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Abstract. Large amplitude plasma oscillations are studied in a cold electron plasma.
Using Lagrangian variables, a new class of exact analytical solutions is found. It
turns out that the electric field amplitude is limited either by wave breaking or by
the condition that the electron density always has to stay positive. The range of
possible amplitudes is determined analytically.

In view of the many technological applications of low-temperature bounded plas-
mas, there has recently been an increased interest in this subfield of plasma physics.
It is in this connection necessary to study large-amplitude disturbances of the
oscillating quantities. The theory of nonlinear plasma waves, which was reviewed
by Infeld and Rowlands a few years ago [1], concerns to a large extent studies of
wave disturbances by means of expansions in the wave amplitudes. This leads to
truncated approximate solutions. However, there are a few cases that can be solved
exactly [1, 2]. In the present paper we point out another new interesting exact
solution of the electron fluid equations. Such solutions can be used as a means
to test numerical codes in regimes where it is usually difficult to determine their
accuracy.
The method is described in [1, Sec. 6.4]. The basic equations describing one-

dimensional large-amplitude plasma oscillations in a cold electron plasma with
immobile ions are

∂n

∂t
+

∂(nu)
∂x

= 0, (1)

∂u

∂t
+ u

∂u

∂x
= − e

m
E (2)

and
∂E

∂x
= 4πe(n0 − n), (3)

where n is the electron density, u the electron velocity, E the electric field, n0 the
ion density, e the elementary charge andm the electron mass. The above equations
can be combined to give

∂E

∂t
+ u

∂E

∂x
= 4πn0eu. (4)
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Next we change the Eulerian variables t, x to the Lagrangian variables τ, ξ where
t = τ and x = ξ +

∫ τ

0 u(ξ, τ ′) dτ ′. Then we have

∂

∂t
→ ∂

∂τ
− u

R

∂

∂ξ
,

∂

∂x
→ 1

R

∂

∂ξ
,

where R = 1 +
∫ τ

0 [∂u(ξ, τ ′)/∂ξ] dτ ′. From the above relations we find that without
approximation (4) can be rewritten as

∂2E

∂τ 2 + ω2
pE = 0, (5)

where ωp is the unperturbed plasma frequency ωp = (4πn0e
2/m)1/2 . The most

general solution to (5) is E(ξ, τ) = A(ξ) cos(ωpτ) + B(ξ) sin(ωpτ). If at time t = 0
(τ = 0, ξ = x), E(x, t) = E(ξ, 0) and u(x, t) = u(ξ, 0), then for all τ and ξ

E(ξ, τ) = E(ξ, 0) cos(ωpτ) +
mωp

e
u(ξ, 0) sin(ωpτ). (6)

Furthermore, we have

x = ξ +
u(ξ, 0)

ωp
sin(ωpτ) − eE(ξ, 0)

mω2
p

[1 − cos(ωpτ)] (7)

and the relation

n(x, 0) = n0 −
(

1
4πe

)
∂E

∂x
(x, 0) (8)

such that the initial conditions are described by only two arbitrary functionsE(x, 0)
and u(x, 0).
In [1] two distinct solutions were examined in detail with u(x, 0) = 0:

1. E(x, 0) = a sin(kx) where a and k are constants;

2. n(x, 0) = n0 [1 + rf(x)] where r is a dimensionless constant and the function
f(x) is f(x) = 1 for 0 � x < π/2k, f(x) = −1 for π/2k � x < 3π/2k and
f(x) = 1 for 3π/2k � x < 2π/k.

In the present paper we consider again the case of u(x, 0) = 0 but with

E(x, 0) =

{
a exp(−κ1x) for 0 < x,

b exp(κ2x) for x < 0,

where a, b, κ1 and κ2 are constants. The major problem is obviously to invert the
(x, ξ) transformation. With the above initial conditions we now have to solve

x =

{
ξ − aβ(τ) exp(−κ1ξ) for ξ > 0,

ξ − bβ(τ) exp(κ2ξ) for ξ < 0,

where β(τ) = [1 − cos(ωpτ)]e/mω2
p. To solve these equations we introduce the

Lambert function. It has been adopted recently to investigate a number of other
problems in physics [3]. In plasma physics it has been used to solve dispersion
relations [4], but no dynamic equations. The Lambert function W (z) is defined as
the solution of the equation y exp y = z such that y = W (z). As we are dealing
with real quantities we can take z as real. A plot of W (z) is shown in Fig. 1.
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Figure 1. A plot of the real branch of the Lambert function.

We now find that the relation between x and ξ for ξ > 0 can be written in terms
of the Lambert function as

ξ = x +
1
κ1

W (aβκ1 exp(−κ1x)). (9)

Then, from (7) together with the definition of the Lambert function we obtain

E(x, t) =
1

βκ1
W [aβκ1 exp(−κ1x)] cos(ωpt), (10)

which is valid for ξ > 0, that is forW [aβκ1 exp(−κ1x)] < aβκ1 . A similar treatment
for ξ < 0 gives

ξ = x − 1
κ2

W [−bβκ2 exp(κ2x)] (11)

such that

E(x, t) = − 1
βκ2

W [−bβκ2 exp(κ2x)] cos(ωpt) (12)

valid for W [−bβκ2 exp(κ2x)] > bβκ2 . To be able to join the two solutions
smoothly, we demand that the points ξ = 0 derived from (9) and (11) coincide.
This happens if a = b, in which case the surface x = x0(t) separating the solutions
(10) and (12) is given by x0(t) = aβ(t). As a further consequence of the relation
a = b, the electric field becomes continues at this interface. While we may have
solutions with κ1 different from κ2 , we focus here on the case with κ1 = κ2 ≡ κ
from now on. With these choices we thus we have an exact large-amplitude solution
for all x and t with a continues electric field, written as

E(x, t) =
sgn[x − x0(t)]

βκ
W [aβκ sgn[x − x0(t)] exp[−sgn[x − x0(t)]κx]] cos(ωpt),

(13)

where sgn[x − x0(t)] ≡ [x − x0(t)]/|x − x0(t)|. For large |x| or small β, that is
cos(ωpτ) → 1, we can expand the Lambert function. Since to lowest orderW (x) = x
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Figure 2. A plot of the normalized electric field En = 2eκE/mω2
p as a function of κx for

different times. The upper dotted curve corresponds to ωpt = 0, the upper solid curve
corresponds to ωpt = π/4, the lower solid curve corresponds to ωpt = 3π/4 and the lower
dotted curve corresponds to ωpt = π. To complete the picture we note that the electric field
is zero everywhere for ωpt = π/2 as well as for ωpt = 3π/2.

(see [3, (3.1)]), we then have

E(x, t) = a exp(−κ|x|) cos(ωpt).

We see from Fig. 1 that dW/dz → ∞ as z → −1/e. (Note that we use the new
symbol e = 2.718 . . . here, whereas our previous symbol e denotes the elementary
charge.) Near that critical point we can write (see [3, (4.22)])W (z) = −1+p−p2/3,
where p2 = 2(ez + 1), and thus dW/dz ≈ e/[2(ez + 1)]1/2 . This implies that n(x, t)
becomes infinite at this point, and this further implies from (12) that aβκ2 < 1/e.
As this must hold for all times, we let β(τ) → 2e/mω2

p to obtain a condition on the
amplitude of the initial electric field, namely

a < 0.18
(

mω2
p

eκ2

)
≡ ac. (14)

For a > ac, the solution becomes multivalued for certain values of t and x and,
hence, unphysical.
Finally, from Poisson’s equation (3) and (10), and using the relation dW/dz =

W/[z(1 + W )], one obtains

n(x, t) = n0

[
1 +

W [aβκ exp(−κ|x − x0(t)|)] cos(ωpt)
{1 + W [aβκ exp(−κ|x − x0(t)|)]}[1 − cos(ωpt)]

]
(15)

for x > x0(t). An analogous expression holds for x < x0(t). In Fig. 2 the solution
for the electric field is shown for different times. In Fig. 3 the maximal and minimal
density during a period is presented as a function of the amplitude. In addition to
the condition of no wave breaking (14), we must ensure that the electron density is
always positive for our solution to be applicable. Depending on the initial direction
of the electric field, i.e. the sign of a, the initial electric field amplitude is limited
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Figure 3. A plot of the maximum and minimum normalized electron density n/n0 during
a period as a function of the normalized initial electric field amplitude En = 2eκ|a|/mω2

p .
(a) Here a < 0, corresponding to an initial density depletion. In this case the maximum
electric field amplitude is determined by the condition (14), which corresponds to the wave
breaking amplitudeEn ≈ 0.368. (b) Here a > 0, corresponding to an initially positive density
perturbation. In this case the maximum allowed electric field is determined by the condition
that the electron density should stay positive. The limiting case n = 0 occurs for a slightly
lower amplitude than in (a), with En ≈ 0.304.

by the condition of no wave breaking (for a negative a) or by the condition of a
positive density (for a positive a), as illustrated in Fig. 3(a) and (b).
The present results significantly contribute to the existing zoo of previous solu-

tions [1,2,5].
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