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Abstract We consider a generic protocell model consisting of any conserva-
tive chemical reaction network embedded within a membrane. The membrane
results from the self-assembly of a membrane precursor and is semi-permeable
to some nutrients. Nutrients are metabolized into all other species including
the membrane precursor, and the membrane grows in area and the protocell in
volume. Faithful replication through cell growth and division requires a dou-
bling of both cell volume and surface area every division time (thus leading
to a periodic surface area-to-volume ratio) and also requires periodic concen-
trations of the cell constituents. Building upon these basic considerations, we
prove necessary and sufficient conditions pertaining to the chemical reaction
network for such a regime to be met. A simple necessary condition is that
every moiety must be fed. A stronger necessary condition implies that every
siphon must be either fed, or connected to species outside the siphon through
a pass reaction capable of transferring net positive mass into the siphon. And
in the case of nutrient uptake through passive diffusion and of constant surface
area-to-volume ratio, a sufficient condition for the existence of a fixed point
is that every siphon be fed. These necessary and sufficient conditions hold for
any chemical reaction kinetics, membrane parameters or nutrient flux diffusion
constants.
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1 Introduction

Cellular growth and division relies upon harmonious growth whereby all cell
constituents (cytoplasm and membrane) are synthesized at the same average
rate (averaging over one cell cycle) so that at the end of a cycle one ends up
with two daughter cells, each quasi-identical to the mother cell. This raises
the following question: does such synchronization require some fine tuning of
stoichiometric and/or kinetic parameters (with such fine tuning resulting from
evolution in the case of modern evolved cells) or is it automatically achieved for
any such choice? This question is of interest not only for the origins of life (how
likely may have been the emergence of some protocell capable of stationary
growth) or for the design of an artificial protocell, but also for future whole-cell
models.

Existing whole-cell models do not answer this question, because they pre-
sume the existence of a stationary growth state, do not model the mechanistic
steps leading to membrane growth, and rely upon some global phenomenolog-
ical assumptions. The reason is not only the complexity of the system to be
modeled, but also the lack of knowledge about many reaction kinetics. The na-
ture and degree of such assumptions vary depending on the considered model.
Constraint-based models such as Flux Balance Analysis (Orth et al/2010), or
the model proposed by Molenaar et al [2009, assume that optimal cells have
been selected over the course of evolution, such optimum being embodied in an
objective function which is optimized under certain constraints. The reaction
network stoichiometry constrains any stationary flux distribution (Orth et al
2010) or ribosome allocation (Molenaar et al 2009). An implicit assumption
is that the optimal flux distribution or ribosome allocation can be achieved
independently of any kinetic limitation. An explicit assumption is the choice
of the objective function, which may be the biomass yield per consumed sub-
strate (which requires knowledge of the cell composition) or the growth rate.
In contrast, mechanistic whole-cell models do not assume cell optimality, and
rely upon a kinetic description of the elementary chemical reactions and physi-
cal interactions. This typically results in a coupled set of Ordinary Differential
Equations (ODEs) where concentrations of chemical species are variables of
the system, and there exists one ODE for any such variable. ODEs also include
dilution terms which depend on the growth rate (Pawlowski and Zielenkiewicz
2004). Yet, there is most often no mechanistic description of the elementary
steps leading to membrane surface area and cell volume growth (such as mem-
brane precursor synthesis and incorporation in the growing membrane). The
growth rate is an additional phenomenological variable, which requires an ad-
ditional assumption to make the model fully determined (e.g. constant density
in [Weifle et all 2015 or constant RNA polymerase concentration in [Tadmor
and Tlusty|2008]).
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Existing protocell models come closer to answering this question, but only
partially. Because the system to be modeled is so much simpler than modern
evolved cells, most protocell models include a fine-grained description of all
constituents, and a mechanistic description of all chemical reactions, without
any global phenomenological assumption. In particular, the growth rate is not
a phenomenological parameter: growth in membrane surface area results from
the kinetic incorporation of membrane precursors (lipids), and this leads to
volume growth in a way which depends on the protocell shape. Also in contrast
to whole-cell models, most protocell models do not presume the ability to grow
and self-replicate, but attempt to explain when and why such cellular self-
replication may occur. Even if emergent synchronization has been numerically
observed in such models (characterized by the existence of a stationary growth
state), it is unclear what grants such property to the system. Such emergent
stationary growth was numerically observed in protocell models based upon
large random autocatalytic Chemical Reaction Networks (CRNs) with specific
stoichiometry (Kondo and Kaneko|2011}; [Himeoka and Kaneko|[2014)). This was
also the case in our own previous work using random CRNs with arbitrary
stoichiometry (Bigan et al|2015a)). Varying the size of such networks, the ability
of the cell to 'work’ appeared to be determined by simple conditions pertaining
only to the CRN stoichiometry and topology, and independent of the detailed
kinetics.

The present work not only explains such numerical results but also gives
formal answers to the above-mentioned emergent synchronization question.
Using a protocell model relying upon any conservative CRN, it proves neces-
sary and sufficient conditions for the existence of a stationary growth state.
These conditions only depend on the CRN structure and are independent of
the detailed kinetics.

1.1 Relation with Chemical Reaction Network Theory (CRNT)

Relating the existence of a stationary state (fixed point of a set of ODEs) to
topological and stoichiometrical properties of a CRN independently of the ki-
netic details is precisely what Chemical Reaction Network Theory achieves (Fein-
berg| (1979} [1995; | Gunawardena 2003). Fundamental CRNT theorems relate
such existence to the deficiency, which is an integer number only depending
on the CRN structure and independent of the kinetics (Feinberg)|1972). Exist-
ing theorems only apply to low deficiencies (0 or 1) and are intimately linked
to the existence of complex-balanced equilibria (Horn!|[1972) for which a Lya-
punov function can be constructed. However, in the case of the protocell model
considered in this work, pseudo-reactions accounting for dilution of chemical
species, membrane precursor incorporation and nutrient influx must be added
to the embedded CRN. This typically results in large deﬁcienciesﬂ which makes
existing theorems non-applicable.

1 For the reference numerical protocell example given in|Bigan et al|2015a), the deficiency is
9 (32) for the threshold (maximum-size) network, respectively (using the reference nutrient
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The reason why specific results could nevertheless be obtained within the
present work is the following: whereas general CRNT theorems are applicable
to any CRN (conservative or not), a cellular model defines a very special class
of non-conservative CRNs: starting from a conservative CRN representing the
inner cell chemistry, specific non-conservative pseudo-reactions are added to
account for dilution, membrane precursor incorporation (in the self-assembled
membrane), and transmembrane fluxes. The resulting set of ODEs is rem-
iniscent of that for a Continuous-Flow Stirred Tank Reactor (CFSTR), for
which additional theorems giving necessary conditions for multistationarity
have been proved (Schlosser and Feinberg([1994; |Craciun and Feinberg 2005,
2006). Yet, there is a significant difference between the CFSTR and our pro-
tocell model: whereas the flow rate is fixed for a CFSTR, its counterpart here
is the growth rate, which is a variable function of the protocell state. In the
present work, we shall relate the existence of a stationary growth state to a
lower bound for the growth rate, which is itself related to persistence of the
membrane precursor (Lemmas [2| and . Important theoretical results relating
persistence to siphons have previously been proved in CRNT (Angeli et al
2007), and we shall make use of such previous work and concepts to prove
Theorem [3

1.2 Relation with moieties and siphons, and with our own previous work

In organic chemistry, a moiety refers to a functional part of a molecule. For
example, acyl or phosphate groups are moieties. These functional groups are
typically left unchanged by the chemical reactions: when counting the total
number of a given moiety, the same result is obtained for both the reactant
and product side. In mathematical chemistry, the concept of moiety has been
extended to include any elementary conserved quantity, and algorithms have
been devised to determine all moieties (Schuster and Hofer||{1991), which may
not be as obviously visible as the two above simple examples. To each moi-
ety corresponds a positive linear combination of concentrations that is kept
constant by the chemical reactions.

In Petri nets, siphons refer to subsets of places that remain empty once they
have lost all their tokens (Murata)|1989). Applying this concept to chemical
reaction networks, siphons are subsets of chemical species that remain forever
absent, if already initially so (Angeli et all 2007). In other words, siphons
are subsets of species the absence of which cannot be compensated by the
chemical reactionsﬂ In mathematical chemistry, siphons are closely related to
the concept of persistence (Angeli et al |2007)).

and membrane precursor combination). Consistently, numerical simulations on protocells
based on random CRNs reveal that the stationary growth states are not complex-balanced.

2 One intuitive way to grasp the meaning of siphons is the following: some CRNs are so
strongly coupled that if one attempts to lower the concentration of one particular species
by an appropriate ’sink’ (e.g. incorporation into a structured membrane), then one ’sinks’
all other concentrations as well. This is the case when the only siphon is the full set of
species. But for CRNs with a weaker coupling, it is foreseeable to ’sink’ some species while
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Using these concepts, we have previously proved necessary and sufficient
conditions for protocell stationary growth: (i) every moiety of the underly-
ing CRN must be fed, or in other words, using the above example, some of
the nutrients permeating through the membrane should carry an acyl or a
phosphate group; and (ii) assuming a constant surface area-to-volume ratio,
it suffices that every siphon of the underlying CRN contain the support of a
moiety (that is fed).

We here extend these preliminary results by proving stronger necessary and
weaker sufficient conditionsﬂ (i) every siphon must be either fed or connected
to its complement by a specific kind of reaction, named pass reaction, that
is capable of transferring mass into the siphon; and (ii) assuming a constant
surface area-to-volume ratio, it suffices that every siphon be fed.

Our earlier proofs explained some of our previously reported numerical
results using random conservative CRNs and a single diffusing nutrient (Bi-
gan et all2015a)): no growth with two non-overlapping moieties; growth for
any choice of nutrient and membrane precursor when the only siphon is the
full set of species. The weaker sufficient condition also explains results in in-
termediate situations, for CRNs having a single moiety and a single siphon
that is shorter than the full set of species: when the nutrient is chosen in this
siphon, growth is always observed; else, growth is observed in some cases but
not in others. And the stronger necessary condition helps understand what
may make growth possible or not when the necessary conditions are met but
the sufficient condition is not.

These conditions are illustrated with two examples (Section @: a simple
toy model, and a whole-cell model inspired by Molenaar et al|2009. And the
applicability of these theoretical results to modern evolved cells or protocells
is extensively discussed in Section [7-3]

1.3 Outline

This paper is organized as follows. Section [2] gives some definitions related to
CRN . Section [3] presents a mechanistic fine-grained protocell model and gives
some related definitions. Section [4] proves an introductory proposition relating
oscillations in concentrations of cell constituents to the cellular shape. Section[f]
proves necessary and sufficient conditions for the existence of a stationary
growth state. Section [f] illustrates these results with examples. Section [7] is
devoted to discussion. And Section [§] gives a conclusion.

keeping other concentrations positive. A subset of species that can be ’sank’ is a siphon that
is shorter than the full set of species.

3 Condition A is stronger (weaker) than condition B if A = B (B = .A), respectively.
Stronger necessary and weaker sufficient conditions are desirable for a finer delineation of
'working’ protocells.
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Notations

In this text, a vector v is written in bold font. Its i** coordinate is denoted
v;. The i*" coordinate of a vector carrying its own index vy, is denoted V-

2 Definitions related to CRNs

Following standard practice in Chemical Reaction Network Theory (Erdi and
T6th||1989) a stoichiometry N x R matrix S may be associated to any CRN
where N is the total number of chemical species . = {A;};=1,... .~ participat-
ing in the CRN and R is the total number of reactions. The rt" column of §
is the reaction vector v, having as components {v,;}i=1,... v where v, ; is the
difference in stoichiometry of species A; between products and reactants for
the r*® reaction. For the CRN in a closed system, the time derivative of the
N x 1 concentration vector c¢ is given by ¢ = Sf where f is the R x 1 rate
vector.

Definition 1 A CRN is conservative if there exists a strictly positive NV x 1
vector m such that mTS = 0 where (.)T denotes the transpose of (.). m; is
the molecular mass of species A;.

Basically, a CRN is conservative if each chemical species may be assigned
a positive mass such that mass conservation be guaranteed for every chemical
reaction. There may exist multiple solutions to the set of mass conservation
equations. This notion is explicited through the definition below.

Definition 2 For a conservative CRN, the kernel of the transpose of S de-
noted Ker(81) has dimension dim(Ker(ST)) = p > 1, and the rank of §
is dim(Im(8)) = dim(Im(S™)) which is equal to N — dim(Ker(8T)) = N —
p < N — 1. The set of mass vectors compatible with mass conservation is
{m |m; >0, i=1,...,N and mTS = 0}. This set constitutes a pointed
convex cone having p’ > p generating vectors {by}r=1, . ,, p of which are
linearly independent and constitute a basis of Ker(ST) (Schuster and Hofer
1991). We define as moieties the elements of such a set of generating vectors

{bi}k=1,.. p-

Moieties essentially correspond to positive linear combinations of chemi-
cal species concentrations that are left invariant by the chemical reactionsﬁ
Moieties have non-negative but not necessarily strictly positive components:
indeed, it can be proved that if a moiety has all its components strictly pos-
itive, then this is the only moiety, p = 1 (see proof in Appendix 1 of Bigan
et al [2015a)).

4 Moieties are non-negative basis vectors of the left-null space of the stoichiometry ma-
trix. Any mass vector can be decomposed as a positive linear combination of moieties. In
contrast, extreme pathways (Schilling et al 2000) or the closely related elementary flux
modes (Schuster and Hilgetag||1994) are non-negative basis vectors of the right-null space of
the stoichiometry matrix. Any stationary flux distribution can be decomposed as a positive
linear combination of extreme pathways (or elementary flux modes).
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Definition 3 The support of a moiety b (resp. of a concentration vector c¢)
denoted as supp(b) (resp. supp(e)) is the subset of chemical species A; along
which b (resp. ¢) has non-zero components.

Definition 4 For a CRN (conservative or not), a siphon Z is a subset of .7
such that for every species A; in Z and every reaction where A; appears as
product, then at least one of the reactant species also belongs to Z. A siphon
is minimal if it does not contain strictly any other siphon.

The concept of siphon was introduced in [Angeli et al [2007] to study per-
sistence in CRNs. Siphons are essentially the sets of chemical species whose
absence cannot be compensated by the chemical reactions.

Definition 5 Consider a conservative CRN having a siphon Z that is shorter
than the full set of species ¥, % \ Z # &. Let b be a moiety or positive
linear combination of moieties of this CRN. Reordering species between .7 \
Z and Z, b may be decomposed in block form as bT = (by\ZT\bZT). A
reaction characterized by its reaction vector v is a pass reaction for b if Aby =
(Oy\ZT“)ZT)'U > 0, where 0.\ 7 is the null vector for the subset .\ Z.

We have (Oy\ZT|bZT)’U = —(by\ZT|02T)’U because the CRN is conser-
vative. The existence of a pass reaction for b requires that supp(b) N Z # @
and supp(b) N (S\ Z) # @.

Abyz is the total product weight minus the total reactant weight for the
moiety b, for species belonging to Z. A pass reaction for the moiety b is a
reaction resulting in a net positive weight transfer (for the moiety b) from
&\ Z into Z. It must involve species in both Z and .# \ Z. But not all such
reactions need necessarily be pass reactions. All possible categories of reactions
involving both Z and .\ Z are listed in Table|1| using the following notation:
S\ Z+Z — Z denotes any reaction such that the reactant complex contains
species in . \ Z and in Z, and such that the product complex only contains
species in Z. Attributes of such categories are also given: compatibility with
the definition of a siphon, and compatibility with net positive weight transfer
(for the moiety b) from .7\ Z into Z, i.e. Abz > 0.

Pass reactions belong either to category S\ Z+ 272 — S\ Z+ Z or to
category . \ Z + Z — Z (with the additional constraint Abz > 0 in both
cases).

The concept of pass reaction is an original contribution of the present work.

Llustration with a simple example Consider the following CRN consisting of
two bidirectional reactions:

A+B=C
2B=C

It can be easily verified that it is conservative with the only possible mass
assignment (up to a multiplying factor) being (ma, mp,m¢e) = (1,1,2). The
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Reaction category Compatible with Compatible with net
siphon weight transfer (for b)

SN\NZ —Z X v

Z = S\Z v X
INZ+Z - S \Z+Z | / v if Aby >0

IN\NZ > IS \NZ+Z X v
I\NZ+Z—S\Z v X

Z =S \NZ+Z v X

I\NZ+7Z—Z v vV if Aby >0

Table 1 Categories of reactions involving species in both .\ Z and Z. The second column
indicates whether reactions are compatible with the definition of a siphon or not. The third
column indicates whether reactions are compatible with net positive weight transfer (for the
moiety b) from .\ Z into Z, i.e. with Abyz > 0.

mass vector m is thus the only moiety. It can also be easily verified that
Z = {B,C} is the only minimal siphon, which is shorter than the full set
of species .¥ = {A,B,C}, S\ Z = {A} # @. The first forward reaction
A+ B — C'is a pass reaction (for the mass) because the net mass transfer
into Z is Amyz = mg —mg =my > 0.

3 Protocell model and related definitions
3.1 Assumptions

The following assumptions are made in the proposed protocell model:

1. Existence of some chemistry represented by a conservative CRN that is
active at least inside the protocell, and that may be assumed either active
or inactive outside the protocell (all proofs hold in both cases).

2. Self-assembly of one of the chemical species (membrane precursor Ap,) in
a structured membrane: the incorporation of A, into the growing mem-
brane is assumed to be kinetically controlled, with rate Fyouiput,me Per unit
area (the corresponding rate vector Foyiput has only one non-zero com-
ponent: Foyiput,me, along Ape). The membrane is further characterized by
the number of molecules per unit area Nye.

3. Membrane precursor incorporation kinetics: the membrane precursor in-
corporation rate per unit area Fiutput,me 15 assumed to be a continuous
monotonically increasing function of the concentration vector ¢ such that
Foutput,me(c = 0) = 0 and Fpe(c) > 0 iff ¢ has non-zero components
along a subset e of . Fe includes at least A, (membrane precur-
sor must be present for it to be incorporated in the membrane) and may
also include other species (e.g. enzymes or other metabolites that may
be required in case of catalyzed or active membrane precursor incorpora-
tion). This is a very mild assumption as it is verified by all foreseeable
kinetics (mass-action, Michaelis-Menten, or active membrane precursor in-
corporation). Two situations may be envisioned for this incorporation: (i)
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either it originates only from the inside of the protocell in which case
the rate of incorporation is Foutput,me(c), or (ii) it originates from both
sides of the membrane in which case the total rate of incorporation is
Foutput,me(€) + Foutput,me(Cout ). Case (i) corresponds to a situation where
not all required species are present outside, .Zine € supp(cout), or there
is some physical or chemical constraint preventing such an incorporation
from the outside (e.g. polarity of the self-assembled membrane). Case (ii)
corresponds to a non-polar membrane with all required species also present
outside, # e C supp(cout)-

4. Semi-permeability of self-assembled membrane to a subset ., of .. Nu-
trient uptake from the outside growth medium may result from any mecha-
nism (e.g. passive diffusion or active transport). The resulting nutrient flux
vector per unit area is Finput = Finput (€, Cout)- It has non-zero components
along the subset %, that are functions of the inside ¢ and outside con-
centration vectors cou¢. For any species A; € Sy, Finput,i = 0 if cou,i =0
(nutrients must be present in the outside growth medium in order to flow
inside).

5. Homogeneous concentrations: all chemical species are assumed to be homo-
geneously distributed and any intracellular or extracellular diffusion effect
is neglected. This is a simplifying assumption as, e.g. inside the cell, one
should expect nutrient A; € ., (resp. membrane precursor A,,.) con-
centration to be highest (resp. lowest) near the membrane that acts as
an effective source (resp. sink) for such chemical species. Similarly, any
intracellular spatial organization is neglected.

6. Large outside growth medium volume compared to the protocell volume:
so that the outside concentration vector c¢.,; remains constant even in the
presence of a growing protocell. It is either at equilibrium (Sf(cout) = 0
assuming the CRN is also active outside), or submitted to a continuous
nutrient flow. This equilibrium or stationary ¢y is assumed to be reached
starting with all and only those species in .7, in the initial state or in the
input flow.

Figure [I| gives a schematic representation of the protocell model.

3.2 Ordinary Differential Equation (ODE) system

With the above assumptions, the ODE system governing the time evolution
of concentrations is given by:

c= S.f + p(Finput - Foutput) — Minst C (1)

where ¢ is the N x 1 inside concentration vector having as components the
concentrations of the IV different chemical species inside the protocell, S is the
N x R stoichiometry matrix associated with the CRN, f = f(¢) is the Rx1 rate
vector having as components the rates for each chemical reaction, p = &/ /¥ is
the surface area-to-volume ratio, Finput = Finput(Cout, €) is the N x 1 nutrient
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Outside growth Self-assembled
medium membrane made of A__

Proto-cell

Fig. 1 Schematic of the protocell model. Some nutrient species (Anu € Ynu) flow across
the semi-permeable membrane (e.g. by passive diffusion or active transport). The membrane
results from the self-assembly of the membrane precursor Ame. The membrane surface area
grows as the result of Ape unidirectional incorporation in the self-assembled membrane.

flux vector per unit area with only non-zero components Fiyput,; for 4; € Sy,
Foutput = Foutpur(€) is the N x 1 membrane incorporation flux vector per
unit area with only non-zero component Fyyiput,me(c) along Ame, and pingtc
represents the dilution factor with instantaneous growth rate defined as the
instantaneous relative rate of change in volume, pins = 7// V.

By definition of p and pinst, we have:

g = g — Minst (2)

The membrane surface area o increases as the result of A, incorporation.
If incorporation orginates only from the inside of the protocell (case (i) in
Assumption [3| above), as A gets incorporated into the growing membrane
with rate (per unit area) Fyyput,me, the membrane area grows as:

~Q/ Foutput me(c)
= _ Zoutputymel®) 3
7 N 3)
If incorporation originates from both sides (case (ii) in Assumption
above), the above equation should be replaced by:

% _ Foutput7me(c) + Foutput7me(cout) (4)
o Nie
Equations and [3] or 4] do not suffice to make the ODE system au-
tonomous: an additional relation is needed, which depends on the assumption
made regarding the protocell shape and the mechanical properties of the mem-
brane. We shall consider different cases to illustrate this point:
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1. If, on the one hand, the membrane is so rigid that it is constrained to take
a filament shape with fixed diameter (constant p = pg) regardless of any
difference in osmotic pressure across the membrane, then this additional
relation is simply p = 0 and the protocell is an autonomous dynamical
system having N variables (the components of ¢). The st trajectory is
then simply given by Equation [2| (taken with p = 0), and Equation [3|or

2. If, on the other hand, the membrane is free to take any shape without any
mechanical constraint, the cell shape (and corresponding p ratio) adjusts
itself to balance the osmotic pressure across the membrane. Assuming the
dynamics of such a balancing to be very fast, this corresponds to a con-
straint of the kind uT ¢ = P where u is the osmolarity vector such that u;
is the number of particles in solution when dissolving one molecule of A;,
and P = uT ¢y is the constant outside growth medium osmolarity. The
inside osmolarity is constant, uT¢ = 0. Replacing ¢ by Equation (1] and
extracting finsy gives finst = wT (SF + p(Finput — Foutput))/u T c. Feeding
back this expression for pinst in Equations [1| and [2] gives an autonomous
dynamical system having N + 1 variables (the components of ¢, and p),
with both concentrations and surface area-to-volume ratio trajectories so-
lution of this extended set of ODEs. This is similar to the approach taken
in [Mavelli and Ruiz-Mirazo||2013| or Morgan et al|2004}

3. Between these two above extremes, a more sophisticated description of
the mechanical properties of the membrane (as in |[Surovtsev et al[2009 or
Bozi¢ and Svetina 2004]) would result in a more complex relation and in an
autonomous dynamical system having N + 2 variables (the components of
¢, and, ¥ and &7, or equivalently p and pinst)-

While the proofs of Proposition [1] (Section [4) and of Theorems [1| and
(Section [5)) hold in any such case and do not require to explicitly take into
account such an additional complexity in the model, the proof of the sufficient
condition given by Theorem [3|assumes a constant surface area-to-volume ratio
(case|l]in the above enumeration).

3.3 Definitions related to protocells

Definition 6 A protocell is an autonomous ODE system such that:

1. Starting from positive initial conditions, it defines trajectories for the con-
centration vector ¢ and the cell geometry represented by the cell volume ¥
and the cell surface area &7 (or equivalently, by the instantaneous growth
rate pinst, and the surface area-to-volume ratio p).

2. It verifies Assumptions 1-6 of Section [3.1} and Equations [T} 2 and [3]or [
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Starting from initial conditions (¢g, %, %% ), defining trajectories for (¥, o)
is equivalent to defining trajectories for (pinst, p) because the two may be de-
duced from one another through the relations p,ss = “f// Y and p= )V

As mentioned at the end of Section [3.2] above, Equations and [3] or
do not suffice to make the ODE system autonomous: an additional relation is
needed, which depends on the assumption made regarding the protocell shape
and the mechanical properties of the membrane.

Definition 7 A protocell characterized by asymptotic trajectories for its con-
stituent concentration vector ¢(¢), its membrane surface area </(¢) and its
volume ¥(t) is said to be working if ¢(t) is periodic with periodicity T and if
both &7 (t) and ¥ (t) are doubled during a time period T

The surface area-to-volume ratio p(t) = &7 (t)/¥ (t) of a working protocell is
thus also periodic because p(t+T) = &/ (t+T) /¥ (t+T) = 2 (t))/(2¥ (1)) =
(t))7(t) = p(t)[]

Cell division is not taken into account in this work. The above definition
only ensures that faithful replication through cell division be possible. The
above definition also implicitly assumes that the global surface &7 (t) and vol-
ume ¥ (t) (considering the entire lineage as a single system) and the concentra-
tions ¢(t) are continuous functions of time (instantaneous variations through
a bursting effect upon cell division are excluded).

Definition 8 The instantaneous growth rate pi,s¢ of a working protocell is
defined as pinst = ¥/7 and its average value is denoted fiay,.

Linst 1S also periodic because both the volume and its derivative double
every time period T'. We have piays = (1/7) fOT(”I}/”I/)dt = log(2)/T. Although
Havg 1S POsitive, pinst may not necessarily be so at all times. For example, a
cell constriction could induce a negative instantaneous growth rate at some
point during the cell cycle.

Definition 9 A protocell characterized by asymptotic trajectories for its con-
stituent concentration vector ¢(t), its membrane surface area </ (t) and its vol-
ume ¥(t) is said to be stationary working if ¢(t) is constant and if both 7 (t)
and ¥(t) are exponentially increasing at the same constant strictly positive
relative rate pinst = pavg = p =¥ /V = o | .

A stationary working protocell is thus a particular example of a working
protocell, with both &/ (t) and ¥(t) being doubled during a time period T' =
log(2)/p. A stationary working protocell has a constant surface area-to-volume
ratio because the relative rates of increase are equal for its surface area and
its volume. An example of stationary working protocell is that of filamentous
growth, with negligible cross-section compared to its surface area.

5 Tt is implicitly assumed that the (7, <) trajectories are such that at any instant, there
is enough membrane surface area &/ to accommodate the volume ¥, & > ¥/3677. Else,
the protocell may burst. See [Mavelli and Ruiz-Mirazo||2013}

6 It can also be constant, which is a peculiar periodic function.
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Definition 10 Consider a protocell characterized by its embedded conser-
vative CRN, and by its nutrient flux vector Finput = Finput(€, Cout) having
nonzero components along a subset ., of ./ (Assumption . A subset Y of
the full set of species & is fed if Y N S # 9.

Y is fed if it contains some of the species that can cross the membrane.
Note that Assumption [] ensures that all species that can cross the membrane
are present in the outside growth medium.

This notion shall be applied to the supports of moieties and to siphons. In
the case of moieties, we shall say for simplicity that a moiety b is fed if its
support supp(b) is fed.

4 A constant concentration vector requires a constant surface
area-to-volume ratio

As a preamble to necessary and sufficient conditions proved in the next section,
we present here a basic introductory proposition.

Proposition 1 If a working protocell has a constant concentration vector tra-
jectory, then its surface area-to-volume ratio trajectory is also constant, i.e.
the protocell is working stationary.

It is reminded that by virtue of Definition [6] a protocell verifies Assump-
tions 1-6 of Section [3.I} and Equations and [3] or

Proof Multiplying both sides of Equation [I]by the transpose of the mass vector
mT and using Equation to replace the instantaneous growth rate pinst gives:
D = me(Finput - Foutput) - (g - B)D (5)
p

where D = mTe¢ is the density inside the protocell and o /< is given
by Equation [3] or [l A constant concentration vector ¢ results in a constant
density, D= 0, constant nutrient input flux Fi,pu¢ and membrane precursor
incorporation output flux Fouipue vectors, and a constant o /< (owing to
Equations |3| or . The left hand side of the above equation equals zero and
the right hand side only contains constant elements, except potentially p and

p. This makes p solution of a differential equation of the form:

L —a—gp (6)
with:
o
a = o (7)

and:
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T-Finu _Fou u
ﬁ:m( P}) tpt) (8)

The differential equation [§] can be solved analytically, which results in:

!

- - 9
ﬁ + fye—at ( )
where v = (a/po) — 8 and pg = p(t = 0) is the initial condition. p(t) is

a monotonic function that cannot be periodic unless v = 0, i.e. pg = «/f in

which case p(t) remains constant. O

p(t)

In particular, this means that if for a working protocell p is periodic but not
constant (e.g. because of certain geometrical or mechanical constraints), then
the concentration of at least some of its constituents is also periodic but not
constant. Model examples of such situations have previously been described
(Morgan et al |2004} |Surovstev et al|2007; [Surovtsev et al/2009).

There have also been numerous experimental reports of various concentra-
tions oscillating across the cell cycle in eukaryotic cells (see|[Busa and Nuccitelli
1984} [Wittmann et all 2005 and references therein). It should be noted that
such cells tend to have a spherical shape at the beginning of a cell cycle,
and that with spherical growth the surface area-to-volume ratio p decreases
as the sphere radius increases. The required periodicity of p implies its in-
crease at some later point during the cell cycle (which may typically result
from cell constriction). Proposition |1| suggests that, besides additional regu-
lation mechanisms, variations of p across the cell cycle should contribute to
such oscillations in concentrations. This stresses the importance of taking cell
geometry into account in whole-cell modeling.

5 Necessary and sufficient conditions for a working protocell
5.1 First necessary condition

Theorem 1 For a protocell to be working, every moiety b (of the embedded
conservative CRN) the support of which contains any species in Fype, supp(b)N
Fme £ D, must be fed. This is necessary to ensure persistence of species in
Fme and a positive growth rate for the protocell ODE system. Further, if all
species (not just those in %) are to be present in the stationary growth state,
then every moiety (not just those such that supp(b) N S e # ) must be fed.

It is reminded that by virtue of Definition [6] a protocell verifies Assump-
tions 1-6 of Section and Equations and [3] or [

The following lemma is useful to prove this theorem:

Lemma 1 If a nonnegative function of the concentration vector of a working
protocell, y(t) = ¥(e(t)) > 0 is such that § < —pinse X y, then y — 0 if
t — +oo.
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This is obvious if finst = favg > 0 is a constant (as is the case for a
stationary working protocell) which results in an exponentially decreasing y.
It also holds in the most general case where pinst varies (and may even turn
negative at some point during the cell cycle). The proof is given below.

Proof Replacing y(t) by its asymptotic trajectory yas(t), if yas # 0 were pos-
sible, we would have:
.
= S — Minst (10)
Yas
Integrating this inequality over any time period 1" would give:

t14+T ) - t14+T
! Yas yas(tl + T) / ! V(tl)
=dt =log(—/———FF) < — inst At = log(———— 11
/tl Yas g( yas(tl) ) o t Hinst g(V(tl + T)) ( )

where t; is an arbitrary time. The above inequality is equivalent to:

yas(tl + T) < V(tl)
yas(tl) o V(tl + T)
y being a function of the concentration vector ¢ that itself converges asymp-
totically towards a periodic trajectory, ya.s(t) is also periodic and the left-hand
side of the above inequality is LH.S = 1. The protocell volume doubling every
time period T, the right-hand side is RH.S = 1/2. This is contradictory with
the above inequality. We must therefore have y.s = 0. O

(12)

We shall now prove Theorem

Proof Multiplying both sides of the above ODE system (given by Equation
by b where b is any of the p moieties {bi}k=1,... p, gives the ODE governing
the time evolution of the quantity b” ¢:

bTé = pr(Finput - Foutput) - Ninsthc (13)

If there exists a moiety b that is not fed, then supp(d) N .S, = 9. As
Fipput only has nonzero components along .7, we have bTFinput =0.b%¢
may then be bounded as follows:

bTe < —pimsb e (14)

Applying Lemma [1] with y = bT ¢ results in bTe — 0 with ¢ — +oc0. All
species in supp(b) asymptotically disappear.

If supp(b) N e # &, then there exists at least one species in %, that
asymptotically disappears. The membrane area can no longer grow from the
inside. Neither can it grow from the outside because the constant ¢yt is as-
sumed to be 