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We propose an all-superconducting three-terminal setup consisting in a carbon nanotube (or
semiconducting nanowire) contacted to three superconducting leads. The resulting device, referred
to as a "biSQUID”, is made of four quantum dots arranged in two loops of different surface area.
We show how this biSQUID can prove a useful tool to probe nonlocal quantum phenomena in an
interferometry setup. We study the measured critical current as a function of the applied magnetic
field, which shows peaks in its Fourier spectrum, providing clear signatures of multipair Josephson
processes. The device does not require any specific fine-tuning as these features are observed for
a wide range of microscopic parameters — albeit with a non-trivial dependence. Competing effects
which may play a significant role in actual experimental realizations are also explored.

PACS numbers: 74.50.+r, 74.78.Na 85.25.Dq 74.45.+c, 73.63.Kv,

I. INTRODUCTION

Multiterminal setups offer a great way to explore non-
local quantum effects as well as entanglement in con-
densed matter devices, attracting both experimental and
theoretical attention. Recently, these efforts have fo-
cused on all-superconducting hybrid structures, involving
quantum dots or metallic islands connected to multiple
superconducting leads™ In particular, the prediction
of nonlocal quartet production/® that is the emission of
spatially correlated pairs of Cooper pairs, opens new per-
spectives in the realization of electronic entanglers.

Motivated by this, a recent work? considered an all-
superconducting bijunction consisting of a central super-
conductor coupled via gate-controllable quantum dots
to two lateral voltage-biased superconductors. It un-
covered the presence of a coherent transport mechanism
away from equilibrium, manifesting as multipair phase-
coherent Josephson resonances in the current, appearing
on top of the usual local dissipative transport of quasi-
particles. Similarly, experimental work performed on a
three-terminal voltage-biased Josephson junction involv-
ing a central T-shaped metallic region revealed features
in the electronic subgap transport consistent with the
production of nonlocal quartets® though an unequivocal
signature is still lacking at the moment. In this context,
alternative ways of detecting such nonlocal multipair pro-
cesses are highly desirable, in particular in the coherent
dissipationless regime, a route that could be provided by
an interferometric setup, such as a SQUID.

A superconductor quantum interference device, or
SQUID, consists in a superconducting loop, defining two
paths each interrupted by a Josephson junction. As a
direct consequence of phase coherence, the Cooper pairs
flowing along these two paths interfere, in a way that is
controlled by the magnetic flux through the loop. In a re-

Figure 1. Artistic view of the biSQUID setup where a single
nanotube or nanowire is contacted to three superconducting
electrodes (all at the same potential), with magnetic field bi-
asing.

cent achievement of molecular electronics, a carbon nan-
otube SQUID has been realized experimentally? There,
the two constitutive Josephson junctions are both made
of a nanotube quantum dot, allowing to tune their trans-
parency with the help of an external gate voltage, there-
fore providing a new generation of versatile sensors. In-
terestingly, similar carbon nanotube (or nanowire%ﬂc_l&
vices have been used as Cooper pair beam-splitters,

a source of entangled electron pairs'™ 7 where the quasi
one-dimensional nanostructure is contacted to a central
superconducting source and two metallic drains. These
rely on a specific nonlocal process, referred to as CAR for
crossed Andreev reflection ™22 which amounts to sepa-
rating the constituents of a Cooper pair into spatially
distinct contacts (provided they are within a distance set



by the coherence length).

It is therefore only natural to devise a setup bring-
ing together the interferometric properties of the SQUID
with the nonlocal aspects associated with CAR processes.
Such a setup could be constructed from a carbon nan-
otube with readily accessible technology, as illustrated
by the many examples of multiterminal nanotube-based
devices now available 2326

In this paper, we propose such a device, dubbed a
biSQUID, consisting of two twinned SQUIDs, where the
superconducting contact which emits the multiple pairs
is common to both loops in order to reveal multipair
processes through interferometry. The two loops realize
a three-terminal structure made of a single carbon nan-
otube (or nanowire) contacted to three superconducting
leads (see Fig. , delimiting four quantum dots which are
controlled by external gate voltages. The device is ide-
ally operated by fixing the total current flowing through,
which we express in terms of the magnetic fluxes piercing
the two loops.

Recently, a two-terminal SQUID geometry involving
two loops was realized experimentally using superconduc-
tor - normal metal - superconductor junctions” While
somewhat similar in spirit to the present proposal, this
setup was specifically designed for sensing applications
rather than to explore nonlocal effects. It shows, how-
ever, that not only the actual realization of these systems
is within our grasp but also that such superconducting
nanodevices constitute an active field of research.

The outline of the paper is as follows. In section [[I]
we introduce the setup and present a first simple phe-
nomenological approach. We then derive the expression
for the critical current in section [[TI] starting from a mi-
croscopic description of the setup. Section [[V]is devoted
to our results, where we show and analyze the depen-
dence of the critical current on the external magnetic
field, and comment on the robustness of the observed
features. Finally, in section [V} we explore the competing
effects which might spoil the expected signatures of pure
CAR processes, before concluding in section [VI]

II. SETUP AND PHENOMENOLOGY

The biSQUID setup is presented in Fig. 2} It basi-
cally amounts to twinning two nanotube-based SQUIDs
by a common central electrode whose width is smaller
than the coherence length, in order to support nonlocal
Andreev scattering processes.?? A carbon nanotube (or
nanowire) is contacted with three superconducting elec-
trodes, referred to as S,, So and Sp. This defines four
quantum dots, labeled al, a2, bl and b2, controllable via
nearby electrostatic gates. The area of the two resulting
SQUID loops (denoted A and B respectively) are cho-
sen different, so as to ensure that electrons feel different
magnetic fluxes depending on the loop they flow through.

In order to make the upcoming discussion as clear as
possible, it is important to properly define the various su-

perconducting phases involved in this setup. A phase @,
is attributed to the central superconducting finger, while
the other two superconducting electrodes are character-
ized respectively by a phase ¢, and ¢;. Furthermore,
the magnetic fluxes through the two loops A and B are
defined as ® 4 = BS4 and ®p = BSp, where S; is the
surface area enclosed by loop j.

It follows from flux quantization that the phase differ-
ences seen by each quantum dot Josephson junction, are
given by

54)0@1 = ¥s — Pa (1)
Spb1 = s — Pb (2)
d
590(12 = Ps — Pa — 277—?‘/4 (3)
0
0]
0pb2 = s — Pb + 27T(}ﬁB, (4)
0

where @ = h/(2e) is the flux quantum. The biSQUID
is controlled by fixing the total current I = I, + I, mea-
sured from the common output, which depends on all of
these four phase differences, or alternatively on the su-
perconducting phases ¢, and ; as well as the magnetic
fluxes through the loops ® 4 and @5 (from this point on,
we set @5 = 0 as the reference for the superconducting
phases).

A key quantity of interest for such a superconduct-
ing interferometer is the flux-dependent critical current,
i.e. the maximum dissipationless current which can flow
through the device, defined here as

I (P4, ®5) = }D\/Iigi |1 (60a1, 0pp1, 00a2, 0pp2)| . (5)
Out of the four quantum-dot based junctions, only al and
b1 are coupled by nonlocal effects, leading to signatures in
the critical current involving specific combinations of the
external fluxes, which can be revealed through a simple
phenomenological approach.

In the limit of low transparency, we can perform a sim-
ple perturbative treatment in the Cooper pair tunneling.
Processes involving a single pair contribute to the total
current I measured from Sy in the standard Josephson
form of a sinusoidal current-phase relationship for each
of the four junctions, leading to

Iip = Iy [sin0pqa1 + sindppy + sin dpga + sin dppe] . (6)

Processes involving two pairs all lead to second-order har-
monics of the Josephson current. However, one must dis-
tinguish between two different contributions. Local pro-
cesses, amounting to two pairs crossing any given junc-
tion, involve twice the phase difference seen by each quan-
tum dot:

Iopiocal = L3y [sin (26p41) + sin (20pp1)
+8in (20q2) + sin (20pp2)] - (7)

In addition to these, the present device allows the
possibility for nonlocal processes, and one thus needs



to consider the so-called pair cotunneling and quartet
supercurrents/® The latter corresponds to the splitting of
two correlated pairs from Sy into S, and Sy, which leads
to a Josephson-like current-phase relationship involving
both the phase difference between Sy and S,, and the
one between Sy and Sp, namely

IQP,quartet = IQ sin (690(11 + 630b1) . (8)

Due to the exchange process intrinsic to quartet emis-
sion, we expect Iq to be negative.” This nonlocal process
relies on crossed Andreev reflection through Sy, which
naturally coexists with normal transmission through the
central superconducting electrode without electron-hole
conversion, the so-called elastic cotunneling. It follows
that the quartet process comes with a similar partner
corresponding to the exchange of a pair from S, to S
via double elastic cotunneling through Sy, therefore con-
tributing to the supercurrent as

IQP,pair cotunneling = IPC sin (6()00,1 - 6901)1) 5 (9)

where the various current scales introduced above sat-
isfy |Ipcl, [Iql, |[155] < Ij, as a consequence of the low
transparency of the junctions.

Combining Egs. though @, one obtains the follow-
ing expression for the total critical current, up to second
order in the pair tunneling

I (®4,Pp5) = Max

Pa,Pb

215 sin (cpa + W&)A> cos (wéA)

+ 2Iysin (cpb — 71'&)3) cos (Wi)lg)

+ 2155 sin (230{1 + 27r<f>A) cos (ZW‘i)A)
+ 2135 sin (29017 — 27r<i>3) cos (277@3)
+ I sin (pq + ¢b)

+ Ipcsin (@qa — ) ‘ (10)

where <i>j = ®;/d; is the magnetic flux through loop j,
in units of the flux quantum. Apart from small regions
near integer values of ® 4 g (where the single pair Joseph-
son current is near suppression), the critical current can
readily be obtained without any further calculation in
most of the (&4, Pg)-plane, and takes the form

I, (®.4,®5) =21 [|cos (.4 | + [cos (7Ds)]
+ [Iq] ‘sin (’/Té_A — Wi)B) ’

+ [Ipc|

(11)

sin (77&{4 + 71'&)3)‘ .

There, the first term corresponds to the critical current
in the absence of a quartet supercurrent. The two loops
are decoupled in this case and I, (P 4, Pg) splits into two
independent contributions corresponding to the simulta-
neous maximization of I, and I,. Interestingly, quartet

*I

So

A

a2 al bl b2
@) oo @)
— Sp
0pa2 0¢a1 1 dpp2

b b

Figure 2. The biSQUID setup as modeled here. Three su-
perconducting terminals and four quantum dots (originating
from a single nanotube or nanowire) define a two-loop system
with enclosed areas of different sizes. Each dot Josephson
junction sees a phase difference labeled §¢, combining the
phases of each superconducting electrodes as well as the en-
closed magnetic fluxes. The arrows near each junction set the
conventions for the flowing currents and phase differences.

and pair cotunneling processes are responsible for an ex-
tra contribution to the critical current with a very specific
flux dependence, leading to a macroscopic manifestation
of nonlocal effects. In particular, this simple calculation
points out that a measurement of the quartet current is
possible by detecting the flux periodicity of the biSQUID
critical current.

IIT. MICROSCOPIC THEORY

This section is devoted to a microscopic calculation of
the current through the biSQUID. Our goal is to justify
the expression obtained from our simple phenomeno-
logical approach, to generalize it to more transparent
junctions, and to show that the energy levels in the dots
can be chosen such as to promote multi-pair transport,
and in particular reveal the presence of a quartet reso-
nance.

A. Hamiltonian

The model Hamiltonian for the biSQUID setup is ex-
pressed as the sum of three contributions

H= > Hsj+ Y. HpatHr (12)
j=a,0,b a=al,a2,
b1,b2

Here Hg,; is the Hamiltonian associated with the super-
conducting lead S; (j = a,0,b), which is given by the



following compact form

Hsj =) U (6o +8j00) Ty, (13)
k
where &, = % — p and Aj is the superconducting gap
of lead j. Each quantum dot a (o = al,a2,b1,b2) is

modeled by a single non-interacting level, With energy
€qa, described by the Hamiltonian

Hp.o = €adlo.d,. (14)
In both these expressions, we used Pauli matrices acting
in Nambu space, and introduced Nambu spinors for the
lead and dot electrons, defined respectively as

) a= ()
W y = ’ ’ d — .
w= (o) a= (G

Introducing a tunneling amplitude ¢, between lead j and
dot «, and performing a gauge transformation to incor-
porate the superconducting phases ¢; in the tunneling
term, one has for the tunneling part of the Hamiltonian

Hr = (W], Tikada + Hee.)
k

(15)

(16)

where, in absence of external magnetic field, we have
Tika = tjae_ik”aazewz@j/z, Tjo being the position of
lead j where tunneling to/from dot « occurs.

The resulting Hamiltonian is fully quadratic in terms
of both the leads and the dot electrons. It is therefore
convenient to integrate out the leads degrees of freedom
and derive an effective theory involving only the dot elec-
trons.

This is achieved through standard techniques, starting
from the partition function

with action

B _
S= [ dr) W(r)
0 ik
B _
Jr/ dr d, (7
; Za: (1)

(D7 +&,0. + Ajog) Up(T)

(Dr + €40:) do(7)

Jak

(18)

where D, is defined in Nambu space as D, = ( Or o > .
0 -9,

Carrying out the integration over the (1,v) Grass-
mann fields, one is left with an effective action of the
form

eg_/o dTZd

)(Dr + €q0:) do(7)

/ drdr’ Zd (r—7"dy(7")  (19)
where we introduced the tunneling self-energy
Z ki (T) Ty (20)

which depends on the leads electrons Green’s function,
defined in Matsubara frequency space as

Gjk(iwn) = (iwnl — &0, — Ajo,) " (21)

It follows that the effective field theory, quadratic in

(d,d), can be described uniquely in terms of the Matsub-

ara Green’s function G/(iwy) for the dot electrons, which

7 /D [z/;, o, d, d} e—S[d_),w,d_,d}7 (17) takes the form of a 8 x 8 matrix in Nambu-dot space given
by
|
gaZ,a(iwny (I).A) 0 0
N—1y/- _ O gal,a(iwnv O) f(an) O
G (an) = 0 f(an) gbl,b(iwna O) 0 (22)
0 0 gv2,b(iwn, —Pp)
where
i (14 2 (1 o tiaﬂ —ea APt 8o T
ga’j(iwm )= i 2% 2 ) v (0) . v (0) 2 2 N (23)
—AeT(t5 o + 1] e 0%) Joirar iwn, [1 + \/m<t0’°‘ + tjﬂ)} + €a
—n _ cos(kpR) — sin(kpR) ——=2__ cos(krR)
f(ZWn) _ WV(O)t()’alt()’ble_R/g(wn) vV w2 +A2 Vw2 +A2 (24)

where we introduced the width R of the central super-

A

cos(krR) —n

JoiaT cos(krR) + sin(krR)

(

conducting lead, and assumed all superconducting elec-



trodes to have the same gap energy A; = A, and density
of states at the Fermi level v(0). The energy-dependent

coherence length is defined as &(w,) = A/ /w2 + A2,

B. Current

The current through a given quantum dot Josephson
junction «a, can be readily expressed as the time deriva-
tive of the number of electrons out of the superconduct-
ing reservoir, and as such can be related to the phase
derivative of the tunneling Hamiltonian. In particular,
the average current through dot o reads

I = % OHr _
“ R \9pa/

where F' = —kpT log Z is the free energy.
Keeping in mind that the effective theory contains all

the relevant phase-dependent degrees of freedom, this can
be further simplified as

% oF
h 9004

(25)

2e dlog Zeg

Bh 96,

= ;;85 Zlog [detG (zwn)}

I, =
(26)

where we performed explicitly the integration over the
Grassmann fields (d,d). The current through any given
junction can thus be obtained from Eq. , after per-
forming a Matsubara frequency summation. The total
current through the device is readily obtained by sum-
ming up the contribution coming from each junction.
The width R of the central superconducting lead,
which corresponds to the separation between tunneling
points from dot al to Sy and dot bl to Sy, enters the
above expression for the current in two important ways.
First, the total current contains terms which decrease
exponentially with R. These correspond to nonlocal con-
tributions which expectedly vanish if the separation be-
tween tunneling points exceeds the superconducting co-
herence length, therefore setting a typical order of magni-
tude for R. Second, some of these terms are also oscillat-
ing on a scale set by the Fermi wavelength Ap. Since A\ is
typically several orders of magnitude smaller than the su-
perconducting coherence length, these contributions are
rapidly oscillating as a function of R. It is thus natural
to average over these rapid oscillations, assuming that
the separation between tunneling points is susceptible to
fluctuate slightly on a scale given by a few Fermi wave-
lengths. Defining R = Ry + r, where Ry is a fraction of
the coherence length &y and r is of the order of the Fermi
wavelength, we introduce the r-averaged total current as

AR

0log [det G"l(iwn)]
090, '

ITot -

S 9D

2p J_
(27)
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Figure 3. The relative weight of the numerically obtained
Fourier components (in A space) of the critical current in
the low transparency regime (I' = 0.01A), for identical loops
(n = 0) at low temperature, 3 = 100/A. This is compared
to the analytic solution corresponding to the usual harmonic
Josephson current (dotted line).

Considering the maximization with respect to the super-
conducting phases, the critical current through the device
is now expressed in terms of the microscopic parameters
as

1. ((I)Aa (I)B)

Max |Iot (00a1, 6001, 00a2, 6002)|, (28)

PaPb

where one needs to replace all phase differences dp, by
their expression, Egs. (1)-(), prior to evaluating the
maximum.

C. Low transparency expansion

It is possible at this stage to provide a firmer basis for
our earlier phenomenological treatment. Indeed, starting
from Eq. , one can perform a perturbative expansion
of the total current I coming out of Sy in powers of the
tunneling amplitude.

Focusing on the simpler case of equivalent junctions,
i.e. assuming constant tunneling amplitude ¢y, and con-
sidering all dot energies to be the same (up to a possible
sign, €, = *€), one can show analytically that the total
current takes the form

Ito: =1 [sin dpq1 + sin dpp1 + Sin dpaa + sin dppa]
+ I35 [sin (2641) + sin (28¢p1)
+sin (20¢q2) + sin (25¢p2)]

+ Ig sin (6pa1 + 0pp1) , (29)

when expanding up to forth order in the tunneling rate
I' = 27v(0)t2, which amounts to taking into account pro-

cesses involving up to two Cooper pairs. The various
contributions are expressed in terms of the microscopic



parameters introduced in Sec. [[ITA] as

O Ve et
Iy = Bh Z (AZ + ;2A4(F:2 w2y —%% (31)
fa= th (A2 +;2A 4(F4 w%)20082(/€FR)e—2R/$

- 7%1263 A/ (32)

where we only kept the leading order contribution to I;
(discarding the third and forth order corrections) and
provided simplified forms valid in the large-gap, low-
temperature limit A > e > T, At this level of
approximation, the quartet component is of the same or-
der of magnitude as the Josephson second harmonics (up
to the nonlocal prefactor in Rp) and does not depend
on the specific arrangement of the dots energy levels (Iq
is unchanged whether €,1 = €1 or €41 = —€p1). These
properties are specific to the present perturbative treat-
ment and generally not expected to remain valid once
one includes contributions from all orders in tunneling.
The result of Eq. also reveals that the amplitude of
the quartet current is negative. This m—type behavior
has been observed in Ref. [7l for multipair dc resonances
in an out-of-equilibrium voltage-biased bijunction. It can
be attributed to the internal structure of a Cooper pair
via the antisymmetry of its wavefunction.

Interestingly, there is no trace of the pair cotunnel-
ing current in this derivation. This is an artifact of the
low-order expansion, combined with the symmetry of the
limit considered here. Indeed, a pair cotunneling current
of the order of Iq x (i)Q does appear, arising from both
S, and Sy, but these two terms end up contributing to
the total current with an opposite sign.

This calculation not only validates the phenomeno-
logical form proposed in Sec. [l but also justifies that
Iy > |13, |Iql, Ipcl|, as assumed in our discussion of
the critical current.

IV. CRITICAL CURRENT

We now make use of the general expression of
the critical current of the device in order to explore its
evolution for a broad range of parameters, going beyond
the low transparency regime.

As argued from our simple phenomenological treat-
ment presented in Sec. |L} we expect quartets (and more
generally all multipair processes) to lead to specific signa-
tures in the critical current of the biSQUID, identifiable
through their periodicity in the magnetic flux. In what
follows, we thus focus on the Fourier spectrum of the
critical current.

A. Signatures in Fourier space

The critical current can be written in a very general
way in terms of its harmonics in ® 4 and ®g, namely

+ZOO Z Inmeﬂnﬂ'g(é]L z2m7r—g. (33)

n=—0o0 Mm—=——0o0

I. (D4, Pp) =

While we could study independently the variations of the
critical current with respect to ® 4 and @5, it makes more
sense at this stage to introduce a new set of variables. In-
deed, in practice, the magnetic flux through the device
is provided by an external homogeneous magnetic field,
which affects both ® 4 and @3 in a correlated way. The
magnetic fluxes through loops A and B are therefore pro-
portional to one another and only differ as a result of the
different surface area enclosed by each loop, so that one
can write

(b.A,B =P (1 + TI) ) (34)

where we introduced the average magnetic flux ® and an
asymmetry parameter 7 defined as
Dy + P
2

Sp—54
Sp+S8a

In terms of these new variables, the expansion of the
critical current I. takes the form

~+00 +oo
S L E Ol (gy)

n=—0o0 m=——0o0

d = (35)

n= (36)

The most convenient way to probe for these harmonics is
to introduce the Fourier transform with respect to the av-
erage phase accumulated around the loops ¢ = 27® /Py,
which is defined as

. 1
1. (N) o

“+o0
> Z Lnmd (

n=—00 Mm—=——0o0

dd I, (D)e —2inN g

—n)+m(l+n)—N).

(38)

It follows that the Fourier-transformed critical current
I.(N) is given by a set of peaks, located at N' = m +
n+ (m —n)n, whose height is related to the amplitude of
the (n, m) harmonics. Identifying which of these features
are present in the spectrum provides a direct and clear
indication of what processes are at play in the biSQUID
setup. Since the critical current is real and even in @,
so is its Fourier transform. The Fourier spectrum is thus
even in A/, and we focus only on positive N.

As a first step, we consider the simplifying approxima-
tion of identical junctions. This gives us an opportunity
to discuss the typical signatures observed and dress up
a physical picture, without obscuring it by dealing with
too many parameters.
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current.

B. Identical junctions

We treat here the case of identical junctions, charac-
terized by the same dot-lead tunneling rate I'. For sim-
plicity, we assume that the energy levels €, of the dots
can only take two values, either 4+¢ or —¢, and distinguish
various scenarios, based on the possible arrangements of
these levels.

We focus on the low-temperature regime (8 = 100/A)
and set the attenuation factor e~ Fo/¢ = (0.9, compatible
with current experimental realizations.

1. Non-resonant case

We consider first the non-resonant case, for which the
energy levels of the dots are non-zero, i.e. detuned with
respect to the chemical potential in the superconducting
leads. The results are summarized in Fig. [

In particular, we focused on two situations: (a) a sym-
metric arrangement of the energy levels of the dots in-
volved in the two loops (all chosen equal, ¢, = €) and
(b) an antisymmetric arrangement of the energy levels
between the two loops (where €,1 = €,2 = € while €, =
€2 = —e€). Surprisingly, the obtained Fourier profiles
are strictly identical for the symmetric and antisymmet-
ric cases, signaling that the r—averaged critical current
is insensitive to the arrangement of the dots energy lev-
els, even beyond the low-transparency regime for which
we could establish this property semi-analytically. The
energy level symmetry has no influence on the Fourier

spectrum, which one might interpret as a consequence of
some kind of induced particle-hole symmetry, due to the
proximity effect from the neighboring superconducting
electrodes the dots are in contact with. In particular this
means that the quantum dots no longer play the role
of an energy filter, as they typically do in hybrid Nor-
mal metal - Superconductor - Normal metal structures,
such as the Cooper-pair beam splitter 1Y where it allows
to favor crossed Andreev reflection over pair cotunneling
processes.

In the low transparency regime, the nonlocal effects are
not strong enough to be readily identified and one expects
the critical current to be insensitive to the arrangement
of the energy levels. Indeed, in both cases, the Fourier
profile is largely dominated by the usual Josephson cur-
rent associated to two independent loops. The Fourier
spectrum is composed of two sets of peaks, located at
multiples of 1—n and 1+n respectively. These correspond
to harmonics in ® 4 and ®g (of order (n,0) and (0, m) re-
spectively) and can be readily associated with the usual
Josephson current flowing through loops A and B in ab-
sence of any nonlocal coupling between the two. Indeed,
in the case of independent loops, one expects the criti-
’. This,
in turn, leads to a characteristic evolution of the Fourier
profile, which we could compare to the one obtained in
the present low-transparency regime. In Fig. [3, we show
that the weights associated with the different harmonics
follow the predicted behavior, confirming that the crit-
ical current is dominated by the usual local harmonic
Josephson component.

cal current to be of the form 2753, ‘cos (W(ij)
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Figure 5. (Left) Relative weight of the absolute-valued Fourier components (in A space) of the critical current as a function of
T, for a resonant arrangement of the energy levels e, = ¢ =0 (and n = 0.1, 8 = 100/ A, e Folfo — 0.9). (Right) Same relative
weight in the specific case of high transparency, I' = 0.8A. There we also restored the sign of the various Fourier amplitudes
and identified those in terms of a pair of integers (n, m) corresponding to the periodicity n® 4 + m®p of the critical current.

As the transparency is increased, new structures ap-
pear in addition to the ones already observed in multiples
of 1+ 7 (see Fig. . Observing components which in-
volve the fluxes associated with each loop (i.e. with both
n and m nonzero) signals the presence of nonlocal pro-
cesses contributing to the critical current. They are rel-
atively faint for low values of I, but increase as one goes
into the high transparency regime. For the highest value
of the tunneling amplitude considered here (I' = 0.8A)
these nonlocal contributions represent an appreciable to-
tal weight of about 30% of the signal.

Out of these new features, the most pronounced one
— a peak in N' = 21 — corresponds to a component
of the r—averaged critical current with a periodicity
(n=—1,m = 1) in the fluxes, i.e. periodic in ® 4 — Pp.
Since it depends on both fluxes, this contribution can
only arise from a process involving both the exchange of
pairs between Sy and S, as well as between Sy and Sj.
Moreover, the periodicity in ® 4 — ®5 requires such an
exchange to be correlated, and to occur in the same direc-
tion, that is from Sy to S, 5 or the other way around. This
is precisely the microscopic definition of the so-called
quartet process, an exchange of two correlated pairs from
the central superconducting electrode Sy to S, and .Sp.
The quartet contribution increases rapidly with I', and
becomes substantial in the limit I' >> €, representing close
to 10% of relative weight, much more than any other
components (apart from the leading harmonics in ® 4
and ®g). The physical nature of this structure is further
confirmed by analyzing the sign of its amplitude (Fig.
right), which turns out to be negative, as expected for
the quartet contribution¥ In the non-resonant case, the

biSQUID thus seems a promising candidate to observe
signatures of the quartet current, by monitoring the pe-
riodicity of the critical current in the total flux, i.e. as a
function of the external magnetic field.

Note that other, much weaker signatures are also
present with a periodicity in both fluxes. These could
be attributed to either anharmonicities of the quartet
current (which would be expected for such high trans-
parency) or to higher order multipair contributions.

It seems that the nonlocal effects are more pronounced
when I' > €, which naturally takes us to the regime
where this condition is most strongly fulfilled: the res-
onant case.

2.  Resonant case

We now turn to the resonant case, where all energy
levels are chosen equal to the chemical potential in the
superconducting leads (set to 0 by convention). The re-
sults are summarized in Fig.

The low transparency regime is again largely domi-
nated by the local harmonic Josephson current , and ab-
sent of any nonlocal signatures. As a result, while the
global prefactor Iy might differ, the Fourier spectrum of
the critical current is identical to the one obtained in the
non-resonant case.

Contributions associated with nonlocal processes ap-
pear rapidly, and already represent about 20% of the sig-
nal for tunneling amplitudes as low as I' = 0.1A. As the
transparency is further increased, the nonlocal compo-
nents get stronger, totaling about half of the signal once



one reaches I' ~ A.

As in the non-resonant case, there is a proliferation of
signatures corresponding to various periodicities in the
fluxes ® 4 and ®p (identified through the pair of integers
(n,m)). The strongest of these nonlocal components is
again observed at ' = 27 and corresponds to the quartet
current. This contribution grows much more rapidly as
a function of I, compared to the non-resonant case, and
ends up being twice as large for a comparable value of
the tunneling rate. This is consistent with the results ob-
tained in the previous section, as the regime I' > € proved
to be the most suitable to observe signatures of multipair
processes, it was to be expected that the resonant case
would strengthen this trend further.

Along with the main harmonics (1,0) and (0, 1), and
the quartet component (—1,1), the Fourier-transformed
critical current also shows a substantial contribution
for N' = 2, corresponding to the periodicity ® 4 + ®p
(n =1,m =1). Like the quartet component, this contri-
bution also increases with the transparency, and while it
was only marginally present in the non-resonant case, it
becomes significant at resonance. This feature can be at-
tributed to the pair cotunneling process, which amounts
to sending a Cooper pair from S, to S}, through the cen-
tral superconducting electrode Sy. As argued in Ref. [6]
the pair cotunneling process goes hand in hand with the
quartet process, and it is not surprising that they appear
side by side and behave in a somewhat similar way. As
opposed to the low transparency expansion presented in
Sec. [[ITC] where it vanished for symmetry reasons, the
pair cotunneling contribution is not negligible here, de-
spite the apparent symmetry of the setup. This reveals
the importance of high-order tunneling processes, not ac-
counted for in the low-I" expansion, which involve the
fluxes enclosed in the two loops, thus breaking the sym-
metry between the two branches of the setup.

The presence of particularly strong quartet signatures
makes this resonant case the best candidate to observe
such nonlocal contributions to the critical current. We
thus continue our study of the resonant case but move on
to a more realistic scenario of different junctions in order
to determine to what extent our results are robust.

C. Robustness of the results

The results of the previous section were obtained in
the simpler case of identical junctions, and one might
thus argue that they require some specific fine tuning
in order to be observed. While the presence of external
gates enables a rather precise control of the energy lev-
els of the four quantum dots, the tunneling rates of the
junctions depend on the sample design and cannot be
manipulated. In particular, making four identical highly
transparent Josephson junctions constitutes an experi-
mental challenge.

We therefore focus now on a more realistic situation,
where we set the dots to be resonant with the super-
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Figure 6. Probability of occurrence of the main harmonics and
in ®4 (Top) and ®z (Bottom) as a function of the relative
weight they represent in the Fourier spectrum. These were
obtained by computing the critical current for 1000 different
realizations of the setup with resonant dots (e = 0) and
randomly chosen tunneling amplitudes ¢;o between 0 and A.

conducting electrodes, but do not make any assumptions
concerning the tunneling parameters. To take this even
further, we contemplate the possibility of having different
tunneling amplitudes t;, for each dot-lead junction. We
compute the critical current as a function of the average
flux for 1000 different realizations of the setup, each cor-
responding to a random pick of the eight tunneling am-
plitudes, chosen following a uniform distribution over the
range [0; A]. From the resulting Fourier spectra, we mon-
itor the fate of the four most prominent features identified
earlier, namely the main harmonics in ® 4 and ®p (cor-
responding to the features in (1,0) and (0,1)), as well
as the quartet and pair cotunneling contributions (cor-
responding to (—1,1) and (1, 1) respectively). In Figs. [f]
and [7} we show histograms representing the probability
of occurrence of each of these contributions as a func-
tion of the relative weight they represent in the Fourier
spectrum.

From Fig. [6] one sees that the main harmonics in ® 4
and ®p follow a very similar distribution. These are
clearly the leading contributions to the critical current
averaging a relative weight of about 30% each, while to-
gether they add up to over 50% of the signal in about
half the realizations.
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Figure 7. Probability of occurrence of the quartet (Top) and
pair cotunneling contributions (Bottom) as a function of the
relative weight they represent in the Fourier spectrum. These
were obtained by computing the critical current for 1000 dif-
ferent realizations of the setup with resonant dots and ran-
domly chosen tunneling amplitudes t;q.

The results compiled in Fig. [7]suggest that the quartet
and the pair cotunneling contributions bear some strik-
ing similarities when it comes to their weight distribu-
tion, further underlining the deep connection between
the two processes. Focusing on the quartet component,
one readily sees that for a completely random selection
of the tunneling amplitudes, the probability of observ-
ing a strong quartet signal is rather weak, as less than
60 out of the 1000 realizations show a relative weight
beyond 10%. However, the quartet signature is more of-
ten present than not, its relative weight reaching over
3% for more than half the realizations. On average, the
contribution to the critical current associated with quar-
tets culminates a little above 4%. To put things into
perspective, in the resonant case considered in the pre-
vious section, a junction transparency of I' = 0.08A was
sufficient to reach the same kind of values, stressing the
importance of making the four junctions as identical as
possible in practice.

While on average the quartet signature is small, it is
still detectable and could be further enhanced by filtering
out the main Josephson harmonics in ® 4 and ®5 which
are easily identifiable. One also has to keep in mind that
the situation considered here is among the most unfa-
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vorable ones, and while practical realizations should be
tailored to promote nonlocal multipair processes, even a
random realization still has a solid chance of revealing
their specific signatures.

V. COMPETING EFFECTS

Various physical phenomena can be responsible for a
coupling between degrees of freedom from the two loops,
leading to nonlocal effects whose signatures might mask a
pure quartet signal. We hereby consider two of the most
likely candidates susceptible to appear in our biSQUID
device.

A. Mutual inductance

The setup under consideration is comprised of two
loops where current can flow, so that one should take
into account the geometrical inductance of such a cir-
cuit. While there could be both local and mutual in-
ductances at play in the setup, the latter is the most
likely to lead to strong nonlocal signatures as it couples
the currents of pairs flowing through junctions al and
bl. We could check that the presence of a self inductance
only marginally modifies our results and thus decided, for
simplicity, to focus on the effect of the mutual inductance
alone.

Due to the mutual geometrical inductance M between
loops A and B, the fluxes felt by the electrons circu-
lating in the circuit is no longer set by the external
magnetic field alone. Instead, there exists an additional
contribution on top of this external flux (hereby labeled
(I)ff{’tB) which depends on the current flowing in the nearby
loop. Following the conventions introduced in Fig. 2] and
Egs. —(ED for the currents and fluxes, we write

Q=05 — M (Iyg — I2) (39)
O =0 — M (Inz — 11), (40)

where the mutual inductance M is positive.

Since some of the junction currents I, depend explic-
itly on the fluxes, it is obvious from Egs. — that
the total current through the device now has to be com-
puted self-consistently. Performing this self-consistent
treatment in addition to the r—averaging and on top of
the maximization (in order to extract the critical current)
makes the numerical calculation a lot more demanding.
In order to estimate the competing effects associated with
the mutual inductance, we thus consider the simpler case
of two disconnected loops (i.e. without any microscopic
nonlocal coupling) and turn on the mutual inductance
progressively, monitoring the Fourier-transformed criti-
cal current. The results are provided in Fig. |8, where for
illustrative purposes, we focused on the resonant highly
transparent regime.



Whereas there are no noticeable modifications of the
Fourier spectrum for weak values of the mutual induc-
tance, new signatures start appearing beyond 0.1Mj
(where My = h%/(e%A)), a threshold which tends to in-
crease as the tunneling rate I is reduced (not shown).

These signatures grow rapidly with M and are mainly
located at N' = 2 and N = 25 (i.e. the (1,1) and
(—1,1) components respectively). Unlike the general sit-
uation considered in the previous section, the most pro-
nounced component involving both fluxes corresponds
here to (1,1) rather than (—1,1), a characteristic spe-
cific to the presence of mutual inductance, which could
be used in actual experiments to detect the presence of
such effects. Indeed, this can be explained by noticing
that the mutual inductance tends to anticorrelate the
currents in branches al and b1 in order to decrease the
total current in the central electrode. On the contrary,
the quartet mechanism tends to correlate the currents I,
and Ij; reinforcing the current in the central electrode.
The antagonistic effects of quartets and mutual induc-
tance allows to discriminate both mechanisms. For the
largest value of the mutual inductance considered here,
this structure at ' = 2 even becomes the leading compo-
nent of the Fourier signal, overcoming the contributions
which depend on only one of the two fluxes. While a
peak at N’ = 27 is visible (and as such, could be mis-
taken with signatures from the quartet process), it stays
relatively weak (5% at best) and even decreases back for
large values of M.

In the end, although mutual inductance leads to struc-
tures in the critical current located at the same position
in AV space, the behavior of these new features is specific
enough to not be confused with quartet and pair cotun-
neling processes. Still, the mutual inductance needs to
be carefully estimated in experimental setups®! and taken
into account when attempting to fit the data.

B. Direct tunneling

Although absent from nanowire-based systems, direct
tunneling between quantum dots is known to occur in
carbon nanotubes. This generates a new contribution to
the bare dot Hamiltonian, of the form

HD,direct = tddj;lo'zdbl +H.c.. (41)

where t4 is the direct tunneling amplitude between dots
al and bl. This term opens a new channel for current to
flow between the two loops, competing with the nonlocal
exchange of pairs through Sy.

To get a flavor of the effect of direct tunneling, let
us compute the critical current as a function of ¢4 in
the simpler case where the nonlocal coupling through the
central superconducting electrode has been turned off.
The new term that now appears in the total Hamiltonian
changes the form of the Matsubara Green’s function for
the dot electrons by affecting its anomalous part f(iwy ),
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Figure 8. Relative weight of the Fourier components of the
critical current as a function of the mutual inductance M
between loops (expressed in units of Mo = h%/(e*A)), in the
resonant (e = 0) highly transparent regime (I' = 0.8A). All
other parameters have been chosen identical to Figs. [4 and
apart from the attenuation factor, e %0/€0 = (.

which becomes

o) = (T3t 1) (12)

The critical current is then obtained from Egs. and
as before. The Fourier-transformed critical current
as a function of the direct tunneling ¢4 is presented in
Fig. [0 for the resonant highly transparent case.

As it turns out, direct tunneling can lead to signa-
tures that are very similar to nonlocal multipair pro-
cesses. In the resonant case considered here, even for
rather small values of ¢4 (say, 0.1A) new peaks appear
in the Fourier spectrum corresponding precisely to the
contributions of interest, namely (—1,1) and (1, 1) (asso-
ciated earlier to quartet and pair cotunneling processes).
Moreover, these features grow rapidly as t4 is increased,
and for a typical value of only t; = 0.4A, the resulting
Fourier-transformed critical current looks almost identi-
cal to the one obtained in Fig. [f] in presence of nonlo-
cal crossed Andreev reflection (same set of harmonics
with similar weights, only the ones in the vicinity of
N = 4 differ). Indeed, from inspecting the anomalous
Green’s functions in presence of a coupling through Sy,
Eq. , and in presence of direct tunneling, Eq. 7
one readily sees that t; roughly assumes the same role
as the prefactor e~ %0/ /2 (up to complications related
to r—averaging). Indeed, direct interdot tunneling offers
an alternative channel for the production of correlated
pairs, as shown in Refs. [11] and 12l Yet, it is interesting
to discriminate this mechanism from the quartet one, for
instance by synchronous detection while slowly varying
one key parameter of the setup.
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Figure 9. Relative weight of the Fourier components of the
critical current as a function of the direct tunneling amplitude
tq, in the resonant (¢ = 0) highly transparent regime (I' =
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Figs. and apart from the attenuation factor, e~ %0/ = (.

VI. SUMMARY AND CONCLUSION

To summarize, our main results are as follows:

(a) the phenomenological model is sufficient to cap-
ture the main ingredients of the physics involved in this
system in the low transparency regime;

(b) studying the flux-dependence of the critical current
through a full microscopic calculation leads, for identi-
cal junctions in the non-resonant regime, to new signa-
tures. These could be attributed to nonlocal multipair
processes;

(c) in the case of resonant dots, and for highly trans-
parent junctions, these quartet signatures become par-
ticularly strong (of the same order as the Josephson con-
tribution) making this regime the most promising to in-
vestigate multipair production;

(d) our results are robust against strong variations of
tunneling amplitude throughout the setup. Even in the
worst case scenario of 8 very different tunneling parame-
ters, there is a strong probability of observing a quartet
signal;

(e) the most likely competing effects either lead to
qualitatively different signatures or open a new channel
that contributes to the formation of correlated pairs, in
addition to the standrad crossed Andreev reflection.

This work thus provides an alternative experimen-
tal setup for the observation of nonlocal multipair pro-
cesses. Unlike previous work on a voltage-biased all-
superconducting bijunction”, the current study focuses
on an equilibrium situation, in the coherent dissipation-
less regime. Making use of interferometry, this allows for
the observation of specific features associated with quar-
tet processes that do not require to study intricate phase
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and voltage dependences, and hopefully provides an un-
equivocal experimental signature of these phenomena.

In conclusion, we proposed a setup consisting of four
Josephson junctions, defining two twinned loops in a nan-
otube (or nanowire) based system connected to three su-
perconducting electrodes, which we dubbed a biSQUID.
We presented a phenomenological argument to motivate
our analysis then derived a microscopic theory allowing
a careful description of the setup in the full parameter
space. We showed that by measuring the critical current
as a function of the average flux through the loops (i.e.
the external magnetic field), the device could reveal sig-
natures associated with nonlocal multipair contributions,
in particular the so-called quartet process, thus making
them experimentally observable in an equilibrium situa-
tion. We also suggested that potential experimental real-
izations pay specific attention to some competing effects
which might interfere with these very signatures.

A natural extension of the present work consists in tak-
ing into account local Coulomb interaction on the dots.
This constitutes a real challenge, which could be tackled
through various approximate treatments, such as per-
turbative diagrammatic resummation or self-consistent
mean-field approaches?® Interactions are expected to be
particularly relevant when dealing with closed dots, with
weak tunneling amplitudes to the leads. We showed,
however, that the most interesting regime to observe
quartet signatures in the biSQUID setup corresponds to
the opposite case of large values of the tunneling rate I,
for which Coulomb interactions play a more limited role.
As long as one stays away from the deep Kondo regime
(for which the occupation of the dots is close to 1 at all
times), we therefore do not expect any dramatic qualita-
tive change of our results due to Coulomb interactions.
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Appendix A: Tunneling self-energy

The tunneling self-energy introduced in the text is
given, in terms of Matsubara frequency, by

—i0 i/2
Yoy (iwn) g iyt Jaaze %5/

. 1 k(7 —m
X g (iwnl — &po. — Ajog) ek (ria 7"17)]
k
X 0,e'7%%il2

(A1)

where we substituted in Eq. the expression for the
lead electrons Green’s function, and the tunneling pa-
rameters.

Performing the k—integral requires information on the
dimensionality of the system. It is believed!? that the
contact between dots and superconducting leads actu-
ally occurs within the carbon nanotube, between an elec-
trostatically confined region (the dot) and a proximity-
induced superconducting region, which then acts as an
effective 1D superconductor. Within this assumption,
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the integral over momentum reduces to

Z (w1 — &po, — Njog) ™

k

L gik(rja—rjy)

—etk(rja—"jy)

:ZWQ +A2+§’%

k

(iwp 1 + Epoz + Ajoy)

62 + w2 + A2
X (lwp1 + €0, + Ajoy)
coy(0)e ™ Favan /8 wn)
y [cos krRj aq

Vw? + A2

cos kp 1+ = (rja ,rm)>
/de

(iwnl 4+ Ajoy) —sinkpRj aqy0-

)

(A2)
where we introduced Rjoy = |rjo — Tjy| as well as
E(iwn) = —S04 Here v(e) is the density of states

of the superconducting region, which we assumed to be
constant close to the Fermi level.

Substituting this result back into Eq. , one has, for
the tunneling self-energy in Matsubara frequency space

Ztﬂ Jo

o [COS krR; ar

Vw2 + A?

— sin kFRj’MUZ] .

Za’y (an _7-”/ j,a'y/‘f(iwn)

(iwn]l — Aje_i"z“"f aw)

(A3)

In practice, the only nonlocal terms allowed by the tun-
neling amplitudes involve coupling between dots al and
bl through lead Sy. Therefore, we only need to intro-
duce one length scale R; o~ corresponding to Ro.q1,61 =
Ro.p1,01 = R.
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For simplicity, the other two electrodes S, and S, are cho-
sen wide enough so as to avoid nonlocal effects.

This negative sign is however unrelated to the expected
m—type behavior of the quartet current, as the sign of the
Fourier amplitudes of the critical current is not directly
related to the sign of the different contributions to the
total current.

For a gap energy A ~ 100 peV, the mutual inductance
considered here is between 50 and 500 pH, which should
be a reasonable order of magnitude of what is realized in
actual setups.
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