
Usability Evaluation of an Automated Mission Repair
Mechanism for Mobile Robot Mission Specification

 Lilia Moshkina Yoichiro Endo Ronald C. Arkin

Georgia Tech Mobile Robot Lab
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280, USA

{lilia, endo, arkin}@cc.gatech.edu

ABSTRACT

This paper describes a usability study designed to assess ease of
use, user satisfaction, and performance of a mobile robot mission
specification system. The software under consideration,
MissionLab, allows users to specify a robot mission as well as
compile it, execute it, and control the robot in real-time. In this
work, a new automated mission repair mechanism that aids users
in correcting faulty missions was added to the system. This
mechanism was compared to an older version in order to better
inform the development process, and set a direction for future
improvements in usability.

Categories and Subject Descriptors

 H.5.2 [Information Interfaces and Presentation]: User
Interfaces – evaluation/methodology, graphical user

interfaces.

General Terms
Human Factors.

Keywords
Human-robot interaction, usability study, mission specification.

1. INTRODUCTION
In military and other critical applications, it is vital for users with
little or no robotic background to quickly and accurately create
and execute mobile robot missions, and the importance of
empirically evaluating the interfaces that support this task cannot
be underestimated [1, 2]. For example, researchers have
conducted usability studies in critical robotic applications such as
in the area of Search and Rescue [3, 4] and on teleoperation in
nuclear environments [5-7], dealing with run-time interaction
with the robots.

Throughout the development of MissionLab, which is a robot
mission specification system designed to support planning and
execution of robot missions using a graphical user interface
(GUI), we have been also conducting a series of human-subject
studies in order to both evaluate the current state of the software
and to inform its further design and development [8-11].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
HRI'06, March 2–3 , 2006, Salt Lake City, Utah, USA.
Copyright 2006 ACM 1-59593-294-1/06/0003...$5.00.

Over the past few years, the user interface of MissionLab has
steadily progressed from the lower level manual mission
specification system via Finite State Acceptor (FSA) [12] to
higher-level case-based reasoning mission retrieval system. The
previous usability study [10] compared the lower-level approach
with the higher-level one, and it was found that the automated
mission retrieval version of the user interface reduced the time
required to plan a robot mission and increased the accuracy of the
resulting mission plans for complex missions, as compared to the
earlier, lower-level interface. Given the encouraging results, we
continued abstracting low-level details, moving from the mission
creation to repair of faulty missions.

In our latest usability study we assessed the newest addition to
MissionLab, a feature that assists users in repairing faulty
missions by abstracting low-level details and making automated
suggestions based on user input. The interface was evaluated
according to its effectiveness, efficiency and user satisfaction –
measures suggested for human-robot interaction research [4]. The
effectiveness was measured in terms of the accuracy of competed
missions and the number of missions completed successfully,
efficiency in terms of the time taken to create and modify each
mission, and user satisfaction was divided into user satisfaction
proper and ease of use.

An overview of MissionLab including its new Mission Repair
feature is presented in the next section. The description of the
latest usability study conducted on the Mission Repair feature is
described in Section 2. Finally, conclusions and future work are
presented in Section 3.

2. MISSIONLAB
MissionLab [13] is a software package that allows a user to create
an autonomous mobile robot mission (sequence of tasks) as well
as compile it, execute it, and control the robot during the run-
time. Previously [10], we introduced the high-level user
assistance interface in the MissionLab that was developed to ease
the mission specification process by retrieving previously saved
successful missions. The Case-Based Reasoning (CBR) Wizard
described here is an extension of the interface. The most
prominent improvement over the previous version is the addition
of a new feature that could help users repair faulty missions. In
this section, we first review the basics of the CBR Wizard, and
then describe the repair capability.

2.1 CBR Wizard Basics
The diagram in Figure 1 illustrates a CBR cycle that was adapted
from [14] for robotic mission specification. In the pre-mission
phase, the CBR Wizard first retrieves ballpark solutions (cases)
from its memory that match the requirements and preferences
(constraints) specified by the user. Here, the constraints may be a
type of tasks to be performed (Hostage Monitoring, Explosive

Ordnance Disposal, etc.) or whether the mission should be
conducted indoor or outdoor. Once the ballpark solutions are
retrieved, the CBR Wizard then adapts them to fit the current
situation by, for example, matching the number of robots or
adjusting the coordinates of target points.

In terms of MissionLab system, the CBR Wizard involves three
UNIX processes during the pre-mission phase: namely, mlab,
CBRServer, and CfgEdit (Figure 2). mlab is where constraints of a
new mission are specified by the user using its map-based
interface. CBRServer serves as database for mission templates
(cases) as well as a planner that customizes a mission for the
current specification. CfgEdit is a user interface that can display
the mission graphically and allows the user to modify it manually
if necessary.

Retrieve

Propose Ballpark Solution

Adapt

Evaluate

Store

Execute Execution

Pre-Mission

Post-Execution

Retrieve

Propose Ballpark Solution

Adapt

Evaluate

Store

Execute Execution

Pre-Mission

Post-Execution

Figure 1: CBR Cycle for Robotic Mission Specification
(adapted from [14])

Figure 2 Three processes of the CBR Wizard in MissionLab: namely,
mlab, CBRServer, and CfgEdit.

The diagram in Figure 3 depicts three modules inside CBRServer
involved in the pre-mission phase. (The shaded area is the process
of CBRServer.) After the constraints/preferences are specified by

the user, they are sent down to Memory Manager where a number
of mission templates are stored. Here, the mission templates are
abstract representations of missions that are saved previously,
whether by experts or users. Mission Manager utilizes standard
decision trees [15] to manage the storage of the mission templates
(cases). The constraints specified by the user are thus used as
indexes to retrieve the mission templates from the trees. Once
relevant mission templates are retrieved, Planner assembles them
and customizes their parameters to make them fit with the current
specification of the mission. At this point, the missions are still
coded with abstract representations; Domain Manager then
translates those into the language (Configuration Description
Language [13]) that CfgEdit operates with.

CfgEdit mlab

User

Planner

Memory
Manager

Domain
Manager

ballpark
solutions

constraints

constraints

mission

plan

mission
plan

constraints

constraints CBRServer

MissionLab System

CfgEdit mlab

User

Planner

Memory
Manager

Domain
Manager

ballpark
solutions

constraints

constraints

mission

plan

mission
plan

constraints

constraints CBRServer

MissionLab System

Figure 3: Pre-Mission Phase (Shaded area represents CBRServer)

Note that depending on the constraints and the number of relevant
cases stored in the memory, multiple missions may be suggested
by CBRServer. To help users decide what missions to load into
CfgEdit, the CBR Wizard provides a ranking associated with each
loadable mission. As shown in Figure 4, the ranking is quantified
with five stars. If the retrieved mission is ranked with five stars, it
is considered to be best suited for the desired mission. The
ranking may be degraded if: a) The mission does not exactly
match the constraints specified by the user; and/or b) executing
this mission produced an unsuccessful result, which was marked
by the CBR Wizard based on the user’s feedback in the previous
cycle.

Figure 4: Suitability rating of a mission (3 out of 5
stars)

2.2 Repairing Faulty Missions
The subject of this usability study is a newly integrated feature of
the CBR Wizard that allows the user to repair faulty missions
during the post-execution phase. Here, faulty mission means that
execution of this mission did not end with successful results. The
CBR Wizard attempts to repair faulty missions with two steps: 1)
Identifying the offending part of the faulty mission; and 2)
retrieving and applying a repair rule to fix the offending part of
the mission. It should be noted, however, that different users may
have different intentions upon specifying a mission. Determining
whether a mission is successful or unsuccessful is largely up to
the user, and fully automating this process can be formidable.
Hence, the CBR Wizard attempts to accomplish the task by
engaging in a dialogue with the user.

First, identification of the offending part in a faulty mission is
accomplished via the Playback Interface of mlab (Figure 5). After
loading a log file that was recorded during the execution of the
mission, the user can play back the mission by using the interface
similar to that of a VCR or CD player; hence, the user can observe
the trajectory of the robot during the mission. The user is then
asked by the CBR Wizard to stop the robot at the place where the
mission was considered to have failed. By parsing the logged
information for that instance of the mission, the CBR Wizard
identifies the state (i.e., offending part of the mission) that robot
was in when the failure occurred. Once the CBR Wizard identifies
the offending part of the mission, the mission is sent back to
Planner of CBRServer for its repair.

Figure 5: Playback Interface

The next step is to retrieve a repair plan that is a set of rules to fix
the offending part of the faulty mission. As shown in Figure 6, the
exact infrastructure used in the mission retrieval can be also
utilized for this process. Before retrieving the repair plan, the
CBR Wizard first asks the user a few predefined questions that
can categorize the nature of the failure. The answers to the
questions are then itemized as a set of constraints to retrieve the
repair plan that is stored within the decision trees (different from
the ones for the mission templates) in Memory Manager.
Currently, the CBR Wizard supports three types of repair plans:
1) parametric adjustment; 2) structural modification; and 3)
functional modification. More specifically, the parametric
adjustment is designed to repair a faulty waypoint-following
mission (e.g., reconnaissance mission) when at least one waypoint
was placed incorrectly. The repair plan attempts to fix the mission
by adjusting the coordinates of the waypoint. The structural
modification is for the case when a robot failed to take some
necessary action during the execution. It attempts to resolve the
problem by inserting a new state that commands the robot to take
the necessary action. The functional modification is designed to
help the case when a robot performed a wrong action at some
point during the execution. The repair plan for this case is to
replace the offending state of the mission with a correct one.

CfgEdit mlab

User

Planner

Memory
Manager

Domain
Manager

repair rule

user feedback

fixed mission

plan

faulty

mission

plan

cause of the failure
[Playback]

cause of

the failure

fixed

mission

plan

MissionLab System

CBRServer

cause of the failure

CfgEdit mlab

User

Planner

Memory
Manager

Domain
Manager

repair rule

user feedback

fixed mission

plan

faulty

mission

plan

cause of the failure
[Playback]

cause of

the failure

fixed

mission

plan

MissionLab System

CBRServer

cause of the failure

Figure 6: Repairing of a faulty mission

Once an appropriate repair rule was found, Planner applies it to
the offending part of the mission, and Domain Manager translates
it into CDL, so that CfgEdit can load the newly fixed mission.

3. USABILITY STUDY
 This usability study was designed to assess the feasibility of
the new Mission Repair feature of the CBR Wizard described
above. In this section, both preparation of the usability study, and
the results of the study are presented.

3.1 Experiment Design
The study followed a mixed 2x3 design: the factor in the between-
subject condition is the presence of the Mission Repair
mechanism, and the factor in the within-subject condition is the
nature of the modification task. The between-subject factor will
be referred to as “Repair Method” in the remainder of the paper,
and the within-subject factor will be referred to as “Task”. The
participants were divided into two groups (15 subjects each),
according to the Repair Method. For the first group (No-Repair
Condition, Group A), the experiments were carried out using the
CBR Wizard without the Mission Repair feature (control
condition). The second group (Repair Condition, Group B) used
the Mission Repair feature.

The following three modification task types were tested in the
within-subject design: 1) parametric adjustment; 2) structural
modification; 3) functional modification. In the parametric
adjustment test (referred to as “Waypoint Navigation”, or WP,
mission further), the users were presented with a task requiring
them to reroute a waypoint (a.k.a., adjust waypoint task
parameters) in order to direct the robot on an appropriate path. In
particular, enemy robots were introduced during run-time which
prevented the robot from following the initially specified path.
The user had to modify the existing path so that the robot would
reach its final destination without being exposed to enemy robots.
In the structural modification test (referred to as “Biohazard”, or
BH, mission further) the users were presented with a task that
would require them to find and add a missing state to the mission
plan (a.k.a., modify the structure of the FSA). For this test, the
users were instructed to guide a single robot into a potentially
contaminated building and perform a biohazard survey task.
Finally, in the functional modification test (referred to as
“Hostage Monitoring”, or HM, mission further) the users were
presented with a task that required them to find an incorrectly
used task and replace it with the correct one (a.k.a., modify the
function of one of the tasks). For this test, the users were
instructed to guide a single robot into a hostage monitoring site

and perform a hostage monitoring task. In all the tests in the
Repair condition the users were instructed to employ the Mission
Repair feature of the software to modify the faulty missions;
however, the functionality of modifying the FSA manually was
available to them as well.

The within-subject tests were designed in order to generalize the
results of the study across a number of tasks, as well as to identify
any differences between them. The within-subject runs were
counter-balanced to minimize practice effects. One-way ANOVA
was performed on all of the measures by the order the tests were
presented to participants, and did not yield any significant results,
suggesting that the test order was counterbalanced successfully.

3.2 Hypotheses
The following form the hypotheses of expected usability
improvements, and were used to guide the experiment to measure
quantitatively just how much, if at all, the Mission Repair feature
improves the usability of MissionLab.

Hypothesis 1: The CBR Wizard with Mission Repair feature
reduces the time required to create a suitable mission plan,
including the necessary modifications to failed plans.

Hypothesis 2: The CBR Wizard with Mission Repair feature

increases the accuracy of mission plans created by users.

Hypothesis 3: Users find it easier to create and modify a mission
plan using the CBR Wizard with Mission Repair feature than

without such a feature.

Hypothesis 4: The level of user satisfaction with the Mission
Repair feature is higher than without it.

We were also hypothesizing that these statements will hold true
for each type of modification task, and that there will be no
differences in the within-subject factor.

3.3 Study Setup and Procedure
The experimental equipment was set up in a quiet small office. A
Dell Precision 610 desktop computer with a separate monitor,
keyboard, and three-button mouse was used by the subjects. A
version of MissionLab, capable of both enabling and disabling the
Mission Repair feature, was installed on the computer. In order to
ease the data analysis, all the subject logs were stored
systematically in separate directories, indexed by the date, subject
number, and type of tests; and the computer screen output during
the tests was captured on videotape.

Each subject participated in a single session lasting up to five
hours. They were first given four computer-based tutorials
explaining how to create and repair simulated robot missions
using the MissionLab software on the Dell desktop; the last of the
tutorials was hands-off, where they were given an opportunity to
create a mission without the administrators’ help, and then were
explained the correct solution. After a mandatory 10-minute break
the subjects were given three tests in which they were asked to
create and modify (if needed) simulated robot missions (the order
was counterbalanced). There were 5-10 minute breaks after the
2nd and 4th tutorials, as well as mandatory 10-minute breaks
between each of the tests. Each test was over either when a
successful mission was produced (the users were presented with
the success criteria for each test) or at the end of 45 minutes. The
45-minute period was based on the average time required by the
subjects creating similar missions in the previous TMR usability
study [8].

In addition to the tutorials and the tests, the subjects were also
asked to fill out two questionnaires: demographics and post.
Demographics questionnaire was designed to acquire the
background information of the subject, to include gender, and
technical, military, and computer experience; it was filled out at
the beginning of the session. Post questionnaire was designed to
obtain opinions on how easy it was to create and modify mission
plans using MissionLab as well as to elicit the level of user
satisfaction. This questionnaire was given after all the tests were
completed.

3.4 Measures
Total actual duration of each test was used as a measure to
evaluate Hypothesis 1. To more accurately approximate the time
the users were engaged in the actual mission creation and
modification activity, the total actual duration was calculated by
subtracting compilation and simulation time based on the time
stamps of various keyboard and mouse events recorded during the
tests.

The accuracy of successful mission plans created by the subjects
(after modification) served as a measure to evaluate Hypothesis 2.
The criteria of “success” were based on various mission-specific
aspects (e.g., “the robot reached the designated area”, “the robot
found the biohazard”, etc.), clearly described in the instructions
for each test. The accuracy was measured as a percentage of the
specific aspects completed per mission; both Hostage Monitoring
and Biohazard mission included 7 such aspects, and Waypoint
Navigation mission had 3 aspects. As a significant portion of
missions was competed successfully (a.k.a., the accuracy equalled
100%), we also computed the percentage of missions completed
successfully per test per between-subject condition, referred to
later as “Performance”.

In order to analyse Hypotheses 3 and 4, the subjects were asked to
fill out the post-questionnaire. There were 10 questions total,
equally divided between those assessing ease of use and
satisfaction. Five out of 10 questions assessed the Ease of Use,
and were as follows:

1. It was easy to create a robot mission using
MissionLab;

2. If I wasn’t pleased with the outcome, it was easy to
modify the mission;

3. Learning to use MissionLab was easy;

4. The MissionLab interface was easy to follow;

5. Overall, I found it easy to use MissionLab

The questions designed to assess user Satisfaction were as
follows:

6. Missionlab is a satisfactory tool for creating robot
missions;

7. Missionlab is a satisfactory tool to repair faulty
missions;

8. I was satisfied with the level of assistance that
MissionLab provided;

9. The final mission was completed to my satisfaction;

10. Overall, I was pleased with my MissionLab
experience.

All of the questions, with the exception of questions 5 and 10
(used to assess the overall ease of use and satisfaction), were

subdivided into four subparts: one per each of the tests, and
overall. Each of the subquestions was presented as a 5-point
likert-type scale, with “Strongly Agree” anchored at 1, and
“Strongly Disagree” anchored at 5. Figure 7 shows an example of
such a question with subquestions:

It was easy to create a robot mission using MissionLab.

a) Waypoints Navigation scenario:

__
Strongly Agree Agree Neutral Disagree Strongly Disagree

b) Biohazard scenario:

Strongly Agree Agree Neutral Disagree Strongly Disagree

c) Hostage Monitoring scenario:

__
Strongly Agree Agree Neutral Disagree Strongly Disagree

d) Overall:

__
Strongly Agree Agree Neutral Disagree Strongly Disagree

Figure 7: Example Question of the Post-Questionnaire

3.5 Study Participants
A total of 30 subjects participated in the study. The subjects
varied widely according to their demographics:

• age: from 19 to over 50 years old;

• gender: 14 females and 16 males, distributed equally
among the two between-subject conditions;

• background: a variety of educational backgrounds,
including both technical (31%) and non-technical fields
(69%);

• military experience: 21% of the participants had limited
military experience;

• occupation: less than half of the participants were
undergraduate or graduate students, out of those only three
were Computer Science or Computer and Electrical
Engineering majors; none of the subjects was a member of
our or any other robotics laboratory;

• computer experience: two of the subjects had advanced
programming experience, and 10 others – some
programming or network administration experience; all
others described themselves as users.

Each participant was compensated for his/her participation in the
study. The data of one participant from the Repair condition were
excluded from the analysis due to the subject’s disregarding the
administrator’s instructions and exhibiting a very low
(insufficient) level of computer experience.

3.6 Analysis and Results
The measure of duration, accuracy and the test-specific answers to
the Ease-of-Use and User-Satisfaction questions were analyzed by
means of Repeated Measures ANOVA; and the overall answers
were analyzed by means of One-Way ANOVA tests. 3 out of 90
tests conducted were not completed due to the lack of certain
functionality required by the users, and the measures of accuracy
and duration for these were treated as missing data.

3.6.1 Hypothesis 1
No significant effects were found for the measure of Duration: the
interaction effect of Repair Method and Task yielded F=.641,
p<.531; the main effect of Repair Method and Task yielded
F=1.144, p<.295, and F=1.56, p<.221, respectively. Although our
hypothesis that the presence of the Mission Repair feature will
reduce the time required to produce a successful mission was not
proven, the presence of this feature did not produce a negative
effect on the duration.

3.6.2 Hypothesis 2
For accuracy, there was no significant interaction effect of Task
and Repair Method (F= .727, p<.489), nor there was a main effect
of Task (F=.961, p<.390). However, a main effect of Repair
Method was observed (MgroupA = .820, MgroupB = .968,

F=4.936, p<.036), suggesting that Group B (with the Repair
feature) produced more accurate missions than Group A. The
standard error/means plot of accuracy by Repair Method and Task
is presented in Figure 8.

However, the percentage of missions completed successfully
(100% accuracy) was high, and the normality assumption was
somewhat violated. To provide additional information, we also
calculated the percentage of successfully completed missions for
each factor; the results of this Performance measure are presented
in Figure 9 graphically. Thus, the percentage of missions
completed successfully was consistently higher for Group B than
for Group A, suggesting a positive effect of the Mission Repair
feature.

BH

HM

WP

Standard Error/Means Plot of Accuracy

Mean; Whisker: Mean+-SE

Repair Method

T
e
s
t

A
c
c
u
ra

c
y

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Group A Group B

Figure 8: Standard Error/Means Plot of Accuracy for Repair

Method and Task. Main Effect of Repair Method was observed,
suggesting that Group B produced more accurate missions.

0%

20%

40%

60%

80%

100%

Successfully Completed Missions

A 60.00% 71.43% 85.71% 72.38%

B 85.71% 92.86% 92.31% 90.29%

BH HM WP Overall

Figure 9: Percentage of missions completed successfully

for each factor

3.6.3 Hypothesis 3
As mentioned earlier, the Ease of Use measure was assessed by
means of five questions. The analysis of two of the questions
produced statistically significant results. There was a significant
interaction effect for the question regarding Ease of Mission
Modification (F=4.507, p<.015), suggesting that for some test(s)
the effect of the Repair Method was reversed. We analysed the
simple main effects of the Repair Method, and found that for
Hostage Monitoring scenario the Ease of Mission Modification
was higher in Group B than in Group A (MgroupA = 2.2,

MgroupB = 1.4, F=4.505, p<.043; the lower number for the mean

indicates greater perceived ease, as “Strongly Agree” was
anchored at 1). Figure 10 presents this result visually.

The participants also found that the MissionLab with the Mission
Repair feature was easier to learn – One-Way ANOVA on the
Overall Ease of Learning yielded a statistically significant result
(MgroupA = 1.67, MgroupB = 1.21, F=5.203, p<.031). Figure 11

depicts this result.

Our hypothesis that the Mission Repair Feature will make
MissionLab easier to use was partially confirmed: in particular,
the Mission Repair Feature made the software easier to learn, and,
for one of the modification tasks (functional modification task in
Hostage Monitoring Mission), easier to modify the mission.

BH

HM

WP

Standard Error/Means Plot of Ease of Mission Modification

Mean; Whisker: Mean+-SE

Repair Method

E
a
s
e
 o

f
M

is
s
io

n
 M

o
d
if
ic

a
ti
o
n

1.0

1.4

1.8

2.2

2.6

3.0

3.4

Group A Group B

Figure 10: Standard Error/Means Plot of Ease of Mission
Modification for Repair Method and Task. Simple Main Effect of

Repair Method was observed for Hostage Monitoring Task – it
was easier to modify the mission for Group B.

Mean+SE
Mean-SE

Mean

Standard Error/Means Plot of Overall Ease of Learning

Means; Whiskers: Mean+-SE

Repair Method

O
v
e
ra

ll
E

a
s
e
 o

f
L
e
a
rn

in
g

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Group A Group B

Figure 11: Standard Error/Means Plot of Overall Ease of

Learning for Repair Method. The participants in Group B found
it easier to learn to use the MissionLab.

3.6.4 Hypothesis 4
Our hypothesis that the presence of the Evaluation feature will
increase User Satisfaction with the software did not receive

confirmation: no statistically significant effects were observed for
any of the questions regarding User Satisfaction.

3.7 Discussion
Overall, the addition of the Mission Repair feature produced a
number of positive effects, compared to the base CBR Wizard: it
increased the percentage of successfully completed missions, as
well as the perceived ease of learning of the software and, for
certain modification tasks, the perceived ease of mission
modification. In addition, we have not observed any harmful
effects of this feature, suggesting that further exploring an
automatic mission repair mechanism may prove advantageous.

4. CONCLUSION AND FUTURE WORK
 In this paper, we presented the latest empirical usability study
conducted to assess the usefulness of the newest addition, Mission
Repair Feature, to MissionLab, robot mission specification
system. As MissionLab is in constant state of development and
improvement, the results of this study give a direction for further
improvement of the current system. In particular, some benefits of
an automated mission repair mechanism were found: the Mission
Repair feature increased the percentage of successfully completed
missions thus improving the effectiveness of the overall system,
as well as increased the perceived ease of use of the software in
certain cases, thus contributing to greater user satisfaction.
Unfortunately, these finding were not as strong as we had hoped.
One reason for this may be due to the fact that the Mission Repair
feature is a prototype, and is designed to handle a limited number
of failure types. Therefore, during the experiments, a few
participants made errors that the mechanism could not repair
efficiently. Given the findings and our observations, it seems
reasonable to investigate the mechanism for automated mission
repair further by: 1) Increasing the number of the failure types it
can handle; and 2) identifying other potentially weak parts in the
user interface design by evaluating its individual components.

ACKNOWLEDGMENTS
This research is supported by DARPA/U.S. Army SMDC

contract #DASG60-99-C-0081. Approved for Public

Release; distribution unlimited. We would like to thank Doug

MacKenzie for his continuous support throughout the system
development, experiment design, and results interpretation, as
well as Zsolt Kira and Ananth Ranganathan for their help in
conducting the experiments.

REFERENCES

[1] M. Burke J.L., R.R., Rogers, E., Lumelsky, V.J., Scholtz, J., "Final

report for the DARPA/NSF interdisciplinary study on Human–
Robot Interaction," IEEE Transactions on Systems, Man and

Cybernetics, vol. 34, 2004, pp.
[2] J. Scholtz, "Theory and Evaluation of Human Robot Interactions,"

36th Hawaii International Conference on System Sciences, 2003,
pp.

[3] M. Burke J.L., R.R., Coovert, M.D., Riddle, D.L., "Moonlight in
Miami: A Field Study of Human-Robot Interaction in the Context of

an Urban Serach and Rescue Disaster Response Training Exercise,"
Human-Computer Interaction, vol. 19, 2004, pp. 85-116.

[4] H. A. Yanco, Drury,J.L., Scholtz, J., "Beyond Usability Evaluation:
Analysis of Human-Robot Interaction at a Major Robotics

Competition," Journal of Human-Computer Interaction, vol. 19,
2004, pp. 117-149.

[5] J. Draper, "Human Factors in Telemanipulation: Perspective from
the Oak Ridge National Laboratory Experience," Proc. SPIE

Telemanipulator Technology and Space Telerobotics, The Int'l Soc.
for Optical Eng., 1993, pp. 162-173.

[6] J. Draper, "Teleoperators for Advanced Manufacturing: Applications

and Human Factors Challenges," Int'l J. Human Factors in

Manufacturing, vol. 5, 1995, pp. 53-85.
[7] J. Draper and L. Blair, "Workload, Flow, and Telepresence during

Teleoperation," Proc. Int'l Conf. Robotics and Automation, 1996,

pp.
[8] "Real Time Cooperative Behavior for Tactical Mobile Robot

Teams," Georgia Tech College of Computing and Georgia Tech
Research Institute, Final Report A003, 2001.

[9] K. S. Ali, Multiagent Telerobotics: Matching Systems to Tasks.
Georgia Institute of Technology, Ph.D. Dissertation, 1999.

[10] Y. Endo, D. C. MacKenzie, and R. C. Arkin, "Usability Evaluation
of High-Level User Assistance for Robot Mission Specification,"

IEEE Trans. Systems, Man, and Cybernetics, vol. 34, 2004, pp.
168-180.

[11] D. C. MacKenzie, Arkin, R.C., "Evaluating the Usability of Robot

Programming Toolsets," The International Journal of Robotics

Research, vol. 17, 1998, pp. 381-401.
[12] R. C. Arkin, Behavior-Based Robotics. MIT Press, Cambridge,

Mass., 1998.

[13] D. C. MacKenzie, R. C. Arkin, and J. M. Cameron, "Multiagent
Mission Specification and Execution," Autonomous Robots, vol. 4,
1997, pp. 29-52.

[14] J. Kolodner and D. Leake, "A Tutorial Introduction to Case-Based

Reasoning," in Case-Based Reasoning: Experiences, Lessons, and

Future Directions, D. Leake, ed., AAAI Press, 1996, pp. 31-65.
[15] J. R. Quinlan, "Induction of Decision Trees," Machine Learning,

vol. 1, 1986, pp. 81-106.

