
Anticipatory Robot Navigation by
Simultaneously Localizing and Building a Cognitive Map

 Yoichiro Endo
endo@cc.gatech.edu

Ronald C. Arkin
arkin@cc.gatech.edu

Mobile Robot Laboratory, College of Computing,
Georgia Institute of Technology, Atlanta, GA, 30332-0280

Abstract
This paper presents a method for a mobile robot to

construct and localize relative to a “cognitive map”, where
the cognitive map is assumed to be a representational
structure that encodes both spatial and behavioral
information. The localization is performed by applying a
generic Bayes filter. The cognitive map was implemented
within a behavior-based robotic system, providing a new
behavior that allows the robot to anticipate future events
using the cognitive map. One of the prominent advantages
of this approach is elimination of the pose sensor usage
(e.g., shaft encoder, compass, GPS, etc.), which is known
for its limitations and proneness to various errors. A
preliminary experiment was conducted in simulation and its
promising results are discussed.

1. Introduction
Suppose that an office robot is about to be sent on

errands to deliver some document from Office A to Office
B. Office A and Office B are on different floors; hence, the
robot has to take an elevator. A practical question in order
to implement such a robotic task would be, “How should
Office A, Office B, and the elevator, as well as the actions
(e.g., taking the elevator) be represented within the robot?”
One may suggest using a map. However, many
conventional maps contain geometrical information only,
and do not directly address the question of which actions
should be organized at any given time.

Of course, the actions required for navigation may be
dealt separately from the map, treating them as a classic AI
problem. In this paper, however, a means for incorporating
both forms of knowledge (behavioral and spatial) into a
single representational structure is investigated. In the
remainder of this paper, this representational structure is
referred to as a cognitive map, distinguishing it from a
conventional map that only stores geometrical information.

Kuipers [6] asked the questions of how the cognitive
map should be designed if it was intended for use by a
mobile robot. His suggestions included:

• The cognitive map should be constructed from a
number of different frames of references since fitting
all the geometric information in a single (world
coordinate) frame requires highly biased interpolations.

• The knowledge of how to get from one point to another
should be represented adequately in the cognitive map
as it is vital to navigation.

This led Kuipers and Byun to propose a mapping
strategy that is based on a qualitative method [7]. By using
a hill-climbing method, distinctive places in the
environment are detected. These distinctive places are
stored in a topological network and the linking relationships
among them are described by a control strategy. Lee [8]
implemented this method on a real robot.

Similarly, Mataric proposed a topologically organized
distributed map [12]. Each node in the topological network
represents a landmark, and nodes can communicate among
themselves through spreading activation. Moreover, when a
goal object is given, each node can suggest a real-time
procedure for the robot to navigate through the environment
in order to move to the goal. This method is inspired by
how hippocampus of a rat operates [13].

A probabilistic approach can be also incorporated into a
topological map framework. For example, Koenig and
Simmons [5] implemented a POMDP-based navigation
architecture for a mobile robot. Given a predefined
topological map, the system can estimate the current state
while the robot navigates in an indoor environment using
this probabilistic method, and it can suggest the most
rewarding action to take in order to reach a designated goal.
Koenig and Simmons’ system assumes that the topological
map is given (since the emphasis is on the policy mapping).
On the other hand, research by Thrun et al. [22] generates a
map as it moves through the environment. It utilizes both
topological and metric information. Although manually
picked (instead of using the hill-climbing method),
distinctive places were utilized to solve the correspondence
problem of localization, and the Expectation Maximization
(EM) method was used to generate a map of a large scale
environment that contains a loop structure.

The representation of the cognitive map in this paper
alternatively utilizes episodic memories, where the concept
was inspired by the recent biological findings [3][26]
(explained briefly in Section 4). The goal of this paper,
however, is not to implement or validate the fidelity of the
underlying biological model, but rather it is an examination
of how the past experiences of a robot can be stored in a
meaningful way, so that the it can “localize” itself relative
to its past experiences, anticipate a future event, and then
select and coordinate behavioral actions appropriately to
react to these anticipatory events.

2. Cognitive Map for Anticipatory Behavior
A model of a cognitive map that allows a robot to

anticipate future events based on its past experience is
described in this section.

2.1. Cognitive Map That Encodes Episodes
We chose MissionLab [11], a software tool that

implements a behavior-based robotics system [1], as the
target platform to implement the cognitive map model.
Because of the tight coupling of perception and action that a
behavior-based robotics system provides, constant streams
of both sensor readings, denoted here as z, and behavioral
motor commands, denoted as u, are considered to be always
available.

Suppose then that there is a way to detect novelty in the
environment (discussed in Section 2.2). The instance when
the robot detects this environmental novelty is considered
as an “event”, denoted as ei (where the subscript i is some
particular instance i), and ei contains spatial and behavioral
information as well as a tracking number ni (the number of
the events stored thus far in memory). In other words, ei is a
set of the sensor readings zi, the motor command ui, and ni
at some instance i:

 }, ,{ iiii nuze = (1)

Notice that since the detection of novelty depends on the
nature of the environment, ei is independent of time.
However, suppose that a number of events have been
detected, then the order of the event sequence, ei = (e1, e2,
… , ei) is temporal, and not spatial (the superscript i is used
here to refer to all the instances up to the instance i).

This sequence of the events constitutes an episode,
denoted here as E. In other words, E is an ordered i-tuple,

) , ... , ,(21 ieeeE =

The robot records all of the experienced episodes in its
episodic memory, and this collection of episodes is hereby
defined as a cognitive map. In other words, the cognitive
map C can be described as an ordered tuple:

) , ... , ,(21 KEEEC =

where K is a total number of the episodes experienced by
the robot.

In summary, whenever the robot is active, it constantly
builds a cognitive map by accumulating the experienced
episodes in its memory, where the snapshots of the sensor
readings and the motor commands whenever novelty in the
environment is detected are stored in the episodic memory.
“When does an episode begin?” and “when does it end?”
are questions that should be fully investigated. Tentatively,
however, it is defined that a new episode begins when the
robot starts a new predefined mission (a behavioral
sequence described with a finite state acceptor), and ends
when that mission is terminated.

2.2. Event Detection
As mentioned above, a snapshot of the sensor readings

and behavioral motor commands are recorded whenever
novelty in the environment is detected, and here this
snapshot is called an event. The robot is designed to register
such event based on our assumption that when the
environment is novel, there is a discontinuity between the
current environment and the environment just before, and

thus it is worth remembering the characteristics of this new
environment for the future use.

The information about the environment can only be
perceived by the robot’s available sensors. Thus, in order to
detect the novelty (unpredictable characteristics) of the
environment, the robot has to constantly predict the set of
incoming sensor readings; whenever the robot’s prediction
is incorrect, the novelty of the environment (i.e., event) is
considered to be detected. The novelty feature should only
depend on the characteristics presented by the environment
itself. In other words, the robot should detect exactly same
novelty features in the environment whether it is moving
fast or slow.

The prediction of the sensor readings is implemented
here using Sutton’s Temporal Differencing or TD(λ) [19].
While this method is usually employed to predict the
rewards, here, it is used to predict each of the sensor
readings (i.e., the perceivable environment).

Suppose that the robot is equipped with two types of
typical sensors: an array of sonar sensors and a CCD
camera. The array of the sonar sensors consists of N
transducers mounted evenly on the circumference of the
robot, and thus it provides N readings (distance to a closest
object) per full-scan, denoted as S1, S2, … , SN. The output
of the camera is connected to Newton Cognachrome board
that provides detection of color blobs. The 180-degree
camera view is divided into M segments in azimuth, and
thus it provides M readings (distance to a closest color
object) per instance, denoted as C1, C2, … , CM. Let us also
suppose that the robot executes a motor command u, which
is a behavioral output described with a 2-D velocity vector
〈ud, uθ〉; ud is the magnitude and uθ is the direction of the
velocity (explained further in Section 2.5).

The schematic representation of the sensor prediction is
shown in Figure 1. Here, all of the variables above are
combined as a vector xt (i.e., xt = 〈S1, S2, … , SN, C1, C2, … ,
CM, ud, uθ〉) after being normalized, and all of the elements
in the vector contribute to predict each of the sensor
readings for the next time cycle. For example, prediction of
the next sonar reading for S1, denoted as S′1t+1, is done by
computing a linear function of weights wS1t and vector xt:

 ∑
++

=
+ =

2

1
11)()(

MN

a
ttS1t axawS' (2)

While this computational method resembles a
conventional neural network, it should be noted that the
“network” used here does not have hidden layers, and the
output units do not have any activation function (such as a
sigmoid function, a constant threshold, etc.) as neither of
them were implemented in the original Temporal
Differencing method [19].

At each time cycle, the weights are updated using the
TD(λ) update rule. While TD(λ) is typically used to predict
a delayed reward, since the stream of the sensor readings
are assumed to be always available TD(λ) is employed as a
single-step prediction. For example, at time t, the increment
of the weights for the sonar reading S1 is computed by:

 ∑
=

− ∇−=∆
t

k
1kw

kt
1t1ts1t S'S'Sw

1

)(λα (3)

Here α is a learning rate, λk is an exponential weighting
factor, and the gradient ∇wS′1t is a partial derivatives of S′1t
with respect to the weights. Because S′1t is a linear function
of ws1 and vector xt (Equation 2), the value of the gradient is
simply xt. Thus, Equation 3 can be rewritten as:

 ∑
=

−−=∆
t

k
k

kt
1t1ts1t xS'Sw

1

)(λα (4)

•
•
•

•
•
•

•
•
•

•
•
•

S1t

Actual Readings
at Time t

S2t

SNt

C1t

C2t

CMt

udt

uθt

S'1t+1

S'2t+1

S'Nt+1

C'1t+1

C'2t+1

C'Mt+1

Predicted Readings
for Time t+1

w

•
•
•

•
•
•

•
•
•

•
•
•

S1t

Actual Readings
at Time t

S2t

SNt

C1t

C2t

CMt

udt

uθt

S'1t+1

S'2t+1

S'Nt+1

C'1t+1

C'2t+1

C'Mt+1

Predicted Readings
for Time t+1

w

Figure 1: Prediction of sensor readings.

At each time cycle, a root-mean-square (RMS) of the
errors between the predicted sensor readings (based on the
previous time cycle) and the actual sensor readings are
computed, and it is used as guidance for creating a new
event ei. For example, the graph in Figure 2 shows the RMS
prediction error when a robot moved from one end of a
corridor (left in the figure) to the other end (in simulation).
The prediction error generates number of spikes. A peak of
each spike is, here, considered as occurrence of a new
event. As it can be observed from the figure, the spikes (or
events) seem to capture salient features for the robot to
navigate in the environment, such as doors and the corridor
junction.

RMS Prediction Error

0

0.05

0.1

0.15

0.2

0.25

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494 511 528

Time Step

RM
S

Pr
ed

ic
tio

n
Er

ro
r

Doors

Doors

Corridor
Junction

Robot Passage

Figure 2: Sensor prediction error and the environment (simulation). The
peak of each spike is considered as occurrence of a new event.

In terms of the event detection, Lewis [9] and Lewis and
Simo [10] have applied a similar approach to their biped
robots. In those cases, visual information (optic flow [9]
and stereoscopic data [10]), along with joint angles and a
gait phase, was fed into a neural network. The weights were
updated by applying the Widrow-Hoff rule [25]. The robot
was able to detect “novelty” in the environment while
walking through it. It should be noted that the TD(λ) update
rule is based on the Widrow-Hoff rule; it was extended in
order to implement incremental learning of weights and
multi-step prediction [19].

2.3. Localization
In robotics, solving the problem of building a map of an

unknown environment while simultaneously identifying its
location with respect to the map (SLAM problem) is
considered to be one of the most challenging tasks, and it
has been widely investigated in past years [21]. One of the
reasons that makes this problem nontrivial comes from the
nature of any physically realized robot; it has to deal with
uncertainties produced by actuators, sensors, interpretation
of the sensor data, accuracy of the map, initial position of
the robot, and the dynamic nature of the real world [18]. As
Thrun reports in his survey paper [21], all of the successful
approaches to this localization and/or mapping problem
today employ probabilities, which are some forms or
extensions of the Bayes filer. While such probabilistic
approach usually provides a means for a robot to localize
itself relative to a conventional (metric) map, here, we
employ the generic Bayes filter for the robot to localize
itself relative to the cognitive map.

Given a sequence of sensor readings zi and the
behavioral motor commands ui, the posterior probability of
the robot being at the same event ex in the past can be
calculated by the generic Bayes filter below (Equation 8).
As explained in [20] by Thrun, the equation was derived by
applying the Bayes rule (Equation 5), the Markov
assumptions twice (Equations 6 and 8), and the law of the
total probability (Equation 7) to the posterior.

),|(ii
x uzep

),,|(1 ii
ix uzzep −=

),|(),,|(11 ii
x

ii
xi uzepuzezp −−= η (5)

),|()|(1 ii
xxi uzepezp −= η (6)

 ∫
∈

−
−

−−
−

−

=
Ee

x
ii

xx
ii

xxi

x

deuzepeuzepezp
1

1
1

11
1),|(),,|()|(η (7)

 ∫
∈

−
−−

−−

−

=
Ee

x
ii

xxixxi

x

deuzepeuepezp
1

1
11

11),|(),|()|(η (8)

Here, η is a scale (or normalization) factor that ensures the
sum of all the possible posteriors becomes 1.

Recall that ex = {zx, ux, nx} (Equation 1).)|(xi ezp in
Equation 8 is called the perceptual model and is estimated
by straightforward comparison of incoming sensor reading
zi and the stored sensor reading zx. The difference between
each element of corresponding sensor readings in the
vectors is root-mean-squared, and its negative value is fed
into the exponent function. In other words,

))(exp()|(xipxi zzRMSezp −−=η

ηp is the normalization factor of the perceptual model. The
perceptual model suggests how close the current
environment is to the one in the immediate past.

On the other hand, the motion model),|(1−xix euep in
Equation 8 is estimated by the following rule:










Γ

>







Γ

−−
=

−

−

otherwise1

0 if1)),(exp(max
),|(

1

1

m

xi
d

m

xix

duuRMS
euep

η

λη

Here, ηm is a normalization factor of the motion model, and
λd is an exponential weighting factor where λ is some
constant and d is distance between ex and ex-1 in the episodic
memory (i.e., d = nx – nx-1). Γ is the total number of the
events stored in the episode. If the motor commands
perfectly match and ex is stored as the next event of ex-1 in
the episode, the probability will be at its maximum value.
On the other hand, if the motor commands are far different,
the distribution of the probability becomes uniform.

It is assumed here that the criterion for the robot being
able to localize to the past event depends on the distribution
of the posterior probability),|(ii

x uzep . For example, if the
posterior probability is distributed around the average value
(as shown in Figure 3), no localization can be made. On the
other hand, if the distribution contains distinct peaks,
localization can be attained (Figure 4). The criterion for
determining whether the distribution contains these distinct
peaks is evaluated by a threshold Θ which is calculated by:

Γ
+

=Θ
κ1 (9)

where κ is a constant value, and Γ is a number of events in
the episode. If the highest peak in the posterior distribution
is above Θ, then it is considered that the localization is
made. In other words, the robot would localize itself
relative to the stored event elocalized by solving the following
equation:





 Θ>

= ∈∈

otherwiseN/A

),|(max if),|(argmax ii
xEe

ii
x

Eelocalized

uzepuzep
e xx

Posterior Probability Distribution (Case 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 50 100 150 200

Events

Po
st

er
io

r P
ro

ba
bi

lit
y

Data

Average

Threshold

Figure 3: A case when localization cannot be achieved. As the posterior
probability distributes around the average value, and none of the peaks
exceeds the threshold value, the robot cannot localize relative to the past
events.

Posterior Probability Distribution (Case 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 50 100 150 200

Events

Po
st

er
io

r P
ro

ba
bi

lit
y

Data

Average

Threshold

Figure 4: A case when localization is attained. As one of the peaks exceeds
the threshold value, the robot can localize relative to the event (e146) that
corresponds to the highest peak of the posterior probability distribution.

2.4. Anticipatory Robot Behavior
In order to incorporate the episodic memory within the

behavior-based architecture, a new behavioral assemblage,
called Search X , was created. As shown in Figure 5, this
behavior bears some resemblance to Brooks’ subsumption
architecture [2]. The top behavior is ute-To XTraject-Ro ,
which takes the a cognitive map (set of episodes) as its
input. If the goal object X is found in a stored event, say
egoal, and if there exists a “path” between egoal and the
currently localized event elocalized, the ute-To XTraject-Ro
will output a vector ulocalized+1 that is the motor command of
the event stored immediately after elocalized. Here, the criteria
of a “path” existing are (1) the goal event egoal and the
current localized event ex are in the same episode E (i.e.,
〈egoal, elocalized〉 ∈ E), and (2) the target event chronologically
comes after the current localized event (i.e., ngoal > nlocalized).
The question of how to connect different episodes with the
path has not yet been investigated. If the robot could not be
localized, or if a path between egoal and elocalized could not be
established, ute-To XTraject-Ro outputs a zero vector.

Traject-Path-To X

Explore

Avoid-Static-Obstacles

Priority-Based
Coordination

Current Heading

Cooperative
Coordination

Σ

Search X Behavior

Cognitive Map

Obstacle

Closest Object

Traject-Path-To X

Explore

Avoid-Static-Obstacles

Priority-Based
Coordination

Current Heading

Cooperative
Coordination

Σ

Search X Behavior

Cognitive Map

Obstacle

Closest Object

Figure 5: Search X behavioral assemblage.

This ute-To XTraject-Ro behavior relates to Brooks’
Level 3 (Build Maps) and, as in his model, this behavior
suppresses the output of the one below, Explore, through a
priority-based behavior coordinator. The assemblage of
Explore is shown in Figure 6. It was designed to explore an
indoor environment by following walls by detecting the
closest object. The assemblage of Explore consists of
Move-Ahead, Move-To-Object, Swirl-Static-Object, and
Avoid-Static-Object primitive schemas, which are explained
in [1]. These primitive behaviors are coordinated by a
cooperative coordinator vector summation mechanism.
While ute-To XTraject-Ro and Explore behaviors are
coordinated with a priority-based arbiter, its output is
computed by a cooperative coordinator with the Avoid-
Static-Obstacles schema (Brooks’ model, on the other hand,

coordinates this level with the priority-based arbiter as
well). The effectiveness of the ute-To XTraject-Ro
component in Search X behavior is sought in a preliminary
experiment (Section 3).

Move-Ahead

Move-To-Object

Swirl-Static-Object

Closest Object

Cooperative
Coordination

Σ

Explore Behavior

Current Heading

Closest Object

Avoid-Static-ObjectClosest Object

Move-Ahead

Move-To-Object

Swirl-Static-Object

Closest Object

Cooperative
Coordination

Σ

Explore Behavior

Current Heading

Closest Object

Avoid-Static-ObjectClosest Object

Figure 6: Explore behavioral assemblage

2.5. Reference Frames
At this point, it should be noted that our method never

requires the use of a pose sensor (e.g., shaft encoder,
compass, GPS, etc.). In fact, none of the data used in the
above computation is converted into the world (or absolute)
coordinate system. The only global representation being
used here is the tracking number n (Equation 1). This is
deliberately done so based on Kuipers’ suggestion [6] that
fitting all the geometric information in a single frame would
require highly biased interpolations.

In our system, the sensor reading z is captured in the
robot-centered (or egocentric) coordinate system, and it is
used to: (1) perform localization (i.e., to compute the
perceptual model in Equation 8); and (2) compute the
output of the Explore and Avoid-Static-Obstacles behaviors.
Neither of the tasks requires the world coordinate system.
On the other hand, the motor command u is used to: (1)
compute the motion model; and (2) produce the output for

ute-To XTraject-Ro . While neither of these tasks also
requires the world coordinate system, we investigated two
different approaches to represent u in the episodic memory.
One obvious approach is to use the robot’s egocentric
coordinate system as is the case for the sensor reading z
(i.e., uθ is zero when it is pointing towards the robot’s
heading). Another approach is to use an environment-
specific (or object-centric) coordinate system since the
geometrical relationships between the robot and
environmental objects are crucial to the behavior-based
robotics navigation. For example, the robot may be able to
treat a distinguishable landmark in the environment as a
reference point, and uθ may be measured with respect to the
direction of the reference point.

For some cases, however, a distinguishable landmark
may not be easily extracted from the environment (e.g.,
dark corridor, etc.). Alternatively, we attempted to apply the
concept of principal axes in physics to identify a unique
direction relative to the environment given an array of sonar
readings. Consider an egocentric 3D Cartesian system. The
properties of the inertia matrix with respect to its principal
axis ω is described by the following equation:

 { }0
)(

)(
)(

=
































−
−

−

z

y

x

zzzyzx

yzyyyx

xzxyxx

IIII
IIII
IIII

ω
ω
ω

 (10)

Ixx, Iyy, and Izz are called moments of inertia, Ixy, Iyx, Iyz, Izx,
Izy are called products of inertia, and I is a principal moment
of inertia of the system. If the system is rotated along with
ω, the products of inertia vanish. Solving for ω is in fact
equivalent to solving of an eigenvector problem [4]. In
other words, as ω is a characteristic vector of the inertia
matrix, by treating the end points of the sonar readings as
“virtual particles”, we can consider the direction of ω as a
unique direction with respect to the formation of the
environmental objects detected by the sonar sensors. The
angle of principal axis ω with respect to the robot’s heading
(i.e., x-axis) is denoted here as ϕ, and its value can be
obtained by the calculations below.

Suppose N virtual particles (i.e., N sonar readings) have
weight that sums up to 1 as a collection, and they are
distributed only on the x-y plane, the moments and products
of the inertia can be computed by:

∑∫
=

=+=
N

i
ixx ydmzyI

1

222)(

∑∫
=

=+=
N

i
iyy xdmzxI

1

222)(

∑∫
=

+=+=
N

i
iizz yxdmyxI

1

2222)()(

∑∫
=

−=−=
N

i
iixy yxdmxyI

1

0 =−= ∫ dmxzI xz

∑
=

−==
N

i
iixyyx yxII

1

0 =−= ∫ dmyzI yz

0== xzzx II
0== yzzy II

For convenience, let us allow the following denotations:

xx

N

i
i Sx =∑

=1

2 , yy

N

i
i Sy =∑

=1

2 , xy

N

i
ii Syx =∑

=1

By substituting the values above, Equation 10 can be now
rewritten as:

{ }0
)(00

0)(
0)(

=
































−+
−−

−−

z

y

x

yyxx

xxxy

xyyy

ISS
ISS

SIS

ω
ω
ω

Note that the determinant of the left matrix is zero. Thus,
we are able to compute the three possible principal
moments of inertia as:

2

)(4)()(22

2,1
xyyyxxyyxxyyxx SSSSSSS

I
−−+±+

= , yyxx SSI +=3

The angle ϕ can be calculated by just using I1 and I2 as:

xy

yy

x

y

S
IS 2,111 tantan

−
== −−

ω
ω

ϕ

Note that here ϕ has two possible values corresponding to I1
and I2. We take whichever is close to the robot’s heading.
The effectiveness of the two different coordinate systems
(i.e., egocentric vs. object-centric) are tested in the next
section.

3. Experiment
In order to verify whether the anticipatory behavior

explained above could actually contribute to improve the
performance of a navigational task, a simple simulation
experiment was prepared. More specifically, in this
experiment, the effectiveness of the ute-To XTraject-Ro
component in Search X behavior was investigated by
comparing two versions of the behavior: one with

ute-To XTraject-Ro intact and one without it. Furthermore,
as discussed in Section 2.5, the effectiveness of
representing the motor command u in the egocentric
coordinated system was compared against the one
represented in the object-centric coordinate system.

The experiment was constructed to test whether the
simulated robot can follow a path from a current position to
a goal object based on its previous training experience. The
size of the simulated robot was configured as 0.3 meters; an
array of simulated sonar sensors consisted of 16 transducers
mounted evenly on the circumference of the robot, and the
180-degree simulated camera view was divided into 5
segments in azimuth, providing 5 simulated Cognachrome
readings. As shown in Figure 7, a simple indoor
environment (T-maze), having 1.2-meter corridor width,
was prepared for the experiment. The performance of the
robot behavior was measured by counting the number of
correct turns at the corridor junction. The robot always
started around StartPlace, and the red object (goal object)
was placed alternatively between the left and right
corridors. For each trial, using predefined waypoints, two
training runs were given to the robot. One training run
brings the robot to make a left turn and leads it to the left
corridor. The other training drives the robot to the right
corridor. During the two training runs, the goal object was
placed only at one side of the corridor, and, thus, the robot
observed the object only once before the test. The order of
the training runs was always alternated. A total of 64 tests
were conducted for each condition. For each test, the run
was terminated when the robot reached the end of the
corridor (either the left or the right side).

In this experiment, the following constants were used
for the event detection: α = 0.001 and λ = 0.1 (Equation 4);
κ = 0.1 (Equation 9). In order to simulate the real world
conditions, during both training and actual testing runs,
artificial noise was added to the sensor readings and the
actuator output, and the initial position and heading of the
robot was slightly varied. Different values for the artificial
noise and the offset were chosen at each run, so that their
distribution would be normal (Gaussian) throughout the

experiment. More specifically, with the 95%-confidence:
(1) the value of the artificial noise would be picked within
10% of the actual sensor reading or actuator output; (2) the
offset of the initial position and heading would range within
0.1 meter and 10°, respectively.

6.0 m

2.
4

m

2.
4

m

1.2 m

6.0 m

2.
4

m

2.
4

m

1.2 m
Figure 7: T-maze.

The results are shown in Figure 8. Search X with
ute-To XTraject-Ro behavior (storing egocentric motor

command u) made considerably more correct turns (about
80% mean) when compared to the behavior without

ute-To XTraject-Ro , which only 50% of the time correctly
choose the right turns. One-way ANOVA (computed by
STATISTICA v6.0, StatSoft, Inc.) shows that the difference
was statistically significant (F1,126 = 16.869, p = 0.001). On
the other hand, there was no difference between the
Search X behavior storing the egocentric motor commands
and the one storing object-centric motor commands (F1,126 =
0.000, p = 1.000).

Figure 8: Mean plots of the successful turns. The narrow vertical bars
around the mean values denote 95% confidence intervals.

4. Biological Basis
As mentioned earlier, the goal of this paper is not to

validate existing biological models by implementing them
on robots. However, biological findings did significantly
influence the designed of the proposed system above. The
relevant findings are briefly explained here.

The term “cognitive map” was first coined by Tolman
[23] in the late 1940’s to hypothesize his idea of a rat
learning spatial information during a food-seeking task,
which contradicted the popular psychological theory of
Behaviorism at that time, where it was argued that the rat
only learns through stimulus-response connectivity. A
prominent study by O’Keefe and Nadel [14] suggested that

without Traject-Path-To X with Traject-Path-To X
(egocentric u)

with Traject-Path-To X
(object-centric u)

the cognitive map is constructed in the hippocampus of the
brain. One of the evidence cited was the notion of place
cells; the place cells excite whenever the animal is in a
familiar environment.

How the hippocampus recognizes the familiar
environment is still debated among scientists. One school
advocates that the environment is projected to a single map
framework, and path-integration is employed by the animal
for localizing itself in the map. In this context, high fidelity
neurophysiological models of the hippocampus have been
proposed by Samsonovich and McNaughton [17] and
Redish and Touretzky [15]. For instance, a simulated rat
implementing Redish and Touretzky’s model was even able
to solve the Morris water maze problem [16]. However, as
their emphasis was on validating the fidelities of their
models, the question of how these models would help
navigating an actual robot has not been fully addressed yet.
On the other hand, another school (e.g., Eichenbaum et al.
[3] and Wood et al. [26]) suggests that the hippocampus
stores episodes or sequences of events, each of which
consists of both spatial and non-spatial information. The
non-spatial information includes behaviors. As discussed in
Section 1, this latter argument agrees with the points being
made by Kuipers [6] for the robotic cognitive map.
Therefore an episodic memory based cognitive map has
been implemented here. The term “episodic memory” is
first coined by Tulving [24] in order to distinguish a
chronologically ordered memory from a semantic memory.

5. Conclusions and Future Work
In this paper, a method of how to construct and localize

relative to a cognitive map within a behavior-based robotic
framework was presented. One of the prominent advantages
of this approach is elimination of the pose sensor usage
(e.g., shaft encoder, compass, GPS, etc.), which is known
for its limitations and proneness to various errors. The
preliminary results from the simulation experiment showed
that the proposed cognitive map seems to contribute to the
ability of a robot to anticipate future events for navigation.

 However, farther analysis of the system needs to be
conducted. For example, the system must be tested on a real
robot (rather than simulation). The question of
computational complexity has to also be addressed, as this
method currently computes full posteriors for the entire
episode. It has been observed that the activity of the robot
slows down drastically as the number of the accumulated
events increases. Another issue that needs to be investigated
is whether the current clustering of events (i.e., the event
detection with TD(λ)) is adequate. This question also
involves how the threshold values should be chosen
meaningfully. As mentioned earlier, the questions of just
when an episode starts, and when does it end, have to be
resolved as well. Incidentally, the current system only
allows for searching of a goal object within a single
episode. The question of how to connect two different
episodes should be also investigated.

References
[1] Arkin, R.C., Behavior-based Robotics, MIT Press, 1998.

[2] Brooks, R. “A Robust Layered Control System for a Mobile
Robot.” IEEE Journal of Robotics and Automation, 1986, Vol. 2,
No. 1, pp. 14-23.

[3] Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., and Tanila,
H. “The Hippocampus, Memory, and Place Cells: Is It Spatial
Memory or a Memory Space?” Neuron. Cell Press, 1999, Vol. 23,
pp. 209-226.

[4] Greenwod, D.T. Principles of Dynamics. Prentice Hall, Englewood
Cliffs, NJ, 1988.

[5] Koenig, S. and R.G. Simmons, R.G. “Xavier: A Robot Navigation
Architecture Based on Partially Observable Markov Decision
Process Models.” Artificial Intelligence Based Mobile Robotics:
Case Studies of Successful Robot Systems, MIT Press. 1998.

[6] Kuipers, B. “The Cognitive Map: Could It Have Been Any Other
Way?” Spatial Orientation: Theory, Research, and Application, eds.
Pick, H.L. Jr. and Acredolo, L.P. Plenum Press, New York, 1983,
pp. 345-359.

[7] Kuipers, B., and Byun, Y.T. “A Robot Exploration and Mapping
Strategy Based on Semantic Hierarchy of Spatial Representations.”
Journal of Robotics and Autonomous Systems, Vol. 8, 1991, pp. 47-
63.

[8] Lee, W.Y. Spatial Semantic Hierarchy for a Physical Mobile Robot.
Doctoral dissertation, Department of Computer Sciences, The
University of Texas at Austin, 1996.

[9] Lewis, M.A. “Detecting Surface Features During Locomotion Using
Optic Flow.” Proceedings of the IEEE International Conference on
Robotics and Automation, Vol. 1, 2002, pp. 305-310.

[10] Lewis, M.A., and Simo, L.S. “Certain Principles of Biomorphic
Robots.” Autonomous Robots, Vol. 11, 2001, pp. 221-226.

[11] MacKenzie, D., Arkin, R.C., and Cameron, J. “Multiagent Mission
Specification and Execution.” Autonomous Robots, Vol. 4, No. 1,
Jan. 1997, pp. 29-57.

[12] Mataric, M.J., A Distributed Model for Mobile Robot Environment-
Learning and Navigation. Technical Report, MIT Artificial
Intelligence Laboratory, 1990.

[13] Mataric, “Navigation with a Rat Brain: A Neurobiologically-
Inspired Model for Robot Spatial Representation.” Proceedings of
the First International Conference on Simulation of Adaptive
Behavior, MIT Press, 1990, pp. 169-175.

[14] O’Keefe, J. and Nadel, L. The Hippocampus as a Cognitive Map.
Clarendon Press, Oxford, 1978.

[15] Redish, A.D., and Touretzky, D.S. “Cognitive Maps Beyond the
Hippocampus.” Hippocampus. Wiley-Liss, Inc, 1997, Vol. 7, pp.
15-35.

[16] Redish, A.D., and Touretzky, D.S. “The Role of the Hippocampus
in Solving the Morris Water Maze.” Natural Computation, Vol. 10,
1998, pp. 73-111.

[17] Samsonovich, A. and McNaughton, B.L. “Path Integration and
Cognitive Mapping in a Continuous Attractor Neural Network
Model.” The Journal of Neuroscience, Vol. 17, No. 15, 1997, pp.
5900-5920.

[18] Simmons, R. and Koenig, S. “Probabilistic Robot Navigation in
Partially Observable Environments.” Proceedings of the
International Joint Conference on Artificial Intelligence, 1995, pp.
1080-1087.

[19] Sutton, R.S. “Learning to Predict by the Methods of Temporal
Differences.” Machine Learning, 1988, Vol. 3, 1998, pp. 9-44.

[20] Thrun, S. “Probabilistic Algorithms in Robotics.” AI Magazine,
Vol. 21, No. 4, 2000, pp. 93-109.

[21] Thrun, S. “Robotic Mapping: A Survey.” Exploring Artificial
Intelligence in the New Millenium. Morgan Kaufmann, 2002.

[22] Thrun, S., Gutmann, J., Fox, D., Burgard, W., and B. Kuipers, B.
“Integrating Topological and Metric Maps for Mobile Robot
Navigation: A Statistical Approach.” Proceedings of the National
Conference on Artificial Intelligence, 1998.

[23] Tolman, E.C. “Cognitive Maps in Rats and Man.” Behavior and
Psychological Man. University of California Press, 1951.

[24] Tulving, E. “Episodic and Semantic Memory.” Organization of
Memory, Academic Press, 1972.

[25] Widrow, B. and Hoff, M.E., “Adaptive Switching Circuits.” 1960
WESCON Convention Record Part IV, 1960, pp. 96-104.

[26] Wood, E.R., Dudchenko, P.A., Robitsek, R.J., and Eichenbaum,
H.J. “Hippocampal Neurons Encode Information about Different
Types of Memory Episodes Occurring in the Same Location.”
Neuron, Vol. 27, No. 3, 2000, pp. 623-633.

