
In p r e s e n t i n g t h e d i s s e r t a t i o n as a p a r t i a l f u l f i l l m e n t of 
t h e requirements for an advanced degree from t h e Georgia 
I n s t i t u t e of Technology, I agree t h a t t h e L i b r a r y of t h e 
I n s t i t u t i o n s n a i l make i t a v a i l a b l e for i n s p e c t i o n and 
c i r c u l a t i o n i n accordance wi tn i t s r e g u l a t i o n s governing 
m a t e r i a l s of t h i s t y p e . I agree t h a t p e r m i s s i o n t o copy 
from, or to p u b l i s h from, t h i s d i s s e r t a t i o n may be g r a n t e d 
by t h e p r o f e s s o r under whose d i r e c t i o n i t was w r i t t e n , o r , 
i n his absence , toy t h e dean of t h e Graduate D i v i s i o n when 
such copying o r p u b l i c a t i o n i s s o l e l y f o r s c h o l a r l y purposes 
and does not invo lve p o t e n t i a l f i n a n c i a l gain* I t i s u n d e r 
s tood that &aiy copying from, o r p u b l i c a t i o n of, t h i s d i s s e r 
t a t i o n which invo lves p o t e n t i a l f i n a n c i a l g a i n w i l l no t toe 
a l l o v e d without w r i t t e n p e r m i s s i o n . 



EFFECTIVENESS OF AN ARTIFICIAL FRESH-WATER BARRIER 

IN THE ALLEVIATION OF THE EFFECTS OF SALT-WATER INTRUSION 

A THESIS 

Presented to 

The Faculty o.f the Graduate Division 

by 

S r i s a k d i C h a r m o n m a n 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Civil Engineering 

Georgia Institute of Technology 

June, 1964 



EFFECTIVENESS OF AN ARTIFICIAL FRESH-WATER BARRIER 

IN THE ALLEVIATION OF THE EFFECTS OF SALT-WATER INTRUSION 

Approved: 

Chai,rman... ... /. 

Date approved by Chairman: 



11 

ACKNOWLEDGMENTS 

The author wishes to express his sincere appreciation to his 

advisor, Dr. M. R. Carstens, for his suggestion of the thesis topic 

and his advice and guidance throughout the course of this research. 

Dr. William F. Atchison, Chief of the Rich Electronic Computer Center, 

kindly granted free computer time for. this research. The interest and 

remarks of the other members of the reading committee, Regents' Professor 

C. E. Kindsvater and Professor A. B. Vesic, are greatly appreciated. 

The author is grateful to U. S. AID and the SEATO Graduate School 

of Engineering for financial support of this program. 

Assistance and cooperation in typing and proofreading from 

Mrs. Jacqueline M. Van Hook, Mrs. Gloria M. Herzog, and Mr. Larry Lyons 

are appreciated. 

Sincere thanks are due to his wife, Mrs. Parasubhasri Charmonman, 

for her patience, valuable assistance, and encouragement. 



iii 

TABLE OF CONTENTS 

, Page 
ACKNOWLEDGMENTS ii 

LIST OF TABLES . . v 

LIST OF ILLUSTRATIONS vi 

SUMMARY viii 

NOTATION . xiii 

Chapter 
I. INTRODUCTION . . . . . . 1 

General 
Specific Problems 
Survey of Literature 
Approaches to the Problems 

II. THEORY . . . . . . . . . . . . . . . . 14 

Equations 
Boundary Conditions 
Dimensionless Representation 

III. METHODS OF SOLUTION OF LAPLACE'S EQUATION . . . . 29 

Numerical Method 
Other Methods 

IV. SOLUTIONS OF THE THREE PROBLEMS . . . 55 

Flow from a Single Canal 
A Single Canal with Natural Ground-Water Flow 
Parallel Canals with Intermediate Drains 
Accuracy of Numerical Solutions 

V. ENGINEERING ASPECTS . 78 
VI. CONCLUSIONS 90 



i v 

TABLE OF CONTENTS (Continued) 

Page 
Appendices 

A. ILLUSTRATIONS . . . . . . . . . . . 93 

B. COMPUTER PROGRAM (PROBLEMS 1 AND 3) 128 

C. COMPUTER PROGRAM (PROBLEM 2A) 137 

D. COMPUTER PROGRAM (PROBLEM 2B) . . . . . . . . 147 

BIBLIOGRAPHY . . . . . . . . . . 156 

VITA 160 



V 

LIST OF TABLES 

Page 

1. Coordinates in Various Planes for Natural Ground 
Water Flow 47, 

2. Chosen Values of Independent Variables for Problem 1 . . 57 

3. Dimensions (Problem l) 63 

4. Chosen Values of Independent Variables for Condition A 
of Problem 2 65 

5. Dimensions (Problem 2A) 69 
6. Dimensions (Problem 2B) 73 

7. Dimensions (Problem 3) 75 

8. A Typical Variation of Q_ with respect to k (Problem l). 81 

« 



vi 

LIST OF ILLUSTRATIONS 

Page 
1. Map of Thailand . . . . 94 

2. Salt-Water Intrusion without Natural Ground Water . . . 95 

3. Natural Ground-Water Flow in Coastal Aquifer 96 

4. A Fresh-Water Canal with Natural Ground-Water Flow . . 97 

5. Problem 1. — Single Canal 98 

6. Condition A of Problem 2 99 

7. Condition B of Problem 2 100 

8. Problem 3 — Parallel Canals with Intermediate Drains . 101 

9. Flow between Two Streamlines 102 

10. Interface . .' 102 

11. Seepage Face 102 

12. Square Net with Linear Approximation 103 

13. I-J Notation on Square Net 104 

14. A Simple Case of Laplace's Equation in a Rectangular 

Domain 104 

15. Two Equations with Two Unknowns . 104 

16. Natural Ground-Water Flow from Infinity 105 

17. Fitting a Line to Four Points 106 

18. A Typical Rectangle with Homogeneous Boundary 

Conditions 106 

19. Single Canal, z'-plane and w'-plane 107 

20. Refinement . 108 

21. A Typical Flow Net (Problem l) 109 

22. Effect of h /hp Variation on Key Dimensions 
(Problem l) . 7 110 



VI1 

L I S T O F I L L U S T R A T I O N S ( C O N T I N U E D ) 

2 3 . A T Y P I C A L F L O W N E T ( P R O B L E M 2A) 1 1 2 

2 4 . E F F E C T O F QZ, V A R I A T I O N O N K E Y D I M E N S I O N S ( P R O B L E M 2A) . 1 . 1 3 

2 5 . A T Y P I C A L F L O W N E T ( P R O B L E M 2 B ) 1 1 8 

2 6 . E F F E C T O F H ^ . / H ^ V A R I A T I O N O N K E Y D I M E N S I O N S 

( P R O B L E M 2 B ) 1 1 9 

2 7 . A T Y P I C A L F L O W N E T ( P R O B L E M 3 ) 1 2 2 

2 8 . E F F E C T O F H ^ , / H ^ V A R I A T I O N O N K E Y D I M E N S I O N S 

( P R O B L E M 3 ) 1 2 3 

2 9 . E F F E C T O F H „ / H U V A R I A T I O N O N K E Y R A T I O S ( P R O B L E M 3 ) . . 1 2 4 

3 0 . - S I N G L E C A N A L O N A F I L L I N T H E M U D - F L A T A R E A 1 2 5 

3 1 . C R O S S - S E C T I O N E L E V A T I O N V I E W T H R O U G H A C A N A L A N D D R A I N . 1 2 6 

3 2 . S I N G L E C A N A L P A R A L L E L TO T H E S H O R E L I N E 1 2 7 

P A G E 



viii 

SUMMARY 

Due to the gentle slope of the alluvial plain at the head of the 

Gulf of Siam, an appreciable area of land is subjected to salt-water 

intrusion under the land surface. In an area extending several miles 

from the Gulf shore, only salt-tolerant vegetation will thrive. A 

slight lowering of the interface between the intruded salt water and 

the overlying fresh water would result in a significant increase in 

agricultural land. One method of depressing the interface is to con

struct fresh-water canals near the Gulf shore and to maintain the fresh-

water level in the canals above mean sea level. 

The existence of the extensive mud flats at the head of the Gulf 

is indicative that land reclamation from the Gulf may be feasible. One 

method of reclamation would be to construct a series of parallel fresh

water canals with intermediate drains. Again the fresh-water level would 

be maintained above mean sea level. The elevated fresh-water canals might 

be constructed from hydraulically conveyed slurries dredged from the 

navigation channel of the Port of Bangkok. These materials are currently 

being wasted by dumping in deeper water from hopper dredges. 

The object of this study is to formulate the fundamental seepage 

analysis necessary for a subsequent evaluation of the effectiveness and 

water-loss from various canal•arrangements. The technical feasibility of 

these projects depends to a great extent upon the required discharge of 

fresh water into the fresh-water canal system. If the required discharge 

is slight, the necessary water might be obtained from an upstream diversion 

of the river. 
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Three specific problems were investigated. The first problem is 

to find the configuration of the interface between the fresh and the salt 

water under a single canal. This problem can be considered as representa

tive of a canal along the middle of a long narrow mass of land piled up above 

the mean sea level of the Gulf. The second problem, to find the configu

ration of the interface under a single canal with natural ground-water flow, 

represents a canal parallel to the shore line along the head of the Gulf.. 

The third problem is directed toward the reclamation of the mud flat by 

using a system of parallel canals with intermediate drains. 

Some simplifying assumptions are necessary to make the two-phase 

seepage problems tractable. The aquifer is assumed to be two-dimensional ? 

homogeneous and isotropic. Solutions for an isotropic aquifer can be 

applied to an anisotropic aquifer by a simple transformation. The fresh

water flow is assumed to be steady. The underlying salt water is assumed 

to be stationary. The interface between the fresh and salt water is assumed 

to be a line. The aquifer is assumed to be confined. Solutions for a con

fined aquifer are approximate solutions for an unconfined aquifer if the 

level of the ground-water table is assumed to coincide with the piezometric 

head along the confining line. Finally, since the slope of the seashore 

in the upper part of the Gulf of Siam is very slight, the outflow face is 

assumed to be horizontal. 

The fundamental seepage analysis, which is formulated in Chapter II, 

consists of the solution of Laplace's equation with appropriate boundary 

conditions. Different methods of solutions are discussed in Chapter III. 

The three specific problems cannot be solved analytically at the present 

time. Barriers to analytical solutions are the boundary conditions. In 
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the physical plane, the location of the interface is unknown and the 

interface is curvilinear. In the complex potential plane, not all of the 

boundary conditions can be satisfied.by using conformal-mapping or 

separation-of-variablestechniques. In Problems 1 and 3 a constant of 

integration along part of the boundary cannot be evaluated. In Problem 2 

the domain consists of two adjoining rectangles. The boundary condition 

along the joining line is initially unknown. Therefore, numerical methods 

have to be employed. 

The method of successive over-relaxation was utilized in the complex 

potential plane for the numerical solution of Laplace's equation. In the 

complex potential plane the domain consists of a rectangular region or of 

two adjoining rectangular regions. Even though Young's over-relaxation 

factor was derived for a rectangular domain with all boundary conditions 

specified on the function, the author found empirically that Young's over-

relaxation factor reduced the number of iterations for the rectangular 

domain in which the boundary condition on one side is specified on the 

derivative of the function. Young's over-relaxation factor also reduced 

the number of iterations for a domain consisting of two adjoining rectan

gular regions. After vertical coordinates have been solved in the complex 

potential plane, horizontal coordinates on any streamline or piezometric-

head line can be obtained by numerical integration of the. inverse Cauchy-

Riemann equations'. The principal disadvantage of obtaining solutions in 

this manner is that the geometric characteristics in the physical plane 

are dependent variables. 

A Burroughs B-5000 electronic computer (90,000-word storage capacity) 

was employed. The longest time required for a solution of a set of dimen

sionless boundary conditions was 30 minutes. The shortest time required 
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for a solution of a set of dimensionless boundary condition was 3 minutes. 

The program written by the author in Extended Algol 60, is rather general 

and, with minor modification of the block entitled "Boundary Conditions"* 

can be employed to solve any problem satisfying Laplace's equation in a 

rectangular domain or a domain consisting of two adjoining rectangular 

regions. Numerical differentiation of the function and numerical inte

gration of the inverse Cauchy-Riemann equations are grouped in the block 

entitled "Find x". 

All the three specific problems were solved. Ten sets of dimen

sionless boundary conditions were used for Problem 1. Solutions to 

thirty-four sets of dimensionless boundary conditions for Problem 2 were 

presented. Problem 3 was solved for twenty-one sets of dimensionless 

boundary conditions. 

In Chapter V, engineering analyses were presented in order to 

estimate the water-loss from canals which might be installed to reclaim 

land at the head of the Gulf of Siam. Several assumptions were used in 

all of the analyses. The first assumption is that salt-intruded land is, 

by definition, land under which the salt water is within 2 meters of the 

land surface. In other words, in order for land to be suitable for agri

culture, the interface between the salt water and fresh water must be at 

least two meters beneath the land surface. The second assumption is that 

tne delta soil is a clay-silt soil. The third assumption is that the ratio 

of the specific weight of salt water to that of fresh water is 1.025. The 

specific-weight ratio at the head of the Gulf of Siam is probably less than 

the assumed mean value. The Gulf is elongated with appreciable fresh-water 

inflows from the Chao Phraya and Mae Klong rivers at the head. Therefore, 



XI1 

the salt concentration is undoubtedly less than in the open sea. However, 

the assumption is conservative in regard to the amount of depression of 

the interface by means of seepage from fresh-water canals. The fourth 

assumption is that the water loss from the canal consists entirely of 

seepage losses. Obviously, evapo-transpiration losses would have to be 

included in a more comprehensive analysis. ' 

Conclusions were drawn thats (l) the concept to employ on arti

ficial fresh-water canal in the suppression of salt water and to employ 

parallel canals with intermediate drains in reclamation of the mud flats 

is promising and should be investigated . further,; (2) if the soil is in 

the clay- or silt-size range, the amount of water loss due to seepage is 

negligible; and (3) the feasibility of the mud-flat reclamation project 

cannot be determined from the equilibrium seepage condition alone but 

field experiments will be necessary in order to find a feasible scheme 

of leaching. 



X I 1 1 

NOTATION 

The symbols used frequently herein are defined as follows: 

a = width of a rectangle 

A, A 1, B, B 1 , C, C 1 , D, D 1 = points on the boundaries or subscripts 
pertaining to the points 

A , , A~, B,, B~, C,, C ••• C_ = constants 1 2 1' 2' 1 2 5 

aw = subscript standing for air-fresh-water interface 

b = grid size 

d = total derivative operator or mean diameter of soil particles, 
equation (2) 

e = allowable error according to equation (109) 

f = subscript for fresh water 

f,F = function 

g = gravitational acceleration 

G = function 

h = piezometric head = p/y + y 

i = or subscript denoting interface of fresh and salt water 

I,J = numbers of grid points 

IM, JN = number of grids on each side of a rectangle 

k = coefficient of permeability of soil (real) or superscript denoting 
kth iteration (integer) 

I = length of a rectangle 

L = a dummy variable defined by equation (62b) 

m = subscript for model 

M = a reference piezometric-head function = -y^kh^/y^ 

n = subscript showing that the variable has different values 
corresponding to n = 1, 2, 3 ••• 

n = k(rs/rf - 1) 
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N, E, S, W = grid points north, east, south and west of the point 0, or 
subscripts pertaining to the points 

0 = origin of the physical plane, or any point on the grid in N-E-S-W 
notation or subscript for the point 0 

p = pressure or subscript for prototype 

P = a dummy variable used as real part of a complex variable, w. 

q = discharge between any two streamlines 

Q = net fresh-water discharge per unit width of aquifer 

Q' = dimensionless discharge 

r = subscript for ratio 

R = Reynolds number = vd/v 

s = subscript for salt water or distance along any curve 

S = a dummy variable used as imaginary part of a complex variable, w 

T = subscript for total 

u = x-component of velocity 

u 1 = dimensionless x-component of velocity = u/N 

v = y^component of velocity 

v 1 = dimensionless y-component of velocity = v/N 
2 2 

V = total velocity = */u + v 

t 
V = dimensionless total velocity = V/N 

w = complex potential = cp + i\J) 

w 1 = dimensionless complex potential = 9 ' + iij)1 

x,y = coordinates of the physical plane 

x',y* = dimensionless x and y respectively (x1 = Nx/Q) 

X,Y = function of x and y respectively 

z = a complex variable = x + iy 

z 1 = dimensionless complex variable = x 1 + iy 1 



counter-clockwise angle 

p = a real number 

r = specific weight of liquid 

6 = central difference operator 

C = a complex variable = dz/dw 

V = a dimensionless complex variable = dz'/dw 1 

CD
 = clockwise angle 

= dynamic viscosity 

V kinematic viscosity 

= piezometric-head function = -kh 

cp' = dimensionless piezometric-head function = cp/Q 

= stream function 

= dimensionless stream function = I|)/Q 

U = over-relaxation factor defined by equation (62a) 

= a dimensionless complex variable = £' = (cos <X + i sin °0/| V 



CHAPTER I 

INTRODUCTION 

General 

The central portion of Thailand is occupied by the great, low allu

vial plain of the Chao Phraya River (Fig. l). Major portions of this 

alluvial plain are flooded annually as a result of the monsoon rains which, 

occur from May to October. The alluvial plain is formed by sediment 

deposition during these periodic flood inundations. The mean slope of 

-4 
the alluvial plain is only approximately 1.6 x 10 , which may be attrib

uted to the fine particle size of the silt and clay sediment deposits. 

This gentle slope prevails into the Gulf of Siam, where extensive mud 

flats are exposed during low tide in the area west of the mouth of the 

river. 

Due to the gentle slope of the alluvial plain, an appreciable area 

of land.is subjected to salt-water intrusion under the land surface at the 

head of the Gulf of Siam, particularly west of the mouth of the Chao 

Phraya River. In an area extending several miles from the Gulf shore 

only salt-tolerant vegetation will thrive. A slight lowering of the 

interface between the intruded salt water and the overlying fresh water 

would result in a significant increase in agricultural land suitable for 

rice production. One method of depressing the interface is to construct 

fresh-water canals near the Gulf shore and to maintain the fresh-water 

level in the'canals above mean sea level. 
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The existence of the extensive mud flats at the head of the Gulf 

is indicative that land reclamation from the Gulf may be feasible. One 

method of reclamation would be to construct a series of parallel fresh

water canals with intermediate drains. Again the fresh-water level would 

be maintained above mean sea level. The drainage water would either be 

wasted over the peripheral canal into the sea or recirculated into the 

fresh-water canal system. The elevated fresh-water canals might be con

structed from hydraulically conveyed slurries dredged from the navigation 

channel of the Port of Bangkok. These materials are currently being 

wasted by dumping in deeper waters from hopper dredges. 

The technical feasibility of these projects depends primarily 

upon the required discharge of fresh water into the fresh-water canal 

system. Obviously a portion of the fresh water is lost by seepage into 

the salt-water body. If these losses are small, the necessary water 

might be obtained from an upstream diversion of the river. The object 

of this study is to formulate the fundamental seepage analyses necessary 

for a subsequent evaluation of the effectiveness and water-loss from 

various canal arrangements. 

The idea of using a fresh-water barrier to suppress salt water is 

suggested by observing the results of an existing canal. In constructing 

a road from Bangkok to Cholburi, a city on the upper right of the Gulf 

of Siam as shown in Fig. 1, a fresh-water canal was developed from the 

borrow pit. This canal is parallel to and on the inland side of a portion 

of the road which is nearly parallel to the coastal line. On the inland 

side of the canal, rice, which cannot tolerate much salinity, has been 

growing satisfactorily, while on the seaward side only salt tolerant 
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vegetation of little market value is growing. This existing condition 

indicates that the' fresh-water canal has been responsible for the sup

pression of salt water. 1 

If there were no natural groundwater flowing toward the sea prior 

to the excavation of the canal, the aquifer would be saturated with salt 

water as shown in Fig. 2(a). This aquifer is estimated to be clay or 

silty clay extending from the surface down to about 60 feet"*". For this 

condition, the presence of a fresh-water canal, in which the fresh-water 

surface elevation is higher than the salt-water would cause fresh water 

flow out into the sea. This flow would replace part of the salt water 3 

pushing it downward and seaward and creating ah interface as shown in 

Fig. 2(b). If there was natural groundwater flowing prior to the presence 

of the fresh-water canal, the system would be under dynamic equilibrium? 

with an interface between the fresh and the salt water as shown in.Fig. 2. 

In this case, the fresh-water canal would increase both the existing 

piezometric head and the fresh-water discharge, causing the interface to 

move further seaward and downward until the system again reached a state 

of dynamic equilibrium as shown in Fig. 4. 

Specific Problems 

The first problem is to find the configuration of the interface 

between the fresh and the salt water under a single canal. This problem 

can be considered as representative of a canal along the middle of a small 

cape or long, narrow island as shown in Fig. 5. 

1. According to B. Asanachinda and M. Dhamkrongartama, Geograph
ical Maps of Thailand (Thai), Kuruspa, Bangkok, 1957, p. 21, a detailed 
investigation has not been executed. 
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The second problem, to find the configuration of the interface 

under a single canal with natural ground water flow from infinity, rep

resents the previously mentioned case of the canal parallel to the shore 

line along a part of the road from Bangkok to Cholburi. A sketch of this 

condition is shown in Fig.. 4, Fig. 6(a) and. Fig. 7(a). 

The third problem is directed toward the reclamation of the mud 

flats by using a system of parallel canals with intermediate drains as 

shown in Fig. 8(a). 

There have been many analytical and experimental investigations of 
2 

salt-water intrusion. Todd has prepared an extensive abstract of liter

ature pertaining to this subject. An extensive bibliography is included 

3 
in his later book on ground water. Another source of reference on salt-

4 
water encroachment was published by Winslow . A review of previous works 

5 6 
may be found in the dissertations of Henry and Bear and in a report by 

7 
Harleman and Rumer . 

2. D. K. Todd, "An Abstract of Literature Pertaining to Sea-Water 
Intrusion and Its Control," Technical Bulletin 10, Sanitary Engineering 
Research Project, University of California, Berkeley, 1952. 

3. D. K. Todd, Ground Water Hydrology, John Wiley, New York, 1959? 
pp. 294-296. 

4. A. G. Winslow, Bibliography of Salt-Water Encroachment, U. S. 
Geological Survey, Washington, D.C., 1953. 

5. H. R. Henry, Salt Intrusion into Coastal Aquifers, Ph.D. Dis
sertation, Faculty of Pure Science, Columbia University, 1960. 

6. Jacob Bear, The Transition Zone Between Fresh and Salt Waters 
in Coastal Aquifers, Ph.D. Dissertation, Civil Engineering, University 
of California, 1961, pp. 9-15. 

. 7. D. R. F. Harleman and R. R. Rumer, Jr., "The Dynamics of Salt-
Water Intrusion in Porous Media," MIT Hydrodynamics Laboratory, Civil 
Engineering, Report No. 55, August 1962, pp. 2-8. 

Survey of Literature 



5 

The earliest analysis of two-phase seepage flows appears to have 
8 9 

been carried out in Europe, principally by Badon-Ghyben and Herzberg , 

who worked independently. Both men observed that in some wells near the 

seacoast, the salt water was not encountered at sea-level, but was found 

below sea-level at a depth of the order of forty times the height of the 

fresh water above sea-level. They deduced that the fresh and salt water 

were at static equilibrium. This would mean that the mass of a unit 

vertical column of fresh water extending from the water table to the 

interface must be the same as that of the displaced salt water. Using 

the ratio of density of salt water to that of fresh water as 1.025, the 

analysis agreed with the natural phenomenon. However, it should be 

noted that the Ghyben and Herzberg "law" is valid only.when both fluids 

are in. static equilibrium and not when fresh water is moving. Kitagawa 

and Todd"^ used Ghyben and Herzberg's assumption with a one-dimensional 

form of Darcy's law to solve for the position of the interface as a func

tion of the steady fresh-water discharge. The interface is parabolic. 

This is essentially equivalent to the method used in the Dupuit-

F o r c h h e i m e r t h e o r y of gravity-flow systems. 

8. For example, see M. K. Hubbert, "The Theory of Groundwater 
Motion," The Journal of Geology 48, No. 8, Part 1, November - December 
1940, p. 924. 

9. Baurat Herzberg, "Die Wasserversorgung einiger Nordseebader 
Journal fur Gasbelechtung und Wasserversorgung 44, Munich, 1901, 
pp. 815-819 and pp. 842^844. 

10. For example, see Henry, op. cit., p. 2 and p. 28. 

11. For example, see M. Muskat, The Flow of Homogeneous Fluids 
through Porous Media, J. W. Edwards, Ann Arbor, 1946, p. 359. 
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Hubbert determined a more general relationship between potentials 

in two fluids for the case of one flowing and the other at rest.. Ghyben 

and Herzberg's static solution can be deduced from Hubbert's solution. He 

also derived an equation for the slope of the interface and confirmed this 
13 

equation experimentally . The experimental apparatus consisted of a 

sand-filled box, a dense sugar solution at rest, and fresh-water flow 

above from each of the two ends to an outlet in the center. Meyer and 
14 

Garder applied Hubbert 1s theory in solving for the maximum rate of flow 
of oil with an underlying stationary water stratum. Perlmutter, Geraghty 

15 

and Upson found that field measurements did not agree with the Ghyben 

and Herzberg principle. The disagreement would be expected since the 

field condition.is dynamic while Ghyben and Herzberg's assumption was a 

static condition. Hubbert's formula was found to give better agreement 

with the field measurements. 
16 

Jacob employed the Dupuit assumption to develop two partial 

differential equations for the salt-water flow and fresh-water flow in an 

12. M. K. Hubbert, op. cit., pp. 785-944. 

13. M. K. Hubbert, "Entrapment of Petroleum under Hydrodynamic 
Conditions," American Association of Petroleum Geologist, Bulletin 37, 
No. 8, August 1953, pp. 1954-2026. 

14. H. I. Meyer, and A. 0. Garder, "Mechanics of Two Immiscible 
Fluids in Porous Media," Journal of Applied Physics 25, No. 11, November 
1954, pp. 1400-1406. 

15. N. M. Perlmutter, J. J. Geraghty and J. E. Upson, "Relation 
between Fresh and Salt Ground Water in Southern Nassau and Southeastern 
Queens Counties, Long Island, New York," Economic Geology 54, No. 3, May 
1959, pp. 416-435. 

16. C. E. Jacob, "Salt-Water Encroachment in Inclined Confined 
Aquifers of Non-Uniform Thickness," Paper presented at 39th Meeting of 
American Geophysical Union, Washington, D.C., May 1958. 



7 

inclined confined aquifer of non-uniform thickness. Integration was 

possible in.certain cases of steady flow, both opposed and parallel. 

Nonsteady states were treated by graphical integration between suc

cessive steady states. 
17 1 

Glover utilized an exact solution, previously obtained by Kozeny 

for the flow of ground-water under gravity forces for fresh-water seepage 

in a confined aquifer of infinite depth. The fresh water flows over stag

nant salt water.' The interface is parabolic. 

19 
Henry employed the hodograph method and conformal mapping in 

solving problems of fresh water flowing from a recharge reservoir. The 

boundary of the recharge reservoir is a vertical bank extending down to 

the bottom of the constant-depth.aquifer. The outflow face is either 

horizontal or vertical. Several numerical solutions with different values 

of distance from reservoir to the sea and depth of aquifer are presented. 
20 

Rumer and Harleman derived an approximate solution for the inter

face within a confined aquifer of finite depth and length and with a 

vertical outflow face. The approximation is that the interface config

uration and position is practically invariant whenever the length of 

intrusion is greater than/the aquifer depth. Experiments were performed 

17. R. E. Glover, "The Pattern of Fresh-Water Flow in Coastal-
Aquifer," Journal of Geophysical Research 64, No. 4, April 1959, pp. 457-
459. 

18. See, for example, Muskat, op. cit., p. 326. 

19. Henry, op. cit., pp. 9-29. 

20. R. R. Rumer, Jr., and D. R. F. Harleman, "Intruded Salt-
Water Wedge in Porous Media," Proceedings of the American Society of 
Civil Engineers 89, No. HY6, November 1963, pp. 193-220. 
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using a glass box filled with glass beads, sand and plastic spheres to 

confirm the approximate equation. Dispersion was also taken into, account. 

The solution of the first problem as in Fig. 5 has been attempted 
21 

by Sutabutra , who employed the same transformation as Henry and found 

that only a very special case of a canal at an infinite distance from the 

sea can be solved. He also solved the problem of ground-water flow from 

infinity in a confined aquifer (see Fig. 3b) by using flow through a 360° 

bend. The result was a parabolic interface as previously obtained by 
22 

others 
23 

Bear obtained a solution, by conformal mapping, of the problem 
on a very long cape or island (see Fig. 5 ) , but his source of fresh water 

was uniform rainfall instead of seepage from a centrally located canal. 
24 

Shea proposed using fresh water to prevent salt-water intrusion 

in Southern Dade County, Florida. In building a levee for flood protec

tion in this area, a continuous borrow pit was excavated parallel to and 

on the land side of the embankment. Another levee on the land side of the 

borrow pit will form a canal to be filled with fresh water. Model studies 

in a sand box were performed. The conditions were different from the 

second problem (see Fig. 4) since the direction of fresh-water flow was 

21. Prathet Sutabutra, Two Problems in the Hydrodynamics of Salt
water Intrusion, Master's Thesis, SEATO Graduate School of Engineering, 
Thailand, 1963. 

22. See, for example, Henry, op. cit., p. 28 and p. 48; or Glover, 
pp. cit., p. 458. 

23. Jacob Bear, "Water-Table Aquifers Receiving Vertical Recharge," 
to be published in a work edited by Cooper in 1964. 

24. Paul H. Shea, Model Study of a Means of Preventing Salt-Water 
Intrusion, unpublished paper, U.S. Army Engineer District, Jacksonville, 1961. 
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landward rather than seaward and natural ground-water flow was omitted in 

the model studies. • 

For the Sacramento-San Joaquin Delta of California, Marcus, Evenson 
25 

and Todd employed both Hele-Shaw and electric analog models to study 

the effects of fresh-water irrigation. In one case the irrigation water 

was applied uniformly over the surface. A second case involved the appli

cation of water by means of irrigation ditches. In both cases both fresh 

and salt water percolated into parallel drainage ditches. 

Approaches to the Problems 

Seme simplifying assumptions are necessary to make the two-phase 

seepage problems tractable. The aquifer is assumed to be two-dimensional, 

isotropic, and homogeneous. Generally in homogeneous natural deposits 

the coefficient of permeability is greater in the horizontal direction 

than in the vertical. By a simple expansion or contraction of spatial 

coordinates, a given homogeneous, anisotropic flow region can be trans-
26 

formed into a fictitious isotropic region . The fresh-water flow is 

assumed to be steady. The underlying salt water is assumed to be station

ary. The interface between the fresh and salt water is assumed to be a 

line. Even though the interface in field conditions will be dispersed, 
27 

the dispersion zone will tend to be narrow , so that a line can be used 

25. Hendrikus Marcus, D. E. Evenson and D. K. Todd, Seepage of 
Saline Water in. Delta Lowlands, Water Resources Center Contribution 
No. 53, U. of California, Berkeley, 1962. 

26. See, for example, M. E. Harr, Groundwater and Seepage» 
McGraw-Hill, New York, 1962, p. 29. 

27. See, for^ example, J. S. Brown, "A Study of Coastal Ground Water 
with Specific Reference to Connecticut," Water Supply Paper 537, U.S. 
Geological Survey, Washington, D.C., 1925. 
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without serious error, in addition the assumption is made that the 

aquifer is confined as shown in Fig. 3(b), Fig. 5(d)? Fig. 6(a), Fig. 7(a), 

and Fig. 8(b). This assumption would be a reasonable representation for 

canals in. which the exposed slopes are small enough to preclude seepage 

on the slope as shown in Fig. 5(a). The discharge through the cross-

hatched areas is neglected. The actual configuration of the ground-water 

table can be approximated by the piezometric-head level along the upper 

surface of the confined aquifer. This assumption has been employed by 
28 

Kirkham with good agreement between field data and analytical results. 

Finally, since the slope of the seashore in the upper part of the Gulf of 

Siam is very slight, the outflow face is assumed to be horizontal. 

Solution by Means of an Electric Analog 

Solution to the first problem of this investigation (see Fig. 5) 

has been attempted by means of an electric analog model at the SEATO 

Graduate School of Engineering in Thailand in 1960, under the direction 

of the author's present advisor. Since the position of the interface, 

which is one of the boundaries of the configuration, is initially unknown, 

successive estimates and adjustments were required. About 18 trials 

were needed for one specific set of dimensions. Since a number of sets 

of boundary conditions are required for each of the three problems in 

this investigation, an electric analog model was not chosen. 

Analytical Solution 

Analytical solution in the closed form is always the most' desirable. 

As will be shown in the section of theory, the seepage flow satisfies 

28. Don Kirkham, "Seepage of Steady Rainfall through Soil into 
Drains," Transactions, American Geophysical Union 39, No. 5, October 1958, 
pp. 892-908. 
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Laplace's equation. Since the interface is curved and is initially 

unknown, the method of separation of variables is obviously not appli

cable. The method of separation of variables has been employed in the 
29 

determination of steady-state temperature distribution in which the I 

physical boundaries were known. The solution of Laplace's equation for j 

the first problem (Fig. 5) when the canal is at an infinite distance from j 

i 
the sea can be obtained by conformal transformation. In the second prob- j 

lem of this investigation, incomplete elliptic integrals of the third I 

kind are encountered in the transformed plane. After numerical inte

gration in that plane, numerical transformation would be required in j 

going back to the physical plane. This method appears to be more dif- [ 

ficult than to use numerical analysis throughout. J 

i 
Solution by Means of Relaxation Technique j 

30 1 McNown, Hsu and Yih reminded engineers of the applicability of 
relaxation technique. They presented both the principle and various ! 

31 
examples. Shaw and Southwell introduced a trial relaxation method for ; 

! 

solving free-surface flow through a dam. However, this method requires ] 

excessive computer programming because the interface and consequently the 

distance from every adjacent point require repeated adjustment. 
29. K. S. Miller, Partial Differential Equations in Engineering 

Problems, Prentice Hall, New Jersey, 1961, pp. 101-105. 
30. John S. McNown, En-Yun Hsu and Chia-Shun Yih, "Applications 

of the Relaxation Technique in Fluid Mechanics with Discussion by Others," 
Trans., ASCE 120, 1955, pp. 650-686. 

31. F. S. Shaw and R, V. Southwell, "Relaxation Methods Applied 
to Engineering Problems VII. Problems Relating to the Percolation of 
Fluids through Porous Media," Proceedings of the Royal Society of London., 
Series A, Mathematical and Physical Sciences, 178, May 1941, pp. 1-17. 



12 

Furthermore, for every adjustment of the interface, relaxation has to be 

carried out until desirable accuracy is achieved. 
32 

Thorn and Apelt noted that relaxation could be done on the com

plex potential plane instead of the physical plane. The interface is a 

line of constant stream function. Therefore, if each of the other 

physical boundaries is either a line of constant stream function or a 

line of constant potential, the pattern in the complex potential plane 

will be rectangular. The problem of relaxation in the domain with a 

curved boundary can thus be reduced to relaxation in a rectangle. 
33 

Young introduced a near-optimum over-relaxation factor for. a 

rectangular domain. The factor was derived analytically and checked 

experimentally. With mesh size b, the required number of iterations 
-2 

is of the order of b using no over-relaxation factor and only of the 
-1 34 

order of b using Young's over-relaxation factor . In one of the 
35 

experiments , twenty grids were used for each side of a unit square. 

The number of iterations was reduced from 279 to 35. 

The method utilized in this investigation is over-relaxation 

for y in the complex potential plane. The derivatives of y with respect 

to velocity potential or stream function are evaluated numerically. 
32. A. Thorn and C. J. Apelt.'Field Computation in Engineering 

.. and Physics. D. Van Nostrand Co., New York, 1961. 

33. D. M. Young, Jr., Iterative Methods for Solving Partial 
Differential Equations of the Elliptic Type, Ph.D. Dissertation in 
Mathematics, Harvard, Boston, 1950. 

34. D. M. Young, Jr., "Iterative Methods for Solving Partial 
Difference Equations of Elliptic Type," Transactions of the American 
Mathematical Society 76, 1954, p. 95. 

35. Ibid., p. 110. 
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Corresponding values of x can be obtained by numerical integration of the 

inverse Cauchy-Riemann equation. Both streamlines and equipotential lines 

are then plotted from the obtained coordinates in the physical plane. 

The electronic computer employed was a Burroughs B-5000 (90,000-word 

storage capacity). The longest time required for a solution for a set 

of boundary conditions was 30 minutes. The program, written by the author 

in Extended Algol 60, is rather general and, with minor modification of 

the boundary conditions, canbe used to solve any problem satisfying 

Laplace's equation in a rectangle or two adjoining rectangles. 
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CHAPTER II 

^ + ^ = 0 (i) 
8x 6y 

in which u and v are the components of the discharge velocity in the x 

and y directions respectively. Newton's second law of motion is utilized 
36 

in deriving the Navier-Stokes equations . In porous media flow, the 

Reynolds number which relates inertial to viscous forces is defined as 

R = ^ (2) 

in which v = discharge velocity 

d = mean diameter of soil particles, and 

v = kinematic viscosity 

The inertia terms in the Navier-Stokes equations of motion can be omitted 

36. Hermann Schlichting, Boundary Layer Theory, McGraw-Hill, New 
York, 1960, pp. 42-54. 

THEORY 

Equations 

The physical principles governing the behavior of fluids flowing 

through" porous media are fundamentally the same as those for the motion 

of viscous fluids in any other flow systems. In this investigation the 

fluid will be considered incompressible. The law of conservation of 

matter (equation of continuity) for steady, incompressible, two-

dimensional flow can be written as 



15 

37 

h s j + y (3) 

the simplified Navier-Stokes equations for porous media flow are 

ah _ y, /-a2u , a2u\ t A , 

ah i/â  . a2 

5 y - 3 x - 3y 

Differentiating equation (4a) with respect to x and (4b) with respect to 

y and combining, one obtains 

l3i + §fh = UL r̂fy. + Q3^ + a3v + a3vj 

3x 3y ^ 3x 3x3y 3x9y ay 

Replacing u by v from the relation in the equation of continuity, equation 

(l), piezometric head will be found to satisfy the potential equation 

ax " 3y 

and . h(x, y) is, therefore, a ,potential function. 

Defining a stream function \[>(x, y) by 

u = 3\[)/3y (6a) 

v = -5\|)/a x (6b) 
37. • Ibid., p. 94. 

when the Reynolds number is less than unity . Defining the piezometric 

head, 
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eliminating h from equations (4a) and (4b), and replacing u and v by 

those in equations (6a) and (6b) one obtains 

8"V JTVa4= 0 <7a) 
3x 5x 5y . 3y 

or, with vector notation, 

V2(V2ii>) = V4i)) = 0 (7b) 

It is thus seen that the Navier-Stokes equations imply that the stream 

function of plane creeping motion or flow through porous media is a 

biharmonic or bipotential function. It is easier to solve Laplace's 

equation as equation (5) than to solve the biharmonic equation. By 

defining a piezometric head function, 

cp = -kh (8) 

where k is coefficient of permeability, equation (5) may be rewritten as 

+ ^ = 0 (9) 
3 x 3 y 

So the piezometric head function satisfies the potential equation and is 

thus a potential function. 

Equation (9) can also be obtained by combining the equation of 

continuity, equation (l), and Darcy's law, 
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However, it should be noted that Darcy 1s law does not describe the 

conditions within an individual pore. It was not derived from the 

Navier-Stokes equations but was determined experimentally. Therefore, 

Darcy's law represents the statistical macroscopic equivalent of the 

Navier-Stokes equations. Since the introduction of this law,in 1856, it 

has been the basis of theoretical development in the field of ground

water flow. It has been stated in various published investigations 

that if the Reynolds number, equation (2), is less than or equal to 

unity, valid results will be obtained from an application of Darcy's 
38 

law . Experiments showing the validity of Darcy's law for Reynolds 
39 

number up to 12 have been recorded . 

Important properties of the scalar potential functions, cp and 

i|), are demonstrated in the following. Let a complex variable be defined 

as . 

w = P + iS (11) 

where both P and S are functions of x and y. If another complex variable 

is defined as 

z = x + iy (12) 

equation (ll) can be rewritten as 

w = P + iS = F(z) (13) 

38. Muskat, op. cit.yp. 67. 

39. Ibid. 
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If w and dw/dz are both single valued and finite, w is analytical. 

Differentiating equation (13) with respect to x and y respectively, 

one obtains 

9 P a. • a s - dF(z) 3z - r t \ 
ox 3 x dz 3 x 

9_P + i 9S = dF(z) 3_z = i F ^ z ) 
3y 9y dz Sy ^ 

Eliminating F'(z) from the above two equations, and equating real and 

imaginary parts in the resulting equation one obtains 

3P 3S . 

a~ = a7 ( 1 4 a ) 

r~ = (14b) 3y 3x 

Differentiating equations (14a) and (14b) with respect to x and y 

respectively, the resulting combination will be 

9 2 2 2 
3 T , 3~p_ = as as 

2 2 3x 3y 3x3y 3y3x 

a2s If the functions are continuous and derivatives exist, „ - has the same 3x3y as value as > from which 3 y3 x 

2 2 
2 2 3 x 3y 

ft - 2 -In similar manner, since has the same value as ^ J3, one obtains 
3x3y 3y3x 

3 - | + a-^ = 0 ( 1 5 ) 

3 x 3y 
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Therefore, P and S are potential or harmonic functions and w is a complex 

potential function. The families of curves P(x,y) = and S(x,y) = C^? 

where and are constants, will form a mutually orthogonal network, 

since the slope of each family of curves are, respectively, 

and 

a_y_ 
3x 

ap/ax 
ap/a y 

a s /a x 
as/ay 

M a k i n g u s e o f e q u a t i o n s ( 1 4 a ) a n d ( 1 4 b ) , o n e g e t s 

a_Y 
ax 

as/ay 
as/Sx 

which is negative reciprocal of a_Y 3x Letting P be a velocity potential 

cp, as defined by equation (8), equation (9) is again obtained. Darcy's 

law can be rewritten as 

u = 8*, v - | » 
3x 3y (16) 

Utilizing equations (l4a), (l4b) and (16), keeping in mind that P = cp, 

one obtains 

v _ 3cp/3y _ _ 3S/3x 
u 3cp/8x " 3S/3y 

Thus, the direction of the fluid at any point coincides with the tangent 

at that point to the curve S(x,y) = constant. Therefore, these curves 

have to be streamlines and S is the stream function ij). Replacing S by ij), 
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equation (15-.) becomes 

3 - ^ + 3 - | = 0 (17) 
3 x 3y 

The velocity components may be written as 

u = -k̂  = |* = f̂  (18a) ox ox 3y 

3y 3y 3x 

Consider the flow between the two streamlines and of Fig. 9. 

If q is the quantity of discharge between the two streamlines, then 

q = 
2 

1>o 
(u dy - vdx) = J di|> = \|) - \|) (19) 

1̂ ^1 Equation (19) shows that the quantity of flow between two streamlines is 

a constant. 

In a domain with a given set of boundary conditions, if either 

equipotential function or stream function is known the other can be 

obtained readily. Considering the total differential 

d^ = at dx + dy 

with the Cauchy-Riemann equations as shown in the last part of equation (18) 
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and, similarly for cp, one obtains 

Therefore, once one function is found, the other can be obtained from 

equation (20) or (21). 

Both x and y also satisfy Laplace's equation in the complex 

potential plane provided w can be expressed in terms of z and dw/dz exists 

and differs from zero throughout the region. The specified conditions 

imply that z can also be expressed as a function of w. 

z = G(w) 

or, 

x + iy = G(cp + ) 

Differentiating with respect to cp 

8x j . dy _ dG _ dG dw _ dG (oo) 
dcp dcp dcp dw 9cp dw 

and again, 

ifx + . dfy_ = _d_ .dG = ££ ( 2 3 ) 

dcp2 dcp2 ^ V ^ v d w 2 

Similarly, 

and 

ax + . dj£ = . dG ( 2 4 ) 

dijj di|) dw 

2 2 2 
2 1 .,2 , 2 K Z D ) 

di|) di|) dw 
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Eliminating dG/dw from equations (22) and (24) 

9cp 9cp 9ijj 9ij) 

Equating real and imaginary parts 

8J-S (26a) 

and 

This means that the inverse Cauchy-Riemannequations exist. Similar 

operation of equations (23) and (25) yields 

-f + H> = 0 (27a) 

9cp dijj 
and 

^ + ^ = 0 (27b) 
9cp 9i(j 

Thus both x and y satisfy La place1 s equation in the complex potential plane, 

Boundary Conditions 

Interface 

On the interface of moving fresh water and stationary salt water 

the boundary condition can be found as follows. The pressure of fresh 

water at any point on the interface, Fig. 10, is the same as that of salt 

water at that point 

pf = Ps 
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where subscript f and s stand for fresh and salt water respectively. 

Let y along the interface be y^. From the definition of piezometric 

head, equation (3), 

and 

P s 

h = — + y. s Y i 1 s 

P f 
h, = — + y. 

f T f

 y i 

Equating p g and p^ and solving for h^ 

h = ^ h - y. C~ ~ l ) 

From the definition of piezometric-head function, equation (8), 

cpi = M + N y. (28a) 

in which 
Y 

M = - — k h (28b) 

and 
• T 

N = - l) , (28c) 

With a stationary salt-water phase, h^ and M are constant. Differentiating 

equation (28a) with respect to s, the distance along the interface, 

dep. dy. 
= N TT- (29) ds ds 
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Equation (10) can be rewritten for the total velocity V as 

V = gf (30) 

Replacing |^ in equation (29) by V\, one obtains 

ay V. = N -r-1 

l 3s 

The sine of the angle °(, Fig. 10, between the streamline and the hori

zontal can be evaluated either from the velocity components or from the 

spatial derivative. 

v _ Ay _ Urn Ay _ 3y 
Y As As-»0 As 3 s 

Thus 

V? = Nv. l l 

or 

V 2 - Nv. = 0 (31) i i 

Seepage Face 

Even though the seepage face is not a streamline it may be 

regarded as an interface between fresh and salt water. Equations (28), 

(29), and (30) are valid if s is the distance along the seepage face 

and V is replaced by V g as shown in Fig. 11. Letting 6 be the clockwise 

angle from the x-axis to the seepage face 

V~s = u cos 9 - v sin 6 



Replacing V g from equation (29) and equation (30) 

N -j^- = u cos 6 - v sin 6 

Since sin 0 = 
o s 

N sin 0 - u. cos 9 + v sin 6 = 0 

Measuring the angle°( in a counterclockwise direction, 

« = 2it - 0 
from which 

N sin o( + u cos °( + v sin o( = o 

In the fresh-water side on OA, Fig. 11, 

* = - k h f = -k C?f
+ d 

On the seepage face, OA, 

Pf = P s
 = ^ s Y 

and 

The boundary condition along the seepage face is therefore 

^/VqA = N 
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Dimensionless Representation 

In order to obtain a solution for a given set of boundary 

conditions which is independent of dimensions in the physical plane, 

both the governing equations and the boundary conditions shall be 

made dimensionless. Letting primes denote dimensionless values, 

y = o y; x 1 = ̂  x (34a) 

cp' = cp/Q; = i|)/Q (34b) 

Hence 

3_Y = dQy'/N = 1 a_y_l 
acp acp'Q n acp' 

and 

2 
O: - -L 

2... 

acp2 acpLNa^,J NQacp'2 

Similarly, 

2 2 
§_y. = _L 9_yJ_ 

â2
 nq â'2 2 

Since V y = 0, equation (27b), it follows that 

V 2y' = 0 (35) 

The boundary conditions for y 1 can be summarized as follows: 

1. Along the interfacial streamline (AB in Fig. 10), 

M . N 
*i = Q + q y i 
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T 

9x! = 0 (37) 
BC 

4. .Along the sloping seepage face as OA in Fig. 11, from 

equation (33) 

dy' 
9cp' = 1 (38) 

OA 

5. Along the air-fresh water interface, for an unconfined aquifer, 

equation (3) may be rewritten as 

P f 

h f = rr + y (39) 

The pressure of fresh water along the air-water interface is the same as 

the pressure of the air. Letting the air pressure be zero, equation (39) 

becomes 

h, = y (40) f 1 aw 

s For convenience M-• h shall be taken as zero. In other words, the 
Y f s 

piezometric head of stationary salt water shall be used as the datum. 

Therefore, 

cp: = y: .(36) 

2. Along the line-of zero y, y' remains zero. Along any line of 

constant y, y' will be N/Q times that constant. 

3. Along the streamline of constant x, as CB in Fig. 5, 
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where aw denotes air-water. Combining equation (8) and equation (40), 

a = - k h , = - k y (41) 
Y a w f 7 aw 

with cp1 = <p/Q, y 1 = Ny/Q and N = k(y /f^ - l) as defined in equations (34a), 

? and (28c), equation (41) becomes 
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CHAPTER III 

40. See, for example, L. M. Milne-Thomson, The Calculus of Finite 
Differences, MacMillan, London, 1933. 

METHOD OF SOLUTION OF LAPLACE'S EQUATION 

The method of solution of Laplace's equation for two-dimensional 

steady flow of ground water in an isotropic homogeneous aquifer will be 

presented in this chapter. As stated in the introduction, the particular 

numerical method employed in this investigation will be explained in 

detail while other methods will be cursorily examined. The simplest 

case of natural ground-water flow in a confined aquifer as shown in Fig. 

3(b) shall be taken to illustrate the application of some of the methods. 

Numerical Method 

Numerical methods of solving partial differential equations are 

based upon the theory of finite differences. The differential equation 

is first approximated by a difference equation, which is an algebraic 

equation showing the approximate relation of values of the dependent 

variable corresponding to a number of values of the independent variable. 

The task of solving Laplace's equation is thus reduced to solving a set 
40 

of linear algebraic equations. Various kinds of differences such as 

forward, central, backward, and divided have been defined. Using one 

kind of difference to approximate a particular partial differential 

equation may give a convergent solution while using another kind may not. 
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The central difference is best for the solution of Laplace's equation. 

Regardless of the kind of difference chosen, the domain must be 

superimposed with a network. Any kind of network such as triangular, 

square, rectangular or irregular polygon can be used. A square network 

as shown in Fig. 12(a) is obviously the most suitable for a rectangular 

domain. Numerical values of the function at all of the net points 

satisfying the difference equations and the boundary conditions con

stitutes a numerical solution of the'differential equation. This 

solution is approximate. Greater accuracy can be attained by increasing 

the number of net points. 
41 

The mathematical definition of the kth central difference of 

y(cp) is 

&ky(cp) = 6 k " X y(cp + §) - &k"'1 y(cp - |) (43) 

in which 6 is the central difference operator, y the dependent variable, 

cp the independent variable, and b is the change in cp between two adjacent 

net points. Replacing k by unity, equation (43) gives the first central 

difference as 

& y(q>) = y(cp + §) - y(cp - |) (44) 

The first derivative of y with respect to cp can be approximated by divid

ing equation (44) by b, which implies that the slope of the curve y(cp) at 

the point 0^ (Fig. 12b) is obtained by linear approximation. Thus, the 

first derivative is approximated by the slope of the straight line 

41. K. S. Kunz, Numerical Analysis, McGraw-Hill, New York, 1957, p. 66 
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joining the points 0^ and 0^. The smaller b is taken, the more accurate 

will be the approximation. In an area where y varies slowly with respect 

to cp, a relatively large b will give the desired accuracy, whereas if y 

varies rapidly with respect to cp, a relatively small b must be used to 

obtain equal accuracy. 

The second central difference can be obtained from equation (43) 

by putting k = 2 

62y(cp) = M c p + |) - 6y(cp - |) (45) 

which, by application of equation (44) becomes 

52y(cp) = y(cp + b). - 2y(cp) + y(cp - b) (46) 

2 

The second derivative is obtained by dividing the second difference by b . 

For the two-dimensional Laplace's equation, y is a function of two 

variables, y(cp- i|)). Equation (46), which was derived with one variable, 

can be applied by alternately holding each variable constant. Thus 

--f(cp^) * J 2 [y(q> + b, *|)) - 2y(cp, x|))+ y(cp - b, (47) 
dcp b 

and 

2 
^ (cp, i|>) ~ 4> [y(q>, T|) + b) - 2y(cp, T|>) + y(cp, T|> - b) ] (48) 
3iJ) b 

The left hand side of Laplace's equation is obtained if equation (47) is 

added to equation (48). Thus the difference equation approximating 

Laplace's equation is 

y(cp + b, + y(cp, x|) + b) + y(cp .- b, ty) + y(cp, ty - b) - 4y(cp, x|)) = 0 (49) 



32 

or 

y(cp> = 7 y(cp + b, \|)) + y(q>, ijj + b) + y(cp - b, \|)) + y(cp, i|) - b) (50a) 

With I-J notation* (Fig. 13), which is used in computer coding, equation 

(50a) can be written as 

y(l, J) = ~ [y(l, J - 1) + y(l.+ 1, J) + y(l, J + l) + y(l. - 1, j)] (50b) 

or, with E-N-W-S notation as in Fig. 12(a), as 

yO = 4 ( y E + y N + y W + y S } (50c) 

From equation (50), the value of the function at any point is simply the 

mean value of the function at the four adjacent points. 

Equation (50) can also be obtained by Taylor's series expansion. 

Considering Fig. 12(a), if y is the function of cp only, the expansion 

about the point cp = cpg is 

y " yO + D9 
2 3 

<9 " 90) + JT ' ^ 2
 (cP " ^ 0 ^ + 3T ^ 3 (9 " 9C5 

* dcp 0 * dcp 0 

4! , 4 dcp Q 

(9 ~ cpQ) + 

If cp is replaced by (cp + b) and by (cp - b) y and the'two resulting equations 

are added, one obtains 

2 2 + = 9 1 2 b d v 
y E Y W ^ yO 2! , 2 

dcp 

4 4 + 2bl (Ty. 
4 1 ^ 4i 

0 d cP 0 
+ 
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or 
4 4 b_ d_y 

12 4 dcp 0 

Similarly, if y is assumed to be the function of \j) alone, one obtains 

If b is small, the term containing b is negligible and equation (50) is 

again obtained. 

The following illustration shows that the task of solving Laplace's 

equation is reduced to solving a system of linear algebraic equations. 

Consider a function which satisfies Laplace's equation in a 2x3 rectangu

lar domain. For purposes of illustration, the rectangle shall be super

imposed by a network of six nets with the boundary conditions as shown 

in Fig. 14. Applying equation (50c) to point A, one obtains 

Thus , if y is a function of two variables, cp and ij). 

s - % ) + 0 ( b 4 ) (51) 

or 

4y A - y B - 4 (52) 

Similarly, for the point B, 

Y A - 4y B = 0 
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Equations (52) and (53) show that, in this particular case, Laplace's 

equation is approximated by a system of two equations with two unknowns. 

In this example, there are two net points, excluding those on the boundary. 

In general, Laplace's equation can be approximated by a system of linear 

algebraic equations in which the number of equations and the number of 

unknowns are both equal to the total number of interior net points. A 

unique solution exists for this system. The solution is shown graphically 

in Fig. 15. Suppose, in constructing the network, one unit length of the 

side of the rectangle is divided into 20 equal spaces, and the rectangle 

is 2 by 9. The total number of interior points is then 39 * 179 = 6,981. 

This system of 6,981 equations with 6,9-81 unknowns can be solved in about 

v 
30 minutes using the Burroughs B-5000 electronic computer. 

Numerical values have to be initially assigned to all of the inte

rior grid points. Although an initial estimate of all zeroes is satis

factory, a better estimate can be made by observing the boundary conditions 

and noting that maximum or minimum values of the function must be on the 

boundary. This fact can be easily proved. Suppose the maximum value of 

the function is located at an interior point, say the point 0 of Fig. 12(a). 

Since y^ is the maximum, y^, y^, y^ and y^ have to be less than or equal 

to Yq. Another condition, from equation (50c), is that y^ is the average 

of the sum of the four adjacent points. This implies that y £ , y^, y^ and 

y^ cannot be less than y^. Therefore, all of the five points have maxi

mum y. If this argument is carried on, every point on the domain will 

have maximum y, which is impossible except for a special trivial case of 

y equal to that maximum also on the boundary. 
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The case of natural ground-water flow within a confined aquifer 

with a horizontal outflow face, as shown in Fig. 16(a), is taken as an 

illustration Lof the method. On the non-dimensional complex potential 

w 1-plane, Fig. 16(b), y 1 varies linearly with cp1 along the boundary AB 

with a constant of proportionality of unity. Along OC, y 1 is zero. 

Along. BC, y' varies linearly with i})', as can be seen in Fig. 16(a). The 

linearity of the boundary conditions on all boundaries suggests that y' 

should vary linearly along either the line of constant cp1 or ij)' . If this 

assumption of linear variation is made, at. any point y'(cp^, 

yj(cpj, ty[) = -y'(cp^ - l) ty[ (54) 

Substitution of cp̂  for y'(cp^, - l) from the boundary condition on AB yields 

y[(q>{, ty[) = - cpi ty[ 

or, in general, 

y' (cp', -uj') = - cp' V (55) 

Differentiating equation (55) with respect to cp', one obtains 

Ijr C«p* V > = - V (56) 
|-^7 in equation (56) can be replaced by f-77, from the inverse Cauchy-ocp oip 
Riemannequation, equation 26(b), 

(57) 
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Partial integration of equation (57) gives 

x' (cp-, r) = + F i ( < p r ) + c i ( 5 8) 

Similarly, if equation (55) is differentiated with respect to if)' and com

bined with the Cauchy-Riemannequation, partial integration yields 

x' = + F 2 ty') + C 2 (59) 

Both equations (58) and (59) will be satisfied if 

2 2 
x' = T5- + V + C 

At the point 0, x' = 0, cp' = 0 and TJJ' = 0. Hence, C = 0 and 

x' = 5(^ ' 2 - cp,2J) (60) 

Equations (55) and (60) are the solution of the problem of natural ground

water flow in a confined aquifer with a horizontal outflow face. This 

solution is identical with the solution obtained by other methods, such as 

conformal transformation. Therefore, the initial estimate that y 1 varies 

linearly with both cp' and if)', suggested by observation of the boundary 

conditions, is the exact solution. 

In general, when the initial estimate is not the exact solution, 

the difference equation approximating Laplace's equation, equation (50), 

has to be applied to all the interior net points. One application of 

equation (50) to all of the interior points is called one iteration 
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regardless of the order of application, either from left to right, top to 

bottom, diagonally, or any other system. After the first iteration,, the 

initial estimate can be compared with the value of the function after 

application of equation (50) to each point. The total number of intera-

tions required to achieve a desired accuracy varies with the judiciousness 

of the initial estimate and with the rate of convergence of the solution. 

If the difference at every interior point is negligible, say less than 

0.0001, the last numerical value at all points can be taken as an approxi

mate solution of Laplace's equation. 

Application of equation (50) for a system of two equations with 

two unknowns can"be illustrated graphically. This is done in Fig. 15 for 

the case of Laplace's equation in a rectangular domain with boundary 

conditions as shown in Fig. 14. Suppose an initial estimate is made that 

the solution is y^ = 4 and y^ = 3.5, shown as position 0 in Fig. 15. 

Solving equation (52) for y^ with y^ = 3.5, one obtains y^ = 1.87, which 

is graphically equivalent to changing the value from position 0 parallel 

to the y^ axis to meet the line 4y^ ~ Yg = 4 .at the position 1. Now, 

holding y^ = 1.87, equation (53) is solved for y^, obtaining y^ = 0.47, 

thus moving,from the position 1 parallel to the axis to meet the line 

y^ - 4y^ = 0 at the position 2. At this stage, one iteration has been 

performed, consisting of one application of equation (50c) to the two 

interior points. The next iteration consists of moving two more steps, 

one parallel to y^ and the next parallel to y^. This is continued until 

the exact solution is met at the intersection of the two lines of equations 

(52) and (53). Re-examination of Fig. 15 suggests that the number of 

iterations can be reduced if each step is made a little further from the 



38 

line where the preceding iteration ended. For example, from the position 

0, suppose the horizontal step is made to the point x = 1 instead of 

x = 1.87. The next vertical step, completing one iteration, will bring 

the approximate solution to the. point which would otherwise require several 

iterations if the "over-step" were not made. This over-step method is 

formally known as "over-relaxationV. 

Fig. 15 again suggests that excessive over-relaxation will require 

more iterations to reach desirable accuracy. For example, if the hori

zontal step is made too long from,the position 0, say to the point x = -5, 

many iterations will be needed to converge to the exact solution. There

fore, there is a limit for over-relaxation. Let CJ be an over-relaxation 

factor defined by modification of equation (50c) as 

k+1 _ CJ k , k , k , k\ / n x k ,,, x 
y © - 4 L y E + % + yw+ yj - ( u " 1 } y o ( 6 1 ) 

f 
where superscript k.indicates the kth iteration. It has been found 

42 

theoretically that 0 < CJ .< 2 will,make the method of successive over-

relaxation converge and that there is an optimum over-relaxation factor, 

1 < u ^ < 2, which will give the most rapid convergence. Also, the use 

of u slightly larger than u ^ is less costly in computation time than 

the use of CJ slightly smaller than w
Gp^.» At the present, no theory exists 

for relating the optimum over-relaxation factor to the configuration of the 

domain and boundary conditions. However, for a rectangle with boundary 

conditions specified on the function itself, not its derivative, a near-

optimum over-relaxation factor has been suggested by Young as 
42. See, for example, G. E. Forsythe, and W. R. Wasow, Finite Difference 

Methods for Partial Differential Equations, John Wiley, New York, 1960, pp. 242-283. 



39 

u = 1 + (62a) 
(1 + - L) 

in which 

L = |~(cos 7t/lM + cos Tt/JN)J2 (62b) 

In equation (62b), IM and JN are the number of grids on the two sides of 

the rectangle. 

After the values of y at all the grid points have been found, x 

will be evaluated by means of the inverse Cauchy-Riemannequation. As 

derivatives of y with respect to cp and i|) are required along the. boundary 

of the complex potential plane, especially along the interface AB, central 

difference cannot be used. An approximate formula for differentiation 

including any number of grid points can be developed by the method of 

undetermined coefficients. Suppose four points are chosen, as shown in 

Fig. 17. The procedure is to assume that 

a y . 

9cp J = y J = C l y J + C 2 Y J - 1 + C 3 Y J - 2 + C 4 y J - 3 ( 6 3 ) 

Then, apply equation (63) to all polynomials from zero through third 

degree. The zero-degree polynomial, taking the origin at cpj for simplic

ity, is 

y - cp - 1 

and 

y« = o = C x + C 2 + C 3 + C 4 (64) 
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For the first-degree polynomial 

y = Cp 

and 

y' = 1 5 8 C l ? J . + ^ J - l + C3 CPj-2 + C4 cPj-3 

Since the origin is assumed to be at cpj, cpj = 0, 9j_̂  = -b, 9j_2 = anc* 
so on. The above equation becomes 

1 = G •+ 2 C 3 + 3 C 4 (65) 

Similarly, for the second-degree polynomial, 

0 = C 2 + 4 C 3 + 9 C 4 (66) 

and, for the third-degree polynomial, 

0 = C 2 + 8 C 3 + 27C 4 (67) 

Equations (64) to (67) are four equations with four unknowns and therefore 

can be solved to give C^, C , C^, and C^. Solving for C^, C 2 , C^, and 

and substituting in equation (63) 

ay 
dcp 

J = b (ii y j - 3 y j - i + iyj-2 - kr-s) (68) 

Equation (68) is exact for a third-degree polynomial. In a similar manner, 

the derivative at the point cpj 3 can be expressed as 

ay 
:8Cp 

J-3 = "b (M YJ-3 • 3 y J - 2

 +
 lyJ-l • iO (69) 
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a4 

3y. 
3cp 

= b Cl6 y J " 3 y J - l + lyJ-2 " 3yJ-a) + Ci 
IV 

which, with the fourth-degree polynomial 

y = cp 

gives 

= 0 = b [° - 3 ( - b ) 4 + i(-2b)4 - i(-3b)4]+ 4 1 c< 
1 3 from which C, = - b . Thus o 4 

ay. 
3cp 

J = b vl~6 y J 3 y J - l + 5YJ-2 " 3 y J - 3 ^ + 4 b y ( ° ( 7 0 ) 

43 . 
where cpj_3 < C < cpj» 

Simpson's one-third rule"" is an integration formula which is exact 

for a third-degree polynomials 

0̂ 
f(x) dx = |[f G + Af1 + f 2 ] - ± b5f4(C) (71) 

where Xq < C < x,-,. Other differentiation or integration formulae including 

more points can be obtained by means of the method of undertermined coef

ficients. 

43. See, for example, Kunz, op. cit.. p. 146. 

The error term in terms of the order of — * can be obtained, say for 

equation (68), by setting 
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Other Methods 

Separation of Variables 

The method of separation of variables seems to be the most 

elementary one. This method can be applied to partial differential 
44 

equations whose order is higher than the second and to equations with 
45 

more than two independent variables . However, difficulty is encountered 

in satisfying certain types of boundary conditions as, for example., on 

the interface of salt and fresh water in the physical plane where the 

position is initially unknown. Take, for example, the problem of natural 

ground-water flow from infinity in a confined aquifer as in Fig. 3(b). 

O n e of t h e g o v e r n i n g e q u a t i o n s is e q u a t i o n (9), 

j* 2 2 
2 2 5 x 8y 

The basic principle of the method of separation of variables is to assume 

that the solution cp(x,y) can be separated as the product of a. function of 

x and a function of y, 

cp(x, y) = X(x) Y(y) (72) 

Substituting equation (72) into equation (9) and rearranging, 

one obtains 

X"/X = - Y"A (73) 

44. Miller, op. cit., pp. 117-120. 

45. Ibid., pp. 120-124. 
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where the primes on the functions X and Y represent differentiation with 

respect to its independent variable. As the right hand side is independent 

of x while the left hand side is independent of y, they can be equal for 

all x and y only when both are equal to a constant. This constant can be 

either greater than, equal to, or less than zero. The boundary conditions 

will dictate which of the possibilities is valid for each specific problem. 

For the problem in Fig. 3(b), the interfacial boundary is initially un

known and thus this method cannot be used. However, suppose the domain of 

interest is a rectangle with all but one of the four boundary conditions 

being zero, as shown in Fig. 18. The constant in this case was found to 
2 

be less than zero, say -f> where p is a real number. Thus the partial 

differential equation, equation (9), is now reduced to two ordinary dif

ferential equations, 

X" + 2 
p X = 0 (74a) 

Y" - (74b) 

The solution of equation (74a) is 

X(x) = A cos |3x + B sin px 

from which the boundary condition cp(0, y) = 0 yields A^ = 0 and the con

dition cp(a, y) = 0 yields p = — , where n is positive integer. Thus 

X(x) = B sin a (75) 

The solution of equation (74b), with p = —-, is 

Y(y) = A n slnh f (y + B 2 ) 
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from which the boundary condition <p(x, l) = 0 gives = and 

Y(y) = A n sinh ^ (y - I) (76) 

According to equation (72), the product of equation (75) and equation (76) 

is a solution of equation (9). 

<P (x, y) = C sin sinh — (y - I) T n 7 n a a 7 

Since Laplace's equation is linear and homogeneous, any finite linear com

bination of solutions is a solution; and an infinite linear combination of 

solutions having suitable convergence and differentiability properties is 

also a solution. In particular, it can be shown that 

oo 

<p(x, y) = J C sin ^ sinh f (y - l) (77) z_i n a a 
n=l 

where 

C = — n . , mi „ a sinh ~ I a 
J* f(x) sin f- x dx (78) 

is a solution and that it is unique. Theoretically, the problem in Fig. 

18 is now solved. However, in practice, one may find some difficulties 

in integrating equation (78) and in finding the suitable form of the terms 

in equation (77) that will give convergent series at all points of interest. 

If the boundary conditions along two or more edges of the rectan-
46 

gle are non-homogeneous , one may treat the problem by superposition of 

the solutions of two or more problems (similar to the one just discussed) 

46. A boundary condition is homogeneous if Ccp satisfies it 
whenever cp does, where C is any constant. 
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in which the boundary conditions are non-homogeneous on one edge only. 
47 

For example, see Kirkham . > 

Conformal Transformation 

The method of conformal transformation or conformal mapping is 
48 

based on the theory of complex variables . This method can be used to 
49 

solve many kinds of flow problems . For the first problem in this inves

tigation (Fig. 5 ) , only the special case of a canal located at an infinite 

distance from the shore can be solved by conformal tranformation. The 

problem of natural ground-water flow from an infinite distance, as in 

Fig, 3(b), shall be again taken to illustrate the method. After having 

been non-dimensionalized, the boundary conditions become as in Fig. 16(a). 
/^s ~\ 50 If non-dimensionalized by N = k i — - 1 ), the inverse transformation 

will become 

dz dz' 

with the prime denoting dimensionless quantities. 

The physical plane shall be mapped onto the Q-plane. The inter-

facial condition is 

V ' 2 - v' = 0 (80) 

47. Kirkham, loc. cit. 

48. See, for details, R. V. Churchill, Complex Variables and 
Applications. McGraw-Hill, New York, 1960. 

49. See, for example, H. R. Vallentine, Applied Hydrodynamics, 
Butterworths, London, 1959, pp. 131-224. 

50. Ibid., p 0 147. 
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At the origin 0, since u = 0, v = oo and °( = ^, both the real and imaginary 

parts of Q are zero. Along the seepage face OA, °< = ^* In other words, 

the real part of & is zero along OA. At the point A which is on the inter

face, with u = 0, from equation (80), v ! - 1 or Q = 0 + i.,. Along the 

2 2 2 interface AB, replacing V in equation (80) by u' + v' , replacing u* by 

v* cos °(/sin °(, and multiplying through by sin °(, 

1 2 i . 2 , ~ 
v - v sin o( = o 

From A to a point near B, v' -j4 0. Thus 

• 2 . 
v = sin °( 

2 
Substituting v' by V as shown in equation (80), 

2 
l _ sin °( 

V 2 

or 

sin q( _ i / Q \ "ITJTI - 1 (81) 

At B, which is at an infinite distance from the origin, both u' and v' may 

be taken as zero. Thus the real part of Q will be infinite while the 

imaginary part is undefined. Nevertheless, at a point near B, equation 

(81) is applicable. At C, again both u' and v' can be taken as zero. Thus 

the real part of Q is infinite and the imaginary part is undefined. Since 

Q for both B and C have infinite real parts, they can be assumed to meet at 

infinity. Since °( = 0 along CO, the imaginary part of Q is zero. Values 

of all variables at various points and parts are grouped as follows: 
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Table 1. Coordinates in Various Planes for Natural 
Ground-Water Flow, 

at ion x' y' u' v' cos °( 
:IR 1 

sin °( 
|V| 

0 0 0 0 oo IZ/2 0 0 

OA x'>0 0 0 v'>0 %/2 0 0-1 

A x'>0 0 0 1, 0 1 

AB ^ x ' < x ^ y'<0 u'>0 v'>0 0<o<<1t/2 0-oo 1 

B -oo -oo 0 0 0 oo 1 

C -oo 0 0 0 0 oo 0-1 

CO x'<0 0 u'>0 0 0 . 0-oo 0 

The configuration on the dimensionless complex potential plane, Fig. 

16(b), can be obtained readily by values of cp and ty chosen as shown in 

Fig. 16(a). The configuration on the Q-plane is shown in Fig. 16(c). 

Both the Q-plane and the w'-plane can be transformed onto the upper part 
51 

of a plane by the Schwarz-Christoffel theorem as they are simple closed 

52 

polygons . However, by observation, the transformation from the w'-

plane to the Q-plane is ' 
Q = -w' 

51. See, for example, Ibid* 9 pp. 183-189. 

52. Ibid., pp. 184-185. 
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Replacing Q by l/dw'/dz' from equation (79), with manipulation one obtains 

dz' =• -w' dw' 

.2 
z' = ^ + C 

At the origin 0, z' = w' = 0, thus C = G. 

...2 
z' = V (82) 

Replacing z' by x' + iy' and w' by cp' + iif)' and equating real and imaginary 

parts, one obtains the previously obtained equations (60) and (55). 

and 

y' = -cp'V 

Replacing \|)' = -1 for the interface AB in equations (60) and (55) and 

eliminating cp'T one obtains 

x' = \ (1 - y' 2) (83) 

Graphical Method 

As demonstrated in Chapter II, Theory, both the stream function and 

the piezometric-head function satisfy Laplace's equation, equations (9) 

and (1.7). The families of curves ij)(x,y) = C^ and cp(x,y) = C^, where C^ 

and C^ are constants, form a mutually orthogonal network called a flow net, 

A flow net represents the only possible flow pattern for a given set of 

boundary conditions. The net can be constructed graphically by observing 
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that (l) piezometric-head lines intersect streamlines, including fixed 

boundaries, at right angles except at stagnation points and points of 

theoretically infinite velocity; (2) each unit of the. net is approxi

mately square with equal median lines; and (3) the spacing of both the 

piezometric-head lines and the streamlines is inversely proportional to 

the velocity at any point. The principles of construction of flow nets 

are simple. However, considerable skill is required to attain correct 

flow nets at all points in the flow. Nevertheless, even without experi

ence, flow nets can be roughly sketched for use as a guide in making 

initial estimates which can be subsequently refined by numerical methods. 

Flow nets also can be satisfactorily constructed when either streamlines 

or piezometric-head lines have been obtained by other methods, such as 

electrical analogy. 

Electrical Analogy 

Since the voltage in the steady flow of electric current in a 

conductor satisfies Laplace 1s equation, the electric-field pattern in 

a sheet of conducting material or a shallow bath of electrolyte is 

analogous to the flow pattern through porous media. If the configuration 

of the aquifer can be geometrically represented by a sheet of conducting 

material (for example, graphite paper), this method can be employed 

satisfactorily. The inflow and outflow water faces are represented by 

lines of high and low constant voltage, respectively. The voltag'e,.dif

ference is analogous to the head difference. A voltmeter is used' in 

locating lines of equal voltage,- which correspond to equipotential or 

piezometric-head lines. Streamlines can be then drawn by utilizing-the, 

principles of flow net construction. Streamlines may also be obtained 
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by using electric flow again, since the stream function also satisfies 

Laplace's equation. However, with the interface of the fresh and salt 

water being initially unknown, successive- trail solutions are necessary. 

After each trial the boundary conditions on the interface are checked and 

the interfacial boundary is adjusted. This process must be repeated until 

the interfacial boundary satisfies the dynamic boundary condition. 

Sand Boxes 

The familiar sand boxes or flow tanks can be employed in. the inves

tigation of porous media flow. At least one side of the box is constructed 

of glass in order to observe the streamlines followed by injected dye. 

The box may be filled with sand or glass beads or plastic balls to repre

sent the porous material. Wall piezometers are frequently installed in 

order to measure piezometric head. 

The actual flow system is represented in the model. Equation (5) 

is used to determine the model scale ratio. 

2 2 o + o = 0 2 2 
ax ay 

Let subscripts r, m and p denote ratio, model and prototype, respectively. 

h x y 
u - . r o _ m _ m / a.\ h = — , x = — , y = — (84) r h r x r y P P P 

Equation (5), which is for the prototype, becomes 

2 2 3 h 3 h 

http://u-.ro
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Replacing all variables in equation (85) by those in equation (84), one 

obtains 

a2(hm/hr) a2(hm/h ) 
m r m r _ ^ 

3 ( x m / x ) 2 a(ym/Yr)2 

m r m r 

2 2 2 2 x 3 h y 3 zh 

r o x r d x 
m m 

Equations (85) and (86) can be made identical except for the subscripts if 

x = y (87) r 7r 

Thus an undistorted model is required for flow in an isotropic, homo

geneous medium. 

On the interface the boundary condition is, from equations (28a), 

(28b) and (28c), 

= (Y h r ) h - y (Y /Yr - 1) (88) fp 1 s' 1 f p sp 'p 1 s' 1 f p 

which, by means of equation (84), becomes 

h. /h = (y /Yr) h /h - y (Y H* - l) /y fm' r 's 1 f p sm r 7 m 1 s 1 f p' 7r 

or 

= (Y /Yr) h - Ty (y /Yr - 1) ~|h /y (89) fm 1 s 1 f p sm L m s " f pj r 7r 

Replacing h^ by (Yg/fr ~ l ) r Y r> equation (89) yields 

= (Y /Yr) h - Y (Y /Yr " l) (Y Ar ' l) (90) 
fm 's -f p sm 'm 1 s' 1 f p .s ' f r 
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which will be identical to equation (88) except for subscript if 

(r Av - i) = (y /y* - i) Ay /y* - i) 
s f r 1 s 1 f m 1 s 1 f p 

(91) 

h sm = h sp = 0 (92) 

and 

h / (r / r f - i) y = i 
r s f r 7r 

(93) 

Equation (91) is similar to equation (84). Equation (92) implies that both 

in the prototype and model, the head of stationary salt-water has to be 

used as the datum. Equation (93) is the only one to impose an additional 

restriction on the model studies. If the prototype has large linear 

dimensions, the linear scale ratio (y = y /y ) is necessarily small. The 
7 r 7 nr 7 p 7 

piezometric head ratio (h^ = h^/h^) should be as large as possible in order 

to maintain accuracy in the measurement of piezometric head. The ratio 

(Y s/Yf " l ) r
 c a n k e selected to obtain the necessary accuracy in the 

measurement of piezometric head. 

The discharge scale ratio is obtained from the implication of 

similarity of velocity distributions. In the prototype, Darcy's law, 

equation (10), can be rewritten as 

where y here stands for any direction. If, similar to equations (84) and 

(91) 9 velocity ratio and coefficient of permeability ratio are defined, 

respectively, as 

v = -k ah-
(94) 

P 

v = v /v , k = k /h r m p r nr p (95) 
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equation (94) becomes 

v = -k 
m 

9h v y m r r 
m 3y k h 

7 m r r 
(96) 

Equations (96) and (94) imply: that 

v y /k h = 1 r r r r (97) 

Consider the rate of flow of fresh water through an element of area 

dQ = v dA- = v d(x y ) 
p n p p n p p V 

(98) 

where subscript n specifies that the velocity is normal to the incremental 

area. Let the discharge scale ratio be defined as 

Q = Q /Q r m p (99) 

Equation (98) becomes 

d C L = .v d(x„ y m ) ' 
Q. 

m nm m m v x y 
r r r 

For similarity, 

Q r A r x r y r = . 1 (100a) 

or, together with conditions in equations (87) and (97), 

Q /k h y = 1 r r T JT (100b) 
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Hele-Shaw Model 

The Hele-Shaw models consist of viscous flow between two parallel 

plates a small distance apart. These models are based on the theory that 
53 

the me^an velocity, if it is very small, can be deduced from the Navier-

Stokes equations to be 

" = . A 9Jl = _ k 9h ( 1 Q } 
U 3v 6x m 3x U U l a j 

2 - _ a q 3h 3h v = - -̂ -f — = -k r~ (101b) 3v AY m 3y v ' 

in which a is half the channel width. The quantity a g/3v can be con

sidered to be the coefficient of permeability, k m , of the channel. 

Equations (lOla) and (101b) are equivalent to Darcy's law and, when com

bined with the equation of continuity, will yield Laplace's equation. If 

the piezometric head gradient is chosen to be the same in the prototype 

and the model, the scale ratio for velocity can be readily obtained from 

Darcy's law and equations (lOla) and (101b), 

v = v'/v = k /k (102) r m p nr p v ' 

Similar to the case of sand boxes, the wall is usually made of a trans

parent material for observing the injected dye which follows streamlines. 

53.. Harr, op. cit., pp. .144-147. 
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CHAPTER IV 

SOLUTIONS OF THE THREE PROBLEMS 

Flow from a Single Canal 

For seepage flow from a single canal, only half of the configuration 

on the physical plane, Fig. 5(d), needs to be analyzed due to symmetry. 

The origin of the x-y axes is chosen to be at the shore, as shown in Fig. 

19(a). The dimensionless piezometric-head function on the outflow face 

O A i s t a k e n a s t h e d a t u m o f cp' j t h e r e f o r e , = 0. O n t h e c a n a l b e d o r 

Inflow face CD, the value of the piezometric-head function is designated 

cp^, where subscript C denotes canal. The interface AB is chosen to be the 

line o'f i|j 1 = 0. Obviously, the continuation of this streamline, BC, also 

has the value ijĵ  = 0. Referring to equation (19) the value of the stream 

function on the line DO must be half the discharge from the canal, ( Q ^ / 2 ) . 

In order to convert both potential functions into dimensionless quantities, 

Q q / 2 is taken as the reference discharge. Thus, the value of i J ^ q is unity. 

The configuration in the physical plane, Fig. 19(a), can be mapped 

onto the complex potential plane as a rectangle as shown in Fig. 19(b). 

The line OA is a line of zero piezometric head and must lie on the ijj'-axis. 
The line CD is a constant piezometric-head function and thus is parallel 

to OA. The line ABC, along which xjj1 = 0 , is on the cp'-axis. The line OD, 

along which \Jj' = 1, is parallel to ABC. The value, of the piezometric-head 

function at the point B is designated as cpg. 

All boundary conditions for y' are known. From Fig. 19(a), with the 

y'-axis as shown, the value of y' is zero along the line OA, OD and CD* 
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In accordance with equation (36), along the interface AB 

•pi •= y i 

Since the streamline BC is parallel to y'-axis in the physical plane and 

all equipotential lines cross it at right angles, 

ML 
8\|>' BC = ° 

Since all boundary conditions for y 1 are known and y', according to 

equation (35), satisfies Laplace 1s equation 

+ = o 
2 9 

d c p , z d i J ) , Z 

in the rectangle OABCD on the complex potential plane, y' can be obtained 

by the over-relaxation method. Equation (35) is first approximated by 

equation (6l) which in I-J notation becomes 

y'C1' J) = 4 [y't 1* J - i) + y ' d + i» J) + y'(i,-.J + i) + y"(i - .1, J)] 

- (1 - u) y" (I, J) (103) 

in which u is the near-optimum over-relaxation factor 

w = 1 + 
(1 + V l - L ) z 

L = [ ( c o s Tc/lM + c o s n/JN)/2] 2 

I.M a n d JN a r e t h e n u m b e r o f g r i d s o n e a c h o f t h e t w o s i d e s o f t h e r e c t a n g l e 
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In order to apply the numerical method, the rectangle on the complex 

potential plane must have fixed dimensions. Re-examination of Fig. 19(b) 

reveals that the dimensions of the rectangle will be fixed if ep'g and epfQ 
are given numerical values. This implies that ep'g and epfQ must be taken 

as independent variables while x 1 and y 1 become dependent. Unfortunately, 

the physical dimensions cannot be specified initially but must be obtained 

in the last step of the solution. However, once solutions are found for a 

set of the dimensions, a chart showing the effect of either cp̂ or cp̂ on the 

physical variables can be prepared and utilized in finding the values of 

cp'B and cp'c which correspond to any desired physical dimensions. Values 

of cp'g and cp'̂ . for which solutions are obtained in this investigation are 

given in Table 2. 

Table 2. Chosen Values of Independent Variables for Problem 1. 

Run No. 9 ' B ^ C 

SI -1.8 -2 

S2 -1.4 -2 

S3 -1.0 -2 

S4 -0.6 -2 

S5 -0.2 -2 

S6 -3.8 -4 

S7 -3.4 -4 

S8 -3.0 -4 

S9 -2.6 -4 

S10 -2.2 -4 
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After the rectangle has been given fixed dimensions, a square 

network is superimposed on it. Five grids per one unit of cp' was first 

chosen, but it was found that unless the grid size is sufficiently fine, 

accuracy will be lost in the refinement. Therefore, the initial number 

of grids per one unit of cp' was changed to be ten. For cp1' = 4, this 

results in 711 grid points. If the values of y 1from the initial estimate 

are punched for all 711 points, it will be time-consuming. Thus the 

initial estimate was not made from the rough sketch of the flow net in 

the physical plane but was made in functional form by observing the 

boundary conditions on the complex potential plane. With the grid points 

counted as shown in Fig 19(c), the boundary conditions specified on the 

function become 

y'(l, 0) = 0; I = 0, 1 ••• MO (104a) 

y'(l, NC) = 0; I = 0, 1 ... MO (l04b) 

y'(M0, J) = 0; J = 0, 1 ... NC (l04c) 

y'(0, J) = cp'B j/NB; J = 0, 1 NB (l04d) 

and the derivative can be approximated by the first central difference 

| B C = [y(l, J) - y(-l, J)]/2h 

which, when equated to zero according to equation (37), yields 

y'(l, J) = y'(-l, J ) ; J ='NB + 1, NB + 2 NC - 1 (105) 

Since all the boundary conditions on y* are linear, y' is initially esti

mated to be linear, that is, linear along the line BC; 

y'(0, J) = cp'B[l - (J - NB)/NBC ; J = NB + 1, NB + 2, ••• NC - 1 (106a) 

3iJ)' 
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where 

, NBG = NG - NB (106b) 

and, linear along the line of constant cp1 ; 

y ' (I, J) = y'(0, J) (1 - i/MO); I •= 1,2...MO - 1 
T = 1,2...NC - 1 (107) 

After the initial estimate has been made, u and L are evaluated 

according to equations (62a) and (62b). In the case of cp'c =-4 and 

MO = 10, IM and JN are 10 and 40, respectively. For each iteration, equation 

(103) is applied to all the interior points. 711 points or 711 equations 

with 711 unknowns are solved in this case. The over-relaxation factor was 

derived for these interior points, not for the points on the boundary. 

Therefore, it should not be applied to the exterior points on the line BC 

where equation (50b), 

y'(l, J) = J y ' d , J - l) + y'(l + 1, J) + - y ' ( l , J + l) + y'(i - 1, J) 

has to be used. Replacing the value of I by zero, as it is on BC, and 

then utilizing equation (105), 

y'(0, J) = j[y'(0, J - 1) + 2y'(l, J) + y ' ( 0 , J + l ) ] 5 

J = NB + 1, NB + 2•••NC - 1 (108) 

Furthermore, the existence of the boundary conditions specified on the 

derivative of the function gives more linear algebraic equations, as in 

equation (108), to the system effecting the efficiency of the over-

relaxation factor. Yet, as these additional equations constitute only a 
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small percentage of the whole system, the number of Iterations needed, for 

any desired accuracy, by using the over-relaxation factor should still be 

less than the number needed without using the factor. 

After a specified accuracy is attained, the network is refined. As 

accuracy is lost in the refinement, a low order of accuracy should be spec

ified for the coarse net. In this investigation, the criteria for refine

ment is chosen to be 

where y denotes the function obtained from the kth iteration. Equation 

(109) shall be called "accuracy-check equation". It implies that the net 

will be refined when the maximum change of the function at any point is 

less than one percent, if e is taken to be 0.01. For simplicity, the size 

of the refined grid is chosen to be half of that of the coarse one as 

shown in Fig. 20. The value of the function at the point of intersection 

of two new grid lines, as the point 0 of Fig. 20, is obtained from the 

90° rotation of equation (50b) which is 

(109) 

k 

y'(i, J) = ^y'(i + 1, J - 1) + y'(l + 1, J + 1) + y'(l - 1, J + 1) 

or, with N-E-S-W notation, 

(110b) 

The value of y' at the remaining new points, such as N and W in Fig. 20, 

can be obtained by using equation (50b). 
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Relaxation is repeated on the fine grid with the new over-relaxation 

factor until the condition in equation (109) with e = 0.0001 is satisfied. 

Derivatives of y' with respect to cp1 are evaluated for every point along 

the lines OA and DC by using equations (68) and (69) which in I-J notation 

become 

v (I'Q) =hC^yl(I'0)
 - Vd,:)

 + fy,(I'2) - b'^>3)] ( m ) 

and 

5v 1 (I. :.NC) = -1 
dcp' bl L ^ y'(l, NC) - 3y'(l, NC - l) + |y'(l, NC - 2) 

- 1 . 

gy'(i, NC - 3)] (112) 
where b = l/20. Application of equation (ill) or (112) implies that a 

third-order polynomial is first fitted to the four points and the slope 

of this polynomial approaching the end point is taken to be the approxi

mation, of the first derivative of the function at that point. Incre

mental values of x 1 are then evaluated by using the inverse Cauchy-Riemann 

equations, equations (26a) and (26b) and equation (71), combined for OA as 

x ' d - 2, 0) - x ' d , 0) = |[ay (I - 2 i 0 ) + 4 3y;(l - 1, 0) 

+ â jaj (H3a) 
and for DC as 
x'(l.- 2, NC) - x ' d , NC) = " 2 ' N C ) ' l r N C ) 

+
 N C ) ] (113b) 



62 

Similarly, x' along the interfacial streamlin'e ABC and other stream

lines can be evaluated. Therefore, the coordinates of points at constant 

interval of piezometric-head function along streamlines are obtained and 

both the streamlines and piezometric-head are plotted in the physical plane. 

A typical flow net. is shown in Fig. 21. Various dimensions are 

tabulated in Table 3. The effect of h^/h^ on various dimensions and on the 

land-water ratio are shown for cp'^ = -2.0 in Fig. 22(a) and for cp'^ = -4.0 

in Fig. 22(b). 

A Single Canal With Natural Ground-Water Flow 

Seepage flow from a.single canal with natural ground-water flow is 

analyzed as two separate cases. The first case is shown in Fig. 4(a) and 

the second case in Fig. 4(b). The difference in the two cases is the 

direction of flow at C. In the first case, the head in the canal is the 

same as that of the approaching ground water resulting in the piezometric 

head gradient being vertical at C. In other words, the discharge is 

vertically downward at C. In the second case, the head in the canal is 

higher than that of the approaching ground water, resulting in a landward 

flow from the canal. 

Condition A 

As shown in Fig. 6(a), cp' on the outflow face OA and t|>8 on the 

interfacial streamline AB are chosen to be zero. The piezometric-head 

function at the inflow face CD is designated as cp£» From equation (19). 

ijj on C'CFG is the natural discharge from infinity, Q j . Similarly, i|) on 

DO is the total discharge from infinity and from the canal, Q . For 

convenience in comparing the solution of this problem with the problem 



Table 3. Dimensions (Problem l). 

Depth Land 
Under Between 

cp' at cp'Under L Seepage the Canal Half Width Land-Water hg/ nQ = 
Run Canal of Canal Face Shore and.Shore of Canal Ratio 
No. ^B = Y B 

xk y B ' "D x b " X C " xb^ xb" x c ^ cpg/cpi A D X C - x f / ( x A + X b 

SI -2 -1.8 0.489 -0.939 -1.082 1.691 0.64 0.90 2.180 0.50 

S2 -2 -1.4 0.479 -0.889 -0.848 0.576 1.47 0.70 1.055 0.80 

S3 -2 -1.0 0.446 -0.754 -0.510 . 0.198 2.57 0.50 0.644 0.79 

S4 -2 -0.6 0.358 -0.516 -0.200 0.052 3.85 0.30 0.410 0.49 

S5 -2 -0.2 0.148 -0.180 -0.021 0.005 4.20 0.10 0.153 0.14 

S6 -4 -3.8 0.499 -1.000 -6.151 3.870 1.59 0.95 4.369 1.41 

S7 -4 -3.4 0.498 -0.999 -5.652 1.566 3.61 0.85 2.064 2.74 

S8 -4 -3.0 0,500 -0.998 -4.843 0.706 6.85 0.75 1.206 4.01 

S9 -4 -2.6 0.499 -0.996 -3.893 0.3.21 12.11 0.65 0.820 4.75 

S10 -4 -2.2 0.498 -0.988 -2.937 0.142 20.65 0.55 0,640 4 C58 

ON 
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of natural ground-water flow of Fig. 3(b), Q is taken as a reference 

discharge. Therefore, I ) ) 1 on C'CFG becomes unity and that on DO, desig

nated as Q J . , is equal to or greater than unity. Landward from the canal 

the spacing of streamlines in the vertical direction tends to become 

equal, similar to the case of natural ground-water flow alone. There

fore, it appears reasonable to assume that at a point at some distance 

inland from the canal, IJ)' varies linearly with y 1 . Let cp' at this point 

be denoted by cp^. 

Mapping of the physical plane onto the complex potential plane 

results in two adjoining rectangles as shown in Fig. 6(b). The upper 

rectangle OGCD represents the flow from the canal and ABC'G represents 

the natural ground-water flow. Since all boundary conditions for y' 

are known, relaxation is performed on this variable. 

In order to fix the dimensions of the two rectangles, three 

variables, cp^, cp̂  and QJ,, must be given numerical values. Therefore, 

in this problem, cp' , cp' and Q' are taken as independent variables, 

LI D 1 

leaving x' and y' as the independent variables. 

There is probably an optimum over-relaxation factor for the 

relaxation of a configuration of two adjoining rectangles, but, up to 

the present time, this optimum value has not been found theoretically. 

If one set of dimensions were used several times, this factor could be 

.found by trial and error. However, in this investigation, various 

sets of dimensions, as shown in Table 4, are used, with each set to 

be solved only once. 



Table 4. Chosen Values of Independent Variables 
for Condition A of Problem 2. 

Run No I . 5Pc' <PB i 
Al -2 -6 2.2 

A2 -2 -4 2.0 

A3 -2 -4 1.8 

A4 -2 -4 1.6 

A5 -2 -4 1.4 

A6 -2 -4 1.2 

A7 -3 -6 2.2 

A8 -3 -6 2.0 

A9 -3 -6 1.8 

A10 -3 -6 1.6 

All -3 -6 1.4 

A12 -3 -6 1.2 

A13 -4 -8 2.2 

A14 -4 -8 2.0 

A15 -.4 -8 1.8 

A16 -4 -8 "1.6 

A17 -4 -8 .1.4 

A18 -4 -8 1.2 

A19 -5 -10 2.2 

A20 -5 -10 2.0 

A21 -5 -10 1.8 

A22 -5 -10 1.6 

A23 -5 -10 1.2 
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In the absence of a theoretical value, the over-relaxation factor as 

defined in equations (62a) and (62b) shall be employed,. The two adjoining 

rectangles in the dimensionless complex potential plane are divided into 

two overlapping rectangles by extending the vertical line DC to the point. S 

on the cp' - axis, as shown in Fig. 6(c). One over-relaxation factor, U p 

is used for the rectangle OASD and another, W ^ J for the rectangle C S B C . 

No over-relaxation factor is used on the line CS. For every iteration, 

relaxation is performed from right to left and from bottom to top. These 

operations are performed first in the rectangle OASD using equation (103) 

with w = u^; second, on the line CS using equation (50b) which is identi

cal to equation (103) with u as unity; and third, in the rectangle CSBC 

using equation (103) with u = c^* Ten nets per unit of cp' or unit of i|)' 

were taken initially, that is, MC in Fig. 6(a) was given the numerical 

value of ten. The nets were subsequently refined by choosing 20 per unit 

of cp' or i})' . 

The initial estimate of y' is made by observing the boundary con

ditions on the complex potential plane, Fig. 6(b), which may be rewritten 

in terms of I-J notation as, 

on AO, y' (I, 0) = 0 ; I = o, 1, 2 ...MD (114a) 

on CD, y' (I, ND) = 0; I = MC , MC + 1,...MD (114b) 

on B C , y'(l, NB) = 9 B(l-l/MC);;I = 1 , 2 ...MC (114c) 

on AB, y'(0, J) = cpB J/NB; J = 1 , 2 . . . N B (115a) 

on C C , y'(MC, J) = 0; J = ND + 1, ND + 2....NB - 1 (115b) 

and on OD, y'(MD, J) = 0; J = 1 , 2 . . . N D - 1 (115c) 

in which MC is the number of grids per one unit of cp' , 
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MD = MC x Q.J. (I16a) 

ND =-MC x c p ^ (116b) 

NB is assumed to be twice the value of ND. The assumption that NB = 2ND 

or that cpg = 2cpQ is simply a means of insuring that x^ is sufficiently 

landward from the canal. The value of y 1 is zero on all the boundaries 

except on AB, where y 1 varies linearly with cp'j and on BC, where y 1 varies 

linearly with ij)1. The initial estimate of y 1 is based upon a linear vari

ation with.il)1. In terms of I-J notation, 

y'(l, J) = y'(0, J) (1 - l/MD); I = 1, 2, ... MD-1 (117a) 
J = 1, 2, ... ND-1 

and, 

y'(l, J) = y'(0, J) (1 - i/MC); I = 1, 2, ... MC-1 (117b) 
J = ND, ND + 1, ...NB-1 

The number of iterations required is again determined by checking 

the desirable accuracy according to equation (109). The value of e is 

taken to be 0.01 for the coarse net and 0.0001 for the fine net. For 

some trial runs of the computer program, equation (109) was applied to 
/ k4"I k / k+1 

all the interior net points. The maximum values of (y - y )/y, 

were obtained mostly in the region of flow from the fresh water canal, 

OGCD, not in the region of flow from infinity, GABC (Fig. 6b). For 

expediency in all of the later runs, equation (109) was used as an 

accuracy check only in the region OGCD, which has about one-third as 

many interior points as the whole region. Additional computer time is 

saved by applying equation (109) to every fifth iteration for the. coarse 

net and every second iteration for the fine net, instead of to every 

iteration. 

http://with.il)1
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After equation (-109) has been satisfied, y' at all grid points are 

taken as a solution of equation (35)* The values of x' for equipotential 

line OA and streamlines ^* - 0, \|>r = 0.2, . . . ,• i|)1 = Q| - 0.2, and = QJ. 

were obtained by application of the inverse Cauchy-Riemann equation, 

equations (ill), (112), (113 a) and (113 b). A typical flow net for a set of 

boundary conditions is shown in Fig, 23. Pertinent dimensions are 

presented in Table 5. 

Condition B 

Similar to the problem of Condition A, cp' on the outflow face, OA 

in Fig. 7(a), and ijj' on the interfacial streamline AB, are chosen to be 

zero. From equation (19), i|j on C D ' and on CD'FG is the natural dis

charge from infinity, Qj. On DO, ijj is equal to Q̂, the total discharge. 

The reference discharge is again Q̂. 

The dimensionless complex potential plane of this problem is 

shown in Fig. 7(b). The configuration of Fig. 7(b) is two adjoining 

rectangles with a slot along the line CD'. The rectangle OGCD is joined 

to the rectangle GABC only on a portion, GD', of the line GD'C. 

Application of the numerical method requires that the domain has 

numerical values for the dimensions. Therefore, for Fig. 7(b), cpQ* cpB> 

cp̂ , and Qj must be given numerical values. Thus, cp^. cpB? cp̂ , and Qj. are 

taken as independent variables, and the dependent variables are x' and y' 

for various points. If cp̂ , is the same as cpQ> this problem reduces to 

Problem 2A. Numerical values of cp^, Qj and cp̂ f are shown in columns 2, 3,4 

of Table 6. The value of cpB was taken to be equal to 2cp^. 

The over-relaxation factor as defined in equations (62a) and (62b) 

shall again be employed. The two adjoining rectangles in the dimensionless 



Table 5. Dimensions (Problem 2A) 0 

Run 

cp' at 
the 

Canal 
Total 

Discharge 
Seepage 
Face 

Depth 
Under 
the 

Shore 
Distance 
Shore and 

Between 
Canal 

Canal 
Width x5 at B. 

x ! at 
£ of 
Canal 

y s at 
<L of 
..Canal 

No. v'c T *k xrf xc xe/xc XL 
Al -2 2.2 0.905 • -1.55 -0.245 -0.807 0.562 -18.618 23.1 -0.526 -1.910 

A2 -2 2.0 0.867 -1.53 -0.337 -0.856 0.519 --6.668 7.8 -0.597 -1.923 

A3 -2 1.8 0.819 -1.48 -0.464 -0.926 0,462 - 6.731 7.3 -0.695 -1.945 

A4 -2 1.6 0.757 -1.41 -0.642 -1.028 0.386 - 6.823 6.6 -0.835 -1.972 

A5 -2 1.4 0.683 -1.31 -0.898 -1.182 0.284 - 6.956 6.4 -1.040 -2.017 

A6 -2 1.-2. 0.596 -1.17 -1.285 -1.432 0.147 - 7.159 5.0 -1.359 -2.080 

A7 -3 2.2 1.031 -1.88 -0.950 -1.962 1.012 -15.50 8.9 -1.456 -2.736 

A8 -3 2.0 0.959 -1.80 -1.184 -2.097 0.913 -15.63 7.5 -1.641 -2.763 

A9 -3 1.8 0.879 -1.68 -1.485 -2.277 0.792 -15.78 7.1 -1.881 -2.799 

A10 -3 1.6 0,791 -1.55 -1.879 -2.523 0,644 -16.00 6.4 -2.201 -2.845 

All -3 . 1.4 0.697 -1.39 '•-2.413 -2.873 0.460 -16.31 5.7 -2.643 -2.904 

A12 -3 1.2 0.600 -1.20 -3.180 -3.411 0.231 -16.77 4.9 -3.296 -2.986 

(continued) 



Table 5. Dimensions (Problem 2A)._(Continued'). 

Run 

cp' at 
the 

Canal 
Total 

Discharge 
Seepage 
Face 

Depth 
Under 
the 

Shore 
Distance Between 
Shore and Canal 

Canal 
Width x' at B 

x' at 
£ of ' 
Canal 

y' at 
•£ of 
Canal 

No. q£ Q T X D 
x' X C XD C X B x s /x 5 

X B / X C *i A13 -4 2.2 1.078 -2.06 -2.143 -3.611 1.468 -27.88 7.7 -2.877 -3.639 

A14 -4 2.0 0.989 -1.93 -2.560 -3.871 1.311 -28.13 7.3 -3.216 -3.671 

A15 -4 1.8 0.895 -1.77 -3.083 -4.205 •1.122. -28.41 6.8 -3.644 -3.722 

A16 -4 1.6 0.798 -1.59 -3.754 -4.656 0.902 -28.82 6.2 -4=205 -3.778 

A17 -4 •1.4 0.700 -1.40 -4.649 -5.285 0.636 -29.39 5.5 -4.967 -3.841 

A18 -4 1.2 0.600 -1.20 -5.909 -6.223 0.314 -30.23 4.9 . -•6.066 -3.932 

A19 -5 2.2 1.093 -2.16 -3.807 -5.733 1.926 -43.74 7.6 -4.770 -4,577 

A20 -5 2.0 0.997 -1.98 -4.447 -6.152 1.705 -44.11 7.2 -5.300 -4.621 

A21 -5 1.8 0.899 • -1.80 -5.243 -6.696' 1.453 -44.59 6.7 -5.970 -4.678 

A22 -5 . 1.6 0.800 - -1.60 -6.257 -7.417 1.160 -45=25 6.1 -6.837 -4.738 

A 23 -5 1.2 0.600 -1.20 -9.471 -9.868 0.397 -47.71 4.8 -9.670 -4.902 

Note 1 9 B 
is taken to be 3cp£ for Run 1 and to be 2cp£ for Runs 2 - 23, 
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complex potential plane are divided into two overlapping rectangles, OGCD 

and GABC" . The overlapping portion is the line GD'. The over-relaxation 

factors are cj^ and c j^ for the rectangles GABC and OGCD, respectively. No 

over-relaxation factor is used on the line GD'. Twenty nets per unit of 

cp' or t|)were used and no refinement was made. 

The boundary conditions are denoted by equations (114) and (115), 

with one addition, namely 

y'(MC, J) = Oj. J = NDP, NDP + 1...ND (118) 

on CD' as'shown in" Figs. 7(b) and 7(c). The initial estimate of y' is 

taken to be linear. 

y'(l, J) = y'(0, J)(l - i/MD); I = 1, 2...MD - 1 (ll9a); 
J = 1, 2...NDP - 1 

y'(l, J) = y'(0, J)(l - i/MC); I = 1, 2...JVC - 1 (ll9b) 

J = NDP, NDP + 1...NB - 1 

and, 

y'(l, J) = y ' d , NDP - l)[l 
I 
J 

The number of iterations required is determined by the application 

of the accuracy-check equation, equation (109), to all the net points in 

the region OASCD of Fig. 7(c). The value of e of equation (109) is taken 

to be 0.0001. Application of equation (109) is made every fifth iteration 

when the number of iterations is less than sixty, and every second itera

tion otherwise. 

- (J - NDP + l)/(ND - NDP + 1)J; (ll9c) 
= MC + 1, MC + 2...MD - 1 
= NDP, NDP + 1...ND - 1 
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The values of x' for equipotential lines OA and DC, and for stream

lines = 0, 0.2. ..CV, are again obtained by means of the inverse Cauchy-

Riemann equation, equations (ill), (112), (113a) and (ll3b). A typical flow 

net for a set of boundary conditions is shown in Fig. 25. The effect of 

hp./h^ on various dimensions is shown in Fig. 26. Key dimensions are 

tabulated in Table 6. 

Parallel Canals with Intermediate Drains 

Seepage flow from parallel canals to intermediate drains, Fig. 8(a), 

is simplified as shown in Fig. 8(b). Mapping of the simplified physical 

plane into the complex potential plane yields a rectangle with boundary 

conditions on y' as shown in Fig. 8(c). The boundary conditions for this 

problem in the complex potential plane appear to be the same as those for 

the problem of a single canal, Fig. 19(b), except on the line of zero i|)' . 

In Fig. 8(c), if the point A 1 is made to coincide with the point A, the 

configuration and boundary conditions of Fig. 8(c) are identical to those 

of Fig. 19(b). Therefore, the solution of the problem of a single canal 

is a special case of the solution of the problem of parallel - canals with 

intermediate drains. An additional independent variable, cp^.j is required 

in order to fix the configuration on the w-plane. For the single canal, 

cp̂ , is zero. 

The boundary conditions of the problem of a single canal, equations 

(104a), (104b), and (104c), are valid fpr this problem, but equation-(104d) 

has to be modified as follows, 

y'(0, J) = cpB J/NB; J = NA' + 1, NA' + 2...NB (120) 



Table 6. Dimensions (Problem 2B). 

cp' at 
the Total 

Run Canal Discharge 
cp' at 
D' 

Depth 
Under 

Seepage the 
Face Shore 

No. FC •T <PD- 4 
Al -2 2.2 -2 0.905 / -1.550 

Bl -2 2.2 -1.5 0/815 -1.396 

B2 -2 2.2 -1.0 0.681 -1.202 

B3 -2 2.2 -0.5 0.554. -1.055 

N -2 -T- 0 0.500 -1.000 

A5 -2 1.6 -2 0.757 -1.41 

B4 =2 1.6 -1.5 0.717 -1.301 

B5 -2 1.6 -1.0 0.644 -1.170 

B6 -2 1.6 -0.5 0.550 -1.050 

N -2 . 0 0.500 -1.000 

B7 -3 2.2 -1.5 0.816 -1.395 

B8 -4 2.2 -2.0 0.922' -1.589 

B9 -4 •2.2 -3.6 1.073 -2.040 

BIO -4 2.2 -3.8 1.079 -2.070 

Bll -5 2.2 -2.5 0.993 -1.768 

Distance Between Canal V 1 

Shore and Canal Width x' at D J x* at B HE 
X D " X C XD' 

x' X B x' 
X D ' 

-0.245 -0.807 0.562 -0.807 18.618 23.1 

-0.133 -0.196 0.063 -0.328 6.978 21.3 

-0.036 -0.043 0.007 -0.119 - 7.265 61.1 

-0.0026 -0.0028 0.0002 -0.022 - 7.442 338.0 

0 0 0 O ---
-0.642 -1.028 0.386 -1.028 - 6.823 6.6 

-0.344 -0.358 0.014 -0.465 - 7.096 15.3 

-0.103 -0.104 0.001 -0.169 - 7.306 43.2 

-0.009 -0.007 0 -0.027 - 7.447 127.6 

0 0 0 0 ---
-0.160 -0.163 0.003 -0.325 -16.976 52.2 

-0.398 -0.400 0.002 -0.657 -30.574 46.5 

-1.. 855 -2.189 0.334 -2.598 -28.486 11.0' 

-2.034 -2.665 0.631 -2.969 =28.148 9.5 

=0.7636 -0.7644 0.001 =1.120 -48.056 42.9 

h D ' / h C = 

^ D ' ^ C 

•1.0 

0.75 

0.50 

0.25 

0 

1.0 

0.75 

0.50 

0.25 

0 

0.50 

0.50 

0.90 

0.95 

0.50 

x 1 at l 
of. Canal 

•0.5260 

•0.1645 

•0.0395 

•0.0027 

0 

•0.8350 

•0.3510 

•0.1037 

•0.0090 

0 

•0.1615 

•0.3990 

•2.022 

•2.335 

•0.7640 

y' at 
4 of 
Canal 

_^L . 
-1.910 

-1.515 

-1.235 

-1.058 

-1.000 

-1.972 

-1.562 

-1.255 

-1.060 

-1.000 

-1.512 

-1.859 

-3.210 

=3.399 

-•2.251 

Notes cpg = 2ep£ 
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Equation (105) must also be modified as follows, 

y'(l, J)'= y'f-l, J ) ; J = 1, 2,...NA', NB + 1, NB + 2...NC - 1 (121) 

If y 1 is initially estimated to be linear, equations (106a), (l06b) and 

(107) are applicable. For each iteration, equation (103) is applied to 

all interior grid points and equation (108) is applied to the portion of 

the line of zero x|>' where J = 1, 2...NA' and J -' NB + 1, NB + 2...NC - 1. 

The remaining procedure is the same as for the problem of a single canal. 

A typical flow net is shown in Fig. 27. Key dimensions are tabulated in 

Table 7. The variations of physical dimensions with the value h.,/hu for 

various values of the piezometric head in the canal (related to cp^) are 

shown in Fig. 28. The variations of the ratio of land surface to water 

surface, and the variation of the ratio of land surface to half the sum 

of the depth of the interface at the centerline of the canal and at the 

centerline of the drain with hu/hu are'shown in Fig. 29. 

Accuracy of Numerical Solutions 

In the numerical computations involved in either relaxation, 

integration or differentiation, there are two major sources of error, 

namely, "truncation errors" and "round-off errors". The truncation 

errors are caused by truncating all but the first few terms of an infinite 

series, such.as Taylor's series, as illustrated after equation (51). The 

round-off errors arise from the necessity of using finite decimal numbers 

in the computations. 

Truncation Errors 

The truncation error is first made in approximating Laplace's 

equation by a finite difference equation. From equation (5l), the 



Table 7. Dimensions (Problem 3). 

9' 9' Half Depth Half 
Under Under Width Under Width Total Land-

cp' at i . of t of of £ of Land of Water Water 
Run Canal Canal Drain Drain Drain Surface Canal Surface Ratio 
No. <Pc 9B-y B 

9A. *; X D xd"xc x' » 
'"' w 

= xl/x' D w 

SI -4 -3.8 0 0.499 0 -6.151 3.870 4.369 1.41 

PI -4 -3.8 -0.4 0.465 -0.27 -6.148 3.870 4.335 1.42 

P2 -4 -3.8 '-0.8 0.366 -0.55 -6.094 3.870 4.236 1.44 

P3 -4 1 -3.8 -1.2 0.266 -0.81 -5.928 3.870 4.136 1.43 

P4 -4 -3.8 -1.6 0.182 -1.06 -5.605 3.864 4.051 1.45 

P5 -4 -3.8 -2.0 0.119 -1.30 -5.108 3.867 3.986 1.28 

S2 -4 -3.4 0 0.498 0 -5.652 1.566 2.064 2.74 

P6 -4 -3.4 -0.4 0.464 -0.27 -5.649 1.566 2.030 2.78 

P7 -4 -3.4 -1.6 0.182 -1.06 -5.105 1.565 1.747 2.92 

P8 -4 -3.4 -2.0 0.118 -1.30 -4.605 1.563 1.681 2.74 

S3 = 4 -3.0 0 0.500 0 -4.843 0.706 .1.206 4.01 

P9 -4 -3.0 -0.4 0.45.6 -0.25 -4.838 0.706 . 1.162 4.16 

PIG -4 -3.0 -1.6 0.181 -1.06 -4.291 0.-705 0.886 4.85 

Pii -4 -3.0 -2,0 0.116 -1.29 -3.782 0.702 0.818 4.63 

hB / hC = hA'/hC= xb 
9r/9c 9AV9c ( y A

+ y B ) / 2 

0.95 0 3.24 

0.95 0.10 3.06 

0.95 0.20 2.86 

0.95 0.30 2.57 

0.95 0.40 2.31 

0.95 0.50 2.01 

0.85 0 3.32 

0.85 0.10 3.07 

0.85 0.40 2.29 

0.85 0.50 1.96 

0.75 0 3.23 

0.75 0.10 2.97 

0.75 0.40 2.12 

0.75 0.50 1.76 1 

(Continued) 



Table 7. Dimensions (Problem 3) (Continued). 

Run 
cp! at 
Canal 

9' 
Under 
L of 
Canal 

9' 
Under 
L of 
Drain 

Half 
Width 

of 
Drain 

Depth 
Under 
L of 
Drain 

Land 
Surface 

Half 
Width 

of 
Canal 

Total 
Water 
Surface 

Land-
Water 
Ratio hB/hC" h A " V X D 

No. 96 9B
=yB 9^ XA 

x s 
X D x' -x 1 

X D C 
x " 
w.-. D' w 9b/9c 9;'/9c (y;+y B)/2 

S4 -4 -2.6 0 0.494 0 -3.893 0.321 0.820 4.75 0.65 0 2.99 
P12 -4 -2.6 -0.4 0.465 -0.27 -3.890 0.321 0.786 4.95 0.65 0.10 2.70 

P13 -4 -2.6 -0.8 0.376 -0.58 -3.847 0.320 0.696 5.53 0.65 0.20 2.42 

P14 -4 -2.6 -1.2 0.264 -0.81 -3.664 0.320 0.584 6.28 0.65 0.30 2.14 

P15 -4 -2.6 -1.6 0.178 -1.05 -3.333 0.318 0.496 6.73 0.65 0.40 1.82 

P16 -4 -2.6 -2.0 0.111 -1.25 -2.791 0.310 0.421 6.63 0.65 0.50 1.50 

S5 -4 -2.2 0 0.498 0 -2.937 0.142 0.640 4.58 0.55 0 2.67 

P17 -4 -2.2. -0.4 0.454 -0.25 -2.932 0.142 0.596 4.92 0.55 0.10 2.38 

P18 -4 -2.2 -0.8 0.361 -0.54 -2.878 0.142 0.503 5.71 0.55 0.20 2.11 

P19 -4 -2.2 -1.2 0.258 -0.80 -2.704 0.142 0.400 6.77 0.55 0.30 1.80 

P20 -4 -2.2 -1.6 0.168 -1.02 -2.345 0.139 0.307 7.65 0.55 0.40 1.46 

P21 -4 -2.2 -2.0 0.088 -1.30 -1.628 0.118 0.206 7.90 0.55 0.50 0.93 

Note: As AA 5 is read from the flow net, only two decimal points are obtained, 

-4 
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truncation error is of the order of b . In this investigation b is l/20 
4 -6 

and therefore, b is 6.25 x 10 , which is negligible. The numerical 
differentiation formula employed, equation (70), appears to give the 

3 -4 
highest truncation error, which is in the order of b or 1.25 x 10 for 

b of l/20 o Simpson's one-third rule for integration, equation .(71), has 
5 

a truncation error in the order of b „ Therefore, considering the trun

cation errors alone, the maximum error is in the order of 0.000125, which 

is not serious. If higher accuracy is desired, equation (70) should be 

replaced by one containing more:points, or b should be made sufficiently 
( 

small so that the truncation error is less than the maximum permissible 

round-off error. 

Round-Off Errors 
-4 

As the maximum truncation error is in the order of 1.25 x 10 for 

b = l/20, increased accuracy of the final results cannot be obtained by 

reducing the maximum permissible round-off error below this value. How-
-4 

ever, the maximum round-off error for relaxation is set at 1.00 x 10 , 
-4 

slightly less than 1.25 x 10 , because round-off in the intermediate 

steps decreases the accuracy of the final result through cumulative 

errors. Although the Burroughs B-220 and B-5000 computers can maintain 

eight and twelve significant digits, respectively, increased accuracy 

significantly increases the computer time required. 
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CHAPTER V 

ENGINEERING ASPECTS 

The objective of this study was to formulate the fundamental 

seepage analysis necessary for a subsequent evaluation of the effective

ness and water-loss from various canal arrangements. The fundamental 

seepage analysis, which was formulated in Chapter II, consisted of the 

solution of Laplace's equation with appropriate boundary conditions. 

Different methods of solution were discussed in Chapter III, including 

the method used in this study. A limited number of solutions were 

presented in Chapter IV. The choice of the problems and boundary con

ditions investigated was based upon the physical conditions at the head 

of the Gulf of Siam and the possibility of reclaiming salt-intruded land. 

In this chapter, engineering analyses are presented in order to 

estimate the water-loss from canals which might be installed to reclaim 

land at the head of the Gulf of Siam. Several assumptions are used in all 

of the following analyses. The first assumption is that salt-intruded 

land is land under which the salt water is within 2m of the land surface. 

The second assumption is that the coefficient of permeability of the 

delta soil is 1(10 ^) cm/sec, which is a reasonable value for a clay-silt 

soil. The third assumption is that Ys/y i s 1*025. It is probable that 

the specific-weight ratio is less at the head of the Gulf of Siam than 

the assumed mean value of 1.025. The Gulf is elongated with appreciable 

fresh water inflows from the Chao Phraya and Mae Klong rivers at the 

head. Under these conditions, the salt concentration is undoubtedly less 
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than in the open sea. However, the assumption is conservative in regard 

to the amount of depression of the interface by means of seepage from 

fresh-water canals. The fourth 'assumption is that the water-loss from 

the canal consists entirely of seepage losses. Obviously evapo-trans-

piration losses would have to be included in a more comprehensive 

analysis. 

The first analysis concerns the water-loss from a single canal. 

The physical condition corresponds to constructing a straight fill in 

the mud-flat area. The fill is 21.0 meters wide at mean Gulf level. The 

top of the fill is above high-tide level plus wave height, say, 1.5 

meters above mean Gulf level. The fill is one km in length. A fresh

water canal is located on the axis of the fill, and the bottom of the 

canal is at mean Gulf level. The sides of the fill and the canal are 

placed on a 1 to 1 slope. These geometric conditions, which are shown 

in Fig. 30, were obtained from Run S10, Table 3, in the following manner. 

Equations (8), (34a), (34b) and (28c) shall be utilized. 

cp = -kh (8) 

x' = Nx/Q; y' = Ny/Q (34a) 

V = i|>/Q; cp' = cp/Q (34b) 

N = k(y| - l) (28c) 

For the problem of a single canal, the reference discharge, Q, is equal 

to one-half the discharge from the canal, Qq/2. In order to demonstrate 

the effect of the coefficient of permeability on fresh-water discharge, 

all other variables shall be kept constant. The ratio of the specific 

weight of salt water to that of fresh water is taken as 1.025. The length 
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of the land surface between the canal and the shore is assumed to be 10 

meters. From the value of. = -2.937 in Table 3 and x^ = -1,000 centi

meters, equation (34a) yields 

Q/N = Q C/2N '= 340.5 cm (122a) ' 

Utilizing equation (28c) and the assumed value of Y.s/ŷ  = 1*025, equation 

(122a) becomes 

Q/k = Q c/2k = 8.51 cm (l22b) 

Replacing Q/N in equation (34a) by 340.5 from equation (122a), one obtains 

x(cm) = 340.5 x';y(cm) = 340.5 y' (123) 

Equation (123) is utilized in converting dimensionless distances in Table 3 

to dimensional values. The length of the seepage face is 0.498 x 340.5 = 

169.7 cm. The depth of the interface under the shore is -0.988 x 340.5 = 

336.5 cm. Half of the width of the canal is 0.142 x 340.5 = 48.4 cm. 

The piezometric head of the canal can be found from equations (8) and (34b). 

Substituting the expression for cp from equation (8) into equation (34b), 

one obtains 

(124) 

By means of equation (122b), equation (124) can be rewritten as 

h (cm) = -8.51 cp£ (125) 

From Table 3, cp̂  = -4. Hence, equation (125) yields h = 34.04 cm. 
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With all other variables being held constant, equation (l22b) shows 

the relationship between fresh-water discharge from the canal Q^, and 

the coefficient of permeability, k. Some typical values which illustrate 

this influence are shown in Table 8. 

Table 8. A Typical Variation of Q̂ . with respect to k. 
(Problem l). 

Type of Soil 
Coefficient of Permeability 

k, cm/sec 
Fresh-Water^Discharge 

cm /sec 

Clay 1 X 
^ -6 
10 and smaller 

_5 
1.7 x 10 and less 

Silt 1 X 
-5 -4 

10 ° — 5 x 10 1.7 x 1 0 " 4 — 8.5 x 10" 3 

SiIty Sand 1 X 
-4 -3 

10 — 2 x 10 ° 1.7 x 10" 3 — 3.4 x 1 0 " 2 

Fine Sand 1 X 
-3 -9 

10 - 5 x 10 z 1.7 x 1 0 " 2 — 0.85 

Coarse Sand 1 X 
-2 

10 — 1 0.17 — 17 

From Harr, op. cit., p. 8. 

From Table 8, for clay-silt size with k of l(lO ) cm/sec, Q is 1.7(10 ) 
2 3 cm /sec per cm of canal or 17 cm /sec/km. Thus, the water-loss from 

seepage is negligible if the fill is constructed of soil of the clay-silt 

size.. On the other hand, if the fill was composed of coarse sand, k of 

l(lO cm/sec, the seepage from the canal required to maintain the. inter-

face shown in Fig. 30 would be 1.7 cm /sec/cm, or 1.7(l0 ) cm/sec/km, or 

0.17 m /sec/km. This is an excessive amount of discharge to be wasted in 

the canal in order to obtain only 1.4 hectares of agricultural land. 
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This particular example is rather unrealistic inasmuch as the sides 

of the fill would be subject to severe wave erosion,, Nevertheless, the 

example is indicative that the water-loss from seepage is negligible with 

the fill constructed of soil dredged from Bangkok harbor, which is of the 

clay-silt size.. 

A more realistic reclamation scheme would be to place the dredged 

materials over a large area to raise the land surface slightly above mean 

Gulf level. The reclaimed area would be traversed with parallel alter

nating canals and drains. In this case, only the periphery of the reclaimed 

area would have to be leveed and revetted against high tide plus storm-

waves. Inasmuch as extensive mud flats are exposed at low tide and since 

the tide varies about one meter, the mud-flat area must be nearly at mean 

Gulf level. In fact, some areas probably exist where the mud-flat ele

vation is already higher than mean Gulf level. In such areas the recla

mation construction would be limited to construction of a peripheral 

revetted levee; excavation of canals and drains; land leveling; con

struction of a fresh-water diversion canal from the river to the reclaimed 

area; and, construction of gate structures in the peripheral levee to 

release drainage canal water during low tide. 

As a design example, consider the results of run number P21 in 

Table 7. Again, Y s/Yf shall be assumed to be 1.025. Let the depth of 

the interface under the centerline of the drain be 2.6 meters. With y^, 

equal to -1.30 from Table 7, and replacing Q by Qq/2, equation (34a) gives 

Q/N = Qr/2N = 200 cm (126) 
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Replacing the value of Q/N from equation (126) into equation (34a), one 

obtains 

x(cm) = 200 x'j y(cm) = 200y» (127) 

Dimensionless linear quantities in Table 7 are made dimensional by means 

of equation (127). The width of the drain is 2 x 0.088 x 2 = 0.35 meters. 

The land surface between the canal and the drain is 2 x 1.63 = 3.36 

meters. The width of the canal is 4 x 0.118 = 0 . 4 7 meters as shown in 

Fig. 31. 

A relationship between Q c and k can be obtained from equation 

(126). With Y s / Y f = 1.025, equation (28c) yields N = k/40. Therefore, 

from equation (126), 

Q c = 10 k (128) 

Replacing cp in equation (34b) by the expression from equation (8), with 

Q = Q q/2? one obtains 

<PC

 = -2khrA 

from which equation (128) and cpQ = -4 result in h^ = 0.20 meters. 

If the project were rectangular in plan, such as 7.6 km wide by 

10 km in length, there would be 1000 canals and drains, each 10 km in 

length. The total length of canals would be 10,000 km. The total dis

charge from canals to drains is calculated from equation (128) as follows: 

Q(total project) = (10) (l) (l0~ 5) (lO 5) (10 2) = 1000 cm 3/sec 

The discharge wasted to drainage by seepage is negligible. The total 
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water requirement of the project would be that required for evapo-

transpiration. 

From the standpoint of water-loss, the negligible discharge is 

favorable; but the negligible discharge may not be sufficient from the 

standpoint of leaching the salts from the soil in the reclaimed areao 

For example, the water seeping from the canal would be in transit about 

20 years before reaching the drain under the assumed conditions. With 

this slow movement, the leaching would also be negligible over a. reason

able time period. Since the assumptions are reasonable, the conclusion 

is that the feasibility of mud-flat reclamation for agriculture depends 

primarily upon finding a feasible method of initially leaching the soil. 

The reclaimed area could be inundated during the monsoon season until 

the fresh-water depth was a meter or one and one half meters above 

mean Gulf level. In view of the extremely low seepage velocity, the 

author feels that a mechanical loosening of the soil would also be 

required. Perhaps a combination of inundation, deep scarifying, and 

draining would remove sufficient salts to allow some type of vegetation 

to grow. Vegetation which is salt-tolerant and which transports salts 

to the stem and leaf system would be desirable, since the vegetable 

matter could be easily removed from the reclamation area. From the 

above discussion, it is apparent that the feasibility of such a project 

cannot be determined from the equilibrium seepage condition alone, but 

that field experiments will be necessary in order to find a feasible 

scheme of leaching. 

As another example, the salt-intruded land (with salt water less 

than 2 meters from the land surface) is assumed to extend one kilometer 
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inland from the high tide level. During and following the monsoon season, 

which ends approximately in October in. the region around the head of the 
54 

Gulf of Siam , fresh water covers the entire land surface down to the 

Gulf and the salt water is depressed to a greater depth under the land. 

By early December the surface water has drained from ,the flood plain. 

From December until the start of the monsoon season, in late May, the 

interface between the salt water and fresh water moves upward. Thus, the 

critical period is just prior to the monsoon season, when the interface 

has reached a maximum elevation. If the salt water moves upward into the 

root zone of the vegetation, : undoubtedly, some salt water will remain 

in the soil pores during the subsequent lowering of the interface. The 

portion of the land where salt water has reached the root zone of the 

vegetation would be classed as salt-intruded even after the interface has 

been lowered. Salt water remaining in the soil pores would damage the 

crops or retard crop growth. Therefore, if the interface can be maintained 

below the root zone, a portion of land which would otherwise be salt-

intruded can be preserved for cultivation. One method to maintain the 

interface below the root zone is to construct an artificial fresh-water 

canal parallel to the shore line, similar to the canal paralleling the 

road from Bangkok to Cholburi (Chapter I ) . 

In order to apply the numerical solutions for the design of a 

parallel canal, the initial location of the interface and ground-water 

table must be determined. The initial conditions, Fig. 3(a), can be 

approximated by a confined aquifer as shown in Fig. 3(b). For this case, 

54. The Royal Irrigation Department, The Greater Chao Phva Project, 
Ministry of Agriculture, Bangkok, Thailand, 1957, p. 6. 
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equation (83) defines the interface geometry in terms of the physical 

variables, 

x' = ̂ ( l - y ' 2 ) (83) 

The physical variables are as follows: (l) The land slope is 

1.6(10 4 ) , (2) the interface is 1.84 m below mean Gulf level at a dis

tance of one km from the Gulf, (3) the soil mass is assumed to be 

anisotropic in which k_ is 4(l0 "*) cm/sec and k^ is l(l0 "*) cm/sec, 

(4) the specific^weight ratio, y /y> Is 1°025 and (5) the parallel canal 

is to be located where the interface is one meter below mean Gulf level. 

This example differs from the previous two in that the soil mass 

is taken to be anisotropic. Sedimentary deposits containing clay are 
55 

generally anisotropic. By means of a coordinate transformation , 

seepage flow through homogeneous anistropic media can be transformed 

into flows through homogeneous isotropic media. The transformation is 

accomplished by multiplying the horizontal distances by \/k" /k: and by 
y x using k =/s/kvk as the coefficient of permeability in the transformed x y 

plane. 

Using the above transformation and equation (83), the discharge 

through the aquifer, Qj, and the location of the canal can be determined 

as follows 

x = 2 / I R 
y 

Q I ^ k x k y ( Y s / Y f - D 2 

L/k-k ( T ATI) °I u x y 1 s 'f 
(129) 

55. Harr9 op. cit.. pp» 29-31. 
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.Qj is determined from equation (l29) where x is -1000m and y is -1.84m. 
— 7 3 

From this calculation, is 1.69(10 ) cm /sec/cm. The location of the 

canal is also determined from equation (129), where y is -1.0m and Qj is 
— 7 3 

1.69(10 ) cm /sec/cm. From this calculation, x = -295m, or the canal is 

located about 300m from the mean Gulf level shoreline. 

The level of the existing ground-water table is approximated by 

the piezometric head of the confining surface of the aquifer, Fig. 3(b). 

Replacing in equation (60|, which is the solution of the problem of 

Fig. 3(b), by zero, one obtains 

h = [-4 ( Y S / Y f " 1) V ^ Q X / ^ ] (130) 
X ' 1 

Equation (130) is employed in evaluating the level of the ground-water 

table. At x = 1 km, the level of ground-water table is 6.59 cm. At 

x = 295 m,. the level of the ground-water table is 3.52 cm, as shown 

in Fig. 32. 

Since the purpose of constructing an artificial fresh-water canal 

at x = 295 m is to depress the existing interface to 2 m below the ground 

surface, the solution of either Problem 2A or Problem 2B should be utilized. 

Q,/N = l»6925xl0~ 7
 = 0 o 3 3 8 5 

2x10 xO.025 

According to equation (34a), y' at the centerline of the proposed canal 

must be 

I = -2/0.3385 = -5.9 
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From Tables 5 and 6, the minimum value of the numerically obtained 

solutions for y^.is only -4.9. Obviously the range of the solutions 

shown in Table 5 and 6 is insufficient for this physical problem. 

In the absence of solutions of Problem 2 with y^ < -5.9, the 

solution for Problem 1 as shown in Table 3 shall be employed. The 

head in the single canal shall be maintained at the same level as that 

of the approaching ground-water table, that is, 3.5 cm. The discharge 

from the fresh-water canal shall be made.large enough to depress the 

salt water to 2 m below the mean Gulf level. The interface of fresh 

water and salt- water resulting from a single canal is shown by the 

dotted line in Fig. 32. Without the presence of natural ground water, 

the single canal can depress the salt water down to 2 m below the high-

tide level. Therefore, with natural ground water present, the combined 

fresh water would depress the salt water more than 2 m below mean Gulf 

level. 

From the solution of run number S7 in Table 3, cpQ = -4, cpB
 = y B

 = 

-3.4, = -5.652, x^ - x^ = 1.566, and X% = 0.498. From equation (34a), 

Q/N = y/y' = -200/-3.4 = 58.8 

The value of Q/N = 58.8 is employed in converting the dimensionless 

quantities to dimensional quantities. The width of the canal is found 

to be 1.84 m. Other dimensions are shown in Fig. 32. The fresh-water 

discharge from the canal is evaluated by using equations (34b) and.-(8). 
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-o 
If the canal were 100 km long, the total discharge would be 3.52 x 10 x - 5 7 - 4 3 . , 
10 x 10 = 3.52 x 10 m /sec/100 km. The linear distance of land 

surface gained, is about 704 m, as shown in Fig. 32. The total area of 

land gained is therefore 7040 hectares. 

Again, the amount of discharge wasted by seepage is negligible. 

As mentioned previously., negligible discharge is good from the standpoint 

of water-loss but bad in the standpoint of leaching. However, existing 

vegetation on the Gulf shore would serve as a mechanism for leaching 

after the canal was installed. 
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CHAPTER VI 

CONCLUSIONS 

The effectiveness of fresh-water canals for alleviation of salt

water intrusion was investigated. The lowering of the interface between 

the salt-water-saturated soil and the fresh-water-saturated soil was 

determined by numerical solution of the applicable mathematical equations. 

The following conclusions can be grouped into two categories. 

C o n c l u s i o n s 1-4, i n c l u s i v e , p e r t a i n t o t h e method of solution. Con

clusions 5-7, inclusive, pertain to the. results of the solution. 

1. Seepage-flow solutions were obtained in the complex potential 
2 

plane from the equation, V y = 0. Boundary conditions along free sur

faces or along fluid interfaces are readily formulated. The physical 

plane was reconstructed by integration of the inverse Cauchy-Riemann 

equations. The author could find no reference in which this technique 

had been used in the analysis of seepage flow. 

2. The problems solved in this study cannot be solved analytically 

at the present time. Barriers to analytical solution are the boundary 

conditions. In the physical plane the location of the interface is 

unknown and the interface is curvilinear. In the complex potential 

plane, along one boundary the boundary condition is mixed. In Problems 

1 and 3 the boundary condition is a derivative function along a part of 

one boundary and is a linear algebraic function along the remainder of 

that boundary. In Problem 2 the boundary condition is a linear algebraic 
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function along part of the boundary and must be mated to an adjoining 

region along the remainder of that boundary. 

3. The over-relaxation factor derived by Young was found empiri

cally to reduce the number of iterations. 

4. The computer programs are general for the solution of Laplace's 

equation. One program is for the solution within a rectangular domain. 

The second program is for the solution in a domain consisting of two rec

tangular regions which are joined together on one side. The third is for 

the solution in a domain consisting of two rectangular regions which are 

joined over a part of one side. The boundary conditions can be mixed on 

any boundary of the rectangular region by instructions in the block of the 

program entitled "Boundary Conditions". 

5. The concept to employ an artificial fresh-water canal in the 

suppression of salt water and to employ parallel canals with intermediate 

drains for reclamation of mud flats is promising and should be investigated 

further. 

6. If the soil is in the clay- or silt-size range, the amount of 

water-loss due to seepage is negligible. 

7. The feasibility of mud-flat reclamation cannot be determined 

from the equilibrium seepage condition alone but field experiments will 

be necessary in order to find a feasible scheme of leaching. 
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Figure 1. Map of Thailand^ 

Taken from B. Asanachinda and M. Dhamkrongartama, Geographical Maps of 
of Thailand (Thai), Kuruspa, Bangkok, 1957, p. viii. 
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a.) Aquifer Saturated With Salt Water. 

b.) A Fresh-Water Canal Near the Shore. 

Figure 2. Salt-Water Intrusion Without Natural Ground Water. 
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Salt Water 

Interface 

b.) Confined Aquifer. 

Figure 3. Natural Ground-Water Flow in Coastal Aqui.fer. 
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a.) Condition A. 

b.) Condition B. 

r 

Figure 4. A Fresh-Water Canal with Natural Ground-Water Flow. 
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Salt Water 
a.) Cross-Section, 

Canal 

b.) Plan of a Cape. 

Canal 

c.) Plan of an Island. 

Salt Water 

d.) Simplified Single Canal. 

Figure 5. Problem 1 — Single .Canal 



ty% = 0 

a.) Simplified Physical Plane, z = x + iy 

D(cp^, QF) yV = 0 

4 
Linear y* 

y* = 0 

- | G ( O , I ) 

A(0,0) 
B(cp^, 0) 

0(0, Q.J.) 

Y' = <P' 
b.) Dimensionless Complex Potential Plane, w 1 = cp' + i t y ' . 

F / / / / / / / / > A 
' 2 / , / 

/ 

I = MD 

I = MC 

1 = 0 
J = NB J = ND 

c.) I-J Notation, 

J = 0 

Figure 6. Condition A of Problem 2. 
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rl)' = 0 cp' = 0 
0 G 

a.) Simplified Physical Plane, z = x + iy 

C 

-y' = 0 

D ( 9 ' , Q') 

/ - y' = 0 

= o 

y' = 0 

Linear y 1 
D'(q>fc., 1) 

y = cp 

0(0, Qj.) 

I/"y'= 0 

G(0, 1) 

A(0, 0) m 

b.) Dimensionless Complex Potential Plane, w' = cp1 + iij)' 
I 
I = MD 

J = NB J = ND J = NDP J = 0 

c.) I - J Notation 

Figure 7. Condition B of Problem 2. 
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Salt Water Interf ajce 

a.) Natural Physical Plane. 

Salt Water 

cp'.= 0 

b.) Simplified Physical Plane, z = x + iy. 
; D(cp', 1) 

y' = 0 
1VD 0(0, 1) 

= 0 

* C 
v NB 

NC \ B 
Y NA' 

A(0, 

^ 3X1)' U y' = 9' o 

c.) Dimensionless Complex Potential Plane, w 1 = cp1 + i\|)'. 

Figure 8. Problem 3 — Parallel Canals with Intermediate Drains. 
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Figure 11. Seepage Face. 
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Figure 12. Square Net with Linear Approximation. 
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1+1, J 

I, J+l I,J I.J-1 

1-1, J 

Figure 13. I - J Notation on Square Net. 

3 2 

A B 

0 0 

Figure 14. A Simple Case of Laplace 1s Equation 
in a Rectangular Domain. 

Figure 15. Two Equations with Two Unknowns. 
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a.) Nondimensionalized Physical Plane. 

i i | > ' 

0 
(:-c»-0) 

B 
(-°°-i) 

A 

(0 - i) 

b.) w 1-plane. 

( O H ) 

0 

sin -oC 

V B ( O O + I ) 

C O S °( 
C(oH-O) V 

c.) Qr or C 1-plane. 

Figure 16. Natural Ground-Water Flow From Infinity. 
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(0,1) 
cp (x,l) = 0 

cp(0,y) = 0 

2 2 
2 2 5x dy cp(a,y) = 0 

(a,0) 
cp(x,0) = f(x) 

Figure 18. A Typical Rectangle with Homogeneous Boundary Conditions, 
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cp' = 0 

a.) Dimensionless Physical Plane, z' = x' + iy'. 

D(q£, 1) 

y* = 0 

y' = 0 

0 

y' = 0" 

y' = 9* 

4 * 

0(0,1) 

B 

b.) w'-plane. 
I 
MO 

NC NB 3 2 1 0 

c.) w'-plane with Network. 

Figure 19. Single Canal. 
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Figure 20. Refinement. 
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Figure 2̂(a). Effect of Q'QI Variation on Key Dimensions 
(Problem 2A, 0 ' c = -2.0). 





Figure 2 4(c). Effect of Q ' r p Variation on Key Dimensions 
(Problem 2A, 0 ' c = - 4 . 0 ) . 



Figure. 24(d). Effect of Q ' r p Variation on Key Dimensions 
(Problem 2k, 0'c = -5*0). 



Figure 24(e). Effect of Q' Variation on y 1 at the Centerline of the Canal (Problem 
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hD'/Tic 
Figure 2 6 ( a ) . E f f e c t of hpt/hc Var ia t ion on Key Dimensions 

(Problem 2B, 0 ' c = - 2 , Q» T = 2 .2 ) . 
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0 0.25 0.50 0.75 1.00 

hD'/hc Figure 26 (b ) . E f f e c t of h^t/hQ Var ia t ion on Key Dimensions 
(Problem 2B, 0 ' c = -2, Q !

T = 1.6). 
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Figure 2 $ ) . E f f e c t of h^/h^ Var ia t ion on Key Ratios 
(Problem 3 ) . 



Figure 3Q. Single Canal on A Fill in the Mud-Flat Area. 
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t of Canal <L of Drain 

Low Tide Level 
2 

2.6 m 

4.6m 1 Fresh-Water Saturated Soil 

l 

Figure 31. Cross-Section Elevation View Through a Canal and Drain 



6 
10G0 m 

704 m 
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Saturated Soil 

Sketch: Not to Scale 

Figure 32. Single Canal Parallel to the Shore Line. 



APPENDIX B 

COMPUTER PROGRAM 
(PROBLEMS 1 AND 3) 



BEGIN COMMENT FLOW FROM A SERIES OF PARALLEL CANALS WITH t 
INTERMEDIATE DRAINS.,. 2 
NONDIMENSION&LIZED BY 1/2 OF Q FROM THE CANALe• 3 
SUCCESSIVE OVERRELAXATION METHOD ON W-PLANECQ 4 
B*5000oo SRISAKDI CHARMONMANeo MARCH 3; 1964 5 
INPUT I MO « NUMBER OF GRID-POINTS FOR PHI a 1 6 
:1 SICPHI * COMMON PHI UNDER THV ORAIN f 

SOCPHI a COMMON PHI UNDER THE CANAL 8 
PHISO * PHI ATTHE CANAL" 9 

PHI SHOULD BE SUCH THAT ITS PRODUCT WITH MO IS 10 
EVEN INTEGER' AND IT HAS BEEN CHOSEN TO BE NEGATIVE J 11 

INTEGER !*J*K* MO* ND* NB* NC* D I 12 
REAL L̂ 'WIP Wll* SICPHI* SOCPHI* PHISO i 13 

LABEL REREAD* EXIT J 13B 
PROCEDUREfFACTOR(K*KK) J 14 

INTEGER K* KK J 15 
BEGIN REAL L' I 16 

L * ( ( COSC 3«i415927/K ) + COSC3•i415927/KK) ) V 25 * 2 I 17 
W1-* 1 + L / ( ( i + SQRT(l-L) ) * 2 ) 16 

END FACTOR 1 19 
FILE OUT LY12 1(1*15) I 20 
FORMAT TDK// X8* " K a w * I4*/X8* " J a « , 14*/ 21 

Xl^nI » 0>6M
w»X9iwI a1 1*7.."*X9*"I a 2*8,."*v9* 22 

"I a 3*9.."*X8*"I « 4*10, •f»*X8*wI » 5* 11 ••"*///) I 23 
FORMAT TD2C// X8> nK«»»# 14*/ X8* " J a « , 14* / 24 

X19* "I a 0M2W*X10>"! » 2*14»*X10*WI * 4*16"*X10* 251 
"I a 6*18"*X9* "I * 8*20»* X10* "I « iO"i ///) I 26̂  

FORMAT OUT Yi2(X12* 6F18«9) J ' 27 
FILE IN FLMP<1*10) I 28 
FORMAT IN FTMP (X8*13*3CX9*F6.3) ) I 29 
LIST INMP (MO, PHISO* SICPHI* SOCPHI) \ 30 
REREADt READ(FLMP* FTMP* INMP) tEXin J 31 

NO *»PHIS0 * MO f 32 
NC>*SOCPHI x MO J 33 
NB 4--SICPHI x MO J 34 

BEGIN 35 
FORMAT OUT FTMN(X3*"M0 NO NC NB »* > 417) I 36 



LIST LMN<MO#ND*NC*NB) $ 
WRITE<LY12tDBLJ* FTMN# LMN) 
END J 
BEGIN COMMENT RELAXATION ON BOTH COURSE AND-FINE GRID I 
ARRAY YlCOMO> 0.ND3 J 
PROCEDURE! )fWRlTE<D# FTD12) I 

1 INTEGER 0 1 fORMAr FT012 I 
BEGIN 

WRITE<LYl2fDBLJ*FTD12* K , J ) J 
FOR U «• ND STEP -D UNTIL 0 DO 

WRITE<LYi£ > Y12> FOR I * > 0 STEP 0 UNTIL MO 00 Y t t U J ] ) I 
END YWRIT£ I 
DEFINE yYl « Y l t I * J + 0 3 • Y l t I * J - 0 3 * Y l t I * 0 * , J 3 #* 

YBC » C YYl 4 Y1[D#J3 ) / 4 * I 
PROCEDURE.' ITERATE*D# UPM#UPN) I 

'INTEGER DP UPM* UPN i 
BEGIN # % K + l I 

. j f o i - • 
FOR J •> D STEP 0 UNTIL Ne DO 
yi eo# j3 •> ybc j 
FOR J • NC STEP D UNTIL ND-D DO 
Y 1 C 0 , J 3 •> YBC I 
FOR I *> D STEP 0 UNTIL UPM DO 
FOR j •> D STEP 0 UNTIL UPN DO 
Y1EI#J3 •> Wlx( YYl + Y l t l - D * J l ) / 4 - Wl 1 *e Y111 > J1 

ENO ITERATE J 
BEGIN 
COMMENT BOUNDARY CONDITIONS J 

REAL DELPHI I 
INTEGER NBC J 
FOR J •> 0 STEP 1 UNTIL NDf D0? 

Y l [ M G ^ j 0 1 
NBCr *> NC «*NBf \ 
DELPHI •> SOCPHI - SlCPWI I 
FOR J > NB STEP 1 UNTIL NC DO 
Y l t O k J ] •> S I C P H I + ' D E L P H I * <J"NB) / NBC J 



FOR I • * u iffeK»*i 1 UNTIL MO-1 DO 
BEGIN Y l t l * 0 3 * 0 J 

YlEI>ND3 + 0 
END I 

END BOUNDARY CONDtTlONS J 

BEGIN COMMENT LlNlAtf INITIAL GUESS J 
INTEGER NCiC I 
NDC o ND » toft I 
FOR J • 2 STEP 2 UNTIL NB-2 DO 
Vi tO*J! l • S l ^ H l x J / N B I 
FOR j • • N6*2 STEP 2 UNTIL ND-2 DO ¥ltOj.J3 • S O C P H l x d - t J - N O / N D C ) * 
FOR 1 * 2 STEP 2 UNTIL MO-2 DO 
ĵOR J * 2 STEP 2 UNTIL ND-2 DO 
Y t $ I * J ) * Yi COPJ3 x C i - I / M O ) * 

END INITIAL GUESS ) 
BEGIN* COMMENT RELAXATION AND! DEVIATE $ 

klAl DEV I 5 

PROCEDURE i D|VlATE< D* UPM* UPN) I 
INTEGER DP UPM* UPN % 

BEGIN ' 
INTEGER IM1> JM1 J 

FORMAT OUT FTDEt X3* " K Wi DEV 
15* 2 F 1 0 . 6 * YlO* 215 5 I 
LIST LDECK* Wl* DEV* IM1* JM1) J 
ARRAY YDtOtUPM* 0IUPN3 \ 
FOR J 4- D STEP D UNTtL UPN 00 f 

FOR I 4- 0 STEP 0 UNTIL UPM DO 
YDCI*J1 *• Y H I * J ] I 

ITERATE< D* UPM* UPN) J 

DEV • 0 1 
FOR J 4. D STEP^ D UNTIL UPN DOf 
FOR I 4. o STEP' D UNTIL UPM DO 

BEGIN Y D t I * J ) * AisCYDtI*J) - Y 1 C I * J 3 ) I 
IF DEV < Y D t I * J ) THEN 

BEGIN DEV 4- YDCI*J3 j 
I Ml 4. I I 



end 
ELSE 
END I 

W R i T t t L V l 2 t D B L 3 * FTDE* LDE) ) 
ENDrOEVtAf l tJ 
LABEL l E I f y R E F t N E r t 

| l A L ALLOW I ALLOW •> oiOl J 
EA$T0R(M0/2> ND/23 i 
ltift lTE<2> T02) I 

• ' • 8M.-6'--| •' 
•flit * wt*i i 

REIT I I f l R A T E t D * M0*D» ND«D) I 
fjpi K MOD 5 » 0 THEN 

BEGIN DtVlATEtD* MO*D* ND*D') i 
tF< DEV > ALLOW THEN GO? TO REIT 

ELSE' 60 TO? REFINE 
END 

REFINE! 
BEGIN 

f i S E i GO TO RETT I 
J*; NB̂  J YWRITE<2* TD2) J 

DEFINE YFl a Y i t i M * d - 1 3 * Y U I * l » J - t 3 + Y l t 1 * 1 # J + l ) + V l t f "l* J*>1 ]#» 
YYX « < YYl + YltI-D*JV y / 4 * * 133 
YBC ( YYl * Y1C0PJ3 ) / 4 # 1 134 
0*1 J 135 FOR J * 1 STEP 2" UNTIL' No-1 00 136 FOR I * 1 STEP 2 UNTIL1 MO-1 DO 137 
YltI#J3 - * YFl / 4 1 138 
FOR? I * 1 STEP 2 UNTIL M0*1 DO 139 
FOR j *• 2 STEP 2 UNTIL ND*2 DO 140 
Yltlidr * YYx y 141 
tmi * 2 STEP- 2 UNTIL) MO-2 DO 142 FOR J * 
YltliJ] 1 STEP̂2 UNTIL' ND«1 DO 143 FOR J * 
YltliJ] YYX 1 144 
1*01 l4S5 

FOR j * 1 STEP? 2 UNTILI NB-l DO 146 
Y1C0#J3 «• YBC 1 147 

10 
1 1 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 io it 
32 

CO 



FOR J • • NC + 1 STEP 2 UNTIL ND-1 00 
Ylt0*J3 * YBC I 
U * ND J 
YWRITEU* TDD I 

END REFINEMENT I 
BEGIN COMMENT RELAXATION ON FINE GRID I 

REAL ALLOW I 
LABEL PARN* FINDX* 
KTLOW * 0.0001 ) 
rACTOR(MOJND) I 
WIT WL-I I 

PARNI ITERATE<D* MO-1* ND-L) J 
IF K MOO 2 a 0 THEN 

BEGIN*- DEVIATEC 1* MO-1* ND-1) I 
IF DEV > ALLOW THEN GO TO PARN 

ELSE 60 TO FINDX 
END 

ELSE GO TO PARN $ 
FLNDXI <YWRLTE CI* TD1) I 
END RELAXATION ON FINE GRID I 
END RELAXATION AND DEVIATION I 
BEGIN COMMENT 4-POINT-DIFFERENTIATI6N FORMULA AND SIMPSON-RULE 

SHALL BE USED J 
INTEGER IM* JM* KK I 
REAL C* H* HV3* XL6* X12* XS* X4* XA* XE* XD I 
ARRAY XC014* 0IND3 I 

FORMAT HEADXT"PARALLEL* CANALS WITH INTERMEDIATE DRAINS*** // 
"PHIS0«H> FLO.6* XS* "SLEPHL*»*FT0.6*X5*"SOCPH|s**FLRT.6*/ 
X16* "PHT»»* F8.3* X2* "T0"*=F8.3* / 
X16* "PSI«»* F8,3* X2* "TO"* F8.3* / / 

X18* WDERLVATIVETL X̂T?*"DELTA X»*X22* 
»X»X{>3*"C0R. YW* / ) T 

FORMAT XXCX4* 4F26.8 ) J 
PROCEDURE1 XWRITE<HI*H2*S1*S2> I 

REAL H1*H2*51>$2 I BEGIN WRITE<LYL2FDBL3* HEADX* PHISO* SICPHI* $0CPHL*HL*H2*$L*S2) J 
FOR J * JM STEP 1 UNTIL NO-L 00 



W R f f F T L Y W 
END XWRITE" | / , 
PROCEDURE"01FlNTtXX-) J 

REAL XX X 
BEGIN I t f l N E DTF' « 

P XX* X U f J J p XC3#J3P XC4PJ3P XCOpJJP 
X £ 2 , J + 1 3 ) I 

# XXP XC 1#J3P XC3*J3P XE4PJ3P X£0pJ3 v > 

BEGIN 

BEGIN 

ELSE 

BEGIN 

END I 

B E G I N 

END J 

CCXXtO*!M3 - 3 K x t i * l M 3 + U S x x t 2 » I M 3 
X t 3 * l H 3 / 3 ) / H i , 
+ 4KXt2>J3 +̂  S t l p J 3 J t f T C X t 1 > I M l 

INTEGER N N r C C ^ 
>jM • NO - IM / 2 1 
KK <• JM + 1 I 
tC #• C NO + NC >" / 2 J 
t^iXx XA THEN 
NN * CC I 
FOR J > ND- S T E P w l UNTIL' CC*1 DO m*J3 •> Xt-0#2.MJ«N0l..J-
FOR I * 1 STEP 1 UNTIL 3 DO 
X t l p J l * 0 i 
X ! 4 P J l • XD 

NN •> NO J 
FOR J • NN STEP - I UNTIL' KK DO 
IM •> 9xJ - ND I 
X t l » J 3 •> OIF I 
XC0pJ3 «"-XtO#XM3 ) 
IM * IM-1 I 
X t 2 * J 3 • OTFi 

J * JM \ • 
IM •> 2 x j • ND I 
X t l > J 3 • DIF I 
X t O * J 3 • XfO*lM3 

XT 3* JM3 •> 0 I 
Xt4*dM3 <• XX J 
FOR J •> KK STEP 1 UNTIL NN 00 

x HV3 # ) 

180 
181 
182 
183 
1 8 4 
185 
186 
187 
188 
1889 
1 8 9 
190" 
l90 i \2 
1 9 0 | 
l90g* 
10OS 
1 9 0 E 
I 9 0 r 
190Q 
190HI 
190J 
190K 
191 r 

192 
193 
1 9 4 ' 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205' CO 



BEGIN IM *• J » l J 
X f 3 * J 3 «• INT I 
X t 4 * d 3 •••*X!4>tM3 + X C 3 p J 3 

END J 
IT XX * XA THEN 

BEGIN 
XC0PCC3 • SOCPHI \ 
XC4^CC1 XD I 
Xf3*CC3 * XD - Xf4*CC-13 

END*END DIF1NT I 
C * 1 1 * / 6 ) 
H * 1 / MO' 1 HV3 «- H / 3 I 

COMMENT OA I 
IM"»- MO J 
FOR I * MO STEP M UNTIL 0 DO 
TOF j + 0 STEP 1 UNTIL 3 OO 
X t J * ND-I3 * - Y i t I # J 3 * 
XA * lOOOO I 
DIFlNTCO) ) 
X t o f R l T E { 0 . 0 * 0 , 0 * 0 , 0 * 1 , 0 ) I 
XA * }(t4*ND3 J 
X4 * )j(t4*ND-23 T 
X8 ^ t 4 * N D - 4 3 J 
X12 >«.,XC4*ND-63 I 
X16 «• Xt4*ND*83 J 

8IGIN 
COMMENT"STREAMLINES FROM OIPTOVABCD 

PROCEDURE PSILINECXOA* M) I 
REAL XOA I 
INTEGER M ) 

BEGIN? j:-' 
IM *• ND I 
FOR * J • o STEP 1 UNTIL ND; DO 
FOR'I 4- M STEP 1 UNTIL M * 3 DO 
X t l - M * J 3 • Y 1 C I * J ) % 
DIFJNTCXOA ) J 
X W R l T E ( 0 , 0 * P H I S 0 * M / 2 0 * M / 2 0 ) 

206 
207 
208A1 
208A2 
206B 
208C 
2080 
20802 
208F 
209 
210 
211 
212 
213 
214 
MM 
216 
2 l 6 R 
W 
218 
219 
220 
221 
222 
223 
224 

* 225 
226 
WF" 
228 
229 
230 
231 
212 
233 
234 
235 



END P S l L f N E r T 236 
COMMENT OE 1 237 

238 
FORK I •> MÔ  STEP* * l UNTIL MO»3 00* 239 
FOR j * 0 STEPH 1 UNTIL1 ND̂  DO; 240 
XtMO*I, J3 • V1CI#J3 1 2 4 1 

DIFlNTCO ) r 
242 

FOR J * NO StEPf ®1 UNTIL' KK 00 243 
244 

XWRITEiO•0>PMISO>1«0*1•0) i 2 4 3 
COMMENT ED 1 245A2 

m *Xt4#N0a 1 
245ft 
245C 

FOR' T *" MO STEP! ^ 1 UNTIL' 0- DO? 245ft 
F O R - J •> NQ STEP * l UNTIL* ND*3 D0 ! 

24*1' XtND*J> NO*!] *> Y 1 C U J 3 J 245F 
OIPlNTtXE^«Ju 2456 
FOR J •> ND STEP - 1 UNTIL* JM DO 2 4 5 6 2 
Xt<MdJ •>•• " X C 4 # J 3 1 2 4 5 6 3 
X0 •> Xt4,ND3 1 2 4 5 6 4 
XWRITEtPHlS0> PWISO^ OwO* IvO) 1 2 4 W 

246 
PSILINE<X12* 12) ) 247 
P S I L l N E t X S ^ 8 ) 1 248 
PSILINEXX4 , 4 ) J 249 

psiline<xa » o y r 

250 
END ALL' STREAMLINES 1 251 
END FINDX ; 252 
END RELAXATION ON BOTH COURSE AND FINE GRIDS J 253 

GO TO REREAD 1 2938 
EXIT1 END. 254^ CO 



APPENDIX C 

COMPUTER PROGRAM 
(PROBLEM 2k) 



BEGIN' COMMENT FLOW FROM A C A N A L r AND FROM INFINITY,«, u \ 
? N O N O I M E N S I O N A L I Z E O BY Q AT INF I N I T Y c . BPHI * R x D P H l c . 2 
SUCCESSIVE? 0 V E R 3 R E L A X A T I 0 N METHODS ONi W P P L A N l * . 3 
B 9 5 b 0 0 ^ o S R | S A K 0 I C H A R M 0 N M A N ! c . JANUARY 1964v. 4 
INPUT*Q AND PHI SHOULDMBE» SUCH^THtfTTTHE^PRODUCT OF ? EaCH WfTHi 3 
MO IS EVEN INTEGER AND PHI; HAS BEEN CHOSEN TO BEr N E G A T I V E ! 6-8 

INTEGER i , i M o l M 2 * ^ J> JMl* JM2> ^ K*KK*0*DA * O a,DC> 9 
MD?>* MDlpMD* ME2pMEtpME» ND2> N 0 l i N e j,N0P*NDP2» NB2>NBi,NB»NBPf ; 9B 

LABELS REREAD* EXIT I 10 
REAL L » W U W H * W 2 » W 2 l * D P H I * B P H l J » Q T i > R ) 108 
OWN REAL OEV j IOC 
PROCEDURE fFACTORtK*KKV J 11 

INTEGER K* KK J 1IB 
BEGIN' REAL- L 9 11C 

L f • C C COSC 3;i415927/K V * COSC3;1415927/KK))) / 25 * 2 > 12 
W 2 * * 1 * 1 / CC 1 * S Q R T U - L D > '* 2 ) 13 

END FACTOR * 14 
FILE OUT LY12 1 C 1 H 5 ) # 15 
FORMAT TITLE (X19p"I * 0p6 6c^X9 , n « X»7« . «* X9>" I * 2 * 8 . i"p*9* 16A 

n\ a,; 3 * 9 W * * X 8 * " 1 s 4*I0W*PX8P"I & 5»lic •"*/ 16B 
X8* "K«»* M,/ X8* "if*** 1 4 * / ) ) 16B2 

FORMAT OUT Y12CX12P 6 F 1 8 . 9 ) 1 16C 
FILE IN F L M P C l i l O M 17-24 
FORMAT IN? FTMPQC X8*I 3* X8P F6* 3* X6PF6*3* X4* F6 e 3 ) J 25 
LIST INMPQtMD* DPHI* QT* R ) I 26 
RER E A D ! R E A D C F L M P , FTMPQ* INMPQ) CEXIT3 * 27-8 

MDt «. MD- 1 J MD2 • MD1 - 1 J 29 
ME - * MD*QT I 5 30 
ME1 • ME - 1 ; ME2 * M E 1 : - 1 j 31 
ND *-OPHIxMO I 32 
N01 * ND - 1 I ND2 * ND1 - 1 J 33 
NDP * ND * 1 J NDP2 * NDP * 1 J 34 
NB * R*ND * 35 
NBt * NB - 1 it NB2 * NSl - 1 J 36 
N B P * NB * 1 I 37 

BEGIN 38 
FORMAT OUT FTMN{X3*"Nnl ND NDP NB MD ME"* / 6170 J 39-41 



AND FtNEi GRID I 

LMN« NDt*ND*NDP*NB*MD*ME) I 
WRlTEJCLYt2t0BL3*-FTMN* LMN) 
END J '• 
BEGIN COMMENT RELAXATION ON BOTH COURSE: 

ARRAY YlCO«ME* 08MD3* Y2C08MD* NDP8NB3 
PROCEDURE* YWRITECD) I 

INTEGER D ) 
BEGIN • :;' • • • • 

WRlTEtLYl2tOBL3»TTTLE» K,J) V 
FOR J4--N9 STEP -D UNTIL ND + D 

WRITE<LY12 f * Yt2> FOR T * 0 STEP Di 
WRITECLY12C DBL3)* TITLE* K* J ) 
FOR J NDr STEP -D UNTIL O D 0 ; 

WRITE<LY42 ^ * Y12* FOR I * 0 STEP D UNTIL ME^DO Y1CI>J3 ) 
END YWRJTE' I 
DEFINE YY1 a Y t [ ! - D # J 3 * Yt11 * J - D l * 

Y Y 2 a Y 21 T * D * J ) *• Y 2 £ I * D , J 3 * 
PROCEDURE*RELAXCJMl*dM2*IMl*IM2) I 

r VALUE' JM2*IMi* |M2 J 
riNTEGER JMl* JM2* IMl**lM2 1 

DO 
UNTIL 
\ • 

MDDO Y 2 t I * J 3 ) J 

YiEI*D>J3 t f 
Y 2 t i * J * D 1 # I 

BEGIN 

BEGIN 

END 

BEGIN 

I F r J M i > 2 THEN' 
JM1 
I Ml 

UNTIL 
UNTIL 

FOR J 
FOR I 
Y2CI*J3 • W2*CYY2*Y2U>JpD3)*4 - W21xY2tI*J3 

JM2 
IM2 

DO 
DO 

END END 

ELSE 
FOR J * 
FOR I <• 
Y l £ t * J 3 
FOR J «• 
FOR I *• 
Y l C t * J 3 
RELAX I 

JM2 STEP -D UNTIL JMl DO 
IM1 STEP 0 UNTIL MD-D DO 
• W l x C Y Y l + Y l t l * J + D 3 3 / 4 - W l l x Y l C I * J 3 
JM2 STEP -D UNTIL JMl DO 
MD STEP D UNTIL IM2 OO 
• W l x C Y Y i m t l * J + 0 3 3 / 4 - W l l x Y l t I * J 3 

PROCEDURE ITERATECD* DA* DB* DC) J 
INTEGER D* DA* DB* DC I 

BEGIN K «• K + l I 

42 
43 
43B 
43C 
44 
44A1 
44B 
44C ' 
44D 
44E 
44F 
44G 
44H 
4 4 1 
44.J 
44K 
44L-
44M1 
44M? 
44M3 
44M4 
44M5 
44M6 
44M7 
44M8 
44M9 
44N0 
4 4 P t 
44P? 
44P3 
44P4 
44PS 
44P6 
44P7 
44PB 
44P9 
4401 

CO 
\ 0 



FOR I «• D S T E P D U N T I L OA DO 44Q2 
B E G I N J •* NO I 4403 

Y 1 E I # N D 3 ' * ( Y Y l «• Y 2 t l p D B 3 ) / 4 I J • DB J 4404 
Y2CITDB] * W 2 x ( Y Y 2 + Y l C I p J * D 3 ) / 4 - W 2 1 * Y 2 t I p J 3 440^ 

END V 44Q8 
RELAX(DPND-OPDPDC) I 4 4 0 | B 
RELAXCDB+DPNB-OPDpMD-D) 44Q7 

END I T E R A T E - I 4408 
B E G I N 440$ 
COMMENT BOUNDARY C O N D I T I O N S I 45' ^ 

F^OR J * 0 S T E P 1 U N T I L ' NO DO 1 46 ; 
B E G I N V U M f e n J 3 * 0 I 47 J 

Y U 0 p J 3 * D P H l x J / N O 48 
END I - , 49 

B P H I • R x D P H I ; 50 !'• 
r O f i J * NDPs STEP 1 U N T I L NB DO 51 

B E G I N Y2tMD> d 3 * O f 52 r 
MOPJL * g P N l x J / N B 53 

END T • • • 54 > 
FOR I * 1 S T E P 1 1 U N T I L MD1 00^ 55 

B E G I N Yil l#OR • 0 I 56 ? 

Y2£IpNB3 4. B P H I * C 1 - I / M D > 57 
END I 58 

FOR R * MO S T E P I U N T I L ME1 00 59 
BEGIN Y1 I ! I #03 4. 0 I 60 

Y l CIPND3 4. 0 61 
ENDT END? BOUNDARY C O N D I T I O N S ) $2 
B E G I N COMMENT' L I N E A R I N I T I A L GUESS I 63 

FOR t * 2 S T E P ' 2 U N T I L ME2 DO! 64 
B E G I N M i * i - I > M E r * 65 

FOR J > 2 STEPs 2 U N T I L 1 ND2 DOt 66 
Y1CIpJ3 4. YU0pJ3*W1 67 

END I 68 
FOR I * 2 S T E P - 2 U N T I L ^ MD2 DO! 69 

B E G I N W l * 1 -1 /MD I 70 
Y l t l p N D d • Y I C 0 * N D 3 X W 1 I 71 
FOR! J 4. NDP2i S T E P : 2 U N T I L NB2 DO 72 



Y 2 U * J 3 • Y2tO*J3*Wi 
END END INITIAL GUESS ) 
BEGIN COMMENT RELAXATION AND: DEVIATE I 
PROCEDURE^ DEVlATEr 0* DCO I 

' INTEGER D* DC ; 
BEGIN COMMENT SINCE THE FLOW NET IN THE1 REGION OFFFLOW FROM THE 

SOURCE IS FINER THAN THAT ELSEWHERE* MAXIMUM DEVI ATION OF! Y 
THIS AREA CAN BE TAKEN AS THEi REPRESENTATIVE5 OF rTHE' WHOLE I : 
INTEGER IMl* JMl J 

FORMAT OUTtFTDEtXS* "K Wl W2 DEV IMl J M l " * / 
1 5 * 3 F 1 0 0 6 * 2 1 ? ) R 
LIST L D E C K * W l * W 2 * n E V * IMl* JMl ) J 
ARRAY YDf20«ME-D* D«ND*D] r 
FOR j * D STEP D UNTIL ND-D DO 
FOR I • 20 STEP D UNTIL DC DO 
YDf I * J 3 «• Y1CI * J 3 J 
1 t E RATE(D* MD"D* N D * D * ME»D) I 
oi i rV 0 ' ) . ' !' 
FOR J «• D STEP 0* UNTtL-ND*D DO 
F O R I 20 STEP D UNTIL DC DO' 

BEGIN Y D t l * J 3 > ABS(YDtI*J3 " Y 1 C I * J 3 ) J 
IF DEV < Y D t I * J 3 THEN 

BEGIN DEV *• YDCIIJ3 I 
IMl > I J 
JMl + J ' 

END • w f 
ELSE: 
END 1 

DEV «• DEV / ABSt Yl C IMl * JMl 3) I 
WR!TE<LYt2tOBLr* FTDE* LDE) I 

END DEVIATE I 
LABEL REITi IREFINE* I 

HTM ALLOW J ALLOW > O i O l I 
FAcTORCME/2* ND/2) I 
Wl W2- 1 '•• 
FAeTORCMD/2* CNB-ND>/2) * 
YWRITE<2) I 



R E I T . 

BEGIN 

END 

REFINEl 
BEGIN 

BEGIN 

END J 

BEGIN 

END I 

BEGIN 

K #> 0 I 
WU • Wl-1 J 
W2t it. W2*i J D • 2 I ITERATED* MD2, ND*D, ME*D) J IF K' MOO 5 » 0 THEN 
DEVIATEC2* ME-2 ) ) 
iF;d£v > ALLOW THEN GO TO REIT 

ELSE1 GO TO REFINE 

114 
115 
116 
117 

119a 

fcLS£? GO 'TO REIT I 
J * NB' I YWRITEC2) I 

DEFINE YFl * YItI*ii*d-ll4>Viri*li'J*i J * Y l C l * l * J * l l * Y t t f - i * J * 1 3 # » 
' , " ' r YF2 * Y 2 C I * l ^ J * i 3 + Y 2 C 1 * 1 * J + l 3 # I 
b * I I • • • - 1 

STEP 2 UNTIL' NDl DO' 
STEP 2 UNTIL ME! DO? 
YFl / 4 J ' * " 
STEP 2 UNTIL MDf DQf 

ii3#̂  
124-1 

FOR J * 
FOR I *> 
Y U I # J 3 
FOR I • 
J * NOP 

Y?n*NOP3 * CYF2 * Yl 11*1* J ^ l H Y l C 1 * 1 * ^ 1 1 ) 
FOR j • NDP2H STEP 2 UNTIL N i l DO 

Y 2 { I * J ) 4. (YF2 + • Y8tX- l#J-iJ*¥8tIoi#J- in / 

/ 4 J 

129 
1 2 9 ^ 

4 I 

FOR I 4- l STEP 2 
FOR J • 2 STEP 2 
Yl ( I # J l «• C YYl + 
FOR I 4. 1 STEP 2 
J + ND J 
Y1C I#ND3 4- CYY1 4> Y 2 t I * J * 0 3 ) / 4 J 
FOR J «• N0P2 STEP 2 UNTIL NB2 DO 
Y2CI#J3 • CYY2 * Y 2 t I * J * D 3 ) / 4 

UNTIL ME1 DO 
UNTIL ND2 DO 
Y1CI*J*D3) / 
UNTIL MD1 DO 

135' 
136 

139 

FOR I 4. 2 STEP 2 UNTIL ME2 DO: 

FOR J 4. 1 STEP 2 UNTIL NDl DO 
Y 1 C I * J 3 *- <YYI + Y1CI*J4 .D3) / 
FOR I 4. 2 STEP 2 UNTIL MD2 DO 
J f NDP I 

142 

4 i 144 
145 

ro 



Y2£I*NDP3 • C Y Y 2 Y l C I * J - D 3 ) / 4 J 146 
FOR' J • NDP2*1 STEP 2 UNTIL N81 DO 147 
Y ? M # J J ' » ( YY2 - Y2t t * J p l 3) / 4 148 

END I 148a,' 
YW(*lTECl) . 149^ 

END REFINEMENT I 150 
BEGIN COMMENT RELAXATION ON FINE GRID ) 151 

REAL5 ALLOW J 151B 
LABEL PARN* FINDX* 1 5 2 -
ALLOW • 0 , 0 0 0 1 I 152$ 
FACTORC ME*NO) I 1S3* 
W T « • W2 ) 1 5 4 1 

Wll * Wl-1 I 1 5 5 -
NCTORCMD* NB-ND) J 1 5 6 , 
W21 * W2*t I 157 

PARN! TTERATEC1* MD1* NDP* MEl) 1 158 
t P K MOD 2 s 0 THEN 159 

BEGIN bfVIATEvI * MEl) J 160 
fF 'DEV > ALLOW THEN GO TO PARN 1606 

ELSE GO TO FINDX 160(5, 
END 160D 

ELSE GO TO PARN I 161 
FXNDXi YWRITE CI) 162 
END RELAXATION1ON FINE GRID J 163 
END RELAXATION AND DEVIATION I 1 6 4 ' 
BEGIN COMMENT 4-P01NT-DIFFERENTIATION F 0 RM UL A ft A NO? SIMP S 0 N <* R U LE 165 , 

SHALL BE USED I 166 
INTEGER IM* JM* M i 167 
REAL C* H* HV3* DEV* XA*XF I 168 
REAL' X4> X8* X12* Xl6* XD* XG I 168B 
ARRAY XC0I4* 0INB3 * XOAC01CME-20)/43 I 169 

FORMAT HEADXCwFLOW FROM A SOURCE AND FROM INFINITY WITH DPHI a " * F 1 0 . 6 * 1693 
"TOTAL 0 »"* F 1 0 . 6 * / X18* "DERIVATIVE"*X17*"DELTA X"*X22* 169C 
"X"X23*"C0R, Y"* / ) ) 1690 

FORMAT XXCX4* 4 F 2 6 . 8 ) I 169£ 
PROCEDURE XWftlTE J 169F 
BEGIN WRlT£tLYl2tDBL3* HEADX* DPHI* QT) I 169Q 



£Oft J * JM S t g P 1 UNTIL NSI 00 
;If §T E tLT 1-2r ; > p -A X X*':^ X ! t * d 1 * *[ S f.-3 *d 3 : * X £ 4 * iJT:* * Xt 0 * d I * 
'• •. 1 • xc2*j+13' > J 
WR|TtCLY12 ! * XX* . XE 1> JIP-Xt3>d1> X t 4 * J 3 * X£0*dJ VJ 

IND' XWRIff I 
IRtJeiDURtHDlffNTtOiVr ) 

RtAL" DEV I 
BEGIN DEFINE D1F « CC*XtO*IM3 - 3*XM*lM3 .m*5xXC2*IM3 

- XC3*IM3 / 3 ) / H # * 
INT »-CXCli lMJ * 4 x X t 2 # J 3 «• XC1*J3 ) X HV3 # J 
dM Nf? * IMS / 2 I 

FOR J • Ng STEP: * i UNTIL' KKOO' 
BEGIN5 IM 2xJ; » Nf ) 

I 

BEGIN 

X t l * d 3 • OIF; J 

f N l 2*d - NB I 
X t t * d 3 * O I F r l 
XCO*J3 • XtO*lM3 

Xt3>JM3 • 0 I 
X f 4 * J M ! «• DEV I 
FOR J • KK STEP 1 UNTIL NB DO 

BIGIN* -*W *i J * l I 
XT3*<J3 * INT I 
X t 4 > y j 4 . ^ t 4 * l M l M ' - X t 3 * d 3 

END END DTrlNf I 
C • 11 / 6 J 
H • 1 / MO I HV3 * H / 3 I 

COMMENT OA J 
IM * ME' I 
FOR I «» ME; STEP M UNTIL1 0 DO 
FOR J • 0 STEP 1 UNTIL 3 DO 

170 

1T1 
172 
173 
174 

181 

184 
185 
186 
187 
168 
189 
190 
191 
192 
193 

1958 
196 i 
197 
198 
199 



XC JP i YltI> Jl > 
DIFlNTCO) \ 
XWRITE ^ 
XA >*; XC4>NB1 f 
m ^ X§4iNB-j*§Ok X8 \ 
X16 * XM»NB*8) ) 
FORKM • 20 STEP 4 UNTIL ME*4 00 
XOACCM*-20>/43 > XC4*NB-M/2ir 

BEGIN 
COMMENT FD I PRdeiDUREKXsOUReEfXP̂  MD) I 

reali »ri i t ^WKlife-i**----M-ov:j-:.-

BEGIN 
IM «• ND I JM * NB*ND = J 
FOR j #. 0 STEP 1 UNTIL NO1 DO 
F*0Rr I •*•> MO STEP? 1 UNflL MD*3 DO 
XU-MD* JM*J3 * Y1MVJ-} I 

oIFWtXF) ) 
XWRlYEi J •" - • ' 

END XSOURCEr J 
IM • ND I JM * NB-ND I 
tWl «• MESTEPf *1 UNTILE ME*3 DO 
FOR J * 0 STEP" 1 UNTIL ND^DO( 

" - DIflNTtoy J r 
FOR ; J • NB STEP M UNTIL; KK5 00^^|«*d4:K-*/X.M#Jl^ I FOR ^ • ME»4 STEPS-4 UNTIL 20 Dfli 
XS0URCE<XOAC(M-2O>/4]# M) I 
XD* X t 4 * N 8 l 

END i BEGIN COMMENT AB̂  I PR 0 C E0 (J REl XINFINlTYtXA* Z) I REALi XA I INTEGER I I BEGIN j IM • NB I 

200 
201 
202 
203 
204AB 
204C 
2040 
204E 
204F 
205 
2058 
2 0 5 | 

2056̂  
266' 
208 
209 
210 
211 
211B 'til of 
21 I f » 
211F 
211G 
211M 211IJ 
211K 
211K2 
211L 
211M 
212 
212B 

i : 2 i2 i> 2120 213 



BEGIN 

End i 

"̂OR I • I STEP 1 UNTIL Z + 3 DO 
FOR J * 0 STEP 1 UNTIL ND DO 
XCI-2*J3 * Y1CI*JJ I 
POR J ND*0; STEP i UNTIL NB DO 
XtI-Z*JJ • Y2U*J] 
DIFlNTtXA) I 
XWRITE I 

END XINEINITY I 
XINFINITYCXU* 16) J 
XINFtNITYCXB* 6) I 
XINFfNITY tXA * 0) 

END 
END*FlNDX 1 
END RELAXATION ON BOTH COURSE' AND FINE GRIDS ) 

60 TO REREAD 1 
EXlTi ENDey 

XINFINITYCX12> 12) I 
XINFINlTYCXA* 4) I 

214 
215 
216 
216B 
?16C 
216D 
217 
218 
218B 
218C 
218D 
218E 
218r 
219 
219b 
219C 
220 



APPENDIX D 

COMPUTER PROGRAM 
(PROBLEM 2B) 



BEGIN COMMENT FLOW FROM A CANAL AND FROM I N F I N I T Y - . 
NONOlMENsIONftLlZED BY Q AT INFINITY. . BPHI • RxDPHI 
SUCCESSIVE OVERRELAXATION ON W-PLANE.. 
ONLY ONE GRID SIZE WHICH I S SMALL ENOUGH IS USED. . 
B « 5 0 0 0 . . SRISAKDI CHARMONMANo. APRIL 1 9 6 4 . . 
M D X Q T M U S T B E D I V I S I B L E B Y 4 1 

F I L E O U T L Y 1 2 1 C 1 * 1 5 ) I 
L A B E L RE R E A D * E X I T J 
R E A L ' D P H I * P H I D P * Q T * R J 
I N T E G E R M D * M E * N O P * N D * N B J 
F I L E IN FLMPCl i lO) J 
FORMAT IN. FTMPQCX6* 13* 4CXf* F 6 . 3 ) ) J 
LIST INMPQ{MD* DPHI* PHIDP* QT* R) * 
REREAD I READCFLMP* FTMPQ* INMPQ) CEXIT3 I 

ME • MDXQT * 
N D P - M D X P H I D P I 
ND*• * MDXDPHI I 
NB-* RxND Y 

BEGIN ^ ' 
ARRAY YU08MD* 08NB1 * Y2t MD J ME* 0 f ND3 J 
INTEGER l i ' J * MID* MD1* M1E* NlDP* NlO* NIB J 

fotD • MO-1 1 
MOl * MD*1 I 
M1E 4. ME*1 I 
NlDP' •> NOP* 1 J 
NID 4. ND*1 I 
NIB 4. N B - 1 I 

BEGINv COMMtNT BOUNDARY CONDITIONS T 
REAL DELPHI* DELPBC J 

DELPHI 4- - l / M D J 
FOR* J • 1 STEP 1 UNTIL? NlDP DO 

BEGIN Y1C0*J1 4. JxoELPHI I 
Y2t ME* J ] • O 

END I 
FOR J 4- NDPI STEP! 1 UNTIL-NlDrDO^ 

B E G I N Y l t O * J l 4- JXDELPHI J 
Y1CMD*J3 4. 0 I 



Y2fMO#J3 «• 0 } 40 
V2CM&#J3 • 0 41 

END' f 42 
FQ$ J «• ND STEP 1 UNTIL NIB 00 43 

BEGIN y i f O j J ] - * JXDELPHI I 44 
Vl tMO*J1 •> 0 45 

END J :
 a i : : • • 46 

DELPBC «• -RxDPHIxDELPHI I 47 
FOR 1 * 0 STEP 1 UNTIL MO DO 48 

BEGIN N - - - - 49 
Y l t I.»OJ «• 0 J 50 
Y i n * N B 3 «• DELPBC*(MD-I> 51 

END1 I ' 5? 
POR I • MO STEP 1 UNTIL ME' DOr 5 i 

BEGIN Y 2 t l # 0 3 4 - 0 1 54 
Y2tI*ND3 «• 0 55 

END- END̂  BOUNDARY CONDITIONS I 56 
BEGIN COMMENT LINEAR INITIAL GUESS j 57 
REAL DELY I 58 
INTEGER PQN' I 58B 

tak J * 1 STEP 1 UNTIL NlOP DO 59 
BEGIN DELY * Y1C0#J3 / ME I 60 

POR 1 * 1 STEP 1 UNTIL MD DO 61 
Y l t I * J l • DELYKCME-I) J 62 
FOR I MD STEP 1 UNTIL MlE DO 63 
Y 2 T I # J 3 «• DELYX(ME-I) 64 

END ) 65 
FOR j * NDP STEP 1 UNTIL NIB DO 66 

BEGIN DELY • Y l t 0 * J 3 / MD I 67 
FOR 1 * 1 STEP 1 UNTIL MID DO 68 
Y1CI * J 1 • DELYx(MD-I) 69 

END I 70 
PDN «• 1 / (ND-N1DP) I 71 
FOR I • MD1 STEP 1 UNTIL MlE 00 72 

BEGIN DELY * Y2£I*N10Pl xPDN I ' " ' 73 
FOR J «• NOP STEP 1 UNTIL N10 DO 74 
Y2CI*J3 «• OELYX(ND-J) 75 



END END INITIAL GUESS J 
BEGIN! COMMENT OvERRELAXATIONi I 
REAL Wit WlM>W2* H2M ) 
LABEL R E f t i YWRITE I 
INTEGER K M M 
DEFINE' YYl - Y l U - 1 * J 3 

YY2?» Y 2 f I , J p l 3 
PROCEDURELITERATE! I 

+ < Y l M * U ) * i 3 + 
+ Y2CI + U J 3 • • 

Y 1 U > J * i 3 #* 
Y 2 t l , J + i 3 * I 

B E G I N 

W I M X Y I C I X J I ! 

B E G I N 

E N D I 

K : * K*l J 
FOR I f - 1 STEP 1 UNTIL MID' O0 ! 

FOR J •*.< 1 STEP 1 UNTIL NlB DO! 

V I I I # J 3 > W l *C Y Y H Y 1 t I * l > J 3 » • 

FOR j * 1 STEP 1 UNTIL1 NlDP DO 
Y 1 M > J 3 * 0 « 2 5 X (YYl + Y2tMD1* J 3 } I 
Y 2 t I # J l * Y l t I , J 3 

MD1 STEP 1 UNTIL MIE) DO 
1 STEP! 1 UNTIL NlD DOi 
* W2xCYY2*Y2EI- l*J3) - W2M*Y2tI*J3 

FOR I * 
FOR J * 

E N D I T E R A T E ! ! 

B E G I N C O M M E N T O V E R R E L A X A T I O N F A C T O R ' J 
P R O C E D U R E ! F A C T O R C K P K K ) V 

I N T E G E R K * K K J 
B E G I N ? R E A L ! L I 

L' * / ; ( r ( C O S C 3 % 1 4 1 5 9 2 7 / K ) + C O S 1 3 V 1 A 1 5 9 2 7 / K K ) 
W 2 ! * 1 • L 7 C C 1 • S O R T d - L i ) )>* 2 ) 

E N D F A C T O R I 
F A C T O R C M D # N B ) I 

W-tM • W 2 * l l I 
Wl • W 2 * 0 * 2 5 I? 
F A C T O R ( M E - M D » N O ) I 

W 2 M * W 2 * l I 
W 2 • W2x 0 , 2 5 

E N D O V E R R E L A X A T I O N F A C T O R I 

K * 0 I 
R E I T ! I T E R A T E I 

) / 2 ) * 2 I 

7* 
77 
78 
79 
80 
82 
6 3 
83B 
83C 
830 
83E 
83F 
83G 
83H 
8 3 I J 
83K 
83L 
83M 
83N0 
83 P^ 
83Q 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
9 7 - 1 1 1 
112 
113 



BEGIN COMMENT ACCURACY CHECK i 114 
INTEGER x. \ 115 

IF -K < 60 THEN X * 5 ELSE1 X * 2 1 116 
IF K MOD X « 0 THEN 117 

BEGIN 110 
INTEGER IM1* JM1 J 119 
REAL' DEV* YMAXD ) 120 
ARRAY YDElrMlE* l t N l D l ! 121 
FORMAT OUT FTDE(X3> "K Wl W2 DEV IMl 

J M I " r 122 

t5i 3 P 1 0 . 6 , 2 1 7 ) 1 
123 

ClST LDE(K* Wli» W2P DEV> IM1* JMl ) r 

124 
* 0 I 125 

FO^ J <- 1 STEP 1 UNTIL' NlD'DO? 126 
BEGIN FOR T <• 1 STEP i UNTIL' MDnDÔ  127 

Y O t N J I • Y1C I # J 3 1 128 
FOR I * M01 STEP' 1 UNTIL MIE' 00 129 
Y b t I * J 3 * Y 2 t I * J l 130 

131 END J 
130 
131 

ITERATE J 132 
FOR J * 1 STEP 1 UNTIL' NlD DO* 133 

BEGIN FOR I * i STEP' 1 UNTIL' Ml0 DO 134 

V6tI * J 3 * AB$CY1CI*J3 - Y D t t * J ) ) ) 

133' 
YDfMD* J J • ABSCYUMD>J3 - YDCMD>J3 ) J 136 
FOR I «• MD1 STEP' 1 UNTIL Mi l DO 137 
Y 0 C I . J 3 «• A B s < Y 2 t I * J 3 - YDCI*J3 ) 138 

END 1 139 
FOR J * 1 STEP 1 UNTIL1 NID' DO 140 
FOR I • 1 STEP' I UNTIL MIE' DO- 141 
IF Y b C I * J 3 > DEV THEN 142 

BEGIN DEV * YDUJ»J3 J 143 
IM1 * I J 144 
JM1 * J 145 

END 1 146 
IF IMl > MD THEN YMAXD • Y 2 t I M l * J M l 3 147 

ELSEi YMAxD' • YlCIMl* JM13 1 148 
DEV * DEV / ABSC YMAXD) J 149 
WRITE(LYt2* FTDE* LDE) J 150 



tr DEV > O'.OOOl THEN GO TO R E T T 
ELSE GO TO Y W R I T E 

ENO ^ • • • • 
E L S E GO^O R E I T 
END ACCURACY CHECK I 
YWRITE I 
BEGIN 
FORMAT OUT T I T L K / / X19P " Y FOR FLOW FROM I N F I N I T Y " / / 

X10P"T « 0 P 6 . , " PX9 P"t a i , 7 0 0 « f , X9PwI • 2 P 8 O O " P X 9 P 

"I " « - 3>9.."*X8#"I « AP10.,"PX8P"I • 5#11« •**»// 
X l f "K«"P I4t/ X8P "Ja»p I4P / ) * 

FORMAT OUT TITL2 C // X19P *Y FOR FLOW FROM THE C A N A L " / / 
Sl6p"I » MDPMD+6O*"PX3P"I • M O + i > M D + 7 . . " PX3 P *?rs MD*2PMD+800"PX3P"I a MD+3PMD+9e."PX2P 
"I a MD + 4PMD+10„OWPX2P"I a MD*5PMD+11.„"/ / ) J 

FORMAT 0 U T Y 1 2 t X 3 i 6 F l 8 e 9 ) J 
W R 1 T E ( L Y 1 2 > TITLIP K> J) I 
FOR J *• NB STEP - i U N T I L 0 DO' 
WRITF(LY12P Y12P FOR I * 0 STEP 1 U N T I L MD DO Y t C I > J 1 ) I 
WRITf(LY12P T I T L 2 ) I 
r O R J * NO STEP -1 UNTIL 0 DO 
WRITF(LY12P Y12P FOR I «• MD STEP 1 U N T I L ME DO Y2UPJ3> 

END END O V E R R E L A X A T I O N ) 
B E G I N COMMENT F O U R - P O I N T - D I F F E R E N T I A T I O N FORMULA AND SIMPSON-RULE' 

S H A L L BE USED \ 
I N T E G E R IMP JMP MP NBOP MOA J 
REAL CP'HP H V 3 * XDPP B P H I P XE J 

MOA «• 0 .25 x ME I 
B P H l * R x DPHI J 

B E G I N 
ARRAY X C O M , 0INB3P X O A t O l M O A 3 J 
FORMAT OUT HEAOXC / / / / X 2 * " S I N G L E - CANAL PLUS NATURAL GW FLOW"P XIP 

" W I T H P H I AT THE CANAL - F 1 0 » d # - X 5 » " P H I D P a"> F i O , 6 * X S p 
" T O T A L Q a " , F i 0 „ 6 / 
X16P " P H I a"p F8,3P X2P "TO"P F 8 . 3 7 
X16P " P S I a « , F 8 f i 3 # X2# " T O " p F 8 , 3 / / 
X51P " X " p X22P " C O R , Y" //) I 



FORMAT OUT XX?X30P 2 F 2 6 . 8 ) J 188 
PRDCE0URÊ XWRITE<H1PH2P51>S2) ) 189 

; REAL M1PH2>S1*S2 J 190 
BEGIN WR*TE(LYl2p 'HEAOXP DPHIP PHIOPP QTP Hl*H2* S1*S2) I 191 

FOR J • JM STEP 2 UNTtL NB DO1 192 
P|T|:<LY12P XXP X£3PJ3P XCOPJ) ) " 193 

END XWRlTJLjf 194 
PROCEDURf^OIFINTCXJM) ) 195^ 

RpAL XJM > 196 
BEGIN ; 197 
DEFINE DIP & (CKXfOPJ3-3«X£l*JHlcS«XC2pJJ«Xt3pJ3 /3)«MD # P 196 

i f t t * CXHPJ} + 4XXC1PJ-13 +• Xtl»J*23) x HV3 # J 199 
J M N B • IM j 200 
FOR J • NB STEP - 1 UNTIL JM DO 201 
X t t p J I • OIF I 202 
%t$*JM3M* XJM I 2 0 3 
FOB J * JM4-2 STEP 2 UNTIL NB DO 204^ 

BEGIN S(t2*J3 * INT 9 205! 
XtlpJ3 • X t S p J - 2 3 + XC2PJ3 206 

end end ofPint j 207 SH II / 6 f 208 
1\H 1 / MO' I 209 
HV3 • H / 3 1 210 

BEGIN COMMENT OA J 211 
IM * ME I 2 l 2 
FOR J * 0 STEP 1 UNTIL 3 DO 213 

BEGIN FOR I 4- ME STEP -1 UNTIL M01 DO 214 
XCJ> NB-13 * Y2U#J3 I 215 
FOR I • MD STEP -1 UNTIL 0 DO 216 
Xt J> NB-13 *• Y1U>J3 217 

£ND I 218 
D I F I N T t O ) I 219 
XWRITECOPOP OTPO) J 220 
FOR M • MOA STEP -1 UNTIL 0 DO 221 
XOACMOA - M3 • XX3P JM*4xM3 222 

END OA J 2 2 3 
B l i j W COMMENT OE I 224 



IM • NO I 
NBD * NB - NO J 
FOR I * ME* STEP - 1 UNTIL ME-3 OO 
FOR J 0 STEP 1 UNTIL NO1 DO 
XtME*I* NBD+J3 • Y 2 t I > J 3 I 
DIFINT<0) I 
FOR J * JM STEP 2 UNTIL NB DO 
X f 3 * J 3 * -XC3*J3 J 
XWRITE<0#OPHI* Q T > Q T ) I 
XE <• * XC3*NB3 

END OE J 
BEGIN COMMENT ED I 
INTEGER MN- * 

MN *• NB+MD I 
IM * ME-MD I 
FOR J * NO STEP * i UNTIL ND-3 DO 
FOR I * ME! STEP *1 UNTIL1 MD DO 
XEND^J* MN-I3 «• Y 2 t I # J 3 * 
OIFlNTtXE) J 
FOR J * JM STEP 2 UNTIL NB OOr 
XT3*J3 «• - X E 3 * J 3 J 

xwritecophIP ophi* i* an 

END ED I ••"'••̂  
BlGtN 
INTEGER M l 
PRDCEDURE XCANALtXJMi* M> I > 

REAL'XJM I 
tNTEfeEFt M I 

BEGIN 
REALi P S I : ) ' ' 

IM • - ND I 
POR J * 0 STEP I UNTIL NO DO 
FOR I «• M STEP i UNTIL M + 3 00' 
XtI*M# NBD4.J3 • Y 2 t I * J 3 I 
DIFlNTtXJM) I 
PSI * M*M I 
XWRITE<OJ»DPHI* PSI^PSI) 



ENDi XCftHAL i 
FOR N * Mg»4; STEP - 4 UNTIL* MD*4 DO? 

XCANALtXOAt°V̂ S><M'ip M) 
ENQ I 
BEG INI COMHENT XFOP I 
INTEGER N0P8 I 

NDPS «- NB * NOP' I 
IM • * - NOP I 
POR I * MO STEP 1 UNTIL MD*3 00« 
FOR ,j *• 0 STEP 1 UNTIL IM DO 
Xf I*MD.» NDP8*J3 * Y2fTi J J I 
DXFINTCX0A£0*25*MD1) f 
XWRITE<0# PHIOP* =1> = t ) 

fND^ XFDPf i 
BEGIN 
INTEGER' M l 
PR0 ©E D UR E X f N F f NIT Y CX IjM* M ) % 

R E A L ; XJM a - ' =• 
XNTE&ER^ M I 

BEGINS REAL PSl J 
tM * NB J 
FOR .! «• 0 STEP I UNTIL NB DO 
FOR I * M STEP 1 UNTIL M+3 OO 
xrI~M> J) * ' Y l E l * J ] I 
DIFINTCXJM) .1 
P S I * M * H r 
XWRITEC0*BPHI*KPSI>PSI) 

END XINFINITY i • 
FDR Mi-<HM0*4 STEP *4 UNTIL 0 DO 
XINFI NIT Y(XOACO.2Sx M J , M) 

END 
END 
END FINDX I 
END RELAXATION AND FINDX I 

GO TO REREAD I 
EXIT f END. 
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He chose to study at Georgia Institute of Technology where he could work 

with Dr. Carstens with whom he had been associated at the SEATO Graduate 

School of Engineering. 

He became engaged to Miss Parasubhasri Subhajalasaya in December 
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