj = Λ̃tj−1+1 + Λ̃tj−1+2 + · · ·+ Λ̃tj (4.11)

with t0 = 0. The split is made such that the matrix Λ̃ is 2-MITEable and minimum

number of MITEs are used.

For this to work, we need three things:

1. Necessary and sufficient conditions for determining when Λ is 2-MITEable.

2. Procedure to synthesize the 2-MITE network(s) implementing Λ if it is 2-MITEable.

3. Procedure to determine the matrix Λ̃ from Λ, in case Λ does not satisfy the above

conditions.

4.5.1 Necessary and sufficient conditions for Λ to be 2-MITEable

We now discuss the conditions for a Λ matrix to be 2-MITEable for the single-output case

i.e., Λ is a row vector. In the next section, we prove the following:

Theorem 4.5.1 A 1× n vector Λ satisfying
∑

j Λj = 1 is 2-MITEable if and only if
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1. Λj ∈ {0, 1/2,−1/2, 1,−1, 2,−2} for every j ∈ {1, 2, . . . , n}. However, Λ does not have

both a ±2 and a ±1/2.

2. If Λ does not have ±1/2, then the sum of the elements in Λ that are ±2 is one of

{+2,−2, 0}.

3. If Λ has ±1/2, then the sum of the elements in Λ that are ±1/2 is one of {+1,−1, 0}.

Note:

The theorem can be stated in a simpler fashion when the powers are described by the

translinear loop matrix A rather than Λ. It is easy to see that for the single output case,

A = [Λ − 1]. However, if we make sure that A has only integer powers, then A = [2Λ − 2]

when Λ has ±1/2 and is [Λ − 1] otherwise. Then, the above theorem can be restated as :

A 1× (n+1) integer vector A = [ai] satisfying
∑

j aj = 0 with no nonunity common divisor

between its elements is 2-MITEable if and only if

1. aj ∈ {0, 1,−1, 2,−2} for every j ∈ {1, 2, . . . , n + 1}.

2. The sum of the elements in A that are ±2 is one of {+2,−2, 0}.

Let yj = δjβ + δjγ . From the observations made in the previous section, all the elements

in the given Λ must belong to {0, 1/2,−1/2, 1,−1, 2,−2}. This allows only two cases that

are discussed next.

4.5.2 Case when Λ has no powers that are ±1/2

In this case, β and γ are in the same component, with associated direct circuit C (say). Let

G = Gc(X̂) be the Coates graph of X̂ = X − In. From Theorem 4.3.1, we know that if C

were contracted into a single vertex v, the resulting graph G̃ is a rooted tree with v as the

root. There are unique directed paths P1 and P2 from v to β and γ, respectively. Let δ be

the “last” vertex in P1 that is also in P2 i.e., δ ∈ P1 ∩ P2 and (δ̄P1β) ∩ P2 = ∅. Note that

this also means that (δ̄P2γ) ∩ P1 = ∅. Since there is only one directed path from v to δ, it

follows that vP1δ = vP2δ.

Case 1: v 6= δ

Here, G̃ is of the form shown in Figure 4.8(a). Coming back to the original graph G, it is
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Figure 4.8. Gc( bX) for 2-MITE POPL networks with single outputs that has no ±1/2 powers

and satisfies v 6= δ. (a) is the graph eG formed when the directed circuit in Gc( bX) is contracted

to a vertex v that is not equal to δ. (b) is the Gc( bX) corresponding to the same eG. (c) is the
case when the sum of ±2-powers in Λ is +2. (d) is followed when the sum of ±2-powers is −2.
(e) is found when the sum of ±2-powers is 0 and when Λδ = +2. (f) is generated when the
±2-powers add up to 0 and when Λδ = −2. The cases (c)-(f) occur only d(β, δ) − d(γ, δ) is even.
In the odd case the powers occur as shown in (g). The sequence of Λj values are shown for

each section. The double arrows indicate a sequence of directed edges forming a directed path.

88



easy to see that there is a single vertex ε ∈ C that replaces v in the path to δ. Hence, the

only possible Coates graph is of the form shown in Figure 4.8(b).

The path from ε to δ but excluding ε will be referred to as the trunk of G. The paths

from δ to β and γ, but excluding δ, will be called the limbs of G. The values of Λ associated

with the limbs, trunk, and the directed circuit C will be called the powers in the limbs,

trunk, and C, respectively. It should be noted that while the limbs can be empty, the trunk

cannot be empty in this case, since v 6= δ.

Case 1(a): d(β, δ)− d(γ, δ) is even

Clearly, in this case, Λδ = (−1)d(β,δ) + (−1)d(γ,δ) 6= 0. Using Equation (4.9), we get:

Λj =





(−1)d(γ,j) if δ ≺ j � γ

(−1)d(β,j) if δ ≺ j � β

2(−1)d(β,j) if ε ≺ j � δ

(−1)d(β,j) if j ∈ C

(4.12)

4.5.2.1 Synthesis

This is the only case where a ±2 power is synthesized. It is easy to see that the sequence

of ±2 in the trunk alternate in sign. Let µ be the vertex after ε in the trunk. The sum of

the different powers that are ±2 is clearly +2 (when Λδ = +2 and Λµ = +2), or −2 (when

Λδ = −2 and Λµ = −2), or 0 (when Λδ = ±2 and Λµ = ∓2). It is clear that this satisfies

the “only if” part of Theorem 4.5.1 for the case when no fractional powers are present. The

“if” part is proved below by synthesizing appropriate MITE network(s) in each case:

1. The sum of ±2 powers in Λ is +2

From the previous paragraph, this case requires Λδ = 2 and Λµ = 2, because the other

configurations produce different sums of the ±2 powers. The remaining ±2 powers are

arranged with alternating signs in the trunk. This case is depicted in Figure 4.8(c). Note

that if there are s currents with power +2, then there must be s − 1 currents with power

−2 and hence there are s!(s− 1)! ways in which we can map the ±2 currents to the vertices

in the trunk.

The remaining powers, which are either 1 or −1 have to sum up to 1 − 2 = −1. From
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Equation (4.12), Λβ and Λγ both are +1 and the first elements in the limbs have to be −1.

Since the signs keeps alternating, the sum of the powers in the limbs has to be 0. Therefore,

the sum of the powers in C is −1. It should also be noted that Λε = −1. Hence, once the

powers in the trunk are fixed from the previous paragraph, the power of ε is fixed to be −1

and the remaining {+1,−1} pairs are distributed as pairs on the limbs and the remaining

parts of the directed circuit. Note that if there are k “+1”-powers and k + 1 “−1”-powers,

then the assignment of currents to vertices can be made in (k +1)(k!)2(k2 +3k +4)/4 ways.

2. The sum of ±2 powers in Λ is −2

Here, Λδ = −2 and Λµ = −2. The remaining powers follow as shown in Figure 4.8(d). Let

there be s “−2”- powers and k “+1”-powers. It should be noted that k ≥ 3 and that there

are s− 1 “+2”-powers and k − 3 “−1”-powers. The synthesis is done as follows:

Step 1 Choose two currents that are raised to a power of −2 and assign them to vertices δ and

µ. If there is only one −2-power, then δ = µ. The remaining ±2 powers are arranged

in the trunk with the signs alternating. This process can be done in s!(s− 1)! ways.

Step 2 Choose three currents with +1-powers and assign them to ε, β, and γ. The remaining

k− 3 pairs of {+1,−1} are assigned as pairs in an alternating fashion to one or more

of C and the limbs. This process can be done in k((k − 1)!)2/4 ways.

3. The sum of ±2 powers in Λ is 0

Let there be s “+2”- powers and k “+1”-powers. It follows that there are s “−2”-powers

and k − 1 “−1”-powers. This case splits into two subcases:

3(a). Λδ = +2

When the above choice is made, then it follows that Λµ = −2. The synthesis is done as

follows:

Step 1 Choose two currents that are raised to a power of +2 and −2 and assign them to

vertices δ and µ,respectively. The remaining ±2 powers are arranged in the trunk

with the signs alternating. This process can be done in (s!)2 ways.

Step 2 Choose a current with +1-power and assign it to ε. The remaining k − 1 pairs of

{+1,−1} are assigned as pairs in an alternating fashion to one or more of C and the
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limbs. This process can be done in k((k − 1)!)2(k2 + k + 2)/4 ways.

This case is depicted in Figure 4.8(e).

3(b). Λδ = −2

Clearly, Λµ = +2. To synthesize the circuit,

Step 1 Choose two currents that are raised to a power of −2 and +2 and assign them to

vertices δ and µ,respectively. The remaining ±2 powers are arranged in the trunk

with the signs alternating. This process can be done in (s!)2 ways.

Step 2 Choose a current with −1-power and assign it to ε. Choose two currents with +1-

power and assign them to β and γ. The remaining k−2 pairs of {+1,−1} are assigned

to one or more of C and the limbs. This process can be done in (k − 1)(k!)2/4 ways.

This case is depicted in Figure 4.8(f).

It should be noted that both the above subcases produce MITE networks implementing

the same equation. Hence, there are totally (s!)2{(k−1)(k!)2 +k((k−1)!)2(k2 +k+2)}/4 =

(s!(k − 1)!)2k(k2 + 1)/4 ways of implementing this case.

Case 1(b): d(β, δ)− d(γ, δ) is odd

In this case, Λδ = (−1)d(β,δ) + (−1)d(γ,δ) = 0. Using Equation (4.9), we get:

Λj =





(−1)d(γ,j) if δ ≺ j � γ

(−1)d(β,j) if δ ≺ j � β

0 if j � δ

(4.13)

This case is shown in Figure 4.8(g). It is clear that no ±2 powers are generated here.

Note that some of the powers are 0. For single-output networks, it might be argued that 0-

powers are not needed. However, in case one is synthesizing multiple-output POPL networks

by synthesizing each equation separately and consolidating whenever possible, then these

redundancies are of immense help.

Let there be s “−1”-powers, implying that there are s + 1 “+1”-powers. For synthesis,

the extra “+1”-power is first placed in one of the limbs and the remaining {+1,−1} pairs

are then distributed among either limbs with the signs alternating. This can be done in
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Figure 4.9. Gc( bX) for 2-MITE POPL networks with single outputs that has no ±1/2 powers

and satisfies v = δ. (a) is the graph eG formed when the directed circuit in Gc( bX) is contracted

to a vertex v. (b) is the Gc( bX) corresponding to the same eG. Without loss of generality, Λε 6= 0
has been assumed. The sequence of Λj values are shown for each section. The double arrows
indicate a sequence of directed edges forming a directed path.

((s + 1)!)2 ways.

Case 2: v = δ

It should be noted that here, there might be two vertices δ and ε, not necessarily distinct,

such that the paths from v to β (v to γ) in G̃ corresponds to paths from δ to β (ε to γ) in

Gc(X̂), as shown in Figure 4.9. Let k be the odd length of the directed circuit. In this case,

Λε =
1

2

(
(−1)d(γ,ε) + (−1)d(β,ε)

)

=
1

2

(
(−1)d(γ,ε) + (−1)d(β,δ)+d(δ,ε)

)

=
1

2

(
(−1)d(γ,ε) + (−1)d(β,δ)+k−d(ε,δ)

)

=
1

2
(−1)d(γ,ε)

(
1− (−1)d(β,δ)+d(ε,δ)−d(γ,ε)

)

(4.14)

Similarly, Λδ = 1/2(−1)d(β,δ)
(
1 + (−1)d(β,δ)+d(ε,δ)−d(γ,ε)

)
. From this, it is clear that only

one of Λδ or Λε is nonzero. Without loss of generality, we will assume Λε 6= 0, i.e., d(β, δ)+

d(ε, δ)− d(γ, ε) is odd. The remaining powers are as follows:

Λj =





(−1)d(β,j) if δ ≺ j � β

(−1)d(γ,j) if ε ≺ j � γ

(−1)d(γ,j) if δ ≺ j � ε

0 if ε ≺ j � δ

(4.15)

92



4.5.3 Case when Λ has some powers that are ±1/2

In this case, β and γ are in different components, with associated directed circuits C1 and

C2. The only possible graph structure is as shown in Figure 4.10(a), allowing for β = δ or

γ = ε. It is a easy consequence of Equation (4.9) that

Λj =





(−1)d(β,j) if δ ≺ j � β

(−1)d(β,j)/2 if j ∈ C1

(−1)d(γ,j) if ε ≺ j � γ

(−1)d(γ,j)/2 if j ∈ C2

(4.16)

4.5.3.1 Synthesis

1. The sum of ±1/2 powers in Λ is 1

In this case, Λδ = Λε = 1/2. If there are k “+1/2” powers and s “+1” powers, it follows

that there are k − 2 “−1/2” powers and s “−1” powers. For the synthesis, p “+1” powers,

p “−1” powers, q “+1/2” powers, and q − 1 “−1/2” powers are chosen, with 0 ≤ p ≤ s

and 1 ≤ q ≤ k − 1, in order that one of the components is formed. The other component

is formed from the remaining powers. This results in (s + 1)(s!)2k((k − 1)!)2/2 possible

2-MITE networks. This case is shown in Figure 4.10(b).

2. The sum of ±1/2 powers in Λ is −1

In this case, Λδ = Λε = −1/2. If there are k “+1/2” powers and s “+1” powers, it follows

that there are k + 2 “−1/2” powers and s− 2 “−1” powers. The synthesis is done similar

to the previous case. This results in s((s− 1)!)2(k +2)((k +1)!)2/2 2-MITE networks. This

case is shown in Figure 4.10(c).

3. The sum of ±1/2 powers in Λ is 0

In this case, Λδ = +1/2 and Λε = −1/2. If there are k “+1/2” powers and s “+1”

powers, it follows that there are k “−1/2” powers and s − 1 “−1” powers. This results in

(s!)2k((k − 1)!)2 2-MITE networks. This case is shown in Figure 4.10(d).

4.6 2-MITE synthesis of arbitrary POPL equations with a single output

Summary: This section answers the question: Given a single-output POPL equation,

how do we go about implementing it using 2-MITEs without using more MITEs than we
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Figure 4.10. Gc( bX) for 2-MITE POPL networks with single outputs that has some ±1/2 powers.

(a) is the general form of Gc( bX) required when ±1/2 powers are present. (b) is the case when
the sum of ±1/2-powers in Λ is +1. (c) is followed when the sum of ±1/2-powers is −1. (d)
is found when the sum of ±1/2-powers is 0. The sequence of Λj values are shown for each

section. The double arrows indicate a sequence of directed edges forming a directed path.
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need to? In other words, we (the users) have decided to not trade the fan–in of a network in

order to keep the number of MITEs fixed, as was done in Chapter 3, but instead are ready

to use more number of MITEs and copies of currents to do the same job. However, we are

also not willing to use more than the optimal number of MITEs needed to implement the

equation.

It should be noted that the existence of a 2-MITE network implementing Io =
∏n

k=1 IΛk
k

can be proved using methods developed prior to this thesis, as discussed in Chapter 1. Here,

we will use the development of the theory of 2-MITE networks to optimize the network for

minimum number of MITEs.

First, we demonstrate this for the case when all the powers Λk are integers and then

move on to the general case. In this special case, we note the following:

• Since only those powers that are ±2,±1, and 0 are allowed for 2-MITE synthesis, we

need to additively split Λk into sums of these allowed powers. In other words, we need

to find, for each k, the quadruplet of nonnegative integers : (p1(k), p−1(k), p2(k), p−2(k))

such that Λk = (+1)p1(k) + (−1)p−1(k) + (+2)p2(k) + (−2)p−2(k). Here pi(k) is the

number of times i is present when Λk is split as a sum of ±1,±2.

• Since we are trying to reduce the number of MITEs needed in this single-output

synthesis, note that a minimal solution is only going to have either pi(k) ≥ 0 with

p−i(k) = 0 or vice versa. For example, having · · · I2
j I−2

j · · · needs more MITEs than

· · · I0
j · · · .

• Clearly, it is enough to do the splitting as Λ = 2u + v, where u,v are constrained to

be vectors of integers, though not necessarily nonnegative integers. For example, if

uk > 0, then we have the product I2
k occurring uk times.

• For 2-MITEability, we require
∑

k uk ∈ {+1,−1, 0}.

• The number of MITEs needed for the implementation is clearly
∑n

k=1|uk|+ |vk|. This

the objective function that we want to minimize.

Hence, the optimal 2-MITE synthesis problem can be written mathematically as follows:

Problem:
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Given Λ = [Λk] ∈ M1,n(N) satisfying Λ1n = 1, minimize the objective function f(u,v) =

‖u‖1 + ‖v‖1 =
∑

k(|uk| + |vk|), where u = [uk],v = [vk] ∈ M1,n(Z), subject to the con-

straints

1. Λk = 2uk + vk for all i ∈ [1 : n]

2.
∑n

k=1 uk ∈ {+1,−1, 0}

We will call (u?,v?) ∈ M1,2n(Z) a minimal solution of Λ if for all (u,v) ∈ M1,2n(Z)

satisfying the constraints, f(u?,v?) ≤ f(u,v).

We will develop the solution through a series of lemmas:

Lemma 4.6.1 If (u,v) is a minimal solution of Λ, then ukΛk ≥ 0. In other words, uk

either has the same sign as Λk or is zero.

Proof : Suppose the lemma is not true and that there is a s ∈ [1 : n] such that usΛs < 0.

We will assume that Λs > 0; the proof for the case Λs < 0 is similar. Since Λs − 2us = vs

and us ≤ −1, it follows that vs > 2. Now, it is clear that
∑

k 6=s uk + us = 1 since otherwise

(u?,v?) defined by

u?
k =





uk if k 6= s

us + 1 k = s

v?
k =





vk if k 6= s

vs − 2 k = s

(4.17)

satisfies the constraints and

f(u?,v?) = f(u,v)− |us|+ |us + 1| − |vs|+ |vs − 2|

= f(u,v) + us − (us + 1)− vs + (vs − 2)

= f(u,v)− 3,

(4.18)

which contradicts optimality of (u,v). Since
∑

uk = 1, there is some t ∈ [1 : n] such that

ut ≥ 1. It is then clear that (ũ, ṽ) defined by

ũk =





uk if k 6= s, t

us + 1 k = s

ut − 1 k = t

ṽk =





vk if k 6= s, t

vs − 2 k = s

vt + 2 k = t

(4.19)
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satisfies the constraints and

f(ũ, ṽ) = f(u,v)− |us|+ |us + 1| − |ut|+ |ut − 1| − |vs|+ |vs − 2| − |vt|+ |vt + 2|

= f(u,v) + us − (us + 1)− ut + (ut − 1)− vs + (vs − 2)− |vt|+ |vt + 2|

≤ f(u,v)− 4− |vt|+ |vt|+ 2

≤ f(u,v)− 2

(4.20)

which contradicts the assumption that the lemma is not true. �

Lemma 4.6.2 If (u,v) is a minimal solution of Λ, then vk ≥ −1 if Λk > 0 and vk ≤ 1 in

case Λk < 0. In other words, vk either has the same sign as Λk or is 0 or is − signΛk.

Proof : Let there be a s ∈ [1 : n] such that, contrary to the claim, vs ≤ −2 when Λs > 0.

We will show that this leads to a contradiction and leave the case where there is a vs ≥ 2

with Λs < 0 to the reader. We have 2us = Λs − vs > 2, i.e., us > 1. It follows that

∑
k uk = −1, for otherwise (u?,v?) defined by

u?
k =





uk if k 6= s

us − 1 k = s

v?
k =





vk if k 6= s

vs + 2 k = s

(4.21)

satisfies the constraints and

f(u?,v?) = f(u,v)− |us|+ |us − 1| − |vs|+ |vs + 2|

= f(u,v)− us + (us − 1) + vs − (vs + 2)

= f(u,v)− 3,

(4.22)

which contradicts optimality of (u,v). Since
∑

k uk = −1, there is a t ∈ [1 : n] with

ut ≤ −1. It is then clear that (ũ, ṽ) defined by

ũk =





uk if k 6= s, t

us − 1 k = s

ut + 1 k = t

ṽk =





vk if k 6= s, t

vs + 2 k = s

vt − 2 k = t

(4.23)
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satisfies the constraints and

f(ũ, ṽ) = f(u,v)− |us|+ |us − 1| − |ut|+ |ut + 1| − |vs|+ |vs + 2| − |vt|+ |vt − 2|

= f(u,v)− us + (us − 1) + ut − (ut + 1) + vs − (vs + 2)− |vt|+ |vt − 2|

≤ f(u,v)− 4− |vt|+ |vt|+ 2

≤ f(u,v)− 2

(4.24)

which is a contradiction. �

Lemma 4.6.3 If Λs ≥ 2 and Λt ≤ −2 for some s, t ∈ [1 : n], then there is a minimal

solution (u?,v?) with u?
s ≥ 1 and u?

t ≤ −1.

Proof : By Lemmas 4.6.1 and 4.6.2, any minimal solution (u,v) should have us > 0 > ut.

We prove the lemma by proving three statements:

Step 1: No minimal solution (u,v) has us = 0 = ut.

Step 2: If a minimal solution (u,v) has us = 0 and ut ≤ −1, then there is a minimal solution

(u?,v?) with u?
s ≥ 1 and u?

t ≤ −1.

Step 3: If a minimal solution (u,v) has us ≥ 1 and ut = 0, then there is a minimal solution(u?,v?)

with u?
s ≥ 1 and u?

t ≤ −1.

Step 1: If (u,v) is a minimal solution with us = ut = 0, then vs = Λs ≥ 2 and vt = Λt ≤

−2. It is easily verified that (ũ, ṽ) defined by

ũk =





uk if k 6= s, t

1 k = s

−1 k = t

ṽk =





vk if k 6= s, t

vs − 2 k = s

vt + 2 k = t

(4.25)

provides a contradiction to (u,v) being a minimal solution.

Step 2: If a minimal solution (u,v) has us = 0 and ut ≤ −1, then it follows that vs ≥ 2.

By reasoning similar to the previous two lemmas, it follows that
∑

k uk = 1, implying that
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there is some j ∈ [1 : n] with uj ≥ 1. Then, (u?,v?) defined by

u?
k =





uk if k 6= s, j

1 k = s

uj − 1 k = j

v?
k =





vk if k 6= s, j

vs − 2 k = s

vj + 2 k = j

(4.26)

satisfies the constraints and

f(u?,v?) = f(u,v)− |0|+ |1| − |uj |+ |uj − 1| − |vs|+ |vs − 2| − |vj |+ |vj + 2|

= f(u,v) + 1− uj + (uj − 1)− vs + (vs − 2)− |vj |+ |vj + 2|

= f(u,v)− 2− |vj |+ |vj + 2|

(4.27)

By the previous lemma, vj ≥ −1, since Λj > 0 as uj ≥ 1. If vj ≥ 0, then f(u?,v?) =

f(u,v)− 2 + 2 = f(u,v), which proves the result and if vj = −1, f(u?,v?) = f(u,v)− 2−

1 + 1 = f(u,v)− 2, which contradicts the hypothesis that (u,v) is a minimal solution.

Step 3: This closely follows the proof in Step 2 and hence will be left to the reader. �

Lemma 4.6.4 If Λs ≥ 2 and Λt ≤ −2 for some s, t ∈ [1 : n], let

Λ̃k =





Λk if k 6= s, t

Λs − 2 if k = s

Λt + 2 if k = t

(4.28)

If (ũ = [ũk], ṽ = [ṽk]) is a minimal solution for Λ̃, then (u? = [u?
k],v

? = [v?
k]) is a minimal

solution for Λ, where v? = ṽ and

u?
k =





ũk if k 6= s, t

ũs + 1 if k = s

ũt − 1 if k = t

(4.29)

Proof : Since Λ̃s ≥ 0 and Λ̃t ≤ 0, by Lemma 4.6.1, ũs ≥ 0 and ũt ≤ 0. Hence,

f(u?,v?) = f(ũ, ṽ)− |ũs|+ |ũs + 1| − |ũt|+ |ũt − 1|

= f(ũ, ṽ)− ũs + ũs + 1 + ũt − (ũt − 1)

= f(ũ, ṽ) + 2

(4.30)
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Suppose (u?,v?) is not a minimal solution for Λ, then there is a minimal solution (u,v) such

that f(u,v) < f(u?,v?). From Lemma 4.6.3, we can assume that this minimal solution

satisfies us ≥ 1 and ut ≤ −1. Now we construct a new solution, maybe not a minimal one,

(û, v̂) to Λ̃ as follows:

ûk =





uk if k 6= s, t

us − 1 if k = s

ut + 1 if k = t

v̂ = v (4.31)

It is easily verified that (û, v̂) satisfies the constraints with respect to Λ̃. Further, f(û, v̂) =

f(u,v)−2. Thus, we have f(û, v̂) = f(u,v)−2 < f(u?,v?)−2 = f(ũ, ṽ) which contradicts

the assumption that (ũ, ṽ) is a minimal solution to Λ̃. �

Let us look at what Lemma 4.6.4 says through an example. Let Λ = [5 − 3 − 1]

i.e., we want to implement I4 = I5
1I−3

2 I−1
3 using 2-MITEs. Lemma 4.6.4 tells us that to

find the 2-MITE network with minimal number of MITEs implementing this equation, it

suffices to find the minimal solution of I3
1I−1

2 I−1
3 . We are effectively extracting out I2

1I−2
2

out of the equation for I4. Let us write this as I4 = (I2
1I−2

2 )(I3
1I−1

2 I−1
3 ). The product in

the second parentheses can be written as I2
1I1I

−1
2 I−1

3 which is clear 2-MITEable. Notice

that this extraction process is itself highly intuitive and almost obvious. One might then

ask, what is the use of going through all these lemmas? The answer is that while intuition

guides us to the solution, the proofs are needed to establish that the intuition is correct. It

should be noted that a cascade network synthesis of this equation would have required 10

MITEs, including the output one, as opposed to the 7 MITEs required in this synthesis.

Clearly, the difference increases as the number of +2,−2 pairs we can “extract” increases.

Once the extraction process is complete, there are only three possibilities:

1. Λk ∈ {−1, 0, 1} for each k ∈ [1 : n]. The solution is then straightforward, given that

it is clear 2-MITEable and simply uses the synthesis methods described in previous

sections in this chapter. Clearly, ‖Λ‖1 input MITEs are needed for the solution.

2. There is a Λs ≥ 2. Clearly, if Λt < 0, Λt = −1, since otherwise the extraction would

not be complete. In this case, we can extract out a lone +2 with the remaining powers
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being ±1, which keeps Λ 2-MITEable. Hence, the number of input MITEs needed in

this case is ‖Λ‖1− 1. If, after extracting the +2, there is still some Λj ≥ 2, then since

there should be a Λt = −1, we can implement the product either as · · · I1
j I1

j I−1
t · · ·

or as · · · I2
j I−2

t I1
t . Note that the number of MITEs remains the same and hence each

is a minimal solution. For example, I4
1I−1

2 I−1
3 I−1

4 can be split minimally as one of

I2
1I1I1I

−1
2 I−1

3 I−1
4 I2

1I2
1I−2

2 I1
2I−1

3 I−1
4 , I2

1I2
1I−1

2 I−2
3 I1

3I−1
4 , I2

1I2
1I−1

2 I−1
3 I−2

4 I1
4 .

3. There is a Λt ≤ −2. If Λs > 0, Λs = 1. In this case, a −2 is extracted out,

the implementation taking ‖Λ‖1 − 1 input MITEs. Similar to the previous case,

· · · I−2
j I1

s · · · is implemented either as · · · I−1
j I−1

j I1
s · · · or as · · · I−2

j I2
s I−1

s · · · .

The following algorithm for constructing a minimal solution(s) to a given Λ follows:

Step 1: Initialize u = 0, v = Λ.

Step 2: Choose vs ≥ 2, vt ≤ −2. Replace us 7→ us+1, vs 7→ vs−2, ut 7→ ut−1, vt 7→ vt+2.

If no such s, t exist, go to Step 4.

Step 3: Go to Step 2.

Step 4: If there is no vs ≥ 2 or a vt ≤ −2, solution process is complete.

Step 5: If there is a vs ≥ 2, replace us 7→ us + 1, vs 7→ vs − 2. If, after this, there is some

vj ≥ 2, then optionally replace uj 7→ uj + 1, vj 7→ vj − 2, ut 7→ ut − 1, vt 7→ vt + 2 where t is

chosen so that vt = −1 before the replacement.

Step 6: If there is a vt ≤ −2, replace ut 7→ ut− 1, vt 7→ vt + 2. If, after this, there is some

vj ≤ −2, then optionally replace uj 7→ uj − 1, vj 7→ vj + 2, us 7→ us + 1, vs 7→ vs − 2 where

s is chosen so that vs = 1 before the replacement.

Step 7: Go to Step 4.

Once a minimal solution (u,v) is found with minimum number of input MITEs given

by f(u,v), to implement this in terms of 2-MITEs, the following is done:

Step 1: A 2-MITE network consisting of f(u,v) input MITEs and 1 output MITE is

drawn.

Step 2: For each k ∈ [1 : n], |uk|+ |vk| copies of the input current Ik is made and is fed

to the same number of MITEs.

Step 3: A 2-MITEable POPL equation that is equivalent of Λ is obtained by replacing
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IΛk
k in · · · IΛk

k · · · by

( uk∏

i=1

I2
k

)( vk∏

i=1

Ik

)
if Λk > 0, vk ≥ 0

( uk∏

i=1

I2
k

)
I−1
k if Λk > 0, vk = −1

(|uk|∏

i=1

I−2
k

)(|vk|∏

i=1

I−1
k

)
if Λk < 0, vk ≤ 0

(|uk|∏

i=1

I−2
k

)
Ik if Λk < 0, vk = 1

Step 4: The 2-MITEable POPL equation is synthesized using the methods discussed in

previous sections or using the method of diophantine equations in Chapter 3.

4.6.1 General case: Rational power matrix

We now consider the case when the elements of the given power matrix Λ are rational num-

bers, not simply integers alone. Here, it is found advantageous to move to the translinear

loop matrix representation of A = [Λ − 1]. Note that A can be multiplied by any number

without changing the implemented function itself and so we multiply A by the least com-

mon multiple of the positive denominators of the coefficients of A. Hence, we can consider

A to be composed of integers and can also assume that the elements in A have no common

divisor except unity. The condition for 2-MITE implementation of A is that the coefficients

should only be ±2,±1, 0 and the ±2 coefficients in A should add up to {+2, 0,−2}, as was

discussed before.

It is easily seen that the “+2,−2” pair extraction method is straight away applicable

here with very minor changes to account for Λ1n = 1 versus A1n+1 = 0. The main difference

arises in the implementation of the 2-MITE network and not the optimization itself. Since

an+1 is associated with the output current, which is not known a priori, the copies of the

output current for feeding as inputs into the MITES is derived from the output MITE itself.

To clarify, we will simply demonstrate the differences using an example:

Example: Problem: Synthesize Λ = [1/4 3/4]

Here A = [1 3 − 4], after multiplying [Λ − 1] by 4. Writing in terms of the currents, we
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3
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Figure 4.11. Optimal 2-MITE synthesis of the equation I3 = I
1/4
1 I

3/4
2 . The only minimal solution

for this equation is got by implementing I1I2I
2
2I−2

3 I−2
3 = 1 or, equivalently, as I3 = I

1/2
1 I

1/2
2 I1

2I−1
3 .

Clearly, the presence of the 1/2 means that 2 components are needed for the synthesis. Two
slightly different networks result. The Coates graph Gc(X) of the reduced input-connectivity
matrices of these solutions along with the relevant powers is shown in (a) and (c). The
corresponding complete MITE networks are shown in (b) and (d). The presence of the current
mirrors makes the general case of rational powers different from the case where the powers
are integral.

need to synthesize I1I
3
2I−4

3 = 1. It is easy to see that the only minimal solution is obtained

by splitting this as I1I2I
2
2I−2

3 I−2
3 = 1 or as I3 = I

1/2
1 I

1/2
2 I1

2I−1
3 . This we implement using

the methods for synthesizing Λ matrices with ±1/2 powers and the resulting two possible

solutions are shown in Figure 4.11.

4.7 2-MITE synthesis for partially reconfigurable POPL networks : The

MITE FPAA

The Field-Programmable Analog Array (FPAA) is the analog counterpart of the FPGA.

Multiple analog blocks can be connected in different ways to implement different analog

functions. In the context of MITEs, FPAAs made of MITEs are discussed in [59,60,61].

An important question that arises with reconfigurable MITE circuits is the level of
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granularity to which the circuits need be made reconfigurable. In other words, we would like

to have some fixed blocks that are non-reconfigurable and different functions are obtained

by reconnected the input and output terminals of these fixed blocks with those of other fixed

blocks. Making the fixed blocks smaller (in the limit, it is a MITE or a capacitor or a current

mirror) usually increases the number of synthesizable functions but has the disadvantage

of increasing the size of the “switch-matrix” needed to implement these functions. On the

other hand, making the fixed blocks larger reduces the size of the switch-matrix at the cost

of the number of synthesizable functions.

A POPL network is an essential block in synthesizing any MITE network. However, if

we make a POPL network a fixed block in the MITE FPAA, the functional relationship

between the inputs and outputs is fixed. We would, therefore, like to impart some minimal

reconfigurability to the POPL network but also not take it to the limit of a single MITE.

Instead of making the POPL network itself a fixed block, let us consider the option of

making the input section of a POPL network, consisting of the input MITEs, fixed. In

the case of a single-output POPL network which we will be concerned with in this section,

different POPL functions can be obtained by connecting the gates of the output MITE

differently into the input section.

The problem that is solved in this section is to find that optimal input 2-MITE network

(i.e., the optimal input-connectivity matrix X) that gives us the maximum number of

synthesizable functions. Mathematically speaking, for a given X ∈Mn(N) that corresponds

to the input connectivity matrix of a 2-MITE POPL network (i.e., det(X) 6= 0, diag(X) >

0, X1n = 21n), we consider S = {Λ = Y X−1 | Y ∈ M1×n(N); Y 1n = 2} which represents

the set of synthesizable functions. We would like this to be maximal in some sense. Note

that the cardinality of S is usually n2 and is independent of X and so that cannot help

us in distinguishing two synthesizable functions. However, it should be noted that in a

MITE FPAA, we can always change the order of input currents as we want to. Hence,

the ability to synthesize I2
1I2I

−2
3 and I2

1I−2
2 I3 is no better than the ability to synthesize

I2
1I2I

−2
3 , since we would simply exchange I2 and I3 to obtain the latter function. Hence, we

need to take the synthesizable functions modulo permutations. In other words, we need to

distinguish between functions that have distinct (p2, p−2, p1, p−1) where p2, p−2, p1 and p−1
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FIXED  INPUT  MITE    SECTION

SWITCH    MATRIX

I1 I2 I3 I4 I5

Io

Figure 4.12. The scheme used to maximize the number of synthesizable functions while avoid-
ing fine granularity in the MITE FPAA. The input section of the POPL network is fixed.
Multiple functions are obtained by changing the connectivity of the output MITE. This re-
configuration is done through a switch matrix.

are the number of +2,−2, +1 and −1 powers in the POPL function.

We will first solve the problem for the lower order cases n = 3 and n = 4. The optimum

X for higher n becomes apparent from these cases.

The only possible connected 2-MITE POPL networks for n = 3 and n = 4 are shown

in Figure 4.13 and Figure 4.14. The ability of these input sections to synthesize different

functions when the output gates are connected suitably is shown in Table 4.1. A
√

(resp.

×) means that the network in that column can (resp. cannot) implement the function in

Table 4.1. The functional synthesizability of 2-MITE networks for 3 and 4 inputs

n = 3

Function (a) (b) (c)

[1 0 0]
√ √ √

[1 − 1 1]
√ √ √

[2 − 1 0]
√ √

[
√

]
[2 − 2 1]

√ × ×

n = 4

Function (a) (b) (c) (d) (e)

[1 0 0 0]
√ √ √ √ √

[1 − 1 1 0]
√ √ √ √ √

[2 − 1 0 0]
√ √ √ √

[
√

]
[2 − 1 1 − 1]

√ × × × ×
[1 − 2 1 1] × √ × × ×
[2 − 2 1 0]

√ √ √ × ×
[2 − 2 2 − 1]

√ × × × ×
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(a) (b) (c)

Figure 4.13. (a), (b), and (c) are the only connected 2-MITE POPL networks with 3 inputs
i.e., n = 3. From Table 4.1, it follows that (a) can synthesize the maximum number of functions
for n = 3, while (b) and (c) fall short : (b) and (c) cannot synthesize Io = I2

1I−2
2 I3 and (c) can

implement Io = I2
1I−1

2 only by using copies of currents in I1I2I
−1
3 .

that row. A [
√

] means that the function in that row can be implemented by the network

in that column but only when copies of currents are allowed. For example, the function

Λ = [−1 2 0] can be implemented by (a) by choosing Y = [0 2 0], by (b) by choosing

Y = [0 2 0], but can be implemented by (c) only by having Y = [0 2 0] and by sending

a copy of the current I2 through 3 i.e., by having I3 = I2. From the above cases, it is

intuitively clear that the best choice is an (a)-type structure. This is true in general as

given by the following theorem:

Theorem 4.7.1 The structure shown in Figure 4.15, which we call the basic structure, can

implement any 2-MITEable single-output POPL function Λ with integer elements which has

at most n inputs except those in which both the following conditions, which we collectively

call Cn, are satisfied:

1. All the n inputs are raised to nonzero powers.

2. The sum of powers that are ±2 is −2.

Cn can be satisfied only if n is even. If Cn is not satisfied, then we say that Λ is imple-

mentable by the basic structure. Further, a copy of a current is required for implementing
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(a) (b) (c) (d) (e)

Figure 4.14. (a), (b), (c), (d), and (e) are the only connected 2-MITE POPL networks with
4 inputs i.e., n = 4. From Table 4.1, it follows that (a) can synthesize the maximum num-
ber of functions for n = 4, while everything else falls short : (b) and (c) cannot synthesize
Io = I2

1I−2
2 I2

3I−1
4 and Io = I2

1I−1
2 I3I

−1
4 and (c), in addition, cannot implement Io = I1I

−2
2 I3I4 too.

(d) and (e) have obviously very limited functional synthesizability.

1

2

n− 2

n− 1

n

Figure 4.15. The basic structure used to implement almost any 2-MITEable single-output
POPL function with at most n inputs.
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the POPL function only when the sum of ±2 is −2.

Proof: We give the proof by considering the following three cases:

Case 1: The sum of powers in Λ that are ±2 is +2.

Since Λ is 2-MITEable, it follows that the sum of powers that are ±1 is −1. It is clear

that there is at least one power equal to +2 and one equal to −1. Let t be the number of

powers that are “+2” and s the number of powers that are “−1”. Then, there are t − 1

“−2” powers and s− 1 “+1” powers and the remaining k = n− ((2t− 1)+ (2s− 1)) powers

are 0 powers. That Λ is 2-MITEable follows from the following sequence which shows how

the currents should be distributed from bottom to top in Figure 4.15:

0 . . . 0︸ ︷︷ ︸ +1 − 1 . . .− 1︸ ︷︷ ︸ +2 − 2 . . . + 2︸ ︷︷ ︸ −1

0− powers ± 1− powers ± 2− powers

(4.32)

Here, the output connectivity vector y = [yj ] is given by yj = δj,k+1 +δj,k+2s−1 i.e yj is zero

except at those points where the powers change from a “0” or “±1” sequence to a “±1” or

“±2” sequence, respectively.

Case 2: The sum of powers in Λ that are ±2 is 0.

Since Λ is 2-MITEable, it follows that the sum of powers that are ±1 is +1. It is clear that

there is at least one power equal to +1. Let t be the number of powers that are +2 and s

the number of powers that are 1. Then, there are t “−2” powers and s − 1 “−1” powers

and the remaining k = n − ((2t) + (2s − 1)) powers are 0 powers. That Λ is 2-MITEable

follows from the sequence:

0 . . . 0︸ ︷︷ ︸ +1 − 1 . . .− 1︸ ︷︷ ︸ +2 − 2 . . .− 2︸ ︷︷ ︸ +1

0− powers ± 1− powers ± 2− powers

(4.33)

The output connectivity vector y = [yj ] is given by yj = δj,k+1 + δj,k+2s−1 i.e., yj is zero

except at those points where the powers change from a “0” or “±1” sequence to a “±1” or

“±2” sequence, respectively.

Case 3: The sum of powers in Λ that are ±2 is −2.

Since Λ is 2-MITEable, it follows that the sum of powers that are ±1 is +3. Let t be the

number of powers that are “−2” and “s” the number of powers that are +1. Then, there
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are t−1 “+2” powers and s−3 “−1” powers and the remaining k = n− ((2t−1)+(2s−3))

powers are 0 powers. Clearly, the number of nonzero powers, 2(t+s)−4 is even. Comparison

with the previous two cases shows that the presence of three +1 powers means that the

powers cannot be arranged into the basic structure as they are given. The obvious way to

tackle this is to convert one of the −2 powers into −1 powers by splitting I−2 as I−1I−1.

This reduces the problem to the previous case; however, the number of nonzero powers is

also increased by 1. Therefore, if Cn is satisfied, we will not be able to implement Λ by the

basic structure but in case the number of nonzero powers is lesser than n (i.e., k > 0), this

can be accommodated into the previous case. Hence, the theorem follows. �

4.8 Coates graph analysis of general POPL networks

The graph-theoretic analysis of POPL networks that is being presented in this section is

not restricted to 2-MITE networks alone. The purpose of the presentation is to smooth the

way to the discussion about 2-output 2-MITE networks to be presented in the next section.

As shown in Chapter 3, any power matrix Λ ∈ Mp,n(Q) can be implemented using a

POPL network described by two connectivity matrices X ∈Mn(N) and Y ∈Mp,n(N). We

have the relation Y = ΛX. Writing Λ and Y in terms of their columns, Λ = [Λ1 Λ2 . . .Λn]

and Y = [y1 y2 . . .yn], we have yj =
∑n

k=1 Λkxkj . Let us consider the Coates graph Gc(X)

of X. Each vertex k in Gc(X) can be associated with Λk and a yk. It can be seen that

Λj = (yj −
n∑

k 6=j

Λkxkj)/xjj (4.34)

The Λj associated with a vertex j, therefore, depends upon the Λk associated with its

“successors” i.e., the vertices with nonzero xkj , and also an “input” yj . We will refer to Λj

as the power of j. If yj 6= 0, we will say that there is a source of value yj at j.

Let us now apply this analysis to a 2-MITE POPL network. The “usual” value of xjj

is 1; the case xjj = 2 can be viewed as a degenerate case of the directed circuit becoming a

self-loop. Any “successor” clearly has xkj = 1. The successors of j form the set α−1(j) =

{k | α(k) = j}, where α(k), by definition, is the unique parent of k. Hence,

Λj = yj −
∑

k∈α−1(j)

Λk (4.35)
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(a) (b)

i1 i1

i2 i2is is

j j

α(j)

xjj

xi1,j

xi2,j

xis,j

Λj ,yj Λj ,yj

Λi1 ,yi1 Λi1 ,yi1

Λi2 ,yi2 Λi2 ,yi2
Λis ,yis Λis ,yis

Figure 4.16. (a) The vertex j and its successors i1, i2, . . . , is in the Coates graph of a general
POPL MITE network. The power of j, Λj, is related to the powers of i1, i2, . . . is and to the
source at j through Equation (4.35). (b) The graph of (a) for the particular case when the
fan–in is 2. In this case, every vertex j has a unique parent α(j). Barring the degenerate case
of C being a loop, the weights of all edges is now unity .

The above equation gives us a simple, intuitive method to find the Λj at every vertex j

if the graph of a 2-MITE POPL network is given and the source values yj are known.

The procedure is to find the vertices of zero out-degree and starting from these vertices to

proceed to the other vertices by successively applying Equation (4.35), noting the fact that

for vertices with zero out-degree, Λj = yj . It should be noted that sources are generally

absent in many vertices if the number of input MITEs is much larger than the number of

output MITEs. The general case as well as the 2-MITE cases are shown in Figure 4.16.

While the Coates graph itself is that of the reduced input connectivity matrix X̂, we

can make it represent the whole POPL network by associating the pair (Λj ,yj) with each

vertex j. From Equation (4.35), it is enough to give yj at each vertex j, we give Λj for

clarity in the presentation below. We call this also the Coates graph of the POPL network;

the distinction being usually clear.

Suppose we do not know the power of an immediate descendant k′ of j but only that of

k′’s descendants. Assuming that there is no source at k′, Equation (4.35) changes to

Λj = yj + (−1)
∑

k∈α−1(j)
k 6=k′

Λk + (−1)2
∑

k′′∈α−1(k′)

Λk′′ (4.36)
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Proceeding this way, it can be shown inductively that if i1, i2, . . . , it are descendants of

j such that

1. No two vertices amongst i1, i2, . . . , it have a descendent-ancestor relationship

2. Any other descendent of j is either an ancestor or a descendent of at least one of

i1, i2, . . . , it,

then

Λj =

t∑

k=1

(−1)d(ik,j)Λik +
∑

s

(−1)d(s,j)ys (4.37)

where d(ik, j) is the number edges in the path from j to ik and the second sum is over all

the vertices s with a nonzero source in the paths from j to the ik’s.

This formalism helps us in another way in analyzing 2-MITE networks:

If all the vertices in the interior of the path from j to i of length l have no sources and

have in-degree equal to out-degree, then we can replace the whole path with a single edge and

associate a property “length” l with the edge, always noting that the intermediate vertices

have powers that is equal to Λi with alternating signs. Hence, the modified Coates graph

representation (MCGR) of a POPL MITE network can be arrived at by replacing all such

paths with edges in the Coates graph of X. Formally,

Definition 4.8.1 A modified Coates graph representation (MCGR) of a 2-MITE POPL

network is a digraph G∗ satisfying the conditions of Theorem 4.3.1 with “lengths” l(e) ≥ 0

associated with each edge e and a pair (Λj ,yj) ∈ Qp×Np associated with each vertex j so that

it transforms into the Coates graph of the POPL network when the following replacements

are made for each edge e = (i, j):

1. If l = l(e) > 0, then e is replaced by a directed path i, i1, i2, . . . , il = j with yis = 0

and Λis = (−1)l−sΛj when s ∈ [1 : l − 1]. This is shown in Figure 4.17(a).

2. If l(e) = 0, then the edge e is contracted, i.e., i and j are replaced by a new vertex k

whose neighbors are those of i and j with Λk = Λi and yk = yi + yj. This is shown in

Figure 4.17(b).
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il = j
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j1
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j

k

l

l1
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ls

ls

0

l′1

l′1

l′t

l′t

((−1)l−1Λj ,0)

((−1)l−2Λj ,0)

(−Λj ,0)

(Λi,yi)

(Λi,yi)

(Λi,yi)

(Λi1 ,yi1)

(Λi1 ,yi1)

(Λis ,yis)

(Λis ,yis)

(Λi,yi + yj)

(Λj ,yj)

(Λj ,yj)

(Λj ,yj)

(Λj1 ,yj1)

(Λj1 ,yj1)

(Λjt ,yjt)

(Λjt ,yjt)

Figure 4.17. Transformation of a MCGR of a POPL network into the Coates graph of the
network.
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Note that we could have defined the length l(e) to be the property of the tail vertex of e

itself, since each vertex has in-degree 1. Therefore we will sometimes write l(j) to mean

l ((α(j), j)). It is clear that with this definition, Equation (4.35) now transforms to

Λj = yj +
∑

k∈α−1(j)

(−1)l(k)Λk (4.38)

where all the properties are with respect to a MCGR of the POPL network. It is also

easily seen that a MCGR of a POPL network need not be the only MCGR of that network.

However, we now prove the following:

Theorem 4.8.1 There is a MCGR G∗ of any 2-MITE POPL network such that in G∗

1. All vertices have out-degree either 0 or 2.

2. If a vertex j has out-degree 2, then it has no source, i.e., yj = 0 .

3. The source yj of any vertex j with out-degree 0 is either the zero vector or an unit

vector i.e., it has at most one nonzero element which is unity.

Proof: First, if all the vertices in the interior of the path from j to i of length l have

no sources and have in-degree equal to out-degree, then the whole path is replaced by a

single edge of length l. This ensures that there are no vertices of out-degree 1 that have

zero source.

Now, the transformations shown in Figure 4.18 are performed in sequence from top

to bottom. In other words, repeated application of the first transformation results in a

MCGR in which all vertices have out-degree at most 2. It should be noted that the first

transformation results in a out-degree 2 with zero source. Now, if the resultant MCGR

has any out-degree 2 vertex with nonzero source, it is transformed into vertices that satisfy

this condition using the second transformation. The vertices shown with a circle around

them denote those vertices that have out-degree 0. The only vertices that are now left are

those with out-degree 1 or 0. All vertices with out-degree 1 and zero source have already

been eliminated. If a vertex has nonzero source and out-degree 1, then it is transformed

according to the third step shown in Figure 4.18 into a out-degree 2 vertex with zero source.

It should be noted that in this sequence, the MCGRs do not have any vertices requiring
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an earlier step. Finally, if a vertex i has zero out-degree and has a source that is not the

zero vector or a unit vector, then it is transformed according to the last step. Here, k is

a index for which y is nonzero i.e., y(k) 6= 0, from which it follows that y′ = y − ek is a

positive vector that has entries in {0, 1, 2}. These steps show the construction of a MCGR

of a POPL network satisfying Theorem 4.8.1. �

What Theorem 4.8.1 essentially states is that in order to find the MCGRs corresponding

to 2-MITE POPL networks with say, k, outputs, we need to look for those Coates graphs

satisfying Theorem 4.3.1 which have out-degree 2 at all vertices except 2k vertices at which

the out-degree is zero. To give an example, it is easy to see that there are essentially only

three distinct forms of MCGRs for single-output POPL networks, as shown in Figure 4.19.

The different values of l1, l2, l3 and l4 determine the association of vertices with different

powers. The only thing to be noted that l1 should be odd in Figure 4.19(a) and l1 + l2 must

be odd in Figure 4.19(b). Similarly, both l1 and l3 must be odd in Figure 4.19(c).

4.9 2-MITE POPL networks with two outputs

In this section, an attempt is made to characterize POPL networks made of 2-MITEs with

two outputs. Let Λ ∈ M2,n(Q) be a given power matrix. It is clear that a necessary

condition for Λ to be 2-MITEable is that each row of Λ should be 2-MITEable separately,

which is easily checked. Using Theorem 4.8.1, we first create a catalog of the only pos-

sible MCGRs of 2-MITE POPL networks with 2-outputs. The results are presented in

Figure 4.20, where the MCGRs are connected and in Figure 4.21, where the MCGRs are

not connected digraphs. For simplicity’s sake, we will restrict the discussion to the con-

nected graphs in Figure 4.20 as they produce powers that are only ±2,±1 or 0. Even the

MCGR in Figure 4.21(a), 4.21(b), and 4.21(c) can produce nonfractional powers; however,

in that case the power matrix Λ can be separated out as
(

Λ1 0
0 Λ2

)
and it is enough to check

for the 2-MITEability of each row of Λ for the whole matrix to be 2-MITEable. The

structures in Figure 4.20 and Figure 4.21 are the only possible graphs that a MCGR of any

2-MITE 2-output POPL network can take. However, to convert them into actual MCGRs,

the lengths of the edges as well as the sources at the vertices of zero out-degree needs to

be specified. It is clear that this leads to numerous different power matrices. A catalog
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Figure 4.18. Construction of a MCGR of a 2-MITE POPL network satisfying Theorem 4.8.1.
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Figure 4.19. The modified Coates graphs of the only structurally distinct Coates graphs of X
for the single-output case. The length of each edge is also mentioned. Note that the effect of
the powers of the successors of j can be calculated from Equation (4.37)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20. The only possible connected distinct graphs representing the MCGRs of 2-MITE
POPL networks with two outputs. The elements of the power matrices are all in {0,±2,±1}:
no ±1/2 powers exist.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.21. The only possible disconnected MCGRs of 2-MITE POPL networks with two
outputs. The power matrices necessarily have fractional (±1/2) powers, except in (a),(b), and
(c) under some conditions.
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of the different powers that can result from the graphs in Figure 4.20(a) and (c) are given

in Figure 4.22. The powers generated by Figure 4.20(b) and (d) are given respectively at

Figure 4.23 and Figure 4.24, respectively. These powers are derived from the basic graphs

by assuming different lengths of the edges in the graphs. Some necessary conditions for Λ

to be 2-MITEable which follow from these graphs are as follows:

1. Λ cannot contain both
[±2
±1

]
and

[±1
±2

]
. Here,

[±1
±2

]
refers to any one of

[
1
2

]
,
[

1
−2

]
,

[−1
2

]
, and

[−1
−2

]
.

2. An element of {±
[

2
1

]
,±
[

1
2

]
,±
[

2
2

]
} as a column in Λ cannot exist as a column of Λ if

an element of {±
[

2
−1

]
,±
[

1
−2

]
,±
[

2
−2

]
} is a column of Λ and vice versa.

3. ±
[

2
2

]
and ±

[
1
−1

]
cannot both be columns of Λ. Similarly, ±

[
2
−2

]
and ±

[
1
1

]
cannot

both be columns of Λ.

4.10 Appendix 4.A

In this appendix, we prove the following theorem:

Theorem 4.10.1 The input connectivity matrix X of a 2-MITE POPL network satisfying

Assumption 1 is diagonally stable.

To recall the definition given in Chapter 2,

Definition 4.10.1 A matrix M ∈Mn(R) is said to be diagonally stable if it has a positive

diagonal Lyapunov solution i.e., there exists a diagonal matrix P > 0 such that PM +MT P

is positive definite.

Proof of Theorem 4.10.1: The proof will be given in four steps:

Step 1 We will show that the input connectivity matrix X can be transformed by a simulta-

neous permutation of rows and columns into the form



X1 0

X2 X3


 (4.39)

where X1 is a circulant matrix of a particular form (for the definition of circulant

matrices, see [28]) and X3 is a acyclic matrix, i.e., a square matrix whose associated
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Figure 4.22. Different powers generated by the MCGRs in Figure 4.20(a) and (c).
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Figure 4.23. Different powers generated by the MCGR in Figure 4.20(b).

121



ˆ 0 0

˜ˆ 0 0

˜

ˆ 0 0

˜ˆ 0 0

˜

ˆ 0 0

˜ˆ 0 0

˜

ˆ 0 0

˜

ˆ 0 0

˜

ˆ 0 0

˜

ˆ 0 0

˜

ˆ 0 0

˜
ˆ 0 0

˜

ˆ 0 0

˜
ˆ 0 0

˜

ˆ 0 0

˜

ˆ 0 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜

ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜

ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜
ˆ 1 0

˜

±
ˆ 1 0

˜
±

ˆ 1 0

˜
±

ˆ 1 0

˜

±
ˆ 1 0

˜

±
ˆ 1 0

˜
±

ˆ 1 0±̃
ˆ 1 0

˜

±
ˆ 1 0

˜

±
ˆ 1 0

˜

±
ˆ 1 0±̃

ˆ 1 0

˜

±
ˆ 1 0

˜

±
ˆ 1 0

˜

±
ˆ 1 0

˜
±

ˆ 1 0

˜

±
ˆ 1 0

˜
±

ˆ 1 0

˜

±
ˆ 1 0

˜

±
ˆ 1 0

˜
±

ˆ 1 0

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜

ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜

ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜
ˆ 0 1

˜

±
ˆ 0 1

˜
±

ˆ 0 1

˜
±

ˆ 0 1

˜

±
ˆ 0 1

˜

±
ˆ 0 1

˜
±

ˆ 0 1

˜
±

ˆ 0 1

˜

±
ˆ 0 1

˜±
ˆ 0 1

˜

±
ˆ 0 1

˜
±

ˆ 0 1

˜

±
ˆ 0 1

˜

±
ˆ 0 1

˜

±
ˆ 0 1

˜
±

ˆ 0 1

˜

±
ˆ 0 1

˜
±

ˆ 0 1

˜

±
ˆ 0 1

˜
±

ˆ 0 1

˜

±
ˆ 0 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜
±

ˆ 1 1

˜±
ˆ 1 1

˜

±
ˆ 1 1

˜±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ 1 1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜

±
ˆ

1
−

1

˜
±

ˆ 2 1

˜
±

ˆ 2 1

˜

±
ˆ 2 1

˜
±

ˆ 2 1

˜

±
ˆ

2
−

1

˜
±

ˆ
2
−

1

˜

±
ˆ

2
−

1

˜
±

ˆ
2
−

1

˜

±
ˆ 1 2

˜

±
ˆ 1 2

˜

±
ˆ 1 2

˜

±
ˆ 1 2

˜

±
ˆ

1
−

2

˜
±

ˆ
1
−

2

˜

±
ˆ

1
−

2

˜
±

ˆ
1
−

2

˜

±
ˆ 2 0

˜
±

ˆ 2 0

˜
±

ˆ 2 0

˜
±

ˆ 2 0

˜

±
ˆ 0 2

˜
±

ˆ 0 2

˜
±

ˆ 0 2

˜
±

ˆ 0 2

˜

Figure 4.24. Different powers generated by the MCGR in Figure 4.20(d).
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Coates graph is such that the underlying undirected graph is a forest, barring self-

loops. Without loss of generality, we will assume that X itself is of the form in

Equation (4.39).

Step 2 X is diagonally stable if and only if X1 and X3 are diagonally stable. This fact has

been proved in [62].

Step 3 We will show that X1 is diagonally stable. Here the assumption that the directed

circuit C is of odd length is crucial.

Step 4 We will show that X3 is a P -matrix. An acyclic P -matrix is diagonally stable [62].

Step 1: First, it must be noted that if X is a direct sum of matrices that are diagonally

stable, then X is also diagonally stable. If Q is a permutation matrix, then X is diagonally

stable, D-stable, or is a P0 matrix if and only if QXQ′ also has the same property. This

means that we can reorder the rows and the columns similarly without affecting any property

of the MITE network. Hence, we can write X as a direct sum of matrices that are connected,

each representing the components of Gc(X). Thus, without loss of generality we can assume

that Gc(X) is connected and, by Theorem 4.3.1, it follows that there is a unique directed

circuit C associated with Gc(X̂).

Vertex ordering convention: For purposes of this proof, we will follow the following

convention:

1. The vertices in the directed circuit C of length k are numbered 1, 2, . . . , k, with 2

being the ancestor of 1, and so on.

2. Every other vertex k satisfies k > α(k) i.e., all the ancestors of k are indexed with a

number lower than k in the usual ordering of integers.

By Theorem 4.3.1, if the directed circuit is contracted to a vertex v, the resultant graph

is a rooted tree with v as the root. Since there are no edges directed to v from the remaining

vertices in the tree, it is clear that in X = [xij ], xij = 0 if i ∈ [1 : l] and j /∈ [1 : l]. Hence it

is clear that X is of the form in Equation (4.39) with X1 being a square matrix of order k

and X3 a square matrix of order n− k.
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Gc(X1)

Gc(X3)

v1

v2

v3 v4

C

Figure 4.25. The input-connectivity matrix X can be written, by a permutation similarity, in
the form shown in Equation (4.39). Gc(X1) represents the directed circuit C, Gc(X3) represents
Gc(X) − C, Gc(X2) represents the edges connecting Gc(X1) and Gc(X3).

By the vertex ordering chosen, it is clear that for i = 1, 2, . . . , k − 1, the only nonzero

elements in the ith row are xii and xi,i+1 and are all 1). Further, xkk = xk1 = 1. Hence, we

have

X1 =




1 1 0 · · · 0

0 1 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · 1 1

1 0 · · · 0 1




(4.40)

It should be noted that X3 represents the edges connecting the vertices in C with those

not in C as shown in Figure 4.25. Consider X2. X2 is obtained from Gc(X) by deleting C

and the edges connecting C and the remaining vertices i.e., X2 corresponds to Gc(X)−C.
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It is clear that deleting C creates as many rooted trees as there are edges between C and

the remaining vertices, with roots v1, v2, . . . as shown in Figure 4.25. Clearly, Gc(X2) does

not have any circuits, barring the self-loops, since the only circuit in Gc(X̂) is C. Hence

X2 is an acyclic matrix.

Step 2: The fact that the diagonal stability of a block triangular matrix depends only on its

diagonal blocks is mentioned in [63] and is proved in [62]. The proof of this theorem requires

a result from [64] that gives the following characterization of diagonally stable matrices: A

matrix A is diagonally stable if and only if BA has a positive diagonal element for every

nonzero positive semidefinite matrix B.

Step 3: We will show that X1 +XT
1 is positive definite, which clearly makes X1 diagonally

stable. For this, we need to show that uT X1u = uT (X1 + XT
1 )u > 0 for all nonzero

u = [ui] ∈Mk.

uT X1u =
k∑

i=1

ui

k∑

j=1

[X1]ijuj

=
k−1∑

i=1

ui(ui + ui+1) + uk(uk + u1)

=
k∑

i=1

u2
i +

k−1∑

i=1

uiui+1 + uku1

=
1

2

{
k−1∑

i=1

(u2
i + u2

i+1 + 2uiui+1) + u2
k + u2

1 + 2uku1

}

=
1

2

{
k−1∑

i=1

(ui + ui+1)
2 + (u1 + uk)

2

}

≥ 0 for all u 6= 0

(4.41)

uT X1u = 0 if and only if for all i ∈ [1 : k − 1], ui+1 = −ui as well as uk = −u1. The

first condition gives ui = (−1)i+1u1 for all i ∈ [1 : k], which implies uk = (−1)k+1u1. Since

the length of the directed circuit C, k, is odd by Theorem 4.3.1, we have u1 = uk = −u1,

which implies u1 = 0, from which it follows that u = 0. �

Step 4:

Claim 4.10.1 X3 is a P -matrix
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Proof : Let X̂3 = X3− In−k. Gc(X̂3) is a forest and since a direct sum of P–matrices is a

P -matrix, it suffices to show that X3 is a P -matrix when Gc(X3) is connected. By Theorem

4.3.1, the undirected graph underlying Gc(X̂3) is a rooted tree, and hence three cases arise:

1. n− k = 0 i.e., X3 is empty - Here there is nothing to prove since X = X1.

2. n − k = 1 i.e., X3 is a 1 × 1 matrix - Here it is clear that X3 is a P -matrix since

X3 = [1]

3. n− k ≥ 2.

Let s = n − k. We will prove the claim by induction on s. The base cases s = 0, 1

have been taken care of above. Let s′ ≥ 2 and let the claim be true for all nonnegative

integers s < s′. We first claim that there is at least one vertex of out-degree 0 in Gc(X̂3).

To show this, let v be the root and consider the directed path P of largest length beginning

from v and ending in the vertex (say) w. If w has a nonzero out-degree, then there is an

edge (w, w1) from w to w1. w1 has to be a vertex in P , for otherwise, P is not the longest

directed path from v. On the other hand, if w1 is in P , then Gc(X̂3) cannot be a tree-

hence w has zero out-degree. By renumbering the vertices suitably, which is equivalent to

a permutation similarity of X3, we can assume that w = s′, which means that X3 is of the

form

X3 =




X4 0(s′−1)×1

uT 1


 (4.42)

Here u is a (s′− 1)× 1 vector and X4 is a (s′− 1)× (s′− 1) matrix. We now use a property

of P–matrices, proved in [65] : Let M be a square matrix of the form




M1 a1

aT
2 a


 (4.43)

where M1 is a square matrix, a is a scalar and a1 and a2 are column vectors of suitable

dimensions. Then M is a P -matrix if and only if M1, [a], and M1 − a1(a
−1)aT

2 are P–

matrices.

Applying the above property to X3, it is clear that X3 is a P -matrix if and only if X4,

1, and X4 − 0(1)uT = X4 are P–matrices. X4 corresponds to the digraph Gc(X3)− s′ and
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is connected since s′ has out-degree 0 and is, hence, clearly a rooted tree. By the induction

hypothesis, X4 is a P -matrix. This proves that X3 is a P -matrix. �

4.11 Conclusion

In this chapter, the importance of 2-MITE networks is shown by the fact that the D-stability

of these networks is guaranteed if the input-connectivity matrix is nonsingular and has a

positive diagonal. A graph-theoretic approach to the problem of synthesis using 2-MITEs

is taken. An expression for the powers obtained in a 2-MITE POPL network is arrived at

using the theory of Coates graphs and is shown in terms of distances between two vertices

in a digraph. This leads to necessary conditions and, for the single-output case, sufficient

conditions for a power matrix to be 2-MITEable.
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CHAPTER 5

SYNTHESIS OF MITE LOG-DOMAIN FILTERS WITH UNIQUE

OPERATING POINTS

Practical log-domain filter circuits might have multiple operating points in regions where

the translinear element does not obey the exponential law. In this chapter, a method is

proposed to implement any filter by a log-domain circuit that necessarily has a unique

operating point. Any state-space description of the filter is shown to have an equivalent

description that can be implemented by such a circuit. This methodology is applied to

the synthesis of MITE filters. As an example, shifted-companion-form (SCF) filters are

synthesized. Further, it is proved that the resulting filters have a unique operating point.

5.1 Introduction

Log-domain filters are usually designed under the assumption that the translinear element

has ideal exponential characteristics. However, this exponential characteristic is valid only

in a certain region of operation of the translinear element. Hence, though the ideal equa-

tions indicate that the circuit has a unique operating point, it might happen that the filter

implementation leads to multiple operating points. The existence of multiple operating

points in log-domain filters using MOSFETs in the subthreshold region is reported in [66].

However, no general procedure is known to synthesize log-domain filters in a manner that

avoids this phenomenon. Here, a synthesis methodology using first-order low-pass filters,

FOLPFs for short, is proposed. Synthesis using FOLPFs has the advantage that the expo-

nential state-space transformation is already implicitly done in the FOLPF. Further, it will

be shown that the state-space decomposition can be done such that the resulting circuit

has a unique operating point.
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5.2 Mathematical Preliminaries

The sign pattern of a real matrix A, denoted by sign(A), is defined as the matrix obtained

by replacing each element of A by its sign; i.e.,

[sign(A)]ij =





1 if Aij > 0,

−1 if Aij < 0,

0 if Aij = 0.

The qualitative class Q(A) of a real matrix A ∈ Rn×m is defined by Q(A) = {B ∈

Rn×m| sign(B) = sign(A)}. A square matrix A is a sign-nonsingular (SNS) matrix if every

matrix in its qualitative class is nonsingular.

5.3 Constraints on the State-Space Equations

The general state-space form of any multiple-input multiple-output (MIMO) filter is given

by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),

(5.1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and A, B, C, and D are matrices of appropriate

dimensions.

Definition 5.3.1 The state-space system in Equation (5.1) is said to be implementable by

FOLPFs if A has negative diagonal entries.

Clearly, this means that one can write Equation (5.1) in terms of low-pass filters as

ẋ + Ex = A′x + Bu

y = Cx + Du,

(5.2)

where E is a diagonal matrix with positive diagonal and A′ = A + E has zero diagonal.

Definition 5.3.2 The state-space system in Equation (5.1) is said to have a sign-unique

operating point if A is a SNS matrix.

The motivation behind the above definition is seen in Theorem 1 in [36], a slightly

modified version of which is the following:
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Theorem 5.3.1 Let U be an open convex subset of Rn and f : U ⊆ Rn 7→ Rn a C1 function

such that all the elements of the Jacobian matrix Df(x) of f have the same sign for all

x ∈ U . Then, f is injective on U if Df(x) is a SNS matrix.

It will be seen that solving for the operating point of a Multiple-Input Translinear

Element (MITE) implementation of Equation (5.1) requires the solution of a nonlinear

equation of the form f(V) = 0, where f : (0, VDD)n 7→ Rn is such that the partial derivative

∂fi

∂xj
has the same sign as Aij . Hence, the operating point is unique if A is a SNS matrix.

Therefore, all state-space systems will be required to have a sign-unique operating point.

5.3.0.1 Example: Shifted-Companion-Form Filters

The shifted-companion-form (SCF) [67] lends itself easily to synthesis by the proposed

methodology. The MITE implementation of a SCF state-space system is particularly simple

in the case where the transmission zeros are formed by summation of the state variables.

The (A, B, C, D) matrices from Equation (5.1) of this single-input single-output system

are [67]

A =




−an−1 − α −an−2 −an−3 · · · −a1 −a0

1 −α 0 · · · 0 0

0 1 −α · · · 0 0

...

0 0 0 · · · 1 −α




, (5.3)

B =

[
1 0 · · · 0

]t

, C =

[
bn−1 bn−2 · · · b0

]
, and D = d (a scalar).

The above state-space realization is obtained from the transfer function

Y (s)

U(s)
=

bn−1(s + α)n−1 + bn−2(s + α)n−2 + · · · b0

(s + α)n + an−1(s + α)n−1 + · · · a0
+ d

Theorem 5.3.2 A is a SNS matrix if α > 0 and a0, a1, . . . , an−1 are nonnegative. If α = 0,

then the companion matrix A is a SNS matrix if a0 6= 0.
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Proof : Let α > 0 and a0, a1, . . . , an−1 be nonnegative. It suffices to show that Mx =

0⇒ x = 0 for any M ∈ Q(A). Mx = 0 implies that

|Mnn−1|xn−1 = |Mnn|xn

|Mn−1n−2|xn−2 = |Mn−1n−1|xn−1

...

|M21|x1 = |M22|x2

|M11|x1 + |M12|x2 + · · · |M1n|xn = 0

(5.4)

It should be noted that all the elements of M above (except the last row) and M11 are

necessarily nonzero. It is clear that xi = βixn for i ∈ [1 : n] with βi > 0. The last equation

in Equation (5.4) yields xn
∑n

i=1|M1i|βi = 0, which implies that xn and hence x is zero.

The proof is similar and easier when α = 0. �

To show that constraining A in Equation (5.1) to be a SNS matrix does not restrict the

set of transfer functions obtainable from Equation (5.1), the following result is proved:

Theorem 5.3.3 There exists a SNS matrix J with negative diagonal entries similar to any

Hurwitz matrix A. In particular, J can be written as a direct sum, i.e., a block diagonal

matrix, of shifted-companion matrices of the type shown in Equation (5.3) with α > 0.

Proof : J can be chosen to be the real Jordan canonical form of A [28]. A more useful

SNS matrix similar to a Hurwitz matrix A is obtained by the following method:

Let α > 0 be such that −α > maxλ∈σ(A)<e(λ), where σ(A) is the set of eigenvalues of

A. Define A′ = A + αI. Clearly, σ(A′) = {λ + α|λ ∈ σ(A)} and hence, by the definition

of α, A′ is Hurwitz. Taking the rational form or the rational canonical form of A′ [28], a

matrix J ′ is obtained that is a direct sum of companion matrices of the form depicted in

Equation (5.3) with α = 0. It follows from the assumption that A′ is Hurwitz that each

block companion matrix in J ′ is Hurwitz. Hence, the first row of each block is nonnegative.

If A′ = S−1J ′S, then A = A′−αI = S−1(J ′−αI)S. Clearly, J = J ′−αI is a direct sum of

shifted-companion matrices each of which satisfies the conditions of Theorem 5.3.2 so that

J is a SNS matrix with negative diagonal entries. �
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Because of the above theorem, it can be assumed that the given state-space system in

Equation (5.1) has a sign-unique operating point and is implementable by FOLPFs. A

synthesis procedure for implementing such a state-space system is given below:

5.4 Synthesis Procedure

Step 5.4.1 (Dimensionalization) The variables will be first scaled [18] so that each sig-

nal is replaced by a ratio of a signal current to a unit current which gets canceled out as the

system is linear. The derivative d
dt is replaced by τ d

dt . Hence, each state-space equation can

be written as:

τ
dIxi

dt
+ EiIxi =

n∑

j=1

A′
ijIxj +

m∑

k=1

BikIuk
i ∈ [1 : n] (5.5)

Iyi =
n∑

j=1

CijIxj +
m∑

k=1

DikIuk
i ∈ [1 : p] (5.6)

Step 5.4.2 (FOLPF implementation) A MITE FOLPF [16, 18] used in the ith first-

order equation in Equation (5.5) is shown in Figure 5.1(a). The MITE network satisfies

the equation:

CUT

κ

dIxi

dt
+ IτiIxi = I ′τi

Iini (5.7)

Fix a value of C and define Iτ = CUT

κτ . Define Iτi = EiIτ . Choose a αi > 0, typically

the magnitudes of one of the coefficients in the right hand side of Equation (5.5)), and

define I ′τi
= αiIτ . Hence, the required input current Iini to the filter is given by Iini =

∑n
j=1

A′

ij

αi
Ixj +

∑m
k=1

Bik
αi

Iuk
.

Step 5.4.3 (Multiplier implementation) The multiplications (
A′

ij

αi
)Ixj , (Bik

αi
)Iuk

, CijIxj ,

and DikIuk
in Equation (5.5) and Equation (5.6) are implemented through straightforward

methods given in [18]. The inputs Iuk
are passed through diode-connected MITEs to gen-

erate the voltages Vuk
as shown in Figure 5.1(b). Hence, Ixi is associated with a voltage

Vxi at the output MITE of the ith FOLPF shown in Figure 5.1(a) and similarly, Iuk
is

associated with Vuk
. The circuits for (

A′

ij

αi
)Ixj , (Bik

αi
)Iuk

, shown respectively in Figure 5.1(c)
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and Figure 5.1(d), are in terms of these voltages. The products for the output currents are

generated in an identical fashion.

Step 5.4.4 (Summation) The inputs Iini to the FOLPFs and the outputs Iyi are found

simply by using KCL, through a current mirror if needed as shown in Figure 5.1(c) and

Figure 5.1(d). Also, the output MITE of each FOLPF can be removed unless the state

variable Ixi is itself one of the output currents Iyi. Consolidation [18] can be used to remove

redundancies whenever possible.

5.4.0.2 Example : SCF filter synthesis

For α > 0, the SCF state-space equations are implementable by FOLPFs and have a sign-

unique operating point. Though the synthesis procedure detailed above can be used directly,

a convenient scaling of the state variables before applying the synthesis procedure results

in a much simpler topology. Define T = diag(1, an−2, an−3, . . . , a0). The SCF system in

Section 5.3.0.1 is transformed according to A′ = TAT−1, B′ = TB, C ′ = CT−1, and

D′ = D. The modified system is given by the following equations:

ẋ1 + (α + an−1)x1 = u− x2 − x3 · · · − xn

ẋ2 + αx2 = an−2x1

ẋ3 + αx3 =
an−3

an−2
x2

...

ẋn + αxn =
a0

a1
xn−1

y = bn−1x1 +
bn−2

an−2
x2 +

bn−3

an−3
x3 + · · · b0

a0
xn + du

It should be noted that the state variable equations are a cascade of FOLPFs with input

u−x2−x3 · · ·−xn. Consolidation can be applied to a cascade of FOLPFs since the output

MITE of a FOLPF and the input MITE of the FOLPF following it can be removed and

the corresponding voltages connected, as shown in Figure 5.2. The whole generic SCF filter

is shown in Figure 5.2. Note that the required multiplier blocks are easily synthesized as

described in the synthesis procedure. Also, this block can be used as a “universal active
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filter” to generate filters of any type and any order. For those filters that do not pass DC,

an offset needs to be applied at the output so that the requirement of positive currents

through the MITEs is satisfied.

5.5 Uniqueness of the Operating Point

For determining conditions on the synthesized filter such that the operating point is unique,

a general model for a MITE that covers all regions of operation of the basic translinear

element (BJT, MOSFET etc.) constituting the MITE is needed. Based on a model for a

MITE that assumes the weighted sum of voltages to be ideal, sufficient conditions on the

MITE network topology for the operating point to be unique have been given elsewhere [51].

As only 2-MITEs are required for this synthesis methodology, even the requirement of ideal

weighted summation can be discarded. For the nonideal model of the MITE in Figure 5.3,

the current through the input gates will be required to zero. The drain current is assumed

to be of the form I = h(V1, V2, Vd), where h : (0, VDD)3 7→ (0,∞) is a C1 map satisfying :

∀ (V1, V2, Vd) ∈ (0, VDD)3

Transconductance 1 gm1 ,
∂h

∂V1
> 0,

Transconductance 2 gm2 ,
∂h

∂V2
> 0,

Output conductance go ,
∂h

∂Vd
≥ 0

(5.8)

In a floating-gate implementation, this is nothing more than the assumption that the non-

ideal weighted summation is monotonically increasing along with the requirements of pos-

itive transconductance and nonnegative output conductance of the MOSFET. A similar

form can be given for the drain current through a PFET in a current mirror or a current

source, taking care about the signs for the different conductances. A brief proof of the

uniqueness of the operating point is as follows:

Theorem 5.5.1 The DC MITE circuit realizing Equation (5.1) according to the synthesis

procedure in Section 5.4 has at most one operating point with the operating point voltages

in (0, VDD) if A is a SNS matrix.

Proof : Since all the elements (MITEs or PFETs) are voltage controlled, the nonlinear

node equation [27]: f(V) = 0 can be written, where f : (0, VDD)k 7→ Rk, V being the vector
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of drain-to-ground voltages of the MITEs with common drains. It should be noted that

the MITEs that are the outputs of products in Equation (5.6) do not affect the operating

point uniqueness. By Theorem 5.3.1, it suffices to prove that the Jacobian Df(V) does

not change sign patterns for V ∈ (0, VDD)n and that Df is a SNS matrix. It can be seen

from the way the MITEs are connected that (Df(V))ij has a sign independent of V. Df

is nothing but the node-admittance matrix of the linear network N obtained by setting the

DC sources to zero and replacing the nonlinear elements (PFETs or MITEs) by their small-

signal equivalent circuits according to Equation (5.8). Consider the set N of linear networks

obtained by changing only the magnitude of different transconductances and conductances

in N . Any matrix M ∈ Q(Df) is obtained as the node-admittance matrix of an element

N ′ of N . To show that det(M) 6= 0, it suffices to prove that the corresponding network has

a unique solution in which the node-to-ground voltages V are zero. The following easily

provable observations about voltages in N ′, which correspond to the voltages in Figure 5.1,

are made:

1. The voltages Vuk
, V ′

ij , Vik, and Vref are zero.

2. Wherever the voltage Vini appears in the linear node equations, it can be replaced by

βiiVxi where βii > 0.

3. If K = sign(A′), then for some arbitrary βij > 0, Vini = −∑n
j=1
j 6=i

βijKijVxj

Combining the results in 2) and 3), it is clear that LV = 0 where V = (Vx1 , Vx2 , . . . , Vxn)t

and L ∈ Rn×n is given by Lii = βii and for i 6= j, Lij = βijKij . By the definition of K, L

is in Q(A). Since A is a SNS matrix, det(L) 6= 0 and hence V = 0, which implies that all

the node-to-ground voltages in N ′ are zero. �

5.6 Conclusion

Conditions on the state-space equations for log-domain filters that ensure the uniqueness

of the operating point of the resulting circuit have been presented. A synthesis procedure

using first-order low-pass filters to implement any log-domain filter has been described. It

is proved that the operating point for the synthesized filter is unique. As an example,
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shifted-companion-form filters of arbitrary type and order are synthesized.
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Vref Vref
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I ′
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Vxj Vxj

V ′
ij V ′

ij
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Vuk

Vuk

Iuk

A′
ij < 0 A′

ij > 0

Bik < 0 Bik > 0

|A′

ij |
αi

Iref |A′

ij |
αi

Ixj

|Bik|
αi

Iref |Bik|
αi

Iuk

A′

ij

αi
Iref A′

ij

αi
Ixj

Bik

αi
Iref

Bik

αi
Iuk

(a) (b)

(c)

(d)

Figure 5.1. The circuit blocks used in implementing the first-order equations in Equation (5.5).

(a) The MITE low-pass filter used in the ith equation in Equation (5.5). (b) The MITE
circuits for generating the voltages Vref and Vuk

used in the multipliers. (c) The MITE circuits

implementing the product (
A′

ij

αi
)Ixj

for A′

ij > 0 and A′

ij < 0. (d) The MITE circuits implementing

the product (Bik

αi
)Iuk

for Bik > 0 and Bik < 0.
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V1

V2

I

Figure 5.3. Symbol for a 2-MITE. Ideally, it should obey the law I = Is exp( κ
UT

(V1 + V2)), where

Is is a scaling current.
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CHAPTER 6

SYNTHESIS EXAMPLES

6.1 Synthesis of static functions

The implementation of nonlinear functions using translinear circuits is discussed in [4]. Ele-

mentary operations like addition and subtraction are easily performed in any current-mode

system by using Kirchoff’s current law (KCL) and a current mirror, respectively. Translinear

circuits, in particular, can also do other elementary operations like multiplication, division,

and exponentiation with rational exponents. Hence any algebraic function can be syn-

thesized by simply expressing it in terms of these elementary operations. Transcendental

functions like exp(x), log(x), arctan(x) are implemented by suitably approximating them

using algebraic functions. Different techniques exist for approximating functions by ratio-

nal functions [68], approximation with minimax or near-minimax error being one of the

more suitable methods for approximation over an interval. Remez’s algorithm [68] is used

to determine the minimax rational approximation while numerous other techniques exist to

get near-minimax approximations. For example, Maple’s ‘minimax’ command implements

Remez’s algorithm.

6.1.1 Current Splitters

The basic translinear element in a translinear circuit (MITE, BJT, etc.,) usually accepts

currents of only one sign. If it is known that a bidirectional current is bounded below by

some known value, then it is easy to see that simply by providing the required offset to the

bidirectional current, one can convert it to a current of one sign alone. However, this is of

no use when the bounds on the signal are unknown. Even if the bounds are known but

are large in magnitude, the required power consumption is sometimes prohibitive. Current

splitters circumvent this by “splitting” I as two positive currents Ip and In (i.e., I = Ip−In)

that remain positive no matter what the value of I is. The two popular current splitters

are (a) the geometric current splitter, where IpIn = I2
b for some constant current Ib, and

(b) the harmonic current splitter, where IpIn/(Ip + In) = Ib. It can shown by solving for

Ip and In in terms of I that these currents remain positive for any value of I. However,
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the currents in a harmonic splitter always remain greater than Ib, a fixed positive value,

though they get arbitrarily close to it as |I| → ∞. The geometric splitter currents are not

bounded below by any positive current.

Though the concept of the geometric current splitter seems to be a natural consequence

of the equations in a BJT Class AB output stage, [69] seems to be the first publication of

the use of the harmonic mean output stage, although the harmonic mean circuit itself was

derived in [4]. The use of the current splitters in Class AB log–domain filtering is given

in [70,71,8, 72,73,74].

6.1.1.1 MITE Geometric current splitter

The MITE implementation of the geometric constraint IpIn = I2
b , or equivalently, the

translinear loop equation I2
b I−1

p I−1
n = 1, is shown in Figure 6.1(a) along with the necessary

current mirroring to implement Ip − In = Ix, where Ix is the bidirectional input current.

An alternative implementation, that is useful in some applications to be discussed later,

is shown in Figure 6.1(b). A plot of Ip and In, obtained using the models for a AMI .5µ

process, is shown at Figure 6.3 for Ib = 10nA.

6.1.2 Particle filters and target tracking

Particle filters are a class of recursive simulation methods used for estimating the state of a

discrete-time system in the presence of noise from a set of observations made on the system.

The state-space models can be nonlinear. Bearings-only tracking involves estimating the

target states based upon angle measurements. The particle filter algorithm, in this context,

involves the calculation of the following function [75,76]:

1√
2πσr

2
exp−

(
zk − arctan

y
(i)
k

x
(i)
k

)2

2σr
2

, (6.1)

where zk is the angle measurement obtained at a suitable sensor node and xi
k, y

i
k are com-

ponents of the ith proposed particle. The angle measurement may be obtainable directly in

analog [76]. As a result of the collaborative work done with Dr. Rajbabu Velmurugan and

Dr. James McClellan of the Center for Signal and Image Processing at Georgia Tech, we

explore the possibility of implementing all or part of the particle filtering algorithm using

MITEs.
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(a)

(b)

Ix

Ix

In

In

Ip

Ip

IbIb

Ib

Figure 6.1. Two MITE circuits for the geometric current splitter. The current Ix is split into
two currents Ip and In such that their geometric mean is a fixed bias current Ib.
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Ix

InIp

Ib Ib

Figure 6.2. The version of the circuit in Figure 6.1(b) with PFET floating-gate MOSFETs for
the MITEs.
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Currents in a geometric current splitter

 

 

I p I b
,

I n I b

Ix

Ib

Ip →

Ip − circuit simulation
In − circuit simulation
Ip − ideal
In − ideal

← In

Figure 6.3. Simulation of the currents in a MITE geometric current splitter for the circuit
shown in Figure 6.2.The value of Ib is 10nA.
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The transcendental functions that need to be implemented in the bearings-only tracking

algorithm are the inverse tangent arctan(x) and the Gaussian exp(−x2/2). The approxi-

mations and the corresponding implementations of these functions are considered below.

6.1.3 Implementing static functions with a geometric current splitter

Let y = f(x) be the desired functional behavior of some translinear block and also suppose

that x can take values of both signs. As discussed before, there are many advantages to

using a current splitter. However, the output of a current splitter is two currents and hence

it might be thought that the implementation would be considerably more complicated than

if we had just a single positive input. It is our aim here to show that this is not the case,

especially when f is an odd or even function. Throughout this section, a geometric splitter

is used; the results do not automatically translate to other cases.

First, we split f into its odd and even parts, i.e., we define fe(x) = (f(x) + f(−x))/2

and fo(x) = (f(x)− f(−x))/2. Since fe and fo themselves are even and odd, respectively,

we can assume that fe(x) = g(x2) and that fo(x) = xh(x2). Let x+ and x− be the

outputs of the current splitter such that x+x− = a2 for some constant a. We have x2 =

x2
+ + x2

− − 2x+x− = rb − a2, where the new variable r is defined as r = (x2
+ + x2

−)/b. If

we define g(x2) = g(rb − a2) = g̃(r) and h(x2) = h(rb − a2) = h̃(r), then it is clear that

f(x) = g̃(r) + (x+ − x−)h̃(r). Hence, the majority of the computation is in terms of the

new positive variable r: x+ and x− themselves separately enter the picture only through

one multiplication. Using this procedure the process of computing nonlinear functions is,

therefore, considerably simplified.

6.1.4 Implementation of the inverse tangent function

The function φ to be approximated is as follows (normalized so that φ(∞) = 1)

φ(x) =
2

π
arctan(x), where |x| <∞. (6.2)

An approximation of φ using algebraic functions, given in [4], is as follows:

y = f(x) =
x

0.63 +
√

0.88 + x2
, where |x| <∞. (6.3)

The maximum error obtained using the approximation is less than 0.05% of the maximum

value.
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The implementation of f using MITEs is done through the following steps:

1. Scaling Since the input and output variables are represented by currents, to maintain

dimensional consistency, the substitutions x 7→ Ix/Ia and y 7→ Iy/Ib are done. Hence,

we have

Iy =
IxIb

0.63Ia +
√

0.88I2
a + I2

x

(6.4)

2. Current splitting Since the input x can take both positive and negative values

and since the currents through the MITEs must necessarily be positive, we use a

geometric current splitter to produce currents Ix+ and Ix− satisfying Ix+ − Ix− = Ix

and Ix+Ix− = I2
a .

3. Block reduction The equation to be implemented thus becomes

Iy =
Ix+Ib − Ix−Ib

0.63Ia +
√
−1.12I2

a + I2
x+ + I2

x−

=

(
Ix+Ib(

0.63Ia +
(√

IrIa

))
)
−
(

Ix−Ib(
0.63Ia +

(√
IrIa

))
)

,

where Ir = I2
x+/Ia + I2

x−/Ia − 1.12Ia. The parentheses show the order in which the

operations are implemented. Each block, which represents an operation in the paren-

theses, is implemented using procedures described in the thesis. In this case, however,

since the calculation is essentially a “cascade” of simple calculations, no particular

advantage of the methods described here over the previously existing methods is seen.

4. Consolidation As described in [18], redundant MITEs are removed using consolida-

tion and the final circuit is then obtained. The final circuit is shown in Figure 6.4.

6.1.4.1 Simulation Results

The dc simulations results, using the models of a AMI 0.5µ process, of the arctan block

are shown in Table 6.1. Throughout the simulation, Ib is fixed at 10nA. The range of Ia is

determined by the requirement of 10Ia being in the subthreshold region. The dc simulation

is obtained by varying the input slowly in transient analysis, for otherwise the floating-gate

capacitances will be “open” in a dc analysis. A sample plot of the transfer characteristic,

given for Ia = Ib = 10nA is shown in Figure 6.1.4.1.
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Figure 6.5. Results of simulation of the Arctan circuit. The currents Ia and Ib are

each 10nA. The “function” refers to φ(Ix/Ia) = 2/π arctan(Ix/Ia), the “approximation” is
f(Ix/Ia) = Ix

0.63Ia+
√

0.88I2
a+I2

x

, and the “Circuit simulation” is the simulation plot of the circuit

in Figure 6.4.
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Table 6.1. Simulated characteristics of the arctan circuit
Circuit arctan

Minimum Maximum

Ref. Ia (nA) 6 26

Input current −10Ia 10Ia

Power (µW) 2.9 10.3

Error (%) 1.59 4.53

6.1.5 Implementation of the Gaussian

1. Function The Gaussian is φ(x) = c exp(−x2/(2a2)), where x 7→ Ix/Ia, y 7→ Iy/Ia,

and c 7→ Ic/Ia. After scaling and normalization, the Gaussian is thus transformed

into Iy = Ic exp(−I2
x/(2I2

a)).

2. Current splitting As before, a geometric current splitter is used satisfying Ix+ −

Ix− = Ix; Ix+Ix− = I2
a .

3. Approximation We have I2
x = I2

x+ + I2
x− − 2I2

a = IrIa − 2I2
a , where Ir = I2

x+/Ia +

I2
x−/Ia. Thus, Iy = eIc exp(−Ir/(2Ia)). It should also be noted that if the implemen-

tation is to be valid for Ix ∈ [−bIa, bIa], then it suffices to approximate exp(−Ir/(2Ia))

for Ir ∈ [2Ia, (2 + b2)Ia]. The minimax rational approximation for b = 4 with the nu-

merator and denominator degrees equal to 1 and 2, respectively, was found using

Remez’s algorithm and is given by :

Iy = zIc
Ia − In1(Ir/Ia)

Ia − Id1(Ir/Ia) + Id2(I2
r /I2

a)
, (6.5)

where Ir = (I2
x+ + I2

x−)/Ia, In1 = 0.07195Ia, Id1 = 0.2913Ia, Id2 = 0.1641Ia, and z =

1.245. The maximum absolute error of this approximation in the range Ir ∈ [2Ia, 18Ia]

is 0.82% of the maximum value.

Clearly, this requires the computation of the following POPL equations: Io1 = In1(Ir/Ia),

Io2 = Id1(Ir/Ia), and Io3 = Id2(I
2
r /I2

a). The translinear loop matrix and a solution

connectivity matrix Z obtained using the method of diophantine equations described
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Figure 6.7. The results of simulation of the gaussian circuit. The value of Ia is 20nA and the
value of Ic is 10nA.

in Chapter 3 is given below:

A =




1 −1 1 0 0 −1 0 0

1 −1 0 1 0 0 −1 0

2 −2 0 0 1 0 0 −1


 ; Z =




1 1 0 0 0

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

0 0 0 0 2

1 0 1 0 0

1 0 0 1 0

2 0 0 0 0




4. The currents In1, Id1, and Id2 are set using programmable floating–gate MOSFETs

[77]. The final circuit is shown in Figure 6.6. Simulation results are shown in Fig-

ure 6.1.5.
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Figure 6.8. Simulated behavior of the gaussian circuit. The current Ia determining the stan-
dard deviation of the gaussian is varied from 11nA to 31nA in steps of 2nA.
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Table 6.2. Simulation results of the gaussian circuit

Circuit Gaussian

Minimum Maximum

Ref. Ia (nA) 11 31

Input current −10Ia 10Ia

Power (µW) 18.14 24.36

Error (%) 8.78 13.15

6.2 Synthesis of dynamical systems

Let the dynamical system to be implemented be given by

ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

(6.6)

where u(t) is the input to the system, x(t) is the state, and y(t) is the output of the system.

As discussed in Chapter 1, the existing methods proposed in [30, 16, 22, 31, 32, 33] all make

use of integrators through the exponential state-space transformation.

The method proposed in this thesis is to use lowpass filter(s) for implementing dynamical

systems. Here, the idea is to convert ẋ = f(x,u) into a set of low-pass filter– like equations

of the form ẋ + D(x,u)x = f̂(x,u), where D(x,u) is a diagonal matrix whose diagonal

elements may or may not depend on the state variable x and the inputs but is always

constrained to be positive. This idea derives from the fact that a standard MITE low-pass

filter shown in Figure 6.9 has a equation of the form

CUT

κ
İy + Iτ1Iy = Iτ2Ix, (6.7)

where it has been shown in Chapter 1 that the current Iτ1 = Iτ1(t) need not be constant

for the equation to hold.

To implement Equation (6.7) for bidirectional input currents Ix, we use current splitting

through a geometric current splitter. As before, we generate two positive currents Ix+ and

Ix− satisfying Ix = Ix+− Ix− and Ix+Ix− = I2
b . If we feed these currents through a lowpass

filter, we get outputs Iy+ and Iy− according to:

CUT

κ
İy+ + Iτ1Iy+ = Iτ2Ix+

CUT

κ
İy− + Iτ1Iy− = Iτ2Ix−

(6.8)
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C

Ix

Vref
Vref

Iy

Iτ1(t) Iτ2

Figure 6.9. The standard MITE first-order lowpass filter. The filter obeys the equation
(CUT)/κİy + Iτ1Iy = Iτ2Ix, where Iτ1 need not be constant.

It is clear that Iy = Iy+ − Iy− satisfies Equation (6.7). This bidirectional lowpass filter

is shown in Figure 6.10. The consolidation done to remove a MITE in each single-ended

lowpass filter should be noted. We will explore the proposed method in the following two

systems:

6.2.1 The Lorenz system

The Lorenz attractor is given by the following set of first-order differential equations

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(6.9)

It is easily seen that this set of equations can be converted into a set of lowpass filter

equations:

ẋ + σx = σy

ẏ + y = x(ρ− z)

ż + βz = xy

(6.10)
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After replacing the dimensionless time t by t/τ and the signals by the ratios of currents to

a scaling current Ia, we find the resultant lowpass filter equations to be

CUT

κ
İx + (σIa)Ix = (σIa)Iy

CUT

κ
İy + (Ia)y = (Ia)

Ix(Iρ − Iz)

Ia

CUT

κ
İz + (βIa)Iz = (Ia)

IxIy

Ia
,

(6.11)

where C is chosen so that τ = CUT/(κIa). The nonlinearity in these equation is minimal:

two products IxIy and Ix(Iρ − Iz). Since the equations are in the form of bidirectional

lowpass filters, the inputs Iin,x, Iin,y, and Iin,z to the lowpass filters in Equation (6.11) are

given by Iin,x = Iy, Iin,y = Ix(Iρ− Iz)/Ia, and Iin,z = IxIy/Ia. This is shown in Figures 6.11

and 6.12. It is easily seen that Ix = Ix+ − Ix−, Iy = Iy+ − Iy−, and Iz = Iz+ − Iz− i.e., the

state variables are given by the differences of the six variables that are the outputs of the

lowpass filters. The currents Iin,x, Iin,y, and Iin,z are implemented as

Iin,x = Iy+ − Iy−

Iin,y =
Ix+Iρ

Ia
+

Ix+Iz−
Ia

+
Ix−Iz+

Ia
− Ix+Iρ

Ia
− Ix+Iz+

Ia
− Ix−Iz−

Ia

Iin,z =
Ix+Iy+

Ia
+

Ix−Iy−
Ia

− Ix+Iy−
Ia

− Ix−Iy+

Ia

(6.12)

The products are implemented using the methods in the previous chapters and the corre-

sponding circuit is shown in Figure 6.13. From the circuit simulation, the phase plot for

σ = 3, β = 1, ρ = 30 is shown in Figure 6.14.

6.2.2 A sinusoidal oscillator with independent frequency and amplitude control

The sinusoidal oscillator dealt with here is a popular example in dynamical systems theory

to illustrate the existence of limit cycles. The differential equation in (r, θ) coordinates is

given by:

ṙ = µr(α2 − r2)

θ̇ = ω0

(6.13)

which when converted into x, y coordinates transforms into

ẋ = µx(α2 − r2)− ω0y

ẏ = µy(α2 − r2) + ω0x

(6.14)
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Figure 6.11. The part of the MITE circuit implementing the Lorenz system consisting of the
bidirectional lowpass filters. (a) corresponds to the x equation and (b) corresponds to the y
equation in Equation (6.11). The input Iin,x is also generated in (b).
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Figure 6.12. The part of the MITE circuit implementing the Lorenz system consisting of the
bidirectional lowpass filter corresponding to the z coordinate in Equation (6.11).
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Figure 6.14. The results of simulation of the circuit of the Lorenz system for the parameter
values σ = 3, β = 1, ρ = 30.
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Consider the equivalent set of equations:

ẋ + µ(β2 + r2)x = µx(α2 + β2)− ω0y

ẏ + µ(β2 + r2)y = µy(α2 + β2) + ω0x

(6.15)

This is a set of lowpass filters, one of the controlling currents of which is made dependent on

the state. By adding β2, we are ensuring that this term always remains positive, including

at the origin. It should be noted that this is not a quasi-static approximation but follows

from the derivation of the first-order lowpass filter itself.

Let us replace the signals by the ratios of currents to a scaling current Ib. It is clear

that the form of Equation (6.15) is maintained if the currents Ix and Iy satisfy

CUT

κ
İx +

(
I2
β + I2

r

Ib

)
Ix = IaIx − IωIy

CUT

κ
İy +

(
I2
β + I2

r

Ib

)
Iy = IaIy + IωIx,

(6.16)

where I2
r = I2

x + I2
y . We need to choose an appropriate Iβ so that (I2

r + I2
β)/Ib can be

calculated easily. If we assume that Ix and Iy are passed through current splitters with

geometric mean Ib, then we have positive currents Ix+, Ix−, Iy+, and Iy− satisfying Ix =

Ix+ − Ix− and Iy = Iy+ − Iy− with Ix+Ix− = Iy+Iy− = I2
b . Then I2

r = I2
x+ + I2

x− + I2
y+ +

I2
y− − 4I2

b . If we choose Iβ = 2Ib, then I2
r + I2

β = I2
x+ + I2

x− + I2
y+ + I2

y−, which is easily

computed. Therefore, the lowpass filter form of the sinusoidal oscillator is

CUT

κ
İx +

(
4I2

b + I2
r

Ib

)
Ix = Ia

(
Ix −

IωIy

Ia

)

CUT

κ
İy +

(
4I2

b + I2
r

Ib

)
Iy = Ia

(
Iy +

IωIx

Ia

)
,

(6.17)

Let us compute the amplitude and frequency of oscillation. Comparing Equation (6.17) and

Equation (6.14), it is clear that the amplitude is found by equating the term multiplying

Ix to 0 and the frequency is found by from the coefficient multiplying Iy. Therefore, Ia =

(I2
amp + 4I2

b )/Ib and hence the amplitude of oscillation is given by

Iamp =
√

IaIb − 4I2
b

Similarly, the frequency of oscillation ω0 is given by

ω0 =
Iωκ

CUT
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6.2.2.1 Implementation details

The input currents to the bidirectional lowpass filters are given by Iin,x = Ix− IωIy/Ia and

Iin,y = Iy + IωIx/Ia. Though the differences of the outputs of the lowpass filters are Ix and

Iy, the outputs need have a constant geometric mean. Since we have assumed the presence

of Ix+, Ix−, Iy+ satisfying a geometric mean constraint, two separate geometric current

splitters are required with inputs Ix and Iy. In terms of the positive currents, we have

Iin,x = Ix+ +
IωIy−

Ia
− Ix− −

IωIy+

Ia

Iin,y = Iy+ +
IωIx+

Ia
− Iy− −

IωIx−
Ia

(6.18)

Further, we also require I2
x+/Ib, I2

x−/Ib, I2
y+/Ib, and I2

y−/Ib for computing (I2
r + 4I2

b )/Ib.

Along with the geometric current splitter constraints, we need a MITE network implement-

ing the following equations:

Ix−Ix+ = IbIb; Iy−Iy+ = IbIb;

Io1 =
I2
x+

Ib
; I ′o1 =

I2
y+

Ib

Io2 =
I2
x−
Ib

; I ′o2 =
I2
y−
Ib

Io3 =
IωIx+

Ia
; I ′o3 =

IωIy+

Ia

Io4 =
IωIx−

Ia
; I ′o4 =

IωIy−
Ia

(6.19)

Since the constraints involving x and y are exactly the same except for the substitution of

one for another, it is enough to find a POPL network solving the equations involving x.

The reason why we write I2
b as the product of two currents is because we are interested

in a 2-MITE implementation, for otherwise the optimal synthesis procedure of Chapter 3

gives a fan-in of 4 as the minimum fan-in required to implement all the equations together.

Taking the currents in the sequence Ib, Ib, Iω, Ia, Ix+, Ix−, Io1, Io2, Io3, and Io4, we find

the translinear loop matrix A and the only solution connectivity matrix Z to be:

A =




1 1 0 0 −1 −1 0 0 0 0

−1 0 0 0 2 0 −1 0 0 0

−1 0 0 0 0 2 0 −1 0 0

0 0 1 −1 1 0 0 0 −1 0

0 0 1 −1 0 1 0 0 0 −1



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Z =




2 0 0 0 0

0 1 0 0 1

0 0 1 1 0

1 0 0 1 0

1 0 0 0 1

1 1 0 0 0

0 0 0 0 2

0 2 0 0 0

0 0 1 0 1

0 1 1 0 0




The circuit of the lowpass filters is shown in Figure 6.15 and the POPL network imple-

menting the above relations is shown in Figure 6.16. The simulations results for vary-

ing amplitudes is shown in Figure 6.17. The current Ib is varied from 5nA to 25nA in

steps of 2nA while Ia = 8Ib and Iω = 20nA. Hence the amplitude should increase as

Iamp =
√

(8I2
b − 4I2

b ) = 2Ib. The deviation of the phase plot from the ideal is also clearly

observed.

6.2.3 Chip fabrication

The arctan, gaussian, Lorenz, and the sinusoidal oscillator blocks were implemented in 0.5µ

technology. The layout of the chip is shown in Figure 6.18. As shown in the previous sec-

tions, the simulations of the blocks show that they are functional. However, the fabricated

chip itself had problems unrelated to the working of each block. Programming the floating-

gate MOSFETs in the chip was found to be not possible mainly because of latch-up issues.

Hence, we could neither prove nor disprove that the synthesized blocks in the chip were

functional. However, the author believes that this does not affect the importance or the

contributions of this thesis which is in the mathematically sound and systematic methods

developed for MITE network synthesis.
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Figure 6.15. The part of the MITE circuit implementing the sinusoidal oscillator con-
sisting of the bidirectional lowpass filters. (a) corresponds to the x equation and
(b) corresponds to the y equation in Equation (6.17). Here the time varying current
Is = (I2

r + I2
β)/Ib = (I2

x+ + I2
x− + I2

y+ + I2
y−)/Ib
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Figure 6.17. The results of circuit simulation of the sinusoidal oscillator for varying amplitudes.
The current Ib is varied from 5nA to 25nA in steps of 2nA while Ia = 8Ib and Iω = 20nA. The
ideal behaviour is given in dotted lines for comparison.
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Figure 6.18. The layout of the chip in 0.5µ technology containing the arctan, gaussian, Lorenz,
and the sinusoidal oscillator blocks
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

The main goal of this research is the automated and optimal synthesis of multiple-input

translinear element circuits. From a circuit-theoretic point of view, this thesis is to be

viewed as a step towards mapping the set of algebraic functions and differentially algebraic

equations to the class of circuits with only the following components:

1. n-input MITEs

2. current mirrors

3. capacitors

While some methods to find a circuit belonging to the above class corresponding to a

given function have already been developed, the novel contribution of this thesis is the

development of systematic synthesis procedures to find those circuits that, in addition to

implementing the function, also optimize it in some sense.

Since the aim is not to design a single circuit, but to design a class of circuits satisfying

a general relationship (like the product–of–power law (POPL)), a detailed mathematical

treatment is inevitable. The path chosen for this research is to proceed from ideal assump-

tions about the MITE and then to add the nonidealities in the order of significance.

7.1 Contributions of this research

1. Derived condition dependent only upon the topology of a POPL MITE network that

ensures that the operating point is unique. The effect of floating-gate capacitor mis-

match is taken into account so that it does not affect the uniqueness of the operating

point.

2. Derived an improved condition for stability of a POPL network. This condition is

dependent only upon the topology of the MITE network and on the ratio Cp/C of the

parasitic capacitance seen by the floating-gate to the floating-gate capacitance.

3. Developed a systematic synthesis procedure that generates POPL networks imple-

menting a given system of translinear loop equations. The procedure is optimal in
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the sense that the generated MITE networks utilize the minimum possible number of

MITEs and further have minimum fan-in amongst those networks that implement the

translinear loop equations using the minimum possible number of MITEs.

4. Characterized 2-MITE POPL networks in terms of their Coates graphs. Developed

a procedure to obtain the power matrix of a 2-MITE POPL network from its Coates

graph by observation alone.

5. Showed that under mild conditions, a 2-MITE POPL network automatically satisfies

both the uniqueness criterion and D-stability criterion even under small pertubations

of the floating-gate capacitor values.

6. Developed necessary conditions that a power matrix must satisfy if it can be imple-

mented by a 2-MITE POPL network.

7. Developed necessary and sufficient conditions that completely characterize single-

output 2-MITE POPL networks.

8. Developed a synthesis procedure to implement any given single-output POPL function

using a 2-MITE POPL network using the minimum required number of copies of the

input currents.

9. For use in a MITE FPAA, developed a single-output 2-MITE POPL “basic structure”

with n inputs that can implement most 2-MITEable POPL functions that have at most

n inputs by changing only the input-gate connections of the output MITE.

10. Developed the concept of the modified Coates graph representation of a 2-MITE

POPL network that can be used to find the general Coates graphs that can represent

2-MITE POPL networks with a fixed number of outputs. This is shown to be useful

in characterizing 2-MITE POPL networks with two outputs, for example.

11. Developed conditions and a procedure to synthesize log-domain filters that necessarily

avoids multiple operating points.
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12. Developed a procedure to synthesize, using MITEs, static functions with bidirectional

inputs as a function of one positive current variable. To illustrate this, the synthesis

of the arctangent and the gaussian function are described.

13. Developed a new method to synthesize dynamic functions by the use of first-order

lowpass filters. Exemplary syntheses include that of a Lorenz system and a sinusoidal

oscillator with independent amplitude and frequency control.

7.2 Future Research

Future research in synthesis of MITE networks can take a theoretical as well as a practical

form.

7.2.1 Future Theoretical research

1. While the synthesis of 2-MITE single-output POPL networks is complete, the syn-

thesis of multiple-output 2-MITE POPL networks seems complex but should also be

highly interesting as well as useful in 2-MITE synthesis. For example, it is easy to

check if a given multiple-output translinear loop matrix A is 2-MITEable or not using

the method of diophantine equations in Chapter 3. However, for synthesis purposes,

it is best if one has a compact condition like Theorem 4.5.1 for the single-output case.

This problem itself can be described as follows:

Given A ∈Ml,m(Z), does there exist a Z ∈Mm,n(N) such that

(a) AZ = 0

(b) Z1n = 21m

(c) Zii > 0 for i ∈ [1 : n]

Once this characterization is complete, when A is not 2-MITEable, the optimal num-

ber of copies of the input currents should be found so that the resultant translinear

loop matrix is 2-MITEable.

2. The presence of the floating-gate capacitors can affect the frequency response of the

MITE system under consideration. Finding those MITE structures that minimize
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the effect of these and other parasitics should improve the frequencies of operation

of MITE circuits considerably. A good starting point would be to deal with these

capacitors in POPL networks.

3. Characterizing those functions that are implementable using static and dynamic MITE

networks should aid considerably in developing synthesis approaches.

4. Some metric(s) that can be used to compare MITE networks, and especially POPL

networks, with respect to noise, bandwidth, and sensitivity to temperature can be

developed.

7.2.2 Future Practical Research

1. Developing an automated on-chip floating-gate programming method that is also min-

imal in chip area.

2. Utilizing the methods described here to completely automate the equation-to-layout

process for any algebraic function, not just POPL functions. Similar programs for

dynamic systems should also be useful. This should also find application in reconfig-

urable systems, i.e., the MITE FPAA.
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CHAPTER 8

NOTATION

1. C, R, Q, Z, and N denote the set of complex numbers, reals, rationals, integers, and

nonnegative integers, respectively.

2. The set of all m × n matrices whose elements are restricted to F ⊆ C is denoted by

Mm,n(F).

3. Mn,n(F) andMn,1(F) are abbreviated toMn(F) and Fn, respectively.

4. A > B (A ≥ B) means that the elements of A−B are positive (nonnegative).

5. A � B means that A ≥ B and that there exist elements Aij and Bij such that

Aij > Bij .

6. If m ≤ n, [m : n] is the set {m, m + 1, . . . , n}.

7. If A ∈ Mm,n(F), α ⊆ [1 : m], and β ⊆ [1 : n], then A(α, β) is the matrix formed by

the rows and columns of A indexed by α and β, respectively.

8. The phrase diagonal matrix D > 0 (diagonal matrix D ≥ 0) means that the matrix

D is a diagonal matrix with only positive (nonnegative) entries along the diagonal.

9. In is the n× n identity matrix.

10. 1n denotes the n× 1 vector with all elements being 1.

11. if f : A→ B, and if x = [xi] ∈ An, then f(x) denotes the vector [f(xi)] ∈ Bn.

12. The standard determinant expansion of a matrix A = [aij ] ∈ Mn(F) is given by

det(A) =
∑

σ signσ
∏n

i=1 aiσ(i) where the sum runs over all n! permutations σ of

[1 : n].

13. a function f(x1, x2, . . . , xn) is multilinear(multiaffine) is said if it is linear(affine) in

each variable when the other variables are kept constant.
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14. If v is a row or column vector of order n, then diag(v) is the n × n diagonal matrix

with v in the diagonal.
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