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SUMMARY 
In this paper, a model of flexure of the continental lithosphere is derived taking into 
account crustal and mantle rheologies. Bending of the continental lithosphere is 
modelled with a double yield stress envelope: three layers (brittle, elastic and 
ductile) for the crust and three analogous layers for the mantle portion. The 
deformation of the layers is controlled by the rheological properties of quartz-rich 
crustal rocks and olivine-rich mantle rocks. The influence of various factors such as 
the depth of Moho, strain rates, thermal structure of the lithosphere, boundary 
conditions, and topographic load, is examined. Results show that the mechanical 
strength of the continental lithosphere in the horizontal and vertical directions is 
primarily controlled by the present thermal structure of the plate, boundary forces 
and moments, and the applied topographic load. This explains why mountainous 
regions may be more locally compensated than adjacent regions. We also thus are 
able to explain why many continental plates have apparent effective rigidities much 
smaller than those predicted on the basis of their geological ages. The model is then 
applied to  the Tien Shan-Tarim area (Central Asia), and original topography and 
gravity data are used to constrain parameters of the model. We found that the 
model satisfactorily matches the data and is also able to  predict the thermal state of 
the plate and the location of the deep seismicity. 

Key words: continental lithosphere, flexure, mechanical behaviour, rheology. 

INTRODUCTION 

Several authors have suggested various mechanical models of 2- or 3-D bending of oceanic and continental lithosphere (e.g. 
Watts & Talwani 1974; McNutt 1980; Karner & Watts 1983; Lyon-Caen & Molnar 1983, 1984; McAdoo & Sandwell 1985). In 
most continental cases the simplest model of local compensation (Airy isostasy), which neglects the horizontal stress 
redistribution due to flexure, does not satisfactorily explains the gravity signal, the seismic data and other geophysical 
observations (e.g. Dorman & Lewis 1972; Lyon-Caen & Molnar 1983, 1984). 

To match the observations in areas where the local compensation model breaks down, it is essential to take into account 
stress redistribution due to flexure. Such mechanisms were introduced by applying different rheologies for the plate. These 
studies include elastic (e.g. Dubois et al. 1977; Karner & Watts 1983; Lyon-Caen & Molnar 1983), viscous (De Bremaecker 
1977), viscoelastic (Melosh 1978) and elastic-plastic (McAdoo et al. 1978; Turcotte 1979) rheologies. Despite the fact that 
these models are characterized by more sophisticated rheologies and that for most purposes even a simple elastic model is good 
enough to fit the observations, there are still some problems to be solved, and one of the most important questions is: what can 
we learn about the real structure of the lithosphere and properties of lithospheric rocks from mechanical parameters obtained 
by fitting the model to the observations? In other words, do these parameters relate to available data on properties of rocks 
constituting the lithosphere as well as with the data on its structure? For example, in the case of purely elastic modelling the 
estimated 'effective' mechanical thickness of the lithosphere usually is smaller than the depth at which the rocks theoretically, 
can still preserve a quasi-elastic behaviour (McNutt, Diament & Kogan 1988). Another problem is that the effective thickness 
depends on the age, plate curvature, topographic load, and subduction angle (Kirby 1983; McNutt 1980; McNutt et al. 1988). 
The elastic plate model also predicts impossibly high stresses in the rocks which apparently may exceed the limit of yielding by 
several times (Goetze & Evans 1979; Lyon-Caen & Molnar 1983). 
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450 E. B.  Burou and M. Diament 

More realistic models use data on mechanical properties of rocks, non-uniform layered lithospheric structure, the inferred 
thermal regime and other kinds of geophysical data. Models for layered rheology of the lithosphere account for non-uniform 
mechanical properties by introducing a three-layer (brittle-elastic-plastic) yield-stress envelope similar to  that formulated by 
Goetze & Evans (1979) and McNutt & Menard (1982) and formerly applied almost exclusively to only the oceanic lithosphere 
(McAdoo, Martin & Polouse, 1985; Chamot-Rooke & Le Pichon 1989). The application of multilayered rheological models to 
the continental lithosphere is supported by the data of experimental rock mechanics (e.g., Brace & Kohlstedt 1980; Molnar & 
Tapponnier 1981; Kirby 1983, 1985; Kirby & Kronenberg 1987) which can be used for forward modelling. One can conclude 
from these investigations that the continental lithosphere differs mechanically from the oceanic one in that, for continents, a 
double (six-layer) yield stress envelope should be considered: three layers (brittle, elastic and ductile) for the crust and an 
analogous three layers for the mantle portion of the lithosphere. The use of rheological model with a double yield stress 
envelope for continents in place of the simpler oceanic envelope can be justified by several observations. First, continental 
crust is generally thicker (5-10 times) than the oceanic crust and therefore its contribution to the mechanical strength of the 
lithosphere cannot be neglected as is done in oceans. Consequently, as we cannot ignore the strength of the crust, we need to  
account for the significant difference between the mechanical properties of crustal and mantle rocks: it is generally assumed 
that low-temperature quartz creep dominates in the crust while in the mantle part high-temperature olivine creep prevails 
(Brace & Kohlstedt 1980). And, finally, the typical average radiogenic thermal productivity of the rocks of the continental 
crust (granites) is about of 10 times greater than that of the oceanic rocks (basalts) (Turcotte & Shubert 1982). As a result the 
radiogenic contribution to  the total surface heat flux is 50 per cent or more. It significantly affects the position of the 
mechanical bottom of the crust (the depth below which yielding is geologically rapid) and, therefore, the total strength of the 
lithosphere. Depending on the stress regime and on the location of the mechanical bottom of the crust relative to the location 
of Moho, the crust can be mechanically coupled with or  decoupled from the mantle part (Meissner & Strehlau 1982; Chen & 
Molnar 1983; Zoback, Prescott & Krueger 1985; McNutt ef al. 1988). 

In the present study we develop analytical and numerical methods to  model the flexure of continental lithosphere using a 
realistic model for multilayered crustal and mantle rheologies. To test the model, data on gravity, topography and seismicity in 
the zone of convergence of the Tarim block and Kazakh shield (Central Asia) are used. 

R H E O L O G I C A L  M O D E L  

Experimental and observational evidence indicates that rock fracture due to  bending takes place at least to  depths of 5-20 km 
(Brace & Kohlstedt 1980). As a result, frictional sliding develops on fractures until the yield stress is reached and brittle 
fracture of the whole volume of rock occurs. This process is relatively independent of temperature and can be described in 
terms of linear fracture mechanics (Byerlee 1968, 1978; Kirby 1983): 

(u, - u3) = 3 . 9 ~ ~  for cr3 c 120 MPa (depth less than 4-5 km), 

( a l - a 3 ) = 2 1 0 + 2 . 1 u ,  for a 3 2 1 2 0 M P a ,  (1) 

where at and u3 are maximum and minimum principal stresses. The ductile behaviour of the crust is dominated by the creep of 
its main constituent (quartz) (Tsenn & Carter 1987). This mineral has a low temperature of creep activation, becoming weak at 
temperatures as low as 200°C for stresses on the order of ~ 0 . 5  MPa. At  depths of about h ,  = 25 km corresponding to  
350"-450 "C, quartz in the crustal part of the lithosphere has almost zero strength. Although crustal feldspar plays an important 
role, quartz is more ductile at lower temperatures and therefore the quartz creep law constrains the lower mechanical boundary 
of strength of the crustal rocks (Brace & Kohlstedt 1980). Kirby (1985) shows that other crustal rocks also have a critical 
temperature much lower than that for olivines. The rheological bottom of the crust (Moho) at  depth h is also a mechanical 
discontinuity, since the sub-Moho olivine-rich rocks have a much higher temperature of ductile creep activation as compared t o  
quartz-rich (granite, quartzite) crustal rocks (the strength of olivine is limited by the depth h, corresponding to  a temperature 

The upper part of the mantle portion of the lithosphere is also controlled by Byerlee's law (1) and by ductile behaviour 
which begins to  play a part (for significant values of differential stress) starting from the depths corresponding to  temperatures 
of =400"-600 "C. Regions between brittle and ductile zones of the plate preserve an quasi-elastic behaviour. 

In general, the steady-state flow of both quartz and olivine can be described by the thermally activated power law with 
relevant parameters n,  A,  H *  (Kirby & Kronenberg 1987; Ranalli & Murphy 1987; Mackwell, Bai & Kohlstedt 1990): 

of 700"-750 "C). 

t = A  A d '  exp ( - H * / R T )  (2) 

= exp ( H * / n R T ) ,  H *  = E* + pv*, (3) 

where t. is the steady-state strain rate, ha = ( a ,  - u3) is the differential stress, T is the temperature in Kelvin, A is a material 
constant, n ranges from 2 to  4.5 depending on the mineral, H *  is the activation enthalpy, E* is the activation energy, P is the 
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Flexure of the continental lithosphere 451 

hydrostatic pressure, and V *  is the activation volume. Following Goetze & Evans (1979), Brace & Kohlstedt (1980) and 
Molnar & Tapponnier (1981), we used an approximate form of (3) for dry olivine: 

(&/A)'"' exp (ETInRT) for ha S 200 MPa, ( 4 4  

[ (RTIn(&,,/B))1'2] for h a t  200 MPa, 
E;  

00 1 - 

where n = 3, A = 7.0 X E :  = 125 kcal mol-', E: = 128 kcal mol-', a,, = 8.5 X lo9 Pa, E,, = 3.0 X 10l5 s-', and R = 
1.986cal (molK)p'. For quartz we use equation (4a) for AuGlOOOMPa with the following parameters: n =3, A =  
5.0 x lo-", and ET = 45 kcal mol-' (Brace & Kohlstedt 1980). 

For quasi-elastic portions of the plate we assume the Hookean behaviour 

where E is the Young's modulus, 6 = 0.25 is the Poisson's ratio, and E,,(x, y)  is the horizontal strain at depth y with respect to 
the neutral plane. 

The thermal structure of the lithosphere is better constrained for oceans than for continents, due to the high variability in 
concentrations of heat-producing elements in the continental crust (Sclater, Jaupart & Galson 1980; Turcotte & Shubert 1982; 
Kusznir & Karner 1985; De Rito et al. 1989). For this reason, the well-known half-space model of conductive cooling of the 
plate (Parsons & Sclater 1977) does not fit the geotherm based on metamorphic geothermometry data in the continental crustal 
areas (Sclater et al. 1980). We superimpose the radioactive heat flux q r  on the flux q ,  due to conductive cooling of the plate to 
obtain the total heat flux q ( y )  = 9 , ( y )  + q , ( y )  where qr = p,H,h, exp ( - y / h J ;  H, = 9.6 X lo-'" W kg-' is the heat production 
due to radiogenic decay, h , =  10km is the characteristic scale of a decrease in radiogenic heat production, and 
p, = 2670 kg m-' is the density of the crust (Sclater et al. 1980; Turcotte & Shubert 1982). To compute the geotherm, we solve 
the 1-D steady heat transfer equation (Carslaw & Jaeger 1964) using for q ( y ) ,  the expression for the heat flow through the 
mantle derived from (Parsons & Sclater 1977) 

where k, = 3.35 W (m K)-' is the thermal conductivity of mantle rocks, T, = 1350 "C is the temperature at a depth a = 250 km 
which is taken as the thermal bottom of the lithosphere (Lerner-Lam & Jordan 1987, p, = 3300 kg m-3 is the density of mantle 
rocks, C = 10' J kg-' K-' is the specific heat capacity of rocks, and t is the thermal age of the plate. 

= 10 "C, q ( h )  = q,(h) = Q, and, for simplicity, q ( y )  = q , ( y )  + Q ,  for the 
crust and q ( y )  = q , ( y )  + q , (h ) ,  q , ( h )  = 0 for the mantle, we can obtain an approximate solution for temperature distribution* 
in the continental lithosphere: 

Assuming q(O) = q,  = 60 mW m-2, T(0) = 

In (6) we assume also that the radiogenic component of the temperature T, is equal to zero at the depth y = a  since the 
shallow crustal radiogenic sources do not contribute to the thermal structure of the deep mantle. In any case, this contribution 
(no more than 100 "C) is not very important for deep mantle layers because of the much more important contribution ( 4 0  per 
cent) of the cooling component. 

Using equations (4)-(6) we can compute the resulting yield-stress envelope for different values of strain rate E ,  Moho 
depth, and thermal age. The result is illustrated in Fig. 1 which shows the yield stress envelope for two different ages (175 and 
500 Ma), and for a broad range of strain rates defining the onset of yielding in ductile regions. The value of h is fixed at 50 km. 
The calculation of the yield-stress envelope is primarily required by our mechanical model for the direct computation of the 
flexural deformations of the plate. 

* We use the approximate solution because it is much simpler than the unwildly precise one (see the Appendix) and has a satisfactory accurac) 
of about 5-10 per cent. 
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452 E. B. Burou and M. Diament 

AGE 175 Ma AGE 500  Ma 

Y. w t 
Fwre 1. The yield-stress envelope resulting from expressions (4)-(6) for a broad range of strain rates E defining the onset of yielding in 
ductile regions. The horizontal axis is differential stress, positive for tension and negative for compression. The vertical axis is depth, with 
positive downward. Dependent on Moho depth h and stress conditions, the gap between the mechanical bottom of the crust and the top of the 
mantle may be ductile or strong. The right side shows the tensional part of the envelope for the 500 Ma plate; the left side corresponds to the 
compressional part of the envelope for the 175 Ma plate. Curves marked -11, -12, . . . , -19 correspond to E = 1 x lo-", 1 x lo-'', . . . , 1 x 
1 0 - l ~  s-' respectively. 

MECHANICAL MODEL 

As seen in the previous section, stresses in the plate depend on temperature, on lithostatic pressure and curvature of the 
bending plate. Relations between these quantities are non-linear and consequently equations governing deformations of the 
plate will also be non-linear. 

To model the bending of a lithospheric plate with non-linear behaviour of mechanical parameters, we consider the small 
2-D dimensional (cylindrical) deflection w ( x )  of a thin plate with non-linear rigidity D ( x ,  w"). In general, the relationship 
between the rigidity and w(x)  leads to appearance of terms containing derivatives of the rigidity with respect not only to x but 
also to w ( x )  in the equation of the equilibrium of the plate. Nevertheless, the above assumption of small plate deflections 
allows one to neglect these terms as they are insignificantly small. Let M = M ( x ,  w:) be a non-linear bending moment acting on 
an elementary segment (x ,  x + ak) of the plate. It is evident that a function D ( x ,  w") exists such that 

D(x, e) a'wo = - M ( x ,  4). 
ax2 

(For a linear case 

1 where h,(x) is the variable effective elastic thickness of the plate. 
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Flexure of the continental lithosphere 453 

The equilibrium state of the plate overlying an inviscid fluid and loaded by the laterally variable weight of the topography 
P ( x )  is given by 

-- ezM +- a ( t (x)-  + Ap(x)gw(x) = P ( x ) ,  ax2 ax 
(7) 

where t ( x )  is a net axial force, Ap=p, -p ,  is the difference between the densities of underlying (mantle) and overlying 
material, and g is gravity. 

We can rewrite (7) as a system of two equations: 

aZw(x) 
aw(x) )  + Ap(x)gw(x) = P(x), D ( x ,  w:) - - - - M ( x ,  w,"). 

- az (D(x ,  w , " ) ~ )  +a (t(x)----- 

ax2 ax2 dx 3.X ax2 

For simplicity we assume that the horizontal force is constant: t ( x )  = t(0). 
The non-linear moment M(x, w,") can be derived from (4)-(6) using 

M ( x ,  w,") = - Au(x, w,")Y dy, t ( x )  = - Ao(x, w,") ay. i: b 
In the quasi-elastic domains the stress is given by 

(9) 

where y * = y - yn is the distance from the depth y to the depth y, which is the neutral plane, and 

E d2w(x) 
y=--- 

is the gradient of the elastic deviatoric stresses. 
The reasonable strain rate values may vary in the relatively broad range of lO-"--lO-'" s-' which corresponds, however, 

to almost the same geometry of the yield stress envelope (this is shown in Fig. 1). Molnar & Tapponnier (1981) used the value 
t = 3 x ~ O - ' ' S - ~  as most representative of the geological strain rate. We also chose the same value of t to calculate the 
yield-stress envelope. At the next step, prior to inversion, we linearized the envelope by fitting segments of straight lines using 
least squares (Fig. 2). The flexural stress in the plate is then given by the following linear relations.* 

(1-6,)  ax2 

Crust 

Brittle regime (depths from 0 to y l  and from y3 to y4): AO = ybly, ybl = 0.22 x 10'Pa m-l for tension and ybl = 
-0.66 x lo5 Pa m-l for compression. 
Elastic regime (depths from y l  to y2): 

Ductile regime [depths from y2 to min (h l ,  h)]: 
AU = ydl(y - hl) ,  ydl = 0.5-1.0 x lo5 Pa m-l for tension and Y d l =  - 1  ydll = -0.5-1.0 x 10' Pa m-' for compression. 

Mantle 

Brittle/crust-mantle transition regime [depths from h to min (y3, y4)]: 
A u  = yb2(y - h) ,  yb2 = 1.00 X 10'' Pam-' for tension and yb2 = -1.00 X 10'' Pa rn-l for compression; the area between the 
levels h -y3 appears only if some gradual transition from the crust to the mantle is considered. Because this transition is 
questionable, we treat the Moho as a discrete discontinuity by using a large value for yb2. 

Elastic regime (depths from y4 to y5): 

Ductile regime (depths from y5 to h2): 
AU = ydZ(y - h,), yd2 = 0.231 x lo5 Pam-' for tension and Yd2 = - 1  yd21 = -0.231 x lo5 Pa m-l for compression. 

* Throughout this paper, subscripts '1' and '2' refer to the crust and the mantle respectively. 
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ColdpREsS ION ACT. wa * 10' TENSION 
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Fire 2. The linearized yield envelope used for numerical calculations. The dotted area marks the weak region. Open circles indicate the area 
which can be weak or not depending on the curvature and on the relative location of the Moho (with other parameters fixed). See text for 
further details. 

El and E2 are the effective Young's moduli of the crustal and mantle lithosphere respectively. Although Young's modulus 

Assuming 
increases with depth, we use a constant value of 8.0 x 10" N m-* for both E ,  and E,. 

th, 
h ,  + (h,  - h )  h ,  + ( h ,  - h )  

+ t(h2 - h )  = t ,  + t* t (x)  = t = 

and denoting Ao(y)  = a,,(y) = a(y),  we finally obtain 

t + ady, w"). 
a(y) = h ,  + (h,  - h )  

The term a,-(y, w") on the right denotes the stress due to flexure. Although the presence of the net axial force t results in 
vertical shifts in the position of both neutral planes, we assume t = 0 in this study. Using (9). the depths of neutral planes in the 
crust and mantle are given by the following. 

(a) In a case when h ,  h and the curvature of the plate is small enough [the elastic stress given by (10) is less than the 
yielding limit at the depth h], no decoupling will occur and the neutral plane will be at depth 

h2P + 2tf(lYlD,h:)l 
Y" = 

(b) Otherwise the plate is mechanically decoupled and two neutral planes are present at depths y,, and y,,: 
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Flexure of the continental lithosphere 455 

(c) If the elastic stress at the top of the mantle lithosphere is limited by Byerlee's law, ynz is given by 

h J l +  2(fz + s2)/ ( lYI~zh31 
Y"2 = 

[ l  + 2(tz + Sz)/(lylDzh:)] 

(d) At smaller curvature (see Fig. 1) the elastic core of the mantle is limited by the mechanical transition from the crust to 
the mantle and ynz becomes 

where B, = Iybi/(y - ybi)l, Di = IY&/(Y - Ydi)l, h; = h, - h,  S, = -ydl(hl - h)'/2 if h ,  2 h, otherwise S, = 0, and Sz = 
IYbll h2/2 .  

Figure 3. Dependence of the non-linear moment on the second derivative of the deflection w" (w" is inversely proportional to the radius of 
curvature) for 2 5 0 0  Ma plate with depth of mechanical bottom h, = 120 km and depth of Moho at 50 km (curve 2). The mechanical bottom of 
the crust is at depth h ,  = 20 km. Curve 1: purely elastic moment for an elastic plate with h,  = 70 kin obtained from (12) for the same values of 
h , ,  h, and h as for the non-elastic plate. Curve 3: effective rigidity corresponding to behaviour of non-linear moment. Behaviour of rheological 
layers is shown in the bottom. The areas corresponding to elastic cores of the crust and the mantle are within the boundaries y,-y, and y4-y5 
respectively. (a) Compression at the top, tension at the bottom ( w " ~  0). (b) Tension at the top, compression at the bottom (w"C0) .  The plate 
is much weaker for concave upward flexure (when tensional failure prevails) than for the concave downward flexure (compressional failure 
prevails). 
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-10 -9 -8 -7 -6 -5 
Jog,o(w'),w',cO [rn- l l  

Figure 3 (Conrinued) 

For IyI s 1 (linear range of flexure, see Fig. 3) we assume 

yn = th , ,  y,, = i h ,  and yn2 = 4h; + h. 

. . _  rigure 3 snows me caicuiatea moment ror a Droaa range or aamissioie values 01 tne curvature -wW ror an ola piare 
( t  3 500 Ma) with a depth of the mechanical bottom h,  = 120 km and Moho depth at 50 km (parameters approximately 
corresponding to the Tarim basin, Central Asia). The corresponding behaviour of rheological layers is also given. Fig. 3 reveals 
that until some value of W" is reached (about lo-' m-' in the given case), the bending moment has an almost linear 'elastic' 
behaviour. For larger values it becomes essentially non-linear and rapidly vanishes at a state of full 'saturation'. This situation 
corresponds to the appearance of a so-called 'plastic hinge' and occurs at larger values of stress for compression (Fig. 3a) than 
for the tension (Fig. 3b). 

 at U
PM

C
 on A

ugust 16, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Flexure of the continental lithosphere 457 

In the ‘linear range’ the moment for a plate with mechanically decoupled crust and mantle can be described as 
M = -y[h: + (h ,  - h)3]/12 which corresponds to a homogeneous plate with an effective elastic thickness he*: 

he = [hi + (h,  - h)3]1’3 

It is easy to see that he = max ( h , ,  h ,  - h). For continents we generally have that h ,  < h < h, ,  ( h ,  - h)  = 0.3h,/0.5h2h, < 
(hZ - h). The relation (12) thus explains the possibility of total reduction in the effective elastic thickness by a factor of 2 or 
more as compared to the non-decoupled (e.g. oceanic) plate with a maximum value of he = h,. The maximum value of the 
effective elastic thickness of the continental crust is limited by a value of h,  which is in general small enough compared to the 
maximum elastic thickness of the mantle part h,  - h, whereas the ‘spatial’ thickness of the crust h (30-70 km) is about 30-60 
per cent of the depth to the mechanical bottom of the lithosphere h ,  (90-130 km). It means that in spite of the presence of the 
thick crust the effective elastic thickness of the continental lithosphere is mainly controlled by the mechanical thickness of the 
mantle portion h, - h. 

The typical proportions between the crustal and mantle parts in the continental areas are essentially different from that in 
the oceans: for the oceanic lithosphere the difference h, - h is about 0.9h2 instead of 0.3hz/0.5h, for the continents (the 
thickness of the oceanic crust is = lo  per cent of the total mechanical thickness). Since the crust is thin and the Moho boundary 
is shallow in the oceans, no decoupling with subsequent weakening occurs and the model with three rheological layers is 
enough to describe the flexure (Goetze & Evans 1979; McAdoo et al. 1985). As a result, the behaviour of an oceanic plate with 
mechanical thickness h2 can be compared with the behaviour of approximately two times thicker (=2h,) continental plate. This 
fact is illustrated in Fig. 4 which shows the deflection of an 80 Myr old oceanic plate (thermal thickness 125 km) with 
three-layer rheology (top of figure) and that of a 175Myr old continental plate (bottom of figure) under similar boundary 
conditions. The figure shows that the thicker continental plate under the same conditions may be effectively even weaker than 
the oceanic one, due to the action of decoupling and due to the essential thermal weakening of the continental crust. 

In order to solve the non-linear system (8), we apply an iterative approach using a finite difference approximation with 
linearization by Newton’s method. In this approach the solution of the system of differential equations (8) is reduced to an 
iterative solution of a system of algebraic equations in a block matrix presentation. See details in Keller (1974) and Na (1979). 

Substituting on the ith iteration D(x,  w”)  = Di(x ) ,  we used the same boundary conditions as in Burov et al. (1990): 

(a) at infinity (x-+ m); w ( x )  -+ 0, dw(x) /dx -+ 0; 
(b) at x = 0 for continuous plate we require 

(c) at x = 0 for a broken plate we have 

where F(0)  and M ( 0 )  are respectively a boundary vertical shear force and a boundary moment per unit length applied to the 
end of the plate. 

Since many continental thrust belts are the result of ancient plate collisions and are at present seismically inactive, there 
are difficulties with visualizing the slab geometry. This is in contrast to the oceanic subduction zones where the seismic data 
closely constrain plate geometry. The upper surface of the deflected continental plate also cannot be observed in the 
topography, being partly masked by sediments, erosion, and tectonic processes which alter the surface topography. Therefore 
gravity data appear to be one of the most reliable quantitative constraints on the model. To compute a theoretical gravity 
signal due to the deformation of density boundaries caused by the deflection of the plate, we calculated gravity anomalies 
produced by semi-infinite polygonal blocks (with densities of sediments, crust and mantle), the geometry of which is defined by 
the solutions for deflection (Talwani, Worzel & Landisman 1959). The theoretical gravity signal is then compared with 
observed gravity anomalies. 

To obtain the deformation of the structural layers of the plate, we vary the same number of parameters as in pure elastic 
modelling, but vary the thermal age instead of the flexural rigidity. Since the thermal age of the plate can be deduced from the 
geological age and other data, it is even a better constrained parameter than the effective rigidity. All other parameters (strain 
rate, material constants, activation energy and thermal thickness of the lithosphere) are taken from experimental data and are 
held constant. Although we do not vary most parameters in the model, it is important to understand how uncertainties in the 
estimation of these parameters affect our results. The strain rate may vary up to an order of magnitude from the value used 

* Throughout this paper the term ‘effective elastic thickness’, if applied to the plate with non-linear rheology, is generally related to the ‘linear 
range’ described by (12). 
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F i r e  4. Deflection of a three-layer 80 Ma oceanic plate (thermal thickness 125 km, mechanical thickness 57 km, ydz = 40 OOO Pa 6') 
(McAdoo et al. 1985), compared with the deflection of the young 175Ma continental plate (h, = 15 km, h =30km, h 2 = 8 0 k m ,  
ydl = 125000Pa m-I, ydZ =40OOOPa m-',  see also Fig. 1). Identical boundary conditions are imposed for each case. (a) Non-zero boundary 
moment M = 1.79 x l O I 7  N mm-I, zero force F = 0. (b) Zero moment, non-zero boundary force F = 7.0 X 10l2 N m-' for oceanic plate and 
4.5 x 10" N m-' for the continental one. (c) Non-zero moment and force: M = 1 x l O I 7  N mm-l, F = 2 x 10l2 N m-I. 
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Figure 4 (Continued) 

here, but such a variation has little effect on the slope of the yield envelope and alters the depth to  the mechanical bottom of 
the plate by less than 10 per cent (see Fig. 1). The effect of errors in other parameters is of comparable order, but it becomes 
smaller: as the age of the plate increases, the non-equilibrium components of the lithospheric temperature structure decay 
exponentially with time, and the geotherm approaches a linear conductive gradient. As a result, the yield envelope remains 
approximately the same for ages greater than 500-1000 Myr within the uncertainty of parameters in equations (4a)-(4b). 
Uncertainties in the parameters are not very important especially if the plate is thermally older than 400-500 Myr which is a 
common case for many continental regions. 

RESULTS AND DISCUSSION 

As we could see, the average strength of the lithosphere depends on the parameters of the yield stress envelope accounting for 
rheological and thermal structure of the lithosphere. The horizontal variations of the strength depend on various local 
conditions including the boundary moments and forces, the distribution of outer loads and horizontal inhomogeneities in the 
thermal and rheological structure of the lithosphere. The last two factors result in local variations in the shape of the 
yield-stress envelope. 

Let the general shape of the yield-stress envelope be fixed. In this case we can independently examine the influence of the 
boundary conditions and outer loads on the flexural deformations of the plate and, consequently, on its effective strength and 
the internal structure. The relation between the local radius of curvature and the value of the bending moment was already 
shown in Fig. 3. The behaviour of a continental plate with typical parameters under various boundary conditions is illustrated 
in Fig. 5. Figs 3 and 5 show that, having reached some limiting value, both boundary moments and forces can create a 
significant zone of plate thinning and a subsequent loss of effective rigidity. The  size of this zone depends on  the initial 
mechanical thickness of layers and on the curvature. The plate may lose more than half of its initial thickness near the point of 
maximum value of Iw”J. Due to the significant asymmetry of the envelope, the problem becomes undetermined well before the 
upper and lower boundaries of elastic layers join each other. The location of the weak zone depends on the specific boundary 
conditions and on the loads applied to  the plate. It is important to take this fact into account if some observational data on 
flexure are used to estimate an average effective rigidity or strength of the plate. 

The main difference in the effect of boundary moments and of forces is that the moment produces maximum thinning 
almost immediately at the edge of the plate, while the force creates thinning somewhere in the middle, between the edge and 
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Figure 6. Stress distribution for a simple purely elastic plate with equivalent elastic thickness h,  = 70 km: comparison of the effect of the 
boundary moment and force. The moment produces maximum thinning almost immediately at the edge of the plate while the force does the 
same somewhere in the middle between the edge and the peripheral uprise. The larger the force, the closer is the area of the minimal thickness 
to the edge of the plate. Moment (left-hand side): curve I ,  M = 1.OX 10”N m m I ;  curve 2. M = 1.0 X 1 0 “ N  m m-.’; curve 3, 
M =  1 . O X  l 0 ” N m m  I; curve 4, M = 1 . 0 X  1 0 t X N m m  I. Force (right-hand side): curve I ,  F =  1 . 0 X  1 0 ” N m  I ;  curve 2, F =  1 . 0 ~  
l 0 ” N  m- I ;  curve 3, F = 1.0 X 101 j  N m I ;  curve 4, F = 1.5 x 10”N m I .  

the flexural bulge. It can be explained by an example of stress distribution in a simple purely elastic plate with effective 
thickness h,  = 70 km (Fig. 6). The larger the force, the closer the area of the minimal thickness is to the edge of the plate. The 
force also affects the position and amplitude of the flexural bulge. A decrease in thickness attenuates the horizontal 
propagation of stress and results in the elastic unloading of the plate outside the weak zone. 

Distributed topographic loads have an effect similar to  that of boundary forces and moments. Indeed, Fig. 7 demonstrates 
the appearance of a remarkably weakened zone beneath a mountain load (‘Gaussian’ mountain 5 km in height, radius 100 km). 
In the given example the effective rigidity of the plate (with parameters same as in Fig. 4) becomes almost two times thinner 
below the most loaded area. The manifestation of this effect in the gravity field is shown by a comparison of gravity anomalies 
computed using the non-linear rheology ( h  I = 15 km, h = 30 km, h2 = 80 km) and the purely elastic case h,  = [h; + (h ,  - 
h)3]1 ’3=50  km. It follows from this example that the plates may be weaker and therefore may appear more ‘locally 
compensated’ beneath mountainous regions than in adjacent areas. This effect is especially important when the region is 
thermally young, in regions where the Moho is deep compared to  the depth of the mechanical boundary layer in the mantle 
lithosphere, or in areas where the heat flux through the mantle is significantly larger than the heat flux due to  cooling only. For 
example, for areas where q ,  = 90-200 mW m-2, the additional contribution to the temperature-depth law (6) will be 
15”-40 “C km-I. This may shift the mechanical boundary upward by up to tens of kilometres and decrease the mechanical 
thickness of the plate beneath the load several times. Increased heat flux causes thermal weakening of the lithosphere and 
reduces the apparent flexural rigidity. As a result the rigidity of the crust may become negligible. It is clear from comparison 
with action of the boundary force that, if the load is highly asymmetric, the area of the maximum thinning is not necessarily 
beneath the point of a maximum load. 

Finally, to examine the applicability of our model, we tested our approach on the case of Tarim block and Kazakh shield 
which collide beneath the Central and Eastern Tien Shan (Central Asia). The topography and gravity data profiles used here 
were published and discussed earlier in Burov et al. (1990). We just briefly recall some geodynamical considerations. The area 
represents a zone of interaction between the Precambrian Tarim block which advances from the south and the Kazakh shield 
which moves from the north (Fig. 8). Bouguer gravity anomalies over the Tien Shan in this area are within about 50mgal of 
those expected for local Airy compensation and require an additional support of an uncompensated mass deficit. Assuming a 
purely elastic model, Burov er al. (1990) found that both colliding plates (of approximately the same geological age) subduct 
almost symmetrically beneath the Tien Shan. Furthermore, the equivalent flexural rigidity of the northern plate appeared to  be 
very small (h,  -. 15-25 km, D < N m), especially in comparison with that of the southern plate (h,  = 50-60 km, 
D = N m). It was also shown that a significant value of the boundary force (1-5 x lo’* N m-’) and/or moment 
(=2 X 10I6Nm-’) per unit length was required to fit the gravity data. In addition, Burov & Kogan (1990) detected a 
preference of approximately 30 per cent thinning at  the subducting edges of the plates. 
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Figure 7. Influence of the distributed topographic load leads to a significant thinning of the plate. The plate beneath mountainous region may 
be weaker and therefore more ‘locally compensated’ than the adjacent region. The parameters used are the same as in Fig. 4. The plate is 
loaded by an symmetrical ‘Gaussian’ mountain 5 km in height, 100 km in radius. Broadest mountainous area can produce greater thinning. 
Theoretical gravity responses are computed for the non-linear case (thick solid line, h ,  = 15 km, h = 30 km, h, = 80), the purely elastic case 
(crosses, h, = [h:  + ( h ,  - h)3]i’3 = 50 km) and an Airy model (thin line). 

10 9 8 6 5 4 3 2 1  

Figure 8. Map of mean elevations of the Tien Shan, Kazakh shield and Tarim Basin by Burov er al. (1990). The gravity data profiles are 
numbered as 1, 2 , .  . . .  10. 
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In the present study we show that deviations from elastic solutions may take place for areas with relatively intensive 
flexural deformations. Nevertheless, the deflections of interacting plates in the considered region are not too high and for this 
case there is no reason to expect large discrepancies between w ( x )  obtained from the multilayered model and w ( x )  obtained 
from a simple elastic approximation. This probably explains the fact that the elastic model provided here a satisfactory fit to the 
gravity data. However, due to its simplicity, the elastic model is unable to explain many aspects related to the internal structure 
of the lithosphere. In other words, it is difficult to associate the single output parameter of the elastic model-the equivalent 
(or effective) elastic thickness--with any level inside of the lithosphere or even to interpret the differentiation in effective 
rigidities. The values of flexural stresses prediced by the elastic modei are also somewhat unrealistic in the light of mechanical 
properties of the rocks. Therefore, the main goal we followed here running more complicated numerical experiments for the 
Tien Shan was to try to detect and explain effects which are clearly beyond the scope of abilities of elastic modelling. In this 
case, using a more sophisticated model we do not intend to improve the fit to the data, but to get some additional information 
on the internal structure of the lithosphere (including stress distribution and the location of the rheological layers which allow 
us to predict the geometry and position of brittle seismogenic zones and zones of abnormal viscosity apparently correlating with 
anomalies of seismic velocities) and, furthermore, we can try to better understand the significance of the equivalent elastic 
thickness computed previously for various areas. 

The data which we used for our computations were taken from Burov et al. (1990). To model the interaction of the Tarim 
block and Kazakh shield underthrusting flanks of the Tien Shan, we consider two separate semi-infinite plates underlying the 
areas north and south of the axis of the mountain region. The break is assumed to lie at the minima in the Bouguer anomaly 
(=41°N-41.5"N for profile 2, Fig. 8). The southern Precambrian Tarim block corresponds to the parameters of the yield stress 

' 0  100 200 300 400 500 
DISTANCE, km 

Fire 9. Application of our model to the case of Tarim basin. The topography and gravity data are taken from Burov et al. (1990), profile 2 in 
Fig. 8 ,  part to the south of the Tien Shan. (a) Behaviour of Tarim block under the real topographic load. The boundary moment 
M = 2.0 x 10l6 N m m-' and force F = 4.0 X 10" N m-'  are applied at the northern edge which subducts beneath the Tien Shan. Observed 
Bouguer gravity (circles) is compared with the theoretical gravity (dots) due to the deflection of the Moho zone. Sediment density used for the 
basin ps = 2600 kg nC3. Density used for other rocks above the Moho is pc = 2670 kg (b) The top figure shows the comparison of the 
observed Bouguer gravity anomalies (circles) over the Tarim basin with the theoretical anomalies produced by deflection of the plate using thc 
rnultilayered model (curve 2) and assuming a purely elastic model with thickness h,  = 50 km (curve 1); 65 km (curve 3); 75 km (curve 4); and 
100 km (curve 5 )  (Burov er al. 1990). The bottom figure shows the corresponding deflections. The non-elastic case fits the data better than the 
best solutions for the purely elastic cases. 
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Figure 9 (Continued) 

envelope from Fig. 2. It did not undergo any thermal rejuvenations (Molnar & Tapponnier 1978; Lyon-Caen & Molnar 1984) 
and we therefore assume that its geological age is the same as the thermal age. 

The results for Tarim area are summarized in Fig. 9. These figures show a good agreement between the theoretical gravity 
signal due to the deflection of the plate beneath the Tarim basin and the observed Bouguer gravity anomalies [terrain 
corrections were applied to the data and a long-wavelength gravity field (first 10 harmonics, wavelength more than 4000 km) 
was also removed, see details in Burov et al. (1990)l. Fig. 9(b) also shows the match between the theoretical deflection 
produced by our multilayered model and that produced by the purely elastic models previously used in Burov et al. (1990). 
One can see that the curve for deflection in the non-elastic case lies somewhere between the best-fitting ‘elastic’ curves for 50 
and 65 km thick plate. So the average ‘equivalent’ mechanical thickness of the non-elastic plate in the deformed area is less 
than he = 70 km that could be predicted from (12) for purely elastic continental plate. This discrepancy means that, even for 
relatively small flexure (as is the case in this area), the non-elastic behaviour plays a detectable role in shaping the Moho 
boundary. The location and shape of the brittle, elastic and ductile zones are also predicted. As the calculated elastic stresses 
due to the flexure in the case of Tarim block exceed the yield stress for brittle failure in the crustal part of the lithosphere but 
not in the mantle part, one can explain the presence of shallow earthquakes and the absence of deep ones. The predicted 
depths of the brittle zones (10-15 km for the Southern Tien Shan and 20-30 km for the Northern Tien Shan) are consistent 
with typical focal depths of earthquakes for this area [lo-13 and 25-44 km respectively, by Nelson, McCaffrey & Molnar 
(1987)l. 

North of the Tarim block lies the Palaeozoic Kazakh shield which collides with the Tarim block beneath Tien Shan. 
Substitution of a geologic age of the shield into (6) yields a plate with an average elastic thickness of about 65 km. This 
estimate does not agree with the results of Burov et al. (1990) who found that an average elastic thickness of about 15-25 km 
provides the best fit to the Bouguer gravity data. The area probably underwent some kind of thermal rejuvenation in the 
Jurassic period (Babaev, Koshlakov & Mirzoev 1978). Using our non-linear model for a plate of such age (=175Myr), we 
obtain a depth to the mechanical bottom of 73-79 km and an effective variable elastic thickness of 15-25 km respectively (Fig. 
10). The stresses caused by loading of the plate with the Tien Shan mountains contributed significantly to the thinning of the 
plate. We thus are able to explain why many continental plates have apparent effective rigidities much smaller than those 
predicted based on their geological ages. The general agreement between the results ‘naturally’ obtained on the basis of the 
thermal age and those obtained from the elastic model by fitting to the observational data is probably a strong arguement in 
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Figure 10. Application of the model to the case of thermally young Kazakh shield (the profile 2 in Fig. 8, part to the north of the Tien Shan). 
The computations are analogous to those of Fig. 8(a). Curve 1 corresponds to the theoretical gravity signal for the purely elastic plate with 
h, = 10 km; curve 3 corresponds to that for h, = 25 km. Curve 2 gives the solution for the multilayered model with the boundary moment 
M = 2.0 x 10l6 N m m-' and boundary force F = 2.0 x lo1* N m - '  applied to the southern edge of the Kazakh shield. The area probably 
underwent some thermal rejuvenation in Jurassic time. Solving the problem for a plate of Jurassic age (=175 Ma), we obtain the depth to the 
mechanical bottom at 73-79 km and an average effective elastic thickness of about 25 km. 

favour of using our approach for estimating the actual thermal age of the plate in the cases when introduction of the geological 
age fails to explain the data. 

Finally, we have to note that the real behaviour of the lithosphere is more complicated than that described by our model. 
Such factors as fluids, pore pressure, semibrittle behaviour of rocks rather than an immediate brittle/ductile transition (Byerlee 
1978), time-dependent influence of loads, different chemical processes, and viscous flow in a lower crust probably are able to 
significantly affect the shape of the resulting yield envelope (Kirby 1987). Influence of lithospheric rocks (like diabase), with 
properties somewhat different from quartz and olivine is also highly important and can produce additional weak places in the 
envelope (Shudofsky et al. 1987). Moreover, from one side one should note that computations were additionally simplified by 
ignoring the lateral variations in rheology while the response of many areas may be strongly controlled by these 
heterogeneities. But from the other side the information on such variations, except some well-studied cases like the Pyrenees, 
is usually indirect and not reliable enough for immediate use in the model. Nevertheless, the model used here incorporates the 
most important rheological features of the continental lithosphere and should therefore serve as a basis for further 
investigations of effects related to flexure of lithosphere. 
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APPENDIX A 

The accurate analytical solution of the heat-transfer equation for the continental lithosphere 

Assuming that for the old continental plate the dependence of the temperature on the plate velocity can be neglected, we can 
obtain the temperature distribution T = T(y)  in the plate by solving the following system: 

-- - +  - for y c h, 
k, a t  ay2 k, kc 

- 0  
1 d T  $T 

k, a t  ay2 
for y > h. 

The boundary and initial conditions are 
T(0, t) = 0 
T ( a ,  t) = T, 
T(y, 0) = T, 

The term pvi/(h2k,) is included to  account for dissipative heat generation due to possible viscous sliding between the 
crustal and mantle portions of the lithosphere: p is the mean viscosity of crustal material in the viscous channel, and vo is the 
mean velocity of relative sliding. In the present study we assume that n o  sliding occurs (21,) = 0). 

(temperature a t  the upper surface = const = 0 “C), 
(temperature a t  the bottom = const = T,), 
(homogeneous temperature distribution at the beginning). 

The homogeneous solution Th of ( A l )  (Carslaw & Jaeger 1964) is 

The partial solution Tp of ( A l )  is obtained from the assumption that T I h - ( )  = T I,,+() and dT/dy I h - ( )  = dT/dy I h + ( ] :  

T-, = + Td for y S h 
T+, = Do + D,y for y > h 

Tp= T- , (y)=Co+Cly  -&y2/(2k)+(A,/k)[ l  -exp(-y/h,)] f o r y e h  

for y > h 

General solution in dimensionless variables i = A / a ,  f = y / u ,  i = u / ( n * )  
m 

TG, 0 = T, + T, (y + E, A, exp (-nZn‘q sin 

A 8 - 2  A 
T, = c 2k k 

aC1y - - +‘[l-exp(-ay/h,)] f o r g s h ,  

- Adh2 D - D  A, exp (-h/h,) 
( h + h , - a ) - l  ] , 

1 -  I -  2ak 
Adh C,  = el = - (2a - h )  + - [ 
2ak ak  h, 

2 2 2 4  A, exp (-h/h,) ( h + h , ) - 1 1 ,  A , = - - - - - E  1, +-[ ak  h, n n  T, T,i=l i 

[ (2) sin n n h  - n n  cos 

nn P2 + (nn)’ 
c o s n n h  - 

= aBl [ - l / (nn)2  sin n n h  + ~ (h - l)]. 
4 n n  
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