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CHAPTER I

INTRODUCTION

In a broad sense, this thesis focuses on two aspects of the problem of model selection

in applied statistics. In the first part we consider the theoretical properties of two

nonlinear dimensionality reduction algorithms, which can be viewed as a first step in

the model selection process, since many statistical methods will fail in the presence of

very high dimensionality in the covariates. In the second, we develop a new approach

to the model selection process by considering convex combinations of a fixed set of

model selection criteria.

Dimension reduction plays an extremely important role in many areas of statistical

application. In particular, many problems arising in the modern practice of statistics

involve many predictor variables, even in some cases more than the number of avail-

able observations (most notably in the analysis of microarray data.) Many classical

statistical methods become useless in these situations. However, often one has prior

reason to believe that, despite the large number of predictor variables available, the

structure underlying them is actually much simpler. Donoho and Grimes [6] discuss

canonical examples involving sets of images of similar subjects, but at different angles

and positions. In these cases, dimension reduction can be a vital tool which greatly

expands the number of statistical modelling methodologies available to the analyst,

accurately condensing the information contained in the many predictor variables into

a much smaller set of reduced predictors.

The area of dimension reduction has a long history, going all the way back to

the development of principal components. Nonlinear dimension reduction, however,

is a more recently developed generalization of classical methods. We focus on two
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algorithms which show particular promise in this field, namely Local Tangent Space

Alignment (LTSA) and Hessian Locally Linear Embedding (HLLE). Our work in this

thesis focuses on the asymptotic properties of these algorithms, and in particular

we demonstrate, for the first time, that each algorithm will yield the correct result

with a large enough sample size, subject to mild conditions on the underlying low-

dimensional structure. Thus we provide a stronger theoretical foundation for the

application of these procedures in situations where the sample size is large, and the

noise structure is well-understood. In a sense, this fills in a gap between the fairly

well-known asymptotic properties of linear dimension reduction methods [1] and the

relatively unexplored theoretical aspects of the newer nonlinear methods.

The problem of model selection remains an important and difficult one in almost

every area of applied statistics. The fundamental tradeoff between fidelity to the data

and complexity of the resulting model is nearly always present, and is almost never

easy to resolve. This is perhaps easiest to see in the case of regression, in which the

use of n linearly independent predictor variables on a set of n observations will always

yield a perfect fit, but such a model would never be useful in practice. Thus, in many

applied problems, the analyst must decide to exclude some predictor variables, but

this will always entail what seems to be a poorer fit to the data. Deciding how many

and which predictors to exclude is thus a crucial step, but there is no method which

generally acknowledged to be the best way to determine which predictors are to be

kept, and which to be left out.

To that end, many model selection criteria have been proposed. These criteria

are functions of a fitted model, most of which involve both the likelihood of the data

and a penalty term for model complexity. Many of these criteria have an appealing

simplicity – one need only fit all possible regression models (of which there will be 2p

in the case when there are p possible predictor variables available), and among the

resulting models, choose the one that minimizes (or maximizes) the corresponding
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criterion function. The most commonly used criteria are Akaike’s An Information

Criterion (AIC) and the Bayesian Information Criterion (BIC), and cross validation

(CV), though there are many others also to be found in the literature.

Though the model selection problem may seem easier with the aid of these criteria,

there is a new problem that arises with their use – it is not at all obvious, or agreed

upon, which model selection criteria are best. Rather than the original model selection

problem, we are now faced with a model selection criterion selection problem. In

Chapter 4, we propose a new simulation method to compare the quality of model

selection criteria. The main strength of this method is that it allows one to remain

agnostic on the general question of which criterion is “best” overall, while giving

useful recommendations specific to the particular problem under consideration.

In general, we can think of most model selection criteria as being in one of 3

categories – those based purely on in-sample fit, such as AIC and BIC, those based

on cross-validated in-sample fit, such as PRESS in the case of regression, and those

based on true out-of-sample fit, which use a holdout sample not included in the model

fitting process as a means to evaluate the fitted models. Intuitively, one expects these

3 types of criteria to yield different information about the fitted models, all of which

could potentially be useful. Rather than simply choosing between these criteria,

which would necessarily involve ignoring all the other criteria not chosen, an attractive

alternative would be to combine them in some sensible way, hopefully exploiting all

the different types of information available. In Chapter 4, we do just that, generalizing

our simulation procedure to allow for the combination of model selection criteria

based on a simple idea of allowing convex combinations of ranks. These combinations

give additional insight into the structure of the problem, and as we demonstrate in

simulation case studies, can sometimes yield substantial improvement over traditional

model selection procedures.
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CHAPTER II

PERFORMANCE ANALYSIS OF LTSA

2.1 Introduction

Manifold-based dimensionality reduction methods have attracted substantial atten-

tion in both the machine learning and statistics communities due to their demon-

strated potential. Though many methods have been proposed, little work has been

done to analyze the performance of these methods. The main contribution of this

chapter is to establish some asymptotic performance properties of a manifold learn-

ing algorithm, as well as a demonstration of some of its limitations. The key idea

in our analysis is to treat the solutions of manifold learning algorithms as invariant

subspaces, and then carry out a matrix perturbation analysis. A common feature

of several manifold learning algorithms (e.g., [18, 3, 6, 4, 29]) is that their solutions

correspond to invariant subspaces, typically the eigenspace associated with the small-

est eigenvalues of a kernel matrix. The exact form of this kernel matrix, of course,

depends on the details of the particular algorithm. These subspaces, however, are

clearly invariant regardless of the exact form of the matrix involved, because they are

spanned by eigenvectors [25, Section I.3.4].

Many efficient ML algorithms have been developed. A partial list of them is:

locally linear embedding (LLE) [18], ISOMAP [26], charting [4], local tangent space

alignment (LTSA) [29], Laplacian eigenmaps [3], and Hessian eigenmaps [6], etc.

LTSA, in particular, enjoys several advantages. First of all, in numerical simulation

(e.g., using the tools offered by [27]), we find empirically that LTSA performs among

the best of the available algorithms. Second, the solution to each step of the LTSA

algorithm is an invariant subspace, which makes analysis of its performance more
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tractable. Third, the similarity between LTSA and several other ML algorithms

(e.g., LLE, Laplacian eigenmaps and Hessian eigenmaps) suggests that our results

may generalize. Thus, it is our hope that this performance analysis will provide a

theoretical foundation for the application of ML algorithms. Our main theoretical

result is Theorem 2.3.8, which is a worst-case upper bound on the angle between the

subspaces spanned by the computed coordinates and by the intrinsic parameters.

The rest of the chapter is organized as follows. The problem formulation and

background information are presented in Section 2.2. In Section 2.3, perturbation

analysis is carried out, and the main theorem is proved. In Section 2.4, more sim-

ulation results are presented to illustrate the analytical properties. Some discussion

related to existing work in this area is included in Section 2.5. Finally, we present

concluding remarks in Section 2.6. Technical proofs are relegated to Appendix A

when convenient.

2.2 Problem Statement and Illustration

2.2.1 Model

To be more specific, we formulate our DR problem as follows. For a positive integer

n, let yi ∈ R
D, i = 1, 2, . . . , n, denote n observations. We assume that there is a

mapping f : R
d → R

D which satisfies a set of regularity conditions. In addition, we

require another set of (possibly multivariate) values xi ∈ R
d, d < D, i = 1, 2, . . . , n,

such that

yi = f(xi) + εi, i = 1, 2, . . . , n, (1)

where εi ∈ R
D denotes a random error. For example, we may assume εi ∼ N(�0, σ2ID);

i.e., a multivariate normal distribution with mean zero and variance-covariance pro-

portional to the identity matrix. The central questions of DR are: (1) Can we find

a set of low-dimensional vectors such that (1) holds? (2) What kind of regularity

conditions should be imposed on f? (3) Is the model well defined? These questions
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will be answered in the following.

2.2.2 A Pedagogical Example

(a) Embedded Spiral (b) Noisy Observations
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Figure 1: An illustrative example of LTSA in nonparametric dimension reduction.
The straight line pattern in (c) indicates that the underlying parametrization has
been approximately recovered.

An illustrative example of DR that makes our formulation more concrete is given

in Figure 1. Subfigure (a) shows the true underlying structure of a toy example, a

1-D spiral. The noiseless observations are equally spaced points on this spiral. In

subfigure (b), 1024 noisy observations are generated with multivariate noise satisfying

εi ∼ N(�0, 1
100

I3). We then apply LTSA to the noisy observations, using k = 10
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nearest neighbors. In subfigure (c), the result from LTSA is compared with the true

parametrization. When the underlying parameter is faithfully recovered, one should

see a straight line, which is observed in subfigure (c).

2.2.3 Regularity and Uniqueness of the Mapping f

If the conditions on the mapping f are too general, the model (1) is not well defined.

For example, if the mapping f(·) and point set {xi} satisfy (1), so do f(A−1(· − b))

and {Axi + b}, where A is an invertible d by d matrix and b is a d-dimensional vector.

As is common in the manifold-learning literature, we adopt the following condition

on f .

Condition 2.2.1 (Local Isometry) The mapping f is locally isometric: For any

ε > 0 and x in the domain of f , let Nε(x) = {z : ‖z − x‖2 < ε} denote an ε-

neighborhood of x using Euclidean distance. We have

‖f(x) − f(x0)‖2 = ‖x − x0‖2 + o(‖x − x0‖2).

The above condition indicates that in a local sense, f preserves Euclidean distance.

Let J(f ; x0) denote the Jacobian of f at x0. We have J(f ; x0) ∈ R
D×d, where each

column (resp., row) of J(f ; x0) corresponds to a coordinate in the feature (resp., data)

space. The above in fact implies the following lemma.

Lemma 2.2.2 The matrix J(f ; x0) is orthonormal for any x0, i.e., JT (f ; x0)J(f ; x0) =

Id.

A reference for this result is Zhang and Zha [29].

Given the previous condition, model (1) is still not uniquely defined. For example,

for any d by d orthogonal matrix O and any d-dimensional vector b, if f(·) and {xi}
satisfy (1) and Condition 3.2.1, so do f(OT (· − b)) and {Oxi + b}. We can force b

to be �0 by imposing the condition that
∑

i xi = 0. In DR, we can consider the sets

{xi} and {Oxi} “invariant,” because one is just a rotation of the other. In fact, the
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invariance coincides with the concept of “invariant subspace” that will be discussed

later.

Condition 2.2.3 (Local Linear Independence Condition) Let Yi ∈ R
D×k, 1 ≤

i ≤ n, denote a matrix whose columns are made by the ith observation yi and its k−1

nearest neighbors. We choose k − 1 neighbors so that the matrix Yi has k columns.

It is generally assumed that d < k. For any 1 ≤ i ≤ n, the rank of YiP k is at least d;

in other words, the dth largest singular value of matrix YiP k is greater than 0.

The regularity of the manifold can be determined by the Hessians of the mapping.

Rewrite f(x) for x ∈ R
d as

f(x) = (f1(x), f2(x), . . . , fD(x))T .

Furthermore, let x = (x1, . . . , xd)
T . A Hessian is

[Hi(f ; x)]jk =
∂2fi(x)

∂xj∂xk

,

for 1 ≤ i ≤ D, 1 ≤ j, k ≤ d.

The following condition ensures that f is locally smooth. We impose a bound on

all the components of the Hessians.

Condition 2.2.4 (Regularity of the Manifold) |[Hi(f ; x)]jk| ≤ C1 for all i, j,

and k, where C1 > 0 is a prescribed constant.

2.2.4 Solutions as Invariant Subspaces and a Related Metric

We now give a more detailed discussion of invariant subspaces. Let R(X) denote

the subspace spanned by the columns of X. Recall that xi, i = 1, 2, . . . , n, are the

true low-dimensional representations of the observations. We treat the xi’s as column

vectors. Let

X = (x1, x2, · · · , xn)T ;
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i.e., the ith row of X corresponds to xi, 1 ≤ i ≤ n. If the set {Oxi}, where O is a

d by d orthogonal square matrix, forms another solution to the dimension reduction

problem, we have

(Ox1, Ox2, · · · , Oxn)T = XOT .

It is evident that R(XOT ) = R(X). This justifies the invariance that was mentioned

earlier.

The goal of our performance analysis is to answer the following question: Letting

‖ tan(·, ·)‖2 denote the Euclidean norm of the vector of canonical angles between two

invariant subspaces ([25, Section I.5]), and letting X and X̃ denote the true and

estimated parameters, respectively, how do we evaluate ‖ tan(R(X),R(X̃))‖2?

2.2.5 LTSA: Local Tangent Space Alignment

We now review LTSA. There are two main steps in the LTSA algorithm [29].

1. The first step is to compute the local representation on the manifold. Consider

a projection matrix P k = Ik − 1
k
· 1k1

T
k , where Ik is the k by k identity matrix

and 1k is a k-dimensional column vector of ones. It is easy to verify that

P k = P k · P k, which is a characteristic of projection matrices.

We solve the minimization problem:

min
Λ,V

‖YiP k − ΛV ‖F ,

where Λ ∈ R
D×d, V ∈ R

d×k, and V V T = Id. Let Vi denote optimal V . Then

the row vectors of Vi are the d right singular vectors of YiP k.

(2) The solution to LTSA corresponds to the invariant subspace which is spanned

and determined by the eigenvectors associated with the 2nd to the (d + 1)st

9



smallest eigenvalues of the matrix

(S1, . . . , Sn)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

P k − V T
1 V1

P k − V T
2 V2

. . .

P k − V T
n Vn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(S1, . . . , Sn)T .

(2)

where Si ∈ R
n×k is a selection matrix such that Y T Si = Yi, where Y =

(y1, y2, . . . , yn)T .

As mentioned earlier, the subspace spanned by the eigenvectors associated with

the 2nd to the (d + 1)st eigenvalues of the matrix in (2) is an invariant subspace,

which will be analyzed under perturbation.

We have slightly reformulated the original algorithm as presented in [29], in order

to simplify the theoretical analysis. The verification of the equivalence is a standard

exercise in linear algebra, and it is given in the Appendix of [12].

2.3 Perturbation Analysis

We now carry out a perturbation analysis on the reformulated version of LTSA. There

are two steps in our analysis: in the local step (Section 2.3.1), we characterize the

deviation of the null spaces of the matrices P k − V T
i Vi, i = 1, 2, . . . , n. In the global

step (Section 2.3.2), we derive the variation of the null space under global alignment.

The detailed calculations are again relegated to Appendix A.

2.3.1 Local Coordinates

Let X be the matrix of true parameters. We define

Xi = XT Si = (x1, x2, · · · , xn)Si;

i.e., the columns of Xi are made by xi and those xj’s that correspond to the k − 1

nearest neighbors of yi. We require a bound on the size of the local neighborhoods
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defined by the Xi’s.

Condition 2.3.1 (Universal Bound on the Sizes of Neighborhoods) For all i, 1 ≤
i ≤ n, we have τi < τ , where τ is a prescribed constant and τi is an upper bound on

the distance between two columns of Xi: τi = maxxj ,xk
‖xj −xk‖, where the maximum

is taken over all columns of Xi.

In this chapter, we are interested in the case when τ → 0.

We will need conditions on the local tangent spaces. Let dmin,i (respectively, dmax,i)

denote the minimum (respectively, maximum) singular values of XiP k. Let

dmin = min
1≤i≤n

dmin,i,

and

dmax = max
1≤i≤n

dmax,i.

We have the following result regarding dmax:

Lemma 2.3.2

dmin ≤ dmax ≤ τ
√

k. (3)

For the proof, see Appendix A.1.1.

Condition 2.3.3 (Local Tangent Space) There exists a constant C2 > 0, such

that

C2 · τ ≤ dmin. (4)

The above can roughly be thought of as requiring that the local dimension of the

manifold remain constant (i.e., the manifold has no singularities.)

The following condition defines a global bound on the errors (εi).

Condition 2.3.4 (Universal Error Bound) There exists σ > 0, such that ∀i, 1 ≤
i ≤ n, we have ‖yi − f(xi)‖∞ < σ. Moreover, we assume σ = o(τ); i.e., we have

σ
τ
→ 0, as τ → 0.

11



It is reasonable to require that the error bound (σ) be smaller than the size of the

neighborhood (τ), which is reflected in the above condition. We discuss the necessity

of this condition in Section 2.3.3.

Within each neighborhood, we give a perturbation bound between an invariant

subspace spanned by the true parametrization and the invariant subspace spanned

by the singular vectors of the matrix of noisy observations. Let

XiP k = AiDiBi

be the singular value decomposition of the matrix XiP k; here Ai ∈ R
d×d is orthogonal

(AiA
T
i = Id), Di ∈ R

d×d is diagonal, and the rows of Bi ∈ R
d×k are the right singular

vectors corresponding to the largest singular values (BiB
T
i = Id). It is not hard to

verify that

Bi = BiP k. (5)

Let YiP k = ÃiD̃iB̃i be the singular value decomposition of YiP k, and assume that

this is the “thin” decomposition of rank d. We may think of this as the perturbed

version of J(f ; x
(0)
i )XiP k. The rows of B̃i are the eigenvectors of (YiP k)

T (YiP k)

corresponding to the d largest eigenvalues. Let R(BT
i ) (respectively, R(B̃T

i )) denote

the invariant subspace that is spanned by the columns of matrix BT
i (respectively,

B̃T
i ).

Theorem 2.3.5 Given invariant subspaces R(BT
i ) and R(B̃T

i )) as defined above, we

have

lim
τ→0

‖ sin(R(BT
i ),R(B̃T

i ))‖2 ≤ C3

(σ

τ
+ C1τ

)
,

where C3 is a constant that depends on k, D and C2.

The proof is presented in Appendix A.1.2. The above gives an upper bound on the

deviation of the local invariant subspace in step (1’) of the modified LTSA. It will be

used later to prove a global result.

12



2.3.2 Global Alignment

Condition 2.3.6 (No Overuse of One Observation) There exists a constant C4,

such that ∥∥∥∥∥
n∑

i=1

Si

∥∥∥∥∥
∞

≤ C4.

Note that we must have C4 ≥ k. The next condition (Condition 2.3.7) will implicitly

give an upper bound on C4.

Recall that the quantity ‖∑n
i=1 Si‖∞ is the maximum row sum of the absolute

values of the entries in
∑n

i=1 Si. The value of ‖∑n
i=1 Si‖∞ is equal to the maximum

number of nearest neighbor subsets to which a single observation belongs.

We will derive an upper bound on the angle between the invariant subspace

spanned by the result of LTSA and the space spanned by the true parameters.

Given (5), it can be shown that

XiP k(P k − BT
i Bi)(XiP k)

T = 0.

Recall X = (x1, x2, . . . , xn)T ∈ R
n×d. It is not hard to verify that the row vectors of

(1n, X)T (6)

span the (d + 1)-dimensional null space of the matrix:

(S1, . . . , Sn)P k

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I − BT
1 B1

I − BT
2 B2

. . .

I − BT
n Bn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
P k(S1, . . . , Sn)T . (7)

Assume that ⎛⎜⎜⎜⎜⎝
1T

n√
n

XT

(Xc)T

⎞⎟⎟⎟⎟⎠

13



is orthogonal, where Xc ∈ R
n×(n−1−d). Although in our original problem formulation,

we made no assumptions about the xi’s, we can still assume that the columns of X

are orthonormal because we can transform any set of xi’s into an orthonormal set

by rescaling the columns and multiplying by an orthogonal matrix. Based on the

previous paragraph, we have⎛⎜⎜⎜⎜⎝
1T

n√
n

XT

(Xc)T

⎞⎟⎟⎟⎟⎠ Mn

(
1n√
n

,X,Xc

)
=

⎛⎜⎝ 0(d+1)×(d+1) 0(d+1)×(n−d−1)

0(n−d−1)×(d+1) L2

⎞⎟⎠ (8)

where

Mn = (S1, . . . , Sn)P k

⎛⎜⎜⎜⎜⎝
Ik − BT

1 B1

. . .

Ik − BT
n Bn

⎞⎟⎟⎟⎟⎠ P k(S1, . . . , Sn)T

and

L2 = (Xc)T MnXc.

Let λ+
min denote the minimum singular value (i.e., eigenvalue) of L2. We will need the

following condition on λ+
min.

Condition 2.3.7 (Appropriateness of Global Dimension) λ+
min > 0 and λ+

min

goes to 0 at a slower rate than σ
τ

+ 1
2
C1τ ; i.e., as τ → 0, we have(

σ
τ

+ 1
2
C1τ

) · ‖∑n
i=1 Si‖∞

λ+
min

→ 0.

As discussed in [28], this condition is actually related to the amount of overlap between

the nearest neighbor sets.

Theorem 2.3.8 (Main Theorem)

lim
τ→0

‖ tan(R(X̃),R(X))‖2 ≤
C3(

σ
τ

+ C1τ) · ‖∑n
i=1 Si‖∞

λ+
min

. (9)

As mentioned in Section 2.1, the above theorem gives a worst-case bound on the

performance of LTSA. A discussion on when Condition 2.3.7 is satisfied will be long

and beyond the scope of this thesis. We leave it to future investigation.
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2.3.3 The requirement that σ → 0

A natural question to ask, in light of the above analysis, is whether LTSA is still

consistent without the restrictive assumption that σ → 0. In this section, we discuss

a simple example which demonstrates that the answer is, surprisingly, no.

Consider the following model:

xi ∼ N(0, σ2
x)

εi ∼ MV N

⎡⎢⎣
⎛⎜⎝ 0

0

⎞⎟⎠ , σ2
ε I2

⎤⎥⎦
yi =

⎛⎜⎝ xi

0

⎞⎟⎠ + εi,

where xi ⊥ εi, . It is then easy to see that

yi ∼ MV N

⎡⎢⎣
⎛⎜⎝ 0

0

⎞⎟⎠ ,

⎛⎜⎝ σ2
ε + σ2

x 0

0 σ2
ε

⎞⎟⎠
⎤⎥⎦ .

Suppose, as usual, that we wish to reconstruct the xi’s from the given yi’s. This is a

particularly simple case of dimension reduction, where D = 2, d = 1, and the data

lie near a linear manifold. Thus, the entire manifold may be thought of as a single

linear patch. In applying LTSA to this model, we may therefore assume that k = n,

that is, that all points in the data set are neighbors of one another. This implies that

Si = In for each i.

Now, in the first step, LTSA will find the eigenvector corresponding to the largest

eigenvalue of the sample covariance matrix. It is a standard result [1, Section 13.5]

that the space spanned by the leading eigenvector converges to the space spanned by

(1, 0)T . Without loss of generality, we may suppose that the eigenvector is chosen so

that the first component is positive, and therefore the leading eigenvector converges
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to (1, 0)T . The estimated local coordinates will then be

θi =

⎛⎜⎝ 1 0

0 0

⎞⎟⎠ yi = xi + ε
(1)
i ,

where we have denoted the first component of εi by ε
(1)
i . Let Θ = (θ1, θ2, . . . , θn)

denote the row vector formed by the n estimated local coordinates. We assume that

‖Θ‖2 = 1, that is, that the eigenvector associated with the largest eigenvalue of the

sample covariance matrix is normalized. Also note that we have Θ ⊥ 1n.

The alignment step is especially simple due the structure of our artificial exam-

ple. The computed x̂i’s are given by the eigenvector corresponding to the smallest

eigenvalue of

(S1, S2, · · · , Sn)P k×n

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ik − Θ†
1Θ1

Ik − Θ†
2Θ2

. . .

Ik − Θ†
nΘn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
P k×n(S1, S2, · · · , Sn)T ,

(10)

The computation is easily simplified, however. As noted above, each Si as the identity,

and the diagonal blocks in the center matrix are all the same. Therefore, the x̂’s can

be expressed as the eigenvector corresponding to the second smallest eigenvalue of

P n(In − Θ†Θ)P n.

It is easy to see that the correct eigenvector is proportional to Θ† = ΘT by noting

that

(In − Θ†Θ)Θ† = Θ† − Θ†ΘΘ† = 0.

Therefore, the vector Θ† corresponds to the eigenvalue 0 of P n(In−Θ†Θ)P n. Further,

we know that the dimension of the nullspace of P n(In −Θ†Θ)P n is exactly d+1 = 2,

so there can be no other vector in the nullspace except, of course, for 1n. If σ2
ε is
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constant, then in general we will have

X = (x1, x2, . . . , xn)T ,

but

X̃ = (x1 + ε
(1)
1 , x2 + ε

(1)
2 , . . . , xn + ε(1)

n )T .

Now, we consider the angle formed between the two subspaces (R(X) and R(X̃). In

this special one-dimensional case, this has a particularly simple form:

∠(R(X),R(X̃)) = cos−1

(
XT X̃

‖X‖ · ‖X̃‖

)
.

Supposing that n is sufficiently large, we may use the strong law of large numbers to

evaluate the limits of the quantities on the right-hand side. For the numerator of the

fraction, we have

lim
n→∞

XT X̃

n
=

1

n
lim

n→∞

n∑
i=1

xi · (xi + ε
(1)
i )

SLLN
= E(xi · (xi + ε

(1)
i ))

= E(x2
i ) + E(xi) · E(ε

(1)
i )

= σ2
x.

For the denominator, a similar argument shows that

lim
n→∞

1

n
‖X‖2 = σ2

x,

lim
n→∞

1

n
‖X̃‖2 = σ2

x + σ2
ε .

Putting these limits together,

lim
n→∞

∠(R(X),R(X̃)) = cos−1

(
nσ2

x√
nσ2

x ·
√

n(σ2
x + σ2

ε )

)

= cos−1

(
σ2

x√
σ4

x + σ2
xσ

2
ε

)
.

If σ2
ε is constant (i.e., does not have limit 0,) then the argument of cos−1 will not

have limit 1, and limn→∞ ∠(R(X),R(X̃)) 
= 0. Note that this inconsistency would
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still apply even if we add the stronger assumption that the distribution of the errors

is bounded.

Thus, we see that our assumption that σ → 0 is, in fact, necessary to ensure the

consistency of LTSA, even in what might be considered the simplest possible case

of the dimension reduction problem. While this result may at first seem somewhat

counterintuitive, it is less surprising when one considers the fact that the number of

unknown parameters (in this case, the xi’s) grows as n increases, so our dimension

reduction problem is not analogous to traditional parameter estimation problems such

as the classical model

yi = µ + εi

with only µ (1 parameter) unknown.

An additional difficulty which arises in the absence of the assumption that σ → 0

is the fact that the estimated selection matrices (the Ŝi’s) may not converge to the

correct population counterparts (the Si’s). An implicit assumption throughout our

analysis is that, at least asymptotically Ŝi = Si, which is crucial in our derivation of

bounds on the deviation of the estimated alignment matrix from the true alignment

matrix. In the asymptotically noiseless case, this convergence is automatic, provided

that the underlying manifold is not self-intersecting. However, in the asymptotic case

with noise, such convergence is not guaranteed and in fact, will not hold in general.

This is compounded with the difficulties discussed above related to our toy example.

Considering the problem from a geometric perspective is also illuminating. While

it is well-known that we can asymptotically recover the correct local tangent space at

each point (at least in our simplified example), the problem occurs in the alignment

step. The simple structure of the example makes it easy to see what is going on — we

extract the projection of yi onto the local tangent space. However, this of course does

not correspond to the generating coordinate xi in the general case, though it could be

construed as a maximum likelihood estimate of the generating coordinate, being the
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closest point in the transformed parameter space to the actual observation in terms

of Euclidean distance. What we can recover, then, is the projection of f(xi)+ εi onto

the (asymptotically correct) tangent space in each neighborhood, but the original

generating coordinate itself is unrecoverable. Figure 2 illustrates this phenomenon.

It would certainly be interesting to know whether f can still be recovered asymp-

totically if σ is constant, but this question remains open. The analysis of the re-

construction of f is more complicated because LTSA does not compute any function

explicitly — an estimated f can only be computed implicitly, for example by poly-

nomial regression of Y on X̃ as discussed in Section 5 of [29]. An analysis of this

situation would involve consideration of the interplay of the errors in X̃ with the

errors in reconstructing the function f via indirect methods based on X̃. We leave

this to future investigation.

A further consequence of this result is that while plots such as those shown in

Figure 3 can be useful as rough indicators of LTSA’s performance, they are not reliable

in a strict sense for determining consistency. Although the relationship between the

true and estimated coordinates may appear to be roughly linear, this alone does not

imply that the algorithm will asymptotically recover the correct coordinates — the

trouble is the “bandwidth” of the graph. If the underlying parameters are truly

recovered, the graph must eventually converge to exactly a straight line with no

dispersion. Such information is difficult to discern from plots of this type.

2.4 Simulations

In the same setting as in Section 2.2.2, if we change the value of σ from σ = 0.1 to

σ = 0.025 and 0.2, we have Figure 3. Based on our theorem, the smaller the error

standard deviation is, the closer the result of LTSA is to the true parametrization.

In the case of σ = 0.2, the result of LTSA breaks down.
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Figure 2: An illustration of why σ → 0 is a necessary condition for convergence of
LTSA. Though the principal subspace will be estimated correctly, the projection of
f(xi) + εi onto the principal subspace is not the same as the underlying coordinate
xi.
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(a) Noisy Observations when σ = 0.025 (b) Result of LTSA
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(c) Noisy Observations when σ = 0.2 (d) Result of LTSA
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Figure 3: Reruns of the illustrative example in Section 2.2.2, with different noise
standard deviations.
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When X and X̃ are one-dimensional, we have√
1 − [corr(X, X̃)]2 = ‖ sin(R(X),R(X̃))‖2 ≤ ‖ tan(R(X),R(X̃))‖2,

where corr(X, X̃) is the correlation coefficient between two vectors. If

‖ tan(R(X),R(X̃))‖2 → 0,

we have corr(X, X̃) → 1, which corresponds to the consistency.

In Figure 3 (b), when σ is small, we observe a nearly straight line; while in Figure

3 (d), where σ is large, the estimates are drastically different from what they are

supposed to be. This phenomenon is consistent with our theory.

2.5 Discussion

To the best of our knowledge, the performance analysis that is based on invariant

subspaces is new. Consequently the worst-case upper bound is the first of its kind.

There are still open questions to be addressed (Section 2.5.1). In addition to a

discussion on the relation of LTSA to existing DR methodologies, we will also address

relation with known results as well (Section 2.5.2).

2.5.1 Open Questions

The rate of convergence of λ+
min is determined by the topological structure of f . It is

important to estimate this rate of convergence, but this issue has not been addressed

here.

We assume that τ → 0. One can imagine that it is true when the error bound (σ)

goes to 0 and when the xi’s are sampled with a sufficient density in the support of f .

An open problem is how to derive the rate of convergence of τ → 0 as a function of

the topology of f and the sampling scheme. After doing so, we may be able to decide

where our theorem is applicable.

Given a covering scheme, such as choosing the k-nearest neighbors, a verification

of τ → 0 and a derivation of its corresponding rate is an open question, too. The
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answer to this will depend on the topology of f , which is not covered in this chapter,

and the sampling scheme.

2.5.2 Relation to Existing Work

The error analysis in the original LTSA paper is the closest to our result. However,

Zhang and Zha [29] do not interpret their solutions as invariant subspaces, and hence

their analysis does not yield a worst case bound as we have derived here.

Reviewing the original papers on LLE [18], Laplacian eigenmaps [3], and Hessian

eigenmaps [6] reveals that their solutions are subspaces spanned by a specific set of

eigenvectors. This naturally suggests that results analogous to ours may be derivable

as well for these algorithms. A recent book chapter [11] stresses this point. After

deriving corresponding upper bounds, we can establish different proofs of consistency

than those presented in these papers.

ISOMAP, another popular manifold learning algorithm, is an exception. Its solu-

tion cannot immediately be rendered as an invariant subspace. However, ISOMAP

calls for MDS, which can be associated with an invariant subspace; one may derive

an analytical result through this route.

2.6 Conclusion

We have derived an upper bound of the distance between two invariant subspaces

that are associated with the numerical output of LTSA and an assumed intrinsic

parametrization.
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CHAPTER III

PERFORMANCE ANALYSIS OF HLLE

3.1 Introduction

In [6], the authors present a new nonlinear dimensionality reduction algorithm. Along

with it, they present an intriguing Theorem which, intuitively, suggests that their

algorithm is consistent—that is, with a sufficiently large sample, the algorithm can

recover the underlying parameters up to an isometry. However, the Theorem does not

actually establish this property. It is a statement about a functional in the continuum,

which involves unknown quantities, while the algorithm forms a discrete estimate of

this functional based on the sample data points. Thus, in order to establish rigorously

the consistency of this method, several issues of convergence need to be investigated.

In this chapter, we hope to fill in this theoretical gap and show that the estimated

quantities used in the algorithm converge to their counterparts in the continuous

manifold.

This chapter makes several contributions. First, our results give new understand-

ing of the asymptotic properties of the HLLE algorithm. To our knowledge, this is

the first time that the consistency of the algorithm has been proven. The proof also

yields insight into the factors that affect the performance of the algorithm, and the

implications of various geometric properties of the underlying manifold on the ability

of HLLE and similar algorithms to recover the manifold structure. Second, we pro-

pose a modified estimator of the Hessian matrix and demonstrate that it results in

a small improvement in performance in terms of Procrustes error [22]. If this small

improvement in performance is viewed as significant, then obviously the contribution

is important. If the improvement is judged to be insignificant, then we have provided
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stronger theoretical support for the existing methodology — i.e., in this case, HLLE

performs almost as well as our modified estimator, which has many optimality proper-

ties due to the fact that it is a least-squares estimate. Finally, we provide new insight

into the connections between HLLE and LTSA, another manifold learning algorithm

originally proposed in [29].

The rest of the chapter is organized as follows. First, we review notation and

preliminaries in Section 3.2. In Section 3.3, we derive a modified version of the

estimator of the Hessian matrix, which differs from the one originally proposed in

[6]. This estimator is shown to be the least-squares estimate of the Hessian. We

then investigate the asymptotic properties of both of these estimators in Section 3.4,

eventually showing that they yield the same asymptotic result. In Section 3.4, we

also investigate the convergence of the various quantities estimated in the algorithm,

which ultimately results in a proof that HLLE is consistent. We then demonstrate

the improvement of our modified estimator, as well as the convergence of both the

modified and original estimators, in simulations with toy examples in Section 3.5.

The connections between HLLE and LTSA are explored in Section 3.6. We then

conclude and summarize possible avenues for future investigation in Section 3.7.

3.2 Preliminaries

3.2.1 Problem Statement

The problem is formulated as follows: We are given a set of N observations in R
D:

{y1, y2, . . . yN}. We assume that the points lie on or near a lower-dimensional manifold

M, of dimension d (< D), and that the points are sampled with respect to some

continuous probability measure m on M. We further assume that the manifold

is smooth, and can be represented as a differentiable function of the parameters:

g : R
d → M ⊂ R

D. The model can then be summarized as:

yi = g(θi) + εi, (11)
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where θi denotes the intrinsic parameter vector of the ith observation. Our problem

is to recover the set {θi ∈ R
d : i = 1, 2, . . . , N} such that the residuals are minimized

in some sense. The standard interpretation is that we are finding the low-dimensional

parameters or coordinates which “generate” the y’s on the manifold. In order to make

the problem identifiable, we also assume that g is locally isometric. Even with this

restriction, the solution is only unique up to an isometry. This problem of ambiguity

will be a recurring one throughout the chapter.

3.2.2 Review of HLLE algorithm

We now give a brief review of the HLLE algorithm itself, adapted from the recipe

given in [6]. We assume that d is known. (If not, it can be estimated from the

data by examining the singular value decompositions of the neighborhoods defined

below, and finding a “knee” in the spectrum, in a manner analogous to the procedure

commonly used in Principal Components Analysis.) The algorithm further requires

one tuning parameter, k, the number of nearest neighbors from which to construct

the local neighborhoods. We change the notation somewhat from that used in [6] in

order to simplify the presentation of our results.

1. Identify Neighbors. For each point yi, identify the k − 1 nearest neighbors in

terms of Euclidean distance in R
D. Denote the set of indices of the nearest

neighbors of yi by Ni, and let Yi be the matrix formed by taking the neighbors

as its rows. For each i, form a selection matrix Ŝi such that ŜiY = Yi, where Y

is the matrix of all the data points. Note that Si ∈ R
k×N is formed from any

permutation of the rows {eT
i1
, eT

i2
, . . . , eT

ik
}, where ej is a vector of zeros with a

one in the jth position, and i1, . . . , ik are the indices of the nearest neighbors

of yi. Finally, center Yi by assigning Yi = Yi − Y i, that is, center Yi such that

each column has mean zero.

2. Obtain Tangent Coordinates. Perform a singular value decomposition of Yi:
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Yi = ÛiD̂iV̂i, where the hat notation is used to denote an estimated quantity.

3. Develop Hessian Estimator. Form a matrix X̂i as follows: for d = 2,

X̂i =

(
1 Û1 Û2 Û2

1 Û2
2 Û1 × Û2

)
i.e., in general, X̂i contains a column of ones, the original d columns of Ûi,

and all second order terms (squares and cross-products of all columns.) Then

consider the QR factorization of X̂i:

X̂i = Q̂iR̂i

Now define Ĥi by taking the last d(d+1)
2

columns of Q̂i and transposing.

4. Develop Quadratic Form. Form the matrix Ĥ as follows: define Ŝ =

(
ŜT

1 ŜT
2 . . . ŜT

N

)
,

and let

Ĥ = Ŝ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ĤT
1 Ĥ1

ĤT
2 Ĥ2

0

0

. . .

ĤT
NĤN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
ŜT

5. Find Approximate Nullspace. Perform an eigendecomposition of Ĥ, and take

the eigenvectors corresponding through the 2nd through (d+1)st smallest eigen-

values. These are the embedding coordinates.

3.2.3 Assumptions

In order to proceed with a perturbation-based proof, we will need conditions similar

to those assumed in Chapter 2. We summarize the important ones here.

Condition 3.2.1 (Local Isometry) The mapping g is locally isometric: For any

ε > 0 and any x in the domain of g, let Nε(x) = {y : ‖y − x‖2 < ε} denote an
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ε-neighborhood of x using Euclidean distance. We have

‖g(x) − g(x0)‖2 = ‖x − x0‖2 + o(‖x − x0‖),

for any x0 in the domain of g and x ∈ Nε(x0).

Condition 3.2.2 (Local Linear Independence Condition) Let P k = Ik−1k1
T
k .

For any 1 ≤ i ≤ N , the rank of YiP k is at least d; in other words, the dth largest

singular value of YiP k is greater than 0.

Condition 3.2.3 (Regularity of the Manifold) |[Hi(g; x)]jk| ≤ C1 for all i, j,

and k, where C1 > 0 is a prescribed constant, and where Hi(g; x) denotes the or-

dinary Hessian of the ith component function of g.

Condition 3.2.4 (Universal Bound on the Sizes of Neighborhoods) For all i, 1 ≤
i ≤ N , we have τi < τ , where τ is a prescribed constant and τi is defined as

max{‖yj − yi‖ : j ∈ Ni}.

Condition 3.2.5 (Local Tangent Space) There exists a constant C2 > 0, such

that

C2 · τ ≤ dmin, (12)

where dmin
def
= mini,j[D̂i]jj.

3.3 Modified Hessian Estimator

3.3.1 Construction of the Estimator

For notational simplicity, in this section we will assume that i is fixed, and suppress

the hat notation and i subscripts and let the singular value decomposition of Yi be

Yi = UDV . Let U∗ and V ∗ be the matrices formed by the first d columns (rows) of

U (V ), respectively, and let D∗ be the principal submatrix of D formed from the first
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d rows and columns. Consider the optimization problem

min
Θ∈R

k×d

Z∈R
d×D

‖Yi − ΘZ‖F

s.t. ZZT = Id

It is an elementary property of the singular value decomposition that U∗D∗ is the

optimal Θ and V ∗ is the optimal Z. The columns of U∗D∗ form the local tangent

coordinates of the k nearest neighbors. We will form the X matrix described above

using the columns of U∗D∗, rather than U∗, as used in [6]. We will discuss the

consequences of this difference later.

Now, we consider the second-order Taylor expansion of a smooth function f :

f(x) ≈ f(0) + JT x +
1

2
xT Hx,

where J ∈ R
d×1 = J

(tan)
f (0) is the Jacobian, and H = (H

(tan)
f (0))ij is the Hessian

of f at m in a tangent coordinate system. See [6] for more details. Recall that the

vectorization of a matrix A = {aij} ∈ R
n×n is defined as

Vec(A) = (a11, . . . , an1, a12, . . . , an2, . . . , a1n, . . . , ann)T ;

i.e., the vector formed by stacking the columns of A. Applying this definition to H

in the above equation, we have

f(x) ≈ f(0) + xT J +
1

2
[Vec(xxT )]T Vec(H)

=

[
1, xT ,

1

2
(Vec(xxT ))T

] ⎡⎢⎢⎢⎢⎣
f(0)

J

Vec(H)

⎤⎥⎥⎥⎥⎦ .

This is a linear regression function. Now, consider a vector f(Yi) such that f(Yi)j =

f(yij) for j ∈ Ni, 1 ≤ i ≤ N . Consider a model matrix X formed according to the

recipe above — e.g., if d = 2, we have:

X =

(
1k (U∗D∗)1 (U∗D∗)2 (U∗D∗)2

1 (U∗D∗)2
2 (U∗D∗)1 × (U∗D∗)2

)
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For later convenience, let X3 denote the submatrix formed from the last d(d + 1)/2

columns of X, and correspondingly, let H3 denote a vector made by the d(d + 1)/2

unique entries in the Hessian. We have

f(Yi) ≈ X

⎡⎢⎢⎢⎢⎣
1

c

H3

⎤⎥⎥⎥⎥⎦ .

Suppose we apply the modified Gram-Schmidt procedure applied up to the d + 1st

column of X. We have

X = (Q1,M2)

⎛⎜⎝ R11 R12

0d(d+1)/2×(d+1) Id(d+1)/2

⎞⎟⎠ ,

where R11 ∈ R
(d+1)×(d+1) is upper triangular and R12 ∈ R

(d+1)×d(d+1)/2 is arbitrary. It

is a basic property of the modified Gram-Schmidt procedure [7] that

MT
2 Q1 = 0d(d+1)/2×(d+1). (13)

Hence, a least-squares estimate of H3 is given by

MT
2 f(Yi) = MT

2 X

⎡⎢⎢⎢⎢⎣
1

c

H3

⎤⎥⎥⎥⎥⎦

= (0d(d+1)/2×(d+1),M
T
2 M2) ·

⎡⎢⎢⎢⎢⎣
1

c

H3

⎤⎥⎥⎥⎥⎦
= MT

2 M2H3.

Hence, we have Ĥ3 = (MT
2 M2)

†MT
2 z, where (MT

2 M2)
† denotes the pseudo-inverse of

the symmetric matrix MT
2 M2. Consequently, the matrix Hi that is defined in Step 4

of HLLE has the following form in our notation:

Hi = (MT
2 M2)

†MT
2 . (14)
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Note that in the original HLLE paper, it is implicitly assumed that k ≥ (d+1)(d+2)/2,

and that X has full column rank. These assumptions are not required in order to

compute the estimate given in (14).

3.3.2 Differences from the Original Algorithm

We explain the differences in two steps:

D-1. In [6], the columns of U∗, rather than those of U∗D∗, are used to generate X.

The resulting X matrix therefore differs from ours by a diagonal matrix D̃,

whose diagonal entries are the reciprocals of the squares and cross-products of

the diagonal entries of D.

D-2. In [6], the QR-decomposition of X is computed, and Hi is then defined to be

the transpose of the last d(d+1)/2 columns of Q. Our Hi also involves a factor

related to the R matrix in the QR-decomposition. The end result is that our

Hessian estimator matrix differs by a factor of D̃R̃−1
22 , which is not, in general,

proportional to the identity matrix, and is therefore not ignorable. Details are

given below.

Proof of D-1 . Suppose X̃ = (1k, U, X̃3), where 1k and U have been defined, and

the columns of X̃3 are made by the squares and cross-products of the columns of

U (instead of U∗D∗ as for X3). It is evident that X̃3 = X3D̃. Recall in the QR-

decomposition, we have (1k, U
∗D∗) = Q1R11; hence we have

(1k, U
∗) = Q1R11

⎛⎜⎝ 1

D−1

⎞⎟⎠ = Q1R̃11.

Let us assume an incomplete QR-decomposition stops at the (d + 1)st column of X̃:

(1k, U
∗, X̃3) = (Q1, M̃2)

⎛⎜⎝ R̃11 R̃12

Id(d+1)/2

⎞⎟⎠ .
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The above immediately leads to

X̃3 = Q1R̃12 + M̃2. (15)

From the above, on one hand, we have

R̃12

(13),(15)
= QT

1 X̃3; (16)

On the other hand, we have

M̃2

(15)
= X̃3 − Q1R̃12

(16)
= (I − Q1Q

T
1 )X3D̃ = M2D̃. (17)

In the last equality, it is not hard to verify that M2 = (I −Q1Q
T
1 )X3. One can easily

see that

H̃i = D̃−1Hi,

as stated in D-1. In Section 3.5, we will see that D̃ in general does not have common

diagonal entries, and is therefore not proportional to the identity matrix.

Proof of D-2 . Suppose M̃2 is of full column rank. Consider the QR-decomposition:

M̃2 = Q2R̃2. (18)

Note that QT
2 is the Hessian estimator used in [6]. Due to (17), a QR-decomposition

of M2 gives the same Q matrix. We have

Hi

(14)
= (MT

2 M2)
†MT

2

(17), (18)
= ((Q2R̃2D̃

−1)T (Q2R̃2D̃
−1))†(Q2R̃2D̃

−1)T

= D̃R̃−1
2 QT

2 .

Again, as we will demonstrate in Section 3.5, D̃R̃−1
2 in general is not ignorable.

3.4 Perturbation Analysis

3.4.1 Perturbation of X

By Theorem 2.3.5, we have
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Fact 3.4.1 ∥∥∥tan
(
R(Ûi),R (Ui)

)∥∥∥ ≤ C3 ·
(

σ

τ
+

C1 · τ
2

)
, (19)

where we define Ui as the “true” tangent coordinates of a point in Ni, the neigh-

borhood of the sample point yi, i.e., the columns of Ui form an orthonormal basis

of the span of JT
g (yi). In the language of [6], Ui would be formed from the set

{θj − θ̄i : j ∈ Ni}, where θj represents the underlying parameter (∈ R
d), and θ̄i is de-

fined analogously to Ȳi: θ̄i = Ave{θj : j ∈ Ni}. Here C3
def
= 8k

√
D

C2
2

, and σ
def
= maxi ‖εi‖.

Roughly, Fact 3.4.1 tells us that, for each i, the range spaces of Û and U are

“close.” However, there is still the problem of rotational (and possibly reflectional)

ambiguity since Û and U may be expressed in different bases — that is, U − Û may

still be far from 0 despite the fact that U and Û have nearly the same range spaces. As

an extreme example, any two nonsingular matrices in R
n×n have the same range space

(Rn), yet they obviously need not be “close” to one another in their individual entries.

To resolve this difficulty, we apply a theorem related to the CS decomposition. Let

Σ and Γ denote diagonal matrices formed by the sines and cosines, respectively, of

the canonical angles between R(Û) and R(U). We have, by Theorem I.5.2 of [25]:

Lemma 3.4.2 There exists an orthogonal matrix Q such that if we define

W = QT

⎛⎜⎜⎜⎜⎝
Γ −Σ 0

Σ Γ 0

0 0 I

⎞⎟⎟⎟⎟⎠ Q,

then:

W T W = WW T = I,

WR(Û) = R(U),

‖I − W‖2 = 2 sin

(
θ1

2

)
,

where θ1 is the largest canonical angle between R(Û) and R(U).

33



W is called the direct rotation that maps R(Û) onto R(U). Notice that, by Fact

3.4.1, θ1 → 0, and thus W → I, if we assume that τ → 0 and σ
τ
→ 0 (cf. Conditions

2.3.4 and 2.3.7.

Now, we have that the range spaces of WÛ and U are identical. Still, this by no

means implies that WÛ = U , as discussed above. As noted in [6], however, we are

only concerned with the functional H(f) =
∫
M ‖H(tan)

f (m)‖2
F dm. Since WÛ and U

are both orthogonal and have the same range space, it follows that

WÛ = UV

for some orthogonal matrix V . If we define H to be the Hessian formed by using the

columns of WÛ , and H ′ to be the Hessian formed by using the columns of U , then

we have, directly by the definition of the Hessian,

H ′ = V HV T

Though these matrices may differ in their entries, we have

‖H ′‖2
F = ‖V HV T‖2

F

= tr((V HV T )T (V HV T ))

= tr(V HT HV T )

= tr(V T V HT H)

= tr(HT H)

= ‖H‖2
F

The second equality is the elementary characterization of the Frobenius norm: ‖A‖2
F =

tr(AT A). The fourth follows from the property of the trace operator that tr(AB) =

tr(BA). Therefore, since the HLLE algorithm only uses an estimate of H(f), which

is a function of ‖H‖F , and no other property of H, we may assume WLOG that

WÛ = U . We are now ready to state the main result of this section.
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Theorem 3.4.3 Define ∆X = X − X̂. We have:

‖∆X‖ ≤ C4 · ((σ
τ

+ τ) + (
σ

τ
+ τ)2) (20)

for some constant C4.

Proof. Consider the matrix consisting of a column of ones, each column of Û ,

and all cross-products of columns of Û , as required to form the estimated Hessian

functional. We have:

‖Û − U‖ = ‖Û − WÛ‖

= ‖(I − W )Û‖

= ‖I − W‖

=

∣∣∣∣sin (
θ1

2

)∣∣∣∣
≤

∣∣∣∣tan

(
θ1

2

)∣∣∣∣
(19)
≤ C3 ·

(
σ

τ
+

C1 · τ
2

)
(21)

Now, to bound the errors of the cross-product terms, we write

I − W = E,

where ‖E‖ ≤ C3 · (σ
τ

+ 1
2
C1 · τ), as shown above. Trivially, for each entry of E, say

eij,

|eij| ≤ C3 ·
(

σ

τ
+

1

2
C1 · τ

)
.

Now, each cross-product of columns of Û will consist of k terms of the form [Û ]ia ·[Û ]ib,

1 ≤ a, b ≤ d, where [Û ]ia denotes the entry in the ith row and ath column of Û . By
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the above, we have, for the cross-product of columns a and b:∥∥∥∥∥
k∑

i=1

[Û ]ia · [Û ]ib − [W · Û ]ia · [W · Û ]ib

∥∥∥∥∥
≤

∥∥∥∥∥
k∑

i=1

(|[W · Û ]ia| + |eia|) · (|[W · Û ]ib| + |eib|) − |[W · Û ]ia| · |[W · Û ]ib|
∥∥∥∥∥

≤
∥∥∥∥∥

k∑
i=1

|eia| · |[W · Û ]ib| + |eib| · |[W · Û ]ia| + |eia · eib|
∥∥∥∥∥

≤ k(2‖E‖ + ‖E‖2) (22)

where the last inequality follows because W · Û has orthonormal columns, implying

that each entry has absolute value less than or equal to 1. Putting all of this together,

we have a total of d(d + 1)/2 cross-product terms, and the original d columns of Û .

In our notation,

∆X = X − X̂ =

(
0 U − Û U × U − Û × Û

)
Above, we have shown that

‖U − Û‖
(21)
≤ ‖E‖ and ‖U × U − Û × Û‖

(22)
≤ kd(d + 1)

2
(2‖E‖ + ‖E‖2)

Now, it is easy to see that

‖∆X‖F = ‖U − Û‖F + ‖U × U − Û × Û‖F

and (20) follows. �

3.4.2 Perturbation of Hessian Estimator Matrix

The next step is the key difference between our modified version and the original

version of the algorithm. At this step, the original HLLE requires that we compute the

Gram-Schmidt orthonormalization process on X̂i, and then extract the last d(d+1)/2

columns and transpose. In the modified version, we compute the QR-factorization of
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X̂i, and obtain

X̂i =

(
Q̂1 Q̂2

) ⎛⎜⎝ R̂11 R̂12

0 R̂22

⎞⎟⎠
where Q̂1 ∈ R

k×d+1, Q̂2 ∈ R
k×d(d+1)/2, R̂11 ∈ R

d+1×d+1, R̂22 ∈ R
d(d+1)/2×d(d+1)/2. Using

this notation, the original estimate is

Ĥorig
i = Q̂T

2

while the modified one, the least-squares estimator, is

Ĥmod
i = D̃R̂−1

22 Q̂T
2

Thus, we will need a perturbation bound on the QR factorization of a matrix.

Let

Xi = QiRi

denote the usual QR decomposition of Xi, and let κ(X) denote the condition number

of X, i.e.,

κ(X) = ‖X‖ · ‖X†‖.

In order to apply a perturbation bound on the QR decomposition of a matrix, we

will need to impose the following Condition.

Condition 3.4.4 (Bound for κ(X̂i)) For all i, κ(X̂i) ≤ C5 for some constant C5.

This condition is rather awkward, and is a manifestation of the “numerical difficulty”

alluded to in [6]. Note that we cannot bound the condition number (or even guarantee

full-column rank) based on the orthogonality of the Û alone - there are pathological

cases in which the columns of Û are orthogonal, yet their cross-products or squares

are still collinear, or arbitrarily ill-conditioned. For example, consider the following
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case when k = 7 and d = 2:

U =

(
U1 U2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√

2 0

0 1/
√

2

−1/
√

2 0

0 −1/
√

2

0 0

0 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Following the given recipe for the construction of X, we get:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√

7 1/
√

2 0 1/2 0 0

1/
√

7 0 1/
√

2 0 1/2 0

1/
√

7 −1/
√

2 0 1/2 0 0

1/
√

7 0 −1/
√

2 0 1/2 0

1/
√

7 0 0 0 0 0

1/
√

7 0 0 0 0 0

1/
√

7 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Clearly, X in this case does not have full column rank even though U does. In fact, it

is even possible that rank(X) = d + 1, the rank of the original matrix U from which

the columns of X are constructed. Of course, this is a pathological example which is

unlikely to arise in practical situations, but analysis of this situation in the general

case is made difficult by the nonlinear relationships between the columns and their

cross-products. However, even in practice we find that sometimes the X matrices

do become ill-conditioned, and this can lead to substantial distortion of the results.

Obviously, this distortion only affects points which count the badly conditioned Xi as

a nearest neighbor, but this can still skew the results substantially. From a theoretical

point of view, we know that, with every column we add to the X matrix, the condition

number must increase (see, e.g., [25, Theorem IV.4.2] for more details). Further, the
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number of columns in X is a quadratic function of d. Thus, we expect this problem

to become more and more prevalent as d increases. We also remark here that, as d

increases, the parameter k must also increase in order to ensure that X has more

rows than columns – i.e., we must have k > 1 + d + d(d+1)
2

, or else X cannot have

full column rank. This is also an illustration of the need for increasingly large sample

sizes as d grows. We will further explore the effect of d on the condition number of

X in Section 3.5.

Another possible way of going about deriving perturbation bounds would be to

use our alternate formulation given in Section 3.3, which involves the pseudo-inverse

(which always exists), rather than the inverse (R22
i )−1, the existence of which is, of

course, not guaranteed. However, while our modified procedure always allows us

to compute the least-squares estimate, it is not of much use in the analysis of the

estimate under perturbation. This is because the perturbation theory for the pseudo-

inverse is complicated by the fact that the pseudo-inverse behaves very badly under

perturbations which change the rank of the matrix (i.e., ‖(X + E)† − X†‖ may be

arbitrarily large, even if ‖E‖ is small, when the ranks of X and X + E differ.) Thus,

we essentially have the same problem if we pursue this alternative route — we would

need the condition that rank(Xi) = rank(X̂i) for all i in order to bound ‖X̂† − X†‖,
which could not be guaranteed if each Xi were not of full column rank. It seems that

we cannot avoid Condition 3.4.4.

Condition 3.4.4, together with Theorem 3.1 of [24], implies the following.

Theorem 3.4.5 For each i, 1 ≤ i ≤ n there exist an upper-triangular matrix ∆Ri
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and an orthogonal matrix ∆Qi such that:

X̂i = (Qi + ∆Qi)(Ri + ∆Ri),

(Qi + ∆Qi)
T (Qi + ∆Qi) = I,

‖∆Qi‖ ≤
3κ(Xi)

‖∆Xi‖
‖Xi‖

1 − 2κ(Xi)
‖∆Xi‖
‖Xi‖

, (23)

‖∆Ri‖ ≤ (d + 1)(d + 2)(2 +
√

2)κ(Ri)‖∆Xi‖. (24)

Notice that Condition 3.4.4, together with Theorem 3.4.3, guarantees that ‖∆Qi‖ and

‖∆Ri‖ go to 0. Consider the difference ‖Ĥi−Hi‖, where Hi denotes the corresponding

Hessian formed using the true (unknown) local coordinates U . It is easy to see that

‖Q̂2 − Q2‖ ≤ ‖Q̂i − Qi‖ (25)

and that

‖R̂22 − R22‖ ≤ ‖R̂i − Ri‖ (26)

Also, by the standard perturbation theory for inverses [25], we have

‖(R̂22)
−1 − (R22)

−1‖ ≤ ‖(R̂22)
−1‖ · ‖(R22)

−1(R̂22 − R22)‖ (27)

Notice here that we have not explicitly addressed the issue of the existence of R̂−1
22 .

However, Condition 3.4.4 guarantees that each X is of full column rank, which implies

the existence of R−1
22 . Further, we have X̂i → Xi for each i as N grows. (26) implies

that R̂22 → R22. It is easy to see that, for sufficiently large N , R̂−1
22 must exist, and

the given bound for the difference of the inverses holds.

As a final preparation to derive a bound on ‖∆H‖ def
= ‖Ĥ −H‖, we must investi-

gate the behavior of the diagonal matrix D̃ defined in Section 3.3.2. This discussion

is deferred to the Appendix.

Now we are ready to bound ‖∆Hi‖. For notational simplicity, we will drop the

superscripts corresponding to the partitions of the matrices and the subscript cor-

responding the original index of the observation, and let ∆Q = Q̂2 − Q2, ∆R−1 =
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(R̂22)
−1− (R22)

−1, and ∆D = D̃Ỹ − D̃Θ̃. Putting together the above results, we have:

‖∆Hi‖ = ‖Ĥi − Hi‖

= ‖D̃Ỹ R̂−1Q̂ − D̃Θ̃R−1Q‖

= ‖(D̃Θ̃ + ∆D)(R−1 + ∆R−1)(Q + ∆Q) − D̃Ỹ R−1Q‖ (28)

= ‖∆DR−1Q + D̃Θ̃∆R−1Q + D̃Θ̃R−1∆Q‖ + higher-order terms (29)

(30)

3.4.3 Perturbation of the Quadratic Form

We now consider

ĤN =

(
Ŝ1 Ŝ2 · · · ŜN

)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

ĤT
1 Ĥ1

ĤT
2 Ĥ2

0

0

. . .

ĤT
NĤN

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ŜT
1

ŜT
2

...

ŜT
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(31)

Recall our assumption that, asymptotically, the nearest neighbors in the feature

space are the same as those in the parameter space. Thus we may assume that

lim
N→∞

Ŝi = Si

for each i. Before we can bound the deviation of the estimated quadratic form from

the true one, we will need one condition about the Si matrices.

Condition 3.4.6 (No Overuse of One Observation) There exists a constant C8,

such that ∥∥∥∥∥
N∑

i=1

Si

∥∥∥∥∥
∞

≤ C8 (32)

This means that, for any N , a particular observation yi can only appear in the nearest-

neighbor set of a bounded number of observations. We are now prepared to bound
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the difference of the two quadratic forms. Using the above bounds, we have:

‖∆H‖ def
= ‖ĤN −H‖

=

∥∥∥∥∥
N∑

i=1

Si(H
T
i Hi − ĤT

i Ĥi)S
T
i

∥∥∥∥∥
=

∥∥∥∥∥
N∑

i=1

Si(H
T
i Hi − (Hi + ∆Hi)(Hi + ∆Hi)

T )ST
i

∥∥∥∥∥
=

∥∥∥∥∥
N∑

i=1

Si(∆Hi · HT
i + Hi · ∆HT

i + ∆Hi · ∆HT
i )ST

i

∥∥∥∥∥
≤

∥∥∥∥∥
N∑

i=1

Si

∥∥∥∥∥
2

∞
· ‖∆Hi · HT

i + Hi · ∆HT
i + ∆Hi · ∆HT

i )‖

(32)
≤ C1 · C2

8 · (2‖∆Hi‖ + ‖∆Hi‖2) (33)

where ‖∆Hi‖ is bounded in (29). The key is equation (32), which bounds the size of

each term in the diagonal matrix in (31).

3.4.4 Perturbation of the Nullspaces

Recall that the embedding coordinates are given by the eigenvectors corresponding

to the 2nd through d+1st smallest eigenvalues of the above quadratic form. We must

have one more condition in order to apply Theorem V.2.7 from [25]. Consider the

eigenvalues of ĤN , arranged in increasing order:

L(ĤN) = λ1, · · · , λd, λd+1, λd+2, · · · , λN

In order to apply the standard perturbation theorem on invariant subspaces, we need

the 0 eigenvalue associated with the nullspace to be well separated from all the other

eigenvalues of H. Now, we know by Theorem 1 in [6] that H has a d + 1-dimensional

nullspace, and therefore the first d + 1 eigenvalues are all equal to 0. Thus, we will

require that all eigenvalues beyond the first d + 1 be bounded away from 0, which

will ensure that no other (spurious) eigenvectors get mixed up with the nullspace
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computed in the final step of HLLE. More precisely, we will impose the following

condition:

Condition 3.4.7 (Separation of Eigenvalues) Let L(H) be the spectrum of H as

defined above. Then, for every N , we have

λd+2 ≥ ε

for some ε > 0 which does not depend on N .

Viewed from a matrix algebra perspective, this is a difficult problem. There seem to

be few results in the literature on sequences of matrices which grow in dimension as

n increases, and standard perturbation theory appears to be of little help. From the

functional point of view, it can be interpreted as follows: Suppose we have a basis

{f1, f2, . . .} of the space of C2 functions on M. Theorem 1 of [6] tells us that there

is some choice of basis such that H(f1) = H(f2) = . . . = H(fd+1) = 0, and that for

i > d + 1, H(fi) > 0. Condition 3.4.7, in this context, asserts that

inf{H(fi) : i > d + 1} = ε > 0.

Theorem 3.4.8 For sufficiently large N ,

‖ tan[N (H), N̂ (H + ∆H)]‖ ≤ 2 · ‖∆H‖
ε − 2‖∆H‖ ,

where we have used the notation N̂ to denote the estimated null space consisting of

the eigenvectors corresponding to the d + 1 smallest eigenvalues.

Proof. Let the spectral decomposition of H be

H =

(
U1 U2

) ⎛⎜⎝ Λ1

Λ2

⎞⎟⎠
⎛⎜⎝ UT

1

UT
2

⎞⎟⎠
where the columns of U1 span N (H) and the columns of U2 span R(H). Define

E =

⎛⎜⎝ E11 E12

E21 E22

⎞⎟⎠ =

(
U1 U2

)
∆H

⎛⎜⎝ UT
1

UT
2

⎞⎟⎠
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Since U is orthogonal, we have that ‖E‖ = ‖∆H‖, and by (33) we have that ‖∆H‖ →
0. Theorem V.2.7 in [25] yields the desired result. �

This Theorem tells us, essentially, that HLLE is consistent. Since the tangents

of the canonical angles between the subspaces spanned by the true and estimated

coordinates go to zero, they are “equivalent” in the sense that one is a rotation of

the other. This means that, with a sufficiently large sample, HLLE can recover the

structure of the underlying parameter set up to an isometry.

3.4.5 Convergence of Estimated Nullspaces

We have shown that the estimated Hessians converge to true Hessian formed when

the isometric coordinates are used to form the X matrix. We now must show the

asymptotic equivalence of the estimated null-space to the solutions of the equation∫
M ‖H(tan)

f (m)‖2
F dm = 0. First, we will need a Lemma.

Lemma 3.4.9 Let f : M → R be a C2 function defined on the articulation manifold.

For every i, limN→∞ Ĥmod
f,N (yi) = Hf (yi)

Proof. Consider the Taylor expansion of f :

f(yij) = f(yi) + Jf (yi)(yij − yi) +
1

2
(yij − yi)

T Hf (yi)(yij − yi) + O(‖yij − yi)‖3)

Recall that we have defined τ such that

‖yij − yi‖ ≤ τ

whenever yij is one of the k nearest neighbors of yi. Thus, it follows that

lim
N→∞

∥∥∥∥∥
k∑

j=1

(f(yij) − f(yi) − Jf (yi)(yij − yi) −
1

2
(yij − yi)

T Hf (yi)(yij − yi))

∥∥∥∥∥
2

≤ C6 ·τ 6

(34)
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for some constant C6. Recall the discussion on the least-squares estimation of the

Hessian matrix in Section 3.3. What we have shown is that there exist a vector Jf (yi)

and a matrix Hf (yi) such that the sum of squared errors in Equation 34 approaches

zero, by our assumption that τ → 0. Hence, since the sum of squared errors is

always positive, we have that Jf (yi) and Hf (yi) asymptotically give the minimum

possible sum of squared errors. The only issue that remains is the uniqueness. It is

clear from the construction of the least-squares estimator, however, that it is unique

whenever the X matrix formed by yi and its nearest neighbors has full column rank

(cf. Condition 3.4.4), since the pseudo-inverse is unique for a matrix of full rank.

Therefore, since Ĥmod
f,N is the least-squares estimate as shown in Section 3.3, the result

follows. �

Theorem 3.4.10 Suppose the data points {y1, y2, · · · , yN} are sampled from a con-

tinuous probability measure strictly positive everywhere in the interior of the manifold

M. Then for any C2 function f : M → R,

lim
N→∞

Ĥmod
N · (f(y1), f(y2), . . . , f(yN))T = 0

if and only if ∫
M

‖H(tan)
f (m)‖2

F dm = 0

Proof.

1. ⇐ Suppose
∫
M ‖H(tan)

f (m)‖2
F dm = 0. It follows that H

(tan)
f = 0 m-a.e., since

‖H(tan)
f (m)‖2

F is a nonnegative function. Therefore, for each i, limN→∞(Ĥi)
T Ĥi =

0, which implies that limN→∞ Ĥmod
N = 0.

2. ⇒ Suppose limN→∞HN = 0, and suppose that
∫
M ‖H(tan)

f (m)‖2
F dm 
= 0. It

follows that ‖H(tan)
f ‖ > 0 on some ball in M , say, Bε(z). To derive a contra-

diction, notice that we have assumed that the observations are sampled with

45



respect to a density that is positive everywhere in M - thus,

P{xi ∈ Bε(z) > 0, i = 1, 2, . . . , N}

and therefore,

lim
N→∞

P{xi ∈ (Bε(z))C , i = 1, 2, . . . , N} = 0

But if some xi is in Bε(z), then we have by Lemma 3.4.9 that limN→∞ Ĥi 
= 0,

and thus, limN→∞ ĤN 
= 0, contradicting the hypothesis. �

With Theorem 3.4.10, we can now link our results with Theorem 1 of [6]. Informally,

this result can be viewed as stating that limN→∞ N̂ (Ĥmod) = N (H), where N̂ denotes

the estimated nullspace formed by the eigenvectors corresponding to the 2nd through

d + 1st smallest eigenvalues.

3.4.6 Comparison between Original and Least-Squares Estimators of the
Hessian

We have carried out a perturbation analysis of the least-squares version of the Hessian

estimator. However, we have also shown that the actual least-squares estimator of the

Hessian differs from the original, so we have still not answered the question of how

the original estimator behaves asymptotically. However, the following simple result

shows that the original and least-squares estimators are asymptotically equivalent.

Theorem 3.4.11 (Equivalent Nullspaces) Let Ĥ and Ĥmod denote the original

and modified versions of the estimated Hessian functional, respectively. That is:

Ĥ = Ŝ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q̂1Q̂
T
1

Q̂2Q̂
T
2

0

0

. . .

Q̂NQ̂T
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
ŜT
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and

Ĥmod = Ŝ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q̂1R̂
−T
1 D̃2

1R̂
−1
1 Q̂T

1

Q̂R̂−T
2 D̃2

2R̂
−1
2 Q̂T

0

0

. . .

Q̂N R̂−T
N D̃2

N R̂−1
N Q̂T

N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
ŜT .

Then N (Ĥ) = N (Ĥmod).

Proof. To simplify notation, define

Ai = Q̂T
i ŜT

i ,

Bi = R̂−T
i D̃T

i D̃iR̂
−1
i .

Suppose x ∈ N (Ĥ). By direct multiplication, we can see that this implies

AT
i Aix = 0

for i = 1, 2, . . . , N . But then

xT AT
i Aix = 0

⇒ Aix = 0

⇒ AT
i BiAix = 0

⇒ x ∈ N (Ĥmod)

Suppose x ∈ N (Ĥmod). Then AT
i BiAix = 0 for i = 1, 2, . . . , N . Now by hypothesis,

D̃i and Ri are nonsingular, which implies that Bi is positive definite. Recall that, for

any positive definite matrix Bi, we have

Bi = B
1/2
i B

1/2
i (35)

for some positive definite B
1/2
i , that is, positive definite matrices have positive definite

square roots. Also recall that, by the positive-definiteness of B
1/2
i , we have that

B
1/2
i x = 0 ⇔ x = 0. (36)
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Putting together these basic results , we have, for all i:

AT
i BiAix = 0

⇒ xT AT
i BiAix = 0

(35)⇒ xT AT
i B

1/2
i B

1/2
i Aix = 0

⇒ B
1/2
i Aix = 0

(36)⇒ Aix = 0

⇒ x ∈ N (Ĥ).

�

We have shown that both the original Hessian estimator and the least-squares

estimator have the same null space. Thus, although we will see in Section 3.5 that the

original Hessian estimator differs from the least-squares estimator in finite samples,

asymptotically we should expect the results from the two estimators to be the same.

In fact, Theorem 3.4.11 shows that we can left-multiply the original estimator by any

nonsingular matrix, and still expect the same asymptotic result to hold. The natural

question to ask, then, is the magnitude of the difference between these estimators

in finite samples. We investigate this, as well as questions regarding the numerical

stability of the least-squares estimation procedure, in some detail in Section 3.5.

3.5 Simulations

3.5.1 Comparison of Ordinary and Least-Squares HLLE

We compare performance using the canonical S-Curve example in Figure 4. We

generate 482 points in a 2-dimensional grid, which we then embed into R
3, as shown

in Figure 5, and run both the original and least-squares algorithms to attempt to

recover the underlying 2D structure. To explore further the effect of multiplying Qi by

a nonsingular matrix to form each local estimate Ĥi, we also consider a “randomized”

HLLE algorithm, in which Qi is multiplied by a randomly generated (nonsingular)
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Figure 4: The 3-dimensional S-Curve data, which were used as input to the 3
different algorithms.

matrix. Notice that all 3 algorithms all appear to recover the underlying structure

quite nicely — none of them suffer from any noticeable distortion. The fact that

the Randomized HLLE algorithm appears to rotate the results is, of course, of no

significance, since the rotated square is still isometric to the original.

As a quantitative measure of the accuracy of recovery, we use Procrustes statistics

[22] to compute the optimal matching of each set of recovered coordinates to the

original isometric coordinates. This is necessary because, as has been noted, the

recovery of the original isometric coordinates is only possible up to an isometry (i.e.,

rotation and/or reflection). Also, since eigenvectors are always scaled to have norm

one, the original and recovered coordinates may also have different scales. Thus,

comparing the sets of coordinates directly is not a meaningful measure of the “error”

in recovering the low-dimensional structure. Notice that all three recovered coordinate

sets have scales which differ from that of the original data set, and the randomized

HLLE and original HLLE results are oriented differently than the original coordinates.

A Procrustes matching computes the optimal rescaling, rotation, and reflection of
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Figure 5: A comparison of the performance of the original, modified, and “random-
ized” HLLE algorithms. The Procrustes SSE for the 3 algorithms are .003, .002976,
and .003086, respectively.
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Figure 6: The results of Regular HLLE, Least-Squares HLLE, and LTSA, as a
function of sample size.

the sets of points, and then computes the SSE of these matched coordinate sets.

Note that the modified least-squares estimator does, in fact, have the smallest overall

error (measured by the Procrustes statistic) as we might expect, given the well-known

optimality properties of least-squares estimators. However, the difference is obviously

quite small, suggesting that the asymptotic result we expect from Theorem 3.4.11

holds approximately even with relatively small sample sizes, as used here.

To demonstrate the actual rate of convergence, we simulate data sets of increasing

size, sampled from the same manifold as used in Figure 4. We then use each of 3

different algorithms to recover the underlying 2-dimensional coordinates. The results

(given in Figure 6) demonstrate our theorems — first, note that with increasing

sample size, the original and least-squares HLLE seem to be equivalent. Second, the

rate of convergence agrees with our result — in this case d = 2, so we expect the

error to decrease at the rate 1√
N

, which is essentially what we observe.
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3.5.2 Effect of Parameters on Performance

We now investigate the effect of d and k on κ(X). We know from the pathological

example presented in Section 3.4.2 that it is possible for X not to be of full column

rank, and it is easy to see that by perturbing the entries in the pathological example,

we could generate matrices which are of full column rank, but are arbitrarily badly

conditioned. However, this would never occur in practice if the original data points

were chosen with respect to some continuous probability measure on the manifold

M. In this experiment, we generate “random” orthogonal columns by computing the

QR-factorization of a matrix whose entries are independent standard normal random

variables. We then follow our recipe to compute the X̂ matrices for each resulting set

of “random” orthonormal vectors, and then compute κ(X̂i). The results are given in

Figures 7 and 8.

We can see that the results are essentially what we expect — increasing d, the

intrinsic dimension of the manifold, dramatically increases the average condition num-

ber of the resulting X matrices, which indicates potential difficulty in the computation

of R̂−1
22 . This result is explained by the discussion following Condition 3.4.4. On the

other hand, k does not appear to have a significant effect on κ(X̂). This is also ex-

pected, since increasing k does not increase the size of X̂T X̂, and there is therefore no

reason to expect that κ(X̂) will increase as a result. Our results here indicate that,

despite the fact that least-squares HLLE performs slightly better than ordinary HLLE

in our toy examples, it still may not be practical to use the least-squares procedure if

d is larger than, say, 3 due to the numerical instability inherent in the least-squares

procedure. One possible solution would be to choose the Hessian estimator adaptively

for each neighborhood — first, a maximum threshold for κ can be chosen. κ(Xi) can

then be estimated for each i, and if it is below the threshold, the least-squares esti-

mator can be computed, and if it is above the threshold, then the ordinary estimator

can be used instead, reducing the sensitivity of the estimator to numerical error.
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Figure 7: The effect of the parameter d on κ(X). For these histograms we fixed
k = 100, and varied d.
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Figure 8: The effect of the parameter k on κ(X). For these histograms we fixed
d = 3, and varied k.
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3.6 Comparison of LTSA and HLLE

Since we have now established the consistency of both LTSA and HLLE as long as

certain regularity conditions are imposed on the underlying manifold, it seems natural

to wonder if the two algorithms are, in some sense, equivalent. In this Section, we

investigate this question and show that there is, in fact, a strong similarity between

the two, despite the considerable differences in their actual implementations. Consider

again the Taylor expansion of a C2 function f : M → R at a sample point:

f(yij) = f(yi) + Jf (yi)(yij − yi) +
1

2
(yij − yi)

T Hf (yi)(yij − yi) + O(‖yij − yi‖3) (37)

Now, recall that LTSA, in its second step, finds the null space of the matrix (see [29]

and Chapter 2 for details)

ŜP k

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I − Û1Û
T
1

I − Û2Û
T
2

0

0

. . .

I − ÛN ÛT
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
P kŜ

T

while HLLE finds the null space of

Ŝ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q̂1Q̂
T
1

Q̂2Q̂
T
2

0

0

. . .

Q̂NQ̂T
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
ST

The connection between the two may be viewed as follows: First, recall the Theorem

proven in [6]: The functional

H(f) =

∫
M

‖Hf (m)‖2
F dm (38)

has a d + 1-dimensional nullspace, consisting of the constant function and the d

isometric coordinate functions. LTSA and HLLE are both ways of finding functions
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which are well-approximated by their estimated derivatives given by the optimal d-

dimensional approximation over each neighborhood — the difference is only in the

way they define “well-approximated.”

In view of Fact 3.4.1, we may assume that

UiU
T
i ≈ Jg(yi)J

T
g (yi) (39)

by noting that these two matrices are projections, and therefore are functions only

of the column space of the two matrices, and are invariant with respect to the bases

chosen. To see this, suppose that the columns of two matrices, say A and B ∈ R
m×n,

form orthonormal bases of the same subspace. Then we have A = BV for some

orthogonal V ∈ R
n×n. Then, by definition, the projection onto the column space of

A is given by AAT = BV (BV )T = BV V T BT = BBT , which is the projector onto

the column space of B.

Suppose that fk : M → R, k = 1, 2, . . . , d are the global coordinate functions of

the data points, and let F = (f1, f2, . . . fd)
T . Then, because the fk are functions of

θ, the underlying parameters, it is easy to see that R(JT
F (yi)) ⊂ R(Jg(yi)). On the

other hand, JT
F (yi) clearly has rank d, as does Jg(yi). Thus, R(JT

F (yi)) = R(Jg(yi)).

Further, F must be a locally linear function of θ. Therefore, we have

‖(I − JT
F (yi)JF (yi))g(F (Yi))‖ = ‖(I − Jg(yi)J

T
g (yi))g(F (Yi))‖

≈ ‖(I − ÛiÛ
T )g(F (Yi))‖ (40)

= O(τ 2)

where f(Yi)
def
= (f(yi1), f(yi2), . . . f(yin))T . Thus, (I − ÛiÛ

T
i )f(Yi) may be viewed

as the approximate error of the first-order Taylor expansion of f , using Ûi as an

approximation to JT
g (yi).

Meanwhile, HLLE minimizes Q̂iQ̂
T
i , which, as we have seen, is a (somewhat crude)

estimate of ‖Hf (yi)‖2
F . To see the connection with (37), notice that, if we set τmin

def
=

56



mini,j{‖yij − yi‖}, we have

τ 2
min‖Hf (yi)‖ ≤ ‖(yij − yi)

T Hf (yi)(yij − yi)‖F ≤ τ 2‖Hf (yi)‖ (41)

so HLLE seeks functions which minimize the second term in (37). In this sense, LTSA

may be interpreted as seeking d orthogonal scalar functions which minimize

d∑
l=1

N∑
i=1

k∑
j=1

‖fl(yij) − (fl(yi) + Jfl
(yi)(yij − yi))‖2

2

while HLLE seeks d orthogonal scalar functions which minimize

d∑
l=1

N∑
i=1

k∑
j=1

‖(yij − yi)
T Hfl

(yi)(yij − yi)‖2
F

(see [29] for more details on the interpretation of LTSA as an optimization problem.)

Essentially, then, recalling (37) and (41), we see that the two are just different ways of

exploiting a Taylor expansion by assuming that the observations are smooth functions

of the underlying parameters. The difference is simply that LTSA seeks functions for

which the first-order Taylor approximation is most accurate, while HLLE seeks to

minimize the second term in the Taylor expansion. Asymptotically, of course, these

are equivalent since the second term dominates the remainder as τ → 0. We expect,

therefore, that the difference between the results of the two algorithms, after allowing

for a possible rotation and reflection, is of O(τ 3). Notice that this is consistent with

Figure 6, in which we observe that the Procrustes error for both LTSA and HLLE

converge to zero, and seem to do so at nearly the same rate, since the error curves

coincide almost exactly for larger values of N . However, the above explanation leads

us to expect that the two might differ more substantially if the underlying manifold

has large third- and higher-order derivatives at least at some points.

It is also illuminating to view the connection between the two from a matrix

algebra perspective. It seems natural to view the diagonal blocks in the alignment

matrix used in HLLE as a quadratic form of the estimated Hessian, but they can also
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be viewed as projections, just like the blocks in the alignment matrix of LTSA. Let

us consider again the QR decomposition of X, as constructed in HLLE:

X =

(
Q1 Q2

)
R,

where Q1 ∈ R
k×(d+1) consists of a (normalized) column of ones and the original

d local coordinate functions. HLLE then takes Q = Q2. The ith diagonal term

of the alignment matrix is therefore the projection onto the column space of the

d(d+1)
2

columns representing the second-order terms. But this can be regarded as

a subspace of the orthogonal complement of Q1 — since Q1 has k columns, the

dimension of its orthogonal complement is k − (d + 1), while HLLE projects only

onto a d(d+1)
2

-dimensional subspace. It is easy to see that R(Q2) is a subspace of Q⊥
1

since the Gram-Schmidt procedure (or, equivalently, the QR factorization) ensures

that all columns of Q are orthogonal. Thus, LTSA projects directly onto Q⊥
1 , while

HLLE explicitly constructs a d(d+1)
2

dimensional subspace of Q⊥
1 and projects onto

this subspace. Supposing k is large enough, we can regard the extra columns that are

ignored by HLLE (i.e., those in Q⊥
1 ∩Q⊥

2 ) as estimates of the third- and higher-order

terms in the Taylor expansion.

What, then, should we make of the differences between the two algorithms? From

a computational perspective, LTSA is the clear winner. It only requires the compu-

tation of the pseudo-inverse of the left-singular vectors of each local singular value

decomposition, and leads to a sparse eigenvalue problem. HLLE, on the other hand,

requires the comparatively difficult computation of both the second-order matrix of

cross products and its QR-factorization at every neighborhood. In practice, LTSA is

far faster (in our particular simulations, about an order of magnitude faster). From

a purely statistical perspective, however, there is no clear winner. The importance

of the higher-order terms in the Taylor expansion seems to be specific to each partic-

ular application. If we have reason to suspect that higher-order derivatives may be

large, then LTSA may offer a significant improvement. However, if we anticipate that
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the data may be explained by a simple curve (in particular, if we suspect a priori

that the underlying manifold may be represented as a function with only first- and

second-order terms in the parameters), then LTSA may be more sensitive to noise in

the data, while HLLE would be relatively more stable. We suspect, therefore, that

neither algorithm will strictly dominate the other in terms of performance — the

choice of which algorithm is preferable will depend on the particular problem under

consideration.

3.7 Conclusions and Future Research

We have established the asymptotic consistency of the original and least-squares

versions of the HLLE algorithm. However, our understanding of these algorithms

and their performance is still far from perfect. The following is a partial list of

questions that we have not addressed.

1. Analysis of HLLE’s performance in the finite-sample case is an interesting (and

seemingly very challenging) problem. The key difficulty is that we have no

guarantee that the Si matrices will coincide with the “true” selection matrices

in the underlying parameter space. This problem may be especially prevalent if

the manifold is nearly self-intersecting. The consequences of this disparity are

not currently well-understood. Though simulation suggests that the estimated

Si’s converge fairly quickly to their true counterparts, rigorous analysis of this

situation has been elusive.

2. The issue of bounding the condition numbers of the X̂ matrices seems to be

unique to this particular algorithm in dimension reduction (e.g., it is not an

issue in LTSA). It would be interesting to know under what conditions we

can guarantee that each X̂i will at least be nonsingular, and from a numerical

perspective, it would be useful to know if we can somehow bound κ(X̂i). In

particular, having singular (or close to singular) X matrices could affect both
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performance and numerical stability in practice, and as N increases, it seems

possible that at least some of the X̂i’s will be ill-conditioned.

3. Condition 3.4.7 also seems difficult to verify. Conditions under which it always

holds, as well as the effects on performance if it is violated, would be useful

contributions.
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CHAPTER IV

COMBINED MODEL SELECTION CRITERIA

4.1 Introduction

Model selection remains, despite the considerable progress that has been made in this

area, a fundamental and very challenging problem in virtually every area of applied

statistics. A multitude of model selection criteria have been proposed in the literature

to address this problem. Broadly, one can think of these criteria as being of three

different types: some measure in-sample fit only, possibly with a penalty imposed

on the number of parameters in the model. Many popular criteria, such as AIC,

BIC, and Mallows’ Cp fall into this class. Others use cross-validation to estimate

out-of-sample prediction performance. The most common example from this class is

PRESS in linear regression. Finally, others use a true holdout sample, not used in

the construction of the model itself, as a measure of out-of-sample prediction error.

One example of this type is MAD, or median absolute deviation, sometimes used in

time-series analysis.

While all of the above types of criteria can certainly be useful, a natural question

to ask is whether one can formulate a criterion which simultaneously considers more

than one of these types of goodness of fit. No commonly-used criterion, for example,

considers both in-sample fit and cross-validation error. In this chapter we propose

a new procedure which generates a new class of combined model selection criteria.

This procedure allows the analyst to combine, for example, the benefits of good in-

sample fit as measured by criteria such as AIC or BIC, and also good out-of-sample

prediction performance into a single criterion.

This new procedure generates a very large (in fact, infinite) new class of criteria,
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and therefore the question of how to compare different criteria is very important.

In the model selection literature, criteria are typically compared on the basis of the

proportion of simulated data sets in which the criterion chooses the known correct

model from a set of candidates. We propose a generalization of this procedure based

on ranks of criterion values which, we argue, is a more realistic measure of a criterion’s

usefulness in an applied context. The traditional method of comparing criteria turns

out to be a special case of our more general comparison methodology.

Combining these two contributions, then, our main result is an algorithm which, as

we show, can be proven to find the optimal combination of a fixed set of criteria, either

using the traditional definition of optimality as above or a more general definition

which we discuss below. Since the straightforward use of a single criterion is a special

case of our combined criteria, our algorithm is a true generalization of the traditional

model selection procedure in the sense that the optimal combined criterion can be no

worse than any of the original criteria.

The rest of this chapter is organized as follows: In section 4.2 we propose our

method to combine existing selection criteria via a simple ranking procedure. Section

4.3 then discusses a generalization of the traditional method of comparing criteria,

and presents an algorithm to select an optimal combined criterion. In section 4.4 we

present simulation results from our algorithm, focusing on the two special cases of

ARIMA and linear regression models. We discuss the theory behind our algorithm,

and in particular prove that the algorithm can find the optimal combined criterion, in

section 4.5. Computational details are presented in section 4.6. Section 4.7 presents a

discussion of inferential issues involved in our algorithm, and proves the ε-optimality

of the solutions produced. In section 4.8 we discuss the role that prior distributions

play in our algorithm. Finally, in section 4.9 we conclude and present possible topics

for future research in this area.
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4.2 Combining Model Selection Criteria

We will assume throughout that we are working with a fixed set of candidate models

M = {M1,M2, . . . ,Ms},

where s denotes the cardinality of M.

Let X denote the matrix of covariates, which we assume to be fixed, and let the

response be denoted by M. Associated with each model Mi ∈ M, we assume that

there is an equation

y = gi(X,θ(Mi)) + ε,

where θ(Mi) denotes the parameter space associated with Mi.

If we fix a particular model selection criterion, say BIC for the sake of example,

then the model selection problem becomes an optimization problem of the form

min
{i=1,2,...,s}

BIC(Mi).

If we view the optimization from this perspective, combining several MSCs is prob-

lematic due to their different scales. For example, considering the sum

BIC(Mi) + MAD(Mi)

is meaningless because BIC is computed based on log-likelihoods, while MAD is on

the same absolute scale as the original observations. Thus, even if one allows a linear

combination of BIC and MAD, choosing appropriate constant multipliers to make

the combination meaningful is a difficult task. The chief problem with this simple

approach, then, is scaling.

However, a simple modification to the above procedure can make the linear com-

bination meaningful. Rather than viewing the original problem as minimizing the

absolute BIC value, we can view it as minimizing the rank of the BIC value of Mi

among the set of BIC values of all the models in M. Considering the rank of a
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model’s MSC value rather than the absolute MSC value itself has the advantage of

automatically putting all MSCs on the same scale. If we have several MSCs, say

MSC1,MSC2, . . . ,MSCk, we can then form a meaningful combination of them

MSCα(Mi) = α1 · RMSC1(Mi) + α2 · RMSC2(Mi) . . . + αk · RMSCk
(Mi)

for any vector of convex coefficients α = (α1, α2, . . . , αk)
T and where RMSCj

(Mi) de-

notes the rank of MSCj(Mi) among the set {MSCj(M1),MSCj(M2), . . . ,MSCj(Ms)}.
Note that the values of MSC(1,0,0) are not the same as those of the original criterion

MSC1 due to the rank transform, though the ordering of the values is the same.

Notice that it is not necessary to consider linear combinations with positive weights

other than convex combinations, since any linear combination with positive weights

amounts to a re-scaling of a convex combination — that is, it is simply a convex

combination multiplied by a constant. It is easy to see that multiplying the objective

function by a constant does not change the optimal solution, and therefore the scaling

of the set of linear coefficients is irrelevant. Linear combinations involving negative

weights are possible in principle, but are quite unintuitive since we expect all model

selection criteria to be of some value in distinguishing the true model from some of the

false ones. This intuition is confirmed by our simulations below. Notice that this way

of resolving the scaling problem noted above crucially depends on the specification

of the set of candidate models — in effect we are using the criterion values of all the

models in M as a way of imposing a scale. As a preview of the potential effectiveness

of this method, we present a simple artificial example in Table 1 below. We present

many more simulation results in Section 4.4.

However, the above method of considering ranks is not the only way to make

different criteria have similar scale. Another simple alternative is to standardize the

values of each criterion. This yields another class of combined criteria, which are very

much related to, but not identical to, those produced by ranking. As we show below,

however, these criteria tend to be less effective than those produced by ranking. Why
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Table 1: Example of the potential utility of combined criteria: No individual crite-
rion selects the correct model (Model 2), but the sum of ranks does.

AIC BIC PRESS sum
Model 1 1 3 4 8

(*) Model 2 2 2 2 6
Model 3 3 4 1 8
Model 4 4 1 3 8

this is the case remains an open question. We expect it is due to the distributions of

the criterion values themselves – standardizing the values forces a common mean and

variance, but does not guarantee any particular type of distribution, while ranking

always produces values with exactly the same distribution. In the sequel we will focus

primarily on the approach employing ranks, but we give some simulation results for

the standardizing method in section 4.4.

Armed with these new methods of constructing combined MSCs, we are now faced

with the problem of finding the optimal convex combination of existing MSCs. In

order to do so, one must specify what exactly “optimal” means with respect to an

MSC. We address this question in the next section, and then in section 4.4 we propose

an algorithm for computing the optimal criterion.

4.3 Comparing MSCs

In the model selection literature, criteria are often compared in a similar way – see,

e.g., [19], [8]. Typically, for a fixed candidate model set M, some data sets are

simulated and all models in M are fitted to the resulting data. Different criteria are

then compared on the basis of how often each criterion chooses the correct model –

that is, how often the model with the optimal criterion value is in fact the true model

chosen in the simulation. In this section, we propose a much more general framework

in which to compare criteria, which we argue can be more useful in applied situations.

In order to determine what makes one criterion better than another, one should

consider the applied context in which criteria are used. An idealistic approach to
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model selection may consist of a procedure such as the following: Choose a model se-

lection criterion (say, BIC), fit all the feasible models in M to the data, and calculate

the BIC for each model. Then select the model with the minimum BIC. The under-

lying assumption, of course, is that if the model selection criterion is well-designed,

then the true model ought to be the one selected by the criterion. If one adopts

this approach, then the existing method of comparison described above seems quite

natural.

In practice, however, this approach is rather naive, as it amounts to the analyst

allowing the criterion to completely dictate model choice, rather than to guide it.

An experienced analyst would always use other considerations such as diagnostic

plots along with criterion values in order to construct a sensible model. A more

realistic procedure would be to consider several models with small BIC, and then use

other non-quantitative information, such as residual plots, to choose among these top

few candidates. If one uses this procedure, however, the comparison method above

becomes less meaningful – we are not particularly interested in the probability that

our criterion chooses the true model, but rather the probability that the criterion

includes the true model in the top few choices. It is this general model selection

strategy which motivates our method to compare criteria.

The key new idea to our approach is to consider ranks. To illustrate, we need a

bit more notation. Suppose we have fixed k “basis” MSCs and the candidate model

set M. With a vector α of convex coefficients (i.e., α ≥ 0,
∑k

i=0 αi = 1), let us define

Rα(Mi) = rankMSCα (Mi),

where the rank is taken with respect to the set {MSCα(M1),MSCα(M2), . . . ,MSCα(Ms)}.
With this notation, the traditional approach to comparing criteria described above

corresponds to calculating P{Rα(M∗) = 1}, where M∗ is the true model, for different

values of α. The best criterion would then be the one with highest such value.

However, defining the ranks as above allow us to compare criteria in a much more
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general way. Rather than considering only the binary outcome Rα(M∗) = 1, we can

regard Rα(M∗) as a random variable and consider any functional of its distribution.

Indeed, there are many other functionals besides P{Rα(M∗) = 1} which may be

meaningful. As suggested above, one useful alternative would be P{Rα(M∗) > c},
where c is some specified constant. It is natural to think of c as a maximum number

of models the analyst is willing to consider “by hand” – that is, the number of

candidates suggested by the criterion from which the analyst is willing to choose based

on information other than the criterion itself. Of course, c might vary depending on

the type of problem. For example, model selection in time series is notoriously difficult

using diagnostic plots – often one has considerable trouble distinguishing between a

simple AR(1) and an MA(1) process based on plots of the autocovariance function.

For other types of models such as linear regression, there are more diagnostics at our

disposal, and c may correspondingly be larger in the hopes that our chance of finding

the true model will accordingly be better. Other functionals such as the mean and

median can also be used.

In general, we can define an arbitrary functional T of the empirical distribution

of Rα, and formulate our optimization problem as

min
α

T (F̂ (Rα(M∗))).

We have implicitly assumed that Rα(M∗) may be treated as a random variable.

This is most naturally interpreted in a Bayesian context in which we assume a full

probability model for the data. Such a framework would consist of

1. πM, a prior distribution on the set of candidate models

2. πΘM , a prior on the parameter space associated with each model in M

3. f(ε), an assumed distribution on the errors of the model

With all of these ingredients, we can now formulate our main algorithm, listed as
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Algorithm 1.

Data: πM, πΘM , f(ε), M, X, sample size N
Result: A vector of ranks of the true model
for i = 1 : N do

Choose j, the index of the true model, from πM;
Choose θ(Mj) from πΘ(Mj);
Simulate errors from f(ε);
Set y = gj(X,θ(Mj)) + ε;
Fit all models in M to y;
Compute the matrix B of ranked basis criterion values;
For each α, compute the rank of the jth element of the vector Bα.

end
Algorithm 1: Optimal combination of model selection criteria

4.4 Results

It is a well-known fact that BIC is the only consistent model selection criterion – that

is, as the sample size grows, BIC is guaranteed to choose the correct model. Thus,

by considering combinations of BIC with other criteria, we are in effect asking to

what extent this asymptotic result holds in particular finite samples. In this section

we explore this question in two applied contexts – regression models and ARIMA

models.

4.4.1 Regression Models

Variable selection in linear regression is perhaps the oldest and most-studied model

selection problem in statistics. Here we give a few examples of our algorithm applied

to linear regression problems.

For the interesting case, the covariate matrix was generated as 4 independent

standard normals, each of length 40, which was then right-multiplied by another

random matrix to induce correlation among the predictors. The correlation matrix is

given in Table 2. M was simply the set of all 24 subsets of predictors from the matrix.

The prior πM was specified indirectly by giving randomly assigned weights to each
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Model BIC Cp Adj.Rsq
y ∼ 1 264.049 3.072 0.000
y ∼ X1 268.527 4.995 0.010
y ∼ X2 268.413 4.880 0.009
y ∼ X3 265.864 2.341 −0.018
(*) y ∼ X4 265.399 1.886 −0.023
y ∼ X1 + X2 272.637 6.548 0.016
y ∼ X1 + X3 267.835 1.838 −0.034
y ∼ X1 + X4 269.247 3.199 −0.019
y ∼ X2 + X3 268.816 2.781 −0.024
y ∼ X2 + X4 269.694 3.633 −0.015
y ∼ X3 + X4 269.891 3.825 −0.013
y ∼ X1 + X2 + X3 271.722 3.203 −0.030
y ∼ X1 + X2 + X4 273.800 5.198 −0.009
y ∼ X1 + X3 + X4 272.358 3.808 −0.024
y ∼ X2 + X3 + X4 273.334 4.746 −0.014
y ∼ X1 + X2 + X3 + X4 276.062 5.000 −0.022

BIC Cp Adj.Rsq
1 5 13
6 13 15
5 12 14
3 3 8

(*) 2 2 5
13 16 16
4 1 1
8 6 7
7 4 3
9 8 9

10 10 11
11 7 2
15 15 12
12 9 4
14 11 10
16 14 6

→

α = (0.78, 0, 0.22)
3.64
7.98
6.98
4.10
2.66

13.66
3.34
7.78
6.12
9.00

10.22
9.02

14.34
10.24
13.12
13.80

→

Ranked combined values
3
8
6
4
1

14
2
7
5
9

11
10
16
12
13
15

Figure 9: An illustration of Algorithm 1. The top panel shows the raw values for each
of the 16 models in M. The bottom panel illustrates the sequence of transformations
– rank by column, combine the columns using convex coefficients, re-rank the resulting
values.
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Table 2: Correlation matrix of predictor variables used to generate Figure.

X1 X2 X3 X4
X1 1.000 0.504 0.774 −0.545
X2 0.504 1.000 0.421 −0.036
X3 0.774 0.421 1.000 −0.854
X4 −0.545 −0.036 −0.854 1.000

model size, and the weight for each model size was split equally among all models

of that size. πΘ(M) and f(ε) were both standard normal distributions. The grid

was generated using a width of 0.02, and the basis MSCs were BIC, Mallows Cp, and

adjusted R2. We did 2 runs of 2000 simulated data sets each: on the first run, we used

combined ranked criterion values, and in the second we used combined standardized

criterion values. The results are displayed in Figure 10. Note that the improvement

observed by allowing combinations of these MSCs is actually unexpected, since all 3

criteria are based only on penalized in-sample fit. Nevertheless, we find the results

quite interesting due to the substantial improvement of the combined criteria. Also

interesting is the high sensitivity of the response surface near the optimum. Indeed,

the optimum is quite close to the BIC corner, but the objective value varies greatly

in this small region.

It is also instructive to compare the results of the ranked values versus the stan-

dardized values. In general, the two response surfaces look very similar, as one might

expect, due to the very high correlation between the raw values and the ranked values

of random vectors in general. Furthermore, the optimal points are very close to each

other on the two surfaces. The primary difference is the moderately worse perfor-

mance of the standardized values when considering the functional P (Rα(M∗) > 1),

noting that the optimal value using standardized values is nearly 76%, while for

ranked values it is under 74%. We saw this phenomenon in several similar experi-

ments (results not shown here,) and expect that it is true in general. For this reason,
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we focus only on ranked values in the sequel.

4.4.2 ARIMA Models

Some example simulation results are given in Figures 11 and 12. Figure 11 is fairly

typical – in particular, the optimal point for each summary function is either at or

near one of the corners, indicating that combined criteria are of little use in this case.

Further, the different summary functions all behave similarly. Figure 12, on the other

hand, has a more interesting structure. Especially noteworthy is the fact that the

optimum point for the function P{Rα(M∗) > 1} is not near any of the 3 corners,

indicating that the convex combinations of criteria do better than any individual

criterion in this case. Further, the improvement is quite substantial – over 5%. This

example also illustrates the importance of considering which functional to consider,

since the optimal criterion varies considerably depending on which function is chosen.

Interestingly, the only difference in the parameters used to generate Figures 11

and 12 is the specification of πM. Figure 11 used a uniform prior over all models,

and Figure 12 used a prior giving weight only to models of size 3. Both figures were

based on 500 simulated data sets of size 100, and M was defined for both to be all

ARIMA models up to order (2, 1, 2). In both cases, all parameters were generated as

independent U [−1, 1] random variables, subject to the restriction that the resulting

model be stationary, and the errors were independent standard normals.

We caution against drawing general conclusions based on the example results

shown here. The behavior of the response function depends on a variety of other

factors, such as the structure of the matrix of regressors, and the distribution of the

error terms, in an extremely complex way which has not been fully explored. The

results shown here are intended only to serve as examples, and should not be used

to infer the relative merits of particular criteria or combinations of criteria for any

specific problem. Indeed, we feel that one of the biggest advantages of our procedure
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Figure 10: Example of regression in which combined criteria perform better than
basis criteria. Top panels: Use of combined ranked basis criterion values. Bottom
panels: Use of combined standardized basis criterion values. Note the slightly inferior
performance of the standardized criteria. Figures are best viewed on a color display.
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Figure 11: A fairly typical result for ARIMA models, in which the combined criteria
appear to be of little value.

Average Rank

BIC Weight

me
an

AD
 W

eig
ht

0.2

0.4

0.6

0.8

0.2 0.6
AIC

5.5

6.0

6.5

7.0

7.5

P(Rank > 1)

BIC Weight

me
an

AD
 W

eig
ht

0.2

0.4

0.6

0.8

0.2 0.6
AIC 0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

P(Rank > 2)

BIC Weight

me
an

AD
 W

eig
ht

0.2

0.4

0.6

0.8

0.2 0.6
AIC

0.74

0.76

0.78

0.80

0.82

0.84

P(Rank > 3)

BIC Weight

me
an

AD
 W

eig
ht

0.2

0.4

0.6

0.8

0.2 0.6
AIC

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

P(Rank > 5)

BIC Weight

me
an

AD
 W

eig
ht

0.2

0.4

0.6

0.8

0.2 0.6
AIC 0.40

0.45

0.50

0.55

0.60

P(Rank > 10)

BIC Weight

me
an

AD
 W

eig
ht

0.2

0.4

0.6

0.8

0.2 0.6
AIC

0.10

0.15

0.20

0.25

0.30

Figure 12: A more interesting result for ARIMA models, illustrating the potential
utility of combined criteria.
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is that it is easy to apply it to any problem, and in particular we need not rely

on general recommendations. Rather, by the same simulation technique used to

generate the example figures, we can obtain results tailored to the specific problem

under consideration.

4.5 Theoretical Considerations

In this section we explore the theory behind our algorithm. In particular, we inves-

tigate the behavior of the functionals such as E[RMSCi
(M∗)], which are the primary

functions of interest. Our results show that these functionals are piecewise constant,

discontinuous functions of α, and thus in a sense they justify our consideration of only

a discrete set of values of α in Algorithm 1. To simplify the discussion, we will operate

under the assumption that there are never any ties in the set of values of an individual

MSC, e.g., there are never ties in the set {BIC(M1), BIC(M2), . . . , BIC(Ms)}. This

assumption is generally justified because most MSCs involve log-likelihoods, and are

thus continuous. Further, define B as a random matrix formed by taking the vectors

[RMSCj
(M1), RMSCj

(M2), . . . , RMSCj
(Ms)]

T , j = 1, . . . , k as its columns. Thus, by the

above assumption, each column of B is a permutation of the integers 1 through s.

We have the following theorem which illustrates the role of the convex coefficients α

in the distribution of B.

Theorem 4.5.1 Let α be a vector with all nonnegative entries, such that
∑k

i=1 αi =

1. Suppose that, for all possible values of the matrix-valued random variable B, the

values in the vector Bα are all distinct. Then there exists ε > 0 such that

‖α − α′‖ < ε ⇒ rank(Bα) = rank(Bα′)

Proof. First, note that by elementary linear algebra,

‖B‖2 ≤ ‖B‖F =

(∑
i,j

B2
ij

) 1
2

=

(
k ·

s∑
i=1

i2

) 1
2

=

√
k · s · (s + 1) · (2s + 1)

6
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Now, we have

‖Bα − Bα′‖∞ ≤ ‖Bα − Bα′‖2

≤ ‖B‖2 · ‖α − α′‖2

≤
√

k · s · (s + 1) · (2s + 1)

6
· ‖α − α′‖2

Thus, by choosing ‖α−α′‖2 sufficiently small, we can make ‖Bα−Bα′‖∞ as small

as desired. Now, let c = minB,i
=j |(Bα)i − (Bα)j| , where the subscript is used to

denote the index of a component of a vector. Note that c > 0 since by assumption

(Bα)i 
= (Bα)j for any B when i 
= j, and there are only a finite number of possible

values of B since each column must be a permutation of [1, . . . , s]T . Suppose that we

have chosen α′ such that

‖α − α′‖2 ≤ c · √6

2
√

k · s · (s + 1) · (2s + 1)
.

Then, for each i, |(Bα)i − (Bα′)i| ≤ ‖Bα − Bα′‖∞ ≤ c
2
, and it is easy to see that

rank(Bα) = rank(Bα′). �

Theorem 4.5.1 naturally leads to the question of which values of α satisfy the

condition that there are no ties in Bα for any B.

Theorem 4.5.2 Let k denote the number of base MSCs. Then the set A = {α :

Bα has at least 1 tie for some B} has (k − 1)-dimensional Lebesgue measure 0.

Proof : For there to be a tie in Bα, the equation

Bi1α1 + Bi2α2 + . . . + Bikαk = Bj1α1 + Bj2α2 + . . . + Bjkαk (42)

must hold for some integers i 
= j. Now, since each column of B has distinct entries,

we know that Bmi 
= Bni when m 
= n. Thus we can rewrite (42) as

n1 · α1 + n2 · α2 + . . . nk−1αk−1 + nk · αk = 0
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where the ni are all nonzero integers. Since the vector α is assumed to be a vector

of convex coefficients, we can use the condition
∑k

i=1 αi = 1, to write

(n1 − nk)α1 + (n2 − nk)α2 + . . . + (nk−1 − nk)αk−1 = −nk

This is simply a linear equation in the k − 1 variables α1, . . . αk−1, and it is well-

known that the set of solutions has dimension at most k − 2, and therefore has

(k − 1)-dimensional Lebesgue measure 0. Finally, note that since by assumption,

each column of B is a permutation of the integers 1 through s, there are only a finite

number of possible values for B. The result follows. �

Since the set of convex combinations of k criteria is a k − 1 dimensional set,

Theorem 4.5.2 tells us that for almost all convex combinations, there can be no ties

in Bα, and thus Theorem 4.5.1 applies. Thus, these two theorems together give us

a qualitative description of the behavior of the response as a function of the convex

coefficients — it is a locally flat step function. This runs contrary to the intuition

one might develop from looking at the simulation results presented in Section 4.4.

If one is willing to disregard the “small” set of convex coefficients which may

result in ties in Bα, then Theorems 4.5.2 and 4.5.1 together imply that we need only

check a finite number of values for α in order to find the optimum for any particular

functional – it is easy to see that if we test a grid of small enough mesh, at least one

point in the grid must lie in the optimum region.

4.6 Computational Considerations

The computation involved in our algorithm can be quite demanding, both in terms of

storage and computing requirements. The computation required depends primarily

on the size of M , and the number of grid points chosen (which itself is a function of

the grid size and the number of MSCs being combined.) There is a natural tradeoff

when choosing the size of the grid — a smaller grid size provides better insight into
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the behavior of the cost functional as a function of the MSC weights, yet it can result

in an exponential increase in both computation and storage requirements.

The relative amount of computation required for the fitting of all models in M and

for the calculation of all points on the grid depends on the type of model being fitted.

For example, regression models are comparatively very easy to fit, and therefore in

our simulations with regression models, most of the computation time is spent on the

calculations for the grid. On the other hand, fitting ARIMA models requires a costly

iterative maximization procedure, so the model fitting part of the algorithm typically

dominates in ARIMA simulations. Deciding on an appropriate grid size and number

of iterations, then, very much depends on the specifics of the problem.

Storage can also become an important issue, particularly when the number of

MSCs to be compared is large and the corresponding grid of convex combinations

becomes large in size. One key special feature to exploit is the structure of the

summary functions we wish to compute for each convex combination. Essentially, the

result of Algorithm 1 will be a vector of ranks for each combined MSC:

Rα(M∗
i ), i = 1, 2, . . . , N

If the summary functions can be computed dynamically, then we need not actually

store this vector. Rather, we can update the summary function value and discard the

individual ranks. Thankfully, this special structure occurs in many simple summary

functions one might wish to use, including E[Rα(M∗)], Var[Rα(M∗)], P{Rα(M∗) > k}
for fixed k.

In choosing the number of base MSCs to use, there is of course a tradeoff between

computation and storage requirements and the possibility of discovering more pow-

erful combinations. Our experience indicates that using more than 3 or occasionally

4 MSCs is usually unhelpful. Further, it is also worth considering the similarities
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between MSCs. For example, many criteria are of the form

loglik − λp

where p is the number of parameters in a fitted models. There is often little to

be gained by considering many criteria of this same form. It is more likely that

combinations of different types of criteria will be useful – e.g., an in-sample criterion

of the form described above combined with an out-of-sample criterion based on a

holdout sample. In our examples, we have always chosen 3 as the number of base

MSCs, both to keep computational and storage requirements reasonable and also to

allow easier graphical interpretation of the results.

4.7 Inference

In light of the simulation results presented above, there are several natural questions

to ask:

• Is the observed improvement in performance by the combined criteria signifi-

cantly better than the performance of the corresponding original criteria? That

is, could the observed improvement be attributed to sampling error?

• Can we guarantee that the chosen combination is (nearly) optimal?

4.7.1 Hypothesis Testing

In the above simulation results, the empirical minimum of the response surface lies

close to, but not exactly on, one of the corners of the domain, which naturally leads

to the question of hypothesis testing: Is the observed minimum of the surface sig-

nificantly smaller than a pre-specified value, or smaller than the values observed at

the corners (which correspond to traditional model selection criteria)? This type of

hypothesis allows one to determine if it is statistically worthwhile to consider the

possibility of using our combined MSCs, rather than simple MSCs.
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There are several possible approaches to this problem, each of which has some

benefits and some drawbacks. The first is to regard the problem as a simple hypothesis

test. Associated with each MSC we have a vector

(Rα(M∗
1 ), Rα(M∗

2 ), . . . , Rα(M∗
N))T ,

where the subscript denotes the iteration number. This vector is a sample from the

population of ranks of true models, under the priors πM and πΘ(M), and assuming

the set of feasible models is M. We are then free to apply any of a number of

nonparametric tests directly to two pre-specified MSCs, say MSCi and MSCj . For

example, if the cost function is E[Rα(M∗)], we can directly compare the means of

the two vectors by a simple paired t-test. Recall that we have required that the set

of feasible models M be finite, which guarantees that the observations Rα(M∗
l ) are

bounded for all α, l, which ensures that the populations involved have finite variances,

and hence the CLT is always applicable, provided the sample sizes are sufficiently

large. For comparing proportions of observations which exceed a fixed threshold k,

a simple 2-sample proportion test can be used. For comparing the medians of two

samples, there are simple nonparametric tests available. In particular, if we wish to

test the hypothesis that the median of the sample differences is 0, we can use a sign

test.

The difficulty with this approach is that it is invalid in the context of our original

question, which is to test the observed minimum of the response surface against the

original MSCs from which the combined MSCs were constructed. This is a case of the

well-known problem of data snooping — in paying attention only to the minimum of

the surface, we are implicitly testing many hypotheses simultaneously, which inflates

the Type I error rate. The usual remedy to this problem of using the Bonferroni

method or studentized range distribution to adjust α is worthless here due to the

overwhelmingly large number of hypotheses being tested, which is usually in the

hundreds or thousands. An easy though statistically inefficient solution is to split
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the sample into two parts. Using only the first part, we locate the minimum of the

response surface, corresponding to, say, MSCα for some particular value of α. We

then compare the distribution of ranks corresponding to MSCα to the control MSCs,

typically the original MSCs such as AIC and BIC, using only the observations from

the second part of the sample. Since the two parts of the sample are independent

and we have pre-specified the hypotheses to be tested using the second part of the

sample, we are not implicitly testing many hypotheses in using this procedure, so

a significant result may be interpreted with more confidence. Though the power of

such hypothesis tests are decreased due to the smaller sample size which we may use

without “cheating,” we always have the option of simulating more observations. The

only limitation is the computation involved in generating such observations.

4.7.2 Sample Size Estimation

To simplify notation, in this section we will abbreviate Rα(M∗) as Rα. If the cost

functional has the special form

T (F (Rα)) = E[G(B,α)]

for some function G, then the Algorithm 1 is actually a special case of the Sample

Average Approximation method described in [14]. For the remainder of this section,

we restrict our attention to this special case, noting that the functionals E[Rα] and

P{Rα > k} = E[I{Rα > k}] are both expectations of functions of B and α.

Adopting the notation of [14], let S denote the set of convex coefficients being

tested. Further, let

v∗ = min
α

E[G(B,α)]

S∗ = {α : E[G(B,α)] = v∗}

Sε = {α : E[G(B,α)] ≤ v∗ + ε}

and define sample counterparts v̂∗, Ŝ∗, and Ŝε, where the expectation is replaced by
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sample average in the corresponding definitions. If we specify a type I error rate p and

a positive number δ ∈ [0, ε), then by Equation (2.23) in [14], we have that Ŝδ ⊂ Sε

with probability at least 1 − p if

N ≥ σ2
max

(ε − δ)2
· log

( |S|
p

)
, (43)

where σ2
max = maxα∈S\Sε,α′∈S∗ Var[G(B,α)−G(B,α′)]. The most important feature

of Equation (43) is that it depends only logarithmically on the size of the set of

coefficients being considered, mitigating the exponential increase in the number of

convex coefficients accompanying the addition of a basis MSC or a decrease in the

mesh of the grid. We now derive a simple bound on the size of σ2
max.

Theorem 4.7.1 1. If G(B,α) = Rα, then σ2
max ≤ (s − 1)2

2. If G(B,α) = I{Rα > k} for some constant k, then σ2
max ≤ 1.

Proof. For any α, the random variable Rα can take only the values {1, 2, . . . , s}.
Therefore, for any α,α′,

Rα − Rα′ ∈ {1 − s, 2 − s, . . . ,−1, 0, 1, . . . , s − 2, s − 1}.

Now, we have

Var[Rα − Rα′ ] = E[(Rα − Rα′)2] − E[(Rα − Rα′)]2

≤ E[(Rα − Rα′)2]

≤ (s − 1)2

where the last inequality follows since |Rα −Rα′ | ≤ s− 1 w.p. 1. This establishes 1;

2 follows similarly. �

We note that, unfortunately, the bounds given in Theorem 4.7.1 are very weak.

This is due to the fact that, for any values of α and α′, we expect cor(Rα, Rα′)

to be positive. Indeed, it has been noted (see, e.g., [19]) that all good criteria are
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typically highly positively correlated, and our combined criteria would of course be

no exception to this general rule. A large positive correlation between the criteria

would greatly reduce the variances computed in the proof above, and correspondingly

give a lower bound for σ2
max. However, the correlation between criteria is merely an

empirical fact, and is difficult to establish rigorously except in a few special cases.

Typically in practice, a more effective way to ensure the ε-optimality of the solu-

tion is to generate subsamples sequentially and use an optimality gap estimator, as

discussed in [14] and [21], stopping when the estimate of the optimality gap is smaller

than some specified threshold. This amounts to estimating the gap This approach

can also be quite conservative, as is demonstrated in the numerical simulations in

[14], but the sample sizes required are generally much smaller than those given by

the theoretical bounds above.

4.8 The role of the Prior Distributions

As is frequently the case when a statistical method involves the use of prior distri-

butions, a difficulty one must resolve is how to choose an appropriate prior. In our

case, we have 2 prior distributions to consider, πM and πΘ(M). In the case of πM , as

mentioned above, often a prior with simple structure is sufficient. For example, one

might choose a prior on the order of the true model based on the effect sparsity prin-

ciple, and, conditioning on the order, assume that all models of that order are equally

likely. Of course, knowledge about the specific problem should also be incorporated

whenever possible.

The prior πΘ(M) is somewhat more difficult to specify in a principled way. First, we

must note that the parameters Θ(Mi) are actually nuisance parameters, since we are

not actually interested in doing any inference on them. However, it is our empirical

finding that the specification of this prior distribution typically has little effect on

the shape of the resulting response surface, although it may cause a shift depending
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on the problem. It seems that, at least in this context, knowledge of the particular

distribution from which the parameters are assumed to be drawn is not especially

important. Nevertheless, we still recommend adopting a common strategy in Bayesian

modelling, which is to repeat an experiment with several different prior distributions

in order to assess the sensitivity of the problem to the modelling assumptions. Perhaps

more interesting, however, is the observation that the response surface seems to be

rather sensitive to the magnitude of the parameters, as we observe that the minimum

of the surface shifts from the BIC corner to the PRESS corner as we increase the

variance of the prior distribution. Thus, it seems that the only truly important

aspect of the specification of πΘ(M) is the order of magnitude of the variance, while

the particular shape of distribution chosen has little effect. Here, one should rely

on domain-level knowledge of the problem under consideration. We also recommend

standardizing the predictors to ensure that the estimated regression coefficients always

have a common scale.

4.9 Discussion

We have implemented Algorithm 1 as an R package which is freely available for

download on the R Project website.

There is still much investigation left to be done in this area. In particular, we

have only begun to explore the effects of the many factors that may affect the optimal

MSC — the size of the data set, the distributions of the parameters, the correlation

structure of the covariates, etc. In particular, a characterization of situations in which

combined criteria outperform traditional criteria would be a very useful advance.

Our method, as described, is entirely empirical. In general, we expect analytical

results will be very difficult to derive, due to the complexity of the distributions

involved. However, we expect that in certain simple, special cases, analytical results

may be feasible. It would be interesting to compare the empirical simulation results
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from our method with these mathematical results. One example of a simple special

case would be regression in which the predictor matrix is constrained to be orthogonal.

Further, there are many other MSCs which may be incorporated into the convex

combinations. We chose the ones used here mainly due to their readily available

software implementations, and the desire to limit the number of base MSCs to 3 in

order to make the results easy to visualize. Nevertheless, there is no a priori reason to

exclude or favor certain MSCs over others, as our procedure should place weight only

on MSCs which have proven power to discriminate between good and poor models.

It would also be useful if there were more efficient procedures for handling the

implicit multiple comparisons issue discussed in Section 4.7. This would allow us to

decide whether a result is statistically significant using less computation. We antic-

ipate that the key lies in exploiting the fact that all good MSCs, and combinations

thereof, are typically highly correlated with each other. Taking advantage of this fact

would likely reduce the Type I error rate in the hypothesis tests.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Proofs

A.1.1 Proof of Lemma 2.3.2

The first inequality in the lemma is obvious. For the second inequality, we have

dmax,i = ‖XiP k‖2 = ‖(Xi − x0 · 1T
k )P k‖2

≤ ‖Xi − x0 · 1T
k ‖2 (44)

≤
√

k · max
j∈Pi

‖xj − x0‖2 (45)

≤
√

k · τ.

Taking the maximum over i on both sides, we obtain the second inequality.

In the above, inequality (44) is true because in general, for two matrices A and

B, we have ‖AB‖2 ≤ ‖A‖2 · ‖B‖2 (Stewart and Sun [25, page 69]). The inequality

(45) is also standard linear algebra ([25, page 71]).

A.1.2 Proof of Theorem 2.3.5

The following two equations will be used:

YiP k = (Yi − f(x
(0)
i ) · 1T

k )P k (46)

and

XiP k = (Xi − x
(0)
i · 1T

k )P k. (47)

They can easily be verified by recalling the definition of P k.

To exploit the local isometry, we consider the Taylor expansion at x
(0)
i . It is not
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hard to verify the following: for j ∈ Pi, 1 ≤ i ≤ n,

‖yj − f(x
(0)
i ) − J(f ; x

(0)
i )(xj − x

(0)
i )‖∞

≤ ‖yj − f(xj)‖∞ + ‖f(xj) − f(x
(0)
i ) − J(f ; x

(0)
i )(xj − x

(0)
i )‖∞

≤ σ +
1

2
C1‖xj − x

(0)
i ‖2

2 + O(‖xj − x
(0)
i ‖3

2)

≤ σ +
1

2
C1τ

2.

Note that in the last step, we dropped an O(τ 3) term because we are only interested

in the case when τ → 0, in which case the quadratic term dominates.

Let Ei = YiP k − J(f ; x
(0)
i )XiP k. Note that Ei ∈ R

D×k. We have the following

upper bound for ‖Ei‖2:

‖Ei‖2 = ‖YiP k − J(f ; x
(0)
i )XiP k‖2

≤
√

k · sup
j∈Pi

‖(yj − f(x
(0)
i )) · P k − J(f ; x

(0)
i )(xj − x

(0)
i ) · P k‖2

≤
√

k · sup
j

‖(yj − f(x
(0)
i )) − J(f ; x

(0)
i )(xj − x

(0)
i )‖2

≤
√

kD · sup
j

‖(yj − f(x
(0)
i )) − J(f ; x

(0)
i )(xj − x

(0)
i )‖∞

≤
√

kD · [σ +
1

2
C1τ

2]. (48)

In the above, the first and third inequalities are standard linear algebra, the second

inequality is due to the fact that P k is a projection matrix.

We now wish to derive a bound on the angle between the subspaces spanned by the

right singular vectors associated with the d largest singular values of J(f ; x
(0)
i )XiP k

and by those of YiP k. To this end, define the following two quantities:

R = J(f ; x
(0)
i )XiP kB̃i − ÃiD̃i

S = P kX
T
i JT (f ; x

(0)
i )Ãi − B̃iD̃i

By substituting the identity Ei = YiP k−J(f ; x
(0)
i )XiP k, it is easy to see that ‖R‖2 ≤

‖Ei‖2 and ‖S‖2 ≤ ‖Ei‖2. Finally, consider the smallest singular value of YiP k. We
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have

σmin(YiP k) = σmin(J(f ; x
(0)
i )XiP k + Ei)

≥ σmin(J(f ; x
(0)
i )XiP k) − σmax(Ei)

(48)
≥ C2 · τ −

√
kD

[
σ +

1

2
C1τ

2

]
.

We can now apply Theorem V.4.4 in [25], and conclude

‖ sin((R(BT
i ),R(B̃T

i )))‖2 ≤ ‖Ei‖2

σmin(YiP k)

≤
√

kD · [σ + 1
2
C1τ

2]

C2 · τ −√
kD · [σ + 1

2
C1τ 2]

If we ignore higher-order terms, we can take C3 =
√

kD
C2

, and the theorem is established.

A.1.3 Proof of Theorem 2.3.8

Now we consider the step of global alignment. Recall that the columns of (1n, X),

where X is defined in (6), are eigenvectors associated with the zero eigenvalue of (7).

First, similar to Mn, define M̃n as

M̃n = (S1, . . . , Sn)P k·n

⎛⎜⎜⎜⎜⎝
Ik − B̃T

1 B̃1

. . .

Ik − B̃T
n B̃n

⎞⎟⎟⎟⎟⎠ P k·n(S1, . . . , Sn)T ,

where B̃i is defined right before Theorem 2.3.5.

We now consider ‖Mn − M̃n‖2, the norm of the difference between the alignment

matrices formed from the true and estimated local coordinates. This is equivalent to∥∥∥∥∥
n∑

i=1

Si · P k

(
B̃T

i B̃i − BT
i Bi

)
P k · ST

i

∥∥∥∥∥
2

.

Theorem 2.3.5 and [25, Theorem I.5.5] together imply that

‖B̃T
i B̃i − BT

i Bi‖2 ≤ C3

(
σ

τ
+

1

2
C1τ

)
, i = 1, . . . , n.
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Now, since Mn−M̃n is symmetric, we have ‖Mn−M̃n‖2 ≤ ‖Mn−M̃n‖1. By Condition

2.3.6, each column of Mn − M̃n will be the sum of at most C4 terms, each of which is

a column of one of the matrices BT
i Bi − B̃T

i B̃i. Therefore, we have

‖Mn − M̃n‖2 ≤ C4 · C3

(
σ

τ
+

1

2
C1τ

)
To verify the conditions of Theorem V.2.7 in [25], consider⎛⎜⎜⎜⎜⎝

1T
n√
n

XT

(Xc)T

⎞⎟⎟⎟⎟⎠
(
Mn − M̃n

)(
1n√
n

,X,Xc

)
=

⎛⎜⎝ E11 E12

E21 E22

⎞⎟⎠ , (49)

where E11 ∈ R
(d+1)×(d+1), E12 ∈ R

(d+1)×(n−d−1), E21 ∈ R
(n−d−1)×(d+1), and E22 ∈

R
(n−d−1)×(n−d−1). Since we have assumed that⎛⎜⎜⎜⎜⎝

1T
n√
n

XT

(Xc)T

⎞⎟⎟⎟⎟⎠
is orthogonal, and since an upper bound on the spectral norm of a matrix is also

an upper bound on the spectral norm of any submatrix, we have ‖E11‖2 ≤ C4 ·
C3

(
σ
τ

+ 1
2
C1τ

)
, and similarly for all the other blocks.

It now easily follows that we can apply Theorem V.2.7 in [25], and therefore

∥∥∥tan(R(X̃),R(X))
∥∥∥

2
≤ 2‖E12‖2

λ+
min − ‖E11‖2 − ‖E22‖2

≤ C4 · C3

(
σ
τ

+ C1τ
)

λ+
min − 2C4 · C3

(
σ
τ

+ C1τ
)

A.2 Preliminary Results on λ+
min

In this Appendix, we discuss a possible modification to the LTSA algorithm which

will provably converge, supposing that the conjectured relationship between k, λ+
min,

and τ in Zha’s notes on LTSA and Biharmonic Eigenvalue Problems is true in general.
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From these notes, we have the following result for the special case when the xi are

sample on a uniform grid:

λ+
min ≈ C(k) · ν+

min(∆
2) · τ 4, (50)

where ν+
min(∆

2) is a constant, and C(k) ≈ k5. Throughout the current version of our

paper, we assume that k is constant. However, allowing k to be a function of the

sample size N , say

k = Nα,

where α ∈ [0, 1) allows us to control the asymptotic behavior of λ+
min along with the

convergence of the estimated alignment matrix to the true alignment matrix.

Consider our original bound on the angle between the true coordinates and the

estimated coordinates:

lim
τ→0

‖ tan(R(X̃),R(X))‖2 ≤
C3(

σ
τ

+ C1τ) · ‖∑n
i=1 Si‖∞

λ+
min

Now, set k = Nα, where α ∈ [0, 1) is an exponent, the value of which we can decide

later. We must be careful in disregarding constants, since they may involve k. We

have from the original paper that C3 =
√

kD
C2

. C1 and C2 are fundamental constants

not involving k. Further, it is easy to see that ‖∑n
i=1 Si‖∞ is O(k) - since each point

has k neighbors, the maximum number of neighborhoods to which a point belongs is

of the same order as k.

Now, we can use a simple heuristic to estimate the order of τ , the neighborhood

size. For example, suppose we fix ε and consider ε-neighborhoods. For simplicity,

assume that the parameter space is the unit hypercube [0, 1]d, where d is the intrinsic

dimension. The law of large numbers tells us that

k ≈ εd · N.

Thus we can approximate τ as

τ ≈ O(N
α−1

d )
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Plugging all this in to the original equation and dropping the constants, we get

lim
τ→0

‖ tan(R(X̃),R(X))‖2 ≤ N
α−1

d · N 3α
2

λ+
min

If we conjecture that the relationship in (50) holds in general (i.e., the generating

coordinates can follow a more general distribution rather than only lying in a uniform

grid), then we have

lim
τ→0

‖ tan(R(X̃),R(X))‖2 ≤ N
α−1

d · N α
2 · Nα

N5α · N4·α−1
d

Now the exponent is a function only of α and the constant d. We can try to solve for

α such that the convergence is as fast as possible. Simplifying the exponents, we get

lim
τ→0

‖ tan(R(X̃),R(X))‖2 ≤ N
−7α

2
−3( α−1

d
)

As a function of α restricted to the interval [0, 1), there is no minimum — the exponent

decreases with α, and we should choose α close to 1.

However, in the proof of the convergence of LTSA, it is assumed that the errors

in the local step converge to 0. This error is given by

‖ sin(R(BT
i ),R(B̃T

i ))‖2 ≤
√

kD · [σ + 1
2
C1τ

2]

C2 · τ −√
kD · [σ + 1

2
C1τ 2]

Thus, our choice of α is restricted by the fact that the RHS of this equation must still

converge to 0. Disregarding constants and writing this as a function of N , we get

N
α
2 · N 2α−2

d

N
α−1

d − N
α
2 · N 2α−2

d

This quantity converges to 0 as N → ∞ if and only if we have

α

2
+

2α − 2

d
<

α − 1

d

d · α + 4α − 4 < 2α − 2

α <
2

d + 2
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Table 3: Convergence rates for a few values of the underlying dimension d.
d 1 2 3 4 5

Optimal α 0.66 0.5 0.4 0.33 0.29
Convergence rate −1.33 −1 −0.8 −0.66 −0.57

Note that this bound is strictly less than 1 for all positive integers d, so our possible

choices of α are restricted further.

By the reasoning above, we want the exponent to be as large as possible. Further,

it is easy to see that for all d, choosing an exponent roughly equal to 2
d+2

will always

yield a bound converging to 0. The following table gives the optimal exponents for

selected values of d along with the convergence rate of limτ→0 ‖ tan(R(X̃),R(X))‖2.

In general, using the optimal value of α, the convergence rate will be roughly N
−4
d+2 .

We present some numerical experiments to illustrate the above results. In these

examples, we simulate coordinates ∈ R according to a uniform distribution on the

interval [π
5
, 2π], and transform the coordinates via the function

g(x) = (x · cos(x), x · sin(x)).

The resulting points lie on a spiral as illustrated in Figure 13. In Figure 14, we

illustrate the effect of choosing different values of k as the sample size increases.

The response in this figure is |corr(X, X̃)|. We observe an interesting effect in these

experiments – for fixed k, as the sample size N increases, the performance eventually

deteriorates and becomes highly erratic. On the other hand, as expected from the

above analysis, with k =
√

N , the performance is very good for all large values of

N . This is due to the eigenvalue mixing suggested in [28] – as N grows, λ+
min gets

small, allowing the possibility, depending on the randomly generated coordinates, that

the eigenvalues of the alignment matrix could switch order, thus causing a spurious

eigenvector corresponding to λ+
min to be recovered instead of the correct null space

vector.

Associated with each fixed value of k, there seems to be a threshold value of N
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Figure 13: Illustration of the manifold used for the examples in Figure 14

above which the performance degrades. This value increases with k, though perhaps

at the cost of worse performance for small N . However, we expect from the above

analysis that, regardless of the value chosen, the performance will eventually become

unacceptable for any fixed k.
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Accuracty of Estimated Parameters:  k = 4
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Accuracty of Estimated Parameters:  k = 10
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Accuracty of Estimated Parameters:  k = sqrt(N)
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Figure 14: Illustration of the effect of increasing k. k = 4, 7, 10,
√

N in the four
panels, respectively.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1 The equivalence of the Hessian estimator under or-
thogonal transforms

Recall that U ∈ R
k×d is made by d orthonormal column vectors, where k is the number

of nearest neighbors and d is the intrinsic dimension of the underlying manifold. In

the HLLE algorithm, the following matrix is considered:

[1k, U, F (U)],

where F (U) ∈ R
k×d(d+1)/2 is made by self-products and cross-products of columns of

U .

To be more specific, let U× define a matrix whose [(i − 1)d + j]th column (1 ≤
i, j ≤ d) is (U1iU1j, U2iU2j, . . . , UkiUkj)

T , where Uab is the (a, b) entry of U . One may

notice that in U×, for i 
= j, columns (i−1)d+j and (j−1)d+ i are identical. Letting

S be a selection matrix that will eliminate these repeated columns, we can write

F (U) = U× · S.

For later convenience, we define a reverse selection matrix SR, such that

F (U) · SR = U×.

Suppose we have a QR-decomposition:

[1k, U, F (U)] = (Q1, Q2)

⎛⎜⎝ R11 R12

R22

⎞⎟⎠ ,

where Q1 ∈ R
k×(d+1) and Q2 ∈ R

k×d(d+1)/2 have orthonormal columns—QT
1 Q1 = Id+1

and QT
2 Q2 = Id(d+1)/2—and R11 and R22 are upper triangular. In the HLLE algorithm,

one takes H i = QT
2 and the “core” matrix is (H i)T H i = Q2Q

T
2 .
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Consider a right orthogonal transform of U : U∗ = U · O, where O ∈ R
d×d is an

orthogonal matrix (OT O = OOT = Id). Evidently, the Hessian multiplier matrix in

HLLE is H i∗ = (Q∗
2)

T , where Q∗
2 is based on the QR decomposition of [1k, U

∗, F (U∗)],

associated with the columns corresponding to the submatrix F (U∗). We have the

following result.

Theorem B.1.1 We have

(H i∗)T (H i∗) = (H i)T (H i),

or equivalently

Q2Q
T
2 = Q∗

2(Q
∗
2)

T .

Proof. Similar to the definition of U× let U∗
× be the corresponding matrix for U∗.

We can easily verify that

U∗
× = U× · (O ⊗ O),

where O ⊗ O is the Kronecker product [15]. Consequently, we have

F (U∗) = U∗
× · S

= U× · (O ⊗ O) · S

= F (U) · SR · (O ⊗ O) · S.

Hence

[1k, U
∗, F (U∗)] = [1k, U · O,F (U) · SR · (O ⊗ O) · S]

= [1k, U, F (U)]

⎡⎢⎢⎢⎢⎣
1

O

SR · (O ⊗ O) · S

⎤⎥⎥⎥⎥⎦
= (Q1, Q2)

⎛⎜⎝ R11 R12

R22

⎞⎟⎠
⎛⎜⎝ O2

SR · (O ⊗ O) · S

⎞⎟⎠ ,
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where O2 =diag(1, O), which is another orthogonal matrix. Suppose we have QR-

decompositions:

R11O2 = Q3R4,

R22 · SR · (O ⊗ O) · S = Q4R5,

where Q3 and Q4 have orthonormal columns and R4 and R5 are upper triangular.

Hence we have

[1k, U
∗, F (U∗)] = (Q1Q3, Q2Q4)

⎛⎜⎝ R4 QT
3 R12 · SR · (O ⊗ O) · S

R5

⎞⎟⎠ .

Due to the uniqueness of the QR-decomposition, we have

Q∗
2 = Q2Q4;

Consequently, we have

Q∗
2(Q

∗
2)

T = Q2Q4Q
T
4 QT

2 = Q2Q
T
2 .

B.2 The Asymptotic Behavior of D̃i

In this appendix we discuss some technical details regarding the asymptotic behavior

of the diagonal matrices D̃i. As an introduction to the problem, consider the typical

term of this matrix, 1

d̂id̂j
. Recall that, by Condition 3.2.4, we have

‖yij − yi‖ ≤ τ, j = 1, . . . , k, i = 1, . . . , N.

It is then easy to show (Lemma 2.3.2) that

C2τ ≤ dmin ≤ dmax ≤ τ
√

k. (51)

We therefore see that, as τ goes to zero, the diagonal entries of D̃i grow without

bound. This complicates the analysis of the deviations D̃i − D∗
i , where D∗ is the

diagonal matrix formed from the reciprocals of the cross-products and squares of the
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singular values of JT
g (yiJg)(yi)Yi, i.e., the “population” singular values at yi. This

problem can be resolved, however, by rescaling the data in a suitable way.

Specifically, let us define a rescaled neighborhood as follows:

Ỹi
def
=

Yi

τ

This rescaling essentially keeps the local neighborhoods of roughly constant size,

rather than shrinking with τ . First, we note that rescaling each neighborhood does

not affect the ultimate result of the algorithm. To see this, note that if Yi = UiDiV
T
i

is the singular value decomposition of Yi, then it is easy to show

Ỹi = Ui

(
1

τ
Di

)
V T

i (52)

is the singular value decomposition of Ỹi. Therefore the left singular vectors are

unchanged by this transformation, and so by its construction, the matrix Xi defined

in Step 3 of HLLE will also remain unchanged. Thus, if we consider the Hessian

estimator Ĥ = D̃R−1
22 QT

2 , the only factor affected by the rescaling is D̃. It is clear

from (52), however, that D̃ is changed only by a scalar multiple.

To analyze D̃i under perturbation, we must consider Θi, the matrix formed by

taking the embedding coordinates of the k nearest neighbors of yi as its rows (hence

Θi ∈ R
k×d.) Analogous to Ỹi, we define Θ̃i = Θi

τ
. Since the columns of Jg(yi) are

assumed to be orthonormal (Condition 3.2.1), the singular values of Θ̃i are the same

as those of Jg(yi)Θ̃
T
i . Further, we have (see the proof of Theorem 2.3.5)

‖Ei‖ def
= ‖Ỹi − Jg(yi)Θ̃i‖ ≤

√
kD · (σ

τ
+

1

2
C1τ). (53)

Summarizing the above results, we have the following bounds on the singular values

97



of Ỹi and Θ̃i:

min σỸi
≥ C2 −

√
kD · (σ

τ
+

1

2
C1τ) (54)

max σỸi
≤

√
k +

√
kD · (σ

τ
+

1

2
C1τ) (55)

min σΘ̃i
≥ C2 (56)

max σΘ̃i
≤

√
k (57)

If we let σj and σk denote any two singular values of Θ̃i, and σ̃j and σ̃k denote any

singular values of Ỹi (1 ≤ j, k ≤ d), then each term of D̃Ỹi
− D̃Θ̃i

will be of the form

1

σjσk

− 1

σ̃jσ̃k

.

The standard perturbation theory for inverses gives∣∣∣∣ 1

σjσk

− 1

σ̃jσ̃k

∣∣∣∣ ≤ (σjσk)
−1 · (σ̃jσ̃k)

−1 · |σjσk − σ̃jσ̃k|.

Now, using the bounds on σj and σ̃j given above, and letting ε =
√

kD · (σ
τ

+ 1
2
C1τ),

we have

(σjσk)
−1

(56)
≤ 1

C2
2

(σ̃jσ̃k)
−1

(54)
≤ 1

(C2 −
√

kD · (σ
τ

+ 1
2
C1τ))2

.

Further, we have

|σjσk − σ̃jσ̃k|
(53)
≤ |σjσk − (σj + ε)(σk + ε)|

= |σjε + σkε + ε2|
(57)
≤ 2 ·

√
kε + ε2.

Putting these results together, and dropping the higher-order term ε2 which is asymp-

totically dominated, we have∣∣∣∣ 1

σjσk

− 1

σ̃jσ̃k

∣∣∣∣ ≤ 2k
√

D(σ
τ

+ 1
2
C1τ)

C2
2(C2 −

√
kD(σ

τ
+ 1

2
C1τ))2

.

�
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