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Abstract 
This paper presents a method for a mobile robot to 

construct and localize relative to a “cognitive map”, where 
the cognitive map is assumed to be a representational 
structure that encodes both spatial and behavioral 
information. The localization is performed by applying a 
generic Bayes filter. The cognitive map was implemented 
within a behavior-based robotic system, providing a new 
behavior that allows the robot to anticipate future events 
using the cognitive map. One of the prominent advantages 
of this approach is elimination of the pose sensor usage 
(e.g., shaft encoder, compass, GPS, etc.), which is known 
for its limitations and proneness to various errors. A 
preliminary experiment was conducted in simulation and its 
promising results are discussed. 

1. Introduction 
Suppose that an office robot is about to be sent on 

errands to deliver some document from Office A to Office 
B. Office A and Office B are on different floors; hence, the 
robot has to take an elevator. A practical question in order 
to implement such a robotic task would be, “How should 
Office A, Office B, and the elevator, as well as the actions 
(e.g., taking the elevator) be represented within the robot?” 
One may suggest using a map. However, many 
conventional maps contain geometrical information only, 
and do not directly address the question of which actions 
should be organized at any given time. 

Of course, the actions required for navigation may be 
dealt separately from the map, treating them as a classic AI 
problem. In this paper, however, a means for incorporating 
both forms of knowledge (behavioral and spatial) into a 
single representational structure is investigated. In the 
remainder of this paper, this representational structure is 
referred to as a cognitive map, distinguishing it from a 
conventional map that only stores geometrical information. 

Kuipers [6] asked the questions of how the cognitive 
map should be designed if it was intended for use by a 
mobile robot. His suggestions included:  

• The cognitive map should be constructed from a 
number of different frames of references since fitting 
all the geometric information in a single (world 
coordinate) frame requires highly biased interpolations. 

• The knowledge of how to get from one point to another 
should be represented adequately in the cognitive map 
as it is vital to navigation.  

This led Kuipers and Byun to propose a mapping 
strategy that is based on a qualitative method [7]. By using 
a hill-climbing method, distinctive places in the 
environment are detected. These distinctive places are 
stored in a topological network and the linking relationships 
among them are described by a control strategy. Lee [8] 
implemented this method on a real robot. 

Similarly, Mataric proposed a topologically organized 
distributed map [12]. Each node in the topological network 
represents a landmark, and nodes can communicate among 
themselves through spreading activation. Moreover, when a 
goal object is given, each node can suggest a real-time 
procedure for the robot to navigate through the environment 
in order to move to the goal. This method is inspired by 
how hippocampus of a rat operates [13]. 

A probabilistic approach can be also incorporated into a 
topological map framework. For example, Koenig and 
Simmons [5] implemented a POMDP-based navigation 
architecture for a mobile robot. Given a predefined 
topological map, the system can estimate the current state 
while the robot navigates in an indoor environment using 
this probabilistic method, and it can suggest the most 
rewarding action to take in order to reach a designated goal. 
Koenig and Simmons’ system assumes that the topological 
map is given (since the emphasis is on the policy mapping). 
On the other hand, research by Thrun et al. [22] generates a 
map as it moves through the environment. It utilizes both 
topological and metric information. Although manually 
picked (instead of using the hill-climbing method), 
distinctive places were utilized to solve the correspondence 
problem of localization, and the Expectation Maximization 
(EM) method was used to generate a map of a large scale 
environment that contains a loop structure. 

The representation of the cognitive map in this paper 
alternatively utilizes episodic memories, where the concept 
was inspired by the recent biological findings [3][26] 
(explained briefly in Section 4). The goal of this paper, 
however, is not to implement or validate the fidelity of the 
underlying biological model, but rather it is an examination 
of how the past experiences of a robot can be stored in a 
meaningful way, so that the it can “localize” itself relative 
to its past experiences, anticipate a future event, and then 
select and coordinate behavioral actions appropriately to 
react to these anticipatory events.  

2. Cognitive Map for Anticipatory Behavior 
A model of a cognitive map that allows a robot to 

anticipate future events based on its past experience is 
described in this section.  



2.1. Cognitive Map That Encodes Episodes 
We chose MissionLab [11], a software tool that 

implements a behavior-based robotics system [1], as the 
target platform to implement the cognitive map model. 
Because of the tight coupling of perception and action that a 
behavior-based robotics system provides, constant streams 
of both sensor readings, denoted here as z, and behavioral 
motor commands, denoted as u, are considered to be always 
available. 

Suppose then that there is a way to detect novelty in the 
environment (discussed in Section 2.2). The instance when 
the robot detects this environmental novelty is considered 
as an “event”, denoted as ei (where the subscript i is some 
particular instance i), and ei contains spatial and behavioral 
information as well as a tracking number ni (the number of 
the events stored thus far in memory). In other words, ei is a 
set of the sensor readings zi, the motor command ui, and ni 
at some instance i: 

 }, ,{ iiii nuze =  (1) 

Notice that since the detection of novelty depends on the 
nature of the environment, ei is independent of time. 
However, suppose that a number of events have been 
detected, then the order of the event sequence, ei = (e1, e2, 
… , ei) is temporal, and not spatial (the superscript i is used 
here to refer to all the instances up to the instance i). 

This sequence of the events constitutes an episode, 
denoted here as E. In other words, E is an ordered i-tuple, 
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The robot records all of the experienced episodes in its 
episodic memory, and this collection of episodes is hereby 
defined as a cognitive map. In other words, the cognitive 
map C can be described as an ordered tuple: 
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where K is a total number of the episodes experienced by 
the robot. 

In summary, whenever the robot is active, it constantly 
builds a cognitive map by accumulating the experienced 
episodes in its memory, where the snapshots of the sensor 
readings and the motor commands whenever novelty in the 
environment is detected are stored in the episodic memory. 
“When does an episode begin?” and “when does it end?” 
are questions that should be fully investigated. Tentatively, 
however, it is defined that a new episode begins when the 
robot starts a new predefined mission (a behavioral 
sequence described with a finite state acceptor), and ends 
when that mission is terminated.  

2.2. Event Detection 
As mentioned above, a snapshot of the sensor readings 

and behavioral motor commands are recorded whenever 
novelty in the environment is detected, and here this 
snapshot is called an event. The robot is designed to register 
such event based on our assumption that when the 
environment is novel, there is a discontinuity between the 
current environment and the environment just before, and 

thus it is worth remembering the characteristics of this new 
environment for the future use. 

The information about the environment can only be 
perceived by the robot’s available sensors. Thus, in order to 
detect the novelty (unpredictable characteristics) of the 
environment, the robot has to constantly predict the set of 
incoming sensor readings; whenever the robot’s prediction 
is incorrect, the novelty of the environment (i.e., event) is 
considered to be detected. The novelty feature should only 
depend on the characteristics presented by the environment 
itself. In other words, the robot should detect exactly same 
novelty features in the environment whether it is moving 
fast or slow. 

The prediction of the sensor readings is implemented 
here using Sutton’s Temporal Differencing or TD(λ) [19]. 
While this method is usually employed to predict the 
rewards, here, it is used to predict each of the sensor 
readings (i.e., the perceivable environment). 

Suppose that the robot is equipped with two types of 
typical sensors: an array of sonar sensors and a CCD 
camera. The array of the sonar sensors consists of N 
transducers mounted evenly on the circumference of the 
robot, and thus it provides N readings (distance to a closest 
object) per full-scan, denoted as S1, S2, … , SN. The output 
of the camera is connected to Newton Cognachrome board 
that provides detection of color blobs. The 180-degree 
camera view is divided into M segments in azimuth, and 
thus it provides M readings (distance to a closest color 
object) per instance, denoted as C1, C2, … , CM. Let us also 
suppose that the robot executes a motor command u, which 
is a behavioral output described with a 2-D velocity vector 
〈ud, uθ〉; ud is the magnitude and uθ is the direction of the 
velocity (explained further in Section 2.5). 

The schematic representation of the sensor prediction is 
shown in Figure 1. Here, all of the variables above are 
combined as a vector xt (i.e., xt = 〈S1, S2, … , SN, C1, C2, … , 
CM, ud, uθ〉) after being normalized, and all of the elements 
in the vector contribute to predict each of the sensor 
readings for the next time cycle. For example, prediction of 
the next sonar reading for S1, denoted as S′1t+1, is done by 
computing a linear function of weights wS1t and vector xt:  
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While this computational method resembles a 
conventional neural network, it should be noted that the 
“network” used here does not have hidden layers, and the 
output units do not have any activation function (such as a 
sigmoid function, a constant threshold, etc.) as neither of 
them were implemented in the original Temporal 
Differencing method [19]. 

At each time cycle, the weights are updated using the 
TD(λ) update rule. While TD(λ) is typically used to predict 
a delayed reward, since the stream of the sensor readings 
are assumed to be always available TD(λ) is employed as a 
single-step prediction. For example, at time t, the increment 
of the weights for the sonar reading S1 is computed by: 
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Here α is a learning rate, λk is an exponential weighting 
factor, and the gradient ∇wS′1t is a partial derivatives of S′1t 
with respect to the weights. Because S′1t is a linear function 
of ws1 and vector xt (Equation 2), the value of the gradient is 
simply xt. Thus, Equation 3 can be rewritten as:  
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Figure 1: Prediction of sensor readings. 

At each time cycle, a root-mean-square (RMS) of the 
errors between the predicted sensor readings (based on the 
previous time cycle) and the actual sensor readings are 
computed, and it is used as guidance for creating a new 
event ei. For example, the graph in Figure 2 shows the RMS 
prediction error when a robot moved from one end of a 
corridor (left in the figure) to the other end (in simulation). 
The prediction error generates number of spikes. A peak of 
each spike is, here, considered as occurrence of a new 
event. As it can be observed from the figure, the spikes (or 
events) seem to capture salient features for the robot to 
navigate in the environment, such as doors and the corridor 
junction. 
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Figure 2: Sensor prediction error and the environment (simulation). The 
peak of each spike is considered as occurrence of a new event. 

In terms of the event detection, Lewis [9] and Lewis and 
Simo [10] have applied a similar approach to their biped 
robots. In those cases, visual information (optic flow [9] 
and stereoscopic data [10]), along with joint angles and a 
gait phase, was fed into a neural network. The weights were 
updated by applying the Widrow-Hoff rule [25]. The robot 
was able to detect “novelty” in the environment while 
walking through it. It should be noted that the TD(λ) update 
rule is based on the Widrow-Hoff rule; it was extended in 
order to implement incremental learning of weights and 
multi-step prediction [19]. 

2.3. Localization 
In robotics, solving the problem of building a map of an 

unknown environment while simultaneously identifying its 
location with respect to the map (SLAM problem) is 
considered to be one of the most challenging tasks, and it 
has been widely investigated in past years [21]. One of the 
reasons that makes this problem nontrivial comes from the 
nature of any physically realized robot; it has to deal with 
uncertainties produced by actuators, sensors, interpretation 
of the sensor data, accuracy of the map, initial position of 
the robot, and the dynamic nature of the real world [18]. As 
Thrun reports in his survey paper [21], all of the successful 
approaches to this localization and/or mapping problem 
today employ probabilities, which are some forms or 
extensions of the Bayes filer. While such probabilistic 
approach usually provides a means for a robot to localize 
itself relative to a conventional (metric) map, here, we 
employ the generic Bayes filter for the robot to localize 
itself relative to the cognitive map. 

Given a sequence of sensor readings zi and the 
behavioral motor commands ui, the posterior probability of 
the robot being at the same event ex in the past can be 
calculated by the generic Bayes filter below (Equation 8). 
As explained in [20] by Thrun, the equation was derived by 
applying the Bayes rule (Equation 5), the Markov 
assumptions twice (Equations 6 and 8), and the law of the 
total probability (Equation 7) to the posterior.  
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Here, η is a scale (or normalization) factor that ensures the 
sum of all the possible posteriors becomes 1. 

Recall that ex = {zx, ux, nx} (Equation 1). )|( xi ezp  in 
Equation 8 is called the perceptual model and is estimated 
by straightforward comparison of incoming sensor reading 
zi and the stored sensor reading zx. The difference between 
each element of corresponding sensor readings in the 
vectors is root-mean-squared, and its negative value is fed 
into the exponent function. In other words, 
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ηp is the normalization factor of the perceptual model. The 
perceptual model suggests how close the current 
environment is to the one in the immediate past. 

On the other hand, the motion model ),|( 1−xix euep  in 
Equation 8 is estimated by the following rule: 
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Here, ηm is a normalization factor of the motion model, and 
λd is an exponential weighting factor where λ is some 
constant and d is distance between ex and ex-1 in the episodic 
memory (i.e., d = nx – nx-1). Γ is the total number of the 
events stored in the episode. If the motor commands 
perfectly match and ex is stored as the next event of ex-1 in 
the episode, the probability will be at its maximum value. 
On the other hand, if the motor commands are far different, 
the distribution of the probability becomes uniform. 

It is assumed here that the criterion for the robot being 
able to localize to the past event depends on the distribution 
of the posterior probability ),|( ii

x uzep . For example, if the 
posterior probability is distributed around the average value 
(as shown in Figure 3), no localization can be made. On the 
other hand, if the distribution contains distinct peaks, 
localization can be attained (Figure 4). The criterion for 
determining whether the distribution contains these distinct 
peaks is evaluated by a threshold Θ which is calculated by: 
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where κ is a constant value, and Γ is a number of events in 
the episode. If the highest peak in the posterior distribution 
is above Θ, then it is considered that the localization is 
made. In other words, the robot would localize itself 
relative to the stored event elocalized by solving the following 
equation: 
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Figure 3: A case when localization cannot be achieved. As the posterior 
probability distributes around the average value, and none of the peaks 
exceeds the threshold value, the robot cannot localize relative to the past 
events. 
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Figure 4: A case when localization is attained. As one of the peaks exceeds 
the threshold value, the robot can localize relative to the event (e146) that 
corresponds to the highest peak of the posterior probability distribution. 

2.4. Anticipatory Robot Behavior 
In order to incorporate the episodic memory within the 

behavior-based architecture, a new behavioral assemblage, 
called Search X , was created. As shown in Figure 5, this 
behavior bears some resemblance to Brooks’ subsumption 
architecture [2]. The top behavior is ute-To XTraject-Ro , 
which takes the a cognitive map (set of episodes) as its 
input. If the goal object X is found in a stored event, say 
egoal, and if there exists a “path” between egoal and the 
currently localized event elocalized, the ute-To XTraject-Ro  
will output a vector ulocalized+1 that is the motor command of 
the event stored immediately after elocalized. Here, the criteria 
of a “path” existing are (1) the goal event egoal and the 
current localized event ex are in the same episode E (i.e., 
〈egoal, elocalized〉 ∈ E), and (2) the target event chronologically 
comes after the current localized event (i.e., ngoal > nlocalized). 
The question of how to connect different episodes with the 
path has not yet been investigated. If the robot could not be 
localized, or if a path between egoal and elocalized could not be 
established, ute-To XTraject-Ro  outputs a zero vector. 

Traject-Path-To X

Explore

Avoid-Static-Obstacles

Priority-Based 
Coordination

Current Heading

Cooperative 
Coordination

Σ

Search X Behavior

Cognitive Map

Obstacle

Closest Object

Traject-Path-To X

Explore

Avoid-Static-Obstacles

Priority-Based 
Coordination

Current Heading

Cooperative 
Coordination

Σ

Search X Behavior

Cognitive Map

Obstacle

Closest Object

 
Figure 5: Search X behavioral assemblage. 

This ute-To XTraject-Ro  behavior relates to Brooks’ 
Level 3 (Build Maps) and, as in his model, this behavior 
suppresses the output of the one below, Explore, through a 
priority-based behavior coordinator. The assemblage of 
Explore is shown in Figure 6. It was designed to explore an 
indoor environment by following walls by detecting the 
closest object. The assemblage of Explore consists of 
Move-Ahead, Move-To-Object, Swirl-Static-Object, and 
Avoid-Static-Object primitive schemas, which are explained 
in [1]. These primitive behaviors are coordinated by a 
cooperative coordinator vector summation mechanism. 
While ute-To XTraject-Ro  and Explore behaviors are 
coordinated with a priority-based arbiter, its output is 
computed by a cooperative coordinator with the Avoid-
Static-Obstacles schema (Brooks’ model, on the other hand, 



coordinates this level with the priority-based arbiter as 
well). The effectiveness of the ute-To XTraject-Ro  
component in Search X  behavior is sought in a preliminary 
experiment (Section 3).  
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Figure 6: Explore behavioral assemblage 

2.5. Reference Frames 
At this point, it should be noted that our method never 

requires the use of a pose sensor (e.g., shaft encoder, 
compass, GPS, etc.). In fact, none of the data used in the 
above computation is converted into the world (or absolute) 
coordinate system. The only global representation being 
used here is the tracking number n (Equation 1). This is 
deliberately done so based on Kuipers’ suggestion [6] that 
fitting all the geometric information in a single frame would 
require highly biased interpolations. 

In our system, the sensor reading z is captured in the 
robot-centered (or egocentric) coordinate system, and it is 
used to: (1) perform localization (i.e., to compute the 
perceptual model in Equation 8); and (2) compute the 
output of the Explore and Avoid-Static-Obstacles behaviors. 
Neither of the tasks requires the world coordinate system. 
On the other hand, the motor command u is used to: (1) 
compute the motion model; and (2) produce the output for 

ute-To XTraject-Ro . While neither of these tasks also 
requires the world coordinate system, we investigated two 
different approaches to represent u in the episodic memory. 
One obvious approach is to use the robot’s egocentric 
coordinate system as is the case for the sensor reading z 
(i.e., uθ is zero when it is pointing towards the robot’s 
heading). Another approach is to use an environment-
specific (or object-centric) coordinate system since the 
geometrical relationships between the robot and 
environmental objects are crucial to the behavior-based 
robotics navigation. For example, the robot may be able to 
treat a distinguishable landmark in the environment as a 
reference point, and uθ may be measured with respect to the 
direction of the reference point. 

For some cases, however, a distinguishable landmark 
may not be easily extracted from the environment (e.g., 
dark corridor, etc.). Alternatively, we attempted to apply the 
concept of principal axes in physics to identify a unique 
direction relative to the environment given an array of sonar 
readings. Consider an egocentric 3D Cartesian system. The 
properties of the inertia matrix with respect to its principal 
axis ω is described by the following equation: 
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Ixx, Iyy, and Izz are called moments of inertia, Ixy, Iyx, Iyz, Izx, 
Izy are called products of inertia, and I is a principal moment 
of inertia of the system. If the system is rotated along with 
ω, the products of inertia vanish. Solving for ω is in fact 
equivalent to solving of an eigenvector problem [4]. In 
other words, as ω is a characteristic vector of the inertia 
matrix, by treating the end points of the sonar readings as 
“virtual particles”, we can consider the direction of ω as a 
unique direction with respect to the formation of the 
environmental objects detected by the sonar sensors. The 
angle of principal axis ω with respect to the robot’s heading 
(i.e., x-axis) is denoted here as ϕ, and its value can be 
obtained by the calculations below. 

Suppose N virtual particles (i.e., N sonar readings) have 
weight that sums up to 1 as a collection, and they are 
distributed only on the x-y plane, the moments and products 
of the inertia can be computed by: 
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For convenience, let us allow the following denotations: 
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By substituting the values above, Equation 10 can be now 
rewritten as: 
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Note that the determinant of the left matrix is zero. Thus, 
we are able to compute the three possible principal 
moments of inertia as: 
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The angle ϕ  can be calculated by just using I1 and I2 as: 
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Note that here ϕ has two possible values corresponding to I1 
and I2. We take whichever is close to the robot’s heading. 
The effectiveness of the two different coordinate systems 
(i.e., egocentric vs. object-centric) are tested in the next 
section. 

3. Experiment 
In order to verify whether the anticipatory behavior 

explained above could actually contribute to improve the 
performance of a navigational task, a simple simulation 
experiment was prepared. More specifically, in this 
experiment, the effectiveness of the ute-To XTraject-Ro  
component in Search X  behavior was investigated by 
comparing two versions of the behavior: one with 

ute-To XTraject-Ro  intact and one without it. Furthermore, 
as discussed in Section 2.5, the effectiveness of 
representing the motor command u in the egocentric 
coordinated system was compared against the one 
represented in the object-centric coordinate system. 

The experiment was constructed to test whether the 
simulated robot can follow a path from a current position to 
a goal object based on its previous training experience. The 
size of the simulated robot was configured as 0.3 meters; an 
array of simulated sonar sensors consisted of 16 transducers 
mounted evenly on the circumference of the robot, and the 
180-degree simulated camera view was divided into 5 
segments in azimuth, providing 5 simulated Cognachrome 
readings. As shown in Figure 7, a simple indoor 
environment (T-maze), having 1.2-meter corridor width, 
was prepared for the experiment. The performance of the 
robot behavior was measured by counting the number of 
correct turns at the corridor junction. The robot always 
started around StartPlace, and the red object (goal object) 
was placed alternatively between the left and right 
corridors. For each trial, using predefined waypoints, two 
training runs were given to the robot. One training run 
brings the robot to make a left turn and leads it to the left 
corridor. The other training drives the robot to the right 
corridor. During the two training runs, the goal object was 
placed only at one side of the corridor, and, thus, the robot 
observed the object only once before the test. The order of 
the training runs was always alternated. A total of 64 tests 
were conducted for each condition. For each test, the run 
was terminated when the robot reached the end of the 
corridor (either the left or the right side). 

In this experiment, the following constants were used 
for the event detection: α = 0.001 and λ = 0.1 (Equation 4); 
κ = 0.1 (Equation 9). In order to simulate the real world 
conditions, during both training and actual testing runs, 
artificial noise was added to the sensor readings and the 
actuator output, and the initial position and heading of the 
robot was slightly varied. Different values for the artificial 
noise and the offset were chosen at each run, so that their 
distribution would be normal (Gaussian) throughout the 

experiment. More specifically, with the 95%-confidence: 
(1) the value of the artificial noise would be picked within 
10% of the actual sensor reading or actuator output; (2) the 
offset of the initial position and heading would range within 
0.1 meter and 10°, respectively. 
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Figure 7: T-maze. 

The results are shown in Figure 8. Search X  with 
ute-To XTraject-Ro  behavior (storing egocentric motor 

command u) made considerably more correct turns (about 
80% mean) when compared to the behavior without  

ute-To XTraject-Ro , which only 50% of the time correctly 
choose the right turns. One-way ANOVA (computed by 
STATISTICA v6.0, StatSoft, Inc.) shows that the difference 
was statistically significant (F1,126 = 16.869, p = 0.001). On 
the other hand, there was no difference between the 
Search X  behavior storing the egocentric motor commands 
and the one storing object-centric motor commands (F1,126 = 
0.000, p = 1.000).  

 
Figure 8: Mean plots of the successful turns. The narrow vertical bars 
around the mean values denote 95% confidence intervals. 

4. Biological Basis 
As mentioned earlier, the goal of this paper is not to 

validate existing biological models by implementing them 
on robots. However, biological findings did significantly 
influence the designed of the proposed system above. The 
relevant findings are briefly explained here. 

The term “cognitive map” was first coined by Tolman 
[23] in the late 1940’s to hypothesize his idea of a rat 
learning spatial information during a food-seeking task, 
which contradicted the popular psychological theory of 
Behaviorism at that time, where it was argued that the rat 
only learns through stimulus-response connectivity. A 
prominent study by O’Keefe and Nadel [14] suggested that 

without Traject-Path-To X with Traject-Path-To X 
(egocentric u) 

with Traject-Path-To X 
(object-centric u) 



the cognitive map is constructed in the hippocampus of the 
brain. One of the evidence cited was the notion of place 
cells; the place cells excite whenever the animal is in a 
familiar environment. 

How the hippocampus recognizes the familiar 
environment is still debated among scientists. One school 
advocates that the environment is projected to a single map 
framework, and path-integration is employed by the animal 
for localizing itself in the map. In this context, high fidelity 
neurophysiological models of the hippocampus have been 
proposed by Samsonovich and McNaughton [17] and 
Redish and Touretzky [15]. For instance, a simulated rat 
implementing Redish and Touretzky’s model was even able 
to solve the Morris water maze problem [16]. However, as 
their emphasis was on validating the fidelities of their 
models, the question of how these models would help 
navigating an actual robot has not been fully addressed yet. 
On the other hand, another school (e.g., Eichenbaum et al. 
[3] and Wood et al. [26]) suggests that the hippocampus 
stores episodes or sequences of events, each of which 
consists of both spatial and non-spatial information. The 
non-spatial information includes behaviors. As discussed in 
Section 1, this latter argument agrees with the points being 
made by Kuipers [6] for the robotic cognitive map. 
Therefore an episodic memory based cognitive map has 
been implemented here. The term “episodic memory” is 
first coined by Tulving [24] in order to distinguish a 
chronologically ordered memory from a semantic memory. 

5. Conclusions and Future Work 
In this paper, a method of how to construct and localize 

relative to a cognitive map within a behavior-based robotic 
framework was presented. One of the prominent advantages 
of this approach is elimination of the pose sensor usage 
(e.g., shaft encoder, compass, GPS, etc.), which is known 
for its limitations and proneness to various errors. The 
preliminary results from the simulation experiment showed 
that the proposed cognitive map seems to contribute to the 
ability of a robot to anticipate future events for navigation. 

 However, farther analysis of the system needs to be 
conducted. For example, the system must be tested on a real 
robot (rather than simulation). The question of 
computational complexity has to also be addressed, as this 
method currently computes full posteriors for the entire 
episode. It has been observed that the activity of the robot 
slows down drastically as the number of the accumulated 
events increases. Another issue that needs to be investigated 
is whether the current clustering of events (i.e., the event 
detection with TD(λ)) is adequate. This question also 
involves how the threshold values should be chosen 
meaningfully. As mentioned earlier, the questions of just 
when an episode starts, and when does it end, have to be 
resolved as well. Incidentally, the current system only 
allows for searching of a goal object within a single 
episode. The question of how to connect two different 
episodes should be also investigated.  
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