
Multi-stage high order semi-Lagrangian schemes for

incompressible flows in Cartesian geometries

Alexandre Cameron, Raphaël Raynaud, Emmanuel Dormy
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6 Multi-stage high order semi-Lagrangian schemes
for incompressible flows in Cartesian geometries

Alexandre Cameron, Raphaël Raynaud†, Emmanuel Dormy§

SUMMARY

Efficient transport algorithms are essential to the numerical resolution of incompressible fluid flow problems.
Semi-Lagrangian methods are widely used in grid based methods to achieve this aim. The accuracy of the
interpolation strategy then determines the properties of the scheme. We introduce a simple multi-stage
procedure which can easily be used to increase the order of accuracy of a code based on multi-linear
interpolations. This approach is an extension of a corrective algorithm introduced by Dupont & Liu (2003,
2007). This multi-stage procedure can be easily implemented in existing parallel codes using a domain
decomposition strategy, as the communications pattern is identical to that of the multi-linear scheme. We
show how a combination of a forward and backward error correction can provide a third-order accurate
scheme, thus significantly reducing diffusive effects while retaining a non-dispersive leading error term.
Preprint

1. INTRODUCTION

Semi-Lagrangian methods offer an efficient and widely used approach to model advection
dominated problems. Initially introduced in atmospheric and weather models [1, 2], these methods
are now widely used in all fields of fluid mechanics [3, 4, 5]. They have found a wide range
of application in computational fluid dynamics. These methods have triggered a wide variety
of schemes, including spline interpolation methods [6, 7, 8], finite element WENO algorithms
[9, 10, 11] or CIP methods [12, 13]. Considerable development has also been achieved in application
to hyperbolic problems (e.g. compressible hydrodynamics [14], Vlasov equation [15]) and fall out
of the scope of this paper.

Semi-Lagrangian methods involve an advected fieldΦ, following the characteristics backward
in time. The procedure requires the estimation of field values that do not lie on the computational
grid. Semi-Lagrangian methods therefore rely on an interpolation ofΦ(t−∆t,x− u∆t), which in
general is not a known quantity on the discrete grid.

Because of their local nature, low order semi-Lagrangian methods perform remarkably well on
massively parallel computers [16, 17]. Limitations occur with high-order interpolation methods. As
the width of the stencil increases, the locality of the scheme is reduced and the resulting schemes
require larger communications stencils. When the interpolation strategy is simple, multi-linear in
the case of theCIR scheme [18], the scheme is local and the computational cost is small. If the
interpolation stencil is not localized near the computational point, but near the point where the
interpolated value must be reconstructed, one can show thatthe method is then unconditionally
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stable, in the case of a uniform and steady velocity field [19]. Such schemes are however prone to
large inter-process communations, and are not unconditionally stable for general flows.

Dupontet al. [20, 21, 22] introduced two new corrective algorithms: “Forward Error Correction”
(here denotedFEC) and “Backward Error Correction” (here denotedBEC). These algorithms
take advantage of the reversibility of the advection equation to improve the order of most semi-
Lagrangian schemes by using multiple calls of an initial advection scheme. The resulting schemes
yield an enhanced accuracy. In that sense, they are built with a similar spirit to the predictor-corrector
method [23] or the MacCormack scheme [24].

Here we introduce a new scheme following this methodology, and thus extend this approach to
third order accuracy.

2. MULTI-STAGE APPROACHES

A possible strategy to increase the order of Semi-Lagrangian schemes is to use higher order
interpolation formula e.g. [25]. This has the drawback of relying on a wider stencil, which requires
larger communication patterns on a distributed memory computer. Another significant issue with
wider stencils is the handling of boundary conditions.

Equation (1) models the advection of a passive scalarΦ by a velocity fieldu,

DtΦ ≡ [∂t + (u ·∇)] Φ = 0 . (1)

The Lagrangian derivative in (1) is usually defined as the limit, following the characteristic, of

DtΦ = lim
∆t→0

Φ(t,x)− Φ(t−∆t,x− u∆t)

∆t
. (2)

Semi-Lagrangian methods rely on this expression to discretize the advective operatorDtΦ instead
of expanding the sum in a temporal term∂tΦ and an advective term(u ·∇)Φ, as in (1). The
semi-Lagrangian discretisation of (1) therefore introduces an interpolation operatorLu [Φn] =

Φ̃n(x− u∆t) , whereΦ̃ denotes the interpolated value away from the grid points.
A strategy introduced by Dupontet al. [20] to increase the order of a semi-Lagrangian scheme,

without requiring the use of high-order interpolation formula, is based on two consecutive calls
to the interpolation operator, the second call involving the reversed flow. This method is known
as the “Forward Error Correction” [20]. The advantages of this procedure over the above high
order schemes rely both on the accurate implementation of boundary conditions and on the limited
communication stencil. The Forward Error Correction scheme is constructed as

Φ̄ ≡ L−u [Lu [Φn]] , (3)

FEC [Φn] ≡ Lu [Φn] +
(
Φn − Φ̄

)
/2 . (4)

The FEC corrective algorithm has further been improved in [21, 22] using three calls to the
interpolation operator for each time-step. The resulting algorithm is known as the “Backwards Error
Correction” (BEC) algorithm. It is constructed using

BEC [Φn] ≡ Lu

[
Φn + (Φn − Φ̄)/2

]
. (5)

Both theFEC and theBEC algorithms suppress the leading order error term when the interpolation
operator is irreversible. Both theFEC and theBEC schemes are free of numerical diffusion.
However, they introduce numerical dispersive effects related to their truncation errors.

This truncation error can be advantageously used to construct a scheme free of numerical
dispersion and characterized by a fourth order derivative truncation error. This is achieved for
the same computational cost as theBEC scheme. A new “Combined Error Correction” (CEC)
algorithm is introduced, using a linear combination of theFEC andBEC algorithms,

CEC [Φ] ≡ cFFEC [Φ] + cBBEC [Φ] . (6)
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When theCIR scheme is used as the interpolation operator, the scheme generated by theFEC
algorithm is similar, in the Eulerian framework, to the one introduced in [26]. In this case, the values
of the coefficientscF andcB in (6) can be explicitly determined and the stability of the resulting
schemes assessed. In one dimension, their expression is

3 cF = 2−∆x/(|u|∆t) and cB= 1− cF , (7)

where∆t denotes the time-step and∆x the grid-step.
In one dimension of space, theCIR scheme is strictly equivalent to the Eulerian upwind scheme.

It is well known [27, 28, 29] that this scheme is stable for Courant-Friedrichs-Lewy (CFL) numbers
smaller than unity and introduces diffusive errors. The spurious diffusive effects are directly related
to the truncation error of the scheme.

The generalization tod-dimension must be carried out with care. As described later, the fields
can be advected one dimension at a time using a splitting technique similar to [26]. In two or
three dimensions, the interpolation can be done by applyingtheCEC scheme on each direction
separately.

3. ONE-DIMENSIONAL ALGORITHMS

In the semi-Lagrangian formalism, the advection equation can be discretized using theCIR scheme
[18]. In one dimension, theCIR scheme has the same stencil as the Upwind scheme [5, 23, 28]

ΦCIR
i =(1− Ui)Φ

n[i] + UiΦ
n[i− si] , (8)

whereΦn[i] = Φn
i denotes the value of the passive scalar at timen∆t and positioni∆x, si =

sign(ui) the sign of the velocity andUi = |ui|∆t/∆x the reduced velocity withui the velocity. A
Von Neumann stability analysis shows that the scheme is strictly stable forU ≤ 1. For a constant
velocity, the modified equation takes the form

[
∂tΦ+ u∂xΦ

]
CIR

= DCIR∂
2
xΦ+ ... with DCIR= (1− U)

|u|∆x

2
. (9)

TheFEC scheme (4) is a multi-stage version of theCIR scheme. The developed expression
for theFEC scheme requires the first nearest neighbors for the velocityand the second nearest
neighbors for the passive scalar (see Appendix A). For a constant velocity, the expression ofFEC
is

FEC[Φ]i = − 1
2U(1− U)Φn[i+ 1] + (1− U2)Φn[i] + 1

2U(1 + U)Φn[i− 1] . (10)

The stability analysis of (10) provides the following expression for the amplification factor

ξFEC= 1− U2 + U2 cos(k∆x) − iU sin(k∆x) . (11)

TheFEC scheme is stable forU ≤ 1. The modified equation associated to this scheme is

[
∂tΦ+ u∂xΦ

]

FEC

= −(1− U2)
u∆x2

3!
∂3
xΦ− 3(1− U2)

u2∆x2∆t

4!
∂4
xΦ + ... (12)

TheBEC scheme, presented in (5), is a modified version of theCIR scheme usinḡΦn to correct
the field before the advection step. The developed expression of theBEC scheme requires the
second nearest neighbors for the velocity and third nearestneighbors for the passive scalar (see
Appeendix A). To avoid using this long development, the simplified case of a constant velocity will
be studied.

BEC[Φ]i =−
U

2
(1− U)2Φn

i+1 +
(1− U)

2

(
3− (1− U)2 − 2U2

)
Φn

i (13)

+
U

2

(
3− 2(1− U)2 − U2

)
Φn

i−1 −
U2

2
(1 − U)Φn

i−2 .
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The stability analysis on (13) leads to the following amplification factor

ξBEC = 1− 2iU sin(12k∆x)
[
e−

1
2 ik∆xU(1 + 2[1− U ] sin2(12k∆x)) + cos(12k∆x)(1 − U)

]
. (14)

It can be shown analytically that theBEC scheme is stable forU ≤ 1. In fact, theBEC scheme is
still stable for a CFL number smaller than1.5. The truncation error analysis leads to

[
∂tΦ+ u∂xΦ

]
BEC

=− (1− U)(1− 2U)u∆x2

3! ∂3
xΦ (15)

− 9(1− U)2 u2∆x2∆t
4! ∂4

xΦ+ ...

Simulations with Heaviside, triangle and cosine distributions advected by a constant velocity were
carried out for a CFL numberU > 1. ForU . 1.5, theBEC scheme gives finite results consistent
with the stable results collected forU < 1. The other schemes (CIR, FEC andCEC) diverge for
U > 1 and theBEC scheme diverges forU & 1.5. This extension of stability of theBEC scheme
can be understood in the following way: forU > 1, the interpolation is performed with points that
are not the nearest value to the reconstructed point. The contribution of the second nearest neighbors
in theBEC formula results in an enhanced stability of the scheme.

The FEC and BEC schemes both have modified equations with a third order derivative
truncation error. TheCEC scheme, presented in (6) and (7) is a linear combination of these two
schemes. The weights are computed to cancel the leading order of truncation error (see Appendix A)
and generate a higher order scheme. Using the linearity of the stability analysis, the amplification
factor is

ξCEC = 1− 2
3 sin(

1
2k∆x)

[
U
(
3 + 2[1− U2] sin2(12k∆x)

)
sin(12k∆x) (16)

+
(
3 + 2U [1− U2] sin2(12k∆x)

)
i cos(12k∆x)

]
.

TheCEC scheme is stable forU ≤ 1. To leading order, the modified equation of theCEC scheme
is

[
∂tΦ+ u∂xΦ

]

CEC

= −(1 + U)(1 − U)(2− U) |u|(∆x)3

4! ∂4
xΦ+ ... (17)

The essential properties of the different schemes are reported in Tab. I. The computational
cost is evaluated using the number of composed interpolation operators. The complexity of the
interpolation operator varies with the interpolation method used. In the case of theCIR scheme,
the complexity isO(N) whereN is the total number grid of points.

Scheme Formula Error Stability Nb of calls

CIR CIR
[
Φ
]
=L+

[
Φ
]

(1− U)
|u|∆x

2 ∂
2
xΦ U < 1 1

FEC FEC
[
Φ
]
=L+

[
Φ
]
+ 1

2 (Φ− Φ̄)
−(1− U

2)u∆x2

3! ∂
3
xΦ

−3(1− U
2)u

2∆x2∆t
4! ∂

4
xΦ

U < 1 2

BEC BEC
[
Φ
]
=L+

[
Φ + 1

2 (Φ− Φ̄)
] −(1− U)(1− 2U)u∆x2

3! ∂
3
xΦ

−9(1− U)2 u2∆x2∆t
4! ∂

4
xΦ

U . 1.5 3

CEC
CEC

[
Φ
]
=L+

[
Φ + 1+U

6U (Φ− Φ̄)
]

+ 1−2U
6U (Φ− Φ̄)

−(1 + U)(1− U)(2− U)
|u|(∆x)3

4! ∂
4
xΦ U < 1 3

Table I. Comparative table of one dimension schemes.
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4. RESULTS FOR ONE-DIMENSIONAL PROBLEMS

To assess the efficiency of the schemes introduced previously, simulations with a constant velocity
were performed. A one-dimensional periodic domain is considered, and the solution is advected
for 10 or 100 cycles. Fig. 1, 2 and 3 show the advection of threedensity profiles with different
regularities. Because of the Fourier properties of sine functions, the first harmonic was studied
thoroughly to check that it matches the properties of the modified equation.

The first set of tests was performed using an Heaviside profileΦ(x, t = 0) = sign
[
sin (2πx/l)

]
.

This is a demanding test, as this profile is discontinuous at two cross-over positions (0 and0.5). As
time elapses, the high frequencies get damped and the profileis nearly reduced to its first harmonic.
In fig. 1, theCEC scheme is closer to the analytical solution than the other schemes by three criteria:
(i) the “flatness” of its profile at the beginning of the simulation, (ii) the distance from the analytic
cross-over position at all time and (iii) the phase drift of the profile at long time. These criteria may
seem independent but they are all linked to the Fourier properties of the modified equation.
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(a) 10 periods
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(b) 100 periods

Figure 1. One dimension advection of a Heaviside with a resolution ofN = 30 atCFL = 0.75.

The second set of tests was performed using a triangular profile,Φ(x, t = 0) = |x/l− 0.5| . This
profile is non differentiable at two cross-over position (0 and0.5). In fig. 2, the observations reported
in the previous paragraph still hold for the triangular profile. As expected, theCEC scheme is closer
to the analytic results in the case of a continuous but non-derivable profile.
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Figure 2. One dimension advection of a triangle with a resolution of N = 30 atCFL = 0.75.

The last tests were performed using the first harmonic cosineprofile, Φ(x, t = 0) =
− cos (2πx/l) . The properties of the profile will be studied in more details in fig. 9 and 10. In
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fig. 3, theCIR scheme is so diffusive that a “correctedCIR” (green diamond line)∗ is plotted.
Even though theCIR scheme is near zero in fig. 3, the norm of its difference to the analytic profile
is smaller than theFEC scheme which drifted to such an extent that it is nearly opposite to the
reference profile.

As noted above, provided the interpolation strategy involves non-neighboring points, semi-
Lagragian methods can useCFL number larger than one. Using a non-local interpolation stencil,
we can reproduce the advection test of fig. 3 using aCFL number of3.75, see fig. 4.

The time-step being larger in this last case, fewer time-steps are needed for the same integration
time (here respectively10 and100 periods), the effects of numerical dispersion and diffusion are
thus weakened compared to fig. 3

This is achieved with a simple modification of relations (7) to compute the weightscF andcB, in
the form

3 cF = 2−
1

(|u|∆t/∆x) %1
and cB= 1− cF , (18)

(where%1 denotes the remainder of the division by unity), the accuracy of theCEC scheme is
preserved for large CFL numbers.
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Figure 3. One dimension advection of the cosine function with a resolution ofN = 30 atCFL = 0.75.
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Figure 4. One dimension advection of the cosine function with a resolution ofN = 30 atCFL = 3.75.

∗The correctedCIR values are equal to those ofCIR multiplied byexp(DCIRk2t) whereDCIR is defined in (9).
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5. MULTI-DIMENSIONAL PROBLEMS

The extension of the above procedures to multi-dimensionalproblems requires some care. For
instance in two dimensions, theCIR scheme is

CIR[Φ]i,j =(1− Ux
i,j)(1 − Uy

i,j)Φ
n
i,j + (1 − Ux

i,j)U
y
i,jΦ

n
i,j−s

y

i,j
, (19)

+ Ux
i,j(1 − Uy

i,j)Φ
n
i−sx

i,j
,j + Ux

i,jU
y
i,jΦ

n
i−sx

i,j
,j−s

y

i,j
.

The semi-LagrangianCIR scheme uses one more value (Φ[i− sxi,j ][j − syi,j ]) than the Eulerian
Upwind scheme. However, theCIR scheme is very similar to the directionally split Upwind scheme

Φ⋆
i,j =(1 − Ux

i,j)Φ
n
i,j + Ux

i,jΦ
n[i − sxi,j ][j] , (20)

Φ⋆⋆
i,j =(1 − Uy

i,j)Φ
⋆
i,j + Uy

i,jΦ
⋆[i][j − syi,j ] . (21)

In the general case in multi-dimension, there is no expression for thecF andcB coefficients of the
CEC scheme. It can be extended to any dimension if the scheme is directionnally split as done in
(20) and (21). However, if a simple splitting method is used,the approximation is reduced to first
order. Special splitting methods, such as Strang splitting[30], are required to increase the order of
the total scheme.
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(a) Initial patch distribution
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(c) Pure Lagrangian advection

Figure 5. Initial condition, velocity profile and final distribution for the two-dimensional advection test case.

To illustrate applications of our strategy to higher dimensions, let us consider an advection
problem in two dimensions of space. A squared patch is considered for the initial distribution of
the passive scalar: one inside the square and zero outside, as presented in fig. 5(a). The order of
the schemes for regularly varying velocities should be the same as the one for constant velocities.
Quantitative results being difficult, only qualitative observations will be made. The following
velocity field was used to test the schemes

u(x, y) =
y

l

(
1−

y

l

)(
1

2
−

y

l

)[
cos

(
2π

y

l
(1−

y

l
)
)
+ 1

]
/(2π2) , (22)

v(x, y) = −
x

l

(
1−

x

l

)(
1

2
−

x

l

)[
cos

(
2π

x

l
(1−

x

l
)
)
+ 1

]
/(2π2) , (23)

wherel is the length of the box in both directions. In fig. 5(b), the velocity cancels out on the edges of
the box and is divergence free. With the profiles used, the patch is not transported through the walls
of the box even though the simulation has periodic boundary conditions. The patch never intersects
itself which makes it easier to track. To compare the results, a fully Lagrangian method was used as
a reference. The time-step of this method was twenty times smaller to have more accurate results.
The solution is represented in fig. 5(c).
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(a) CIR advection (b) FEC advection (c) BEC advection (d) CEC advection

Figure 6. Two-dimensional patch advection using the different schemes.

In fig. 6 and 7, the analysis of the gap between a scheme and the reference solution should not
only be guided by the intensity of the difference but also by the area impacted. TheCIR scheme
clearly introduces the largest computational error.

(a) CIR error. (b) FEC error. (c) BEC error. (d) CEC error.

Figure 7. Error, as measured by the difference of the numerical solutions to the reference solution obtained
with pure Lagrangian advection.

The perturbation of the distribution can also give an intuition of the leading error term in the
modified equation. The quick oscillations at the tail of the patch in fig. 7(b) and 7(c) can be related
to the dispersive residuals of theFEC andBEC schemes. In fig. 7(d), theCEC solution is the
closest to the reference solution obtained by the pure Lagrangian method. The error is of small
amplitude and only impacts the edges of the patch.
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6. APPLICATION TO THERMAL CONVECTION

(a) CIR scheme (b) FEC scheme

(c) BEC scheme (d) CEC scheme

Figure 8. Rayleigh-Bénard evolution of a localized thermal perturbation. The numerical resolutionN = 502

is intentionally modest, in order to highlight numerical errors.

In this section, the comparison between the different advection schemes is extended to a physically
more relevant case: thermal convection in a layer of fluid heated from below. This canonical example
is also known as the Rayleigh-Bénard setup. The schemes will not only be used on passive scalars
that do not influence the velocity, but on the velocity itselfand the temperature, which, in the
Rayleigh-Bénard instability, modifies the velocity actively.

The system of equations describing the evolution of the velocity u and the temperatureT of the
fluid is solved on a two-dimensional Cartesian domain of aspect ratioχ = Lz/Lx = 0.5, bounded
by solid and impermeable walls. The bottom and top plates aremaintained at fixed temperatures
T0 andT0 −∆T , respectively, whereas the vertical walls are assumed to beinsulating (no heat flux
through the vertical boundaries). Gravity is assumed to be uniform and verticalg = −gez .

To retain the essential physics with a minimum complexity, the Boussinesq approximation is used
to describe the fluid within the cell and assume that variations of all physical properties other than
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density can be ignored. Variations in density are also neglected “except in so far as they modify
the action of gravity” [31]. The densityρ is assumed to be constant everywhere in the governing
equations except in the buoyancy force where it is assumed tovary linearly with temperature,
ρ (T ) = ρ0 (1− α (T − T0)) , whereα is the thermal expansion coefficient of the fluid.

The system admits the stationary diffusive solution:u
⋆ = 0, T ⋆ = T0 − z∆T/Lz, and∇P ⋆ =

−gρ (T ⋆) ez. Subtracting the stationary solution, choosingLz, L2
z/κ, and∆T as units of length,

time, and temperature, respectively, and using the temperature perturbationθ = T − T ⋆, the system
can be written [32] as

∂tu+ (u ·∇)u = −∇Π+RaPr θ ez + Pr∇2
u , (24)

∂tθ + (u ·∇) θ = w +∇
2θ , (25)

∇ · u = 0 , (26)

with w ≡ u · ez the vertical velocity. The non-dimensional control parameters are the Rayleigh
number, defined byRa = αg∆TL3

z/(κν) and which measures the convective driving, and the
Prandtl number, defined as the ratio of viscous to thermal diffusion,Pr = ν/κ, with ν the kinematic
viscosity,κ the thermal diffusivity.

Equations (24) and (25) are discretized on a uniform grid using finite volume formula of order two
in space and order one in time, with all the terms being treated explicitly. To enforce the solenoidal
constraint (26), the pressure-correction scheme [33, 34] is used. This splitting method is composed
of two steps. In the first step, a preliminary velocity fieldu

⋆ is computed by neglecting the pressure
term in Navier-Stokes equation. Since this preliminary velocity field is generally not divergence-
free, it is then corrected in a second step by a projection on the space of solenoidal vector fields.
Given the temperature and velocity distributions at time-stepn, the velocityun+1 is computed by
solving

u
(1) = L [un,un] , (27)

u
(2) = u

(1) +∆t
(
RaPr θnez +

[
∇

2
u

]n)
, (28)

∇
2φn = ∇ · u(2) , (29)

u
n+1 = u

(2) −∇φn . (30)

In (29), the algorithm requires to solve at each time-step a Poisson equation for the pressure.
The necessary impermeability conditions for the fieldφ are found by multiplying (30) by the
normal vectorn. Together with the velocity boundary condition, they lead to n ·∇φn = 0 . The
boundary conditions for the velocity field are no-slip, i.e.u = 0, while the temperature satisfies
θ(z = 0) = θ(z = 1) = 0 on the horizontal boundaries, and∂xθ = 0 on the vertical boundaries.
Boundary conditions are imposed on the intermediate velocity field u

⋆ by introducing ghost points
outside of the domain. In consequence, the tangential component of the actual velocity fieldu will
not exactly satisfy the boundary conditions (the error being controlled by the time-step).

In order to develop the instability (the Rayleigh number being sufficiently large and the Prandtl
number set to unity), the simulations were always started with u = 0 and with a small temperature
perturbation. This temperature perturbation consisted ofa hot spot (θ = 0.1) next to a cold spot
(θ = −0.1). This perturbation, localized close to the lower left corner, generates a rising and a
sinking plume. The different simulations were compared when the rising plume has reached the
top boundary (after roughly a thousand iterations).

A very low resolution,N = 502, was deliberately chosen in order to highlight the numerical errors
associated to the different schemes. Snapshots of the totaltemperatureT = T ⋆ + θ associated with
the thermal plume are compared on figure 8. In fig. 8(b) and 8(c), strong ripples appear in the
wake of the plumes. They are not physically relevant and are characteristics of dispersive schemes.
The comparison of the plumes in fig. 8(a) and fig. 8(d) clearly highlights that theCEC scheme is
less diffusive than theCIR scheme for practical physical applications. TheCEC scheme offers
an improved scheme, with significantly reduced diffusive effects, and free of the strong dispersion
characterizing theFEC andBEC schemes.
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7. CONCLUSION

Using the simplest semi-LagrangianCIR scheme introduced by Courant-Isaacson-Rees, it has been
demonstrated that a simple multi-stage approach can increase the order of the scheme from first to
third order. The resulting scheme is, at leading order, non-dispersive. This procedure was shown to
yield significant improvement on a thermal convection problem. It can easily be used to increase
the order of existing codes on parallel computers, as the communication stencil is unaltered by the
multi-stage approach. The communications among parallel processes are then restricted to the strict
miminum (one layer of cell at each domain boundary).

TheCEC algorithm, introduced here, only requires a modest increase in the computational cost
and can easily be implement in existing codes. Moreover, itsimplementation is not limited to regular
Cartesian finite differences schemes. It can be generalizedto other geometries and scheme types by
following two simple steps: (i) deriving the modified advection equation for theFEC andBEC
schemes and (ii) combining both schemes to cancel out their leading order error.
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A. DEVELOPED EXPRESSIONS OF THE CORRECTIVE SCHEMES

The expressions relevant to (10) and (13) can be developed as

2FEC[Φ]i =− Ui(1− Ui)Φ
n
i+si

+ (2 − UiUi)Φ
n
i (31)

− UiUi+siΦ
n[i+ si − s (i+ si)] + Ui(1 + Ui−si)Φ

n
i−si

,

2BEC[Φ]i =(fΦn) [i+ s (i)] + (fΦn) [i] + (fΦn) [i− s (i) + s (i− s (i))]+ (32)

(fΦn) [i+ s (i)− s (i+ s (i))]+
[
(fΦn) [i− s (i)] + (fΦn) [i− s (i) + s (i+ s (i))− s (i − s (i) + s (i− s (i)))]

]
+

(fΦn) [i− s (i)− s (i− s (i))] ,

where

f [i+ s (i)] = −(1− Ui)Ui(1− Ui+s(i)) , (33)

f [i] = (1− Ui)
[
3− (1 − Ui)

2
]
, (34)

f [i− s (i) + s (i− s (i))] = −UiUi−s(i)(1− Ui−s(i)+s(i−s(i))) , (35)

f [i+ s (i)− s (i+ s (i))] = −(1− Ui)UiUi+s(i) , (36)

f [i− s (i)] = Ui

[
3 −

(
1− Ui−s(i)

)2 ]
− (1 − Ui)

(
(1− Ui)Ui

)
, (37)

f [i− s (i) + s (i+ s (i))− s (i− s (i) + s (i− s (i)))] = −UiUi−s(i)Ui−s(i)+s(i−s(i)) , (38)

f [i− s (i)− s (i− s (i))] = −Ui(1− Ui−s(i))Ui−s(i) . (39)

B. ANALYSIS OF THE MODIFIED ADVECTION EQUATION

The modified equation steming from the discretization of theadvection equation has in one
dimension the general form

∂tΦ+ u ∂xΦ =
∑

α

Cα∂
α
xΦ , (40)
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where theCα prefactors come from the truncation error in the case of numeric schemes. If the CFL
stability condition is met, i.e.∆t ∝ u−1∆x, with ∆x ∝ N−1, we have

Cα ∝ N−α+1 . (41)

Going into Fourier space for spacial dimensions and Fourier-Laplace space for time,

Φ(x, t) =

∫
dk eΩ(k)t−ikxΦ̂(k,Ω(k)) where Ω(k) = −σ(k) + iω(k) . (42)

Thus, the dispersion relation is

Ω(k) = (ik)u+
∑

α

(−ik)αCα . (43)

Using the decomposition introduced in (42), the decay rate and the phase drift can be expressed as

σ(k) =
∑

p

(
k2
)2p+2

(
C4p+2−

(
k2
)2p

C4p

)
, (44)

ω(k) = k
(
u−

∑

p

(
(k2)2pC4p+1−(k2)2p+1C4p+3

) )
. (45)

The equation has strictly stable solutions if and only ifσ(k) > 0. Because of their dependence on the
resolution, the sequence ofC2p is often equivalent to its first term different from zero. Thestability
reduces to the criterionCα > 0 if α = 4p+ 2 andCα < 0 if α = 4p. Using the equation onω, the
phase drift can be extracted

φ(k) = ω(k)− ku = −k
∑

p

(
(k2)2pC4p+1 − (k2)2p+1C4p+3

)
. (46)

It is important to note that the procedure introduced in theFEC scheme cannot be repeted
recursively. In order to highlight this point let us note that for pure advection, reversing time is
equivalent to reversing the velocity

∂−tΦ+ u∂xΦ = 0 ⇔ ∂tΦ + (−u)∂xΦ = 0 ⇔ ∂tΦ+ u∂−xΦ = 0 . (47)

Going into Fourier space for the spacial dimension

Φ(x, t) =

∫
dk e−ikxΦ̃(k, t) , (48)

the modified advection equation can be written as

∂t
(
ln Φ̃

)
(k, t) = u(ik) +

∑

α

Cα(−ik)α . (49)

Reversing the sign of the coordinate,x→−x, is equivalent to reverse the wave vector,k→−k (c.c.
for a real field). In order to ensure time reversibility, the following relation should be satisfied

∂t
(
ln Φ̃

)
(k, t) = ∂t

(
ln Φ̃

)
(−k,−t) = −∂t

(
ln Φ̃

)
(−k, t) . (50)

This last relation shows that only terms of odd derivative are reversible. The error on̄Φ highlights
this observation. It can be evaluated using

(
ln ˜̄Φ

)
(k, t) =

(
ln Φ̃

)
(k, t) + 2∆t

∑

p

C2p(ik)
2p. (51)
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Only terms of even order derivative modify the field and can bedetected with this procedure. This
property should also be true for theCα coefficients when the velocity is reversed. In the case of
theCIR scheme, the coefficients depend on the sign of the velocity. In the case of the non-ideal
advection equation (40), reverting time leads to

∂tΦ+ (−u)∂xΦ =
∑

p

(
C2p+1(−u)∂2p+1

x Φ− C2p(−u)∂2p
x Φ

)
. (52)

Once more, only terms of odd order derivative are reversible.
The decay rate (fig. 9) and the phase drift (fig. 10) were measured for different resolutions. The

results are plotted as a function of the resolution on a binary log scale (lb). fig. 9(a) and 10(a)
represent the decay rate and the phase drift, respectively.As shown in (41), the prefactors of the
derivative terms of the error are proportional to an integerpower of the resolution,Cα ∝ N−α+1.
The values ofα are in good agreement with the error term of the modified equation. Using
the theoretical value ofα(1) andα(2), the values are rescaled toφres = φ×Nα(1)−1 andσres =

σ×Nα(2)−1 . fig. 9(b) and 10(b) show that the rescaled values are nearly constant as predicted by
the theory.
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(a) Decay rate
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(b) Rescaled decay rate

Figure 9. Evolution of the decay rate with the resolution in one dimension.
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(b) Rescaled phase drift

Figure 10. Evolution of the phase drift with the resolution in one dimension.

Preprint Preprint (2016)


	1 Introduction
	2 Multi-stage approaches
	3 One-dimensional algorithms
	4 Results for one-dimensional problems
	5 Multi-dimensional problems
	6 Application to thermal convection
	7 Conclusion
	A Developed expressions of the corrective schemes
	B Analysis of the modified advection equation

