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Abstract

We consider the inverse problem of reconstructing general solutions to
the Helmholtz equation on some domain Ω from their values at scattered
points x1, . . . , xn ⊂ Ω. This problem typically arises when sampling acous-
tic fields with n microphones for the purpose of reconstructing this field over
a region of interest Ω contained in a larger domain D in which the acoustic
field propagates. In many applied settings, the shape of D and the bound-
ary conditions on its border are unknown. Our reconstruction method is
based on the approximation of a general solution u by linear combinations
of Fourier-Bessel functions or plane waves. We analyze the convergence of
the least-squares estimates to u using these families of functions based on
the samples (u(xi))i=1,...,n. Our analysis describes the amount of regular-
ization needed to guarantee the convergence of the least squares estimate
towards u, in terms of a condition that depends on the dimension of the
approximation subspace, the sample size n and the distribution of the sam-
ples. It reveals the advantage of using non-uniform distributions that have
more points on the boundary of Ω. Numerical illustrations show that our
approach compares favorably with reconstruction methods using other ba-
sis functions, and other types of regularization.

Key words and phrases : Helmholtz equation, interpolation, least squares,
regularization
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MSC2000: 74J25,35J05,94A20

1 Introduction

A common inverse problem in acoustics is to obtain a precise approximation of
the soundfield over a spatial domain Ω of interest, using the smallest possible
number of pointwise measurements, e.g. as provided by microphones. For in-
stance, one may wish to measure the complex radiation pattern of an extended
source (source identification problem), to localize a number of point sources
within a spatial domain (source localization problem), or to optimize the output
of a sound reproduction system over a large control area, to name only a few
applications. In practice, the main difficulty that one is usually faced with is
how to handle reverberation: the reverberant field might well be of a magnitude
comparable to the direct sound, and it depends in a non-trivial way on both the
geometry of the domain D where the acoustic field is defined and the type of
boundary conditions on ∂D (with Dirichlet or Neumann as ideal cases, but more
likely in engineering problems with a frequency-dependent mixed behavior).

The goal of this paper is to study the accuracy that can be achieved when
approximating the acoustic field over the domain Ω ⊂ D, based on a set of point
measurements, without precise knowledge on the geometry of D and boundary
conditions on ∂D. A general setting is the following: the soundfield p(x, t) is
measured at microphones located at positions x1, . . . , xn ∈ Ω, and over a (dis-
cretized) time interval [0, T ]. After application of the (discrete) Fourier trans-
form F in the time variable, and considering a given frequency ω, the function

u(x) := Fp(x, ω)

is a solution on D to the Helmholtz equation

∆u+ λ2u = 0, (1)

where λ = ω/c, with c denoting the wave velocity, and where the boundary
conditions are unknown to us.

Depending on the applications, the geometry of the domain Ω may either
be 2-D (membranes) or 3-D (rooms). Our problem therefore amounts to recon-
structing, on some domain Ω ⊂ R2 or R3, a general solution to the Helmholtz
equation (1) from its sampling at points x1, . . . , xn ∈ Ω. These samples may be
measured exactly or up to some additive noise. We denote by

yl = u(xl) + ηl, l = 1, . . . , n, (2)

these samples, where ηl represent the additive noise.
Reconstruction from scattered points is a widely studied topic, and a variety

of methods have been proposed and analyzed. Many existing methods can be
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Figure 1: A solution to the Helmholtz equation in 2D and its 2D Discrete Fourier
Transform

viewed as reconstructing some form of approximation to the unknown function
u by simpler functions such as splines, partial Fourier sums or radial basis func-
tions. The success of these methods therefore relies in good part on the quality
of the approximation of u by such simpler functions, which is typically governed
by the smoothness of u.

In our present setting, the fact that u obeys the Helmholtz equation, may be
used in addition to its smoothness in order to guarantee the accuracy of certain
approximation schemes, which are well adapted to such solutions.

The fact that the function to be measured is solution to the Helmholtz equa-
tion can be used in various ways:

• As can be seen on Fig. 1, the spectrum of a solution to the equation (in 2D)
is concentrated on an annulus. This annulus can be enclosed in a square,
or an hexagon, allowing reconstruction of the function from its values on a
square or hexagonal lattice, using the Shannon-Nyquist sampling theorem.

• The recent field of compressed sensing suggests to interpret this property
as the sparsity of the function in a dictionary of Fourier-modes, and to
reconstruct the function from a random sampling of the function on the
domain of interest.

• The function can be reconstructed from its value on the border on the
domain, as well as the value of its normal derivative, using the Green
formula:

u(x) =

∫
∂Ω
u(y)

∂G

∂n
(y, x)−G(y, x)

∂u

∂n
(y)ds.

The last method is however not relevant for our setting, in which we are al-
lowed to measure the function but not its derivatives. The two first methods will
be compared with the method we propose, based on the expansion of solutions
to the Helmholtz equation on particular families of function and least-squares
approximations.
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We introduce the Fourier-Bessel functions

bλ,j(x) := eijθJj(λr) (3)

where (r, θ) are the polar coordinates of x and Jj is the j-th Bessel function of
the first kind. bλ,j is solution to the Helmholtz equation (1) over R2 if and only
if its parameter λ is the same as in (1). Denoting Vλ the set of the solutions of
(1), it is known [6] that

Vλ = span{bλ,j}
L2(Ω)

, (4)

and that the solutions of (1) can be approximated by elements of the subspaces
V b
m = span{bλ,j ,−L ≤ j ≤ L} as m = 2L+ 1 grows.

An alternative approximation scheme uses plane waves defined by

ek(x) := eik·x (5)

which are solutions of (1) if and only if |k| = λ. The spaces V e
m, spanned by the

particular plane waves

ej := ekj , kj := λ

(
cos

(
2jπ

m

)
, sin

(
2jπ

m

))
, j = −L, . . . , L, (6)

can also be used to approximate solutions of (1) as m grows [6].
The most widely used approach to approximate u in a finite dimensional

space Vm, from its data at points x1, . . . , xn, is the least squares method, namely
with m ≤ n solving the minimization problem

π = argmin
v∈Vm

1

n

n∑
i=1

|yi − v(xi)|2. (7)

The effectiveness of the least squares approximation is governed by a certain
trade-off in the choice of the dimension m of the approximation:

• A small value of m leads to a highly regularized reconstruction of u, which
is usually robust but has poor accuracy.

• A large value of m may lead to unstable and therefore inaccurate recon-
structions although the space Vm contains finer approximants to u.

Let us observe that regularization is relevant even in a noiseless context where
the function is measured exactly: for example choosing m = n corresponds to
searching for an exact interpolation of the data which may be very unstable
and inaccurate, a phenomenon similar to the Runge phenomenon in polynomial
approximation.

In this paper, we discuss the amount of regularization which is needed when
applying the least squares method using the finite dimensional subspaces V b

m
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and V e
m extracted from Vλ. With such discretizations, the distribution of the

sampling points x1, . . . , xn has an influence on the above described trade-off.
Our main theoretical result, established in the case of a disc, shows that higher
values of m, leading therefore to better accuracy, can be used if the xi are not
uniformly distributed on Ω in the sense that a fixed fraction of these points are
located on the boundary ∂Ω. This result is confirmed by numerical experiments.

The rest of this paper is organized as follow: we give a brief account in §2 on
approximation of solutions to (1) by Fourier-Bessel functions and plane waves
which relies on Vekua’s theory, and in §3 on general results on the stability
and accuracy of least-squares approximations recently established in [4]. We
then study in §4 the spaces V e

m and V b
m in more detail, in the particular case

where Ω is a disc, and use the above mentioned results to compare least-squares
approximations on these spaces based on different sampling strategies. We also
give similar results for the case of the 3D ball. In §5, we present numerical tests
that illustrate the validity of this comparison. We also show that our approach
compares favorably with reconstructions based on other approximation schemes
such as partial Fourier sums (that do not exploit the fact that u is a solution to
(1)) and to other form of regularizations such as weighted Basis Pursuit. In §6,
we discuss further issues, namely determination of the model order via cross-
validation, and the influence of the sampling distribution in the treatment of
more general domains.

2 Approximation by Fourier-Bessel functions and plane
waves

Results on the approximation of solutions to (1) by Fourier-Bessel functions
and plane waves given in [6] are based on the theory developed in the 1950’s
by Vekua [14]. This theory generalizes approximation results for holomorphic
functions, viewed as solutions of ∆u = 0, to solutions of more general elliptic
partial differential equations, by means of appropriate operators that link the
two types of solutions.

In the case of the Helmholtz equation on a domain Ω, that is star-shaped with
respect to a point which is fixed as the origin 0, these operators (in their version
mapping harmonic functions to solutions to (1)) have the explicit expression

V1φ(x) = φ(x)− λ|x|
2

∫ 1

0

1√
1− t

J1(λ|x|
√

1− t)φ(tx)dt, (8)

and

V2φ(x) = φ(x)− λ|x|
2

∫ 1

0

1√
t(1− t)

I1(λ|x|
√

1− t)φ(tx)dt, (9)

where |x| stands for the euclidean norm of x, J1 is the Bessel function of the
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first kind of order 1 and I1 the modified Bessel function of the first kind of order
1, see [7] for more details. These operators have important properties:

• They are linear.

• V1 maps harmonic functions to solutions of the Helmholtz equation, and
V2 does the converse.

• When restricted to harmonic functions or solutions to the Helmholtz equa-
tion, they are continuous in the Sobolev Hk norms for all k ≥ 0.

• They are inverse to each other on these spaces.

As a consequence, any approximation method for harmonic functions can be
translated as an approximation method for solutions of the Helmholtz equation.
In particular, approximation of harmonic functions by harmonic polynomials of
degree m translates as approximation of solution of the Helmholtz equation by
the so-called generalized harmonic polynomials m which are their image by V1.
The generalized harmonic polynomials of degree m can be expressed as linear
combinations of the Fourier-Bessel functions (3), leading therefore to results for
the approximation of solutions to (1) by elements of V b

m in Sobolev norms. More
precisely, the following result can be obtained when the domain Ω is convex, see
theorem 3.2 of [6]

min
v∈V bm

‖u− v‖Hk ≤ C
(

logm

m

)p−k
‖u‖Hp , (10)

where the constant C depends on p, k, λ and the geometry of Ω. This results still
holds for more general, star-shaped convex domains, with a slower convergence.

Plane waves and Bessel functions are related by the Jacobi-Anger identity

ekφ =
∑
m∈Z

imJm(λr)eim(θ−φ). (11)

where kφ := λ(cos(φ), sin(φ)), and its converse, the Bessel integral

Jn(λr)einθ =
1

2πin

∫ π

−π
ekφe

inφdφ, (12)

Approximating the integral in (12) by a discrete sum, by uniformly sampling the
wave vectors kφ on the circle of diameter λ, leads to approximations of solutions
to (1) by linear combinations of the 2m+1 plane waves ekj , that is, by elements
of V e

m. It is also known (see theorem 5.2 of [6]) that such approximations have
the same convergence properties, e.g., for a convex domain,

min
v∈V be

‖u− v‖Hk ≤ C
(

logm

m

)p−k
‖u‖Hp . (13)
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3 Least-square approximations

The results of the previous section quantify how a general solution u to the
Helmholtz equation can be approximated by functions from spaces V e

m or V b
m.

We are now interested in understanding the quality of approximations from these
spaces built by the least squares methods based on scattered data (xl, yl)l=1,...,n.
In particular, we want to understand the trade-off between the dimension m
and the number of samples n. Ideally we would like to choose m large in order
to benefit of the approximation properties (10) and (13), however not too large
so that stability of the least-square method is ensured. We are also interested
in understanding how the spatial distribution of the sample xl influences this
trade-off.

This problem was recently studied in [4], in a general setting where the xl
are independently drawn according to a given probability measure ν defined on
Ω. This measure therefore reflects the spatial distribution of the samples. For
example, the uniform measure

dν := |Ω|−1dx, (14)

tends to generate uniformly spaced samples. In order to present the general re-
sult of [4], we assume that (Vm)m≥1 is an arbitrary sequence of finite dimensional
spaces of functions defined on Ω with dim(Vm) = m.

We introduce the L2 norm with respect to the measure ν

‖v‖ :=

(∫
Ω
|v|2dν

)1/2

, (15)

and we define the best approximation error for a function u in this norm as

σm(u) := min
v∈Vm

‖u− v‖. (16)

Note that, in the noiseless case, the least squares method amounts to computing
the best approximation of u onto Vm with respect to the norm

‖v‖n :=

(
1

n

∑
|v(xl)|2

)1/2

. (17)

This norm can be viewed as an approximation of the norm ‖v‖ based on the draw,
and it is therefore natural to compare the error ‖u−π‖ where π is computed by
(7) with σm(u). We give below a criterion that describes under which condition
on m these two quantities are of comparable size.

Here, we assume that (L1, . . . , Lm) is a basis of Vm which is orthonormal in
L2(Ω, ν). We define the quantity

K(m) = K(Vm, ν) := max
x∈Ω

m∑
j=1

|Lj(x)|2, (18)
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which depends both on Vm and on the chosen measure ν, but not on the choice
of the orthonormal basis since it is invariant by rotation.

We also assume that an a-priori bound ‖u‖L∞ ≤M is known on the function
u. We can therefore only improve the least squares estimate by defining

ũ := TM (π), (19)

where TM (t) := sign(t) min{|t|,M} and π is given by (7). The following result
was established in [4], in the case of noiseless data, i.e. ηl = 0 in (2).

Theorem 3.1 Let r > 0 be arbitrary but fixed and let κ := 1−log 2
2+2r . If m is such

that
K(m) ≤ κ n

log n
, (20)

then, the expectation of the reconstruction error is bounded:

E(‖u− ũ‖2) ≤ (1 + ε(n))σm(u)2 + 8M2n−r, (21)

where ε(n) := 4κ
logn → 0 as n→ +∞.

It is also established in [4] that the condition (20) ensures the numerical
stability of the least-square method, with probability larger than 1−2n−r. These
results suggest to set the regularization level by picking the largest value of
m∗ = m∗(n) such that (20) holds. The dependence of m∗(n) with n is obviously
related to that of K(m) with m. In particular, slower growth of K(m) with
m implies faster growth of m∗(n) and therefore faster convergence of the least
squares approximation. Notice that we always have

K(m) ≥
∫

Ω

m∑
j=1

|Lj |2dν = m. (22)

In the next section, we evaluate K(V e
m, ν) and K(V e

b , ν) in the case where Ω is
a disk, for various choices of the measure ν.

4 Stability of the reconstruction on a disc and in a
ball

As mentioned in the previous section, the quantity K(m) depends both on the
space Vm and the measure ν that reflects the sampling strategy. Here we study
the case where Vm is either one of the spaces of plane waves V e

m or of Fourier-
Bessel functions V b

m defined in the introduction, for m = 2L + 1. We consider
two sampling strategies. The first one uses the uniform probability distribution

ν0 :=
dx

|Ω|
, (23)
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(a) (b)

(c) (d)

Figure 2: Examples of sampling distributions on the disc: (a) ν0, (b) ν1/2, (c)
ν1 (d) ν ′, defined and used in section 5.

and the second one combines uniform sampling on the domain and on its bound-
ary, with proportion 0 < α < 1, according to the probability distribution

να := (1− α)
dx

|Ω|
+ α

dσ

|∂Ω|
. (24)

Examples of such densities are pictured on figure 2. The norm computed using
these densities is simply denoted ‖ · ‖.

This particular choice of probability distribution makes it possible to control
the L2(Ω)-norm of the error. Indeed, theorem 3.1 control the reconstruction
error in the norm defined by να, which itself can bound the L2(Ω)-norm of the
error as

‖u‖L2(Ω) ≤
1

1− α
‖u‖. (25)

In order to obtain explicit results, we focus on the simple case where Ω is a
disk. Without loss of generality, we fix

Ω := {x ∈ R2 : |x| ≤ 1}. (26)
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4.1 Fourier-Bessel approximation on the disc

Fourier-Bessel functions are orthogonal on the disk with respect to any rotation-
invariant measure, because of their angular dependence in einθ. This allows a
simple computation of the quantity K(m) for the space V b

m, leading to the
following result.

Theorem 4.1 For the space V b
m and the measure να on the unit disk Ω, one

has for sufficiently large m

K(m) ≥ c0 + c1m
2, (27)

when α = 0 (that is, for the uniform measure), for any c1 < 1/16, and where c0

depends on c1 and λ, and

K(m) ≤ C +
m

α
, (28)

when α > 0, where C depends on λ and α.

This result indicates that using an orderm for the approximation necessitates
a number of samples n that scales at least quadratically with m when sampling
uniformly in the disk. Using a proportion α of samples on the border makes
K(m) linear with respect to n. The best behavior possible forK (i.e.K(m) = m)
can be approached when α approaches 1. However in that case, the constant
C may grow, and the bound (25) becomes less efficient. This would make the
use of a large proportion of samples on the border relevant only for very large
numbers of samples.

Note finally that in the case α = 1, Eq. (25) cannot be used to control
the L2(Ω)-norm of the error, allowing arbitrary large errors with any number
of samples. For instance, when λ is an eigenfrequency of the disk with Dirich-
let boundary conditions, the associated eigenmode (a Fourier-Bessel function)
cannot be recovered as its samples on the border are identically zero.

Proof: Since the Fourier-Bessel functions are orthogonal in L2(Ω, να), we have

K(m) =

∥∥∥∥∥∥
L∑

j=−L

|bj |2

‖bj‖2

∥∥∥∥∥∥
L∞(Ω)

. (29)

In the case of the uniform measure, we bound K(m) from below. We first write

K(m) ≥

∥∥∥∥∥∥
L∑

j=−L

|bj |2

‖bj‖2

∥∥∥∥∥∥
L∞(∂Ω)

. (30)
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We next bound ‖bj‖2, for j > dλe (the case j < −dλe is identical, as |bj | = |b−j |),
according to

‖bj‖2 =
1

π

∫
Ω
Jj(λ|x|)2dx

= 2

∫ 1

0
rJj(λr)

2dr

=
4

λ2

∞∑
p=0

(j + 1 + 2p)J2
j+1+2p(λ)

≤ 4

λ2

∞∑
p=0

(j + 1 + 2p)(λ/j)2+4pJ2
j (λ)

= 4
j + 1

j2

(
1

1− (λ/j)4
+

2

j + 1

(λ/j)4

(1− (λ/j)4)2

)
J2
j (λ)

where the third equality is identity (11.3.32) of [1], and the first inequality comes
from (A.6) of [10]. As |bj(1, θ)| = |Jj(λ)|, we have, for any c < 1 and j larger
than some j0

|bj(1, θ)2|
‖bj‖2

≥ j2

4(j + 1)

(
1

1− (λ/j)4
+

2

j + 1

(λ/j)4

(1− (λ/j)4)2

)−1

≥ cj
4

(31)

and

K(m) ≥
j0∑

j=−j0

|Jj(λ)|2

‖bj‖2
+ 2c

∑
j0<j≤L

j

4
(32)

≥
j0∑

j=−j0

|Jj(λ)|2

‖bj‖2
− cj0(j0 + 1)

4
+
c

4
L(L+ 1) (33)

which proves the bound (27) when L > j0.
In the case of mixed sampling, we bound K(m) from above by

K(m) ≤
L∑

j=−L

‖bj‖2L∞(Ω)

‖bj‖2
. (34)

‖bj‖2 is nonzero as ‖bj‖2 > (1 − α)‖bj‖2L2(Ω) and α < 1. When j > λ, the

function r 7→ Jl(λr) is monotone increasing on [0, 1], so that ‖bj‖L∞(Ω) = Jj(λ).
Thus,

‖bj‖L∞(Ω)

‖bn‖2
=

Jj(λ)2

1−α
π

∫
D Jj(λ|x|)2dx+ α

2π

∫ 2π
0 Jj(λ)2dθ

<
1

α
.
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We then have

K(m) ≤ 2(L− bλc)
α

+

bλc∑
j=−bλc

‖bj(x)‖2L∞(Ω)

‖bj‖2

which proves (28).

4.2 Plane wave approximation on the disc

Similar results can be obtained for the plane wave approximation:

Theorem 4.2 For the space V e
m and the measure να on the unit disk Ω, one

has for sufficiently large m

K(m) ≥ c0 + c1m
2, (35)

when α = 0 (that is, for the uniform measure), for any c1 < 1/16, where c0

depends on c1 and λ, and

K(m) ≤ C1 + C2
m

α
, (36)

when α > 0, for any C2 > 1, where C1 depends on C2, λ and α.

Proof: Since plane waves are not orthogonal in L2(Ω, ν), the first step is the
computation of an orthogonal basis of the space spanned by these plane waves.
Let us consider 2L + 1 plane waves, with wave vectors uniformly distributed
on the circle of radius λ. For the measures considered here, the Gram matrix
of this family is a circulant matrix, which is diagonalized in the Fourier basis.
An orthogonal family spanning the same space is therefore given by functions
that are linear combinations of plane waves with the coefficients of the discrete
Fourier transform:

bmj :=
1

m

L∑
j=−L

e2πij/mekj . (37)

This formula may be thought as a quadrature for the Bessel integral (12): the
bmj are thus approximations of the Fourier-Bessel functions bj . In order to bound

the quantity K(m) = K(V e
m, ν), we compare it to the quantity K(V b

m, ν) which
behavior is described by Theorem 4.1. Using (8) and (9) from [10] we have

bmj =
∑
p∈Z

ipmbj+pm, (38)

and ∣∣∣∣bmjbj − 1

∣∣∣∣ ≤ ∑
p∈Z−{0}

|bj+pm|
|bj |

. (39)
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With L ≥ j ≥ λ, we thus have for all 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π,

∣∣∣∣bmj (r, θ)

bj(r, θ)
− 1

∣∣∣∣ ≤ 1

|bj(r, θ)|

∑
p≥0

|bj+(p+1)m(r, θ)|+
∑
p≥0

|bj+(p+1)m−2j(r, θ)|


≤

∑
p∈N

(
1 +

(
λ

j

)−2j
)(

λ

j

)(p+1)m

=

(
λ
j

)m
+
(
λ
j

)m−2j

1−
(
λ
j

)m
≤

2λj

1− λ
j

where we have used equation (A.6) of [10] to obtain the second inequality.

Using the orthogonality of the bj , we have

‖bmj ‖2 =
∑
p∈Z
‖bj+pm‖2, (40)

and ∣∣∣∣∣‖bmj ‖2‖bj‖2
− 1

∣∣∣∣∣ =
∑

p∈Z−{0}

‖bj+pm‖2

‖bj‖2
. (41)

When j ≥ λ and l ≥ 0 we bound ‖bj+l‖2 according to

‖bj+l‖2 = 2π

∫ 1

0
rJj+l(λr)

2dr

≤ 2π

∫ 1

0
r

(
λr

j

)2l

Jj(λr)
2dr

≤
(
λ

j

)2l

2π

∫ 1

0
Jj(λr)

2dr

=

(
λ

j

)2l

‖bj‖2
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where we again have used equation (A.6) of [10] to obtain the first inequality.
We thus have∣∣∣∣∣‖bmj ‖2‖bj‖2

− 1

∣∣∣∣∣ =
∑

p∈Z−{0}

‖bj+pm‖2

‖bj‖2

=
1

‖bj‖2

∑
p≥0

‖bj+(p+1)m‖2 +
∑
p≥0

‖bj+(p+1)m−2j‖2


≤

∑
p≥0

(
λ

j

)2(p+1)m

+
∑
p≥0

(
λ

j

)2((p+1)m−2j)


=

(
λ
j

)2m
+
(
λ
j

)2(m−2j)

1−
(
λ
j

)2m

≤
2
(
λ
j

)2

1−
(
λ
j

)2 .

We now consider the case α = 0. Using the above comparison results between
bj and bmj , we can find, for any c < 1 a positive integer jc such that for L ≥ j ≥ jc,

|bmj (1, θ)|2

‖bmj ‖2
≥ cJj(λ)2

‖bj‖2
. (42)

We may thus write

K(V e
m, ν) =

∥∥∥∥∥∥
L∑

j=−L

|bmj |2

‖bmj ‖2

∥∥∥∥∥∥
L∞(Ω)

≥
L∑

j=−L

|bmj (1, 0)|2

‖bmj ‖2

≥
∑
j<jc

|bmj (1, 0)|2

‖bmj ‖2
+ 2c

L∑
j=jc

Jj(λ)2

‖bj‖2
,

≥ 2c

L∑
j=jc

Jj(λ)2

‖bj‖2
.

The last sum can be bounded from below in a similar way as in the proof of
Theorem 4.1, proving (35).
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We next consider the case α > 0. We then write

K(m) ≤
L∑

j=−L

‖bmj ‖2L∞(Ω)

‖bmj ‖2
. (43)

For any C > 1, there is a jC > λ such that when j > jC , we have 1
C |bj(r, θ)| ≤

|bmj (r, θ)| ≤ C|bj(r, θ)|, so that ‖bmj ‖L∞(Ω) < C‖bj‖L∞(Ω) = CJj(λ), and |bmj (1, θ)| ≥
|Jj(λ)|/C. We then have, for m ≥ j ≥ jC ,

‖bmj ‖2L∞(Ω)

‖bmj ‖2
=

‖bmj ‖2L∞(Ω)

1−α
π

∫
D |b

m
j |2dx+ α

2π

∫ 2π
0 |b

m
j |2dθ

≤ 1

α

C2Jj(λ)2

Jj(λ)2/C2

≤ C2

α

and

K(m) ≤ 2C2(L− bλc)
α

+
∑
|j|<j0

‖bmj ‖2L∞(Ω)

‖bmj ‖2

≤ 2C2(L− bλc)
α

+
∑
|j|<j0

1

‖bj‖2

which proves 36. We use here the fact that ‖bmj ‖L∞(Ω) ≤ 1 which is clear from
(37), and ‖bj‖ ≤ ‖bmj ‖ obtained from (38) and the orthogonality of the bj . �

4.3 Spherical Fourier-Bessel functions in a ball

Similar results can be obtained for the approximation in a ball. In the 3D case,
solutions to the Helmholtz equation can be approximated by sums of products
of spherical harmonics Yl,q and spherical Bessel functions jl [7]:

bλ,l,q(x) = Yl,q

(
x

|x|

)
jl(λ|x|).

For m = (L + 1)2, the (L + 1)2-dimensional space V 3
m is defined as V 3

m =
span{bλ,l,q, 0 ≤ q ≤ L,−l ≤ q ≤ l}, and

min
v∈V 3

m

‖u− v‖Hk ≤ Cm−α(p−k)‖u‖Hp , (44)

where α is a strictly positive constant (in general, this constant depends on the
shape of the domain of interest).

Using similar sampling densities να (that is, a proportion α of the samples
on the sphere, the rest inside the ball), we have:
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Theorem 4.3 For the space V 3
m and the measure να on the unit ball Ω, one has

for sufficiently large m = (L+ 1)2

K(m) ≥ c0 + c1m
3/2, (45)

when α = 0 (that is, for the uniform measure), for any c1 < 1/9, and where c0

depends on c1 and λ, and

K(m) ≤ C +
m

α
, (46)

when α > 0, where C depends on λ and α.

Proof: The proof is a straightforward adaptation of the proof of theorem

4.1, using
∑l

q=−l

∣∣∣Yl,q ( x
|x|

)∣∣∣2 = 2l + 1 and jl(t) =
√
π/(2t)Jl+1/2(t).

5 Numerical tests

Here, we compare four different reconstruction methods on the unit disc:

(i) Least-squares method with a dictionary of Fourier modes.

(ii) Weighted `1-minimization [11] with a Fourier dictionary.

(iii) The proposed method, least-squares method with a dictionary of Fourier-
Bessel functions.

(iv) Weighted `1-minimization with a Fourier-Bessel dictionary.

For the first two methods, the dictionary contains orthogonal Fourier modes
on a square enclosing the disc. These modes thus have the form eiak·x for some
fixed 0 < a ≤ π (here we took a = π/2) and k ∈ {−K, . . . ,K}2. The size of
the dictionary is smaller than the number of measurements for methods (i) and
(iii), and larger for methods (ii) and (iv).

The methods are tested for λ = 12 with solutions that are the linear combi-
nations of fundamental solutions (i.e. second kind Bessel function Y0(λr) where
r is the distance to the source). The sources are placed on a circle of radius 1.1.
This setup can occur when synthesizing acoustical fields.

Results for the least-square methods (i) and (iii) are given on figures 3 and
4, for the different values α = 0, 0.9, 1. Another distribution ν ′ is also tested,
with uniform distribution in angle, and radiuses drawn from the interval (0, 1)
with probability density π/2

√
1− r2. An example of such distribution is given

on Fig. 2, showing the higher density of samples near the boundary. We plot the
error measured in the norm L2(Ω) = L2(Ω, dx), averaged over 40 realizations of
the sampling, versus the approximation space dimension m.
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Figure 3: Reconstruction error for method (i), least-squares with Fourier dictio-
nary, vs. number of Fourier modes with n = 400 measurements

Reconstruction errors for method (i), with a Fourier dictionary, are always
above 10−2 and do not benefit from sampling on the boundary, as the best
results are obtained with ν0 (uniform sampling) or ν ′.

Results for the proposed method (iii), with the Fourier-Bessel dictionary, are
displayed on Figure 4. We observe that placing more measurement points on
the boundary ∂Ω is beneficial to the reconstruction: for α = 0.9, the error is
reduced by four order of magnitude compared to method (i).

However, measuring the solutions only on ∂Ω (α = 1) does not yield good
reconstructions. In that case, Theorem 3.1 only ensures that the reconstruction
is accurate on ∂Ω and says nothing on the error on the disk itself, since we
cannot control the L2(Ω) norm by the L2(Ω, ν1)-norm, which is actually the
L2(∂Ω)-norm.

Figure 5 compares the behavior of these methods “at their best” with varying
number of measurements, from 50 to 400. The plotted errors are obtained by
selecting the value of K for (i), and of m for (iii) as well as the proportion α,
that minimize the error for the given number n of measurements. Results for (i)
and worse than for the proposed method (iii), and are always obtained with the
distribution ν ′ for the least-squares method with Fourier modes. In contrast, as
expected, the best results of (iii) are obtained with α = 0.9.

Results of method (ii), Basis Pursuit with Fourier dictionary, are also given,
with weights (1 +k)β where k is the wavenumber of the Fourier mode, taking in
consideration the sparsity as well as the smoothness of the functions to be recon-
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Figure 4: Reconstruction error for the proposed method (iii), least-squares with
Fourier-Bessel dictionary, vs. number of Fourier-Bessel functions with n = 400
measurements

structed. We use here the SPGL1 toolbox [12, 13]. Best results are obtained for
the sampling with the distribution ν ′ and β = 1. Performances of this method
are not as good as the Fourier-Bessel least-squares method. Using method (iv),
i.e. the same algorithm with a larger Fourier-Bessel dictionary that the one used
for method (iii) yields, for β = 0 and β = 1 (the weight is here (1 + j)β where
j is the order of the Fourier-Bessel function), good reconstructions, but not as
good as the simpler least-squares method. Best results are here obtained for
α = 0.9.

Another sparse approximation method, Orthogonal Matching Pursuit [9] was
also tested. The reconstruction errors were always larger than the results of Basis
Pursuit.

The better results obtained with the proposed method (iii) show that if
an adequate model is used to describe the signals of interest (here Fourier-
Bessel approximations, capturing the particular type of sparsity exhibited by the
solutions to the Helmholtz equation better than a simpler Fourier dictionary)
and an appropriate sampling scheme is used, basic numerical methods (here,
standard least-squares estimation) yield better results than more sophisticated
methods such as weighted `1-minimization.
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Figure 5: Best reconstruction error for method (i) Fourier least-squares, (ii)
Fourier Weighted Basis Pursuit, (iii) Fourier-Bessel least-squares (proposed
method) and (iv) Fourier-Bessel Weighted Basis Pursuit

6 Further issues

We showed above that a careful choice of the sampling distribution allows us to
use a larger order of approximation. However, in practice, the optimal value of
m is unknown to us. We test here the cross-validation method to estimate this
value. We also estimate the value of K(m) for a square and different sampling
densities, and show that a non-uniform density on the border may be necessary
in a general setting.

6.1 Estimation of the model order with the cross-validation
method

For a given number m = 2L+1 of Fourier-Bessel functions, we estimate a recon-
struction using 95% of the samples, and evaluate empirically the mean-square
error using the remaining ones. We repeat the estimation 10 times using differ-
ent choices of estimation and reconstruction points within the same sample, and
select the number m that minimizes the mean square error. The function is then
reconstructed using all samples. On Figure 6, we compare the results obtained
by this method with those based on the optimal value of m, as the number of
measurement n varies. Here we use the sampling distribution according to the
measure να, with α = 0.9. We observe that the performances are comparable
up to a slight loss by a multiplicative constant.
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Figure 6: Best reconstruction error for the proposed method, using GCV and
optimal value of m.

6.2 More general shapes

While the results obtained here inform us on the importance of sampling on the
border of the considered domain, a numerical test on another simple shape shows
that the density on the border is critical. The theoretical analysis for the disk
and the ball was based on the fact that the Fourier-Bessel functions were already
an orthogonal basis of the space V b

m. We focus here on the square [−1, 1]2. As
neither the Fourier-Bessel functions, nor the plane waves, form an orthogonal
basis, we construct one by orthogonalizing the Fourier-Bessel functions.

We numerically compute K(m) for four different distributions:

• ν0 = ds, the uniform distribution on the square,

• ν ′ = 4ds/
(
π2
√

1− x2
√

1− y2
)

, a distribution denser near the edges and

corners of the square,

• να = (1−α)ds+αdσ, where σ is the uniform distribution on the boundary
of the square,

• ν ′α = (1 − α)ds + αdσ′, where dσ′ is the measure on the boundary with
weight 1/4π

√
1− s2 where s = min(x, y) (i.e. denser near the corners of

the square).

Figure 7 shows examples of such distributions for α = 1/2.
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Figure 7: Examples of sampling distributions on the square: (a) ν, (b) ν ′, (c)
ν1/2, (d) ν ′1/2.

The estimated values of K(m) for ν0, ν ′, ν1/2 and ν ′1/2 are given on figure 8.
Here, having a denser sampling near or on the border of the square improves
the stability of the reconstruction compared to the uniform case, but still needs
a high number of samples.

Using the non-uniform sampling on the border, with more samples in the
sections of the boundary furthest from the origin, makes the behavior of K(m)
comparable to m, which is the best case possible.

7 Conclusion

In this paper, we compare different ways of sampling solutions to the Helmholtz
equation, using a finite number of point measurements. Our main results reveal
that good reconstructions can be obtained using Fourier-Bessel or plane waves
approximations, and that these reconstructions benefit from a denser sampling
on the boundary.

These results were obtained in the particular case of a two-dimensional disc
or a three-dimensional ball. For a more general star-shaped domain in R2, the
Fourier-Bessel approximation remains valid, but the quantity K(m) does not
have an explicit expression, yet it can be evaluated numerically after orthog-
onalization of the Fourier-Bessel or plane waves family. Our first numerical
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Figure 8: Numerical evaluation of K for four different samples distribution on
the square.

investigation, on the square, indicates that denser, but non-uniform, sampling
of the functions on the boundary is also beneficial in this more general setting.

Finally, sampling of other physical quantities can benefit from similar sam-
pling strategies, e.g. vibrations of plates [3, 2], electromagnetic fields [5], or
vibrations in 3D linear elasticity [8]. Indeed, they can be approximated using
schemes similar to the ones used here.
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