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Abstract

The days of specifying missions for mobile robots using traditional programming languages

such as C++ and LISP are coming to an end. The need to support operators lacking pro-

gramming skills coupled with the increasing diversity of robot run-time operating systems is

moving the �eld towards high-level robot programming toolsets which allow graphical mission

speci�cation. This paper explores the issues of evaluating such toolsets as to their usability.

This article �rst examines how usability criteria are established and performance target values

chosen. The methods by which suitable experiments are created to gather data relevant to the

usability criteria are then presented. Finally, methods to analyze the data gathered to establish

values for the usability criteria are discussed. The MissionLab toolset is used as a concrete

example throughout the article to ground the discussions, but the methods and techniques are

generalizable to many such systems.

1 Introduction

The �eld of mobile robotics has matured to the point where it is time to move robots out of

laboratories and into the hands of users. However, before this transition can occur better methods

for tasking robots are required. Currently, highly skilled robotic experts hand-craft robot missions

using traditional programming languages, such as C++ and LISP. This unnecessarily excludes people

who are not uent computer programmers from functioning as robot end-users.

Robot programming toolsets intend to improve this situation by providing an integrated devel-

opment environment for specifying, evaluating, and deploying robot missions. Such a toolset should

allow novice users to specify robot missions using a visual programming paradigm. Here, a visual

editor allows users to graphically create missions (complex sets of tasks) by selecting reusable high-

level constructs and related perceptual activities from menus. Integrated support for evaluating

solutions via simulation and �nally deploying them on robots must also be available.

�This research was funded under ONR/ARPA Grant # N0001494-1-0215. The Mobile Robot Laboratory is sup-

ported by additional grants from the U.S. Army and NSF. The experimental procedures and benchmark tasks were
developed in cooperation with Erica Sadun, Darrin Bentivegna conducted the MissionLab experiments, and many

others have contributed to the MissionLab system.
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The speci�cation of the components, connections, and structure of the control system for a

group of robots will be called the con�guration. A con�guration consists of a collection of agents,

inter-agent communication links, and a data-ow graph describing the structure of the con�guration

created from the agents and channels. There are two types of agents: atomic and assemblages. The

atomic agents are parameterized instances of primitive behaviors while assemblages are coordinated

societies of agents which function as a new cohesive agent. The con�guration references the low level

primitives, but does not describe their implementations, since that is generally hardware dependent.

A con�guration generally is a solution for a particular robot mission.

This article explores the issues surrounding just how one begins to evaluate the usability of

robot programming toolsets used to create and maintain con�gurations. It is necessary to consider

usability early in the develop cycle[4, 10, 14, 15, 26, 33], but when the application is available, it

must be evaluated as to its usability by the target audience. There are four popular procedures

to evaluate the usability of software packages[23] in the Human-Computer Interfaces literature.

Heuristic evaluation[25, 32] asks interface specialists to study the package and look for aspects that,

based on their experience, will be confusing for users. A process called Guidelines [31] has developers

rate their system based on a list of good interface design principles. In Cognitive walkthroughs,

developers perform software walkthroughs to evaluate the actions required by the toolset based on

a cognitive model of how users will expect the interface to work. Usability testing [14, 23] attempts

to study and measure how representative users interact with the system while performing realistic

tasks. The peculiarities of applying Usability testing to a robot programming toolset are the focus

of this article.

The desired characteristics of a Robot Programming Toolset are presented in Section 2. The

MissionLab system, an exemplar toolset used to ground these discussions, is presented in Section 3.

Section 4 presents speci�c techniques which can be used to establish usability criteria for toolsets,

with Section 5 documenting the usability criteria established forMissionLab. Designing experiments

to generate values for usability criteria is discussed in Section 6 while two speci�c experiments created

to evaluate MissionLab are presented in Section 7. The evaluation of experimental data is discussed

in Section 8 with the results for the MissionLab experiments analyzed in Section 9. The summary

in Section 10 concludes the article.

2 Robot Programming Toolset Requirements

Behavior-based robotic systems are becoming both more prevalent and more competent[5, 22, 8,

27, 13, 9, 16, 1]. However, operators lacking programming skills are generally forced to use canned

con�gurations hand-crafted by experienced roboticists. This inability of ordinary people to specify

tasks for robots inhibits the acceptance of robots into everyday life. Even expert roboticists are often

unable to share solutions since there is no common language for con�guration descriptions. Indeed,

a con�guration commonly requires signi�cant rework before it can be deployed on a di�erent robot,

even one with similar capabilities.

A robot programming toolset should attack these issues head-on. Current methods for specifying

mobile robot missions using traditional programming languages such as C++ or LISP must be

replaced with visual programming interfaces to support novice users. The con�gurations created

must remain architecture- and robot-independent until explicitly bound to the target robots, easing

the transformation from one system implementation to another. This independence coupled with
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support for multiple code generators ensures that a wide variety of robots can be supported from

a single high-level toolset. Finally, integrated simulation and run-time support are required to ease

the process of evaluation and deployment.

Toolsets should clearly separate development tasks. Skilled developers are then able to create

libraries of high-level control abstractions tailored to a particular target task domain. Robot com-

manders can then select, parameterize, and combine components from these libraries to perform a

variety of missions, without requiring detailed robotics knowledge.

MissionLab[6], presented in the next section, is an example of a robot programming toolset which

meets these goals (Another example targeted to industrial robotics is Onika[29, 11]). MissionLab

uses the assemblage[18] abstraction to permit the recursive construction of new coherent behaviors

from coordinated groups of other behaviors. This allows developers to build libraries of increasingly

higher-level abstractions which are directly tailored to their end-users' needs. MissionLab's support

for the graphical construction of state-transition diagrams allows the use of temporal sequencing [3]

that partitions a mission into a set of discrete operating states, with assemblages implementing each

state.

3 Example: The MissionLab Robot Programming Toolset

The MissionLab toolset has been created at Georgia Tech as an integrated development environ-

ment for behavior-based mobile robots. It provides operators with a graphical con�guration editor

which allows developing and visualizing multi-agent robot missions. An integrated simulator allows

preliminary evaluation of mission con�gurations before they are deployed. MissionLab also permits

mixing simulated and real robots within a single mission to allow evaluating the bene�ts of additional

hardware.

This section provides an overview of the MissionLab toolset to ground the usability evalua-

tions which will follow. In-depth descriptions of MissionLab can be found in the MissionLab user's

manual[6].

3.1 The Societal Agent theory

The theoretical basis of MissionLab is the Societal Agent theory[20, 21], which describes the

recursive composition of agents in both natural and man-made organizations. Minsky proposes an

agent-based structure of human intelligence in \The Society of Mind"[24]. The Societal Agent

theory broadens this agent metaphor by proposing that coordinated societies of physical agents can

be viewed as coherent agents in their own right.

This provides insight into the recursive composition of societal agents. Consider a herd of bu�alo

moving across a plain. Each individual animal has a variety of motor behaviors active, such as

herding, obstacle avoidance, and eating. Each of these motor behaviors can be represented as an

agent. Each bu�alo is an agent constructed from its own individual motor behaviors. Within the

herd, a cow and her calves group together and form a cow with calf agent. The herd itself is an

aggregate of all the societal subgroups of which it is constituted. As a whole, the herd has both

speed and direction and constitutes the top-level recursively constructed agent.

Examples are also common in human circles, with military organizations being the most promi-

nent. For example, squads of soldiers train, live, and �ght together with the intent to form a cohesive

3



squad agent which is interchangeable with other similarly performing squad agents. There are cer-

tain well documented commands and actions which each squad must be capable of carrying out,

independent of their particular individual subparts. This allows the lieutenant commanding the

platoon to plan at the squad level, and ignore the details and idiosyncrasies of individual soldiers.

Similarly, the company commander will abstract the platoons into coherent objects, since platoons

also constitute coherent agents.

3.2 The Con�guration Description Language

The Con�guration Description Language (CDL) captures the Societal Agent theory in a recursive

composition language tailored for representing behavior-based robot con�gurations. CDL represents

only the mission con�guration, not the robot- and architecture-dependent implementations of the

behavioral primitives. CDL encourages creation of generic mission descriptions by partitioning

hardware speci�c information from the bulk of the con�guration, supported by an explicit binding

step.

CDL speci�es how primitives are instantiated and coordinated, not how they are implemented.

This is necessary to allow con�gurations to remain independent of implementation details. Each

primitive must have a CDL prototype which speci�es how it is invoked. An important facet of CDL

is its support for the construction of reusable assemblages. This allows building libraries of high-level

primitives for later reuse. Assemblages are de�ned using the defAgent keyword and can be used

interchangeably with primitives. The syntax and semantics of CDL is formally de�ned in [20, 21]

and the interested reader should look there for in-depth treatments.

3.3 The MissionLab Toolset

The MissionLab toolset has been developed based upon Con�guration Description Language. Fig-

ure 1 shows a block diagram of the MissionLab system. The user interface centers around the

graphical designer (Con�guration Editor - CfgEdit). From here the user can develop con�gurations,

bind them to speci�c robots, and generate executables. The CDL compiler generates architecture-

speci�c code based according to the user's intentions. Built-in support for the AuRA [2] architecture

allows deploying and monitoring con�gurations on the multiagent simulator and/or robots, all from

within MissionLab.

CfgEdit is used to create and maintain con�gurations. It supports the recursive construction of

reusable components at all levels: from primitive motor behaviors to entire societies of cooperating

robots. CfgEdit supports this recursive design process by facilitating the creation of coordinated

assemblages of components which are then treated as higher-level components available for later

reuse. It allows deferring commitment (binding) to a particular robot architecture or speci�c vehicles

until the abstract mission has been developed. This explicit binding step simpli�es development of

a con�guration which may be deployed on di�erent robotic vehicles with each perhaps requiring use

of a di�erent behavioral architecture. The process of retargeting a con�guration when hardware

requirements change is thus eased.

MissionLab currently possesses the ability to generate code for either the ARPA Unmanned

Ground Vehicle (UGV) architecture[13, 12, 27, 28] or for the AuRA architecture[1, 19, 2]. The

AuRA executables drive both simulated robots, several types of Denning robots (DRV-1, MRV-2,

MRV-3), and a robotic HUMMER all-terrain vehicle. The binding process determines which compiler
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Figure 1: Block diagram of the MissionLab System.

is used to generate the executable code and which libraries of behavior primitives are available for

user placement within the graphical editor. The MissionLab system[30] is available in both source

and binary form at http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab.

3.4 Illustrative MissionLab session

Figure 2 shows a screen snapshot of CfgEdit with a military mission to survey a mine�eld loaded.

This display is where end-users will normally interact with the system. Missions are constructed by

adding states and transitions to the workspace. Once added, these objects are further speci�ed by

choosing appropriate behavioral and perceptual actions to carry out their task. The selection process

uses popup menus showing available library components, each with a short description. Figure 3

shows a screen snapshot of the selection popup used to choose a new behavior for a mission state.

Once an appropriate behavior is selected, it must be parameterized for the speci�c mission.

Figure 4 shows a screen snapshot of the parameter modi�cation popup for the AwayFrom perceptual
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Figure 2: CfgEdit displaying an example Mission (encoded as a �nite state di-

agram) to survey a mine�eld.

            

Figure 3: Example list of behaviors available for states.

trigger, which speci�es when a behavioral transition should occur at a certain distance from a

detected object. Notice the use of radio-buttons for selecting which classes of objects the perceptual

process is sensitive to and the slider-bar for setting the trigger distance.

The high-level abstractions available to the mission commander are assemblages constructed

previously for other missions (using the editor) that were subsequently archived to the component

library. Figure 5 shows the components of the MoveTo behavioral assemblage. It is built as a

cooperatively coordinated assemblage of three other assemblages: Noise, AvoidObstacles, and
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Figure 4: Example list of parameters for AwayFrom perceptual trigger.

MoveToGoal. The recursive construction of components at all levels allows designers to focus on

building high-level components, tailored to their speci�c target domain, yet draw upon previous

solutions.
            

Figure 5: Example MoveTo assemblage.
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4 Establishing Usability Criteria

Usability criteria are necessary and useful during two stages of a product's life cycle. First, they

should serve as design goals to focus development e�orts. Secondly, when the end product is available,

usability experiments can measure values for these metrics, providing statistical data for determining

the success and degree of completion of the development e�ort. Table 1 depicts an example technique

for presenting the usability metrics.

Table 1: An example usability criteria speci�cation table for some indetermi-

nate task (After [14], page 223). Notice that Usability Attributes

are vague high-level concepts while the Values to be Measured are

concrete performance metrics. The Current Level shows the average

user performance on existing systems. The Worst Acceptable Level,

the Target Level, and the Best Possible Level are predictions of

the average performance of users on the new system.

Example Usability Speci�cation Table

Worst Best
Usability Value to be Current Acceptable Target Possible

Attribute Measured Level Level Level Level

Novice

performance

Time to perform

action A
Hours 30 minutes 20 minutes 5 minutes

Novice

performance

Time to perform

action B
20 minutes 5 minutes 1 minutes 15 seconds

Notice that each line in the table lists a unique tuple combining an attribute and measurable

value husability attribute; value to be measuredi and speci�es target values for that feature.

Using a table such as this, the designer can focus his/her e�orts on improving performance in areas

that are important, instead of wasting time on improving insigni�cant aspects. This table also

provides criteria to objectively determine when the development process is �nished. Once a product

achieves all of the minimum acceptable values, it can be considered satisfactory. We now de�ne each

of the columns appearing in Table 1.

� Usability Attributes

The Usability Attributes are high level concepts that are deemed important to the cus-

tomers, such as the performance of new users. The careful selection of attributes is necessary

to ensure that all important facets of the human-computer interface are covered. For example,

though a lot of attention is normally placed on improving the performance for users familiar

with the system, all users begin as novices. Therefore, if the system is too painful for new

users to learn, there will be no expert users to consider.

� Value to be Measured

The Value to be Measured selects a particular aspect of the attribute for which we will spec-

ify performance �gures. A particular attribute may have several relevant values which can be
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used to measure aspects of it. For example, given an attribute such as \novice user perfor-

mance" there are many values which can be measured to illuminate aspects of the attribute.

A small subset includes \time to perform a benchmark task," \time to perform a particular

action," and \number of errors while performing a benchmark task." The idea is to take a

high-level concept like \novice user performance" and develop concrete metrics that can be ex-

perimentally veri�ed and which provide insight into the attribute itself. Of course, a particular

value may be relevant to multiple usability attributes.

� Current Level

The Current Level represents the average performance achieved by the target class of par-

ticipants using the current state of the art. In cases where users of the existing systems are

unable to perform the proposed task, a value of not possible can be entered. It is important

to list these values to set the threshold the new product must compete with. There is little

hope for acceptance if a new product is worse than what the customers are currently using.

� Worst Acceptable Level

The worst acceptable level sets the minimums for the design process. Any values which are, on

average, below this threshold require further re�nement before the product can be considered

�nished. These values are normally close to the current levels since customers won't switch to

something clearly worse than what they currently have. These are the best estimates of the

levels below which the customers will not use the product.

� Best Possible Level

The upper bound on the level of performance that could reasonably be expected is called the

Best Possible Level. This knowledge is useful to aid understanding of the signi�cance of

the performance values. The value should be set to the highest level that could reasonably be

expected, on average, from users of the system. A useful method to determine these maximums

is to base them on the performance of members of the development team using the system. It

is unlikely that a user will ever be as familiar with the system as its designers and, therefore,

their performance is likely to be less.

� Target Level

The target levels de�ne what the designers should be striving towards. These goals can be

set based on market surveys, predicted customer needs, and other relevant information. Nor-

mally this value would be set last, after the Best and Current values are available to provide

guidance. It is important that the designer has some input into these levels to ensure they

are realistic and achievable with the available level of personnel and technology. It does little

good to set targets that are out of reach.

5 Example: MissionLab Usability Criteria

In this section, using MissionLab as a concrete example, usability criteria are established that serve

as a prelude to an actual usability evaluation of the toolset. (An example of analyzing Onika appears

in [11]). Two primary objectives were identi�ed as important for the evaluation of MissionLab:
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1. Show that it is signi�cantly faster to create robot con�gurations by using the MissionLab

toolset than by writing corresponding C code.

2. Show that the MissionLab toolset is well suited to the con�guration design task.

Given these objectives, the following usability criteria were developed, using the procedures

described in the previous section, to rate the usability of the MissionLab con�guration editor for

specifying robot missions:

1. Time to add a mission step

The time required to add a new step to a mission is an important determiner in how long it

takes to construct missions from task descriptions.

2. Time to specialize a step

The time required to change the behavior of a step in a mission sequence is a predictor of the

time required to modify existing con�gurations.

3. Time to parameterize a step

The time required to change the parameters used by a mission step also impacts usability of

the toolset.

4. Time to add a mission transition

The time required to create a new transition between two operating states in a mission sequence

gives an indication of how easily the user is able to manipulate the con�gurations.

5. Time to specialize a transition

The time required to change the perceptual events causing a particular transition in a mission

sequence is a predictor of the time required to modify existing con�gurations.

6. Time to parameterize a transition

The time required to change the parameters used by a perceptual activity also impacts the

usability of the toolset.

7. Number of compiles required to create a simple configuration

The number of edit/compilation cycles required to create benchmark con�gurations measures

the level of understanding of the users.

8. Time to create a simple configuration

The time required to create benchmark con�gurations serves as a yardstick metric, giving a

handle on the overall performance of the test participants using the toolset.

9. Ability to create a configuration

A binary metric which catalogs the ability of participants to successfully create con�gurations

using the toolset.

Table 2 lists the usability criteria using the tabular form developed earlier. The Current Level

values are a priori estimates based on participants using a traditional programming language. These

predictions can be re-evaluated using the data gathered from experiment 2 (presented in Section 7.2).
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Table 2: The MissionLab usability criteria speci�cation table.

MissionLab Usability Speci�cation Table

Worst Best

Usability Value to be Current Acceptable Target Possible

Attribute Measured Level Level Level Level

1.

Novice user

performance Time to add a mission step 1 Min 30 sec 10 sec 1 sec

2.

Novice user

performance Time to specialize a step 2 min 1 min 30 sec 3 sec

3.
Novice user
performance Time to parameterize a step 1 min 1 min 30 sec 2 sec

4.

Novice user

performance

Time to add a mission transi-

tion 1 min 30 sec 10 sec 2 sec

5.

Novice user

performance

Time to specialize a transi-

tion 2 min 1 min 30 sec 3 sec

6.

Novice user

performance

Time to parameterize a tran-

sition 1 min 1 min 30 sec 2 sec

7.

Novice user

performance

Number of compiles to create

a con�guration 4 5 2 1

8.

Novice user

performance

Time to create a simple con-

�guration 20 min 20 min 15 min 5 min

9.

Non-

programmer

performance

Ability to create con�gura-

tions No Yes Yes Yes

The Worst Acceptable Levels were picked arbitrarily by the designer as estimates of the perfor-

mance levels below which experienced programmers will avoid using the system. These levels are

intended to be slightly lower than the performance of programmers using the C language. The

system will be acceptable if experienced programmers su�er only a mild drop in productivity, since

the system will also empower non-programmers, as reected in Attribute 9. For this class of novice

roboticists we are looking for a clear improvement, from not being able to specify missions, to the

successful construction of robot con�gurations. The Best Possible Levels were determined based

on the performance of the developer. These values are likely unapproachable by all but very ex-

perienced users. The Target Levels reect the design goals of the project. These numbers were

selected as targets for the development e�ort to provide a clear bene�t to users over traditional

programming languages.

6 Designing Usability Experiments

Once metrics have been speci�ed and the various values selected, it is necessary to determine how

data can be gathered to allow measuring the levels for the metrics. This is not an easy task and
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requires careful planning and execution to prevent bias and noise from swamping the underlying

data.

Objective methods for data gathering generally involve test subjects using the system under

controlled conditions[17]. Commonly, the software is instrumented to gather keystroke and timing

information that will allow determining how the user performed certain tasks. The experiments

are best if administered by a third party observer to remove bias and to keep the developers from

interjecting knowledge not commonly available. This observer is responsible for logging interesting

events in a journal of the experiment. The sessions are also videotaped to provide a method for closer

and repeated examination of interesting details (and as a permanent record in case of disagreements

with participants). Although these sterile test environments clearly impact participant performance,

they do allow objective comparisons between competing techniques.

It is important to note that before conducting experiments such as these involving human sub-

jects, it is necessary to gain approval at most institutions from an oversight organization. At Georgia

Tech this is the Human Subjects Board. These experiments were approved for this project, by that

board, contingent on participants reading and signing the informed consent form reproduced in

Figure 6.

Gathering the data using objective methods is clearly preferable, but not always possible. Certain

attributes (i.e., initial impression, user comfort, etc.) are by nature subjective and best gathered

via questionnaires and informal discussions. Of course, the questions must be carefully crafted

to minimize sampling bias. The Questionnaire for User Interface Satisfaction (QUIS)[7] has been

developed at the University of Maryland as a general purpose user interface evaluation tool and has

undergone extensive testing and validation. The QUIS test can provide a starting point to creating

a customized test to extract the desired information.

7 MissionLab Usability Experiments

We now present two usability experiments which were developed to allow establishing values for the

usability attributes in Table 2. In Experiment 1 the participants construct a series of con�gurations

to achieve written mission speci�cations using the graphical con�guration editor. Experiment 2

repeats the process for the subset of subjects in Experiment 1 comfortable using a traditional pro-

gramming language. Since participants conduct Experiment 2 using conventional text editors, it is

necessary to exercise care in the experimental procedures to ensure that as many of the usability

attributes as possible are being measured accurately. Participants were asked a priori if they were

uent in the C programming language. Of those answering yes, half were randomly assigned to

complete Experiment 1 �rst and the remainder completed Experiment 2 �rst. This was intended to

allow measuring the learning e�ect which aided the second experiment performed.

The remainder of this section presents the development of the experiments; the procedures to be

followed in carrying them out, the nature and type of data generated, and the evaluation methods

followed in analyzing the data.
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Figure 6: This consent form was approved by the Georgia Tech oversight board

for use in the usability experiments (Patterned after [14], page 300).
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7.1 Experiment 1: CfgEdit Mission Speci�cation

7.1.1 Objective

Determine the performance of novice and expert users specifying benchmark robot

missions using the Con�guration Editor.

There are two target audiences forMissionLab: Non-programmers who are able to use the toolset,

and expert programmers who can successfully utilize both MissionLab and traditional programming

languages. Test participants are drawn from both participant pools for this experiment. This allows

testing both the hypothesis that skilled programmers can utilize the MissionLab system with little

drop in productivity after minimal training, and that there exists a group of people who can create

a MissionLab con�guration but are unable to construct the corresponding code directly.

To evaluate this research project's military relevance, an attempt was made to include a number of

U.S. Army Reserve O�ce Training Corps (ROTC) students as test participants. This allows testing

the claim that many will be able to modify a MissionLab con�guration but unable to manipulate

corresponding con�gurations written in traditional programming languages. If a signi�cant number

of the ROTC participants are able to use the MissionLab toolset, it will explicitly show the impact

of this research for the military community.

7.1.2 Experimental Setup

An independent third party observer conducts and monitors the experiments to ensure impartiality.

Test Environment

1. A small quiet room where participants can be observed unobtrusively.

2. Videotape equipment to record the session.

3. An X Window-based workstation (SUN SPARC 10).

Desired Test participants

The broadest spectrum of people possible should be run through this experiment. How these test

participants are chosen as well as their numbers have the largest impact on the signi�cance of the

test data. Ideally, a random sample of potential users large enough to ensure statistical signi�cance

should be used as subjects.

Unfortunately, the number of test subjects necessary to ensure statistical signi�cance is dependent

on the expected variance in the data to be gathered. Therefore, as a �rst step, the test pool suggested

below will provide a starting point to estimate the experimental parameters. The data gathered

from this group cannot be assured to be statistically signi�cant a priori but, even without those

assurances, it should provide insight into whether the claims are supported at all by experimental

evidence. This initial data will also be conducive to re�ning these experiments and provide guidance

for a better selection of the subject pool for similar studies undertaken by other researchers.

The time requirement for each participant is 2 hours. The actual number and skill sets of the

participants is generally governed by the breakdown of people volunteering to participate. As an

initial guideline, the desired test participants are as follows:

1. 3� 6 ROTC students
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2. 3� 6 CS students familiar with C

3. 3� 6 individuals familiar with the MissionLab toolset

4. 3� 6 participants with random skill levels

Software

1. GNU C compiler version 2:7 or newer

2. MissionLab Toolset version 1:0 with logging enabled

Tasks

1. Deploy a robot to move to a ag, return to home base, and stop.

2. Deploy a robot to retrieve mines one by one, returning each to the Explosive Ordinance

Disposal (EOD) area. When all the mines are safely collected, the robot should return home

and stop.

3. Deploy a robot to retrieve a speci�ed ag while avoiding surveillance. Allow the robot to move

only when the mission commander signals it is safe.

4. Deploy a robot to explore a mine �eld. Each possible mine must be probed. If it is dangerous

mark it as a mine; if it is safe, mark it as a rock. The robot should return home when all

unknown objects are marked.

5. Deploy a robot for sentry duty. Chase and terminate any enemy robots, then return to guarding

home base.

Programming Model

1. All of the con�gurations created by the participants are executed in simulation for this eval-

uation. Since we are gathering metrics concerning the mission development process and not

concentrating on their execution, it is felt that little would be gained by imposing the addi-

tional complexity required to deploy each con�guration on real robots. This also allows the

simulated hardware to be idealized to reduce complexity.

2. The simulated robots possess a complete and perfect sensor model, allowing determination of

the identity, color, and relative location of all objects within range in their environment with

a single sensor reading.

3. The environmental objects are partitioned into four physical classes: Fixed, movable, contain-

ers, and robots. Each object can be any color although, for these experiments a classi�cation

based on color is created and enforced. Mines are orange, enemy robots are red, ags are

purple, EOD areas (containers where mines can be placed) are green, rocks are black, trees

and shrubs are dark green, home base is a white rectangle, and unknown objects (either a

mine or a rock) are brown.
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4. When a mine is being carried by a robot or residing within one of the EOD areas it is not

visible to any of the robot's sensors. This includes the robot carrying the object and any other

robots operating within the environment.

5. To simplify the control software, the robots in this study are idealized holonomic vehicles. This

means that they can move in any direction and need not deal with turning radius issues. The

system does not simulate vehicle dynamics; only the maximum robot velocity is restricted.

These idealizations and simpli�cations result in a straightforward programming model presented

to the test participants. It becomes easier to explain and for them to understand the requirements

without detracting from the validity of the mission con�guration usability experiments themselves.

Since the modi�cations apply equally to each participant, any resulting bias is eliminated in the

comparisons.

7.1.3 Experimental Procedure

The participants were given oral and written speci�cations for a series of �ve tasks, one at a time,

and instructed to create robot con�gurations which ful�lled those mission requirements. The same

uninvolved third party was used as the instructor for all of the experiments. All interactions between

the instructor and the participant were scripted to ensure consistency. If any questions were asked

by participants after they had begun a task, that session was marked as incomplete.

1. Participants read and signed the required informed consent form.

2. Participants were given a tutorial introduction to the MissionLab graphical con�guration ed-

itor. This provided an introductory overview of the MissionLab toolset and helped the par-

ticipants become familiar with using the system. The tutorial script had the participants

construct a simple con�guration in cooperation with the person monitoring the experiments.

The task was to cause a robot to move around picking up mines. The observer assisted the

participants in completing this task, using it to demonstrate usage of the toolset.

3. Repeated for each of the 5 tasks:

(a) Gave the participants the next task description and asked them to construct a con�gu-

ration which achieved it.

(b) At this point, the observer left the room and only o�ered assistance when the test par-

ticipants asked for aid. This policy allowed the test participants to decide for themselves

when they reached a stumbling block, and kept the observer from interjecting help when

it may not have been required. This also allowed all help to be logged and attempted

to prevent bias from creeping into the experiments from unequal amounts of help being

given to certain participants.

(c) The test participants used the con�guration editor to construct a con�guration which

performed the desired task, compiling and testing their solutions using the MissionLab

compilation facilities and simulation system.

(d) When the user-created con�guration correctly completed the task, or if the participants

were not �nished within 20 minutes, the testing observer re-entered the room. If the
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participant believed they had completed the task, they then demonstrated their solution

in both of the test worlds provided. The experiment was only marked as successful if their

solution performed correctly in both test cases. At this point any questions were answered

and, if the participants' solutions were incomplete or incorrect, they were corrected and

missing portions explained before the next task was introduced.

4. After completing as many of the tasks as possible within 2 hours, the session concluded with

a survey.

7.1.4 Nature and Type of Data Generated

Metrics measuring the performance of each participant are gathered by instrumenting theMissionLab

system, by the experiment observer, via video tape, and through participant surveys. The results are

used to determine how theMissionLab system performs against the results gathered in Experiment 2,

and to evaluate its usability in general. For both Experiment 1 and Experiment 2, at least the

following data values were generated for each subject completing one of the 5 tasks:

1. Time expended creating each con�guration until �rst compile.

2. Log of the durations of compilations.

3. Log of the length of intervals between compilations.

4. Number of compilations before running the simulator.

5. Number of compilations after �rst simulation until each task is completed.

6. Time required to �nish each task. If the participant fails to complete the task, the observer

estimates their progress towards a solution (0, 1

4
, 1

2
, 3

4
).

7.2 Experiment 2: Mission Speci�cation using C

7.2.1 Objective

Determine the performance of participants on tasks similar to Experiment 1 when using

a traditional programming language.

This experiment is intended to provide data allowing a direct comparison to the data gathered in

Experiment 1. Ideally, the same subject pool should perform both this experiment and Experiment 1

in a random order. There should also be at least a one day break between the two experiments. Of

course, participants who are not programmers will be unable to perform this experiment. Given the

goal of duplicating as closely as possible conditions in Experiment 1, the procedures and tasks are

the same as in Experiment 1 except for di�erences noted below.

7.2.2 Experimental Setup

Same as Experiment 1, with the following exceptions:
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Desired Test Participants

Same as Experiment 1, except for the additional restriction that they need to be uent in the C

programming language.

Software

1. GNU C compiler version 2:7 or newer

2. Current versions of vi and emacs editors

3. MissionLab simulation system Version 1:0

7.2.3 Experimental Procedure

Same as Experiment 1, except that the tutorial also presents a library of behaviors and perceptual

triggers that can be called from a traditional programming language. Instead of presenting the

graphical editor, the mechanics of editing, compiling, and running programs are presented.

The participants are given the exact same task descriptions as Experiment 1 and asked to con-

struct con�gurations by hand to achieve them. Test participants are allowed to use their favorite text

editor to construct the con�gurations, and they evaluate their solutions using the same MissionLab

simulation system as in Experiment 1.

An equivalent set of motor behaviors and perceptual activities (triggers) are provided as callable

functions. A sample C program which causes the robot to simply wander about is given to the

participants as a base on which to create their solutions. E�ectively, the subject's job is to construct

by hand the mission states and transitions that CfgEdit generates from the graphical descriptions.

This is intended to give programmers every advantage in reproducing the MissionLab capabilities.

Starting them out with less support would force them to take far longer to create a solution.

7.2.4 Nature and Type of Data Generated

Metrics measuring the performance of each participant are gathered by instrumenting the build and

run scripts, by the experiment observer, via videotape, and through participant surveys. There are

no event logging capabilities available during the editing process as in Experiment 1. Therefore, the

data gathered during this experiment needs to center on logging when they start and stop editing,

compiling, and running their con�gurations. As a minimum, the following data values are generated:

1. Time expended creating each con�guration until �rst compile.

2. Log of durations of compilations.

3. Log of intervals between compilations.

4. Number of compilations before running the simulator.

5. Number of compilations after �rst simulation until each task is completed.

6. Time required to complete each task. If the participant fails to complete the task, the observer

will estimate their progress towards a solution (0, 1

4
, 1

2
, 3

4
).

18



8 Evaluating Usability Experimental Results

The purpose of usability experiments is to establish values for certain usability criteria. Although

raw data is gathered in several forms, the most detailed information is found in event logs generated

by the software while participants perform the experiments. A careful design of the event logging

facilities is necessary to ensure that the desired facets are properly represented in the logs. A simple

format represents each entry as having a time stamp, the keyword start, end, or event followed by

information to identify the event or action which took place. This type of log �le is easy to generate

by instrumenting the software. It is also straightforward to generate a parsing tool to compute

statistics from the event logs.

If we are interested in establishing the duration of Action01 based on the event logs, the parse

tool would extract a list of the durations of the Action01 events. These raw durations can then

be correlated with the classes of users, visualized to look for correlations, and meaningful statistics

such as mode, mean, and standard deviation can be computed. Using these statistics, the measured

values for the usability criteria can then be determined.

9 Results of MissionLab Usability Experiments

9.1 Experiment 1 Results and Evaluation

Usability experiment 1 was conducted using the MissionLab toolset in order to establish values for

the various usability metrics for novice and expert users. The task involved specifying benchmark

robot missions using the graphical editor. The tests were conducted in the Georgia Tech Usability

Lab. The lab is out�tted with one-way mirrors and video cameras which allow monitoring and

recording the experiments from outside the room. A third party conducted the experiments to ensure

consistency and impartiality. All experiments were videotaped, and logging data was gathered both

by the proctor and automatically through the MissionLab software.

Twelve people participated in this experiment and are identi�ed with a numeric code ranging

from 1 to 12. The skill set of the participants was as follows:

� 1 ROTC student:

Participant 12.

� 3 people familiar with the MissionLab toolset:

Participants 2, 5, and 6.

� 4 people with no programming experience:

Participants 1, 3, 7, 10, and 12 (Note that 12 is also the ROTC student).

� 4 people with programming skills, but no MissionLab experience:

Participants 4, 8, 9, and 11.

This experiment required participants to construct solutions, similar to the one shown in Figure 7,

for each of the �ve tasks described earlier. Figure 8 shows an annotated portion of an event log

generated automatically by the MissionLab system while a user constructed a con�guration. The

logs can be used to reconstruct the number and duration of many types of events occurring during

the experiments. Events include adding states and transitions, selecting new agents for tasks and
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Figure 7: A representative task solution for Experiment 1.

triggers, parameterizing those agents, and compilation and execution of the con�gurations. For

example, the time to specialize a step (Modify Agent) occurs in Figure 8 from time 58.3 to time 61.8

in the log. This interval started when the user clicked the right mouse button on state 2 to choose

a new task and ended when the user selected MoveTo from the popup menu of tasks.

A statistical analysis of the variance in the measured parameters is necessary to determine the

signi�cance of the data gathered. Computing this variance allows researchers to understand to

what extent the data is predictive for future research. Comparisons between Experiment 1 and

Experiment 2 should be made as paired samples when the same person performs both experiments

since the performance of di�erent subjects likely has more variability than for the same individual.

The detailed analysis of these experiments can be found in [20].

As a concrete example, consider how the Time to specialize a step value was determined.

When a new step is added to a mission it defaults to the Stop behavior. Usually this is not the

desired behavior and the step must be specialized by selecting the correct behavior from a popup

menu. The Time to specialize a step attribute measures the time it takes for a user to complete

this specialization task. This action is measured from the time the user clicks the middle mouse

button on the state until the left mouse button is clicked on the OK button in the popup window.

These points are denoted in the event logs with the StartModify Agent and EndModify Agent

events.
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// Information to identify event file //

0.0: start Session

0.1: status StartTime "827354547.5"

0.2: status Task "4"

0.3: status Subject "0"

// A new state was added to workspace //

16.2: start PlaceState "State1"

16.8: end PlaceState

// A state was moved to a new location //

19.9: start Move

20.7: end Move

// A transition was added to connect two states //

21.7: start AddTransition Trans1

22.8: status FirstState

23.6: end AddTransition

// State2 was changed to the MoveTo behavior //

58.3: StartModify Agent State2 "Stop"

61.8: EndModify Agent "MoveTo"

// Unknown objects targeted for MoveTo //

64.3: StartModify Parms State2 "MoveTo None"

67.1: EndModify Parms "MoveTo Unknown objects"

// Transition 1 was changed to Detect trigger //

276.1: StartModify Agent Trans1 "FirstTime"

280.5: EndModify Agent "Detect"

// Transition 1 was changed to detect Mines //

340.9: StartModify Parms Trans1 "Detect None"

343.9: EndModify Parms "Detect Mines"

// Configuration compiled successfully //

538.4: event StartMake

602.6: event GoodMake

605.7: event EndMake

// The Configuration was executed //

607.2: start Run

678.7: end Run

824.2: end Session

Figure 8: An annotated portion of a MissionLab event log. Comments are en-

closed in // // brackets. The numbers are the time the event occurred

(in seconds) after the start of the experiment.

Figure 9 graphically shows the length of time taken by each participant to specialize steps. The

graphs for each participant are stacked on top of each other for ease of comparison. Figure 10 is a

histogram showing the distribution of this data. The horizontal resolution of this graph is 1 second.

The peak in this graph marks the mode at 3 seconds. This suggests that expert users require about

3 seconds to choose a new behavior for a step. The measured value for the Time to specialize a

step attribute for novice users is computed as the average of the 260 data points. This works out
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to 6:15 seconds with a very high standard deviation of 5.86 seconds. The 30 second target value was

easily surpassed by these novice users. The estimated time for a programmer to modify a C �le to

invoke a di�erent behavior was 2 minutes, showing the bene�ts MissionLab users gain.

The long right-hand tail on the distribution graph as well as the variability in Figure 9 appear

to show a consistent di�erence in performance between novice and expert users on completing this

action. Looking at Figure 9, Participants 5 and 6 did quite well on this task and generated times

consistently in the 5 second range. Compare those records with Participants 7, 10, 11, and 12 who

exhibit far greater variability and numerous times in the 20 and 30 second ranges. These long periods

are instances where the users were confused about which behavior to select. This suggests that the

method used to present the behavior choices is confusing and may require reworking to be useful to

people unfamiliar with robotics.

Values for the remaining usability criteria relevant to experiment 1 were established similarly.

The actual values for the usability criteria were estimated using the average durations measured

during the experiment. Figure 11 presents these results in tabular form. Notice that all times were

less than 25% of the target values, and many show far better improvements. This demonstrates that

the system is quite easy for novices to use to construct and evaluate robot missions.

9.2 Experiment 2 Results and Evaluation

Experiment 2 was used to provide a direct comparison of the performance of participants using the

graphical editor versus the traditional programming language C. Participants from the same subject

pool performed both this experiment and Experiment 1 in a random order. There was a several day

break between the two experiments to attempt to minimize the bene�ts associated with repeating

the same tasks. Of course, participants who were not programmers were unable to perform this

experiment. The primary goal was to duplicate conditions in Experiment 1 as closely as possible

except for the use of the C programming language.

Each of the people who volunteered for Experiment 1 were asked if they were uent in the C

programming language. Those who were able to program in C were asked if they would be able

to take part in two sessions. Three participants (4,5 and 6) could program in C but were unable

to participate in more than one session and only completed Experiment 1. Five of the participants

(1,3,7,10 and 12) were unable to program in C and therefore didn't complete Experiment 2.

This left four participants (2,8,9, and 11) who completed both Experiment 1 and Experiment 2.

The numeric codes assigned to these participants match those from Experiment 1. Two of the

participants were randomly selected to complete Experiment 2 before Experiment 1 and the others

did Experiment 1 �rst.

A library of C functions which reproduced the behaviors available in the graphical editor was

created and provided to the participants. A stub program and scripts to build and execute the

con�gurations required the participants only to create a suitable state machine to complete the

missions. The standard UNIX text editors vi and emacs were available for the participants' use.

The same MissionLab simulation system was used to evaluate their solutions as in Experiment 1.

Due to the use of standard UNIX tools, the ability to automatically log editing events was lost

in this experiment. The videotape taken of the experiments was shot over the shoulder of the test

participants and not of su�cient quality to recreate their edit session. However, by instrumenting

the build and run scripts, useful information was still gathered. Figure 12 shows an annotated event

log from this experiment. The comments are enclosed in // // brackets. The start of the experiment

22



6

Had used Mlab   

5

2

---------------

11

Programmers   

9

8

4

---------------

12

Non-programmers   

10

7

3

Participant ID 1

Specialize_Step Events

  0 Seconds
10
20
30
40

Figure 9: Time to specialize a step

The vertical scale is 40 seconds. The number of actions varied based

on how users proceeded in the development.
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Mode occurs at 3 seconds, suggesting that users will be able choose

new behaviors for steps in about 3 seconds after they have gained

experience with the toolset. The large right-hand tail suggests that

some users are having di�culty choosing behaviors. Steps to simplify

this process warrant attention in future studies.
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Novice User Performance

Target Measured Standard

Value to be Measured Level Value Deviation

Time to add a mission step 10 sec 2.2 sec 1.9 sec

Time to specialize a step 30 sec 6.2 sec 5.9 sec

Time to parameterize a step 30 sec 4.1 sec 2.1 sec

Time to add a mission transition 10 sec 2.6 sec 1.5 sec

Time to specialize a transition 30 sec 4.9 sec 5.0 sec

Time to parameterize a transition 30 sec 4.0 sec 2.9 sec

Number of compiles to create con�guration 2 2.0 1.7 sec

Time to create a simple con�guration 15 min 7.4 min 2.4 min

Figure 11: Experiment 1 established values for the usability criteria

is logged, along with the task number. The start and end times for each compile are also recorded.

This allows counting the number of compilations as well as computing the time the participant

spent editing the con�guration. The start and end time for each execution of the con�guration in

the simulation system is also logged.

Figure 13 shows a representative solution for a task in Experiment 2. Each participant con-

structed a robot command function which called the library of behaviors and perceptual processes

to complete the mission. This support library exactly matched those available in the graphical

con�guration editor.

9.2.1 Time to create a simple con�guration

Figure 14 presents edit times for the participants using the C programming language. Figure 15

graphs this data and also the corresponding time spend editing in Experiment 1 for the four people

who participated in both experiments to allow a closer comparison. There are 12 instances where

the time taken using the graphical user interface (GUI) is less that when using C. There is one clear

case of the GUI taking longer and 4 examples where the times are quite similar. These results show

using the GUI speeds the development process.

Notice that only Subjects 2 and 11 were able to do better using C than with the GUI (on only

one of the 5 tasks each). This is interesting since Subjects 2 and 11 performed the GUI portion

(Experiment 1) before the C session (Experiment 2). It appears that there is a speed-up from

performing the same experiments again using the other modality. However, even these participants

performed the tasks faster using the GUI for the other tasks.

The experiment was structured to allow a direct comparison between the graphical con�guration

editor and the C programming language. The results, summarized below, clearly demonstrate the
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// Started the experiment //

Wed 10:56:37 AM, Mar 20 1996

Starting task 3

// 1st build of the solution //

Wed 11:03:28 AM, Mar 20 1996

Start make

Wed 11:03:36 AM, Mar 20 1996

End make

// 1st build of the solution //

Wed 11:04:07 AM, Mar 20 1996

Start make

Wed 11:04:11 AM, Mar 20 1996

End make

// 2nd build of the solution //

Wed 11:05:08 AM, Mar 20 1996

Start make

Wed 11:05:23 AM, Mar 20 1996

End make

// 1st run to check correctness //

Wed 11:05:24 AM, Mar 20 1996

Start run

Wed 11:05:54 AM, Mar 20 1996

End run

// 2nd run to check correctness //

Wed 11:06:20 AM, Mar 20 1996

Start run

Wed 11:06:57 AM, Mar 20 1996

End run

Figure 12: An annotated portion of an event log from Experiment 2. Comments

are enclosed in // // brackets.

advantages of using the graphical editor over hand-crafting solutions in C. For the 4 people who

completed both Experiment 1 and Experiment 2:

� In 12 instances participants completed a task faster using the MissionLab con�guration editor

than they completed the same task using C.

� In only one instance did a participant complete a task faster using C than using the con�gura-

tion editor. Note: This occurred on Task 5 and the participant had previously completed the

GUI portion.

� In 4 cases times were similar.

� In general, the times required to generate solutions using the con�guration editor were more

consistent.

� The average time required by the 4 participants for each task was 12.4 minutes using C and

5.9 minutes using the con�guration editor.
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Vector robot_command()

{

static int status = 0;

if(SigSense(SAFE))

{

switch (status)

{

case 0: /* At start */

status = 1;

return MoveTo(flags);

case 1: /* On way to flag */

if(Near(flags,0.1))

{

status = 2;

return Stop();

}

return MoveTo(flags);

case 2: /* At flag */

status = 3;

return Stop();

case 3:

if (Near(home_base,0.1))

return Stop();

return MoveTo(home_base);

}

}

else return Stop();

}

Figure 13: A representative task solution

� The average number of compilations was 4 using C and only 2 using the con�guration editor.

9.3 Summary of Experimental Results

Values for various usability criteria for the graphical editor were established using event logging data

gathered in Experiment 1. Table 3 is a reproduction of Table 2 with the measured values column

added. This presents the usability criteria in tabular form for ease of comparison. Notice the

measured values are all far superior to the expected values. However, the large amount of variance

in the time users spent picking new behaviors and perceptual activities points out some remaining

di�culty in that area. A popup window currently presents an alphabetical list of choices, each with

a short description. More e�ort is needed in both naming, describing, and visualizing the behaviors

and perceptual activities in order to make their usage more apparent.
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Edit time using C

Participant Task 1 Task 2 Task 3 Task 4 Task 5

21 547 1383 951 600 630

82 834 1342 526 766 |

92 635 626 413 659 538

111 1057 725 407 1269 241

1. Performed the GUI tasks �rst.

2. Performed the C tasks �rst.

Figure 14: Total edit time (in seconds) when using the C programming lan-

guage. A dash (|) indicates there wasn't time to work on that

task.

10 Conclusions

In order to ensure the acceptance of these products by end-users, usability methods must of neces-

sity be introduced to robotics. This article has described methods and techniques by which robot

programming toolsets can be analyzed along these lines. Choosing target values for usability criteria

provides designers with metrics useful to determine where to focus their e�orts and a yardstick to

establish when development is complete.

The means by which usability experiments can be designed and administered to generate and

analyze data relevant for this evaluation process has been provided. It is important that such

experiments be well designed and impartially administered in order to minimize bias and variability

in the data.

Before robots can move into common use among non-programmers it is necessary that they

become easier to task. Mission speci�cation must be straightforward and routine. This article has

presented a foundational methodology for the evaluation of robotic toolsets, hopefully, leading others

in the �eld to consider the needs of target consumers of this new technology in a new light.
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Figure 15: Graph of the time spent editing in both the GUI and C sessions.

GUI sessions are marked with 2 and C sessions with �. The vertical
axis represents time required to complete the tasks.
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Table 3: The MissionLab usability criteria with the experimentally measured

values included.

MissionLab Usability Criteria

Worst Best

Usability Value to be Current Acceptable Target Possible Measured

Attribute Measured Level Level Level Level Value

1.

Novice user

performance

Time to add a mission

step 1 Min 30 sec 10 sec 1 sec 2.2 sec

2.

Novice user

performance

Time to specialize a

step 2 min 1 min 30 sec 3 sec 6.2 sec

3.
Novice user
performance

Time to parameterize a
step 1 min 1 min 30 sec 2 sec 4.1 sec

4.

Novice user

performance

Time to add a mission

transition 1 min 30 sec 10 sec 2 sec 2.6 sec

5.

Novice user

performance

Time to specialize a

transition 2 min 1 min 30 sec 3 sec 4.9 sec

6.
Novice user
performance

Time to parameterize a
transition 1 min 1 min 30 sec 2 sec 4.0 sec

7.

Novice user

performance

Number of compiles

to create a con�gura-

tion 4 5 2 1 2.0

8.

Novice user

performance

Time to create a

simple con�guration 20 min 20 min 15 min 5 min 7.4 min

9.

Non-

programmer

performance

Ability to create con�g-

urations No Yes Yes Yes Yes

10.

User

acceptance

General feeling after

use N/A medium good great good
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