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Abstract— This paper presents a theoretical framework for
computationally representing social situations in arobot. This
work is based on interdependence theory, a sociakychological
theory of interaction and social situation analysis We use
interdependence theory to garner information aboutthe social
situations involving a human and a robot. We also upntify the
gain in outcome resulting from situation analysis.Experiments
demonstrate the utility of social situation informaion and of our
situation-based framework as a method for guiding obot
interaction. We conclude that this framework offersa principled,
general approach for studying interactive roboticgproblems.

Index Terms — Human-Robot Interaction, social sittian,
interdependence, social development.

|. INTRODUCTION

Many scientists have recently come to recognieestitial
aspects of intelligence [1]. In contrast to purelygnitive
intelligence, which is most often described by peabsolving
ability and/or declarative knowledge acquisitiondamsage,
social intellect revolves around an individual'siliab to
effectively understand and respond in social ditnat [2].
Compelling neuroscientific and anthropological evide is
beginning to emerge supporting theories of socitlligence
[3, 4]. From a roboticist’s perspective, it thercbmes natural
to ask how this form of intelligence could play @erin the
development of an artificially intelligent robot.sAan initial
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established, computational representation for autdre
situations that is not tied to specific social eomiments or
paradigms is presented [9]. Moreover, we contribate
algorithm for extracting situation-specific infortian from
this representation and for using this information guide
interactive behavior. Preliminary simulation resutxamining
the framework’s effectiveness across a wide expansecial
situations are provided. Finally, we demonstratat tthis
situation-based framework is applicable to robopesblems
involving collaborations among humans and robots.

Consider, as a running example, a human and at robo

attempting to cleanup a toxic waste spill—a taskgoéat
significance for modern day robots. During the olgg both
the human and the robot will select behaviors téektowards
the effort. Perhaps due to the properties of thiiedpmaterial
or of the cleanup environment itself, the robot #mel human
may need to coordinate their behavior in orderugcessfully
accomplish the cleanup as a team. Alternative sEnavill
allow the robot and the human to collaborate imaependent
manner. In either case, the situation should initae the
robot’s decision to coordinate its cleanup behawviith the
human or to operate independently. Moreover,
effectiveness of the cleanup will be mitigated hg tobot’'s
ability to characterize the situation and to uses th
characterization to select the appropriate soahbkiors.

The remainder of this paper begins by first sunwimay

the

step, one must first consider which concepts arestmorelevant research. Next, a theoretical frameworlteiscribed,

important to social intelligence. followed by a set of experiments used to examine th
Social interaction is one fundamental concept [5]framework. This article concludes with a discussadrthese

Psychologists definsocial interaction as influence—verbal, results and of directions for future research.

physical, or emotional—by one person on another. [6]

. Il. RELATED WORK
Furthermore, researchers describe the results afalso

interaction as a function not only of the indivithignvolved

but also of the social situation [7]. For our pwses, a social

situation describes the environmental factors, idet®f the
individuals themselves, which influences interaetdehavior.

Sociologists and social psychologists have
recognized the importance of the situation as a&rdehing
factor of interpersonal interaction [7-9]. If a gad artificial
intelligence is to understand, imitate, and intereith humans
then researchers must develop theoretical framesatbiddt will
allow an artificial system to, (1) understand thtuation-
specific reasons for a human’s social behavior, &2
consider the situation’s influence on the robot'scial
behavior.

This paper contributes a theoretical framework glaws

Human-robot interaction (HRI) is a subfield of R&lat
combines aspects of robotics, human factors, huroerputer
interaction, and cognitive science [10]. The dstafl how and
why humans and robots interact are focal reseaedmsanithin

longHRI [11]. Typically, HRI research explores mechamsfor

interaction, such as gaze following, smooth puyrstdce
detection, and affect characterization [12, 13].

Many researchers have explored human-robot irtterac
within a single social situation. Breazeal examisigations
involving emotive dialogue between a human andoatr@l2].
Pineau et al. explore an assistive situation coriegrelderly
residents of a retirement home and a robot [14\vef
researchers have explored interactive situationglving
museum tour guides [11]. Others have considerextaotive

a robot to manage both of these challenges. A gkner situations necessary for search-and-rescue robhdts Multi-



3-D Interdependence Space Computational Process for Situation-based Interacton
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Interdependence theory represents social situatiomgputationally as an
outcome matrix. Planes within this space denotéddtegion of some well-
known social situations, including the prisoneriemima game, the trust
game, and the hero game. A matrix's location allame to predict
possible results of interaction within the situatio

agent researchers and sociologists have also exbkeveral
different simulated social situations [15]. We, lever,
currently know of no direct consideration of theadhetical
aspects of social situations as applied to interacobots.

Social psychologists, on the other hand, have long

considered the situation-specific aspects of imtespnal
interaction [9]. The use of social situations foramining
social interaction is widespread within both nearesce [16]
and experimental economics [17]. Interdependeneerthis a
social psychological
understanding and analyzing interpersonal situati@md
interaction [9]. The term interdependence descrthesextent
to which one individual of a dyad influences thehest
Expanding upon this theory, psychologists have nibge
developed an atlas of interpersonal situations riegts social
situations to a multi-dimensional interdependengacs (fig.
1) [8]. Moreover, these social situations are ndt leoc
constructions. Rather, they represent real sitnatio
experienced by real people in the world. It is timportant
that robots master them. Interdependence theorgrlies! our
framework for situation-based social interaction.

Il. A FRAMEWORK FORSITUATION-BASED SOCIAL
INTERACTION

Our situation-based framework translates a
perception of a social situation into action in rfateps: (1)
matrix construction, (2) situation analysis, (3emlependence
space mapping, and (4) action selection. The finste steps
generate information about the situation. The fistalp uses
this information. Figure 2 depicts the computatjprocess.
The following section briefly summarizes the aspedf
interdependence theory that were used for this woefore
describing the algorithm for situation-based soaiétraction
in detail.

A. Interdependence Theory

theory developed as a means fo

robot’

above. The process consists of four steps. Thestiegp generates an outcome
matrix. The second step analyzes the matrix's maga. The third step
computes the situation’s interdependence spacendiows. The final step
selects an action based on the situation’s positignterdependence spa

Step 1: Generate Raw Outcome Matrix from
Perceptual Information
#H = Number of Hazards #V = Number ofVictim s

Robot Robot
Rescue Cleanup Rescue Cleanup
Victim Hazard Victim Hazard
1 #H 1 0
é Rescug ey é Rescud enya
Victi Victi
£ ictim Iy Iy E ictim Y 0
< 1 #H L #H
Cleanud| 1 v | 1 Cleanup| 0 h
Hazard #_ #H Hazard 0 o
Independent Situation Dependent Situation

Fig. 3 This figure depicts example outcome matrfoeshe cleanup of

a toxic spill and the rescue of victims by a huraad a robot. During any
one interaction both individuals choose to eitlescue a victim or cleanup
a hazard. The outcomes resulting from each paghofces is depicted in
the matrix. The human’s outcomes are listed in betbw the robot’s

outcomes. In the leftmost matrix the outcomes ffierttuman and the robot
are independent of the other’s action selectionthénrightmost matrix the

outcomes of the human and the robot depend entiretye other’s action

selection.

Interdependence theory is based on the claim thaplp
adjust their interactive behavior in response @irtherception

f a social situation’s pattern of rewards and £08hus, each

choice of interactive behavior by an individual esf the
possibility of specific rewards and costs after ihieraction.
Outcome is a term used by psychologists to desedihee of
the rewards minus the costs. It is therefore ingrdrtor robots
interacting with humans to consider the outcome# tthoice
of interactive behavior will produce for the human.
Interdependence theory represents social situation
computationally as an outcome matrix (fig. 3). Qube
matrices are the social psychological equivalerthtonormal
form game within game theory. An outcome matrixresgnts



Step 2: Analyze Outcome Matrix
Example Parameters Raw Outcomes Bilateral Actor Control Mutual Partner Mutual Joint
BAC Control (MPC) Control (MJC)
Independent Situation
#H =5 L Y g,
#V =2 v
-2.24 2.25 - o o o o
PROCEDURE: E 0.9 0.9 I 0 0 0 o
1) Add cells -2.24 2.25 | o) o) o) o ™
2) Divide by two 1 |_>
3) Subtract mean -0. -0. i o o o o
4) Place result in T T |
the designated | _, -~~~ -~~~ - _—__——— ____ |
matrix cell BAC MPC MJC
Robot = -2.25— (2.25) Robot =0 — (0) Robot =0 — (0)
Robotmean 2.75 i . BCk =.5.0 PCr =0 JCr =
Humanmean 1.1 Resulting Variances yman =0.9 — (-0.9) Human =0 — (0) Human = 0 — (0)
BCy =1.8 PCy =0 JCy =

Fig. 4

The procedure (from [9]) for analysing &iabsituation is presented above. This procedsireni analysis of variance of the outcome matrix tha

deconstructs the raw outcome matrix into three matrices (the BAC, MPC, and MJC) representing diffie forms of control over the situation’s outcomes
The outcome values for each of these three mataieeproduced from the raw outcome matrix by iteest 1) adding the noted cells, 2) dividing by tvemd

3) subtracting the individual's mean. The varianaescalculated by calculating the outcome rangedah choice of behavior and each individual. Beea
this example is of an independent situation, theC\diAd MJC matrices do not ve

a social situation in terms of the outcomes affdrde each
interacting individual with respect to pairs of begtor choices
selected by the dyad.

The interdependence space (figure 1 depicts theeth
dimensions used in this study) is a four dimendiamace
consisting of: (1) an interdependence dimension), #2
correspondence dimension, (3) a control dimensiod, (4) a
symmetry dimension. The interdependence
measures the extet which each individual’'s outcomes are
influenced by the other individual’s actions iniaation. In a
low interdependence situation, for example, eaclividual's
outcomes are relatively independent of the othdividual's
choice of interactive behavior. A high interdepamcke
situation, on the other hand, is a situation inchhihe each
individual's outcomes depend on the action of thbeo
individual. Correspondence describes the extenwhich the
outcomes of the individuals in a situation are ¢xirat with
the outcomes of other individuals. If outcomes espond then
individuals tend to select interactive behaviorsuténg in
mutually rewarding outcomes, such as teammateganze. If
outcomes conflict then individual's tend to seléderactive
behaviors resulting in mutually costly outcomesgchsias
opponents in a game. Control describes_the iwayhich each
individual affects the other’s outcomes in a sitatIn some
situations individuals must exchange action forctiea, such
as situations involving buying and selling. Altetimaly, some
situations demand that individuals coordinate tlagitions to
produce a result, as in the rescue of a victim ith&do heavy
to be saved by one individual alone. Symmetry diessrthe
balance of a situation’s outcomes in favor of oneiidual
over another.

A matrix’s location in interdependence space piesi
important information relating to the situation.rlexample, in
a situation of low interdependence the robot sheeléct the
behavior that maximizes its own outcome, becausehbice
of action will not have a large impact on the outeoof its

dimensior

Step 3: Compute Interdependence Space
Dimensions

le=(Pcz+aci)(Bcz+Pc2+ac?) (@)
Calculate separately for each individual. The raisge
from 0.00 for completely independent interactiod an
+1.00 for completely dependent interaction

Interdependencs
(Ir 1)

Correspondencs
of Outcomes

©

2(BC,PC, +BC,PC, +JC,JC,)
BCZ+BCZ+PCZ+PC2+JCZ+IC2Z)
The range is from -1.00 for conflicting interactiom
1.00 for corresponding interaction.

__4o-v)
Y= {am (sit)?)
c=0Cc,+3,)Y+@Cc,-3,)
v=(BG,+PG,J +(BG, + PG, +(BC, - PC, ] +(BG, PG,
The range is from -1.00 for exchange interaction

+1.00 for coordination interaction. Sum( sit) isedl by
cell sum of the matri

Fig. 5 The portrayed equations compute the sitn&ialimensions in

interdependence space. The inputs to these eqgsatiom the variances

resulting from step two. The equation for calcugtinterdependendeand
correspondence€ are from [9]. The authors developed the equatiorbésis

of control.

partner. The process of deconstructing a matrix iits
interdependence space dimensions provides additiona
information about the social situation that camtbe used to
guide interactive behavior selection by a robot.
Interdependence theory has developed the compuahtio
mechanisms for handling steps (2) and (3) fromrég2. One
contribution of this paper is to complete the aitionic
process by developing the mechanisms for stepsrfd)(4)
and to apply this framework to a representativeotioh
problem.

2

7

where

3

Basis of Control

)

B. A Computational Process for Stuation-based Interaction
The four steps employed to translate the percepifoa
social situation into action have already been maet. The
first step requires the construction of an outcomatrix
representing the situation. Matrix construction aliges the
process by which the robot transforms perceptual/can



Step 4: Decision tree to select behavior
Experiment One Experiment Two
Max
Outcome
Min Basis o
Risk Control Human
Outcome
y<0.6
Max
Outcome
Min Risk
Fig. 6 Simple decision trees select either the@ute matrix action that

maximizes the robot’s own outcome or minimized ri¥ke values in the
tree for experiment one were optimized for outcogemeration. Max
outcome selects the action with the greatest palemtitcome for oneself.
Min risk selects the action the greatest minimurtcome. If both actions
have the same minimum outcome then the one witlgtbatest average is
selected.
internal state information such as motivations
predilections into an outcome matrix. Interdepemdetheory
terms this process the transformation process .[71%]e
transformation process results in the constructadn an
outcome matrix on which the robot can act. In socases, raw
perceptual stimuli can be directly used to constrtie
outcome matrix. As depicted in figure 3, the numlmdr
hazards and victims perceived is used to constinecbutcome
matrix for this work. These matrices expand upanhbman-
robot cleanup situation described previously. Inesth
examples, both the human and the robot selectéereén
action to rescue a victim or to cleanup a hazahd dutcome
for each pair of selected actions, in this case fenction of
the number of victims and hazards in the envirortmé&he
functions in figure 3 were selected to give theoaatnous
robot a preference for cleanups and the human getated
robot a preference for victims. Preferences sudhese might
result from the configuration of each robot. In théependent
situation, for example, if the robot chooses t@olg a hazard
and the human chooses to rescue a victim then dhear
obtains an outcome equal to the number of victimd the
robot obtains an outcome equal to the number ofrasz
Alternatively, the values within an outcome matdan be
generated from actual data (as they have beeryghpkgical
studies involving humans) or can be theoreticalgrivied.
Often the actual values within the cells of a nxatire less
important than the relation of one cell to anotkel. For
example, it is typically more valuable to know whiaction in
an outcome matrix provides maximal reward thas tbiknow
the actual value of the reward.

The next step in the process depicted in figurés 2
situation  analysis.  Situation analysis involves

procedure iteratively separates the values in rtpati or raw
outcome matrix into three separate matrices. THatdBal
Actor Control (BAC) matrix represents the varianae
outcome resulting from the robot’s own interactdecisions.
This matrix thus quantifies the robot’s control pvts own
outcomes. The Mutual Partner Control (MPC) matoir, the
other hand, represents the variance in outcométiresfrom a
partner’s interactive decisions and thus quantifiggartner’s
control over the robot's outcomes. Finally, the NaltJoint
Control (MJC) matrix represents the variance incoumte
resulting from both the robot's and its partnersing
interactive decisions. In other words, the MJC iratescribes
how each individual is affected by his, her, orjdist actions.
As depicted in figure 4, all outcome variance oscim the
BAC matrix when deconstructing an independent sitna
The procedure for computing the variance of theiadoc
situation results in values for variableBC, PC, JC
representing the variance of both the robot’s dedhuman’s
outcomes in the situation. The subscripts denateviriance
of the outcome for the robot and the human respagti

Once the variances for the situation have beerpoted

andhese values can be used to calculate the sittatmeation in

interdependence space. This is accomplished usjogtiens
(1-3) from figure 5. Equations (1) and (2) are frosference
[9]. Equation (3) is a contribution of this work.

Finally, the interdependence space dimension satue
used to guide action selection (fig. 6). As mergrabove,
social situations are represented as an outcomexnveth
respect to a pair of potential actions available each
individual. In the running example, the robot wouloose
either to rescue a victim or to cleanup a hazasddépicted in
figure 6, the decision trees use the interdeperelepace
values to determine how the robot selects an acfidre
specifics of these decision trees will be discussedhe
following section. These trees represent simpleisiées for
selecting actions based on a situation’s locatian
interdependence space. Decision trees were uselidgeof
their ease of implementation. Alternatives such nasiral
networks are also possible.

IIl. EXPERIMENTS

We conducted simulation experiments to test tiopased
framework. These experiments focus on the podsibdf
capturing and using information about social sitret to
select behaviors. The experiments explore the fnaorie in
two ways. The first experiment examines the geitgraf a
situation-based approach by testing the systensporese to
thousands of randomly generated abstract outcomeces
representing a broad spectrum of social situatiBesause of
time-constraints, it was not possible to test eaththese
randomly generated matrices using interaction betwe
human and a robot. The second experiment, thereffurases

theon a limited number of different social situatiobst examines

deconstruction of the raw outcome matrix into value the response of the framework to these situationglatail

representing the variances in outcome. Situatioslyais is

using human-robot interaction and grounds the éxyat in a

accomplished by using the procedure in figure 4isTh typical robotics problem.



A. Experiment One

As mentioned above, the purpose of this experirtetd
quantify the net outcome gains resulting from infation
generated about the situation over large portiohsthe
interdependence space and to compare the resultsurof
algorithm to other potential methods of interactlwehavior
selection. Because of time constraints, this expent did not
involve a human or a perceptually generated outcovatix.
Rather, in this case two simulated robots are thrgcesented
a randomly generated outcome matrix within the
interdependence space. Thus, in order to explazeetitire
space, this experiment bypasses the first steperatgorithm
from figure 2, the conversion of perceptual infotima into a
raw outcome matrix. Each randomly generated outamieix
represents an abstract situation in the sensethbatewards
and costs are associated with selecting one of mheo-
specified actions. Thus, these abstract situataresentirely
general, but could easily be concretized by rejgteach
matrix to specific actions and the outcomes to emual
stimuli.

The experimental procedure first required thettwaaf a
random outcome matrix. This matrix is then presgrtethe
two simulated robots. One robot, the test robotpleyed
either our algorithm for situation-based interacta a control
strategy to select one of the abstract actions.sEleend robot
consistently selected the action that maximizes dtgn
outcome without consideration of its partner. Teeision tree
for experiment one is depicted in figure 6. Actgmlection by
both robots occurs simultaneously. The outcomeivedeby
the test robot during each interaction is addea tenning sum
for the entire trial. A single trial consisted o0 randomly

Fig. 7
environment used for experiment two. The experinexqiored a foraging
task in an urban environment. The teleoperatiogrfate used by the human
is depicted the right.

This figure depicts th#lissionLab toolset with the simulation

that a robot search for and retrieve attractor abjd19].

Figure 7 depicts the layout for this experiment.teiftal

victims and hazards for cleanup are located withidisaster
area. A disposal area for hazard items is locatearids the
bottom and a triage area for victims is locateth®oright. For
this experiment, outcome matrices are constructemn f
perceptual information about the situation, nantkeé/ number
of victims and hazards perceived (fig. 3). The vaha that
the robot selects are actually collections of axtithat direct
the robot to locate the closest attractor, pickug attractor,
transport the attractor to a disposal area where dtropped

generated outcome matrices. One hundred trials wergf, and finally return to a staging area.

conducted for this experiment.

We explored three different control strategiesselecting
actions as part of this experiment: (1) alwayscelee action
that maximized one’s own outcome without considerabf
the partner, (2) select the action that maximizeth ne’s
own outcome and the outcome of the partner, andg@rt the
action that minimizes the risk of losing outcomeheT
independent variable in this experiment is the tgpetrategy
used by the test robot for selecting actions. Thpeddent
variable then is the resulting net outcome fortést robot. We
hypothesized that a situation-based approach wddit in
the greatest net outcome.

B. Experiment Two

In the second experiment, we used thissionLab
behavior specification system to explore the cowpnal
process described in figure MMissionLab is a graphical
software toolset that allows users to generate leatsibot
behavior, test behaviors in simulation, and execotkections
of behaviors on real, embodied robots [18].

In this experiment, an autonomous robot and a huma

teleoperated robot are attempting to cleanup tsgit hazards
and rescue injured victims. In order to compleis task both
robots must forage for attractors such as victimBazards to
cleanup. Foraging, a well-studied problem in ratmtrequires

This experiment compared our algorithm for capigiri
and using information about social situations (fit). to a
strategy that does not use situation informatiod &otuses
solely on maximizing the robot's immediate outcome.
Independent and dependent situations were invéstiga
Independent situations allow the human teleopenatbdt and
the autonomous robot to forage independently @igeft).
Dependent situations (fig. 3 right), on the othandh require
that both the autonomous robot and the human cotb to
rescue a victim or cleanup a hazard. In all cooddj the
teleoperated robot selected the interactive behatat
maximizes its own outcome without consideration itsf
partner. In the experimental condition, our aldoritis used in
conjunction with the decision tree for experimemb tdepicted
in figure 6. This decision tree represents a sirhglaristic that
guides the autonomous robot to select the interadtehavior
that maximizes its own outcome if the situatiordé&ermined
to be more independent than dependent. If, on tier dvand,
the situation is determined to be more dependean th
independent, the autonomous robot selects the hoghthat
maximizes its partner's outcome. Alternatively, ancontrol
condition the autonomous robot always selects #teatior
that maximizes its own outcome without consideratid the



Quantifying Situation Analysis Gains Foraging Experiment Results
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Fig. 8 Results for experiment one are presented.|&ftmost bar (grey) Fig. 9 Results for experiment two are presentee. [&ft two bars depict

depicts the maximum possible net outcome. The skedam from the left

(blue) indicates the net outcome when our proceduused. The next three
bars (red) depict the controls for the experim&he rightmost bar (green)
depicts the partner’s outcome for the experimeoteddition. Error bars

indicate Standard Error of the Mean.

partner. Thus, in this control condition both rabemploy a
selfish outcome maximizing strategy.

We conducted thirty trials in each of the four ditions
for this experiment: (1) independent situation awhtrol
robot, (2) independent situation and experimentdlot, (3)
dependent situation and control robot, and (4) déeet
situation and experimental robot. A random numbercims
and hazards were created for each trial and werdoraly
placed within the disaster area.

IV. RESULTS

Figure 8 presents results for the first experimdrite
second bar from the left (blue) depicts the netamie using
our algorithm. The next three bars to the rightlrandicate

the independent conditions for both the test ared dbntrol robot. In the
independent situation, the autonomous robot fordgesiazards and the
teleoperated robot forages for victims. The righb tbars portray the
dependent situation. Hazards cleaned (green) istddpabove of victims
rescued.

The results from this experiment demonstrate that
situation-based approach to interaction improvefopmance
(as measured by outcome) over a broad expansetcdroe
matrices. Our procedure of computationally analyzend
mapping the outcome matrix is thus not limited trtain
specific social situations and these results sasvevidence of
the potential broad applicability of this work. Maver, this
experiment indicates that the information provided an
analysis and mapping of the outcome matrix is Usefo
average, for a robot selecting interactive actions.

Figure 9 depicts the results from the foragingegipent.
The left two bars portray the results for the gitwrain which
the autonomous robot and the teleoperated robote wer
independent. In this case, the autonomous robeigés for

the net outcome when for the control conditions.r Ouhazards to cleanup and the human-operated robagderfor

algorithm significantly outperforms the controls afi three

victims. Thus, all of the 30 trials each robot imtes either a

conditions p < 0.04 for all). The maximum possible outcome victim or a hazard. Because each trial consisted cindom

is also depicted for reference (gray).

Although significant, the difference in net outeam
between our situation-based algorithm and the oogco
maximizing control strategy is not large. This diffnce
reflects the simplicity of the decision trees ugedselect
actions. The decision tree uses the informationutlibe
situation provided by the previous steps of ouratgm to
select the best action. Additional effort could @aleen
devoted to the construction of a better methodsfecting
interactive behaviors based on information aboetsituation,
including mechanisms for modelling the partner pretlicting
its action selections. However, the purpose of éxiseriment
was to examine the effect of having information wtbhthe
situation over a spectrum of social situations. sThany
statistically significant difference suffices andnk devoted to
optimizing action selection based on informatiorowbthe
situation is left for future work.

number of victims and hazards, some trials resuitedero
victims or hazards. In this case, both robots fedafpr the
same object. Both robots faired equally well in the
independent situation. Thus in a situation in whieach
individual's performance is independent, neithereds to
consider the effect of their action on the otherilevh
completing the task.

In the dependent condition, however, the auton@mou
robot’s use of situation information affords befgerformance
than the robot that does not consider the situatiothe test
condition, information provided by our algorithndinates to
the autonomous robot that its outcomes for thisasitn rely
on collaboration with its human-operated partndre @iecision
tree therefore directs the autonomous robot tooperfthe
action that will maximize its partner’'s outcome. iforage for
victims, if any exist. The control strategy simphaximizes
the autonomous robot’s own outcome without consititem of



the partner even though the situation demands bmoidion,
hence resulting in poor performance.

Overall, the second experiment demonstrates that
information resulting from an analysis of the sbaiuation
can improve a robot’s ability to performance inttinze tasks
such as collaborative foraging. Moreover, the atgor we
have proposed can successfully use perceptual Isiimthe
environment to produce information about the sosiiaiation.
These results were demonstrated on a problemitradliy of
interest to robotics researchers [19]. Still, thegperiments
merely skim the surface of potential avenues feeaech and
future work will be devoted to testing this frametwmn real
robots in real social situations.

V. CONCLUSIONS

This paper has introduced mechanisms for capturinkf!

information about social situations and for usingist
information to guide interactive behavior. We havesented a
situation-based framework for human-robot intemactierived
from the social psychological theory of interdepemck. This
approach includes representations for social $itusit as
outcome matrices and provides the computationals téar

mapping situations to their location in an interelegence
space. The value of knowing a situation’s location

interdependence space has been highlighted witariexents
indicating that, on average, this information caid &

selecting interactive actions and that in someasitas this
information is critical for successful interacticend task
performance.

For an autonomous robot interacting in a complexg
dynamic environment, such as search and rescues it

important to provide the robot with methods for ersfanding
and extracting information from its social envircamh These
methods are in turn expected to result in betteiopm@ance on
a variety of social tasks, such as collaborationrédver, the
experiments presented in this paper do not useofathe
information provided by our procedure. Informatjgertaining
to correspondence, basis of control, and symmetyldc
clearly provide a great deal of additional knowledgerhaps
leading to better selection of interactive behawioy a robot,
and will be one direction for future work.

The work presented in this paper represents awiogg
research effort. Future work will focus on extemgithese
results to real robots. We believe that the embedim
afforded by a real robot will present both new tdrajes and
new opportunities. We also intend to explore thecpss for
transforming a perceived social situation in gredegail.

It is our contention that this framework offerganeral,
principled means for both analyzing and reasoningua the
social situations faced by a robot. The developmeht
theoretical frameworks that include situation-sfieci
information is an important area of study if robetdl be
expected to move out of the laboratory and into'oheme.
Moreover, because this framework is based on relseginich
has already been validated for interpersonal intema, we
believe that it may eventually allow an artificigystem to

t

reason about the situation specific sources ofraamis social
behavior.
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