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2 Centre National de la Recherche Scientifique (CNRS) UMR 7587,
Institut Langevin. Fondation Pierre-Gilles de Gennes,
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We report on phase-shifted holographic interferogram demodulation by singular value decomposi-
tion. Numerical processing of optically-acquired interferograms over several modulation periods was
performed in two steps : 1- rendering of off-axis complex-valued holograms by Fresnel transformation
of the interferograms; 2- eigenvalue spectrum assessment of the lag-covariance matrix of hologram
pixels. Experimental results in low-light recording conditions were compared with demodulation by
Fourier analysis, in the presence of random phase drifts.
OCIS codes: 090.1995, 040.2840, 120.2880, 040.3780

Recording optical holograms by time-modulated
interferometry was proposed and demonstrated in early
studies [1–3]. It pioneered the development of phase-
shifting [4] holographic interferometry. Time-modulated
phase-shifting interferometry involves recording of a
sequence of interferograms over at least one modulation
cycle of the intensity. Temporal demodulation consists
in a linear combination of a sequence of recorded
interferograms, whose coefficients are the ones of a
discrete Fourier transform [5–7]. An important feature
of holographic interferometry is to allow spatial signal
modulation in off-axis recording conditions [8], which
permits the discrimination of self-beating and cross-
beating interferometric contributions of the object field
and the reference field. In this configuration, spurious
interferometric contributions can be filtered-off [9]. It
was demonstrated that the combination of spatial and
temporal signal modulation enables low-light imaging
at shot noise levels [10, 11]. Important features and
applications include optical phase imaging [12–15] and
detection tunability in the radiofrequency range for
optical heterodyne detection [16], frequency-resolved
narrowband sensing of scattered optical radiation [17–
19]. Sensitivity is compatible with photon-counting
recording conditions [20–22]. In standard phase-shifting
interferometry, a sequence of interferograms with known
phase shifts between probed and reference optical
waves is recorded. When the modulation is not known,
principal component analysis [23] can be used for non-
parametric, non-iterative demodulation. It identifies
uncorrelated variables in the structure of the data (the
principal components) from the analysis of its correla-
tions. Non-parametric approaches were also applied to
image formation concepts [24], speckle reduction [25–29],
and laser speckle contrast analysis of flows [30].

In this letter, we demonstrate experimentally that
the sensitivity of low-light optical signal retrieval in
time-modulated holographic interferometry can be im-

proved with respect to Fourier transform demodulation
in practical conditions, when random signal fluctuations
are present. For that purpose, a data-driven, non-
parametric signal processing method is used. It consists
of calculating the spectrum of eigenvalues in a singular
value decomposition (SVD) of the lag-covariance matrix
of recorded temporal fluctuations of the hologram’s pix-
els, after spatial Fresnel transformation. The proposed
processing scheme is less affected by random optical
phase drifts occurring during the sampling process than
signal demodulation by discrete Fourier transformation.

In optical heterodyne detection, a field of interest
E(t) = E exp (iωLt), oscillating at the optical frequency
ωL, is non-linearly mixed with a local oscillator field
ELO(t) = ELO exp (i∆ωt) exp (iωLt) that is set at a close-
by intermediate frequency ωL + ∆ω. In this notation,
E and ELO are complex constants and i is the imaginary
unit. The amplitude and phase of the original signal E(t)
can be retrieved in the desired outcome oscillating at the
difference frequency ∆ω, which can be set within the re-
ceiver’s temporal bandwidth. The frequency conversion
process is ensured by non-linear detection of the optical
field E by the array of square-law sensors of a camera,
which respond quadratically with the impinging electric
field’s magnitude. The squared magnitude of the total
field received, I(t) = |E(t) + ELO(t)|

2, has cross-terms
oscillating at the difference frequency ∆ω of the fields E
and ELO, causing modulation of the optical energy flux
I(t) = |E|2+ |ELO|

2+EE∗

LOe
−i∆ωt+E∗ELOe

i∆ωt, where ∗

denotes the complex conjugate. This equation describes
the temporal fluctuation of the recorded intensity at a
given pixel. Holographic image rendering, referred to
as spatial demodulation, is then performed onto each
recorded interferogram I by a discrete Fresnel transform.
This transformation involves the free-space propagation
impulse response of the optical field [7, 31]. In off-axis
recording configuration, the Fresnel transform separates
spatially the four interferometric terms of I(t) [8, 9] and
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forms a reconstructed hologram. In the absence of ran-
dom fluctuations, the pixels of the off-axis part of the
hologram carry the signal

X(t) = EE∗

LO exp(−i∆ωt) (1)

The purpose of signal demodulation is to retrieve the
magnitude of the oscillating signal at the frequency
∆ω at each pixel. In ideal conditions, Eq. 1 holds and
signal demodulation by discrete Fourier analysis of the
recorded interferograms [6, 7] enables shot-noise limited
detection in dim light [10]; yet in actual experiments,
random amplitude and phase fluctuations limit the
detection sensitivity.

We recorded phase-shifted interferograms over several
modulation periods in low-light and studied signal
retrieval procedures. Optical recording of interferograms
was performed with a frequency-shifted, off-axis Mach-
Zehnder interferometer [32] used for optical heterodyne
detection of the object field E, backscattered from a res-
olution target, beating against a separate local oscillator
field ELO, on a sensor array. The main optical field was
provided by a 150 mW, single-mode laser (wavelength
λ = 532 nm, optical frequency ωL/(2π) = 5.6× 1014Hz,
Cobolt Samba-TFB-150). The optical frequency of the
local oscillator beam was shifted by a tunable quantity
∆ω by two acousto-optic modulators (AA-electronics,
MT200-BG9-FIO) driven by phase-locked continuous-
wave radiofrequency signals around 200 MHz. The
observed reflective resolution target was illuminated over
a ∼ 10mm-diameter disk. Interferograms were measured
with a Ximea MQ042MG-CM camera (2048×2048 pixels
CMOSIS CMV4000 sensor array, pixel size d = 5.5µm,
full well charge : 13500 e− (photo-electrons), conversion
gain : 1/G = 0, 075 counts/e−, quantum efficiency at
532 nm η ∼ 0.5), running at an externally-triggered
frame rate of ωS/(2π) = 20Hz, at 8 bit/pixel quanti-
zation. In the reported experiment, a reflective USAF
target printed on white paper was illuminated in re-
flection, and the recorded intensity of the light in the
object channel accounted for 11.56 counts × G ≃ 154
photo-electrons per pixel per frame, on average. The
average intensity of the light in the LO channel ac-
counted for 63.89 counts × G ≃ 852 photo-electrons
per pixel per recorded frame. In these conditions, a
sequence of 128 consecutive raw interferograms was
recorded for a detuning frequency of the local oscillator
of ∆ω/(2π) = 5Hz, creating 4-phase (ωS/∆ω = 4)
modulation conditions [32]. Twelve more sequences of
images were acquired after decreasing the optical power
in the object channel by 100.5 from one measurement to
the next, by combining optical densities (O.D., Thorlabs
NE absorptive neutral density filters). The transmitted
power to the target scaled as 10−O.D., from 100 to 10−6;
hence the average number of recorded photo-electrons
per pixel and per frame in the object channel ranged
from 154 to 1.54 × 10−4. The LO-to-object optical
power ratio (heterodyne gain) ranged from GH ≃ 5.5
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FIG. 1: Amplitude holographic images from 4-phase modu-
lated interferograms acquired over 128 frames. No time de-
modulation (first column). Demodulation by Fourier trans-
form (second column). Demodulation by singular value de-
composition (third column).

to GH ≃ 5.5 × 106, because the LO power was kept
constant throughout the experiment. The holographic
images of these two datasets were then demodulated
spatially [31], to yield 661 × 661 complex-valued time
traces X(t) of 128 elements each, cropped from the
2048 × 2048 calculation array, over an off-axis spatial
region of interest where the image was expected. We
then compared two types of signal demodulation proce-
dures to assess the magnitude of the oscillating signal at
the frequency ∆ω in X(t) at each pixel : Fourier anal-
ysis, and singular value analysis of temporal fluctuations.
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FIG. 2: Signal magnitude versus optical density (O.D.) in the
object channel from a sequence of N = 128 frames of 4-phase
interferograms. No time demodulation (circles). Demodula-
tion by discrete Fourier transform (squares). Demodulation
by singular value decomposition (triangles).

First, holographic images were rendered without de-
modulation. The squared magnitude of the object field
was averaged over N = 128 frame sequences, and re-
ported in the first column of Fig. 1. The image is not
visible for optical power transmission factors lower or
equal to 10−3 (i.e. O.D. = 3), which corresponds to
19.7 photo-electrons per pixel recorded on average dur-
ing 128 frames. Then, the recorded optical fluctuations
were projected on the expected oscillation to retrieve the
modulated component to improve the detection sensitiv-
ity. The modulation depth of the signal was assessed by
a fast Fourier transform (FFT) X̃ of the sequence xk at
the modulation frequency ωS/4 (5 Hz), calculated on 128
time points. Results are reported in the second column of
Fig. 1. The image is not visible for a power transmission
factor lower or equal to 10−5 (i.e. O.D. = 5), which cor-
responds to 1.97×10−1 photo-electron per pixel recorded
on average during 128 frames. Finally, we performed sin-
gular value analysis of temporal fluctuations. In this ap-
proach, we embedded the time series X = {x1, ..., xN} of
the signal at each pixel in a Hankel matrix of dimension
K × (N − K + 1), where K is the number of principal
components to seek, and N = 128 is the total number
of acquired interferograms. The Hankel matrix D, com-
posed of N −K+1 lag-shifted copies of truncated values
of X(t) has the form

D =













x1 x2 . . . xN−K+1

x2 x3

. . .
...

...
...

. . . xN−1

xK xK+1 . . . xN













(2)

We proceeded by diagonalizing the lag-covariance
matrix of X(t), CX = DDt∗, where Dt∗ is the adjoint
matrix (Hermitian conjugate) of D. The K eigenvalues

λk, k = 1, ...,K of CX , numbered by decreasing order
of magnitude, were calculated by SVD [33] of CX . The
length of the analysis window K was chosen to be an
integer number of expected periods of the modulated
signal [34] K = p ωS/∆ω. We used a window length
of p = 5 modulation periods (K = 20). Images were
rendered by calculating the amplitude of the second
eigenvalue at each pixel. They are displayed in Fig. 1
in the third column, as a function of the optical density
in the object channel. With this approach, the image is
visible down to an optical power transmission factor of
10−6 (i.e. O.D. = 6), for which the signal wave intensity
accounted for a total of 1.97 × 10−2 recorded photo-
electron per pixel during 128 frames, on average. The
algorithm used for the SVD is based on the orthogonal
triangular decomposition (QR factorization) [35]. SVD
and FFT were performed by the functions svd() and
fft() in Matlab 2012a, run on a CentOS 6 Linux 64-bit
operating system. The response curve of singular value
demodulation was assessed by plotting the quantity
10 log10(〈S〉 / 〈S0〉) (in dB) against the value of the
optical density in the object channel (Fig.2). The
braces 〈 〉 indicate spatial averaging of S, and S0 within
and outside the reconstructed image, respectively.
The expected ideal detection behavior is plotted as
a continuous black line (-10 dB of optical power per
unit of optical density). The demodulation by SVD
is qualitative [36]; yet it enables to retrieve images at
much lower signal levels than FFT demodulation. The
singular value demodulation procedure is illustrated by
the spectrograms of four signals, reported in Fig. 3 : (a)
the complex wave oscillating at ∆ω/(2π) = 5Hz, which
would be expected in perfect modulation conditions, in
the absence of random phase fluctuation (Eq. 1); (b)
the actual signal X(t) from a pixel at O.D. = 2, which
exhibits a DC contribution and jitter - deviation from
the modulation frequency; and the signal reconstructed
from the first (c) and second (d) eigenvectors and
eigenvalues of the SVD of D. In this example, the DC
term is found in the first component, and the modulated
component at 5 Hz undergoing a phase drift is retrieved
in the second component of the SVD.

In conclusion, we used heuristically a singular value
decomposition procedure to retrieve time-modulated
optical signals in holographic interferometry. In the
reported experiment, over long acquisition times, singu-
lar value demodulation of phase-shifted interferograms
enabled qualitative image visualization at much lower
signal levels than demodulation by discrete Fourier
transformation. This method will be investigated for
signal retrieval in strong phase fluctuations conditions,
phase microscopy, and singular spectrum analysis of
pseudoperiodic modulations.
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FIG. 3: Spectrograms of a complex wave oscillating at 5Hz
(a), a hologram’s pixel signal X(t) (b), reconstructed signals
from the first (c) and second (d) elements of the SVD of D.
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