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Abstract

This paper addresses the issue of managing urban pigeon population using some possible
actions that makes it reach a density target with respect to socio-ecological constraints. A
mathematical model describing the dynamic of this population is introduced. This model
incorporates the effect of some regulatory actions on the dynamic of this population. We
then used mathematical viability theory, which provides a framework to study compatibility
between dynamics and state constraints. The viability study shows when and how it is
possible to regulate the pigeon population with respect to the constraints.

Keywords: Biodiversity governance, Pigeons, Viability theory, Dynamical system.

1. Introduction

Urban pigeon Columba livia populations can reach high densities in cities and cause co-
habitation problems with urban citizens (see e.g. Jerolmack (2008)). In response to social
complains, different regulation programs are provided by local authorities to reduce per-
ceived nuisance and help the coexistence between city dwellers and urban pigeons. These
programs include different measures, from culling young or adult pigeons, to more welfare-
based approaches (see e.g. Haag-Wackernagel (2002)). One example is the building of public
pigeon houses where food and nest-sites are provided for pigeons and where most laid eggs
are removed or sterilized (see e.g. Jacquin et al. (2010)). Complementarily, in order to control
food resources for pigeons, pigeon feeding has been banned in most large cities. However,
these regulation methods have not been shown to successfully reduce pigeon numbers (except
in Basel, Haag-Wackernagel (1993)). In contrast, the so-called “pigeon problem” actually
combines ecological and sociological issues (see e.g. Skandrani et al. (2014)): human-pigeon
coexistence is not solely a function of pigeon numbers (and thus based on pigeon population
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control), but could be considered, as proposed in Skandrani et al. (2015), more successfully
in terms of resilience and public perceptions of pigeons.

A successful regulation strategy requires a minimum of knowledge about the pigeons
ecology and the ecological consequences of any regulation method. In fact, experimental
evidences showed long-term side effects of some regulation methods implemented by local
authorities (see e.g. Giunchi et al. (2007); Jacquin et al. (2010)). For example, egg removal
may lead to a decrease in adult pigeon’s body condition and egg quality of pigeons, as well as
an increase in laying frequency and the total yearly number of laid eggs. Indeed, in Jacquin
et al. (2010), the authors explored the consequences of repeated egg removal on egg-laying
cycles and egg quality of feral pigeons breeding in pigeon houses. During four years, they
compared the egg quality and egg-laying cycles of pigeons breeding in different pigeon houses
which are subject to egg removal strategy to that of another population without egg removal.
They observed that in pigeon houses with egg removal, the laying cycles were three times
shorter than that in the pigeon houses without egg removal. Regarding direct regulation
of population size, the study of genetic structures of pigeons population strongly suggests
pigeons can disperse from one site to another (see e.g. Jacob et al. (2014)); this confirms
empirical observations that reducing the number of pigeons in a particular site (whatever
the method) is followed by the arrival of new individuals. Finally, as argued in Sacchi et al.
(2002), limiting breeding resources neither seems guaranteeing limitation in pigeon number.
The “pigeon problem” appears to be unsolvable by considering one single ecological variable.

The purpose of this study is to propose a model describing the evolution of a given
fictive urban pigeon population impacted by regulation programs, by taking into account
the different side effects highlighted in the literature (see above). In more detail, we model
the dynamics of an urban pigeon population which is subject to two different regulation
strategies: egg removal and food resource limitation. We model urban citizen satisfaction
through the tolerance of a given maximum number of pigeons in a particular site. The
ecological considerations are modeled through the requirement of a given minimum number
of pigeons. Here, we explore a way to consider the trade-off between ecological considerations
and urban citizen satisfaction. In other words, we explore how to maintain a given pigeon
population under desirable constraints. Furthermore, we consider that this pigeon population
is split into two sub-populations in two different sites. Because urban citizen satisfaction
may differ from one site to another, we suppose that in each site the pigeon population is
subject to different egg removal and limiting food resources strategies. According to pigeons
ecology, we also consider that pigeons met disperse between these two sites, depending on
both the egg removal and limiting food resources strategies adopted in each site. In fact,
several studies exist on the patterns of pigeon dispersal confirming that dispersal is a natural
mechanism within a bird population (see, e.g. Boulinier et al. (2008); Greenwood and Harvey
(1982); Hetmański (2007); Hinde (1952)). This dispersal which is classified between breeding
and natal dispersal will be detailed later.

After introducing our model, we define our state constraint set which reflects the trade-
off between ecological considerations and urban citizen satisfaction. The viability theory of
Aubin (1991) offers an interesting insight in this context. It provides theoretical concepts
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and practical tools to study the evolution of dynamical systems under state constraint. The
main purpose of viability theory is to find a “viability domain”, a subset of initial states
such that there exists at least one evolution “viable” in the state constraint set, in the sense
that at each time, the state of the evolution can be maintained inside it. Viability theory
has been successfully used to model socio-ecological problem and study their governance, as
in Béné et al. (2001), Bernard and Martin (2013) or Lara and Martinet (2009) (see Aubin
et al. (2011) for others references). We propose here to formulate the conflicting viewpoints
of urban citizen about pigeon population in the mathematical viability framework. We then
study when and how it is possible to propose regulation satisfying both viewpoints. Using the
viability algorithm developed in Falcone and Saint-Pierre (1987), we show the approximative
viability kernel describing the possibility to control the density of an urban pigeon under
social constraints.

The paper is organized as follows. Section 2 presents the model with a detailed description
of all the parameters. Section 3 reformulates the management of the pigeon population as
a viability problem and recalls some important definitions and theorems from the viability
theory. Analytical and numerical results are given in Section 4. Section 5 discusses the
ecological implications of the results of Section 4 in terms of the possibility of management
of an urban pigeon population under social constraints, along with some perspectives.

2. Model description

xj(t) xa(t)

Figure 1: Life cycle of a pigeon population structured in two age classes

Before proceeding in the building of our model, we should give a description about the
pigeon life cycle. During the first year the mortality of young pigeons is very high (see e.g.
Haag-Wackernagel et al. (2006); Récapet et al. (2006)). they are fed infrequently by their
parents and therefore are most susceptible to disease between the age of six to ten weeks.
On the other hand, breeding age of pigeons is not uniform among the pigeon population.
Normally, pigeons reach sexual maturity at about five to eight months. It is important
therefore, when modeling the evolution of a pigeon population to consider an age-structured
model. Thus, we consider that this population is devided into two age classes (see Figure
1): the juvenile pigeons and adult pigeons. Here, we consider that the juvenile pigeons class
regroup both the young pigeons and the adult but non-reproductive pigeons. Of course, the
mortality of young pigeons is more important of that of adult pigeons (As stressed in the
beginning of this section), but here we suppose that the young and adult non-reproductive
pigeons have the same mortality rate. The adult pigeons class is exclusive to the adult
reproductive pigeons. Let us denote by xj(t) and xa(t) the size of juvenile and adult pigeons,
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respectively, at time t. Their dynamics, in an infinitesimal time dt, is given by

xj(t+ dt) = xj(t) + dt [nxa(t)−mjxj(t)− pxj(t)]

xa(t+ dt) = xa(t) + dt [−maxa(t) + pxj(t)]
(1)

where n and ma denote the reproduction and mortality rates of adult pigeons and mj the
mortality rate of juvenile pigeon. The parameter p denotes the transfer rate from juvenile
to adult class.
As mentioned in the introduction, we assume that local authorities adopt both egg removal
and limiting food resources strategies to control the pigeon population. By the following, we
list the principal impacts of these management strategies on the pigeons ecology:

• egg removal may lead to an increase in laying frequency and the total yearly number
of laid eggs,

• egg removal may lead to a decrease in the body conditions and egg quality of adult
pigeons,

• the juvenile mortality is more important than that of adult mortality,

• the reproduction activity concerns only adult pigeons.

In order to incorporate these observations in the starting equations (1), we propose the
following model 1

ẋj = n(xa, r, s)xa −mj(xj, r, s)xj − p(xj, r, s)xj

ẋa = −ma(xa, r, s)xa + p(xj, r, s)xj,
(2)

where r and s denote, respectively, the egg removal and limiting food resources strategies.
Knowing that these control strategies may differ from one site to another, our model must
incorporate a spatial distribution of the pigeon population. Here, we are limited to two
sub-populations of urban pigeons, having different rates of reproduction and mortality. Fur-
thermore, knowing that

• egg removal and limiting food resources encourages the dispersal of pigeons,

and starting from equation (2), we propose the following model 2

ẋji = ni(xai, ri, si)xai −mji(xji, ri, si)xji − pi(xji, ri, si)xji −
2∑

k=1

(−1)i+kxjkφjk

(
xjk, sk

)
ẋai = −mai (xai, ri, si)xai + pi(xji, ri, si)xji −

2∑
k=1

(−1)i+kxakφak

(
xak, rk, sk

)
(3)

1In order to lightening the presentation of this model, we omit the time dependency of xa and xj .
2In order to lightening the presentation of this model, we omit the state dependency of the controls ri

and si, for i = 1, 2.
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where xji and xai denote the size of juvenile and adult pigeon of population subject to
removal strategy ri and food resource limitation strategy si, for i = 1, 2. The function ni(·)
describes the reproduction of adult pigeon; mai(·) and mji(·) describe the mortality of adult
and juvenile pigeon, respectively, for i = 1, 2. The function pi(·) represents the transfer rate
from juvenile to adult. The functions φjk and φak represents the dispersal rate of juvenile
and adult pigeons from population i to k 6= i, for i = 1, 2.

2.1. Parameters description

In this section, relying on the existing literature, we give a detailed description of the
different parameters and functions which appeared in the equations of our model (3).

2.1.1. Parameters description: without control actions

Beside the sociological constraints, the annual survival and reproduction rates of any
pigeon population depend certainly on many ecological factors which are specific to each
city or country. Pigeons’ ecology has not been much studied compared to others species, we
have access to very few different estimations of demographic parameters. Here, we use the
data reported by Murton et al. (1974), regarding feral pigeons breeding on Sandford Docks
in Manchester (see Table 1). In that study, the survival rate of juveniles referred to the first
sixth months of life. This survival rate should be considered density-dependent. In fact, in
Kautz and Malecki (1991) the authors show that an increased survival of pigeons following
an experimentally induced decrease in population density. In the absence of any external
influence, the natural density-dependent mortality functions of a pigeon population xi can
be taken as the following

m(xi) = m̄i(1 +
xi
Mi

), (4)

where the constant m̄i defines the mortality rate of pigeon population xi, and Mi represents
the carrying capacity of this population, for i = 1, 2.
Concerning the reproductive rate, expressed as the number of fledglings per female per year,
we chose an approximative one from Murton et al. (1974) (see Table 1). The reproduction
function should be considered density-dependent. In fact, reproduction of feral pigeons being
high at low density and low at higher density Haag (1991); Kautz and Malecki (1991). In
the absence of any external influence, the natural reproduction of the pigeon population xi
can be taken as the following

n(xi) = n̄i(1−
xi
Mi

), (5)

where the constant n̄i defines the reproduction rate of the population xi, for i = 1, 2.
The transfer rate is modeled here simply as a mortality. Concerning the dispersal function,
we suppose that the dispersal decision of juvenile and adult pigeons depends on the size of
local and neighboring pigeons according the following relations

φak(xak) = φ̄ak
xjk

Mk + xai + xji
and φjk(xjk) = φ̄jk

xak
Mk + xai + xji

, (6)

where φ̄ak, φ̄jk ∈ [0, 1], for k 6= i and k, i ∈ {1, 2}.
Under managing actions, these functions should respect the different features listed at the
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beginning of this section. Especially, these functions should respect the fact that egg removal
strategy increases the total yearly number of laid eggs and decrease the body condition of
adult pigeons and their eggs’ quality. We should also distinguish between adult pigeon and
juvenile pigeon mortality. Furthermore, we should integrate the dispersal decision depen-
dency on the egg removal and limiting food resources strategies. This dependency will be
described in detail in Section 2.1.3.

2.1.2. Control parameters description

We suppose that the control parameters ri and si may vary continuously between 0 and
1. The value ri = 0 (si = 0, respectively) reflects the more tolerable removal strategy (food
limitation strategy, respectively), and the value ri = 1 (si = 1, respectively) reflects the more
aggressive removal strategy (food limitation strategy, respectively) adopted in the ith site,
for i = 1, 2. By the more tolerable strategy we mean simply the absence of any management
strategy and by the more aggressive strategy the removing of all laid eggs or the elimination
of all food resources.

2.1.3. Parameters description: with control actions

Under these management strategies, the mortality and reproduction functions should
respect the following conditions:

ni

(
xi, 1, si

)
= 0,

ni

(
xi, 0, 0

)
= n(xi),

ni

(
xi, ri, si

)
≤ n(xi), for i = 1, 2.

(7)

Observe that, without any external influence, the reproduction function is equal to the
natural reproduction (given by equation (5)). In addition, this function should increase
with respect to ri to reach a maximum reproduction rate (this in accordance with what
is mentioned before). Furthermore, this reproduction function should decrease to reach
zero when the eggs are totally removed. Concerning the mortality function, the following
conditions should be satisfied

mai

(
xi, ri, si

)
≥ m(xi)

mai

(
xi, 0, 0

)
= m(xi)

mji

(
xi, ri, si

)
= νmai

(
xi, ri, si

)
, for i = 1, 2,

(8)

with ν > 1. Also here, we observe that, without any external influence, the adult mortality
function is identically equal to the natural mortality (given by equation (4)). In addition, this
function should increase when removal eggs and limiting resources strategies are adopted.
The introduced parameter ν > 1 reflects the fact that the mortality is more important among
juvenile than that of adult pigeon.
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Similarly, as mentioned in the introduction, the pigeons dispersal is closely related to the local
management strategies. In particular, this dispersal function depends on two crucial facts:
the local level of breeding success and the food resources disposition. In fact, as observed in
several studies (see, e.g. Greenwood and Harvey (1982); Harvey et al. (1997)), a wide range
of bird species move to a new breeding locality following a poor or unsuccessful breeding
attempt the previous year. A study conducted by Boulinier et al. (2008) on the breeding
dispersal of kittiwakes, shows that individuals that lost their eggs on successful patches would
attend their nest and come back to it the year after at a higher rate than individuals that
lost their eggs on patches where their neighbors were also in failure. This suggests that an
egg removal strategy can play an important role regarding the pigeons decisions relative to
breeding site selection. Obviously, the dispersal activity is also related to the food resources
availability. In fact, as reported in Hinde (1952), it is advantageous for all nomadic species
(the great tit in this case) to disperse following a complete failure in the food supply. In
addition we should differentiate between juvenile and adult dispersal. In fact, as mentioned
in Greenwood and Harvey (1982), the dispersal is often strongly biased towards juveniles,
relatively to adults which may also move from one breeding site to another but with some
increasing (with age) tendency for philopatry (see e.g. Hetmański (2007)). According to
these observations, the dispersal functions should respect the following conditions:

φai

(
xai, 0, 0

)
= φai(xai), φji

(
xji, 0

)
= φji(xji),

φai

(
xai, ri, si

)
≥ φai(xai), φji

(
xji, si

)
≥ φji(xji), for i = 1, 2.

(9)

3. Material and methods

In this section, we propose to use the mathematical viability theory to formulate the
issue of the management of the pigeon population.

3.1. The viability theory approach

As mentioned in the introduction, the viability theory of Aubin (1991) can be used to
study the behavior of dynamical systems under state space constraints. Let X ⊂ Rn, for
n ≥ 1, be the state space of the system. We assume that the evolution of the system state
x(·) : [0,+∞) 3 t 7→ x(t) ∈ X depends on a external control action u(·) ∈ U(x(·)) ⊂ Rp, for
p ≥ 1. Let f : Rn ×Rp → Rm, m ≥ 1, be the function that defines the state evolution. This
control dynamical system can be written as the following

ẋ(t) = f(x(t), u(t)) (10)

u(t) ∈ U(x(t)).

A solution for this system is a trajectory t 7→ x(t) so that a measurable control function
t 7→ u(t) exists and that the condition u(t) ∈ U(x(t)) is satisfied for almost every t ≥ 0.
Viability constraints are described by a closed subset K ⊂ X of the state space. They
describe the viability of the system since the state of the system is no longer viable outside
of K. We recall the definitions of the contingent cone and the viability domain.
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Definition 1. (Viable trajectory). Let X be a finite dimensional vector space and let K be
a subset of X. A function x(·) from [0,+∞) to X is viable in K if

∀ t ≥ 0 , x(t) ∈ K. (11)

Definition 2. (Viability). Let X be a finite dimensional vector space and let K be a subset
of X. We say that K is viable under system (10) if for any initial state x0 of K, there exist
a solution of (10) starting at x0 which is viable in K.

Definition 3. (Contingent cone). Let X be a finite dimensional vector space, K be a subset
of X and x ∈ K. The contingent cone TK(x) to K at x is the set of all vectors v ∈ X such
that if there exist a sequence of hn > 0 converging to 0+ and a sequence of vn ∈ X converging
to v such that

∀ n ≥ 0, x+ hnvn ∈ K.

Definition 4. (Viability domain). Let X be a finite dimensional vector space and let K be
a subset of X. We say that K is a viability domain of the controlled system (10) if and only
if

∀x ∈ K, F (x) ∩ TK(x) 6= ∅, (12)

where F (x) := {f(x, u)}u∈U(x).

Definition 5. (Viability kernel). The largest viability domain inside the state constraint set
K is called the viability kernel of the controlled system (10).

The link between viability domains and the existence of viable solutions is given by the
following theorem.

Theorem 1. Consider a Marchaud 3 control system (U, f) and a closed subset K ⊂ Dom(U)
of X. K is viable under system (10) if and only if K is a viability domain of (10).

Consequently, if the whole set K is a viability domain, whatever be the initial state, there
exists a control function that governs an evolution which remains in this set of state con-
straint. If state constraint set is not a viability domain, finding a subset which is the viability
domain guarantees the existence of a viable evolution from any starting point inside.

3If satisfies the following conditions:

1. Graph(F ) := {(x, y) ∈ X ×X | y ∈ F (x)} and Dom(F ) := {x ∈ X such that F (x) 6= ∅} are closed

2. the values of F are convex

3. the growth of F is sublinear, i.e. ∃c > 0 such that ∀x ∈ Dom(F ), supy∈F (x) ‖y‖ ≤ c(‖x‖+ 1).
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3.2. Management of the pigeon population as a viability problem

To reformulate, starting from system (3), the managing problem of pigeons as a viability
problem, we first define our state constraint set. The state space consists of four variables
(two in the case of one pigeon population): the adults and juveniles pigeons from each
site. The constraint set is a subset of this four (or two respectively) dimensional space. As
mentioned in the introduction, to achieve citizen satisfaction, the local authorities fix an
upper limit on the total number of the pigeon population. Once this population exceeds this
upper limit, the local authorities try to reduce this increased pigeon population by using
different managing methods. Since this satisfaction may be different between sites, this
upper limit may be different from one site to another. On the other hand, urban citizens
are also supposed to be dissatisfied when the pigeon welfare is not ensured. Welfare could
be represented by several state variables, for example the mean health state, or the lifetime.
As a first approach, in order to keep a low number of state variables for computational
reasons, we consider that the pigeon welfare can also be represented by the level of the total
population: a low number of pigeons is a proxy a bad welfare conditions for the considered
pigeon population. The threshold values of this constraint set reflects the trade-off between
ecological considerations and urban citizen satisfaction. The constraint set can be then given
by the following

(K)


αiMi ≤ xji(t) + xai(t) ≤ βiMi, ∀t ≥ 0,

xai(t) ≥ 0, ∀t ≥ 0,

xji(t) ≥ 0, ∀t ≥ 0,

(13)

where αi, βi ∈ [0, 1] determine the lower and upper limits, respectively, for i ∈ {1, 2}. Finally,
the viability problem that we have to solve is the following one



ẋji = ni(xai, ri, si)xai −mji(xji, ri, si)xji − pi(xji, ri, si)xji −
2∑

k=1

(−1)i+kxjkφjk

(
xjk, rk, sk

)
ẋai = −mai (xai, ri, si)xai + pi(xji, ri, si)xji −

2∑
k=1

(−1)i+kxakφak

(
xak, rk, sk

)
αiMi ≤ xji(t) + xai(t) ≤ βiMi, ∀t ≥ 0,

xai(t), xji(t) ≥ 0, ∀t ≥ 0,

ri, si ∈ [0, 1], ∀i ∈ {1, 2}.
(14)

3.3. Algorithm for the approximation of the viability kernel

The computation of the viability kernel for the pigeon problem is done with the kd-tree
viability framework from Alvarez et al. (2013) and Rouquier et al. (2015). It is available
on-line (more information from Alvarez et al. (2016)). It produces a partition of the search
space into leaves of a kd-tree. With each viable leaf comes a control vector for which the
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test point associated with the leaf stays in the approximation of the viability kernel for the
specific control vector. This information is generally only used to control trajectories near the
boundary of the viability kernel, since inside the viability kernel, when the time step is small
enough, every control is viable. Control information allows to understand what happens near
the boundary of the viability kernel. It also allows to develop action plans to control viable
trajectories, or to find trajectories which optimizes some cost function while maintaining
the system in the viability kernel. In the kd-tree viability framework it is possible to order
the discretized controls before they are tested. The resulting approximation of the viability
kernel is not modified, but registered controls depend on the chosen order. For example,
food control can be tested before any egg removal strategy when it is easier to implement
in the field. More general strategies can be tested, for example careful strategies which stay
far from the boundary like in Alvarez and Martin (2011).

The kd-tree viability framework provides also for two and tree dimensional problems a
description of the viability kernel in VTK format, in order to allow vizualisation facilities
with Paraview (AHRENS et al. (2005)).

4. Results

This section presents the main contribution of this paper. We analyze, in two different
cases, the viability problem given by system (14).

4.1. Case of one age-structured population

Let us denote by ∂K the boundary of the set of state constraint K. In this case, we have
∂K = K1 ∪K2 ∪K3 ∪K4, where

K1 = {(xj, xa) ∈ R2 | xa = 0 and αM < xj < βM}
K2 = {(xj, xa) ∈ R2 | xa + xj = αM}
K3 = {(xj, xa) ∈ R2 | αM < xa < M and xj = 0}
K4 = {(xj, xa) ∈ R2 | xa + xj = βM}

(15)

In order to have an idea on the viability kernel in this case, we consider the following natality,
mortality and transfer functions

n
(
xa, r, s

)
= (1− r)(1− s2)n(xa)

ma

(
xa, r, s

)
= (1 + r)(1 + s2)m(xa)

mj

(
xj, r, s

)
= νm

(
xj, r, s

)
p
(
xj, r, s

)
= ρmj

(
xj, r, s

)
(16)

where n(·) and m(·) are given by equations (4)–(5), r, s ∈ [0, 1], ν > 1 and ρ < 1. Remark
that these functions are in concordance with the conditions given by equations (7)–(8). The
use of the square of s (instead of s) is in order to weaken the impact of food resources
management compared to that of egg removal strategies.
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4.1.1. Analytical results

Before the numerical computation of the viability kernel, it is necessary to have an idea
on the equilibria of system (2). In fact, depending on the control parameters r and s, the
equilibria of (2) may be inside or outside the constraint set K (see Figure (2)). Then, it
is necessary two have an idea on how these controls modify the equilibria of this system.
This is given by the following proposition. Firstly, we define, for each pair r, s ∈ [0, 1], the
following quantity

θ =
ρn̄(1− r)(1− s2)− (1 + ρ)m̄(1 + r)(1 + s2)

ρn̄(1− r)(1− s2) + (1 + ρ)m̄(1 + r)(1 + s2)
. (17)

We have the following proposition.

Proposition 1. Consider system (2) and let K be the set of state constraint given by equa-
tion (13). If θ ≥ 0, where θ is given by equation (17), then system (2) admits a unique
equilibrium (x?j , x

?
a) in the positive orthant, where

x?j =
(
−1/2 +

√
1/4 + θ(1 + θ)/νρ

)
M,

x?a = θM.
(18)

Furthermore, this positive equilibrium belong to K if and only if

α ≤ θ − 1/2 +
√

1/4 + θ(1 + θ)/νρ ≤ β. (19)

proof. In this case, the model of the one age-structured pigeon population is given by

ẋj = (1− r)(1− s2)n(xa)xa − ν(1 + ρ)(1 + r)(1 + s2)m(xj)xj

ẋa = −(1 + r)(1 + s2)m(xa)xa + νρ(1 + r)(1 + s2)m(xj)xj.
(20)

At the equilibrium, we have

(1− r)(1− s2)n(xa)xa = ν(1 + ρ)(1 + r)(1 + s2)m(xj)xj

m(xa)xa = νρm(xj)xj.
(21)

Then, from equation (21), we have

(1− r)(1− s2)

(1 + r)(1 + s2)
n(xa)xa = ν(1 + ρ)m(xj)xj

m(xa)xa = νρm(xj)xj.

(22)

Combining these two latter equations gives,

(1− r)(1− s2)

(1 + r)(1 + s2)
n(xa)xa︸ ︷︷ ︸

ψ1(xa)

=
(1 + ρ)

ρ
m(xa)xa︸ ︷︷ ︸

ψ2(xa)

. (23)
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Remark, from the definition of n(·) and m(·) (given by equations (4)–(5)), that the function
ψ1 is positive over [0,M ], ψ1(0) = ψ1(M) = 0, and that ψ1 is increasing over [0,M/2]
and decreasing over [M/2,M ] and that is a concave function which is always under the

straight line of slope ψ′1(0) =
(1− r)(1− s2)

(1 + r)(1 + s2)
n̄. Moreover, the function ψ2 is a convex

increasing function such that ψ2(0) = 0 and that ψ2 is always upper the strait line of slope

ψ′2(0) =
(1 + ρ)

ρ
m̄. Consequently, equation (23) has at least one trivial solution xa = 0 and

one non-trivial which correspond to the case when ψ′1(0) > ψ′2(0), i.e. when

ρn̄(1− r)(1− s2) ≥ (1 + ρ)m̄(1 + r)(1 + s2).

this non-trivial solution is given by x?a = ρn̄(1−r)(1−s2)−(1+ρ)m̄(1+r)(1+s2)
ρn̄(1−r)(1−s2)+(1+ρ)m̄(1+r)(1+s2)

M . Thus, from (22),
the non-trivial equilibrium point is given by the following

x?j =

−1 +

√
1 +

4

νρ
(1 + θ)θ

2
M,

x?a = θM,

(24)

where θ = θ(r, s) is given by equation (17). It is clear that this equilibrium point belongs to
the constraint set K if and only if equation (19) holds. �
By the following proposition, we show that, for each fixed r, s ∈ [0, 1], the non-trivial equilib-
rium (when it exists) is locally exponentially stable. In other words, there exists a neighbor-
hood of (x?j , x

?
a) such that from any starting point the trajectory remains in this neighborhood

and converges exponentially to (x?j , x
?
a).

Proposition 2. Consider system (2). The unique non-trivial equilibrium point (x?j , x
?
a),

when it exists, is locally exponentially stable.

proof. The Jacobian matrix of dynamics (2) at the equilibrium x? = (x?j , x
?
a) is given by:

J(x?) :=

 −ν(1 + ρ)A B

νρA −C

 , (25)

where

A = (1 + r)(1 + s2)m̄(1 +
2

M
x?j) and B = (1− r)(1− s2)n̄(1− 2

M
x?a). (26)

C = (1 + r)(1 + s2)m̄(1 +
2

M
x?a). (27)

Let λ1 and λ2 be the eigenvalues of J(x?). Knowing that J(x?) is of dimension two, then we
have the following property

λ1 + λ2 = −ν(1 + ρ)A− C and λ1λ2 = ν(1 + ρ)AC − νρAB. (28)
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Figure 2: Influence of the values of r and s on the equilibrium point (x?
j , x

?
a) of system (2). The total

population at the equilibrium x?
j + x?

a is compared to the carrying capacity, for each r, s ∈ [0, 1]. All the
parameter values used for this simulation are given in Table 1.

Then, the Jacobian matrix J(x?) is Hurwitz, i.e having eigenvalues with negative real parts,
if and only if λ1 + λ2 < 0 and λ1λ2 > 0. It is clear that λ1 + λ2 < 0. Let then check the sign
of λ1λ2. We have

λ1λ2 = νA [ν(1 + ρ)C − ρB]

= νA

[
(1 + ρ)(1 + r)(1 + s2)m̄(1 +

2

M
x?a)− ρ(1− r)(1− s2)n̄(1− 2

M
x?a)

]
= νA

[
(1 + ρ)(1 + r)(1 + s2)m̄(1 + 2θ)− ρ(1− r)(1− s2)n̄(1− 2θ)

]
= νA

[
ρ(1− r)(1− s2)n̄+ (1 + ρ)(1 + r)(1 + s2)m̄

]
θ.

Knowing, from Proposition (1), that the existence of non-trivial positive equilibrium x? holds
if and only if θ > 0, then we have λ1λ2 > 0. Hence, the Jacobian matrix J(x?) given in (25)
is Hurwitz, which establishes that x? is locally exponentially stable for (2). �

Thanks to Proposition 1 and Proposition 2, we know that the viability kernel of system (2)
is non-empty; it contains at least the equilibrium point x? and a neighborhood of x?. Even
if the equilibrium point is inside the set of state constraint K, for some initial condition, a
trajectory of system (2) may violate the boundary of K (see for example Figure 3). This
show the importance of dealing with an adaptive control instead of fixed ones. And the
question is to determine the greatest set of initial conditions V ⊂ K such that for each
x0 ∈ V the evolution of the population stay in V for a given r and s. Before that, we
examine if the viability conditions are satisfied on the boundaries of K. This is given by the
following proposition.
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Figure 3: Phase portrait of system (2) for s = 0, r = 0 (left) and s = 0.1, r = 0.2 (right). All the parameter
values used for these simulations are given in Table 1.

Let us introduce the following quantities

S =
h(r, s)n̄+ (2νβ + ν − 1)m̄

h(r, s)n̄+ (1 + ν)m̄
M, P =

νβ(1 + β)m̄

h(r, s)n̄+ (1 + ν)m̄
M2, (29)

where h(r, s) is defined by

h(r, s) =
(1− r)(1− s2)

(1 + r)(1 + s2)
. (30)

Proposition 3. Consider system (2). Let K be the set of state constraint given by equa-
tion (13) with boundary ∂K = K1 ∪ K2 ∪ K3 ∪ K4. The viability condition is satisfied 4

on K1 ∪K3 and it is not satisfied on K2. Concerning the boundary K4, we distinguish two
different cases:

• if S2 − 4P ≤ 0 then the viability condition is satisfied on K4,

• if S2 − 4P > 0 we distinguish two different sub-cases:

– if for every xa ∈ [0, βM ] there exist r, s ∈ [0, 1] such that xa ∈ [0, x̂a] ∪ [x̌a, βM ]
then the viability condition is satisfied on K4,

– if for every xa ∈ [0, βM ] and every r, s ∈ [0, 1] we have xa ∈ [x̂a, x̌a] then the
viability condition is not satisfied on K4,

where S and P are given by equation (29), x̂a =
S −
√
S2 − 4P

2
and x̌a =

S +
√
S2 − 4P

2
.

4We say that the viability condition is satisfied on a boundary of K, if starting from this boundary there
is always a control for which the trajectory of system (2) pointwises inside K.
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proof. Let (xj, xa) ∈ ∂K. If (xj, xa) belongs to K1, then TK(xj, xa) = R × R+ and,
straightforwardly from equation (20), we have ẋa ≥ 0 and ẋj ≤ 0, then the viability
condition, TK(xj, xa) ∩ F (xj, xa) 6= ∅, is satisfied on K1. Similarly, if (xj, xa) belongs
to K3, then TK(xj, xa) = R+ × R, and in this case we have ẋa ≤ 0 and ẋj ≥ 0, then
the viability condition is satisfied on K3. If (xj, xa) belongs to K2 \ {(αM, 0), (0, αM)},
then TK(xj, xa) = {(u, v) ∈ R2 : u + v ≥ 0}, and the viability condition is satisfied
on K2 \ {(αM, 0), (0, αM)} if and only if ẋa + ẋj ≥ 0. Similarly, If (xa, xj) belongs to
K4 \ {(βM, 0), (0, βM)}, then TK(xj, xa) = {(u, v) ∈ R2 : u + v ≤ 0}, and the viability
condition is satisfied on K4 \ {(βM, 0), (0, βM)} if and only if ẋa + ẋj ≤ 0. Remark that

ẋa + ẋj = (n(xa, r, s)−ma (xa, r, s))xa −mj(xj, r, s)xj︸ ︷︷ ︸
∆(xj ,xa)

. (31)

The sign of ∆ determines if the viability condition is satisfied or not on the boundaries K2 \
{(αM, 0), (0, αM)} and K4 \ {(βM, 0), (0, βM)}. Concerning K2, we can straightforwardly
conclude (for continuity reason), from the fact that ∆(xj, 0) < 0 for every xj > 0, that the
viability condition is not satisfied on K2. Concerning K4 \{(βM, 0), (0, βM)}, using the fact
that on this boundary we have xj = βM − xa, we obtain that

sign(∆(xj, xa)) = −sign(x2
a − Sxa + P ),

where S and P are given by equation (29). By studying the solutions of the quadratic
equation ∆(xj, xa) = 0, we can have a complete idea on the sign of ∆(xj, xa) for every
(xj, xa) ∈ K4 \ {(βM, 0), (0, βM)}. Remark that on (βM, 0) we have always ẋa ≥ 0 and
ẋa + ẋj ≤ 0 then the viability condition is always satisfied in this point. Finally, remark
that on (0, βM) we have always ẋj ≥ 0. Then the viability condition in (0, βM) is only
constrained by the sign of ẋa + ẋj on K4, which is already studied. �

Remark 1. The fact that the viability condition is not satisfied on K2 (or K4) does not
mean that is cannot be satisfied on a subset of K2 (or K4).

4.1.2. Numerical computation of the viability kernel

In this section, we compute numerically the viability kernel of problem (14), in four dif-
ferent cases: case 1 (α = 0.3 and β = 0.8), case 2 (α = 0.5 and β = 0.8), case 3 (α = 0.5 and
β = 0.6) and case 4 (α = 0.7 and β = 0.8). Recall that αM and βM represent, respectively,
the lower and upper boundary of the constraint set K, where M is the carrying capacity
relative to this pigeon population. These viability kernels are represented by Figure 4 and
Figure 5. The used parameter values are summarized by Table 1. These viability kernels are
accompanied by a color gradient on the boundaries of the state constraint set K. This color
gradient indicates the control values needed for r and s to maintain the trajectories, starting
near the boundaries, inside K. These control values are spread over different levels: “min”,
“low”, “medium” and “high”. The “min” value indicates the null control values. The “low”
value indicates the non-null control values which are less than 0.3. The “medium” value
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Parameters Values Units Reference
n̄i 3 1/Year Murton et al. (1974)
m̄i 0.34 1/Year Murton et al. (1974)
m̄j 0.43 1/Year Murton et al. (1974)
M1 1000 Number/Volume Fictif
M2 500 Number/Volume Fictif
ν m̄j/m̄i - -
ρ 1-0.43-0.1 - -

Table 1: Table summarizing the used parameter values.

indicates the control values between 0.4 and 0.6 and the “high” value indicates the control
values between 0.7 and 0.9.
We clearly observe, from Figure 4 and Figure 5, that the common fact between these four
cases is that the viability kernel is always non empty and that the constraint set K is not a
viability domain. This confirms the analytical result given by Proposition 2, that the viabil-
ity condition is not satisfied on the boundary K2 and not always satisfied on the boundary
K4. Furthermore, we observe that the upper boundary K4 is the only expensive one, where
(in particular regions of this boundary) we should activate an egg removal or limiting food
resources strategies to prevent that the pigeon population violates the constraint set. By
Figure 4, we represent the viability kernel obtained by activating the limiting resource strat-
egy at the first. In this case, we observe that a strong limiting resource strategy is needed
in order to maintain the population inside the constraint set. By Figure 5, we represent the
viability kernel obtained by activating the removal egg strategy at the first. In this case, we
observe that a medium egg removal strategy is sufficient to maintain the population inside
the constraint set. This can be simply justified from the fact that the egg removal impact
is supposed more immediate than the food resources management (see (16)). Moreover, we
can see that there is a level on juvenile and adult pigeons under which the population cannot
be recovered.

4.2. Case of two populations

In this section, we analyze the role of the dispersal mechanism within a pigeon population
and show the reliability to take into account such mechanism for the effectiveness of a
management strategy. For this, we suppose that the pigeon population is splitted into two
subpopulations. In order to simplify the representation of a viability kernel in this case,
we suppose that the first population is structured as in system (2) but we suppose some
homogeneity for the neighboring population where we don’t differentiate between juvenile
and adult pigeons. In addition, we suppose that this neighboring population is not subject
to any management strategy. In fact, this neighboring population provides just a disturbing
role for the first controlled population. The aim of this section is to provide a comparison
with the previous one in order to show the dispersal role on the approximated viability kernel.
For this, we chose the particular example corresponding to 700 ≤ xj + xa ≤ 800 for which
the viability kernel and the associated control are represented by Figure 5-(right-bottom).
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Figure 4: Viability kernel (in dark grey) for the viability problem 2. The constraint set is delimited by the
white oblique lines and the axes. The points where the first control (r = 0, s = 0) tested is viable appear in
black. Points were s is not minimum have a bigger size and colored light gray.

We consider the following system

ẋj = n(xa, r, s)xa −mj(xj, r, s)xj − p(xj, r, s)xj + γφ2(x2)x2 − φj(xj, s)xj

ẋa = −ma(xa, r, s)xa + p(xj, r, s)xj + (1− γ)φ2(x2)x2 − φa(xa, r, s)xa

ẋ2 = (n(x2)−ma(x2))x2 − φ2(x2)x2 + φj(xj, s)xj + φa(xa, r, s)xa

(32)
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Figure 5: Viability kernel (in dark grey) for the viability problem 2. The constraint set is delimited by the
white oblique lines and the axes. The points where the first control (r = 0, s = 0) tested is viable appear in
black. Points were r is not minimum have a bigger size and colored light gray.

where γ = 4/7 and n,ma,mj, p have the same values as in previous section. Two examples
of dispersal functions are proposed:

φ2(x2) = 0.7, φa(xa, r, s) = 0.1, and φj(xj, r, s) = 0.5, (33)
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Figure 6: Figure left-top represents the viability kernel for the viability problem (32), in the case of the
constant dispersal functions (33). Three clips at three different levels of the viability kernel: a first clip
(right-top) for x2 = 0, a second clip (left-bottom) for x2 = 450 and the third clip (right-bottom) for
x2 = 500.

and

φ2(x2) =
0.7x2

M2 + xj + xa
, φa(xa, r, s) = (1+r)(1+s)

0.1xj
M1 + x2

, φj(xj, s) = (1+s)
0.5xa

M1 + x2

.

(34)
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Figure 7: Figure left-top represents the viability kernel for the viability problem (32), in the case of the
density dependent dispersal functions (34). Three clips at three different levels of the viability kernel: a first
clip (right-top) for x2 = 0, a second clip (left-bottom) for x2 = 450 and the third clip (right-bottom) for
x2 = 500.

The choice of these two functions is given in oder to give a comparison between two situations:
1) constant dispersal rates and 2) density dependent dispersal rates respecting the fact that
egg removal and limiting food resources encourage the dispersion of pigeons. The constraint
set in this case is the one given by (13) with α1 = 0.7, β1 = 0.8, α2 = 0 and β2 = 1. By
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Figure 6 and Figure 7, we show the viability kernel in each case (case corresponding to (33)
and (34)) as well as three clips at three different levels of the viability kernel: a first clip
(right-top) for x2 = 0, a second clip (left-bottom) for x2 = 450 and the third clip (right-
bottom) for x2 = 500. The parameter values, concerning the constant dispersion rate, are
chosen in the range of what is observed in Hetmański (2007) in the context of feral pigeon
dispersion. In fact, in Hetmański (2007) the author shows that the dispersion among young
birds is relatively high; it can reach 70 % a year and remains at a stable level of 20 to 33 %
a year. As mentioned in section 2.1, the dispersion rate of adult pigeons is relatively low
with respect to young pigeons, which justify the chosen values given by equation (33). We
stress that this particular choice it is not at all unrepresentative. In fact, different constant
dispersal rates, choosing in the range between 10 and 70 % a year, show the same shape of
the viability kernel.
The need to take into account the dispersal mechanism is analyzed here by comparing the
viability kernel obtained in the case of one pigeon population with that obtained in the case of
two pigeon populations. This is done by comparing Figure 5-right-bottom with Figure 6 and
Figure 7. Two remarkable effects of the dispersal mechanism must be highlighted. The first
one corresponds to the fact that the viability kernel becomes larger in the case of two pigeon
populations; the second one corresponds to the fact that the control becomes more expensive
in particular regions of the upper boundary. The expansion of the viability kernel can be
simply justified by the fact that the arrival of new individuals allows the local population to
avoid extinction when there are not enough adults, and this in accordance with Remark 2.
The expansion of the viability kernel requires more expensive control in particular regions of
the upper boundary of K. This can be simply justified by the fact that when the number of
adult pigeons is sufficiently large, with the relatively high dispersal rate of the neighboring
pigeons, the control strategy that worked well before (in the case of one pigeon population
without dispersal effect) is not sufficient in this case, and this in accordance with Remark 2.
In the light of these two remarks and after showing how a dispersal effect could modify the
viability kernel, we can argue that any management strategy should take into account the
dispersal mechanism within a pigeon population.

Remark 2. Remark, when the dispersal functions are given by equation (33), that for each
x2 = k, with k ∈ [0, 500], and each αM ≤ xj, xa ≤ βM such that xj + xa = θM , with
θ ∈ [α, β], we have

ẋa + ẋj = ∆(xj, xa) + 0.7k + 0.4xa − 500θ︸ ︷︷ ︸
∆k

, (35)

where ∆(xj, xa) is given by equation (31).

Recall that equation (35) gives an idea about the velocity direction on each point (xj, xa)
such that xj + xa = θM (and particularly on the boundaries of the constraint set K when
θ ∈ {α, β}) in the plane x2 = k, for k ∈ [0, 500]. The quantity ∆k can be seen as a
perturbation of ∆(xj, xa). The positive sign of ∆k allows to redirect the velocity in the
upper boundary direction, while the negative one allows to redirect the velocity in the lower
boundary direction. For example, remark that for k = 500 and θ = α, we have that
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∆k = 0.4xa ≥ 0. This explain the fact that in Figure 6-right-bottom the lower boundary
of the viability kernel becomes larger. In addition, remark that for k = 500 and θ = β, we
have ∆k = 0.4xa − 50. This explain, in Figure 6-right-bottom, the expansion of the upper
boundary of the viability kernel in the region where there are not enough adults, and the
need of more severe control in the region where the number of adult pigeons is sufficiently
large.

5. Conclusion and perspectives

This work is an attempt at modeling the management of an urban pigeon population
with an objective of cohabitation and not only a reduction of the pigeon population. Since
it is not easy to describe precisely what should be the optimal population of pigeons regard-
ing different factors, we have described the cohabitation problem in the framework of the
mathematical theory of viability. Viability theory studies the compatibility between dynam-
ical systems and state constraint sets. We have shown how the management of the pigeon
population can be formulated as a viability problem: rather than an objective of population
reduction, the objective is to maintain the state of the population in a set of desirable states.
Urban citizens are supposed to be dissatisfied when the pigeon population exceeds a threshold
because of the possible nuisance (this is a classical management viewpoint). Urban citizens
are also supposed to be dissatisfied when the pigeon welfare is not ensured. Welfare could
be represented by several state variables, for example the mean health state, or the lifetime.
As a first approach, in order to keep a low number of state variables for computation reason,
we have considered that the pigeon welfare can also be represented by the level of the total
population: a low number of pigeons is a proxy a bad welfare conditions for the considered
pigeon population. With this simplification hypothesis we were able to describe the set of
desirable states of the pigeon population in terms of bounded levels of the total population.
We have proposed an age structured model to describe the dynamics of the pigeon popu-
lation with two age classes. In the viability framework, it was also necessary to consider
explicitly the type of control actions in order to model their impact on the evolution of the
pigeon population. So, we introduced control mechanisms with effects and parameters given
by the literature, to model in a very simplified way egg removal and food control strategies.
We have shown analytically some asymptotic properties of the dynamic, with no control and
with constant control. In particular we have identified the equilibrium of the system and
studied the phase portrait for some values of the control. From the viability viewpoint, even
if the equilibrium belongs to the set of desirable states, some trajectories can still lead to
non viable states, as this is the case in Figure 3 (right), and in that case the viability kernel
can be smaller than the desirable sets. The computation of the viability kernel shows the
advantage of adaptive control: the largest effort in term of control is only mandatory near the
boundary of the viability kernel. Farther from the boundary no control effort is necessary,
contrary to constant control policy. The viability study also confirms that the control actions
are not adapted to ensure the pigeon welfare (this is not surprising, since the control aims
only at diminishing the population level). In some cases (high juvenile population level with
few adults), the evolutions are doomed to exit the set of desirable states whatever control
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is applied. We have also considered, in a simplified way, the possibility of spatial dispersion
between two areas. After establishing the state of the art around the effects of egg removal
and food control strategies on the dispersal mechanism, we integrated these effects in our
model. We showed, by comparing the viability kernels calculated with spatial dispersion (see
Figure 7) to that without spatial dispersion (see Figure 5), how this natural mechanism can
modify the viability kernel and affects the controls. We have observed that the arrival of
neighboring pigeons leads to strengthening the controls in particular region of the viability
kernel. In addition, we observed that the dispersal mechanism leads to increase the viabil-
ity kernel, meaning that this natural mechanism can play an important role to favor the
cohabitation with the population of urban pigeons. Thus, while the arrival of neighboring
pigeons can help the local population to avoid extinction, this might cost more to prevent
the exceeding of a desirable threshold. Hence, this justifies the need for some regulatory
programs, such as the egg removal or the limiting of food resources, in order to control the
pigeon dispersion. This is an interesting message stating that, for a successful management
strategy of an urban pigeon population, it is mandatory to take into account the dispersal
mechanism.

The viability analysis, even performed on a simplified model, suggests interesting per-
spectives in term of management. The set of desirable states was set arbitrarily in this study,
even if several set of values have been tested in order to present an overview of the possible
situations. In order to challenge the viability framework in conditions closer to real-life,
it would be necessary to build this constraint set with the stakeholders (local community
council, local authority, etc.). Similarly, the choice of possible controls should be discussed
with stakeholders, and one or several types of control with positive effect on pigeon welfare
should be integrated in the model. Further work could also be done to exploit the possibili-
ties in term of adaptive control: in this article two different controls could be used but with
no information on their respective ratio cost vs. efficiency. Different control strategy could
be derived a posteriori from the viability analysis. Since the viable states are given by the
viability kernel, it would then possible to propose optimized strategy depending on criteria
than can take the viability kernel into account (for example, switching from egg removal to
resource control depending on costs, population level and distance to the boundary of the
viability kernel). From the methodological viewpoint, further work is also needed to present
viability analysis and results when the dimension of the state space is greater than three.
This would have been the case here if we haven’t simplified the dispersion between two areas
model.
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