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émanant des établissements d’enseignement et de
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Abstract

We consider a quantum particle in a potential V (x) (x ∈ RN) in a time-
dependent electric �eld E(t) (the control). Boscain, Caponigro, Chambrion
and Sigalotti proved in [2] that, under generic assumptions on V , this system
is approximately controllable on the L2(RN ,C)-sphere, in su�ciently large
time T . In the present article we show that approximate controllability does
not hold in arbitrarily small time, no matter what the initial state is. This
generalizes our previous result for Gaussian initial conditions. Moreover, we
prove that the minimal time can in fact be arbitrarily large.

Keywords: Schrödinger equation, quantum control, minimal time.

1. Introduction and main result

In this article, we consider quantum systems described by the linear
Schrödinger equation{
i∂tψ(t, x) =

(
−1

2
∆ + V (x)− 〈E(t), x〉

)
ψ(t, x), (t, x) ∈ (0, T )× RN ,

ψ(0, x) = ψ0(x), x ∈ RN .
(1)

Here, N ∈ N∗ is the space dimension, 〈., .〉 is the euclidian scalar product on
RN , V : x ∈ RN → R, E : t ∈ (0, T )→ RN and ψ : (t, x) ∈ (0, T )×RN → C
are a static potential, a time-dependent electric �eld, and the wave function,
respectively. This equation represents a quantum particle �trapped� by the
potential V and under the in�uence of the electric �eld E. Planck's constant
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and the particle mass have been set to one (the dependence on the physical
constants is discussed brie�y in Section 3.4).

System (1) is a control system in which the control is the electric �eld E
and the state is the wave function ψ, which belongs to the unit sphere S of
L2(RN ,C). The expression �bilinear control� refers to the bilinear nature of
the term 〈E(t), x〉ψ with respect to (E,ψ).

We are interested in the minimal time required to achieve approximate
controllability of the system (1). Since in (1) decoherence is neglected, in re-
alistic scenarios the model may only be applicable for small times t (typically
on the order of several periods of the ground state). Since, to be practically
relevant, controllability results need to be valid for time intervals in which
equation (1) remains a reasonable model, quanti�cation of the minimal con-
trol time is an important issue.

We consider potentials V that are smooth and subquadratic, i.e.

V ∈ C∞(RN) and, ∀α ∈ NN such that |α| > 2, ∂αxV ∈ L∞(RN) . (2)

For this class of potentials there is a classical well-posedness result [8], which
we quote from [6].

Proposition 1. Consider V satisfying assumption (2) and E ∈ L∞loc(R,RN).
There exists a strongly continuous map (t, s) ∈ R2 7→ U(t, s), with values in
the set of unitary operators on L2(RN ,C), such that

U(t, t) = Id , U(t, τ)U(τ, s) = U(t, s) , U(t, s)∗ = U(s, t)−1 , ∀t, τ, s ∈ R

and for every t, s ∈ R, ϕ ∈ L2(RN ,C), the function ψ(t, x) := U(t, s)ϕ(x)
is a weak solution in C0([0, T ], L2(RN ,C)) of the �rst equation of (1) with
initial condition ψ(s, x) = ϕ(x).

For V satisfying (2), we introduce the operator

D(AV ) :=
{
ϕ ∈ L2(RN);−1

2
∆ϕ+ V (x)ϕ ∈ L2(RN)

}
,

AV ϕ := −1
2
∆ϕ+ V (x)ϕ .

For appropriate potentials V , approximate controllability of (1) in S (possi-
bly in large time) is a corollary of a general result by Boscain, Caponigro,
Chambrion, Mason and Sigalotti (the original proof of [7] is generalized in
[2]; inequality (4) below is proved in [7, Proposition 4.6]; an analogous state-
ment for vector valued controls is given in [3, Theorem 2.6]; see also [4] for a
survey of results in this area).

2



Theorem 1. Let m ∈ {1, ..., N} and assume that

• there exists a Hilbert basis (φk)k∈N of L2(RN ,C) composed of eigenvec-
tors of AV : AV φk = λkφk and xmφk ∈ L2(RN), ∀k ∈ N,

•
∫
RN xmφj(x)φk(x)dx = 0 for every j, k ∈ N such that λj = λk and
j 6= k,

• for every j, k ∈ N, there exists a �nite number of integers p1, ..., pr ∈ N
such that

p1 = j, pr = k,
∫
RN xmφpl(x)φpl+1

(x)dx 6= 0,∀l = 1, ..., r − 1 ,

|λL − λM | 6= |λpl − λpl+1
|,∀1 6 l 6 r − 1, L,M ∈ N

with {L,M} 6= {pl, pl+1}.

Then, for every ε > 0 and ψ0, ψf ∈ S, there exist a time T > 0 and a
piecewise constant function u : [0, T ] → R such that the solution of (1) with
E(t) = u(t)em satis�es

‖ψ(T )− ψf‖L2(RN ) < ε . (3)

Moreover, for every δ > 0, the existence of a piecewise constant function
u : [0, T ]→ (−δ, δ) such that the solution of (1) with E(t) = u(t)em satis�es
(3) implies that

T >
1

δ
sup
k∈N

| |〈φk, ψ0〉| − |〈φk, ψf〉| | − ε
‖xmφk‖L2(RN )

. (4)

In Theorem 1, the time T is not known a priori and may be large. Note
that the lower bound on the control time in (4) goes to zero when δ → +∞.
As a result, Theorem 1 gives no information about the control time if the
controls are allowed to be arbitrarily large; in particular, it does not preclude
the possibility of approximate controllability in arbitrarily small time. In
our previous work [1], we proved that, for potentials V satisfying (2), and
for particular (Gaussian) initial conditions, approximate controllability does
not hold in arbitrarily small time � even with large controls. Speci�cally, we
proved the following result.
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Theorem 2. Assume that V satis�es assumption (2). Let b > 0, x0, ẋ0 ∈ RN

and ψ0 ∈ S be de�ned by

ψ0(x) :=
bN/4

CN
e−

b
2
‖x−x0‖2+i〈ẋ0,x−x0〉 where CN :=

(∫
RN
e−‖y‖

2

dy

)1/2

.

Moreover, let ψf ∈ S be a state that does not have a Gaussian pro�le in the
sense that

|ψf (.)| 6=
det(S)1/4

CN
e−

1
2
‖
√
S(.−γ)‖2 , ∀γ ∈ RN , S ∈MN(R) symmetric positive.

Then there exist positive numbers T ∗∗ = T ∗∗(‖V ′′‖∞, ‖V (3)‖∞, b, ψf ) and
δ = δ(‖V ′′‖∞, b, ψf ) such that, for every E ∈ C0

pw([0, T ∗∗],RN) (piecewise
continuous functions [0, T ∗∗]→ RN), the solution ψ of (1) satis�es

‖ψ(t)− ψf‖L2(RN ) > δ , ∀t ∈ [0, T ∗∗] .

The goal of the present article is to generalize this result to arbitrary
initial conditions ψ0, and to demonstrate that the minimal control time can
in fact become arbitrarily large. Speci�cally, we prove the following

Theorem 3. Assume that V satis�es assumption (2) and let ψ0 ∈ H1(RN)∩
L2(‖x‖dx) ∩ S.

1. There exists ψf ∈ S, T ∗∗ > 0 and δ > 0 such that, for every E ∈
L∞((0, T ∗∗),RN), the solution ψ of (1) satis�es

‖ψ(t)− ψf‖L2(RN ) > δ , ∀t ∈ [0, T ∗∗] .

2. Moreover, if V is of the form

V (x) = W (εx) , ∀x ∈ RN , (5)

then T ∗∗ > C
ε
for every ε ∈ (0, 1), for some positive constant C =

C(ψ0, ψf ,W ).

Remark 1. If V satis�es (2) and the assumptions of Theorem 1 (which hold
generically, this fact may be proved as in [10]), then system (1) is approx-
imately controllable in S in large time but not in small time T < T ∗∗. A
characterization of the minimal time required for ε-approximate controllabil-
ity is an open problem.
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Remark 2. In part 2 of the theorem the demonstration that the minimal
control time can become in�nitely large is accomplished by a particular choice
(rescaling) of the potential. In a forthcoming paper we will investigate the
conditions on V under which this can also be accomplished by a suitable choice
of initial and/or target states. (See also Section 3.4)

The remainder of this paper is devoted to the proof of Theorem 3. The
next section contains some notation and auxiliary results, whereas Section 3
contains the proof proper. There is also a brief discussion of the dependence
on Planck's constant (Section 3.4) and an appendix containing the proof of a
functional-analytic lemma needed in the argument. We refer to our previous
article [1] for bibliographical comments.

2. Notation and auxiliary results

Denote by MN(R) the set of N × N matrices with coe�cients in R,
GLN(R) the group of its invertible matrices and IN its identity element;
Tr(M) the trace and M∗ the transposition of a matrix M ∈MN(R); SN(R)
the set of symmetric matrices inMN(R); ‖.‖ the Euclidean norm on RN and
the associated operator norm onMN(R); ẋ(t) := dx

dt
(t), ẍ(t) := d2x

dt2
(t), for a

function x of the scalar variable t and D2
yχ the Hessian matrix of a function

χ : RN → C, D2
yχ(x) =

(
∂2χ
∂yi∂yj

)
16i,j6N

.

The goal of this section is to prove the following result, which will be used
in the proof of Theorem 3.

Proposition 2. Let T, L,R > 0,

B :=
{
σ ∈MN(R); ‖σ − IN‖ 6 1

2

}
, (6)

K :=
{
M ∈ C0 ([0, T ],MN(R))L-Lipschitz; ‖M(t)‖ 6 R, ∀t ∈ [0, T ]

}
. (7)

For φ0 ∈ S and M ∈ K, let the function χMφ0
: [0, T ]× RN → C be de�ned as

the unique solution of{
i∂τχ(τ, y) + 1

2
Tr
[
M(τ)∗M(τ)D2

yχ(τ, y)
]

= 0, (τ, y) ∈ [0, T ]× RN ,
χ(0, y) = φ0(y), y ∈ RN .

(8)
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1. For every φ0 ∈ S, the set

V(φ0) :=
{
f ∈ S;∃(τ, σ,M, α) ∈ [0, T ]×B ×K × RN such that

|f(x)| = 1√
det(σ)

∣∣χMφ0
(τ, σ−1[x− α])

∣∣ for a.e. x ∈ RN
}

is a strict and closed subset of S (w.r.t. the strong L2(RN)-topology).

2. For φ0, φ1 ∈ S then V(φ1) ⊂ V(φ0) +BL2(RN )

(
0, ‖φ0 − φ1‖L2(RN )

)
.

Remark 3. It is clear that the unique solution χMφ0
∈ C1([0, T ], L2(RN)) of

(8) satis�es ‖χMφ0
(τ, .)‖L2(RN ) ≡ 1 and is given by

χ̂Mφ0
(τ, η) = φ̂0(η)e−

i
2

∫ τ
0 ‖M(s)η‖2ds , for a.e. η ∈ RN ,∀τ ∈ [0, T ], (9)

where the hat denotes the Fourier transform, de�ned by

f̂(η) =

∫
RN
e−i〈y,η〉f(y)dy , ∀f ∈ L1(RN).

The proof of Proposition 2 will use the following facts, proved in the
appendix.

Lemma 1. Let (fn)n∈N ∈ L2(RN)N that converges to a function f in L2(RN).

1. If (αn)n∈N ∈
(
RN
)N

satis�es ‖αn‖ −→
n→∞

+∞, then ταnfn −→
n→∞

0 in

D′(RN).

2. If (αn)n∈N converges to α in RN then ταnfn −→
n→∞

ταf in L2(RN).

3. If (Mn)n∈N converges toward M in GLN(R) then fn ◦Mn −→
n→∞

f ◦M
in L2(RN).

Proof of Proposition 2:
Step 1: Let (fn)n∈N ∈ V(φ0)N and (τn, σn,Mn, αn)n∈N associated pa-

rameters in [0, T ] × B × K × RN . We prove that a subsequence of
(τ−αn|fn|)n∈N converges in S (in the strong L2(RN)-topology). By Ascoli's
theorem, there exists (τ∞, σ∞,M∞) in [0, T ]×B×K such that, up to extract-
ing a subsequence, (τn, σn) −→

n→∞
(τ∞, σ∞) in [0, T ]×B andMn(τ) −→

n→∞
M∞(τ)

uniformly with respect to τ ∈ [0, T ]. Let

kn(y) :=
1√

det(σn)
χMn
φ0

(τn, y) , for a.e. y ∈ RN ,∀n ∈ N ∪ {∞}.
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By (9), we have

k̂n(η) =
1√

det(σn)
φ̂0(η)e−

i
2

∫ τn
0 ‖Mn(s)η‖2ds for a.e η ∈ RN ,∀n ∈ N ∪ {∞},

and by the dominated convergence theorem, k̂n −→
n→∞

k̂∞ in L2(RN). Thus,

Plancherel's theorem shows that kn −→
n→∞

k∞ in L2(RN), which gives |kn| −→
n→∞

|k∞| in L2(RN), and �nally τ−αn|fn| = |kn| ◦ σ−1
n −→

n→∞
|k∞| ◦ σ−1

∞ in L2(RN),

by Lemma 1.3.

Step 2: We prove that V(φ0) is a strict subset of S. Working
by contradiction, we assume that S = V(φ0) and consider the sequence

(fn)n∈N ⊂ S, de�ned by fn(x) :=
√
nθ(nx) where θ(x) := π−

N
4 e−

‖x‖2
2 . By

Step 1, there exist a subsequence (nk)k∈N, a sequence (αk)k∈N of RN and
h ∈ S such that ταkfnk −→n→∞ h in L2(RN), and thus in D′(RN). However, for

every ϕ ∈ C∞c (RN), we have∣∣∫
RN ταkfnk(x)ϕ(x)dx

∣∣ =
∣∣∫

RN
√
nkθ(nky)ϕ(y + αk)dy

∣∣
6 1√

nk
‖θ‖L1(RN )‖ϕ‖L∞(RN ) ,

thus ταkfnk −→n→∞ 0 in D′(RN). Therefore h = 0, which is impossible, since

h ∈ S.

Step 3: We prove that V(φ0) is closed in S. Let (fn)n∈N ∈ V(φ0)N

and f ∈ S be such that fn −→
n→∞

f in L2(RN). We use the same notation as

in Step 1.

Step 3.1: We prove that (αn)n∈N is bounded in RN . Working by contra-
diction, we may assume w.l.o.g. that ‖αn‖ −→

n→∞
∞. Since |fn| −→

n→∞
|f | in

L2(RN), Lemma 1.1 implies τ−αn|fn| −→
n→∞

0 in D′(RN), which contradicts

Step 1.

Step 3.2: We prove that f ∈ V(φ0). Since (αn)n∈N is bounded, some
subsequence converges to some α∞ ∈ RN ; w.l.o.g. αn −→

n→∞
α∞. From

Step 1, we know that, up to potentially extracting a subsequence, τ−αn|fn| =
|kn| ◦ σ−1

n −→
n→∞

|k∞| ◦ σ−1
∞ in L2(RN). Therefore, by Lemma 1.2, |fn| =
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ταn [τ−αn|fn|] −→
n→∞

τα∞ [|k∞| ◦ σ−1
∞ ] in L2(RN). By uniqueness of the limit,

|f | = τα∞ [|k∞| ◦ σ−1
∞ ], i.e. f ∈ V(φ0).

Step 4: We prove that V(φ1) ⊂ V(φ0) + BL2(RN )

(
0, ‖φ0 − φ1‖L2(RN )

)
.

Let f1 ∈ V(φ1). Then, there exists (τ, σ,M, α) ∈ [0, T ]×B ×K × RN and a
measurable function θ : RN → R such that

f1(x) =
eiθ(x)√
det(σ)

χMφ1

(
τ, σ−1[x− α]

)
for a.e. x ∈ RN .

Let

f0(x) :=
eiθ(x)√
det(σ)

χMφ0

(
τ, σ−1[x− α]

)
for a.e. x ∈ RN .

Then, f0 ∈ V(φ0) and, by (9) and Plancherel's theorem,∫
RN |(f1 − f0)(x)|2dx =

∫
RN |χ

M
φ1

(τ, y)− χMφ0
(τ, y)|2dy

= (2π)−N
∫
RN |χ̂

M
φ1

(τ, η)− χ̂Mφ0
(τ, η)|2dη

= (2π)−N
∫
RN |(φ̂1 − φ̂0)(η)|2dη

=
∫
RN |(φ1 − φ0)(x)|2dx ,

which gives the conclusion. 2

3. Proof of Theorem 3

In the whole section, the following quantities are kept �xed.

• V satisfying (2),

• ψ0 ∈ S ∩H1(RN) ∩ L2(‖x‖dx),

• x0 , ẋ0 ∈ RN de�ned by

x0 :=

∫
RN
x|ψ0(x)|dx , ẋ0 := −i

∫
RN
∇xψ0(x)ψ0(x)dx

• φ0 ∈ S de�ned by

φ0(x) := ψ0(x+ x0)e−i〈ẋ0,x〉 .
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Our strategy to prove Theorem 3 relies on approximate solutions, which
are centred at the classical (Newtonian) trajectories. Accordingly, these ap-

proximate solutions ψ̃E (de�ned in eq. (20) below) depend on the classical
trajectories xEc : R → RN and certain functions QE , σE : R → MN(C),
which satisfy the ODEs (10) below. The remainder of this section is orga-
nized as follows. In Section 3.1, we prove a preliminary result for the solutions
of ODEs (10). In Section 3.2, we introduce the explicit approximate solu-

tion ψ̃E and prove that the error ‖ψE − ψ̃E‖L∞((0,T ),L2(RN )) can be bounded
uniformly with respect to E ∈ L∞loc(R,RN). Finally, Section 3.3 contains the
proof of Theorem 3.

3.1. ODEs for xEc , Q
E and σE

For E ∈ L∞loc(R,RN), let xEc ∈ C1(R,RN), QE , σE ∈ C1((TEmin, T
E
max),MN(R))

and τE ∈ C1((TEmin, T
E
max),R) be the maximal solutions of

d2xEc
dt2

(t) +∇V [xEc (t)] = E(t),
xEc (0) = x0,
dxEc
dt

(0) = ẋ0,

{
dQE

dt
(t) +QE(t)2 + V ′′[xEc (t)] = 0,

QE(0) = 0,

{
dσE

dt
(t) = QE(t)σE(t),

σE(0) = IN ,

{
dτE

dt
(t) = 1

det[σE(t)]2
,

τE(0) = 0,

(10)

where ∇V and V ′′ denote the gradient and Hessian matrix of V , respectively.
Note that

• xEc (t) is de�ned for every t ∈ R because ∇V is globally Lipschitz by
assumption (2);

• xEc is twice derivable almost everywhere and satis�es the �rst equality
of (10) for almost every t ∈ R;

• QE(t) ∈ SN(R) and σE(t) ∈ GLN(R) for every t ∈ (TEmin, T
E
max) .

A priori, the maximal interval (TEmin, T
E
max) may depend on E.

Proposition 3. 1. There exists T ∗ = T ∗(‖V ′′‖∞) > 0 such that, for every
E ∈ L∞loc(R,RN),

TEmax > T ∗ , (11)

9



‖QE(t)‖ 6 1

2
, ∀t ∈ [0, T ∗] , (12)

‖σE(t)− IN‖ 6
1

2
, ∀t ∈ [0, T ∗] , (13)

|τE(t)− t| 6 t

2
, ∀t ∈ [0, T ∗] . (14)

2. Moreover, if V is of the form (5), then T ∗ > C
ε
for every ε ∈ (0, 1), for

some positive constant C = C(W ).

Proof of Proposition 3: Fix δ ∈
(
0, 1

2

)
and choose T ∗ = T ∗(‖V ′′‖∞) > 0

such that

T ∗(δ2 + ‖V ′′‖∞) < δ, 2NT ∗δ 6
1

4
, eδT

∗ − 1 6
1

2
(15)

(the third inequality actually follows from the second). Let E ∈ L∞loc(R,RN).

Step 1: We prove (11) and (12). Let

TE] := sup
{
t ∈ [0, TEmax); ‖QE(s)‖ 6 δ , ∀s ∈ [0, t]

}
.

Working by contradiction, we assume that TE] < T ∗. Then,

δ = ‖QE(TE] )‖ =

∥∥∥∥∥∥
TE]∫
0

(
QE(s)2 + V ′′[xEc (s)]

)
ds

∥∥∥∥∥∥
6 TE]

(
δ2 + ‖V ′′‖∞

)
< δ by (15),

which is impossible. Therefore, TE] > T ∗ and

‖QE(t)‖ 6 δ for every t ∈ [0, T ∗], (16)

which proves (11) and (12).

Step 2: We prove (13). We have

‖σE(t)‖ =

∥∥∥∥IN +

∫ t

0

QE(s)σE(s)ds

∥∥∥∥ (16)

6 1 +

∫ t

0

δ‖σE(s)‖ds , ∀t ∈ [0, T ∗] ,
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thus, by Gronwall Lemma, ‖σE(t)‖ 6 eδt for every t ∈ [0, T ∗] and

‖σE(t)− IN‖ =

∥∥∥∥∫ t

0

QE(s)σE(s)ds

∥∥∥∥ (16)

6
∫ t

0

δeδs 6 eδT
∗ − 1 , ∀t ∈ [0, T ∗] ,

which, together with (15) implies (13).

Step 3: We prove (14). By Liouville's formula, we have

1

det[σE(t)]2
= exp

(
−2

∫ t

0

Tr[QE(s)]ds

)
, ∀t ∈ [0, T ∗] . (17)

Moreover, ∣∣∣∣2 ∫ t

0

Tr[QE(s)]ds

∣∣∣∣ 6 2

∫ t

0

N‖QE(s)‖ds 6 2NT ∗δ 6
1

4
, (18)

by (16) and (15). Thus, by (17), and (18),∣∣∣∣ 1

det[σE(t)]2
− 1

∣∣∣∣ 6 1

4
e

1
4 <

1

2
, ∀t ∈ [0, T ∗]

and so

|τE(t)− t| =
∣∣∣∣∫ t

0

(
1

det[σE(s)]2
− 1

)
ds

∣∣∣∣ 6 t

2
, ∀t ∈ [0, T ∗].

Step 4: We prove Statement 2. For ε ∈ (0, δ), the argument of Step
1 works with δ replaced by ε and then T ∗ = 1

ε[1+‖W ′′‖∞]
for ε small enough.

2

Proposition 3 implies that, for every E ∈ L∞loc(R,RN), the function τE

is C1 and increasing, i.e. a bijection from [0, T ∗] to [0, τE∗], where τE∗ :=
τE(T ∗) ∈

[
T ∗

2
, 3T ∗

2

]
. Denoting the inverse function by tE : [0, τE∗] → [0, T ∗],

we can now de�ne the C1 map

ME : [0, τE∗] → SLN(R)

τ 7→ det[(σE ◦ tE)(τ)]
(
(σE ◦ tE)(τ)

)−1∗
.

(19)

Thanks to Proposition 3, ME has the following properties.

Proposition 4. There exists R,L > 0 such that, for every E ∈ L∞loc(R,RN),

‖ME(τ)‖ 6 R and

∥∥∥∥dME

dτ
(τ)

∥∥∥∥ 6 L , ∀τ ∈ [0, τE∗] .
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3.2. Approximate solution

Let SE,ΦE : (t, x) ∈ [0, TEmax)× RN → R be de�ned by

SE(t, x) :=
∫ t

0

(
1
2
‖ẋEc (s)‖2 − V [xEc (s)] + 〈xEc (s), E(s)〉

)
ds+ 〈ẋEc (t), x〉

ΦE(t, x) := SE(t, x− xc(t)) + 1
2
〈QE(t)[x− xEc (t)], x− xEc (t)〉

and let χE := χM
E

φ0
(see (19) and (8)). Then we de�ne an approximate

solution to (1) by

ψ̃E(t, x) :=
eiΦ

E(t,x)√
det[σE(t)]

χE
(
τE(t), σE(t)−1[x− xEc (t)]

)
, (20)

for every (t, x) ∈ [0, TEmax)×RN . Note that ψ̃E(t, .) ∈ S for every t ∈ [0, TEmax)
because (see Remark 3)

‖ψ̃E(t)‖2
L2(RN ) =

∫
RN
∣∣χE (τE(t), σE(t)−1[x− xEc (t)]

)∣∣2 dx
det[σE(t)]

=
∫
RN
∣∣χE (τE(t), y

)∣∣2 dy = 1 .

Remark 4. For background information on the approximate solutions ψ̃E,
see the literature cited in [1]. Their derivation may roughly be described as
proceeding in two steps: one �rst applies a well-known transformation (see
e.g. [9]) to remove the control term; then the Schrödinger equation (arising by
Taylor expansion) with the time-dependent quadratic potential 〈V ′′[xc(t)]x, x〉
is solved explicitly (up to solutions of (8)). The second step is related to the
(generalized) Mehler formula for time-dependent quadratic Hamiltonians; see
e.g. Section 3 of [6].

Proposition 5. If φ0 ∈ S(RN), then there exists a constant C(φ0, T
∗) > 0

such that, for every E ∈ L∞loc(R,RN), the solution ψE of (1) and the function

ψ̃E de�ned by (20) satisfy

‖(ψE − ψ̃E)(t)‖L2(RN ) 6 C(φ0, T
∗)‖V (3)‖∞t , ∀t ∈ [0, T ∗] ,

where T ∗ is de�ned in Proposition 3.

Proof of Proposition 5: For simplicity, we write Q, σ, M , τ , χ, S, ψ, ψ̃
for QE, σE, ME, τE, χEφ0

, SE, ψE and ψ̃E.
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Step 1: Equation satis�ed by ψ̃. For a function g(x) := f(Ax) we
have ∇xg(x) = A∗∇yf(Ax) and ∆xg(x) = Tr[AA∗D2

yf(Ax)]. Thus, for every
(t, x) ∈ [0, TEmax)× RN ,

∇xψ̃(t, x) = i
(
ẋc(t) +Q(t)[x− xc(t)]

)
ψ̃(t, x)

+σ(t)−1∗∇yχ (τ(t), σ(t)−1[x− xc(t)]) eiΦ(t,x)√
det[σ(t)]

,

and

∆xψ̃(t, x) =
(
iTr(Q)− ‖ẋc(t) +Q(t)[x− xc(t)]‖2

)
ψ̃(t, x)

+2i
〈
ẋc(t) +Q(t)[x− xc(t)], σ(t)−1∗∇yχ

(
τ(t), σ(t)−1[x− xc(t)]

)〉 eiΦ(t,x)√
det[σ(t)]

+Tr
[
σ(t)−1σ(t)−1∗D2

yχ
(
τ(t), σ(t)−1[x− xc(t)]

) ] eiΦ(t,x)√
det[σ(t)]

.

Developing the square in the �rst line and using (19) gives, for every (t, x) ∈
[0, TEmax)× RN ,

1

2
∆xψ̃(t, x) =( i
2
Tr[Q(t)]− 1

2
‖ẋc(t)‖2 − 1

2
‖Q(t)[x− xc(t)]‖2 − 〈ẋc(t), Q(t)[x− xc(t)]〉

)
ψ̃(t, x)

+i
〈
σ(t)−1 (ẋc(t) +Q(t)[x− xc(t)]) ,∇yχ

(
τ(t), σ(t)−1[x− xc(t)]

)〉 eiΦ(t,x)√
det[σ(t)]

+
1

2
Tr
[
M [τ(t)]∗M [τ(t)]D2

yχ
(
τ(t), σ(t)−1[x− xc(t)]

) ] eiΦ(t,x)

det[σ(t)]5/2
.

(21)
Moreover, using the relations τ̇(t) = 1

det[σ(t)]2
and

d

dt

[
det[σ(t)]

]
= det[σ(t)]Tr[σ(t)σ̇(t)] = det[σ(t)]Tr[Q(t)] ,

d

dt

[
1√

det[σ(t)]

]
= − 1

2 det[σ(t)]3/2
d

dt

[
det[σ(t)]

]
= − Tr[Q(t)]

2
√

det[σ(t)]
,

d
dt

[σ(t)−1[x− xc(t)]] = −σ(t)−1σ̇(t)σ(t)−1[x− xc(t)]− σ(t)−1ẋc(t)

= −σ(t)−1
[
Q(t)[x− xc(t)] + ẋc(t)

]
,

13



that hold for every t ∈ [0, TEmax), we obtain, for every x ∈ RN and almost
every t ∈ (0, TEmax),

i∂tψ̃(t, x) =(
− 1

2
‖ẋc(t)‖2 + V [xc(t)]− 〈xc(t), E(t)〉 − 〈ẍc(t), x− xc(t)〉+ ‖ẋc(t)‖2

−1

2
〈Q̇(t)[x− xc(t)], x− xc(t)〉+ 〈Q(t)[x− xc(t)], ẋc(t)〉

− i
2
Tr[Q(t)]

)
ψ̃(t, x)

+
i

det[σ(t)]5/2
∂τχ

(
τ(t), σ(t)−1[x− xc(t)]

)
eiΦ(t,x)

−i
〈
∇yχ

(
τ(t), σ(t)−1[x− xc(t)]

)
, σ(t)−1 (Q(t)[x− xc(t)] + ẋc(t))

〉 eiΦ(t,x)√
det[σ(t)]

.

And �nally, by (10), for every x ∈ RN and almost every t ∈ (0, TEmax),

i∂tψ̃(t, x) =(1

2
‖ẋc(t)‖2 + V [xc(t)]− 〈xc(t), E(t)〉 − 〈∇V [xc(t)], x− xc(t)〉

−〈E(t), x− xc(t)〉+
1

2
‖Q(t)[x− xc(t)]‖+

1

2
〈V ′′[xc(t)][x− xc(t)], x− xc(t)〉

+〈Q(t)[x− xc(t)], ẋc(t)〉 −
i

2
Tr[Q(t)]

)
ψ̃(t, x)

+i∂τχ
(
τ(t), σ(t)−1[x− xc(t)]

) eiΦ(t,x)

det[σ(t)]5/2

−i
〈
∇yχ

(
τ(t), σ(t)−1[x− xc(t)]

)
, σ(t)−1 (Q(t)[x− xc(t)] + ẋc(t))

〉 eiΦ(t,x)√
det[σ(t)]

.

(22)
Combining (21), (22) and (8) gives for every x ∈ RN and almost every
t ∈ (0, TEmax),

i∂tψ̃(t, x) +
1

2
∆ψ̃(t, x)−V (x)ψ̃(t, x) + 〈E(t), x〉ψ̃(t, x) = R(t, x)ψ̃(t, x) (23)

where

R(t, x) := −V (x) + V [xc(t)] + 〈∇V [xc(t)], x− xc(t)〉
+1

2
〈V ′′[xc(t)][x− xc(t)], x− xc(t)〉 .

(24)

Step 2: Conclusion. Using Taylor's formula, we get

|R(t, x)| 6 ‖V
(3)‖∞
3!

‖x− xc(t)‖3 , ∀(t, x) ∈ [0, TEmax)× RN .
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Thus, for every t ∈ (0, T ∗),

‖R(t)ψ̃(t)‖2
L2(RN )

6
(
‖V (3)‖∞

3!

)2 ∫
RN ‖x− xc(t)‖

6 |χ (τ(t), σ(t)−1[x− xc(t)])|2 dx
det[σ(t)]

=
(
‖V (3)‖∞

3!

)2 ∫
RN ‖σ(t)y‖6 |χ (τ(t), y)|2 dy

6
(
‖V (3)‖∞

3!

)2 (
3
2

)6 ∫
RN ‖y‖

6 |χ (τ(t), y)|2 dy by (13)

6 C‖V (3)‖2
∞
∫
RN
∣∣D3

ηχ̂ (τ(t), η)
∣∣2 dη

6 C‖V (3)‖2
∞
∫
RN

∣∣∣D3
η

[
φ̂0(η)e−

i
2

∫ τ(t)
0 ‖M(s)η‖2ds

]∣∣∣2 dη by (9)

for some positive constant C that does not depend on E, V and φ0. We
deduce from Leibniz formula, (14) and Proposition 4 that

‖R(t)ψ̃(t)‖2
L2(RN ) 6 C(φ0, T

∗)2‖V (3)‖2
∞ , ∀t ∈ [0, T ∗]

for some positive constant C(φ0, T
∗) > 0 that is �nite because φ0 ∈ S(RN).

Note that C(φ0, T
∗)2 is a polynomial function of degree 6 of T ∗, which will

become relevant in Section 3.4. Let U(t, s) be the evolution operator for
equation (1) (see Proposition 1). Then,

(ψ − ψ̃)(t) =

∫ t

0

U(t, s)[R(s)ψ̃(s)]ds in L2(RN) ,∀t ∈ (0, T ∗) ,

and U(t, s) is an isometry of L2(RN) for every t > s > 0, thus

‖(ψ−ψ̃)(t)‖L2(RN ) 6
∫ t

0

‖R(s)ψ̃(s)‖L2(RN )ds 6 C(φ0, T
∗)‖V (3)‖∞t , ∀t ∈ [0, T ∗] .

2

3.3. Conclusion

Let T ∗ be as in Proposition 3, R,L > 0 be as in Proposition 4 and T :=
3T ∗

2
. By Proposition 2, there exists ψf ∈ S\V(φ0) and δ0 := distL2(RN )(ψf ,V(φ0))

is positive.

Step 1: We prove the existence of ψ1 ∈ S ∩ S(RN) such that

‖ψ0−ψ1‖L2(RN ) <
δ0

4
,

∫
RN
x|ψ1(x)|dx = x0 , −i

∫
RN
∇xψ1(x)ψ1(x)dx = ẋ0 .
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There exists a sequence (ξε)ε∈(0,1) in S ∩ S(RN) such that

‖ψ0 − ξε‖H1(RN ) + ‖ψ0 − ξε‖L2(‖x‖dx) −→
ε→0

0 .

Then

xε :=

∫
RN
x|ξε(x)|dx , ẋε := −i

∫
RN
∇xξε(x)ξε(x)dx

converge, respectively, to x0 and ẋ0. Thus, the sequence of functions

x 7→ ξε(x− x0 + xε)e
i〈ẋ0−ẋε,x〉

converges to ψ0 in L2(RN) and gives the conclusion.

Step 2: Distance between the approximate solutions associated
to ψ0 and ψ1. Step 1 implies that

• for every E ∈ L∞loc(R,RN), the quantities T ∗, xEc , Q
E, σE, τE, tE, SE

associated with ψ0 and ψ1 are the same;

• the map φ1 de�ned by the formula

φ1(x) := ψ1(x+ x0)e−i〈ẋ0,x〉 for a.e. x ∈ RN ,

satis�es

‖φ1 − φ0‖L2(RN ) = ‖ψ1 − ψ0‖L2(RN ) <
δ0

4
;

• for every M ∈ C0([0, T ],MN(R)), the functions χMφ0
and χMφ1

(see (8))
satisfy

‖χMφ1
(τ)− χMφ0

(τ)‖L2(RN ) = ‖φ1 − φ0‖L2(RN ) <
δ0

4
, ∀τ ∈ [0, T ];

• for every E ∈ L∞loc(R,RN), the approximate solution ψ̃E (resp. ψ̃E1 )
de�ned by (20) (resp. de�ned by (20) with φ0 replaced by φ1) satisfy

‖ψ̃E1 (t)−ψ̃E(t)‖L2(RN ) = ‖χME

φ1
(τ(t))−χME

φ0
(τ(t))‖L2(RN ) <

δ0

4
, ∀t ∈ [0, T ∗].
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Step 3: Conclusion of Statement 1. By Proposition 2 (part 2) we
have that

‖ψf − ψ̃E1 (t)‖L2(RN ) >
3δ0

4
, ∀t ∈ [0, T ∗] . (25)

Let C(φ1, T
∗) be as in Proposition 5 and

T ∗∗ := min

{
T ∗;

δ0

4C(φ1, T ∗)‖V (3)‖∞

}
. (26)

Proposition 5 and (25) imply that, for every t ∈ [0, T ∗∗],

‖ψf − ψE(t)‖L2(RN )

>
∣∣∣‖ψf − ψ̃E1 (t)‖L2(RN ) − ‖ψ̃E1 (t)− ψE1 (t)‖L2(RN ) − ‖ψE1 (t)− ψE(t)‖L2(RN )

∣∣∣
> 3δ0

4
− C(φ1, T

∗)‖V (3)‖∞t− ‖ψ1 − ψ0‖L2(RN )

> δ0
4
> 0 .

Step 4: Proof of Statement 2. If V (x) = W (εx), we obtain

T ∗∗ := min

{
C(W )

ε
;

δ0

4C(φ1, T ∗)ε3‖W (3)‖∞

}
,

which behaves like C
ε
as ε→ 0. 2

3.4. Dependence on Planck's constant

The Schrödinger equation for a quantum particle in a (static) potential V0,
which is subjected to a time-dependent (and spatially homogeneous) electric
�eld E0, may, after appropriate rescaling, be written in dimension�less form: iε∂τΨ(τ, y) =

(
− ε2

2
∆y + V0(y)− 〈E0(τ), y〉

)
Ψ(τ, y) , (τ, y) ∈ (0,Θ)× RN ,

Ψ(0, y) = Ψ0(y) y ∈ RN .

(27)
Here the parameter ε is proportional to the Planck constant ~; so it is natural
to assume that ε� 1. Obviously, equation (1) arises from equation (27) by
the change of variables

t = τ
ε
, x = y

ε
, t ∈ [0, T ]⇔ τ ∈ [0, εT ], x, y ∈ RN

ψ(t, x) = εN/2Ψ(εt, εx), V (x) = V0 (εx) , E(t) = εE0(εt)
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(the factor εN/2 could be omitted; it ensures that ‖Ψ‖L2 = ‖ψ‖L2 = 1).
Therefore, the lower bound T ∗∗ of the minimal time for approximate control-
lability of system (1) provides a lower bound Θ∗∗(ε) of the minimal time for
system (27). By the change of variables, we have Θ∗∗(ε) = εT ∗∗, where T ∗∗,
in general, depends on ε (when �xing V0 �rst).

Letting δ = ε in (15) shows that T ∗ may be chosen as T ∗ = C(‖V ′′0 ‖∞)ε−1

(note that ‖V ′′‖∞ = ε2‖V ′′0 ‖∞). So, by (26),

T ∗∗ = min

{
C(‖V ′′0 ‖∞)

ε
;

δ0

4C(φ1, T ∗)ε3‖V (3)
0 ‖∞

}
(28)

This seems to imply T ∗∗ ∼ ε−1 (and hence Θ∗∗(ε) ∼ const.), but this is not
correct, since C(φ1, T

∗) also depends on ε. Indeed, C(φ1, T
∗)2 is a degree�six

polynomial in T ∗ with certain φ1�dependent coe�cients Cj(φ1); i.e.,

ε3C∗(φ1, T
∗) = ε3

(
6∑
j=0

Cj(φ1)(T ∗)j

)1/2

∼

(
6∑
j=0

C ′j(φ1)ε6−j

)1/2

∼ C6(φ1)

as ε → 0. So for small ε > 0, T ∗∗ is independent of ε, which implies that
Θ∗∗(ε) ∼ ε� 1.

One may wonder whether the reasoning of the present paper could be re-
�ned to obtain stronger estimates on the control time, including, potentially,
bounds satisfying Θ∗∗(ε)→∞ as ε→ 0. Two observations suggest that this
may be possible in certain cases:

(a) the length of time interval [0, T ∗] on which the construction of the

approximate solutions ψ̃E is valid behaves like ε−1 and is independent of
ε for eq. (27). It may therefore be possible to iterate the construction
to enlarge the relevant time intervals; (b) the appearance of the quantity

C(φ1, T
∗)

w.l.o.g.
≈ C(φ0, T

∗) in the denominator of the second term of (28)
suggests that for certain initial conditions ψ0 the second term, and hence
Θ∗∗, may become large.

This circle of ideas will be the subject of a forthcoming paper.

4. Appendix: proof of Lemma 1

1. We have ταnfn = ταnf+ταn(f−fn) where ταn(f−fn) converges strongly
to 0 in L2(RN) and thus in D′(RN). Therefore, it su�ces to prove that
ταnf −→

n→∞
0 in D′(RN).
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Let ϕ ∈ C∞c (RN) \ {0} and ε > 0. There exists A > 0 such that∫
‖y‖>A

|f(y)|2dy < ε

‖ϕ‖L2(RN )

.

Let R > 0 be such that Supp(ϕ) ⊂ B(0, R). We deduce from ‖αn‖ −→
n→∞

+∞ the existence of n0 ∈ N such that B(−αn, R)∩B(0, A) = ∅ , ∀n >
n0. Then, for every n > n0,∣∣∣∣∣ ∫RN ταnf(x)ϕ(x)dx

∣∣∣∣∣ =

∣∣∣∣∣ ∫
B(−αn,R)

f(y)ϕ(y + αn)dy

∣∣∣∣∣
6 ‖f‖L2(B(−αn,R))‖ϕ‖L2(RN ) < ε .2

2. See e.g. [5], Lemma 4.3.
3. We may assume thatM = IN . We have fn◦Mn = (fn−f)◦Mn+f ◦Mn

where (fn−f)◦Mn converges to 0 in L2(RN). Thus, it su�ces to prove
that f ◦Mn −→

n→∞
f in L2(RN). Let ε > 0.

Case 1: f ∈ C0
c (RN). There existsR > 0 such that Supp(f) ⊂ B(0, R)

and Supp(f ◦Mn) = M−1
n Supp(f) ⊂ B(0, R) for every n ∈ N. By Heine

theorem, there exists η > 0 such that

|f(y)−f(z)| < ε√
RNvol[B(0, 1)]

, ∀y, z ∈ RN such that ‖y−z‖ < η .

We chose n0 large enough so that ‖Mn − IN‖ < η
R
for every n > n0.

Then,

‖Mnx− x‖ 6 ‖Mn − IN‖‖x‖ < η , ∀x ∈ B(0, R) , n > n0 .

Thus, for n > n0,

‖f ◦Mn − f‖L2(RN ) =

(∫
B(0,R)

|f [Mn(x)]− f(x)|2 dx
)1/2

< ε .

Case 2: f ∈ L2(RN). There exists f̃ ∈ C0
c (RN) such that ‖f −

f̃‖L2(RN ) <
ε
4
. By Case 1, there exists n0 ∈ N such that ‖f̃ ◦Mn −

f̃‖L2(RN ) <
ε
4
for every n > n0. One may assume that

√
det(Mn) > 1

2

for every n > n0. Then, for n > n0,

‖f ◦Mn − f‖L2(RN ) 6 ‖f ◦Mn − f̃ ◦Mn‖L2(RN )

+‖f̃ ◦Mn − f̃‖L2(RN ) + ‖f̃ − f‖L2(RN )

6

(
1√

det(Mn)
+ 1

)
‖f̃ − f‖L2(RN ) + ε

4
< ε .
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