
POD: A Parallel-On-Die Architecture

Dong Hyuk Woo1 Joshua B. Fryman2 Allan D. Knies3 Marsha Eng2 Hsien-Hsin S. Lee1

1School of Electrical and Computer Engineering 2Microprocessor Technology Labs 3Intel Research Berkeley

Georgia Institute of Technology Intel Corporation Berkeley, CA 94704

Atlanta, GA 30332 Santa Clara, CA 95052

{dhwoo, leehs}@ece.gatech.edu {joshua.b.fryman, marsha.eng}@intel.com allan.knies@intel.com

Technical Report GIT-CERCS-07-09

May 2007

Abstract

As power constraints, complexity and design verification cost make it difficult to improve single-stream
performance, parallel computing paradigm is taking a place amongst mainstream high-volume architectures.
Most current commercial designs focus on MIMD-style CMPs built with rather complex single cores. While
such designs provide a degree of generality, they may not be the most efficient way to build processors for
applications with inherently scalable parallelism. These designs have been proven to work well for certain
classes of applications such as transaction processing, but they have driven the development of new languages
and complex architectural features.

Instead of building MIMD-CMPs for all workloads, we propose an alternative parallel on-die many-core
architecture called POD based on a large SIMD PE array. POD helps to address the key challenges of on-
chip communication bandwidth, area limitations, and energy consumed by routers by factoring out features
necessary for MIMD machines and focusing on architectures that match many scalable workloads. In this
paper, we evaluate and quantify the advantages of the POD architecture based its ISA on a commercially
relevant CISC architecture and show that it can be as efficient as more specialized array processors based
on one-off ISAs. Our single-chip POD is capable of best-in-class scalar performance up to 1.5 TFLOPS of
single-precision floating-point arithmetic. Our experimental results show that in some application domains,
our architecture can achieve nearly linear speedup on a large number of SIMD PEs, and this speedup is much
bigger than the maximum speedup that MIMD-CMPs on the same die size can achieve. Furthermore, owing to
synchronized computation and communication, it shows that POD can efficiently suppress energy consumption
on the novel communication method in our interconnection network.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4701237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Although several commercial processors offer multiple cores on a single die, many challenging issues need to be
addressed before these designs can make efficient use of their parallel resources. The open questions of how they
will be used, what architectural features they will have, and how they will be programmed remain unclear. A
simple solution will be fitting a proven parallel architecture such as a MIMD-based multiprocessor onto a single
die. However, there are several new challenges that need to be overcome for such implementation, including power
constraint, efficiency in the area usage and interconnection network, different target users and applications, etc.,
thus it is worth investigating other architectures as an alternative design in future many-core era.

MIMD-based large scale multiprocessors were more popular than massive SIMD machines because they offer
two advantages: first, they leverage off-the-shelf microprocessor economies of scale; second, the flexibility of
either running a larger number of independent workloads or a smaller number of parallel workloads. However, in
an age when an entire SIMD array can be placed on a single processor die and this processor is sold to high-volume
many-core processor market, the economies of scale becomes possible. Furthermore, lower manufacturing cost
will make it feasible for one to have both a MIMD-based CMP and a SIMD array on the same chip, thus providing
flexibility may become less an issue.

Besides, on-die massive SIMD machines provide substantial advantages in both area and power efficiency for
future many-core processors. Unlike traditional large scale MIMD-based MP systems where space occupied by
machines are not practically important, in a many-core era, the area of each core will determine the achievable
performance. The larger each core is, the more likely the performance/area efficiency will go down. A Processing
Element (PE) of a massive SIMD machine is typically much smaller than a processor node of a MIMD-based
MP system. For example, one PE of our proposed architecture consumes only 12% of die area compared to a
full-fledged Intel 641 core due to the lack of complex CISC instruction decoding logic, branch predictors, TLBs,
and instruction caches in each SIMD PE. Consequently, 64 SIMD PEs can be integrated onto the same die with
one host Intel 64 core while only eight Intel 64 cores can be integrated with the same area based on the 45nm
process technology. Similarly, a SIMD PE will consume a lot less energy than an Intel 64 core for executing the
same operation. Such on-die SIMD PE array enables the possibility of exploiting large data parallelism to achieve
supercomputing performance with highly economical area and power efficiency.

Another major difference between a large scale MP system and a single-die many-core processor is in the
design of interconnection network (ICN). Different types of interconnection network, e.g. hypercube or crossbar,
can be implemented on massive MP systems whereas many cores on a chip may not have such luxury due to
floorplanning constraint and limited area and power budget. According to MIT RAW [34, 16], area and power
consumed by wires and routers account for 40% of the die area and 38% of the overall chip power. Recently, the
packet switched mesh based MIMD-CMP is found to consume unsustainable energy in its router logic, and its
unpredictable communication pattern prevents designers from using common low-power techniques such as clock
gating [6]. In contrast, as all computation and communication are synchronized on a SIMD array, routers can be
eliminated and the overall power consumption can be better harnessed.

Last but not least, programmers and workloads for single-chip many-core system will be different. Users of
traditional MP systems are typically a small number of well-trained programmers who are well-versed in writing,
debugging and optimizing their parallel code. Nonetheless, it is difficult to anticipate that programmers of high-
volume many-core processor market would be able to handle sophisticated and subtle parallelization issues such as
debugging data racing, balancing parallelism and data locality, hiding hard-to-predict communication overheads,
etc. Furthermore, future killer applications for high-volume many-core processors will be content-centric applica-
tions such as 3D graphics and rich multimedia that are more SIMD-friendly. A simple SIMD programming model
is not only easier to debug, but also well-matched to data-parallel applications.

1“Intel 32” was previously known as IA32 or x86. “Intel 64” was previously known as IA32e, EM64T, or x86 64.

2

In this paper, we propose an architecture that can efficiently support scalable parallel applications while min-
imizing the complexity of programming a many-core system. To achieve this goal, we revisit the designs of
data-parallel SIMD computers [5, 36], but we focus on two realities: (1) current industry trends in ISAs and
programming languages, and (2) to satisfy the new on-chip requirements. Since broad acceptance and software
compatibility nearly necessitate Intel 64 compatibility, we accept this as a basic starting point for our work.

Our research goals are to provide best in class performance per watt across the space of many-cores, graphics
processors, and media accelerators while maintaining ISA compatibility and providing a computing model that is
more general than the specialized graphics and media processors. The primary contributions of this work over the
prior efforts in SIMD machine research are:
• We propose a new Parallel-On-Die (POD) many-core architecture based on a large SIMD PE array.
• Our SIMD PE array represents a first-class citizen (rather than co-processors) in the system with respect to

virtual memory and the host core.
• We address the on-chip wire latency problems for lock-step execution and communications.
• We eliminate complex global networks and propose an efficient communication topology in terms of energy,

area and latency to address the on-die wiring limitations in our architecture.
• We reduce the need of using thousands of SIMD PEs to dozens while attaining multi-TFLOP performance.
• Our architecture maintains semantic compatibility with an existing CISC architecture.

The rest of this paper is organized as follows. In Section 2, we discuss the background. Section 3 explores the
contemporary challenges with respect to large-scale SIMD architectures. In Section 4, we propose a modification
of a current Intel 64-based microprocessor platform, and in Section 5, we describe ISA support and programming
model for POD architecture. Section 6 describes our simulator, and analyzes the performance results using several
benchmark programs. Section 7 concludes.

2 Background

Our work revisits the SIMD concepts, expands and interprets them with modern requirements and technological
constraints. The closest architectures to our design are the Maspar MP-1 [5, 22] and the Thinking Machines CM-
2 [36]. Both of these machines were centered on the concept of a very large number of processing tiles for parallel
calculations. This style of SIMD machine was broadly characterized by having a front-end system that consists
of a host processor. Both machines took advantage of the relatively “free” wire latency compared to the transistor
switching speed, and had a low communication latency between nearest neighbors (4 cycles for CM-2 and 8 for
Maspar). The nearest-neighbor connections were supplemented with sophisticated networks to allow all-to-all,
unstructured, and long-distance communication. The immense number of PEs led to an elaborated global network
design with many layers of switches and crossbars.

Other important SIMD machines include the Solomon [32], the IBM GF-11 [17], and the Illiac IV [8]. Some
hybrid efforts between MIMD and SIMD were undertaken [33], but remain on the fringe. Systolic arrays [7, 19]
resemble SIMD machines, but were tailored for applications whose computations fit a narrower structure. In most
cases, to be highly efficient, the programmers need to map the application’s execution and data flow in details to
the target machine. Tarantula [11] extended Alpha ISA with a slew of new instructions and state. EV8 understands
entire Vector ISA for renaming/retirement/speculation issue and supports deep conditionals via masks, but does
not support intercommunication among vector units except for gather-scatter ops.

Imagine [4, 15, 29] is a stream-model processor, but uses a normal host and acts as a coprocessor. Imagine
uses a 128KB stream register file to contain data, while each attached FPU has a local register file and several
dedicated ALUs to operate on the stream data in a producer-consumer model, unlike our architecture which uses
private SRAMs to allow local data reuse. Imagine also uses instruction memories and fetch/decode patterns, but

3

capitalized on an 8-wide SIMD ability inside each full ALU tile. The drawback is that each of the eight sub-ALU
blocks is wired with a crossbar to the full SRF, and that applications must be ported to a stream-based model for
exposing the parallelism.

More recently, non-SIMD tile-based architectures, e.g. the MIT RAW [35, 34] and the UT-Austin TRIPS [30],
were proposed. The RAW processor provides local instruction and data caches, contains 64KB of RAM for
each processor tile to program a dynamic/static routers, and has its ALU bypass network tied directly into the
interconnect network (ICN). To support its programming model, the RAW also has large memories and additional
modes dedicated to the routing logic for use based on application needs for either static or dynamic routing.
This approach requires the extra logic and power compared to a SIMD design. TRIPS is tile-based, but uses more
sophisticated ISA mechanisms relying on compiler’s analysis and static placement of computation. It also provides
separate ICNs for data and instruction movement and each tile has a complete CPU. The entire design is intended
to support highly-speculative parallelization techniques. The IBM Cell processor [13] is an alternative to tile-based
designs by hosting eight Synergistic Processor Elements (SPEs) on a PowerPC host. While the Cell processor is
similar in concept, these SPEs, MIMD in pattern, are complete with instruction fetch, decode, branch control, and
load-store queues. Setting aside the complexity of MIMD programming when compared to our SIMD model, the
peak performance of the Cell is below what our POD can attain.

Finally, the PicoChip [10] and the Connex Machine [3] are on-chip massively parallel machine implementation,
but they are special-purpose processors, and not SIMD machine. The Morphosys [31] proposed dynamically
reconfigurable SoC architecture. It includes an array of reconfigurable cells working in SIMD fashion and contains
a sophisticated programmable tri-level ICN.

3 Modern Considerations

One primary reason attributed to the commercial failure of SIMD machines hinges on the rate of growth of micro-
processor performance relative to the time to market for SIMD machines [25]. With a concept-to-market time of
36+ months, a new SIMD machine would be released with a scalar performance pegged to the state of the art 1.5-3
years prior to the first sales. Meanwhile, commercial microprocessors leapt ahead by up to a 4x performance im-
provement following along Moore’s Law. Considering the cost of early SIMD machines versus microprocessors,
most consumers who could have benefited from parallelization chose not to, letting Moore’s law carry on their
evolutionary growth as opposed to accepting a major architectural change.

Today, while single stream performance has not reached its limit, its progress has slowed dramatically due to
performance per watt and complexity-effectiveness issues [24]. While process technology continues to advance,
industry leaders look to many-core architectures as the roadmap of the future. With the resultant slowdown in
single core improvements, we call in to question the reasons for SIMD machine failure of the past and explore how
the original ideas might fit into today’s changing landscape.

Our work is based on a very different set of constraints than those that existed when the original SIMD ma-
chines were built. First, since we wish to provide a backward compatible processor (e.g. Intel 64) without dramat-
ically changing its ISA, we cannot overly simplify the processing elements. Second, we design both computation
and communication architectures simultaneously so that they only consume sustainable amount of energy, which
is a new requirement for on-chip massively parallel machines. Third, prior SIMD machines (e.g. the Maspar MP-1
and CM-2) were not limited to planar interconnects because their processing elements were connected across mul-
tiple boards via backplanes and wires. When they were built, wire delays were less critical compared to transistor
switching speeds. This reduced sensitivity to wire latency is even more pronounced the farther back one goes in
the SIMD genealogical tree.

Since we propose to place an entire implementation of a host processor core and a large SIMD array on a single
die, we are limited to planar networks [9, 18] and thus do not have the luxury of high-dimensionality networks.

4

This is a key difference in technology over the past two decades. In our design, the wire delay to cross a single
PE in a straight line is a function of the manufacturing process, and is intended to be very fast (1 - 3 cycles). In
addition to having to adopt to the infeasibility of a global data network, we are also faced with the problem of
synchronously broadcasting the SIMD instruction stream across the PE array in a power-efficient manner. At all
stages of design and consideration, wire delays dominated our thinking and drove simplification of the PEs. For
our design, we have restricted the PE size so that a signal can propagate across it in a single cycle.

To simplify the design and minimize complexity, we borrow a similar concept from the interconnect of the
MIT RAW processor. The interconnect was directly wired to the pipeline of each RAW processor tile, supporting
only nearest-neighbor communications and using fixed algorithms to implement more complex routing. However,
because our switches only support single-hop routing and every switch is always communicating in the same
direction, the design/size of our routers is much smaller and simpler and provides communications limited only by
wire delay. We require no substantial buffering or extra support to handle deadlock, livelock, or drain requirements.
We do not use the RAW model of multiple ICN modules within a tile to handle alternatives of static or dynamic
routing, and instead propose simple algorithms for non-nearest-neighbor communications.

In addition to the interconnect simplification, our design uses far fewer cores than the thousands of cores
supported by the MP-1 and CM-2. In which, each PE was only a 1- or 4-bit ALU internally, any given arithmetic
operation (e.g., 64-bit integer add) required the use of several PEs and/or multiple cycles to compute it. Since
process technology allows full 128-bit SSE units to be constructed in a small area, this allows us to provide
semantic compatibility with the host processor and to reduce the number of SIMD PEs needed to achieve high
rates of computation. Finally, the SIMD architecture we present is a first-class citizen with respect to the rest of
the system. The proposed SIMD array directly interfaces the rest of the system through standard virtual memory
interfaces so each PE in the SIMD array can directly access main memory. This is in addition to the private SRAM
each PE has for local data and computation results.

4 Parallel-On-Die Architecture

In this section, we propose a new massively parallel processor architecture called Parallel-On-Die or POD. POD
is a fully integrated processing fabric on a single die based on the Intel 64 ISA and provides best-in-class single-
stream performance for scalar applications as well as a robust parallel SIMD PE array for scalable parallel applica-
tion execution. The high-level block diagram of the POD architecture is illustrated in Figure 1(a). The POD system
will fully boot a normal OS and run every legacy application under that OS without problem, thereby presenting
the SIMD PE array we attach to it as a pseudo-coprocessor.

4.1 Host Processor Core

The principal claim to best-in-class scalar performance is provided by a high performance host core such as a core
from the Intel Core 2 Duo processor. This provides not only flawless single application execution, but also presents
a known, compatible platform to the OS, programmers, and applications to reduce the complexity of bootstrapping
new functionality and applications.

The target SIMD PE array is a sea of n × n tiles, where we show n = 8 in Figure 1(a). The host processor
core is capable of broadcasting instructions, each of which has the same fixed size, as well as broadcasting 64-bit
register values as might be needed for immediates or loop conditions. The PE array generates a flag-tree output
which is tied together logically via OR gates, and routed back to the host.

To allow the addition of a SIMD array while minimally altering the existing Intel 64 ISA, we propose to
add a new instruction prefix byte on existing opcodes to denote a parallel-instruction. When this prefix byte is
encountered, the host core could implement the instruction by one of several methods. The simplest one is to
broadcast it blindly to the POD, but this would require that each PE be able to decode the CISC ISA. A more

5

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

xTLBARB

Host ProcessorLLC

MC

MC

Sy
st

em
 M

em
or

y

1 2 3 45670

IBUS D
at

a
R

et
ur

n

EFLAGS

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

(a) POD Architecture

D

D

D

D

D

D

D

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

����������������

����������������	�	�	
�

�����
�����
���
���

�
�
����������������
�����
���
���

�������������������������������������
�����
���
���

������������� � !�!�!"�"#�#�#$�$%�%�%&�&'�'�'(�(

)�)�)
)�)�)
�
�
+�+�+,�,-�-�-.�./�/�/
/�/�/
0�0
0�0
1�1�1
1�1�1
2�2
2�2
3�3�34�45�5�5
5�5�5
6�6
6�6

7�7�7
7�7�7
8�8
8�8

9�9�9:�:�:;�;�;<�<�<

=�=�=>�>�>?�?�?@�@�@A�A�AB�B�B

C�C�CD�D�DE�E�EF�F�FG�G�GH�H�HI�I�IJ�J�J

K�K�KL�L�LM�M�MN�N�NO�O�OP�P�PQ�Q�QR�R�RS�S�ST�T�T

U�U�UV�V�VW�W�WX�X�XY�Y�YZ�Z�Z[�[�[\�\�\]�]�]^�^�^_�_�_`�`�`

a�a�ab�b�bc�c�cd�d�de�e�ef�f�fg�g�gh�h�hi�i�ij�j�jk�k�kl�l�lm�m�mn�n�n

o�o�op�p�p

0

0

0

0

0

0

0

0

IBUS[0]

EFLAGS

!Memory_fence

(b) One Detailed POD Column

Figure 1: POD Architecture

flexible mechanism is to run a dynamic binary translator or JIT to capture such instructions and selectively decode,
broadcast, and optimize them.

In this work, to avoid the complexity of supporting a new parallel prefix, we instead chose to implement a
handful of new instructions that allow us to send native PE instructions from the host. The details of the instruction
extension will be described in Section 5.1.

4.2 SIMD Processing Element

Each PE tile consists of a high performance arithmetic unit with its own private registers and local SRAM memory
space. To provide a baseline performance level and to support a subset of the host instruction set, we chose to
modify an existing 128-bit SSE engine (including SSE, SSE2 and SSE3) from a contemporary Intel processor.
This approach provides 4-wide SIMD execution units for single-precision IEEE floating point operations, or 2-
wide for double-precision. We also added a fused multiply-add instruction to the SSE instructions to improve
efficiency of the PE resources. By assuming an existing SSE engine design (with extension), we only need to add
the surrounding logic to complete a standalone PE and it minimizes the difference between the host ISA and the
PE ISA. The PE microarchitecture is shown in Figure 2.

As the Figure shows, each PE has two groups of registers including a 32-entry 64-bit general-purpose register
file (r0 - r31) and a 32-entry 128-bit SSE register file (xmm0 - xmm31). While this exceeds the size of Intel
Architecture register files, additional resources may or may not be exposed to a programmer directly. In the future,
a dynamic binary translator could optimize the host processor’s use of the original 16 xmm registers to make use
of the PEs 32 xmm registers. For the purposes of our evaluation, all PE registers are exposed in the POD ISA
during our hand-coded assembly optimizations.

On the input side of the Figure, the PE also contains a Mask Stack, which is to be used for conditional execution
such as if-then-else clauses. Our PE implements a novel way to efficiently execute nested if-then-else clauses,
examples of which are in Section 5. On the execution path, there are three individual pipelines within each PE tile

6

SN E W

G

X

M

SN E W

Local

SRAM

9616

I_bcastEFtree

Stack
Mask

XMM
RegFile

GP
RegFile

EFlags
EFLAGS

78

XS1

RS1

Mem_bcast

Permuation
Queue
Manager

Stream

Controller

XS2

RS2

On/Off

Imm

ALU Xctrl

Perm Xctrl

Decoder

Return Controller
and State

Permuatation

Figure 2: A Processing Element Tile

— one for memory instructions (load, store, etc.) called M-pipeline, one X-pipeline for all SSE instructions, and
one G-pipeline for generic integer non-SSE arithmetic (address calculation, constant generation, mask operations).
Based on a 5 to 7 cycle latency for basic integer and floating point operations in the SSE pipeline and 3 cycles
to local memory, we require between 15-35 registers to keep each PE fully running. Our selection of 32 xmm
registers satisfies the majority of this range, and requires only one extra bit per source-destination register field in
the PE instruction.

Also shown on the top of the Figure, each SIMD PE consists of four unidirectional input point-to-point links
from the North, South, East, and West neighbors and four unidirectional output point-to-point links to the same
neighbors. Each link is 144 bits wide, capable of latching up to 128 bits of data or register value every clock
cycle. The rest of the 16 bits are used only during permutation routing to specify the coordinates of the source
PE and destination PE. The permutation routing will be discussed in Section 4.4. These eight point-to-point links
comprise the data torus for the POD communication patterns. To communicate with main memory, each PE is
further enhanced with two unidirectional memory buses, discussed in Section 4.5.

The PE instructions are broadcast from the host via a special instruction with an immediate data field of 12
bytes. These 12 bytes forms a partially pre-decoded VLIW packet of three instructions (4 bytes per instruction)
that eliminate CISC decoding overhead. Each VLIW packet has a fixed format of one G, one X , and one M

pipeline instruction. Since the execution of PE instructions are broadcast and orchestrated by the host, there is no
need for an instruction cache or associated blocks. Furthermore, since each PE is executing the same instruction
and there is no instruction equivalent to a branch, no branch predictor or associated flush/control logic is required,
keeping the PE small and simple. The salient features of the PE instruction set will be discussed in Section 5.

The needed control logic is made up of processing arriving PE instructions, register file and state access,
the nearest-neighbor North-South-East-West interconnects via muxes, and a private SRAM accesses. Additional

7

modules are included for the permutation routing control logic to implement complex routing patterns between
PEs.

4.3 POD Interconnection Network

In the design of the interconnection network, we investigated two topologies — a 2D mesh and a full torus. We
found that while a 2D mesh connect neighboring PEs is straightforward, it has certain drawbacks related to our
SIMD routing control. Specifically, when an application needs to communicate from edge to edge, it will take
n − 1 hops. Many parallel algorithms naturally rotate data across PEs (see results from the Cannon’s algorithm
used in DenseMMM in Section 6.2). This is a specific problem related to our simplification of the communication
network: because all the switches route in the same direction at the same time, and because there is no dynamic
routing, the extra flexibility of the torus was required.

As shown in Figure 1(a), our proposed design adopts a modified torus network. To minimize latency and
maximize packing, each PE is designed to take less than one clock cycle for a signal to cross the entire PE itself.
Ideally, each PE will be no larger in any direction than 95% of the wire distance in one clock cycle with all
surrounding line drivers, buffers, and so forth. The ordering of the number labels inside the PEs of the top row
in Figure 1(a) indicates the nearest-neighbor connection pattern. In the same way, we lay out the communication
links for each column in the POD (north-south direction). In addition to providing shorter links, such a layout also
leads to a deterministic communication latency.

As mentioned earlier, there are eight physical point-to-point links connected to each PE. At any given moment,
only one direction (input and output) needs to be enabled. Since each nearest-neighbor communication pattern has
a known latency, the links are not enabled during periods of pure computation or during periods when links in the
other direction are not being used. This reduced power profile allows growth of the POD array to be limited only
by the average power consumption of each PE and the manufacturing die reticle. This approach is compared to
other tiled designs such as MIT RAW or TRIPS or where any of the ICN links could be active at the same time
due to dynamic routing.

To enable SIMD-style instruction execution where every PE executes each instruction at the same global clock
cycle, there are two options: (1) execute an instruction immediately upon arrival to a POD row, leading to a North-
South timezone effect, or (2) buffering each arriving instruction for sufficient time such that every PE will execute
the same instruction at the same instant.

The timezone effect can be challenging to work around for programmers and architects, as any given row will
be executing instruction j, while the preceding row is executing j + 1 and the successor row is executing j − 1.
To avoid undesired complexity for programmers, architects, and compilers, we use a buffering model to enable
lock-step execution without suffering from the timezone effect.

Figure 1(b) shows such a model for one single column in the POD. Instructions are broadcast using the IBUS
and are queued before being executed by the PE. It takes f0 cycles to uniformly reach the first row (f0 = 4 when
n = 8), and for n rows, it takes n − 1 cycles before every PE executes the instruction. As shown, the queue size
shrinks monotonically as the location of a PE gets farther away from the host processor. For an n×n POD, where
n = 8, there are 7 entries for the bottom-most core while no queue is needed for the top-most core. The delay units
(D block) are inserted to delay each instruction broadcast in order to synchronize the SIMD execution. Similarly,
when gathering results (e.g., EFLAGS) from PEs, the results from the cores closer to the host processor need to be
delayed and wait in their queue till the farther results arrive for combining. These are depicted in the propagation
paths with correct delay queues on the left-side of Figure 1(b). Compared to previous immediate execution model,
there is zero overhead to the PEs with this implementation, excepting a buffer to hold the instructions broadcast.
The round-trip latency for the host to evaluate conditional loop also remains same, which is, for n rows, 2×(n+fo)
cycles where 2n cycles is consumed for instruction and EFLAGS propagation, and 2fo is fan-in and fan-out latency
between the host and PEs in the first row.

8

4.4 Interaction Among PEs

As mentioned in Section 4.2, each PE has 4 uni-directional input point-to-point links and 4 uni-directional output
point-to-point links. Each link pair implements a nearest-neighbor direct link. These eight links are also arranged
such that they are glue-less drop-in components, with each neighboring PE only requiring direct wiring to complete
the layout. This allows for dense packing, although there is a very high wire count. Note that neighbor-to-
neighbor communication does require neither arbitration nor routing, because it is fully controlled by software.
Consequently, each PE does not need to have buffers for communication, which is known to consume large energy
on packet-switched on-chip interconnection [6].

Each PE can communicate with its nearest neighbor by either directly moving a register value of up to 128
bits, or by transferring memory in 64-bit chunks. In order to support streaming memory behavior between PEs, we
support both single load-store style transfers as well as block-based transfers, with and without striding. Since the
nearest neighbor latency for an interleaved torus is targeted to be two cycles or less, this allows for high throughput
computation even when the algorithm requires neighboring registers and memory values. This is a major contrast
to typical shared-cache interface implementations, where it can take 10 or more cycles to move a value between
cores.

When one PE needs to communicate to another PE in a non-nearest-neighbor fashion, we use the k-permutation
routing [12] in our interconnect design. Rather than provide dynamic wormhole routing hardware support for a
relatively infrequent operation, we propose dedicated algorithms to drive the collective POD muxes into a series of
sweeps to migrate all data to the intended targets. These algorithms require each PE to support n hardware buffer
slots of the bit-size matching the point-to-point link width in an n × n SIMD array.

The basic algorithm proceeds by all PEs send messages to the East, with each message stopping when it
reaches its target column. This takes n − 1 hops and at the end, at most n messages will be buffered in any one
PE. At the end of this sweep, every message in every POD row will be in its target column. If we now apply the
same algorithm to the North, we may require as many as n2 − 1 steps respectively until all the buffered messages
reach their target PE. As messages reach their target PE, they are processed (stored into the appropriate memory
location). This two-phase sweeping algorithm ensures that for any permutation of routing, even all-to-one, all
messages are delivered after a fixed latency. This fixed routing would not be an optimal solution, but each PE only
needs to enable only one link at the same time, which is more energy efficient.

While the fixed latency may be high for such generic routing support, we have made the trade-off to keep
nearest-neighbor communications fast, which is much more frequent event than generic routing. More optimized
row-only and column-only sweeps of just (n − 1) steps are possible for more structured communication to reduce
the high latency of a full any-to-any communication. More details on the permutation routing can be found in
Section A.

4.5 POD and System Memory Interaction

Aside from a 128KB private local SRAM dedicated to each PE, applications must also be able to communicate with
the system memory through normal loads and stores. To manage this interaction, each PE is further enhanced with
two unidirectional buses (MBUS) to the main memory via an interface called the Row Response Queue (RRQ).
One bus streams data back from main memory to the PEs in the row, while the other bus streams data from the PEs
in the row to the main memory. Because system memory operations of all PEs are synchronized, PEs can safely
disable their MBUS and its related logic, to minimize energy consumption, while they are not communicating with
the system memory. The RRQ is the queuing point for transactions in both directions, and in turn is connected to
a memory ring with the host core’s last level cache (LLC) and all memory controllers (MCs).

In our work, the conceptualized ring is composed of four separate rings as shown in Figure 3. There is one
shared data ring, at 66 bytes wide, which represents the actual data to or from the MC one line at a time. There is
a corresponding address ring of eight bytes to indicate what address a request or response payload corresponds to.

9

A
rb

ite
r

MicroCore 0 MicroCore 1 MicroCore (n−1)

Slot 0

Slot 1

Slot (i−1)

Slot 0

Slot 1

Slot (i−1)

Slot 0

Slot 1

Slot (i−1)

(8B)

(2B)

(2B)

(66B)

Address Ring

RRQ Ctrl Ring Data Ring

LLC Ctrl Ring

Mbus

70
+l

og
(i)

+l
og

(n
)

Mbus

Figure 3: The RRQ state machine for queuing PE system memory requests and streaming responses from the MCs.

Then there are two control rings, one for the LLC and one for all RRQs to share. The premise is that the POD will
always be a first-class participant in the memory hierarchy, but a second-class participant to the host core cache
misses. Since every request from an RRQ must be acknowledged, whether positively or negatively, when the LLC
needs to take over the data and/or address ring for higher priority traffic, an arbiter will set the necessary bits in the
RRQ ring for failure and allow the original message to return to the originator for a later retry effort.

One PE in a row can generate up to i requests in the form of load-store traffic to system memory. Therefore,
the RRQ must buffer each request from each PE and service them as it finds free slots on the ring. Each PE will
only be able to use the i buffers reserved for it, since in traditional SIMD execution every PE will generate the
same number of memory access requests at the same moment, varied only by masking controls.

There are separate instructions for loading and storing to local PE memory and for the global system memory.
Different instruction flavors are provided to load/store single words and contiguous or strided block moves. System
memory access use virtual addresses acquired from the host. In order to translate the given virtual address among
all n2 PEs, we share one pipelined TLB external to the host that the host manages. This xTLB in Figure 1(a) need
not be organized along traditional lines since the TLB lookup is not as critical as it is in the host processor – this
allows for a super-pipelined, very high capacity xTLB to be implemented. In the event of a fault or miss event in
the TLB, the host is notified and the request in the RRQ control ring is flagged as a TLB failure. When the host
updates any TLB entry, a dedicated control signal in the RRQ control ring is set to indicate any prior TLB failure
may now retry.

Typically, some form of coherence is essential between the collective POD PE SRAM storage regions and
the system memory. To reduce the complexity and to evaluate the basic performance potential of the proposed
architecture, we avoid coherence problems by requiring that any memory region that may be loaded into the private
POD collective SRAM space to be marked as uncacheable to the host and associated cache hierarchy. While this
leads to lower performance it provides sufficient simplification for our models, and can be improved in our further
work.

10

4.6 Challenges in Integrating with Host Processor

Unlike conventional massive SIMD machines, our POD architecture integrates a massive SIMD PE array with a
modern out-of-order host processor. To ensure the execution correctness, there are two major challenges to be
addressed in the host processor: recovery from mis-speculation and out-of-order dispatch of POD instructions.

To support speculative execution, some recovery mechanism is required to roll the machine back to the correct
architectural state. Unfortunately, implementing recovery mechanism in each PE will add a substantial overhead
to both the area and power. To not complicate the PE design, we enforce the host processor to broadcast POD
instructions in a non-speculative manner. In other words, the POD instructions will not be dispatched from the
host until its corresponding branches are resolved. From performance standpoint, as long as the code that runs on
the host does not depend on the results from the POD, this approach will not degrade the performance.2 Another
issue is that the POD instructions might be re-ordered by the host processor. This will lead to correctness problem,
because PE is ignorant of program order. To prevent this, POD instructions issued by the host are strongly ordered,
similar to store instructions that are not re-ordered in most of the out-of-order implementations.

To address these issues, we propose an IBits queue which is inherently similar to the store queue in an out-
of-order processor. When a SendBits instruction is issued, its 12-byte immediate field (encoding a VLIW POD
instruction) is entered into the IBits queue. Upon the retirement of the SendBits instruction from the ROB, the
corresponding 12-byte immediate value is latched onto the IBUS and broadcast to the POD.

With regard to multi-tasking support, as each PE’s local SRAM is considered part of the architecture state, it
needs to be saved and restored in-between context switches. It needs to be handled in the same way with other
heterogeneous multicores such as the IBM Cell processor. This overhead on POD depends on several parameters
including the size of the LLC, off-chip memory bandwidth, OS scheduling algorithm, etc. The Cell processor
reports 20 µsec overhead for a context switching [2].

4.7 Physical Design Evaluations

In our implementation, we aim for a 3GHz clock speed assuming a 45nm or better process. For this target fre-
quency, the memory ring is capable of up to 192GB/s bandwidth (servicing up to eight 24GB/s MCs before any
modification is required). For an 8 × 8 POD array, with each PE containing 128KB of SRAM, connected in a
torus, the peak performance of single-precision and double-precision IEEE FP operations is 1.5 TFLOPS and 768
GFLOPS, respectively.3

To estimate the overall die size, we use publicly accessible information (based on 65nm Intel Conroe proces-
sor) [28, 14]. First, we evaluate the size of each PE. Using Intel’s Conroe die picture and floorplan, the integer,
SIMD, and AGU pipeline occupies approximately 1.42, 1.36, and 0.14 mm2, respectively, with a total of 2.92mm2

in size. The process scaling factor from 65nm to 45nm is 1.44 under perfect conditions, but we assume the scaling
of these logic blocks is imperfect to an error of 50% for making conservative estimates. These same units will
amount to approximately 2.1mm2 in 45nm.

For the area of each PE’s local SRAM, according to Intel’s published data [1], each SRAM cell at 45nm is
approximately 0.346µm2. A single-ported 128KB SRAM will be roughly 0.363mm2. Since our basic 128KB
PE SRAM contains 2 Read/Write ports, one Read port and one Write port, we estimate the entire SRAM to be

2Note that this is the case for all of our benchmark programs except k-means. The host processor does not issue any data-dependent
instruction that reads data updated by the POD immediately for these benchmark programs. This event is extremely rare even in k-means
simulation.

3Here are more analytical comparison between POD and IBM Cell. IBM’s Cell has a theoretical SP floating-point capacity of 256
GFLOPS for 8 SPE units at 4GHz in a 90nm process [26]. For a fair comparison with our 8 × 8 POD, we assume that the SPE SRAM
is halved to 128KB and has a perfect shrink with a 2x feature reduction for a 4x increase in number of SPEs, the maximum theoretical
performance at 4GHz jumps to 1024 GFLOPs. However, again for fair comparison, the Cell speed should be reduced to our target 3GHz
for a peak performance of 768 GFLOPs using all 8 SPEs. In contrast, we attain twice the performance at 1.5 TFLOPs, all while using a
simpler PE design, clocking model, and programming model.

11

1.09mm2. The areas of the two register files and one 32-entry RRQ with 75 bytes each compared to the local
SRAM will be insignificant.

Based on these projections, one single PE will occupy around 3.2mm2. In other words, the entire 8× 8 SIMD
PE array will amount to 205mm2. Each RRQ, given the complexities of the various bus wirings and the ring
interfaces, we allot an equal area on par with each PE. The total RRQ space is approximately 25.6mm2. For
the host processor, we simply scale the 36mm2 of one single core in Conroe with the same scaling and fudge
factors for 45nm process, the new core is approximately 25.9mm2. The 3MB LLC is estimated 20mm2 using the
same 45nm SRAM data aforementioned. Therefore, the entire processor will amount to (205+25.6+25.9+20) =
276.5mm2 without accounting for on-die integrated memory controllers.

5 ISA Support and Programming Model

5.1 ISA Support for Host Core

The SIMD execution inside the POD is completely managed by the host processor. To enable this, we propose
extending the host core with five new instructions and modifying three others. Our new instructions are:
• SendBits, to broadcast instructions to the POD;
• GetFlags, to obtain the return status;
• DrainFlags, which assures that the initial setup of a known state in the flag tree is complete;
• SendRegister, to broadcast a host register value to every PE;
• GetResult, to obtain a return buffer value from the POD without using system memory as a go-between.

The three modified host instructions are the various Fence operations (Load, Store, and combined) that are extended
to monitor the return status of the POD’s memory interface system. Every other modification that our system
requires is external to the host core and LLC.

5.2 ISA Support for POD PE

The instruction set of the PE supports typical integer ALU, memory, and SSE instructions. The integer and logical
instructions operate on (32) 64-bit general-purpose registers while the SSE engine can address (32) 128-bit xmm
registers. There are a variety of memory operations supported in the PE including regular load/store instructions,
strided or contiguous block move instructions, and conditional-move instructions. Several versions of memory
instructions are provided to allow data accesses from/to local SRAM, remote SRAM on another PE, and system
memory. Details on the instruction set of POD can be found in Section E.

To allow multi-level conditional execution in the PE (nested if-then-else’s and while-loops), we provide two
types of masking instructions — pushmask and popmask. Inside each PE, there is a 64-bit mask register that the
mask instruction modifies to keep track of the nested conditional state. The MSB of the mask register indicates the
masking (on or off) for the current level of a nested control — this allows a PE to selectively turn itself on or off
during the broadcast of instructions from the host. Conditions are determined by flag values which are generated by
separate compare operations and their EFLAG results. By turning on and off PEs, it is possible to make only some
of the cores execute a certain instruction. When entering a new conditional region, pushmask shifts down all the
bits in the mask register for each PE and sets the MSB of the mask register to the new test condition. Whenever
leaving a conditional region, the popmask instruction pops one bit out of the mask register and restores the prior
state by shifting up. This provides up to a 63-levels of if-then-else or general conditional clauses. If necessary,
the programmer or compiler can push or pop the mask register to the system memory or private SRAM to enable
higher levels of nesting.

12

$ASM sub8sx r2 = r2, r2
for (int i=0; i<npeX; i++) {

$ASM add8sx r2 = r2, r1
$ASM xfer.e r1 = r1

}
$ASM sub8sx r1 = r1, r1
$ASM add8sx r1 = r1, r2
for (int i=0; i<npeY; i++) {

$ASM xfer.n r1 = r1
$ASM add8sx r2 = r2, r1

}

Figure 4: Code Example for POD (Reduction)

5.3 Mixed Instruction Stream

An example of the basic programming model for our POD prototype is shown in Figure 4. Lacking a comprehen-
sive compiler for this architecture, we use pseudo-C code consisting of conventional C code for the host core and
annotated inline POD assembly for the SIMD PE array.

Our current POD compiler (implemented with a pre-processing script and runtime library), captures this di-
rective and generates the corresponding SendBits instructions as described in Section 5.1. The host processor is
responsible for decoding normal CISC instructions. Once it detects a SendBits instruction, the following 96bits
comprising our RISC-style VLIW instruction packet will be forwarded to the unit that is responsible for IA-POD
instruction broadcast to the SIMD PE array. Programmers or compilers are required to explicitly generate the code
for the PE array. An example code can be found in Section D.

Since the latency of all non-system-memory instructions, inter-core communication, and communication be-
tween the host and PE are all determined statically, this programming model is generally free from unrepeatable
behavior, difficult debugging, locking, etc. The only unpredictable communication latency is the latency to or from
system memory. When references are made to system memory, the host must issue a barrier instruction (one of
the host’s modified fence operations) before PEs can access the results.

5.4 Inter-PE Communication

Communication between PEs are explicitly specified by the programmer or compiler as shown in Figure 4. While
this requires more up-front algorithmic work than an SMP model, it makes the resulting code much easier to debug.
Additionally, since the latency of inter-PE communications is so low, Amdahl’s law effects are much less prevalent
than they are in longer-latency cache-based designs.

6 Experimental Results

6.1 Simulation Framework

A cycle-level POD simulator was developed to carry out our performance study. The simulator can sustain ap-
proximately 30 KIPS simulation throughput on a 3.4GHz Intel Xeon workstation. When simulating a full 8 × 8
POD, our effective simulation rate is approximately 2 MIPS on the same workstation. The feature of not having a
complicated instruction fetch/decode mechanism, as well as the lack of control flow, branch prediction, and cache
effects on the POD enables us to attain such high simulation speed.

Our compiler and simulator are tightly coupled — the compiler takes the application code and generates a
native Intel binary. The x86 instructions of the host processor are natively executed on the Xeon workstation while
the POD instructions are translated by a script, passed through a dependency checker, and simulated.

13

This library models every single feature of the PEs and memory subsystem, including an accurate modeling
of on-chip and off-chip communication bandwidth. Yet there are certain limitations in our simulation framework.
First, we did not measure the overheads incurred by the host processor such as Icache misses, branch mispredic-
tions, TLB misses, etc. as they do not affect our results significantly. In general, the scalar code running on the x86
host processor should have negligible overheads to our target applications that exploit large data-parallelism on
the PE array. Second, we did not model the LLC takeover of the MC ring for the host processor to access system
memory, nor did we model the xTLB faults from address translations. Given these activities are very rare with the
workloads and datasets we used, they should dramatically change our results. Details on PODSIM can be found
in Section B.

6.2 Performance Evaluation

To evaluate the performance of POD architecture, we ported several data-parallel benchmark programs (Table 1)
using inline assembly. Table 2 shows achieved GFLOPS4 and relative performance improvement normalized to
the performance result of 1 × 1 POD as the number of PEs increases. (Full simulation results can be found in
Section C.) In this simulation, we aggressively model off-chip DRAM bandwidth as 4×32 GBps (four on-chip
memory controllers where each can provide 32 GBps bandwidth.)5 and DRAM latency as 50 ns. To factor out
performance improvement due to larger on-chip memory as the number of PEs increases, we assume that aggregate
size of the on-chip memory remains the same regardless of the number of PEs. For example, in our simulations,
a PE of 1 × 1 POD has 8MB of local SRAM, while each PE of 8 × 8 POD has 128KB SRAM only. Our goal is
to implement an 8× 8 POD, and we conservatively assume that the access latency of 8MB SRAM is equivalent to
that of a 128KB SRAM, which is 3 cycles for load or 1 cycle for store. Note that, in reality, the access time of an
8MB SRAM of our baseline, a 1 × 1 POD, will be slower, which will further boost the speedup of our results.

The first application, DenseMMM, which represents the main computation kernel in many linear system prob-
lems, shows very good scalability, although it requires a lot of communication between the neighboring PEs. This
is because, at each computation stage, DenseMMM only requires one-hop communication, a much cheaper oper-
ation (2 cycles) on POD than on a MIMD-CMP. Moreover, this communication can be easily overlapped with the
computation. DenseMMM is very computation-intensive, and it achieves overall 870.8 GFLOPS on 64 PEs.6 The
reason why the performance does not show an ideal linear speedup is that the efficiency of each PE goes down,
although not severely, as the working set of each PE becomes smaller when we increase the number of PEs.

The second application, FFT, is a highly communication-intensive program. To demonstrate how effectively
4We count each add, sub, mul, div, max, min and cmp as one floating point operation, and fma (multiply and add) as two.
5Cell BE’s on-chip memory controller supports 25.6 GBps of off-chip memory bandwidth.
6In fact, it achieves 1.06 TFLOPS of IEEE single precision floating point operations during main computation. The 870.8 GFLOPS

result took the overhead of loading input and writing-back output into account.

Name Description
DenseMMM 512×512 Dense Matrix-Matrix Multiplication (based on Cannon’s algorithm [21])
FFT 1024-point 1D complex number Fast Fourier Transform
IDCT IEEE 1180 8×8 Inverse Discrete Cosine Transform used in MPEG2 decoder of Media-

Bench [20]
OptionPricing A financial application that computes the risk of a portfolio by projecting future option

prices
DownSampling 2:1 down-sampling over a 2112×2112 image
K-means A mean-based data clustering application of Minebench [23] (Default input data set, 17695

data points in 18 dimensional space, is used.)

Table 1: Benchmark

14

Name # of PEs GFLOPS Speedup

DenseMMM

1 16.3 1.0
4 64.4 3.9

16 248.4 15.1
64 870.8 52.3

FFT

1 3.2 1.0
4 16.3 5.1

16 49.6 15.4
64 113.6 35.3

IDCT†

1 3.9 1.0
4 14.9 3.9

16 51.8 13.4
64 134.8 34.9

OptionPricing

1 13.4 1.0
4 53.8 4.0

16 215.1 16.0
64 860.2 64.0

DownSampling

1 1.9 1.0
4 7.4 4.0

16 29.1 15.6
64 97.2 52.1

K-means

1 8.3 1.0
4 33.1 4.0

16 131.6 15.8
64 504.6 59.1

† Double precision floating point operations

Table 2: Performance Improvement

PEs exchange data, we choose a small input size (1024 points) so that the communication overhead cannot be
hidden by the computation. Clearly, as the number of PEs increases, communication overhead becomes dominant,
but we can still achieve very good performance improvement due to our high efficiency communication archi-
tecture. Another reason of the sub-linear speedup is that at each phase of the computation in our current FFT
implementation, we only use one half of the PE array due to the nature of the algorithm. This inefficiency becomes
more dominant as the number of PEs increases. The third reason is that overhead of loading input values becomes
more outstanding as the main computation time decreases due to an increased number of PEs used. Note that
the single chip performance improvement of our POD (64 PEs) is 35 times while that of MIMD-CMP with eight
full-blown out-of-order cores will be at most 8 times. Figure 5 shows the active time of inter-PE point-to-point
links with respect to the overall execution time for PODs with difference sizes. Only those applications that use
inter-PE communication in our simulations are shown in the figure. As shown, although FFT is a well-known
communication-intensive application, synchronized computation and communication model of POD makes it pos-
sible to disable its point-to-point links for more than 95% of the total execution time, thus minimizing the energy
consumption of the communication links. Note that our MIMD-based many-core counterpart will not be able to
disable their routers and wires due to the unpredictable nature of their interconnection.

The third application is IEEE 1180 8×8 2D IDCT, which is used by the MPEG2 decoder. According to our
profiling result, more than 80% of the total execution time of the MPEG2 decoder are spent inside the IDCT block.
As shown in Table 2, POD with 64 PEs can improve IDCT performance only by around 35 times even though this
application does not have inter-PE communication and can fully utilize the PE array. This sub-linear speedup is
caused by the fact that the working set of this application is very small, so time to broadcast input from the host

15

0%

1%

2%

3%

4%

5%

N E W S N E W S N E W S

A
ct

iv
e

tim
e

1x1 POD 2x2 POD 4x4 POD 8x8 POD

DenseMMM FFT K-means

Figure 5: Point-to-point Links Active Time

processor to the PE array becomes dominant. Again, 35 times speedup with 64 PEs is still much bigger than eight
times speedup that MIMD-CMP can achieve at best.

The fourth application, OptionPricing, is a computation-intensive application which shows very good data-
level parallelism, and does not require any inter-PE communication. Furthermore, its computation is very heavy
compared to system memory load overhead, thus its performance can be improved very well on POD as shown in
Table 2, and it achieves 860.2 GFLOPS with 64 PEs.

In contrast, the performance of DownSampling does not scale well, in spite of its very good data-level par-
allelism and no inter-PE communication. Although it computes approximately 7 million 1×7 convolutions, this
application becomes memory-intensive as the number of PEs increases. To quantify the effect of memory band-
width, we also performed sensitivity study with different off-chip memory bandwidth. Although we performed
this sensitivity study for all benchmark applications, here we only show the results of three applications, which
are sensitive to the off-chip memory bandwidth. As shown in Figure 6, especially in DownSampling, we might
not be able to efficiently utilize all 64 PEs, if the off-chip memory bandwidth is not high enough. Clearly, off-chip
memory bandwidth is one of the biggest problems that we need to solve in future many-core architectures.

The last application, K-means, is arguably the most commonly used clustering algorithm in data mining [27].
This application is again very computation-intensive, while it requires large-scale global reduction to synchronize
the computation results at the end of each computation phase. However, this communication is not significant
compared to its heavy computation, thus it shows near-linear speedup as shown in Table 2, and achieves 504.6
GFLOPS with 64 PEs. The active time of point-to-point links is found to be less than 1% of the overall execution
time as shown in Figure 5.

4
16

64

1 x 8
GBps

1 x 16
GBps

1 x 32
GBps

2 x 32
GBps

4 x 32
GBps

1 x 8
GBps

1 x 16
GBps

1 x 32
GBps

2 x 32
GBps

4 x 32
GBps

1 x 8
GBps

1 x 16
GBps

1 x 32
GBps

2 x 32
GBps

4 x 32
GBps

S
pe

ed
up

1x1 POD 2x2 POD 4x4 POD 8x8 POD

DenseMMM FFT DownSampling

Figure 6: Memory Bandwidth Sensitivity

16

7 Conclusions

In this paper, we re-evaluate the SIMD computation paradigm in a new many-core architecture called Parallel-
On-Die (POD) which integrates a sea of SIMD PE array into a host processor with minimally new instruction
support to enable highly parallel processing. Our POD architecture fills a vital gap between the very general
MIMD-style CMPs that work well on transactions and multi-programming workloads and the highly specialized
processors used for media and graphics-oriented workloads. The SIMD designs also have the advantage that they
are substantially good fits for implementing highly parallel versions of CISC instruction sets without having to
pay the CISC penalty on every processing element. In other words, as one scales a SIMD array to larger sizes,
the inefficiencies of the base architecture will be largely hidden, thus making the designs both compatible with
existing ISAs and power/performance competitive with more specialized engines.

With the POD-style implementation, it becomes feasible to have both best-in-class scalar performance and
extremely efficient scalable parallel performance on a single-die processor with minimally modified instruction
set. As shown in our experimental results, single-chip performance of the POD is much higher than that of its
MIMD counterpart for several applications ported onto our POD architecture, and POD can efficiently suppress
energy consumption on its interconnection. As the industry moves toward the era of 10 billion transistor single-
chip processor, the POD architecture will provide a highly scalable, energy/area efficient, and complexity-effective
solution.

References

[1] Intel corporation, http://www.intel.com/technology/silicon/new 45nm silicon.htm.

[2] Meet the Experts: Alex Chow on Cell Broadband Engine programming models, http://www-
128.ibm.com/developerworks/power/library/pa-expert8/.

[3] Massively Parallel Digital Video. Microprocessor Report, January 2006.

[4] J. H. Ahn, W. J. Dally, B. Khailany, U. Kapasi, and A. Das. Evaluating the Imagine System Architecture. In
Proc. of the Int’l Symp. on Computer Architecture, 2004.

[5] T. Blank. The MasPar MP-1 Architecture. In Proceedings of COMPCON, Spring 1990.

[6] S. Borkar. Networks for Multi-core Chip–A Controversial View. In 2006 Workshop on On- and Off-Chip
Interconnection Networks for Multicore Systems, 2006.

[7] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore, C. Peterson, J. Pieper,
L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp: An integrated solution to high-speed
parallel computing. In Supercomputing ’88, pages 330–339, 1988.

[8] W. J. Bouknight, S. A. Denenberg, D. F. McIntyre, J. M. Randall, A. H. Sameh, and D. L. Slotnick. The Illiac
IV System. In Proceedings of IEEE, April 1972.

[9] A. A. Chien and J. H. Kim. Planar-adaptive routing: Low-Cost adaptive networks for multiprocessors.
Journal of the ACM, 42(1):91–123, 1995.

[10] A. Duller, G. Panesar, and D. Towner. Parallel processing-the picochip way. Communicating Processing
Architectures, pages 125–138, 2003.

17

[11] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan, G. Lowney, M. Mattina,
and S. A. Tarantula: a vector extension to the alpha architecture. In Proc. of the Int’l Symp. on Computer
Architecture, 2002.

[12] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl, and J. F. Sibeyn. Packet routing in fixed-connection networks:
A survey. Journal of Parallel and Distributed Computing, 54(2):77–132, 1998.

[13] H. P. Hofstee. Power Efficient Processor Architecture and The Cell Processor. In Proc. of the Int’l Symp. on
High Performance Computer Architecture, 2005.

[14] http://www.sandpile.org.

[15] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany. The Imagine Stream Processor. In
Proceedings of the International Conference on Computer Design, 2002.

[16] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy Characterization of a Tiled Architecture Processor
with On-Chip Networks. In Proceedings of the 8th International Symposium on Low Power Electronics and
Design, 2003.

[17] M. Kumar, Y. Baransky, and M. Denneau. The GF11 Parallel Computer. Parallel Computing, 19(12):1393–
1412, 1993.

[18] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-core Architectures: Understanding
Mechanisms, Overheads and Scaling. In Proc. of the Int’l Symp. on Computer Architecture, 2005.

[19] H. T. Kung. Why Systolic Architectures. IEEE Computer, 15(1):37–46, 1982.

[20] C. Lee, M. Potkonjak1, and W. H. Mangione-Smith. MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. In Proceedings of the International Symposium on Microarchi-
tecture, 1997.

[21] F. T. Leighton. Introduction to parallel algorithms and architectures : arrays, trees, hypercubes. Morgan
Kaufmann, 1992.

[22] MasPar. Maspar programming language (ansi c compatible mpl) reference manual.

[23] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, J. Pisharath, G. Memik, and A. Choudhary. MineBench: A
Benchmark Suite for Data Mining Workloads. In Proc. of the Int’l Symp. on Workload Characterization,
2006.

[24] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In ISCA, pages
206–218, 1997.

[25] B. Parhami. SIMD Machines: Do They Have a Significant Future? In Proceedings of SIGARCH, 1995.

[26] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty,
Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel,
T. Yamazaki, and K. Yazawa. The Design and Implementation of a First-Generation CELL Processor. In
Proceedings of the 2005 IEEE International Solid-State Circuits Conference, 2005.

[27] J. Pisharath, Y. Liu, W. keng Liao, G. Memik, and A. Choudhary. NU-MineBench: Understanding the
Performance and Scalability Characteristics of Data Mining Algorithms. Technical Report CUCIS-2004-05-
001, Center for Ultra-Scale Computing and Information Security, Northwestern Univ., 2004.

18

[28] K. Puttaswamy and G. H. Loh. Thermal Herding: Microarchitecture Techniques for Controlling HotSpots in
High-Performance 3D-Integrated Processors. In Proc. of the Int’l Symp. on High Perf. Computer Architecture,
2007.

[29] S. Rixner, W. J. Dally, U. Kapasi, B. Khailany, A. Lopez-Lagunas, P. Mattson, and J. D. Owens. A
Bandwidth-Efficient Architecture for Media Processing. In Proc. of the Int’l Symp. on Microarchitecture,
1998.

[30] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R. Moore.
Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture. In Proc. of the 30th Int’l Symp.
on Computer Architecture, 2003.

[31] H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Chaves Filho. MorphoSys: an integrated recon-
figurable system for data-paralleland computation-intensive applications. IEEE Transactions on Computers,
49(5):465–481, 2000.

[32] D. L. Slotnick, W. C. Borck, and R. C. McReynolds. The Solomon Computer. volume 22, pages 97–107,
1962.

[33] M. Taveniku, A. Ahlander, M. Jonsson, and B. Svensson. The VEGA Moderately Parallel MIMD, Moder-
ately Parallel SIMD, Architecture for High Performance Array Signal Processing. In International Parallel
Processing Symposium, 1998.

[34] M. Taylor, S. Amarasinghe, and A. Agarwal. Scalar Operand Networks. In IEEE Transactions on Parallel
and Distributed Systems, 2005.

[35] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffmann, P. Johnson, J.-W.
Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and
A. Agarwal. The Raw Microprocessor: A Computational Fabric for Software Circuits and General Purpose
Programs. IEEE Micro, Mar/Apr, 2002.

[36] L. W. Tucker and G. G. Robertson. Architecture and Applications of the Connection Machine. In IEEE
Computer, August 1988.

19

A Permutation Routing

The interconnection network of POD is designed to make frequently used communication, i.e., the neighbor-
to-neighbor communication, fast to reduce the area and energy required. It is thus unoptimized for rarely used
communication, which in turn is performed by using the permutation routing algorithm briefly explained in Sec-
tion 4.3. In this appendix, we elaborate the permutation routing algorithm of POD in further details. Although
it is assumed that PEs are connected with a 2D torus, their layout is shown in a normal order to simplify our
explanation. Note that, however, they are laid-out as explained in Section 4.3.

The notation we used is shown in Figure 7. The numbers on the upper left corner of each PE is the ID of each
PE. A small box on the upper right corner of each PE represents a communication message between 2 PEs and
the two numbers inside the box represents an ID pair of the source and destination PE. The lower right side of
each PE represents permutation queue shown in Figure 2, and the lower left side of each PE represents its local
SRAM, where the transferred messages will eventually be stored. For example, PE15 in Figure 7 has received a
store request from PE1 to PE15, has buffered one message from PE12 to PE3, and has already stored values from
PE2 and PE3 to itself.

15 1->15

2->15
3->15

12->3

ID of each PE

A message
being forwarded

Four entries of
permutation queueMessages stored in

local SRAM

Figure 7: Notation for a PE

Figure 8(a) shows an example of a store operation among PEs. Initially, each PE starts to transfer a message to
its own destination. In the first phase of the permutation routing algorithm, each PE sends their message toward the
East, and each message will stop and be locally queued when it reaches its target column. Figure 8(b), Figure 8(c)
and Figure 8(d) shows the location of messages at each stage of the first phase. For example, a message from PE1
to PE15 is transferred to PE2 at the first hop (Figure 8(b)), to PE3 (Figure 8(c)) at the second hop, and stops at PE3
(Figure 8(d)) after the second hop. In contrast, a message from PE2 to PE15 is transfered to PE3 (Figure 8(b)) and
stops at PE3 and is queued in its permutation queue (Figure 8(c)) after the first hop.

Note that only one point-to-point link (East link) is used during this first phase. Due to this characteristic, each
PE only needs to enable East link during this phase, and it only needs to decode one message at a time. To buffer
these messages, each PE on n × n PE array needs to have n entries in its permutation routing queue. Although
this approach might not be optimal with respect to latency, this approach makes it possible to save both space and
energy which might be consumed on a mesh-based MIMD-based CMP. For example, each PE on the POD does

20

not need to keep track of messages coming from all different directions, handle link contention, have large buffer
spaces to store them temporarily, and handle overflow problems of this buffer.

The second phase of this algorithm is similar to its first phase. Instead of sending messages to the East,
now each PE sends messages to the North. Because each message has been forwarded to the column which its
destination belongs to, this message can be transferred to the destination after this successive forwards to the North.

Figure 9 represents the communication pattern to forward messages buffered in the first slot of permutation
queue. To forward these messages to the destination, it takes n steps of communication on n × n PE array as
shown in Figure 9. Forwarding messages in the second, third and fourth slots of permutation queue takes another
n steps respectively as shown in Figure 10, Figure 11, and Figure 12.

The reason why messages in different slots of the permutation queue are forwarded separately even though
communication link often becomes idle is to avoid link contention. For example, PE3 can forward a message (PE2
to PE15) to PE7 at stage North3 (Figure 9(c)), because its communication link to PE7 is idle. If PE3 forwards it,
it will eventually be forwarded PE11 and PE15 at stage North4 (Figure 9(d)) and North5 (Figure 10(a)). How-
ever, PE11 also wants to forward another message (PE10 to PE7) to PE11 and PE15 simultaneously as shown in
Figure 9(d) and Figure 10(a). This means these two messages need to contend with each other to grab the commu-
nication link, and one of them needs to be stored somewhere. This will require another complicated control logic,
which we want to avoid to make each PE small. The bigger a PE is, the longer neighbor-to-neighbor communica-
tion latency will become. Eventually, this will penalize the latency of our much more common communication.

Note that this two-phase sweeping algorithm ensures that any permutation of routing, even all-to-one, is guar-
anteed to be finished after the same amount of a fixed latency. Although this might not be an optimal, this is highly
space/energy efficient. More optimized row-only and column-only communication (n − 1 steps) for communi-
cation among PEs within same row or same column are possible to reduce the high latency of a full any-to-any
communication.

21

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 30->15 1->15 2->15 3->15

4->12 5->9 6->14 7->11

8->15 9->11 10->7 11->3

12->3 13->2 14->1 15->0

(a) Initial Request

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 30->15 1->15 2->15

3->15

4->12 5->9 6->14 7->11

8->15 9->11 10->7

11->3

12->3 13->2 14->115->0

(b) East1

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 30->15 1->15

2->15
3->15

4->12 5->9 6->14 7->11

8->15 9->11

10->7
11->3

12->3

13->2

14->1

15->0

(c) East2

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3 0->15

1->15
2->15
3->15

4->12 5->9 6->14 7->11

8->15

9->11
10->7
11->3

12->3

13->2

14->1

15->0

(d) East3

Figure 8: The First Phase

22

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15
1->15
2->15

3->15

4->12 5->9 6->14 7->11

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11

(a) North1

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15
1->15
2->15

3->15

4->12

5->9

6->14

7->11

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11

(b) North2

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15
1->15
2->15

3->15

4->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11

7->11

(c) North3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15
1->15
2->15

3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11

7->11

(d) North4

Figure 9: The Second Phase — for Permutation Queue Slot 0

23

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15
1->15

2->15

3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11

7->11

(a) North5

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15
1->15

2->15

3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11

7->11

(b) North6

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15
1->15

2->15

3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11

7->11

(c) North7

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15
1->15

2->15
3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11

7->11

(d) North8

Figure 10: The Second Phase — Permutation Queue Slot 1

24

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15

1->15

2->15
3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11
7->11

(a) North9

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15

1->15

2->15
3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11
7->11

(b) North10

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15

1->15

2->15
3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11
7->11

(c) North11

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15

1->15
2->15
3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11
7->11

(d) North12

Figure 11: The Second Phase — Permutation Queue Slot 2

25

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15

1->15
2->15
3->154->12

5->9

6->14

8->15

10->7

11->3

12->3

13->2

14->1

15->0

9->11
7->11

(a) North13

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15

1->15
2->15
3->154->12

5->9

6->14

8->15

10->7

11->3
12->3

13->214->115->0

9->11
7->11

(b) North14

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15

1->15
2->15
3->154->12

5->9

6->14

8->15

10->7

11->3
12->3

13->214->115->0

9->11
7->11

(c) North15

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0->15

1->15
2->15
3->154->12

5->9

6->14

8->15

10->7

11->3
12->3

13->214->115->0

9->11
7->11

(d) Final result

Figure 12: The Second Phase — Permutation Queue Slot 3

26

B PODSIM

B.1 Objectives

Three major objectives were taken into consideration when PODSIM was initially designed. The first one was
to provide a framework for cycle-level simulation. PODSIM simulates all behaviors of PEs’ execution units,
communication-relative logic, RRQs, and MCs. Furthermore, bandwidth of interconnections including iBus, inter-
PE point-to-point links, Mbus, on-chip ring, and off-chip memory interconnection is modeled.

The second objective is to make it to be easily attached to an out-of-order host processor simulator. To make
the porting easy, PODSIM provides an interface that mimics new and modified instructions of the host processor
described in 5.1. All the host processor simulator required to do is to execute these instructions by calling these
functions of PODSIM, which provides the execution latencies of these instructions.

The third objective is to make it as flexible as possible so that it can be easily configured for exploring the trade-
off of design constraints, e.g. execution latency of instructions, the number of PEs, etc. Our current implementation
provides this flexibility by using single unified header file that is used by all the simulator code. Every single
feature that might be modified at the design-time is modeled as hash-defined variable, and the simulator can be
easily reconfigured at the compile time.

B.2 IA-POD Translation

PODSIM is tightly coupled with its compiler — the compiler takes the application code and generates a native Intel
binary. As shown in Table 3, PODSIM compiler translates assembly code written by a programmer into a function
call, POD sendibits, which drives PODSIM.7 In addition to assembly translation, PODSIM compiler also bundles
instructions into one VLIW instruction bundle, checks dependencies between VLIW instruction bundles, and
generates warning messages if necessary.

B.3 Simulation Model and Limitation

PODSIM only simulates POD instructions, which run on the PEs. It does not simulate instructions executing
on the host processor. For example, lines starting with the $ASM directive in Table 3 are POD instructions
and are simulated by PODSIM. However, other normal C code will be executed by the host processor, which
are not simulated by PODSIM. Instead, to drive our PODSIM, these instructions run on the native machine that
simulates PODSIM. That means, instructions of the host processor are not simulated but executed to drive PODSIM
(Figure 13). For example, translated code in Table 3 is the top-level code of PODSIM, and it runs on the native
machine, but it performs simulation to calculate the latency of POD code whenever it executes POD sendibits
function.

Clearly, this simulation model has some limitations. First of all, current simulation model does not account for
overheads incurred by the host processor. ICache misses of the host processor can make the host processor wait
until the target instructions are ready. However, this inaccurate model is not likely affect our current simulation
result much, because the instruction size of applications reported in this paper is not big enough to generate ICache
misses. Branch mispredictions of the host processor is not modeled either. However, branches of the data-parallel
applications that run on the host processors are usually loop-related branches or function calls, which are easily
predicted. TLB misses are not modeled either, but this is not expected to hurt our simulation result because this is
rare event.

Second, current PODSIM does not model the LLC takeover of the MC ring for the host processor to access
system memory, because it does not have any host processor model. Given these activities are very rare with the
workloads and datasets we used, they should not dramatically change our results.

7POD sendibits takes three parameters, which are binary codes of three RISC-type instructions.

27

vo id e u c l i d d i s t 2 p o d (i n t numdims) {
i n t i ;

i n t loop count ;

. . .

f o r (i = 0 ; i < numdims ; i +=4) {
$ASM pfpsub . pack . sp pt0 dim = pt0 dim , c l d im

$ASM pfpsub . pack . sp pt1 dim = pt1 dim , c l d im

$ASM pfpsub . pack . sp pt2 dim = pt2 dim , c l d im

$ASM pfpsub . pack . sp pt3 dim = pt3 dim , c l d im

$ASM pfpsub . pack . sp pt4 dim = pt4 dim , c l d im

$ASM ldxmm ++. pack c l d im = l o c a l [c l p t r] , s i x t e e n g r

. . .

$ASM pfpfma ++. pack . sp d is tance4 + = pt4 dim , pt4 dim

$ASM ldxmm ++. pack pt4 dim = l o c a l [p t 4 p t r] , s i x t e e n g r

}

. . .

}

vo id e u c l i d d i s t 2 p o d (i n t numdims) {
i n t i ;

i n t loop count ;

. . .

f o r (i = 0 ; i < numdims ; i +=4) {
POD sendibi ts (0 x00000000 , 0 x21102102 , 0 x00000000) ;

POD sendibi ts (0 x00000000 , 0 x21103182 , 0 x00000000) ;

POD sendibi ts (0 x00000000 , 0 x21104202 , 0 x00000000) ;

POD sendibi ts (0 x00000000 , 0 x21105282 , 0 x00000000) ;

POD sendibi ts (0 x00000000 , 0 x21106302 , 0 x21101204) ;

. . .

POD sendibi ts (0 x00000000 , 0 x1010b30c , 0 x21106484) ;

}

. . .

}

Before translation After translation

Table 3: IA-POD Translation

B.4 Usage

Using PODSIM is quite simple. One just needs to write POD code starting with appmain() function8 , compile it
using a provided shell script, and simulate it using a generated objective file.

gensim [npeX] [npeY] [nMC] [ifDebug] [file list]

npeX: # of PEs in X dimension
npeY: # of PEs in Y dimension
nMC: # of Memory Controllers
ifDebug: 0 if non-debug mode, 1 if debug-mode

For example, to simulate FFT code on a 4 × 4 POD with 2 memory controllers in non-debugging mode, one
needs to execute the following.

8instead of normal main() function

28

Start

Read next line

x86 instruction?

x86 instruction?

Simulate it on PODSIM

Translate IA-POD assembly

Execute it on the native machine

End

End of file?

End of simulation?

Read next instruction

Yes

Yes

Yes

Yes

No

No

No

No

P
O

D
S

IM
 com

pilation
P

O
D

S
IM

 sim
ulation

Figure 13: PODSIM Simulation Model

gensim 4 4 2 0 fft.c fft.h

To simulate the code, one just needs to run generated object code, called podsim.

B.5 Debugging Support

PODSIM also supports a debugging mode to help programmers debug their code easily. Easier debugging is
another attractive feature of both POD itself and PODSIM. To run it in debugging mode, one needs to compile the
code in debugging mode, and execute podsim.

PODSIM supports breakpointing, stepping through code, skipping code without breakpointing, and looking up
register values and memory values. Details can be found once debugging-mode podsim is executed or in Table 4.
By looking at register values or memory values, programmers can understand architectural status of all PEs at
once.

B.6 Simulation Speed

Last, but not least feature of PODSIM is its FAST simulation! The simulator can sustain approximately 30 KIPS
simulation throughput on a 3.4GHz Intel Xeon workstation. When simulating a full 8 × 8 POD, our effective
simulation rate is approximately 2 MIPS on the same workstation. The feature of not having a complicated

29

h To see t h i s usage .

b<pc> reakpo in t : To set a breakpo in t (Cur ren t ly , on ly one breakpo in t i s supported s imu l taneous ly .)

c <C>ont inue : To execute one i n s t r u c t i o n bundle

g <G>o : To execute i n s t r u c t i o n bundles u n t i l a breakpo in t i s met

s<cnt> <S>k i p : To sk ip<cnt> i n s t r u c t i o n bundles

v <V>im : To vim the a p p l i c a t i o n code (tmpbu i ld / podsim . cpp)

gr<num> <G>r : To read gr<num>s

x1<num> <X>mm: To read xmm<num>s i n char format

x2<num> <X>mm: To read xmm<num>s i n shor t format

x4<num> <X>mm: To read xmm<num>s i n i n t format

x8<num> <X>mm: To read xmm<num>s i n long long format

xs<num> <X>mm: To read xmm<num>s i n f l o a t format

xd<num> <X>mm: To read xmm<num>s i n double format

l 1<addr> <L>oca l SRAM : To read 1−byte data from address<addr>of l o c a l SRAMs i n char format

l 2<addr> <L>oca l SRAM : To read 2−byte data from address<addr>of l o c a l SRAMs i n shor t format

l 4<addr> <L>oca l SRAM : To read 4−byte data from address<addr>of l o c a l SRAMs i n i n t format

l 8<addr> <L>oca l SRAM : To read 8−byte data from address<addr>of l o c a l SRAMs i n long long format

l s<addr> <L>oca l SRAM : To read 4−byte data from address<addr>of l o c a l SRAMs i n f l o a t format

l d<addr> <L>oca l SRAM : To read 8−byte data from address<addr>of l o c a l SRAMs i n double format

s1<addr> <S>ystem memory : To read 1−byte data from address<addr>of the system memory i n char format

s2<addr> <S>ystem memory : To read 2−byte data from address<addr>of the system memory i n shor t format

s4<addr> <S>ystem memory : To read 4−byte data from address<addr>of the system memory i n i n t format

s8<addr> <S>ystem memory : To read 8−byte data from address<addr>of the system memory i n long long format

ss<addr> <S>ystem memory : To read 4−byte data from address<addr>of the system memory i n f l o a t format

sd<addr> <S>ystem memory : To read 8−byte data from address<addr>of the system memory i n double format

q <Q>u i t : To q u i t

Table 4: Debugging commands

instruction fetch/decode mechanism, as well as the lack of control flow, branch prediction, and cache effects on
the POD enables us to attain such high simulation speed.

30

C Full Simulation Results

of PEs

Off-chip
memory
bandwidth
(GBps)

Achieved
GFLOPS
(single
precision)

Normalized
performance

North link
active time
(%)

East link
active time
(%)

West link
active time
(%)

South link
active time
(%)

1

1×8 16.3 1.0 0.1 0.1 0.0 0.0
1×16 16.3 1.0 0.1 0.1 0.0 0.0
1×32 16.3 1.0 0.1 0.1 0.0 0.0
2×32 16.3 1.0 0.1 0.1 0.0 0.0
4×32 16.3 1.0 0.0 0.0 0.0 0.0

4

1×8 63.1 3.9 0.3 0.3 0.0 0.0
1×16 64.5 3.9 0.3 0.3 0.0 0.0
1×32 64.5 3.9 0.3 0.3 0.0 0.0
2×32 64.5 3.9 0.3 0.3 0.0 0.0
4×32 64.4 3.9 0.3 0.3 0.0 0.0

16

1×8 191.8 11.6 0.4 0.4 0.0 0.0
1×16 221.6 13.4 0.4 0.4 0.0 0.0
1×32 246.3 14.9 0.5 0.5 0.0 0.0
2×32 248.7 15.1 0.5 0.5 0.0 0.0
4×32 248.4 15.1 0.5 0.5 0.0 0.0

64

1×8 403.0 24.2 0.4 0.4 0.0 0.0
1×16 578.4 34.7 0.6 0.6 0.0 0.0
1×32 741.4 44.5 0.7 0.7 0.0 0.0
2×32 821.4 49.3 0.8 0.8 0.0 0.0
4×32 870.8 52.3 0.9 0.9 0.0 0.0

Table 5: DenseMMM Simulation Result

31

of PEs

Off-chip
memory
bandwidth
(GBps)

Achieved
GFLOPS
(single
precision)

Normalized
performance

North link
active time
(%)

East link
active time
(%)

West link
active time
(%)

South link
active time
(%)

1

1×8 3.2 1.0 0.0 0.0 0.0 0.0
1×16 3.2 1.0 0.0 0.0 0.0 0.0
1×32 3.2 1.0 0.0 0.0 0.0 0.0
2×32 3.2 1.0 0.0 0.0 0.0 0.0
4×32 3.2 1.0 0.0 0.0 0.0 0.0

4

1×8 16.3 5.0 0.0 0.0 1.3 1.3
1×16 16.3 5.0 0.0 0.0 1.3 1.3
1×32 16.3 5.0 0.0 0.0 1.3 1.3
2×32 16.3 5.0 0.0 0.0 1.3 1.3
4×32 16.3 5.1 0.0 0.0 1.3 1.3

16

1×8 43.5 13.4 0.9 0.9 2.7 2.7
1×16 48.1 14.8 1.0 1.0 3.0 3.0
1×32 49.7 15.3 1.0 1.0 3.1 3.1
2×32 49.6 15.3 1.0 1.0 3.1 3.1
4×32 49.6 15.4 1.0 1.0 3.1 3.1

64

1×8 40.2 12.4 0.6 0.6 1.5 1.5
1×16 65.1 20.1 1.0 1.0 2.4 2.4
1×32 90.7 27.9 1.4 1.4 3.3 3.3
2×32 104.5 32.3 1.6 1.6 3.8 3.8
4×32 113.6 35.3 1.8 1.8 4.1 4.1

Table 6: FFT Simulation Result

32

of PEs

Off-chip
memory
bandwidth
(GBps)

Achieved
GFLOPS
(double
precision)

Normalized
performance

North link
active time
(%)

East link
active time
(%)

West link
active time
(%)

South link
active time
(%)

1

1×8 3.9 1.0 0.0 0.0 0.0 0.0
1×16 3.9 1.0 0.0 0.0 0.0 0.0
1×32 3.9 1.0 0.0 0.0 0.0 0.0
2×32 3.9 1.0 0.0 0.0 0.0 0.0
4×32 3.9 1.0 0.0 0.0 0.0 0.0

4

1×8 14.9 3.9 0.0 0.0 0.0 0.0
1×16 14.9 3.9 0.0 0.0 0.0 0.0
1×32 14.9 3.9 0.0 0.0 0.0 0.0
2×32 14.9 3.9 0.0 0.0 0.0 0.0
4×32 14.9 3.9 0.0 0.0 0.0 0.0

16

1×8 51.8 13.4 0.0 0.0 0.0 0.0
1×16 51.8 13.4 0.0 0.0 0.0 0.0
1×32 51.8 13.4 0.0 0.0 0.0 0.0
2×32 51.8 13.4 0.0 0.0 0.0 0.0
4×32 51.8 13.4 0.0 0.0 0.0 0.0

64

1×8 134.8 34.9 0.0 0.0 0.0 0.0
1×16 134.8 34.9 0.0 0.0 0.0 0.0
1×32 134.8 34.9 0.0 0.0 0.0 0.0
2×32 134.8 34.9 0.0 0.0 0.0 0.0
4×32 134.8 34.9 0.0 0.0 0.0 0.0

Table 7: IDCT Simulation Result

33

of PEs

Off-chip
memory
bandwidth
(GBps)

Achieved
GFLOPS
(single
precision)

Normalized
performance

North link
active time
(%)

East link
active time
(%)

West link
active time
(%)

South link
active time
(%)

1

1×8 13.4 1.0 0.0 0.0 0.0 0.0
1×16 13.4 1.0 0.0 0.0 0.0 0.0
1×32 13.4 1.0 0.0 0.0 0.0 0.0
2×32 13.4 1.0 0.0 0.0 0.0 0.0
4×32 13.4 1.0 0.0 0.0 0.0 0.0

4

1×8 53.8 4.0 0.0 0.0 0.0 0.0
1×16 53.8 4.0 0.0 0.0 0.0 0.0
1×32 53.8 4.0 0.0 0.0 0.0 0.0
2×32 53.8 4.0 0.0 0.0 0.0 0.0
4×32 53.8 4.0 0.0 0.0 0.0 0.0

16

1×8 214.9 16.0 0.0 0.0 0.0 0.0
1×16 215.0 16.0 0.0 0.0 0.0 0.0
1×32 215.1 16.0 0.0 0.0 0.0 0.0
2×32 215.1 16.0 0.0 0.0 0.0 0.0
4×32 215.1 16.0 0.0 0.0 0.0 0.0

64

1×8 857.1 63.7 0.0 0.0 0.0 0.0
1×16 858.9 63.9 0.0 0.0 0.0 0.0
1×32 859.7 63.9 0.0 0.0 0.0 0.0
2×32 860.1 64.0 0.0 0.0 0.0 0.0
4×32 860.2 64.0 0.0 0.0 0.0 0.0

Table 8: OptionPricing Simulation Result

34

of PEs

Off-chip
memory
bandwidth
(GBps)

Achieved
GFLOPS
(single
precision)

Normalized
performance

North link
active time
(%)

East link
active time
(%)

West link
active time
(%)

South link
active time
(%)

1

1×8 1.9 1.0 0.0 0.0 0.0 0.0
1×16 1.9 1.0 0.0 0.0 0.0 0.0
1×32 1.9 1.0 0.0 0.0 0.0 0.0
2×32 1.9 1.0 0.0 0.0 0.0 0.0
4×32 1.9 1.0 0.0 0.0 0.0 0.0

4

1×8 6.7 3.5 0.0 0.0 0.0 0.0
1×16 7.5 4.0 0.0 0.0 0.0 0.0
1×32 7.5 4.0 0.0 0.0 0.0 0.0
2×32 7.5 4.0 0.0 0.0 0.0 0.0
4×32 7.4 4.0 0.0 0.0 0.0 0.0

16

1×8 7.8 4.1 0.0 0.0 0.0 0.0
1×16 14.4 7.6 0.0 0.0 0.0 0.0
1×32 27.4 14.4 0.0 0.0 0.0 0.0
2×32 29.4 15.6 0.0 0.0 0.0 0.0
4×32 29.1 15.6 0.0 0.0 0.0 0.0

64

1×8 8.1 4.3 0.0 0.0 0.0 0.0
1×16 16.2 8.5 0.0 0.0 0.0 0.0
1×32 31.7 16.7 0.0 0.0 0.0 0.0
2×32 50.3 26.7 0.0 0.0 0.0 0.0
4×32 97.2 52.1 0.0 0.0 0.0 0.0

Table 9: DownSampling Simulation Result

35

of PEs

Off-chip
memory
bandwidth
(GBps)

Achieved
GFLOPS
(single
precision)

Normalized
performance

North link
active time
(%)

East link
active time
(%)

West link
active time
(%)

South link
active time
(%)

1

1×8 8.3 1.0 0.0 0.0 0.0 0.0
1×16 8.3 1.0 0.0 0.0 0.0 0.0
1×32 8.3 1.0 0.0 0.0 0.0 0.0
2×32 8.3 1.0 0.0 0.0 0.0 0.0
4×32 8.3 1.0 0.0 0.0 0.0 0.0

4

1×8 33.1 4.0 0.0 0.0 0.0 0.0
1×16 33.1 4.0 0.0 0.0 0.0 0.0
1×32 33.1 4.0 0.0 0.0 0.0 0.0
2×32 33.1 4.0 0.0 0.0 0.0 0.0
4×32 33.1 4.0 0.0 0.0 0.0 0.0

16

1×8 130.7 15.7 0.1 0.1 0.0 0.0
1×16 131.5 15.8 0.1 0.1 0.0 0.0
1×32 131.6 15.8 0.1 0.1 0.0 0.0
2×32 131.6 15.8 0.1 0.1 0.0 0.0
4×32 131.6 15.8 0.1 0.1 0.0 0.0

64

1×8 485.1 56.8 0.7 0.7 0.0 0.0
1×16 495.8 58.0 0.7 0.7 0.0 0.0
1×32 500.6 58.6 0.7 0.7 0.0 0.0
2×32 504.2 59.0 0.7 0.7 0.0 0.0
4×32 504.6 59.1 0.7 0.7 0.0 0.0

Table 10: K-means Simulation Result

36

D Example Code - K-means

inc lude " k−means . h "

def ine MAX FLOAT 0 x 7 f 7 f f f f f

i f n d e f FLT MAX

def ine FLT MAX 3.40282347e+38

end i f

de f ine CHECK 1

def ine rd t sc (x) asm v o l a t i l e (" rd t sc " : " = A " (x))

vo id e u c l i d d i s t 2 p o d (i n t numdims) ;

vo id f i n d n e a r e s t p o i n t p o d (i n t nfeatures , i n t npts) ;

f l o a t ∗∗ kmeans cluster ing pod (f l o a t ∗∗ fea tu re ,

i n t nfeatures ,

i n t o r i g i n a l n p o i n t s ,

i n t npoints ,

i n t nc lus te rs ,

f l o a t th resho ld ,

i n t ∗membership) ;

f l o a t e u c l i d d i s t 2 (f l o a t ∗pt1 ,

f l o a t ∗pt2 ,

i n t numdims) ;

i n t f i n d n e a r e s t p o i n t (f l o a t ∗pt , /∗ [n fea tures] ∗ /

i n t nfeatures ,

f l o a t ∗∗pts , /∗ [npts] [n fea tures] ∗ /

i n t npts) ;

f l o a t ∗∗ kmeans c lus te r ing (f l o a t ∗∗ fea tu re ,

i n t nfeatures ,

i n t npoints ,

i n t nc lus te rs ,

f l o a t th resho ld ,

i n t ∗membership) ;

vo id readFromFile () ;

i n t s e l e c t i n i t i a l c l u s t e r (i n t nc lus te rs , i n t i) ;

/∗

1 . a l l o c a t e inpu t data space in l o c a l SRAM

(# of po in t s per PE) ∗ (# o f a t t r i b u t e s) ∗ 4

(a t t r i b u t e 0) (a t t r i b u t e 1) (a t t r i b u t e 2) . . . (a t t r i b u t e 1 7) (zero padding) (zero padding)

(a t t r i b u t e 0) (a t t r i b u t e 1) (a t t r i b u t e 2) . . . (a t t r i b u t e 1 7) (zero padding) (zero padding)

. . .

37

(a t t r i b u t e 0) (a t t r i b u t e 1) (a t t r i b u t e 2) . . . (a t t r i b u t e 1 7) (zero padding) (zero padding)

2 . a l l o c a t e l o c a l space f o r c l u s t e r s

(# o f c l u s t e r s) ∗ (# o f a t t r i b u t e s) ∗ 4

(a t t r i b u t e 0) (a t t r i b u t e 1) (a t t r i b u t e 2) . . . (a t t r i b u t e 1 7) (zero padding) (zero padding)

(a t t r i b u t e 0) (a t t r i b u t e 1) (a t t r i b u t e 2) . . . (a t t r i b u t e 1 7) (zero padding) (zero padding)

. . .

(a t t r i b u t e 0) (a t t r i b u t e 1) (a t t r i b u t e 2) . . . (a t t r i b u t e 1 7) (zero padding) (zero padding)

3 . a l l o c a t e membership space in l o c a l SRAM

(# of po in t s per PE) ∗ 4

∗/

f l o a t ∗buf ;

f l o a t ∗∗ a t t r i b u t e s ;

f l o a t ∗∗at t r ibutesPOD ;

i n t numAt t r ibu tes ;

i n t numObjects ;

i n t l o c a l A t t r i b u t e s S i z e ;

i n t objectGran ;

vo id

appmain () {

i n t ef fect iveNumObjects ;

i n t e f f ec t i veNumAt t r i bu tes ;

i n t effect iveNumObjectsPerPE ;

i n t l o c a l C l u s t e r s A t t r i b u t e s S i z e ;

f l o a t t h resho ld = 0 . 0 0 1 ;

i n t ∗membership pod ;

i n t ∗membership ;

objectGran = npe∗5;

readFromFile () ;

i f ((numObjects % objectGran) = = 0) ef fect iveNumObjects = numObjects ;

e lse ef fect iveNumObjects = (numObjects / objectGran) ∗ objectGran + objectGran ;

i f ((numAt t r ibu tes % 2 0) = = 0) e f f ec t i veNumAt t r i bu tes = numAt t r ibu tes ;

e lse e f f ec t i veNumAt t r i bu tes = (numAt t r ibu tes / 2 0) ∗ 2 0 + 2 0 ;

effect iveNumObjectsPerPE = ef fect iveNumObjects / npe ;

38

p r i n t f (" numObjects : %d−>%d\n " , numObjects , ef fect iveNumObjects) ;

p r i n t f (" numAt t r ibu tes : %d−>%d\n " , numAtt r ibutes , e f f ec t i veNumAt t r i bu tes) ;

l o c a l A t t r i b u t e s S i z e = effect iveNumObjectsPerPE ∗ e f f ec t i veNumAt t r i bu tes ∗ 4 ;

at t r ibutesPOD = (f l o a t ∗∗) mal loc (ef fect iveNumObjects ∗ s i zeo f (f l o a t ∗)) ;

a t t r ibutesPOD [0] = (f l o a t ∗) mal loc (ef fect iveNumObjects ∗ e f f ec t i veNumAt t r i bu tes ∗ s i zeo f (f l o a t)) ;

membership pod = (i n t ∗) mal loc (ef fect iveNumObjects ∗ s i zeo f (i n t)) ;

membership = (i n t ∗) mal loc (numObjects ∗ s i zeo f (i n t)) ;

f o r (i n t i =1 ; i<ef fect iveNumObjects ; i ++)

at t r ibutesPOD [i] = at t r ibutesPOD [i −1] + e f f ec t i veNumAt t r i bu tes ;

f o r (i n t i = 0 ; i < ef fect iveNumObjects ; i ++) {
memset (at t r ibutesPOD [i] , 0 , e f f ec t i veNumAt t r i bu tes∗s i zeo f (f l o a t)) ;

i f (i < numObjects) {
memcpy (at t r ibutesPOD [i] , a t t r i b u t e s [i] , numAt t r ibu tes∗s i zeo f (f l o a t)) ;

}
}

$ASM sub4zx zero gr = zero gr , zero gr

$ASM p i n t x o r zero xmm = zero xmm , zero xmm

$ASM add4zx f o u r g r = zero gr , 4

$ASM add4zx s i x t e e n g r = zero gr , 1 6

$ASM imul4 e i g h t y g r = s i x teen g r , 5

i n t a l ignment Issue = effect iveNumObjectsPerPE ∗ 4 ;

i f ((a l ignment Issue % 1 6) ! = 0) al ignment Issue = al ignment Issue / 1 6 ∗ 1 6 + 1 6 ;

POD movl (l o c a l a t t r i b u t e s p t r , PODLIB malloc (l o c a l A t t r i b u t e s S i z e)) ;

POD movl (loca l membersh ip p t r , PODLIB malloc (al ignment Issue)) ;

POD movl (l o c a l i n d e x p t r , PODLIB malloc (al ignment Issue)) ;

POD movl (l o c a l d i s t a n c e p t r , PODLIB malloc (al ignment Issue)) ;

POD movl (s y s a t t r i b u t e s p t r , (unsigned long long) at t r ibutesPOD [0]) ;

$ASM movl npe gr = PTR NPE

$ASM movl my pe = PTR MY PE

$ASM movl npex gr = PTR NPE X

$ASM ld2 . sx t npe gr = l o c a l [npe gr + 0]

$ASM ld2 . sx t my pe = l o c a l [my pe + 0]

$ASM ld1 . sx t npex gr = l o c a l [npex gr + 0]

POD movl (l o c a l a t t r i b u t e s s i z e g r , l o c a l A t t r i b u t e s S i z e) ;

39

$ASM sub4zx npe minus one gr = npe gr , 1

$ASM sub4zx npex minus one gr = npex gr , 1

$ASM imul4 tmp gr = l o c a l a t t r i b u t e s s i z e g r , my pe

$ASM nop . g

$ASM add4zx s y s a t t r i b u t e s p t r = s y s a t t r i b u t e s p t r , tmp gr

$ASM nop . g

$ASM copyblk l o c a l [l o c a l a t t r i b u t e s p t r] = sys [s y s a t t r i b u t e s p t r] , l o c a l a t t r i b u t e s s i z e g r

f o r (i n t nc lus te r s = /∗ min nc lus te r s ∗ / 2 ; nc lus te r s <= /∗max nclusters ∗ / 1 0 ; nc lus te r s ++) {

p r i n t f (" C lus te r i ng i n t o %d c l u s t e r s . .\ n " , nc lus te r s) ;

kmeans cluster ing pod (at t r ibutesPOD , e f f ec t i veNumAt t r i bu tes ,

numObjects , ef fect iveNumObjects , nc lus te rs , th resho ld , membership pod) ;

kmeans c lus te r ing (a t t r i b u t e s , numAtt r ibutes , numObjects , nc lus te rs , th resho ld , membership) ;

f o r (i n t i = 0 ; i < numObjects ; i ++) {
i f (membership [i] ! = membership pod [i])

p r i n t f (" D i f f e r e n t ! ! ! % dth po in t (nc lus te r s=%d) : % d vs . %d\n " ,

i , nc lus te rs , membership [i] , membership pod [i]) ;

}
}

}
i n t s e l e c t i n i t i a l c l u s t e r (i n t nc lus te rs , i n t i) {

i n t r a n d o m i n i t i a l c l u s t e r [9] [1 0] = {
{ 1450 , 14699 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ,

{ 9626 , 15691 , 11941 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ,

{ 10060 , 7066 , 10506 , 13653 , 0 , 0 , 0 , 0 , 0 , 0 } ,

{ 15738 , 16401 , 6821 , 15641 , 479 , 0 , 0 , 0 , 0 , 0 } ,

{ 6908 , 275 , 7087 , 8508 , 2693 , 8400 , 0 , 0 , 0 , 0 } ,

{ 14662 , 8792 , 16509 , 16062 , 601 , 15365 , 15634 , 0 , 0 , 0 } ,

{ 5243 , 3629 , 12618 , 9511 , 3338 , 11411 , 2394 , 7131 , 0 , 0 } ,

{ 15739 , 11396 , 10158 , 1394 , 5169 , 2135 , 6704 , 13119 , 14140 , 0 } ,

{ 8207 , 3366 , 2990 , 9660 , 3376 , 9156 , 13510 , 17285 , 17195 , 11572 } } ;

r e tu rn r a n d o m i n i t i a l c l u s t e r [nc lus te rs −2][i] ;

}
f l o a t ∗∗ kmeans cluster ing pod (f l o a t ∗∗ fea tu re , /∗ i n : [npo in ts] [n fea tures] ∗ /

i n t nfeatures ,

i n t o r i g i n a l n p o i n t s ,

i n t npoints ,

i n t nc lus te rs ,

f l o a t th resho ld ,

i n t ∗membership) /∗ out : [npo in ts] ∗ /

40

{
i n t i , j , k , index , loop =0;

i n t ∗new centers len ; / ∗ [nc l us te r s] : no . o f po in t s i n each c l u s t e r ∗ /

f l o a t de l t a ;

f l o a t ∗∗c l u s t e r s ; /∗ out : [nc l us te r s] [n fea tures] ∗ /

f l o a t ∗∗new centers ; /∗ [nc l us te r s] [n fea tures] ∗ /

double t im ing ;

i n t l o c a l C l u s t e r A t t r i b u t e s S i z e ;

l o c a l C l u s t e r A t t r i b u t e s S i z e = nc lus te r s ∗ nfea tures ∗ 4 ;

/ / need to conver t gr<−>xmm

POD movl (l o c a l c o n v e r s i o n p t r , PODLIB malloc (1 6)) ;

POD movl (l o c a l c l u s t e r s p t r , PODLIB malloc (l o c a l C l u s t e r A t t r i b u t e s S i z e)) ;

POD movl (l oca l new cen te rs p t r , PODLIB malloc (l o c a l C l u s t e r A t t r i b u t e s S i z e)) ;

POD movl (l o c a l n e w c e n t e r s l e n p t r , PODLIB malloc (4∗ nc lus te r s)) ;

/∗ a l l o c a t e space f o r r e t u r n i n g v a r i a b l e c l u s t e r s [] ∗ /

c l u s t e r s = (f l o a t ∗∗) mal loc (nc lus te r s ∗ s i zeo f (f l o a t ∗)) ;

c l u s t e r s [0] = (f l o a t ∗) mal loc (nc lus te r s ∗ nfea tures ∗ s i zeo f (f l o a t)) ;

f o r (i =1 ; i<nc lus te r s ; i ++)

c l u s t e r s [i] = c l u s t e r s [i −1] + n fea tures ;

/∗ randomly p ick c l u s t e r cen ters ∗ /

f o r (i =0 ; i<nc lus te r s ; i ++) {
/ / i n t n = (i n t) random () % npo in ts ;

i n t n = s e l e c t i n i t i a l c l u s t e r (nc lus te rs , i) ;

f o r (j =0 ; j<nfea tures ; j ++)

c l u s t e r s [i] [j] = fea tu re [n] [j] ;

}

/∗ s t a r t o f POD code ∗ /

POD movl (s y s c l u s t e r s p t r , (unsigned long long) c l u s t e r s [0]) ;

POD movl (l o c a l c l u s t e r a t t r i b u t e s s i z e g r , l o c a l C l u s t e r A t t r i b u t e s S i z e) ;

$ASM copyblk l o c a l [l o c a l c l u s t e r s p t r] = sys [s y s c l u s t e r s p t r] , l o c a l c l u s t e r a t t r i b u t e s s i z e g r

/ / send 1 . 0 f o r de l t a inc rease

POD movl (tmp gr , (unsigned long long) 0 x3f800000) ;

41

$ASM st4 l o c a l [l o c a l c o n v e r s i o n p t r + 0] = tmp gr

$ASM ldxmm4 . sca la r one xmm = l o c a l [l o c a l c o n v e r s i o n p t r + 0]

/ / i n i t i a l i z e d is tance

/ / i n i t i a l i z e membership

$ASM or membership ptr = loca l membersh ip p t r , loca l membersh ip p t r

$ASM sub4zx minus one gr = zero gr , 1

$ASM or d i s t a n c e p t r = l o c a l d i s t a n c e p t r , l o c a l d i s t a n c e p t r

POD movl (f l oa t max g r , (unsigned long long) MAX FLOAT) ;

f o r (i = 0 ; i < npo in ts / npe ; i ++) {
$ASM st4 ++ l o c a l [d i s t a n c e p t r] = f l oa t max g r , f o u r g r

$ASM st4 ++ l o c a l [membership ptr] = minus one gr , f o u r g r

}
/ / i n i t i a l i z e new centers len

$ASM add4zx tmp gr = l o c a l n e w c e n t e r s l e n p t r , 0

f o r (i n t i = 0 ; i < (nc lus te r s) ; i ++) {
$ASM st4 ++ l o c a l [tmp gr] = zero gr , f o u r g r

}
/ / i n i t i a l i z e new centers

$ASM add4zx tmp gr = loca l new cen te rs p t r , 0

f o r (i n t i = 0 ; i < (l o c a l C l u s t e r A t t r i b u t e s S i z e / 1 6) ; i ++) {
$ASM stxmm++.pack l o c a l [tmp gr] = zero xmm , s i x t e e n g r

}

POD mfence () ;

do {
$ASM or c u r r e n t c l p t r = l o c a l c l u s t e r s p t r , l o c a l c l u s t e r s p t r

$ASM add4zx c lus te r num gr = zero gr , zero gr

POD movl (p t s i ze , (n fea tures ∗4)) ;

f o r (i = 0 ; i < nc lus te r s ; i ++) {
f i n d n e a r e s t p o i n t p o d (nfeatures , npo in ts) ;

$ASM sub4zx c u r r e n t c l p t r = c l p t r , s i x t e e n g r

$ASM add4zx c lus te r num gr = c lus te r num gr , 1

}

$ASM or i n d e x p t r = l o c a l i n d e x p t r , l o c a l i n d e x p t r

$ASM or membership ptr = loca l membersh ip p t r , loca l membersh ip p t r

$ASM ld4 ++. sx t i ndex g r = l o c a l [i n d e x p t r] , f o u r g r

$ASM p i n t x o r delta xmm = delta xmm , delta xmm

$ASM ld4 . sx t membership gr = l o c a l [membership ptr + 0]

$ASM or c u r r e n t o b j e c t p t r = l o c a l a t t r i b u t e s p t r , l o c a l a t t r i b u t e s p t r

42

$ASM or d i s t a n c e p t r = l o c a l d i s t a n c e p t r , l o c a l d i s t a n c e p t r

i n t d isab le Index = npoints−o r i g i n a l n p o i n t s ;

f o r (i = 0 ; i < npo in ts ; i += npe) {

i f (((npoints−i) / npe) <= d isab le Index) {
$ASM sub4zx tmp gr = my pe , npe minus one gr

$ASM nop . g

$ASM pushmask . and . not . e

}
/ / r ese t d is tance

$ASM st4 ++ l o c a l [d i s t a n c e p t r] = f l oa t max g r , f o u r g r

/ / inc rease de l t a and set new membership

$ASM sub4zx tmp gr = membership gr , i ndex g r

$ASM nop . g

$ASM pushmask . and . not . e

$ASM pfpadd . sca la r . sp delta xmm = delta xmm , one xmm

$ASM popmask

$ASM st4 ++ l o c a l [membership ptr] = index gr , f o u r g r

/ / inc rease new centers len

/ / f i r s t sh l should be overlapped

/ / needs to be opt imized ! ! !

$ASM sh l tmp gr = index gr , 2

$ASM add4zx tmp gr = l o c a l n e w c e n t e r s l e n p t r , tmp gr

$ASM nop . g

$ASM ld4 . sx t new centers len gr = l o c a l [tmp gr + 0]

$ASM nop . g

$ASM nop . g

$ASM add4zx new centers len gr = new centers len gr , 1

$ASM nop . g

$ASM st4 l o c a l [tmp gr + 0] = new centers len gr

i f (((npoints−i) / npe) <= d isab le Index) {
$ASM popmask

}

/ / need to work on l i n e 101

POD movl (new centers index , (unsigned long long) (n fea tures ∗4)) ;

$ASM imul4 new centers index = index gr , new centers index

$ASM ldxmm++. pack pt dim0 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM nop . g

$ASM ldxmm++. pack pt dim1 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

43

$ASM add4zx new centers index = new centers index , l o c a l n e w c e n t e r s p t r

$ASM ldxmm++. pack pt dim2 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM ldxmm++. pack pt dim3 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM ldxmm++. pack pt dim4 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim0 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim1 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim2 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim3 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim4 = l o c a l [new centers index] , s i x t e e n g r

f o r (j = 0 ; j < nfea tures ; j +=20) {
$ASM sub4zx new centers index = new centers index , e i g h t y g r

$ASM pfpadd . pack . sp new centers dim0 = new centers dim0 , pt d im0

$ASM ldxmm++. pack pt dim0 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM pfpadd . pack . sp new centers dim1 = new centers dim1 , pt d im1

$ASM ldxmm++. pack pt dim1 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM pfpadd . pack . sp new centers dim2 = new centers dim2 , pt d im2

$ASM ldxmm++. pack pt dim2 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM pfpadd . pack . sp new centers dim3 = new centers dim3 , pt d im3

$ASM ldxmm++. pack pt dim3 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM pfpadd . pack . sp new centers dim4 = new centers dim4 , pt d im4

$ASM ldxmm++. pack pt dim4 = l o c a l [c u r r e n t o b j e c t p t r] , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = new centers dim0 , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = new centers dim1 , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = new centers dim2 , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = new centers dim3 , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = new centers dim4 , s i x t e e n g r

$ASM ldxmm++. pack new centers dim0 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim1 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim2 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim3 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack new centers dim4 = l o c a l [new centers index] , s i x t e e n g r

}

$ASM sub4zx c u r r e n t o b j e c t p t r = c u r r e n t o b j e c t p t r , e i g h t y g r

$ASM ld4 ++. sx t i ndex g r = l o c a l [i n d e x p t r] , f o u r g r

$ASM ld4 . sx t membership gr = l o c a l [membership ptr + 0]

$ASM nop . g

$ASM nop . g

}
/ / r educ t i on ! ! !

44

$ASM add4zx tmp gr = l o c a l n e w c e n t e r s l e n p t r , 0

$ASM add4zx new centers index = loca l new cen te rs p t r , 0

$ASM add4zx c l p t r = l o c a l c l u s t e r s p t r , 0

f o r (i = 0 ; i < nc lus te r s ; i ++) {
/ / f i r s t , new centers len

$ASM ld4 . sx t comm gr = l o c a l [tmp gr + 0]

$ASM nop . g

$ASM nop . g

$ASM add4zx new centers len sum = comm gr , 0

f o r (j = 0 ; j < (npeX−1); j ++) {
$ASM x f e r . wrap . e comm gr = comm gr

$ASM nop . g

$ASM add4zx new centers len sum = new centers len sum , comm gr

}
$ASM add4zx comm gr = new centers len sum , 0

f o r (j = 0 ; j < (npeY−1); j ++) {
$ASM x f e r . wrap . n comm gr = comm gr

$ASM nop . g

$ASM add4zx new centers len sum = new centers len sum , comm gr

}
$ASM st4 l o c a l [tmp gr + 0] = new centers len sum

$ASM ldxmm4 . sca la r new centers len xmm = l o c a l [tmp gr + 0]

/ / then , new centers !

$ASM ldxmm++. pack comm dim0 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack comm dim1 = l o c a l [new centers index] , s i x t e e n g r

$ASM p f p s h u f f l e . sp . aaaa new centers len xmm = new centers len xmm , new centers len xmm

$ASM ldxmm++. pack comm dim2 = l o c a l [new centers index] , s i x t e e n g r

$ASM pfpadd . pack . sp new centers sum0 = comm dim0 , zero xmm

$ASM ldxmm++. pack comm dim3 = l o c a l [new centers index] , s i x t e e n g r

$ASM pfpadd . pack . sp new centers sum1 = comm dim1 , zero xmm

$ASM ldxmm++. pack comm dim4 = l o c a l [new centers index] , s i x t e e n g r

$ASM pfpadd . pack . sp new centers sum2 = comm dim2 , zero xmm

$ASM pfpadd . pack . sp new centers sum3 = comm dim3 , zero xmm

$ASM pfpadd . pack . sp new centers sum4 = comm dim4 , zero xmm

$ASM p c v t i 2 f . pack . sp new centers len xmm = new centers len xmm

f o r (k = 0 ; k < nfea tures ; k + = 2 0) {
f o r (j = 0 ; j < (npeX−1); j ++) {

$ASM xferxmm . wrap . e comm dim0 = comm dim0

$ASM xferxmm . wrap . e comm dim1 = comm dim1

$ASM xferxmm . wrap . e comm dim2 = comm dim2

$ASM xferxmm . wrap . e comm dim3 = comm dim3

$ASM xferxmm . wrap . e comm dim4 = comm dim4

$ASM pfpadd . pack . sp new centers sum0 = new centers sum0 , comm dim0

$ASM pfpadd . pack . sp new centers sum1 = new centers sum1 , comm dim1

$ASM pfpadd . pack . sp new centers sum2 = new centers sum2 , comm dim2

45

$ASM pfpadd . pack . sp new centers sum3 = new centers sum3 , comm dim3

$ASM pfpadd . pack . sp new centers sum4 = new centers sum4 , comm dim4

}
$ASM pfpadd . pack . sp comm dim0 = new centers sum0 , zero xmm

$ASM pfpadd . pack . sp comm dim1 = new centers sum1 , zero xmm

$ASM pfpadd . pack . sp comm dim2 = new centers sum2 , zero xmm

$ASM pfpadd . pack . sp comm dim3 = new centers sum3 , zero xmm

$ASM pfpadd . pack . sp comm dim4 = new centers sum4 , zero xmm

f o r (j = 0 ; j < (npeY−1); j ++) {
$ASM xferxmm . wrap . n comm dim0 = comm dim0

$ASM xferxmm . wrap . n comm dim1 = comm dim1

$ASM xferxmm . wrap . n comm dim2 = comm dim2

$ASM xferxmm . wrap . n comm dim3 = comm dim3

$ASM xferxmm . wrap . n comm dim4 = comm dim4

$ASM pfpadd . pack . sp new centers sum0 = new centers sum0 , comm dim0

$ASM pfpadd . pack . sp new centers sum1 = new centers sum1 , comm dim1

$ASM pfpadd . pack . sp new centers sum2 = new centers sum2 , comm dim2

$ASM pfpadd . pack . sp new centers sum3 = new centers sum3 , comm dim3

$ASM pfpadd . pack . sp new centers sum4 = new centers sum4 , comm dim4

}
$ASM pfpd i v . pack . sp new centers sum0 = new centers sum0 , new centers len xmm

PODLIB NOPs (PFPDIV LAT − 1) ;

$ASM pfpd i v . pack . sp new centers sum1 = new centers sum1 , new centers len xmm

PODLIB NOPs (PFPDIV LAT − 1) ;

$ASM pfpd i v . pack . sp new centers sum2 = new centers sum2 , new centers len xmm

PODLIB NOPs (PFPDIV LAT − 1) ;

$ASM pfpd i v . pack . sp new centers sum3 = new centers sum3 , new centers len xmm

PODLIB NOPs (PFPDIV LAT − 1) ;

$ASM pfpd i v . pack . sp new centers sum4 = new centers sum4 , new centers len xmm

$ASM nop .m

$ASM sub4zx new centers index = new centers index , e i g h t y g r

$ASM nop . g

/ / make new centers zero

$ASM stxmm++. pack l o c a l [new centers index] = zero xmm , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = zero xmm , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = zero xmm , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = zero xmm , s i x t e e n g r

$ASM stxmm++. pack l o c a l [new centers index] = zero xmm , s i x t e e n g r

/ / load new centers f o r next i t e r a t i o n

$ASM ldxmm++. pack comm dim0 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack comm dim1 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack comm dim2 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack comm dim3 = l o c a l [new centers index] , s i x t e e n g r

$ASM ldxmm++. pack comm dim4 = l o c a l [new centers index] , s i x t e e n g r

PODLIB NOPs (PFPDIV LAT − 12) ;

46

/ / update c l u s t e r s

/ / and prepare new centers sum f o r next i t e r a t i o n

$ASM pfpadd . pack . sp new centers sum0 = comm dim0 , zero xmm

$ASM stxmm++. pack l o c a l [c l p t r] = new centers sum0 , s i x t e e n g r

$ASM pfpadd . pack . sp new centers sum1 = comm dim1 , zero xmm

$ASM stxmm++. pack l o c a l [c l p t r] = new centers sum1 , s i x t e e n g r

$ASM pfpadd . pack . sp new centers sum2 = comm dim2 , zero xmm

$ASM stxmm++. pack l o c a l [c l p t r] = new centers sum2 , s i x t e e n g r

$ASM pfpadd . pack . sp new centers sum3 = comm dim3 , zero xmm

$ASM stxmm++. pack l o c a l [c l p t r] = new centers sum3 , s i x t e e n g r

$ASM pfpadd . pack . sp new centers sum4 = comm dim4 , zero xmm

$ASM stxmm++. pack l o c a l [c l p t r] = new centers sum4 , s i x t e e n g r

}
$ASM sub4zx new centers index = new centers index , e i g h t y g r

/ / make new centers len zero

$ASM st4 ++ l o c a l [tmp gr] = zero gr , f o u r g r

}

/ / g l oba l reduc t i on f o r de l t a ! ! !

$ASM p i n t o r comm dim0 = delta xmm , delta xmm

$ASM pfpadd . sca la r . sp del ta sum = delta xmm , zero xmm

PODLIB NOPs (PINTXOR LAT − 2) ;

f o r (j = 0 ; j < (npeX−1); j ++) {
$ASM xferxmm . wrap . e comm dim0 = comm dim0

$ASM nop . x

$ASM pfpadd . sca la r . sp del ta sum = delta sum , comm dim0

PODLIB NOPs (PFPADD LAT − 3) ;

}
PODLIB NOPs (2) ;

$ASM pfpadd . sca la r . sp comm dim0 = delta sum , zero xmm

PODLIB NOPs (PFPADD LAT − 1) ;

f o r (j = 0 ; j < (npeY−1); j ++) {
$ASM xferxmm . wrap . n comm dim0 = comm dim0

$ASM nop . x

$ASM pfpadd . sca la r . sp del ta sum = delta sum , comm dim0

PODLIB NOPs (PFPADD LAT − 3) ;

}
PODLIB NOPs (2) ;

$ASM stxmm4 . sca la r l o c a l [l o c a l c o n v e r s i o n p t r + 0] = del ta sum

$ASM ld4 . zx t d e l t a g r = l o c a l [l o c a l c o n v e r s i o n p t r + 0]

$ASM nop . g

$ASM nop . g

$ASM sub4zx tmp gr = my pe , npex minus one gr

47

$ASM nop . g

$ASM pushmask . and . e

$ASM x fe rd rb d e l t a g r

$ASM popmask

i n t d rb va lue = POD getdrb () ;

memcpy (& de l ta , & drb value , 4) ;

/ / p r i n t f (" de l t a = % f\n " , de l t a) ;

/ / getchar () ;

de l t a / = o r i g i n a l n p o i n t s ;

}
whi le (de l t a > t h resho ld && loop ++ < 500);

/ / wr i te−back

$ASM or membership ptr = loca l membersh ip p t r , loca l membersh ip p t r

POD movl (tmp gr , (npo in ts / npe∗4)) ;

$ASM imul4 membership ptr = tmp gr , my pe

POD movl (sys membership ptr , (unsigned long long) membership) ;

$ASM add4zx membership ptr = membership ptr , sys membership ptr

$ASM nop . g

$ASM copyblk sys [membership ptr] = l o c a l [loca l membersh ip p t r] , tmp gr

POD mfence () ;

PODLIB free (4∗ nc lus te r s) ;

PODLIB free (l o c a l C l u s t e r A t t r i b u t e s S i z e) ;

PODLIB free (l o c a l C l u s t e r A t t r i b u t e s S i z e) ;

}

vo id e u c l i d d i s t 2 p o d (i n t numdims) {
i n t i ;

i n t loop count ;

/ /$ASM p i n t x o r dis tance0 = distance0 , dis tance0

$ASM pfpsub . pack . sp distance0 = distance0 , dis tance0

$ASM ldxmm++. pack c l d im = l o c a l [c l p t r] , s i x t e e n g r

/ /$ASM p i n t x o r dis tance1 = distance1 , dis tance1

$ASM pfpsub . pack . sp distance1 = distance1 , dis tance1

$ASM ldxmm++. pack pt0 dim = l o c a l [p t 0 p t r] , s i x t e e n g r

/ /$ASM p i n t x o r dis tance2 = distance2 , dis tance2

48

$ASM pfpsub . pack . sp distance2 = distance2 , dis tance2

$ASM ldxmm++. pack pt1 dim = l o c a l [p t 1 p t r] , s i x t e e n g r

/ /$ASM p i n t x o r dis tance3 = distance3 , dis tance3

$ASM pfpsub . pack . sp distance3 = distance3 , dis tance3

$ASM ldxmm++. pack pt2 dim = l o c a l [p t 2 p t r] , s i x t e e n g r

/ /$ASM p i n t x o r dis tance4 = distance4 , dis tance4

$ASM pfpsub . pack . sp distance4 = distance4 , dis tance4

$ASM ldxmm++. pack pt3 dim = l o c a l [p t 3 p t r] , s i x t e e n g r

$ASM ldxmm++. pack pt4 dim = l o c a l [p t 4 p t r] , s i x t e e n g r

f o r (i = 0 ; i < numdims ; i +=4) {
$ASM pfpsub . pack . sp pt0 dim = pt0 dim , c l d im

$ASM pfpsub . pack . sp pt1 dim = pt1 dim , c l d im

$ASM pfpsub . pack . sp pt2 dim = pt2 dim , c l d im

$ASM pfpsub . pack . sp pt3 dim = pt3 dim , c l d im

$ASM pfpsub . pack . sp pt4 dim = pt4 dim , c l d im

$ASM ldxmm++.pack c l d im = l o c a l [c l p t r] , s i x t e e n g r

$ASM pfpfma ++.pack . sp distance0 += pt0 dim , pt0 dim

$ASM ldxmm++.pack pt0 dim = l o c a l [p t 0 p t r] , s i x t e e n g r

$ASM pfpfma ++.pack . sp distance1 += pt1 dim , pt1 dim

$ASM ldxmm++.pack pt1 dim = l o c a l [p t 1 p t r] , s i x t e e n g r

$ASM pfpfma ++.pack . sp distance2 += pt2 dim , pt2 dim

$ASM ldxmm++.pack pt2 dim = l o c a l [p t 2 p t r] , s i x t e e n g r

$ASM pfpfma ++.pack . sp distance3 += pt3 dim , pt3 dim

$ASM ldxmm++.pack pt3 dim = l o c a l [p t 3 p t r] , s i x t e e n g r

$ASM pfpfma ++.pack . sp distance4 += pt4 dim , pt4 dim

$ASM ldxmm++.pack pt4 dim = l o c a l [p t 4 p t r] , s i x t e e n g r

}

$ASM pfphadd . sp distance0 = distance0 , dis tance0

$ASM pfphadd . sp distance1 = distance1 , dis tance1

$ASM pfphadd . sp distance2 = distance2 , dis tance2

$ASM pfphadd . sp distance3 = distance3 , dis tance3

$ASM pfphadd . sp distance4 = distance4 , dis tance4

/ / load max distance f o r l a t e r computation

$ASM pfphadd . sp distance0 = distance0 , dis tance0

$ASM ldxmm4 . sca la r max distance0 = l o c a l [d i s t a n c e p t r + 0]

49

$ASM pfphadd . sp distance1 = distance1 , dis tance1

$ASM ldxmm4 . sca la r max distance1 = l o c a l [d i s t a n c e p t r + 4]

$ASM pfphadd . sp distance2 = distance2 , dis tance2

$ASM ldxmm4 . sca la r max distance2 = l o c a l [d i s t a n c e p t r + 8]

$ASM pfphadd . sp distance3 = distance3 , dis tance3

$ASM ldxmm4 . sca la r max distance3 = l o c a l [d i s t a n c e p t r + 1 2]

$ASM pfphadd . sp distance4 = distance4 , dis tance4

$ASM ldxmm4 . sca la r max distance4 = l o c a l [d i s t a n c e p t r + 1 6]

}

vo id f i n d n e a r e s t p o i n t p o d (i n t nfeatures , i n t npo in ts) {
i n t i ;

/ / need to se t m a x d i s t p t r somewhere

$ASM or d i s t a n c e p t r = l o c a l d i s t a n c e p t r , l o c a l d i s t a n c e p t r

/ / need to se t p t s i z e somewhere

$ASM or p t 0 p t r = l o c a l a t t r i b u t e s p t r , l o c a l a t t r i b u t e s p t r

$ASM add4zx p t 1 p t r = p t0 p t r , p t s i z e

$ASM add4zx p t 2 p t r = p t1 p t r , p t s i z e

$ASM add4zx p t 3 p t r = p t2 p t r , p t s i z e

$ASM add4zx p t 4 p t r = p t3 p t r , p t s i z e

$ASM sub4zx i n d e x p t r = l o c a l i n d e x p t r , 4

/ / c lus te r num gr should be set somewhere outs ide

f o r (i = 0 ; i < npo in ts ; i +=objectGran) {

$ASM or c l p t r = c u r r e n t c l p t r , c u r r e n t c l p t r

e u c l i d d i s t 2 p o d (n fea tures) ;

$ASM pfpcmp . l t . s ca la r . sp temp xmm0 = distance0 , max distance0

$ASM pfpcmp . l t . s ca la r . sp temp xmm1 = distance1 , max distance1

$ASM pfpcmp . l t . s ca la r . sp temp xmm2 = distance2 , max distance2

$ASM pfpcmp . l t . s ca la r . sp temp xmm3 = distance3 , max distance3

$ASM pfpcmp . l t . s ca la r . sp temp xmm4 = distance4 , max distance4

50

/ / se t max distance and index

/ / to conver t xmm type cmp r e s u l t to gr type

$ASM stxmm4 . sca la r l o c a l [l o c a l c o n v e r s i o n p t r + 0] = temp xmm0

$ASM ld4 . zx t tmp gr0 = l o c a l [l o c a l c o n v e r s i o n p t r + 0]

$ASM stxmm4 . sca la r l o c a l [l o c a l c o n v e r s i o n p t r + 4] = temp xmm1

$ASM ld4 . zx t tmp gr1 = l o c a l [l o c a l c o n v e r s i o n p t r + 4]

$ASM sub4zx tmp gr0 = tmp gr0 , zero gr

$ASM add4zx i n d e x p t r = index p t r , 4

$ASM pfpmin . sca la r . sp max distance0 = distance0 , max distance0

$ASM pushmask . and . not . e

$ASM st4 l o c a l [i n d e x p t r + 0] = c lus te r num gr

$ASM popmask

$ASM stxmm4 . sca la r l o c a l [l o c a l c o n v e r s i o n p t r + 0] = temp xmm2

$ASM ld4 . zx t tmp gr0 = l o c a l [l o c a l c o n v e r s i o n p t r + 0]

$ASM sub4zx tmp gr1 = tmp gr1 , zero gr

$ASM add4zx i n d e x p t r = index p t r , 4

$ASM pfpmin . sca la r . sp max distance1 = distance1 , max distance1

$ASM pushmask . and . not . e

$ASM st4 l o c a l [i n d e x p t r + 0] = c lus te r num gr

$ASM popmask

$ASM stxmm4 . sca la r l o c a l [l o c a l c o n v e r s i o n p t r + 4] = temp xmm3

$ASM ld4 . zx t tmp gr1 = l o c a l [l o c a l c o n v e r s i o n p t r + 4]

$ASM sub4zx tmp gr0 = tmp gr0 , zero gr

$ASM add4zx i n d e x p t r = index p t r , 4

$ASM pfpmin . sca la r . sp max distance2 = distance2 , max distance2

$ASM pushmask . and . not . e

$ASM st4 l o c a l [i n d e x p t r + 0] = c lus te r num gr

$ASM popmask

$ASM stxmm4 . sca la r l o c a l [l o c a l c o n v e r s i o n p t r + 0] = temp xmm4

$ASM ld4 . zx t tmp gr0 = l o c a l [l o c a l c o n v e r s i o n p t r + 0]

$ASM sub4zx tmp gr1 = tmp gr1 , zero gr

$ASM add4zx i n d e x p t r = index p t r , 4

$ASM pfpmin . sca la r . sp max distance3 = distance3 , max distance3

$ASM pushmask . and . not . e

$ASM st4 l o c a l [i n d e x p t r + 0] = c lus te r num gr

$ASM popmask

$ASM sub4zx tmp gr0 = tmp gr0 , zero gr

51

$ASM add4zx i n d e x p t r = index p t r , 4

$ASM pfpmin . sca la r . sp max distance4 = distance4 , max distance4

$ASM pushmask . and . not . e

$ASM st4 l o c a l [i n d e x p t r + 0] = c lus te r num gr

$ASM popmask

/ / should be overlapped wi th prev ious nasty block

$ASM sub4zx p t 0 p t r = p t4 p t r , s i x t e e n g r

$ASM stxmm4++. sca la r l o c a l [d i s t a n c e p t r] = max distance0 , f o u r g r

$ASM add4zx p t 1 p t r = p t0 p t r , p t s i z e

$ASM stxmm4++. sca la r l o c a l [d i s t a n c e p t r] = max distance1 , f o u r g r

$ASM add4zx p t 2 p t r = p t1 p t r , p t s i z e

$ASM stxmm4++. sca la r l o c a l [d i s t a n c e p t r] = max distance2 , f o u r g r

$ASM add4zx p t 3 p t r = p t2 p t r , p t s i z e

$ASM stxmm4++. sca la r l o c a l [d i s t a n c e p t r] = max distance3 , f o u r g r

$ASM add4zx p t 4 p t r = p t3 p t r , p t s i z e

$ASM stxmm4++. sca la r l o c a l [d i s t a n c e p t r] = max distance4 , f o u r g r

}
$ASM nop . g

}

vo id readFromFile () {
FILE∗ f i l e ;

i n t i ;

char∗ f i l ename = " edge " ;

/∗
i f ((i n f i l e = open (f i lename , O RDONLY, "0600")) == −1) {

f p r i n t f (s t de r r , " E r ro r : no such f i l e (%s)\n " , f i lename) ;

e x i t (1) ;

}
∗/

f i l e = fopen (" edge " , " r ") ;

i f (f i l e == NULL) {
f p r i n t f (s t de r r , " E r ro r : no such f i l e (%s)\n " , f i lename) ;

e x i t (1) ;

}
/ / read (i n f i l e , & numObjects , s i zeo f (i n t)) ;

/ / read (i n f i l e , & numAtt r ibutes , s i zeo f (i n t)) ;

f read (& numObjects , s i zeo f (i n t) , 1 , f i l e) ;

52

f read (& numAttr ibutes , s i zeo f (i n t) , 1 , f i l e) ;

/∗ a l l o c a t e space f o r a t t r i b u t e s [] and read a t t r i b u t e s o f a l l ob jec t s ∗ /

buf = (f l o a t ∗) mal loc (numObjects∗numAt t r ibu tes∗s i zeo f (f l o a t)) ;

a t t r i b u t e s = (f l o a t ∗∗)mal loc (numObjects∗ s i zeo f (f l o a t ∗)) ;

a t t r i b u t e s [0] = (f l o a t ∗) mal loc (numObjects∗numAt t r ibu tes∗s i zeo f (f l o a t)) ;

f o r (i =1 ; i<numObjects ; i ++)

a t t r i b u t e s [i] = a t t r i b u t e s [i −1] + numAt t r ibu tes ;

/ / read (i n f i l e , buf , numObjects∗numAt t r ibu tes∗s i zeo f (f l o a t)) ;

f read (buf , s i zeo f (f l o a t) , numObjects∗numAttr ibutes , f i l e) ;

/ / c lose (i n f i l e) ;

f c l ose (f i l e) ;

memcpy (a t t r i b u t e s [0] , buf , numObjects∗numAt t r ibu tes∗s i zeo f (f l o a t)) ;

}

f l o a t ∗∗ kmeans c lus te r ing (f l o a t ∗∗ fea tu re , /∗ i n : [npo in ts] [n fea tures] ∗ /

i n t nfeatures ,

i n t npoints ,

i n t nc lus te rs ,

f l o a t th resho ld ,

i n t ∗membership) /∗ out : [npo in ts] ∗ /

{

i n t i , j , index , loop =0;

i n t ∗new centers len ; / ∗ [nc l us te r s] : no . o f po in t s i n each c l u s t e r ∗ /

f l o a t de l t a ;

f l o a t ∗∗c l u s t e r s ; /∗ out : [nc l us te r s] [n fea tures] ∗ /

f l o a t ∗∗new centers ; /∗ [nc l us te r s] [n fea tures] ∗ /

double t im ing ;

/∗ a l l o c a t e space f o r r e t u r n i n g v a r i a b l e c l u s t e r s [] ∗ /

c l u s t e r s = (f l o a t ∗∗) mal loc (nc lus te r s ∗ s i zeo f (f l o a t ∗)) ;

c l u s t e r s [0] = (f l o a t ∗) mal loc (nc lus te r s ∗ nfea tures ∗ s i zeo f (f l o a t)) ;

f o r (i =1 ; i<nc lus te r s ; i ++)

c l u s t e r s [i] = c l u s t e r s [i −1] + n fea tures ;

/∗ randomly p ick c l u s t e r cen ters ∗ /

f o r (i =0 ; i<nc lus te r s ; i ++) {
/ / i n t n = (i n t) random () % npo in ts ;

i n t n = s e l e c t i n i t i a l c l u s t e r (nc lus te rs , i) ;

f o r (j =0 ; j<nfea tures ; j ++)

c l u s t e r s [i] [j] = fea tu re [n] [j] ;

}

f o r (i =0 ; i<npo in ts ; i ++)

53

membership [i] = −1;

/∗ need to i n i t i a l i z e new centers len and new centers [0] to a l l 0 ∗ /

new centers len = (i n t ∗) c a l l o c (nc lus te rs , s i zeo f (i n t)) ;

new centers = (f l o a t ∗∗) mal loc (nc lus te r s ∗ s i zeo f (f l o a t ∗)) ;

new centers [0] = (f l o a t ∗) c a l l o c (nc lus te r s ∗ nfeatures , s i zeo f (f l o a t)) ;

f o r (i =1 ; i<nc lus te r s ; i ++)

new centers [i] = new centers [i −1] + n fea tures ;

do {
de l t a = 0 . 0 ;

f o r (i =0 ; i<npo in ts ; i ++) {
/∗ f i n d the index of nes tes t c l u s t e r cen ters ∗ /

index = f i n d n e a r e s t p o i n t (f ea tu re [i] ,

n features ,

c l us te r s ,

nc lus te r s) ;

/∗ i f membership changes , inc rease de l t a by 1 ∗ /

i f (membership [i] ! = index) de l t a + = 1 . 0 ;

/∗ assign the membership to ob jec t i ∗ /

membership [i] = index ;

/∗ update new c l u s t e r cen ters : sum of ob jec t s loca ted w i t h i n ∗ /

new centers len [index]++ ;

f o r (j =0 ; j<nfea tures ; j ++)

new centers [index] [j] + = fea tu re [i] [j] ;

}

/∗ rep lace o ld c l u s t e r cen ters wi th new centers ∗ /

f o r (i =0 ; i<nc lus te r s ; i ++) {
f o r (j =0 ; j<nfea tures ; j ++) {

i f (new centers len [i] > 0)

c l u s t e r s [i] [j] = new centers [i] [j] / new centers len [i] ;

new centers [i] [j] = 0 . 0 ; /∗ se t back to 0 ∗ /

}
new centers len [i] = 0 ; /∗ se t back to 0 ∗ /

}

de l t a / = npo in ts ;

}
whi le (de l t a > t h resho ld && loop ++ < 500);

f r ee (new centers [0]) ;

f r ee (new centers) ;

54

f r ee (new centers len) ;

r e tu rn c l u s t e r s ;

}

i n t f i n d n e a r e s t p o i n t (f l o a t ∗pt , /∗ [n fea tures] ∗ /

i n t nfeatures ,

f l o a t ∗∗pts , /∗ [npts] [n fea tures] ∗ /

i n t npts)

{
i n t index , i ;

f l o a t max dist=FLT MAX ;

/∗ f i n d the c l u s t e r cen ter i d wi th min d is tance to p t ∗ /

f o r (i =0 ; i<npts ; i ++) {
f l o a t d i s t ;

d i s t = e u c l i d d i s t 2 (pt , p ts [i] , n fea tures) ; /∗ no need square roo t ∗ /

i f (d i s t < max dist) {
max dist = d i s t ;

index = i ;

}
}
r e tu rn (index) ;

}

f l o a t e u c l i d d i s t 2 (f l o a t ∗pt1 ,

f l o a t ∗pt2 ,

i n t numdims)

{
i n t i ;

f l o a t ans =0.0 ;

f o r (i =0 ; i<numdims ; i ++) {
ans + = (pt1 [i]−pt2 [i]) ∗ (pt1 [i]−pt2 [i]) ;

/∗
p r i n t f ("%d: % f − % f = % f\n " , i , p t1 [i] , p t2 [i]) ;

getchar () ;

∗/

}

r e tu rn (ans) ;

}

55

E PODISA (tentative)

E.1 G-format POD Instructions
ADC - Add with carry

Instruction Description

adc1zx r1 = r2, r3 Add with carry unsigned 8-bit data r2 and r3

adc1zx r1 = r2, immed6 Add with carry unsigned 8-bit data r2 and unsigned 6-bit data immed6

adc1sx r1 = r2, r3 Add with carry signed 8-bit data r2 and r3

adc1sx r1 = r2, immed6 Add with carry signed 8-bit data r2 and signed 6-bit data immed6

adc2zx r1 = r2, r3 Add with carry unsigned 16-bit data r2 and r3

adc2zx r1 = r2, immed6 Add with carry unsigned 16-bit data r2 and unsigned 6-bit data immed6

adc2sx r1 = r2, r3 Add with carry signed 16-bit data r2 and r3

adc2sx r1 = r2, immed6 Add with carry signed 16-bit data r2 and signed 6-bit data immed6

adc4zx r1 = r2, r3 Add with carry unsigned 32-bit data r2 and r3

adc4zx r1 = r2, immed6 Add with carry unsigned 32-bit data r2 and unsigned 6-bit data immed6

adc4sx r1 = r2, r3 Add with carry signed 32-bit data r2 and r3

adc4sx r1 = r2, immed6 Add with carry signed 32-bit data r2 and signed 6-bit data immed6

adc8zx r1 = r2, r3 Add with carry unsigned 64-bit data r2 and r3

adc8zx r1 = r2, immed6 Add with carry unsigned 64-bit data r2 and unsigned 6-bit data immed6

adc8sx r1 = r2, r3 Add with carry signed 64-bit data r2 and r3

adc8sx r1 = r2, immed6 Add with carry signed 64-bit data r2 and signed 6-bit data immed6

56

ADD - Add

Instruction Description

add1zx r1 = r2, r3 Add unsigned 8-bit data r2 and r3

add1zx r1 = r2, immed6 Add unsigned 8-bit data r2 and unsigned 6-bit data immed6

add1sx r1 = r2, r3 Add signed 8-bit data r2 and r3

add1sx r1 = r2, immed6 Add signed 8-bit data r2 and signed 6-bit data immed6

add2zx r1 = r2, r3 Add unsigned 16-bit data r2 and r3

add2zx r1 = r2, immed6 Add unsigned 16-bit data r2 and unsigned 6-bit data immed6

add2sx r1 = r2, r3 Add signed 16-bit data r2 and r3

add2sx r1 = r2, immed6 Add signed 16-bit data r2 and signed 6-bit data immed6

add4zx r1 = r2, r3 Add unsigned 32-bit data r2 and r3

add4zx r1 = r2, immed6 Add unsigned 32-bit data r2 and unsigned 6-bit data immed6

add4sx r1 = r2, r3 Add signed 32-bit data r2 and r3

add4sx r1 = r2, immed6 Add signed 32-bit data r2 and signed 6-bit data immed6

add8zx r1 = r2, r3 Add unsigned 64-bit data r2 and r3

add8zx r1 = r2, immed6 Add unsigned 64-bit data r2 and unsigned 6-bit data immed6

add8sx r1 = r2, r3 Add signed 64-bit data r2 and r3

add8sx r1 = r2, immed6 Add signed 64-bit data r2 and signed 6-bit data immed6

AND - Bitwise Logical AND

Instruction Description

and r1 = r2, r3 Bitwise logical AND of r2 and r3

and r1 = r2, immed6 Bitwise logical AND of r2 and immed6

BT - Bit test

Instruction Description

bt r2, immed6 Test immed6-th bit, and set the flags accordingly

57

CMOV - Conditional move

Instruction Description

cmov.o r1 = r2, r3 Move if overflow

cmov.o r1 = r2, immed6 Move if overflow

cmov.not.o r1 = r2, r3 Move if not overflow

cmov.not.o r1 = r2, immed6 Move if not overflow

cmov.b r1 = r2, r3 Move if below

cmov.b r1 = r2, immed6 Move if below

cmov.not.b r1 = r2, r3 Move if not below

cmov.not.b r1 = r2, immed6 Move if not below

cmov.e r1 = r2, r3 Move if equal

cmov.e r1 = r2, immed6 Move if equal

cmov.not.e r1 = r2, r3 Move if not equal

cmov.not.e r1 = r2, immed6 Move if not equal

cmov.be r1 = r2, r3 Move if below or equal

cmov.be r1 = r2, immed6 Move if below or equal

cmov.not.be r1 = r2, r3 Move if not below or equal

cmov.not.be r1 = r2, immed6 Move if not below or equal

cmov.s r1 = r2, r3 Move if sign

cmov.s r1 = r2, immed6 Move if sign

cmov.not.s r1 = r2, r3 Move if not sign

cmov.not.s r1 = r2, immed6 Move if not sign

cmov.l r1 = r2, r3 Move if less

cmov.l r1 = r2, immed6 Move if less

cmov.not.l r1 = r2, r3 Move if not less

cmov.not.l r1 = r2, immed6 Move if not less

cmov.le r1 = r2, r3 Move if less or equal

cmov.le r1 = r2, immed6 Move if less or equal

cmov.not.le r1 = r2, r3 Move if not less or equal

cmov.not.le r1 = r2, immed6 Move if not less or equal

58

CMP - Compare two operands

Instruction Description

cmp1 r2, r3 Compare signed 8-bit data r2 and r3, and set the flags accordingly

cmp1 r2, immed6 Compare signed 8-bit data r2 and signed 6-bit data immed6, and set the flags accordingly

cmp2 r2, r3 Compare signed 16-bit data r2 and r3, and set the flags accordingly

cmp2 r2, immed6 Compare signed 16-bit data r2 and signed 6-bit data immed6, and set the flags accordingly

cmp4 r2, r3 Compare signed 32-bit data r2 and r3, and set the flags accordingly

cmp4 r2, immed6 Compare signed 32-bit data r2 and signed 6-bit data immed6, and set the flags accordingly

cmp8 r2, r3 Compare signed 64-bit data r2 and r3, and set the flags accordingly

cmp8 r2, immed6 Compare signed 64-bit data r2 and signed 6-bit data immed6, and set the flags accordingly

IMUL4 - Multiply

Instruction Description

imul4 r1 = r2, r3 Multiply signed 32-bit data r2 and r3

imul4 r1 = r2, immed6 Multiply signed 32-bit data r2 and signed 6-bit data immed6

NOT - Bitwise NOT

Instruction Description

not r1 = r2 Reverse each bit of r2

not r1 = immed6 Reverse each bit of immed6

OR - Bitwise Logical OR

Instruction Description

or r1 = r2, r3 Bitwise logical OR of r2 and r3

or r1 = r2, immed6 Bitwise logical OR of r2 and immed6

59

SAR - Arithmetic shift-right

Instruction Description

sar r1 = r2, r3 Arithmetically shift r2 to right r3 bits

sar r1 = r2, immed6 Arithmetically shift r2 to right immed6 bits

SBB - Subtract with borrow

Instruction Description

sbb1zx r1 = r2, r3 Subtract with borrow unsigned 8-bit data r2 and r3

sbb1zx r1 = r2, immed6 Subtract with borrow unsigned 8-bit data r2 and unsigned 6-bit data immed6

sbb1sx r1 = r2, r3 Subtract with borrow signed 8-bit data r2 and r3

sbb1sx r1 = r2, immed6 Subtract with borrow signed 8-bit data r2 and signed 6-bit data immed6

sbb2zx r1 = r2, r3 Subtract with borrow unsigned 16-bit data r2 and r3

sbb2zx r1 = r2, immed6 Subtract with borrow unsigned 16-bit data r2 and unsigned 6-bit data immed6

sbb2sx r1 = r2, r3 Subtract with borrow signed 16-bit data r2 and r3

sbb2sx r1 = r2, immed6 Subtract with borrow signed 16-bit data r2 and signed 6-bit data immed6

sbb4zx r1 = r2, r3 Subtract with borrow unsigned 32-bit data r2 and r3

sbb4zx r1 = r2, immed6 Subtract with borrow unsigned 32-bit data r2 and unsigned 6-bit data immed6

sbb4sx r1 = r2, r3 Subtract with borrow signed 32-bit data r2 and r3

sbb4sx r1 = r2, immed6 Subtract with borrow signed 32-bit data r2 and signed 6-bit data immed6

sbb8zx r1 = r2, r3 Subtract with borrow unsigned 64-bit data r2 and r3

sbb8zx r1 = r2, immed6 Subtract with borrow unsigned 64-bit data r2 and unsigned 6-bit data immed6

sbb8sx r1 = r2, r3 Subtract with borrow signed 64-bit data r2 and r3

sbb8sx r1 = r2, immed6 Subtract with borrow signed 64-bit data r2 and signed 6-bit data immed6

SHL - Logical shift-left

Instruction Description

shl r1 = r2, r3 Logically shift r2 to left r3 bits

shl r1 = r2, immed6 Logically shift r2 to left immed6 bits

60

SHLADD - Shift left and add

Instruction Description

shladd1 r1 = r2, r3 Shift signed 64-bit data r2 to left 1 bit and add this number and signed 8-bit data r3

shladd1 r1 = r2, immed6 Shift signed 64-bit data r2 to left 1 bit and add this number and signed 6-bit data immed6

shladd2 r1 = r2, r3 Shift signed 64-bit data r2 to left 2 bits and add this number and signed 8-bit data r3

shladd2 r1 = r2, immed6 Shift signed 64-bit data r2 to left 2 bits and add this number and signed 6-bit data immed6

shladd3 r1 = r2, r3 Shift signed 64-bit data r2 to left 3 bits and add this number and signed 8-bit data r3

shladd3 r1 = r2, immed6 Shift signed 64-bit data r2 to left 3 bits and add this number and signed 6-bit data immed6

shladd4 r1 = r2, r3 Shift signed 64-bit data r2 to left 4 bits and add this number and signed 8-bit data r3

shladd4 r1 = r2, immed6 Shift signed 64-bit data r2 to left 4 bits and add this number and signed 6-bit data immed6

SHR - Logical shift-right

Instruction Description

shr r1 = r2, r3 Logically shift r2 to right r3 bits

shr r1 = r2, immed6 Logically shift r2 to right immed6 bits

SUB - Subtract

Instruction Description

sub1zx r1 = r2, r3 Sub unsigned 8-bit data r2 and r3

sub1zx r1 = r2, immed6 Sub unsigned 8-bit data r2 and unsigned 6-bit data immed6

sub1sx r1 = r2, r3 Sub signed 8-bit data r2 and r3

sub1sx r1 = r2, immed6 Sub signed 8-bit data r2 and signed 6-bit data immed6

sub2zx r1 = r2, r3 Sub unsigned 16-bit data r2 and r3

sub2zx r1 = r2, immed6 Sub unsigned 16-bit data r2 and unsigned 6-bit data immed6

sub2sx r1 = r2, r3 Sub signed 16-bit data r2 and r3

sub2sx r1 = r2, immed6 Sub signed 16-bit data r2 and signed 6-bit data immed6

sub4zx r1 = r2, r3 Sub unsigned 32-bit data r2 and r3

sub4zx r1 = r2, immed6 Sub unsigned 32-bit data r2 and unsigned 6-bit data immed6

sub4sx r1 = r2, r3 Sub signed 32-bit data r2 and r3

sub4sx r1 = r2, immed6 Sub signed 32-bit data r2 and signed 6-bit data immed6

sub8zx r1 = r2, r3 Sub unsigned 64-bit data r2 and r3

sub8zx r1 = r2, immed6 Sub unsigned 64-bit data r2 and unsigned 6-bit data immed6

sub8sx r1 = r2, r3 Sub signed 64-bit data r2 and r3

sub8sx r1 = r2, immed6 Sub signed 64-bit data r2 and signed 6-bit data immed6

61

XFER - Transfer register value to a neighbor PE

Instruction Description

xfer.n r1 = r2 Copy r2 to r1 of the northern neighbor PE (Northmost PE do nothing)

xfer.wrap.n r1 = r2 Copy r2 to r1 of the northern neighbor PE (Northmost PE copies r2 to r1 of southmost PE)

xfer.e r1 = r2 Copy r2 to r1 of the eastern neighbor PE (Eastmost PE do nothing)

xfer.wrap.e r1 = r2 Copy r2 to r1 of the eastern neighbor PE (Eastmost PE copies r2 to r1 of westmost PE)

xfer.w r1 = r2 Copy r2 to r1 of the western neighbor PE (Westmost PE do nothing)

xfer.wrap.w r1 = r2 Copy r2 to r1 of the western neighbor PE (Westmost PE copies r2 to r1 of eastmost PE)

xfer.s r1 = r2 Copy r2 to r1 of the southern neighbor PE (Southmost PE do nothing)

xfer.wrap.s r1 = r2 Copy r2 to r1 of the sourthern neighbor PE (Southmost PE copies r2 to r1 of northmost PE)

XFERDRB - Transfer register value to the data return buffer

Instruction Description

xferdrb r2 Copy r2 to the data return buffer

XOR - Bitwise Logical Exclusive OR

Instruction Description

xor r1 = r2, r3 Bitwise logical exclusive OR of r2 and r3

xor r1 = r2, immed6 Bitwise logical exclusive OR of r2 and immed6

62

E.2 X-format POD Instructions
PCVTF2I - Packed floating point number conversion

Instruction Description

pcvtf2i.scalar.sp.mxcsr xmm1 = xmm2 Convert the low single-precision floating point value from xmm2 to a 32-bit integer value

pcvtf2i.pack.sp.mxcsr xmm1 = xmm2 Convert four single-precision floating point values from xmm2 to four 32-bit integer values

pcvtf2i.scalar.dp.mxcsr xmm1 = xmm2 Convert the low double-precision floating point value from xmm2 to a 64-bit integer value

pcvtf2i.pack.dp.mxcsr xmm1 = xmm2 Convert two double-precision floating point values from xmm2 to two 64-bit integer values

PCVTI2F - Packed integer conversion

Instruction Description

pcvti2f.scalar.sp xmm1 = xmm2 Convert the low 32-bit integer value from xmm2 to a single-precision floating point value

pcvti2f.pack.sp xmm1 = xmm2 Convert four 32-bit integer values from xmm2 to four single-precision floating point values

pcvti2f.scalar.dp xmm1 = xmm2 Convert the low 64-bit integer value from xmm2 to a double-precision floating point value

pcvti2f.pack.dp xmm1 = xmm2 Convert two 64-bit integer values from xmm2 to two double-precision floating point values

PFPADD - Packed floating point add

Instruction Description

pfpadd.scalar.sp xmm1 = xmm2, xmm3 Add the low single-precision floating point value in xmm2 and that in xmm3

pfpadd.pack.sp xmm1 = xmm2, xmm3 Add single-precision floating point values in xmm2 and those in xmm3

pfpadd.scalar.dp xmm1 = xmm2, xmm3 Add the low double-precision floating point value in xmm2 and that in xmm3

pfpadd.pack.dp xmm1 = xmm2, xmm3 Add double-precision floating point values in xmm2 and those in xmm3

63

PFPCMP - Packed floating point comparison

Instruction Description

pfpcmp.lt.scalar.sp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if less than

pfpcmp.lt.pack.sp xmm1 = xmm2, xmm3 Compare single-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if less than

pfpcmp.lt.scalar.dp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if less than

pfpcmp.lt.pack.dp xmm1 = xmm2, xmm3 Compare double-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if less than

pfpcmp.le.scalar.sp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if less than or equal to

pfpcmp.le.pack.sp xmm1 = xmm2, xmm3 Compare single-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if less than or equal to

pfpcmp.le.scalar.dp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if less than or equal to

pfpcmp.le.pack.dp xmm1 = xmm2, xmm3 Compare double-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if less than or equal to

pfpcmp.le.scalar.sp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if equal to

pfpcmp.le.pack.sp xmm1 = xmm2, xmm3 Compare single-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if equal to

pfpcmp.le.scalar.dp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if equal to

pfpcmp.le.pack.dp xmm1 = xmm2, xmm3 Compare double-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if equal to

pfpcmp.ne.scalar.sp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if not equal to

pfpcmp.ne.pack.sp xmm1 = xmm2, xmm3 Compare single-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if not equal to

pfpcmp.ne.scalar.dp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if not equal to

pfpcmp.ne.pack.dp xmm1 = xmm2, xmm3 Compare double-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if not equal to

pfpcmp.unord.scalar.sp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if unordered

pfpcmp.unord.pack.sp xmm1 = xmm2, xmm3 Compare single-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if unordered

pfpcmp.unord.scalar.dp xmm1 = xmm2, xmm3 Compare the low single-precision floating point value in xmm2 to that in xmm3, and set the flags

accordingly if unordered

pfpcmp.unord.pack.dp xmm1 = xmm2, xmm3 Compare double-precision floating point values in xmm2 to those in xmm3, and set the flags

accordingly if unordered

64

PFPDIV - Packed floating point divide

Instruction Description

pfpdiv.scalar.sp xmm1 = xmm2, xmm3 Divide the low single-precision floating point value in xmm2 by that in xmm3

pfpdiv.pack.sp xmm1 = xmm2, xmm3 Divide single-precision floating point values in xmm2 by those in xmm3

pfpdiv.scalar.dp xmm1 = xmm2, xmm3 Divide the low double-precision floating point value in xmm2 by that in xmm3

pfpdiv.pack.dp xmm1 = xmm2, xmm3 Divide double-precision floating point values in xmm2 by those in xmm3

65

PFPFMA - Packed floating point multiply and add

Instruction Description

pfpfma++.scalar.sp xmm1 += xmm2, xmm3 Do following operation on the low single-precision floating point number: xmm1 = xmm1 +
xmm2 × xmm3

pfpfma++.pack.sp xmm1 += xmm2, xmm3 Do following operations on four single-precision floating point numbers: xmm1 = xmm1 +
xmm2 × xmm3

pfpfma++.scalar.dp xmm1 += xmm2, xmm3 Do following operation on the low double-precision floating point number: xmm1 = xmm1+
xmm2 × xmm3

pfpfma++.pack.dp xmm1 += xmm2, xmm3 Do following operations on two double-precision floating point numbers: xmm1 = xmm1 +
xmm2 × xmm3

pfpfma+-.scalar.sp xmm1 += xmm2, xmm3 Do following operation on the low single-precision floating point number: xmm1 = xmm1−
xmm2 × xmm3

pfpfma+-.pack.sp xmm1 += xmm2, xmm3 Do following operations on four single-precision floating point numbers: xmm1 = xmm1 −
xmm2 × xmm3

pfpfma+-.scalar.dp xmm1 += xmm2, xmm3 Do following operation on the low double-precision floating point number: xmm1 = xmm1−
xmm2 × xmm3

pfpfma+-.pack.dp xmm1 += xmm2, xmm3 Do following operations on two double-precision floating point numbers: xmm1 = xmm1 −
xmm2 × xmm3

pfpfma-+.scalar.sp xmm1 += xmm2, xmm3 Do following operation on the low single-precision floating point number: xmm1 =
−xmm1 + xmm2 × xmm3

pfpfma-+.pack.sp xmm1 += xmm2, xmm3 Do following operations on four single-precision floating point numbers: xmm1 = −xmm1+
xmm2 × xmm3

pfpfma-+.scalar.dp xmm1 += xmm2, xmm3 Do following operation on the low double-precision floating point number: xmm1 =
−xmm1 + xmm2 × xmm3

pfpfma-+.pack.dp xmm1 += xmm2, xmm3 Do following operations on two double-precision floating point numbers: xmm1 = −xmm1+
xmm2 × xmm3

pfpfma–.scalar.sp xmm1 += xmm2, xmm3 Do following operation on the low single-precision floating point number: xmm1 =
−xmm1 − xmm2 × xmm3

pfpfma–.pack.sp xmm1 += xmm2, xmm3 Do following operations on four single-precision floating point numbers: xmm1 = −xmm1−
xmm2 × xmm3

pfpfma–.scalar.dp xmm1 += xmm2, xmm3 Do following operation on the low double-precision floating point number: xmm1 =
−xmm1 − xmm2 × xmm3

pfpfma–.pack.dp xmm1 += xmm2, xmm3 Do following operations on two double-precision floating point numbers: xmm1 = −xmm1−
xmm2 × xmm3

66

PFPHADD - Packed floating point horizontal add

Instruction Description

pfphadd.pack.sp xmm1 = xmm2, xmm3 Horizontal-add single-precision floating point values in xmm2 and those in xmm3

pfphadd.pack.dp xmm1 = xmm2, xmm3 Horizontal-add double-precision floating point values in xmm2 and those in xmm3

PFPMAX - Return maximum packed floating point values

Instruction Description

pfpmax.scalar.sp xmm1 = xmm2, xmm3 Return the maximum scalar single-precision floating-point value between xmm2 and xmm3

pfpmax.pack.sp xmm1 = xmm2, xmm3 Return the maximum packed single-precision floating-point values between xmm2 and xmm3

pfpmax.scalar.dp xmm1 = xmm2, xmm3 Return the maximum scalar double-precision floating-point value between xmm2 and xmm3

pfpmax.pack.dp xmm1 = xmm2, xmm3 Return the maximum packed double-precision floating-point values between xmm2 and xmm3

PFPMIN - Return minimum packed floating point values

Instruction Description

pfpmax.scalar.sp xmm1 = xmm2, xmm3 Return the minimum scalar single-precision floating-point value between xmm2 and xmm3

pfpmax.pack.sp xmm1 = xmm2, xmm3 Return the minimum packed single-precision floating-point values between xmm2 and xmm3

pfpmax.scalar.dp xmm1 = xmm2, xmm3 Return the minimum scalar double-precision floating-point value between xmm2 and xmm3

pfpmax.pack.dp xmm1 = xmm2, xmm3 Return the minimum packed double-precision floating-point values between xmm2 and xmm3

PFPMUL - Packed floating point multiply

Instruction Description

pfpmul.scalar.sp xmm1 = xmm2, xmm3 Multiply the low single-precision floating point value in xmm2 and that in xmm3

pfpmul.pack.sp xmm1 = xmm2, xmm3 Multiply single-precision floating point values in xmm2 and those in xmm3

pfpmul.scalar.dp xmm1 = xmm2, xmm3 Multiply the low double-precision floating point value in xmm2 and that in xmm3

pfpmul.pack.dp xmm1 = xmm2, xmm3 Multiply double-precision floating point values in xmm2 and those in xmm3

67

PFPRCPSQRT - Packed floating point reciprocals of square roots

Instruction Description

pfprcpsqrt.scalar.sp xmm1 = xmm2 Return the reciprocal of the square root of the low single-precision floating point value in xmm2

pfprcpsqrt.pack.sp xmm1 = xmm2 Return the reciprocals of the square roots of single-precision floating point values in xmm2

pfprcpsqrt.scalar.dp xmm1 = xmm2 Return the reciprocal of the square root of the low double-precision floating point value in xmm2

pfprcpsqrt.pack.dp xmm1 = xmm2 Return the reciprocals of the square roots of double-precision floating point values in xmm2

PFPSQRT - Packed floating point square roots

Instruction Description

pfpsqrt.scalar.sp xmm1 = xmm2 Return the square root of the low single-precision floating point value in xmm2

pfpsqrt.pack.sp xmm1 = xmm2 Return the square roots of single-precision floating point values in xmm2

pfpsqrt.scalar.dp xmm1 = xmm2 Return the square root of the low double-precision floating point value in xmm2

pfpsqrt.pack.dp xmm1 = xmm2 Return the square roots of double-precision floating point values in xmm2

PFPSUB - Packed floating point sub

Instruction Description

pfpsub.scalar.sp xmm1 = xmm2, xmm3 Subtract the low single-precision floating point value in xmm3 from that in xmm2

pfpsub.pack.sp xmm1 = xmm2, xmm3 Subtract single-precision floating point values in xmm3 from those in xmm2

pfpsub.scalar.dp xmm1 = xmm2, xmm3 Subtract the low double-precision floating point value in xmm3 from that in xmm2

pfpsub.pack.dp xmm1 = xmm2, xmm3 Subtract double-precision floating point values in xmm3 from those in xmm2

PINTADD - Packed integer add

Instruction Description

pintadd1 xmm1 = xmm2, xmm3 Add sixteen 8-bit integer values in xmm2 and those in xmm3

pintadd2 xmm1 = xmm2, xmm3 Add eight 16-bit integer values in xmm2 and those in xmm3

pintadd4 xmm1 = xmm2, xmm3 Add four 32-bit integer values in xmm2 and those in xmm3

pintadd8 xmm1 = xmm2, xmm3 Add two 64-bit integer values in xmm2 and those in xmm3

68

PINTAND - Packed bitwise logical AND

Instruction Description

pintand xmm1 = xmm2, xmm3 Bitwise logical AND of values in xmm2 and those in xmm3

PINTCMP - Packed integer comparison

Instruction Description

pintcmp1.lt xmm1 = xmm2, xmm3 Compare sixteen 8-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

less than

pintcmp2.lt xmm1 = xmm2, xmm3 Compare eight 16-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

less than

pintcmp4.lt xmm1 = xmm2, xmm3 Compare four 32-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if less

than

pintcmp8.lt xmm1 = xmm2, xmm3 Compare two 64-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if less

than

pintcmp1.le xmm1 = xmm2, xmm3 Compare sixteen 8-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

less than or equal to

pintcmp2.le xmm1 = xmm2, xmm3 Compare eight 16-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

less than or equal to

pintcmp4.le xmm1 = xmm2, xmm3 Compare four 32-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if less

than or equal to

pintcmp8.le xmm1 = xmm2, xmm3 Compare two 64-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if less

than or equal to

pintcmp1.eq xmm1 = xmm2, xmm3 Compare sixteen 8-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

equal to

pintcmp2.eq xmm1 = xmm2, xmm3 Compare eight 16-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

equal to

pintcmp4.eq xmm1 = xmm2, xmm3 Compare four 32-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

equal to

pintcmp8.eq xmm1 = xmm2, xmm3 Compare two 64-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

equatl to

pintcmp1.ne xmm1 = xmm2, xmm3 Compare sixteen 8-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if

not equal to

pintcmp2.ne xmm1 = xmm2, xmm3 Compare eight 16-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if not

equal to

pintcmp4.ne xmm1 = xmm2, xmm3 Compare four 32-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if not

equal to

pintcmp8.ne xmm1 = xmm2, xmm3 Compare two 64-bit integer values in xmm2 to those in xmm3, and set the flags accordingly if not

equatl to

69

PINTHADD - Packed integer horizontal add

Instruction Description

pinthadd1 xmm1 = xmm2, xmm3 Horizontal-add sixteen 8-bit integer values in xmm2 and those in xmm3

pinthadd2 xmm1 = xmm2, xmm3 Horizontal-add eight 16-bit integer values in xmm2 and those in xmm3

pinthadd4 xmm1 = xmm2, xmm3 Horizontal-add four 32-bit integer values in xmm2 and those in xmm3

pinthadd8 xmm1 = xmm2, xmm3 Horizontal-add two 64-bit integer values in xmm2 and those in xmm3

PINTMUL - Packed integer multiply

Instruction Description

pintmul4 xmm1 = xmm2, xmm3 Multiply four 32-bit integer values in xmm2 and those in xmm3

PINTNOT - Packed bitwise NOT

Instruction Description

not xmm1 = xmm2 Reverse each bit of values in xmm2

PINTOR - Packed bitwise logical OR

Instruction Description

pintor xmm1 = xmm2, xmm3 Bitwise logical OR of values in xmm2 and those in xmm3

PINTSAR - Packed integer arithmetic shift-right

Instruction Description

pintsar1 xmm1 = xmm2, immed6 Arithmetically shift sixteen 8-bit integer values in xmm2 to right immed6 bits

pintsar2 xmm1 = xmm2, immed6 Arithmetically shift eight 16-bit integer values in xmm2 to right immed6 bits

pintsar4 xmm1 = xmm2, immed6 Arithmetically shift four 32-bit integer values in xmm2 to right immed6 bits

pintsar8 xmm1 = xmm2, immed6 Arithmetically shift two 64-bit integer values in xmm2 to right immed6 bits

70

PINTSHL - Packed integer logical shift-left

Instruction Description

pintshl1 xmm1 = xmm2, immed6 Logically shift sixteen 8-bit integer values in xmm2 to left immed6 bits

pintshl2 xmm1 = xmm2, immed6 Logically shift eight 16-bit integer values in xmm2 to left immed6 bits

pintshl4 xmm1 = xmm2, immed6 Logically shift four 32-bit integer values in xmm2 to left immed6 bits

pintshl8 xmm1 = xmm2, immed6 Logically shift two 64-bit integer values in xmm2 to left immed6 bits

PINTSHR - Packed integer logical shift-right

Instruction Description

pintshr1 xmm1 = xmm2, immed6 Logically shift sixteen 8-bit integer values in xmm2 to right immed6 bits

pintshr2 xmm1 = xmm2, immed6 Logically shift eight 16-bit integer values in xmm2 to right immed6 bits

pintshr4 xmm1 = xmm2, immed6 Logically shift four 32-bit integer values in xmm2 to right immed6 bits

pintshr8 xmm1 = xmm2, immed6 Logically shift two 64-bit integer values in xmm2 to right immed6 bits

PINTSUB - Packed integer substract

Instruction Description

pintsub1 xmm1 = xmm2, xmm3 Subtract sixteen 8-bit integer values in xmm3 from those in xmm2

pintsub2 xmm1 = xmm2, xmm3 Subtract eight 16-bit integer values in xmm3 from those in xmm2

pintsub4 xmm1 = xmm2, xmm3 Subtract four 32-bit integer values in xmm3 from those in xmm2

pintsub8 xmm1 = xmm2, xmm3 Subtract two 64-bit integer values in xmm3 from those in xmm2

PINTXOR - Packed bitwise logical exclusive OR

Instruction Description

pintxor xmm1 = xmm2, xmm3 Bitwise logical exclusive OR of values in xmm2 and those in xmm3

71

XFERXMM - Transfer XMM register value to a neighbor PE

Instruction Description

xferxmm.n xmm1 = xmm2 Copy xmm2 to xmm1 of the northern neighbor PE (Northmost PE do nothing)

xferxmm.wrap.n xmm1 = xmm2 Copy xmm2 to xmm1 of the northern neighbor PE (Northmost PE copies xmm2 to xmm1 of

southmost PE)

xferxmm.e xmm1 = xmm2 Copy xmm2 to xmm1 of the eastern neighbor PE (Eastmost PE do nothing)

xferxmm.wrap.e xmm1 = xmm2 Copy xmm2 to xmm1 of the eastern neighbor PE (Eastmost PE copies xmm2 to xmm1 of westmost

PE)

xferxmm.w xmm1 = xmm2 Copy xmm2 to xmm1 of the western neighbor PE (Westmost PE do nothing)

xferxmm.wrap.w xmm1 = xmm2 Copy xmm2 to xmm1 of the western neighbor PE (Westmost PE copies xmm2 to xmm1 of eastmost

PE)

xferxmm.s xmm1 = xmm2 Copy xmm2 to xmm1 of the southern neighbor PE (Southmost PE do nothing)

xferxmm.wrap.s xmm1 = xmm2 Copy xmm2 to xmm1 of the sourthern neighbor PE (Southmost PE copies xmm2 to xmm1 of

northmost PE)

72

E.3 M-format POD Instructions
COPYBLK - Copy a block of data between the local memory and the system memory

Instruction Description

copyblk sys[r1] = local[r2], r3 Copy a block (block size: r3) of data from the address r2 of the local memory to the address r1 of

the system memory

copyblk strided sys[r1] = local[r2], r3 Copy blocks (block size: r3, the number of blocks: ar10, the block-stride of system memory space:

ar11) of data from the address r2 of the local memory to the address r1 of the system memory

copyblk sys[r1] = strided local[r2], r3 Copy blocks (block size: r3, the number of blocks: ar10, the block-stride of local memory space:

ar11) of data from the address r2 of the local memory to the address r1 of the system memory

copyblk local[r1] = sys[r2], r3 Copy a block (block size: r3) of data from the address r2 of the local memory to the address r1 of

the system memory

copyblk strided local[r1] = sys[r2], r3 Copy blocks (block size: r3, the number of blocks: ar10, the block-stride of local memory space:

ar11) of data from the address r2 of the system memory to the address r1 of the local memory

copyblk local[r1] = strided sys[r2], r3 Copy blocks (block size: r3, the number of blocks: ar10, the block-stride of system memory space:

ar11) of data from the address r2 of the system memory to the address r1 of the local memory

LDLOCAL - Load data from the local memory to a general purpose register

Instruction Description

ld1.zxt r1 = local[r2 + immed6] Load 8-bit data from the address (r2 + immed6) of the local memory, zero-extend it, and save it at

r1

ld1.sxt r1 = local[r2 + immed6] Load 8-bit data from the address (r2 + immed6) of the local memory, sign-extend it, and save it at

r1

ld2.zxt r1 = local[r2 + immed6] Load 16-bit data from the address (r2 + immed6) of the local memory, zero-extend it, and save it

at r1

ld2.sxt r1 = local[r2 + immed6] Load 16-bit data from the address (r2 + immed6) of the local memory, sign-extend it, and save it

at r1

ld4.zxt r1 = local[r2 + immed6] Load 32-bit data from the address (r2 + immed6) of the local memory, zero-extend it, and save it

at r1

ld4.sxt r1 = local[r2 + immed6] Load 32-bit data from the address (r2 + immed6) of the local memory, sign-extend it, and save it

at r1

ld8.zxt r1 = local[r2 + immed6] Load 64-bit data from the address (r2 + immed6) of the local memory, zero-extend it, and save it

at r1

ld8.sxt r1 = local[r2 + immed6] Load 64-bit data from the address (r2 + immed6) of the local memory, sign-extend it, and save it

at r1

73

LDLOCAL++ - Load data from the local memory to a general purpose register (post-increment type)

Instruction Description

ld1++.zxt r1 = local[r2], r3 Load 8-bit data from the address r2 of the local memory, zero-extend it, save it at r1, and increase

r2 by r3

ld1++.sxt r1 = local[r2], r3 Load 8-bit data from the address r2 of the local memory, sign-extend it, save it at r1, and increase

r2 by r3

ld2++.zxt r1 = local[r2], r3 Load 16-bit data from the address r2 of the local memory, zero-extend it, save it at r1, and increase

r2 by r3

ld2++.sxt r1 = local[r2], r3 Load 16-bit data from the address r2 of the local memory, sign-extend it, save it at r1, and increase

r2 by r3

ld4++.zxt r1 = local[r2], r3 Load 32-bit data from the address r2 of the local memory, zero-extend it, save it at r1, and increase

r2 by r3

ld4++.sxt r1 = local[r2], r3 Load 32-bit data from the address r2 of the local memory, sign-extend it, save it at r1, and increase

r2 by r3

ld8++.zxt r1 = local[r2], r3 Load 64-bit data from the address r2 of the local memory, zero-extend it, save it at r1, and increase

r2 by r3

ld8++.sxt r1 = local[r2], r3 Load 64-bit data from the address r2 of the local memory, sign-extend it, save it at r1, and increase

r2 by r3

LDPODALL - Load data from the local memory of other PE to a general purpose register

Instruction Description

ld1.zxt r1 = podall[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, zero-extend it, and save it at r1

ld1.sxt r1 = podall[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, sign-extend it, and save it at r1

ld2.zxt r1 = podall[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, zero-extend it, and save it at r1

ld2.sxt r1 = podall[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, sign-extend it, and save it at r1

ld4.zxt r1 = podall[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, zero-extend it, and save it at r1

ld4.sxt r1 = podall[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, sign-extend it, and save it at r1

ld8.zxt r1 = podall[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, zero-extend it, and save it at r1

ld8.sxt r1 = podall[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, sign-extend it, and save it at r1

74

LDPODALL++ - Load data from the local memory of other PE to a general purpose register (post-increment type)

Instruction Description

ld1++.zxt r1 = podall[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, zero-

extend it, save it at r1, and increase r2 by r3

ld1++.sxt r1 = podall[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, sign-

extend it, save it at r1, and increase r2 by r3

ld2++.zxt r1 = podall[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, zero-

extend it, save it at r1, and increase r2 by r3

ld2++.sxt r1 = podall[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, sign-

extend it, save it at r1, and increase r2 by r3

ld4++.zxt r1 = podall[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, zero-

extend it, save it at r1, and increase r2 by r3

ld4++.sxt r1 = podall[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, sign-

extend it, save it at r1, and increase r2 by r3

ld8++.zxt r1 = podall[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, zero-

extend it, save it at r1, and increase r2 by r3

ld8++.sxt r1 = podall[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, sign-

extend it, save it at r1, and increase r2 by r3

LDPODCOL - Load data from the local memory of other PE in the same column to a general purpose register

Instruction Description

ld1.zxt r1 = podcol[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, zero-extend it, and save it at r1

ld1.sxt r1 = podcol[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, sign-extend it, and save it at r1

ld2.zxt r1 = podcol[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, zero-extend it, and save it at r1

ld2.sxt r1 = podcol[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, sign-extend it, and save it at r1

ld4.zxt r1 = podcol[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, zero-extend it, and save it at r1

ld4.sxt r1 = podcol[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, sign-extend it, and save it at r1

ld8.zxt r1 = podcol[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, zero-extend it, and save it at r1

ld8.sxt r1 = podcol[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, sign-extend it, and save it at r1

75

LDPODCOL++ - Load data from the local memory of other PE in the same column to a general purpose register (post-increment type)

Instruction Description

ld1++.zxt r1 = podcol[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row and

in the same column, zero-extend it, save it at r1, and increase r2 by r3

ld1++.sxt r1 = podcol[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row and

in the same column, sign-extend it, save it at r1, and increase r2 by r3

ld2++.zxt r1 = podcol[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, zero-extend it, save it at r1, and increase r2 by r3

ld2++.sxt r1 = podcol[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, sign-extend it, save it at r1, and increase r2 by r3

ld4++.zxt r1 = podcol[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, zero-extend it, save it at r1, and increase r2 by r3

ld4++.sxt r1 = podcol[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, sign-extend it, save it at r1, and increase r2 by r3

ld8++.zxt r1 = podcol[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, zero-extend it, save it at r1, and increase r2 by r3

ld8++.sxt r1 = podcol[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, sign-extend it, save it at r1, and increase r2 by r3

LDPODROW - Load data from the local memory of other PE in the same row to a general purpose register

Instruction Description

ld1.zxt r1 = podrow[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, zero-extend it, and save it at r1

ld1.sxt r1 = podrow[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, sign-extend it, and save it at r1

ld2.zxt r1 = podrow[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, zero-extend it, and save it at r1

ld2.sxt r1 = podrow[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, sign-extend it, and save it at r1

ld4.zxt r1 = podrow[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, zero-extend it, and save it at r1

ld4.sxt r1 = podrow[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, sign-extend it, and save it at r1

ld8.zxt r1 = podrow[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, zero-extend it, and save it at r1

ld8.sxt r1 = podrow[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, sign-extend it, and save it at r1

76

LDPODROW++ - Load data from the local memory of other PE in the same row to a general purpose register (post-increment type)

Instruction Description

ld1++.zxt r1 = podrow[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, zero-extend it, save it at r1, and increase r2 by r3

ld1++.sxt r1 = podrow[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, sign-extend it, save it at r1, and increase r2 by r3

ld2++.zxt r1 = podrow[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, zero-extend it, save it at r1, and increase r2 by r3

ld2++.sxt r1 = podrow[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, sign-extend it, save it at r1, and increase r2 by r3

ld4++.zxt r1 = podrow[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, zero-extend it, save it at r1, and increase r2 by r3

ld4++.sxt r1 = podrow[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, sign-extend it, save it at r1, and increase r2 by r3

ld8++.zxt r1 = podrow[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, zero-extend it, save it at r1, and increase r2 by r3

ld8++.sxt r1 = podrow[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, sign-extend it, save it at r1, and increase r2 by r3

LDSYS - Load data from the system memory to a general purpose register

Instruction Description

ld1.zxt r1 = sys[r2 + immed6] Load 8-bit data from the address (r2 + immed6) of the system memory, zero-extend it, and save it

at r1

ld1.sxt r1 = sys[r2 + immed6] Load 8-bit data from the address (r2 + immed6) of the system memory, sign-extend it, and save it

at r1

ld2.zxt r1 = sys[r2 + immed6] Load 16-bit data from the address (r2 + immed6) of the system memory, zero-extend it, and save

it at r1

ld2.sxt r1 = sys[r2 + immed6] Load 16-bit data from the address (r2 + immed6) of the system memory, sign-extend it, and save

it at r1

ld4.zxt r1 = sys[r2 + immed6] Load 32-bit data from the address (r2 + immed6) of the system memory, zero-extend it, and save

it at r1

ld4.sxt r1 = sys[r2 + immed6] Load 32-bit data from the address (r2 + immed6) of the system memory, sign-extend it, and save

it at r1

ld8.zxt r1 = sys[r2 + immed6] Load 64-bit data from the address (r2 + immed6) of the system memory, zero-extend it, and save

it at r1

ld8.sxt r1 = sys[r2 + immed6] Load 64-bit data from the address (r2 + immed6) of the system memory, sign-extend it, and save

it at r1

77

LDSYS++ - Load data from the system memory to a general purpose register (post-increment type)

Instruction Description

ld1++.zxt r1 = sys[r2], r3 Load 8-bit data from the address r2 of the system memory, zero-extend it, save it at r1, and increase

r2 by r3

ld1++.sxt r1 = sys[r2], r3 Load 8-bit data from the address r2 of the system memory, sign-extend it, save it at r1, and increase

r2 by r3

ld2++.zxt r1 = sys[r2], r3 Load 16-bit data from the address r2 of the system memory, zero-extend it, save it at r1, and

increase r2 by r3

ld2++.sxt r1 = sys[r2], r3 Load 16-bit data from the address r2 of the system memory, sign-extend it, save it at r1, and

increase r2 by r3

ld4++.zxt r1 = sys[r2], r3 Load 32-bit data from the address r2 of the system memory, zero-extend it, save it at r1, and

increase r2 by r3

ld4++.sxt r1 = sys[r2], r3 Load 32-bit data from the address r2 of the system memory, sign-extend it, save it at r1, and

increase r2 by r3

ld8++.zxt r1 = sys[r2], r3 Load 64-bit data from the address r2 of the system memory, zero-extend it, save it at r1, and

increase r2 by r3

ld8++.sxt r1 = sys[r2], r3 Load 64-bit data from the address r2 of the system memory, sign-extend it, save it at r1, and

increase r2 by r3

LDXMMLOCAL - Load data from the local memory to a XMM register

Instruction Description

ldxmm1.scalar xmm1 = local[r2 + immed6] Load 8-bit data from the address (r2 + immed6) of the local memory, and save it at xmm1

ldxmm2.scalar xmm1 = local[r2 + immed6] Load 16-bit data from the address (r2 + immed6) of the local memory, and save it at xmm1

ldxmm4.scalar xmm1 = local[r2 + immed6] Load 32-bit data from the address (r2 + immed6) of the local memory, and save it at xmm1

ldxmm8.scalar xmm1 = local[r2 + immed6] Load 64-bit data from the address (r2 + immed6) of the local memory, and save it at xmm1

ldxmm.pack r1 = local[r2 + immed6] Load 128-bit data from the address (r2 + immed6) of the local memory, and save it at xmm1

LDXMMLOCAL++ - Load data from the local memory to a XMM register (post-increment type)

Instruction Description

ldxmm1++.scalar xmm1 = local[r2], r3 Load 8-bit data from the address r2 of the local memory, save it at xmm1, and increase r2 by r3

ldxmm2++.scalar xmm1 = local[r2], r3 Load 16-bit data from the address r2 of the local memory, save it at xmm1, and increase r2 by r3

ldxmm4++.scalar xmm1 = local[r2], r3 Load 32-bit data from the address r2 of the local memory, save it at xmm1, and increase r2 by r3

ldxmm8++.scalar xmm1 = local[r2], r3 Load 64-bit data from the address r2 of the local memory, save it at xmm1, and increase r2 by r3

ldxmm++.pack xmm1 = local[r2], r3 Load 64-bit data from the address r2 of the local memory, save it at xmm1, and increase r2 by r3

78

LDXMMPODALL - Load data from the local memory of other PE to a XMM register

Instruction Description

ldxmm1.scalar xmm1 = podall[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, and save it at xmm1

ldxmm2.scalar xmm1 = podall[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, and save it at xmm1

ldxmm4.scalar xmm1 = podall[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, and save it at xmm1

ldxmm8.scalar xmm1 = podall[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, and save it at xmm1

ldxmm.pack xmm1 = podall[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of ((r2+immed6)[27:24],

(r2+immed6)[23:20]) PE, and save it at xmm1

LDXMMPODALL++ - Load data from the local memory of other PE to a XMM register (post-increment type)

Instruction Description

ldxmm1++.scalar xmm1 = podall[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, save it

at xmm1, and increase r2 by r3

ldxmm2++.scalar xmm1 = podall[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, save

it at xmm1, and increase r2 by r3

ldxmm4++.scalar xmm1 = podall[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, save

it at xmm1, and increase r2 by r3

ldxmm8++.scalar xmm1 = podall[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, save

it at xmm1, and increase r2 by r3

ldxmm++.pack xmm1 = podall[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, save

it at xmm1, and increase r2 by r3

79

LDXMMPODCOL - Load data from the local memory of other PE in the same column to a XMM register

Instruction Description

ldxmm1.scalar xmm1 = podcol[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, and save it at xmm1

ldxmm2.scalar xmm1 = podcol[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, and save it at xmm1

ldxmm4.scalar xmm1 = podcol[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, and save it at xmm1

ldxmm8.scalar xmm1 = podcol[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, and save it at xmm1

ldxmm.pack xmm1 = podcol[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column, and save it at xmm1

LDXMMPODCOL++ - Load data from the local memory of other PE in the same column to a XMM register (post-increment type)

Instruction Description

ldxmm1++.scalar xmm1 = podcol[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row and

in the same column, save it at xmm1, and increase r2 by r3

ldxmm2++.scalar xmm1 = podcol[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, save it at xmm1, and increase r2 by r3

ldxmm4++.scalar xmm1 = podcol[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, save it at xmm1, and increase r2 by r3

ldxmm8++.scalar xmm1 = podcol[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, save it at xmm1, and increase r2 by r3

ldxmm++.pack xmm1 = podcol[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column, save it at xmm1, and increase r2 by r3

80

LDXMMPODROW - Load data from the local memory of other PE in the same row to a XMM register

Instruction Description

ldxmm1.scalar xmm1 = podrow[r2 + immed6] Load 8-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, and save it at xmm1

ldxmm2.scalar xmm1 = podrow[r2 + immed6] Load 16-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, and save it at xmm1

ldxmm4.scalar xmm1 = podrow[r2 + immed6] Load 32-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, and save it at xmm1

ldxmm8.scalar xmm1 = podrow[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, and save it at xmm1

ldxmm.pack xmm1 = podrow[r2 + immed6] Load 64-bit data from the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and (r2+immed6)[23:20]th column, and save it at xmm1

LDXMMPODROW++ - Load data from the local memory of other PE in the same row to a XMM register (post-increment type)

Instruction Description

ldxmm1++.scalar xmm1 = podrow[r2], r3 Load 8-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, save it at xmm1, and increase r2 by r3

ldxmm2++.scalar xmm1 = podrow[r2], r3 Load 16-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, save it at xmm1, and increase r2 by r3

ldxmm4++.scalar xmm1 = podrow[r2], r3 Load 32-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, save it at xmm1, and increase r2 by r3

ldxmm8++.scalar xmm1 = podrow[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, save it at xmm1, and increase r2 by r3

ldxmm++.pack xmm1 = podrow[r2], r3 Load 64-bit data from the address r2[19:0] of the local memory of the PE in the same row and

r2[23:20]th column, save it at xmm1, and increase r2 by r3

LDXMMSYS - Load data from the system memory to a XMM register

Instruction Description

ldxmm1.scalar xmm1 = sys[r2 + immed6] Load 8-bit data from the address (r2 + immed6) of the system memory, and save it at xmm1

ldxmm2.scalar xmm1 = sys[r2 + immed6] Load 16-bit data from the address (r2 + immed6) of the system memory, and save it at xmm1

ldxmm4.scalar xmm1 = sys[r2 + immed6] Load 32-bit data from the address (r2 + immed6) of the system memory, and save it at xmm1

ldxmm8.scalar xmm1 = sys[r2 + immed6] Load 64-bit data from the address (r2 + immed6) of the system memory, and save it at xmm1

ldxmm.pack xmm1 = sys[r2 + immed6] Load 128-bit data from the address (r2 + immed6) of the system memory, and save it at xmm1

81

LDXMMSYS++ - Load data from the system memory to a XMM register (post-increment type)

Instruction Description

ldxmm1++.scalar xmm1 = sys[r2], r3 Load 8-bit data from the address r2 of the system memory, save it at xmm1, and increase r2 by r3

ldxmm2++.scalar xmm1 = sys[r2], r3 Load 16-bit data from the address r2 of the system memory, save it at xmm1, and increase r2 by

r3

ldxmm4++.scalar xmm1 = sys[r2], r3 Load 32-bit data from the address r2 of the system memory, save it at xmm1, and increase r2 by

r3

ldxmm8++.scalar xmm1 = sys[r2], r3 Load 64-bit data from the address r2 of the system memory, save it at xmm1, and increase r2 by

r3

ldxmm++.pack xmm1 = sys[r2], r3 Load 64-bit data from the address r2 of the system memory, save it at xmm1, and increase r2 by

r3

MOVAR - Get or set a AR register value

Instruction Description

mov8 r1 = ar2 Copy a register value of ar2 to r1

mov8 ar1 = r2 Copy a register value of r2 to ar1

POPMASK - Shift the mask register to left 1 bit

Instruction Description

popmask Shift the mask register to left 1 bit

82

PUSHMASK - Shift the mask register to right 1 bit and set top mask

Instruction Description

pushmask.and.o Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if overflow

pushmask.and.not.o Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if not

overflow

pushmask.and.b Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if below

pushmask.and.not.b Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if not below

pushmask.and.e Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if equal

pushmask.and.not.e Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if not equal

pushmask.and.be Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if below or

equal

pushmask.and.not.be Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if not below

or equal

pushmask.and.s Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if sign

pushmask.and.not.s Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if not sign

pushmask.and.l Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if less

pushmask.and.not.l Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if not less

pushmask.and.le Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if less or

equal

pushmask.and.not.le Shift the mask register to right 1 bit, and set top mask if the previous mask was set and if not less

or equal

pushmask.or.o Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if overflow

pushmask.or.not.o Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if not overflow

pushmask.or.b Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if below

pushmask.or.not.b Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if not below

pushmask.or.e Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if equal

pushmask.or.not.e Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if not equal

pushmask.or.be Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if below or

equal

pushmask.or.not.be Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if not below

or equal

pushmask.or.s Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if sign

pushmask.or.not.s Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if not sign

pushmask.or.l Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if less

pushmask.or.not.l Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if not less

pushmask.or.le Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if less or

equal

pushmask.or.not.le Shift the mask register to right 1 bit, and set top mask if the previous mask was set or if not less or

equal

83

SETTOPMASK - Set top mask

Instruction Description

settopmask.and.o Set top mask if the previous mask was set and if overflow

settopmask.and.not.o Set top mask if the previous mask was set and if not overflow

settopmask.and.b Set top mask if the previous mask was set and if below

settopmask.and.not.b Set top mask if the previous mask was set and if not below

settopmask.and.e Set top mask if the previous mask was set and if equal

settopmask.and.not.e Set top mask if the previous mask was set and if not equal

settopmask.and.be Set top mask if the previous mask was set and if below or equal

settopmask.and.not.be Set top mask if the previous mask was set and if not below or equal

settopmask.and.s Set top mask if the previous mask was set and if sign

settopmask.and.not.s Set top mask if the previous mask was set and if not sign

settopmask.and.l Set top mask if the previous mask was set and if less

settopmask.and.not.l Set top mask if the previous mask was set and if not less

settopmask.and.le Set top mask if the previous mask was set and if less or equal

settopmask.and.not.le Set top mask if the previous mask was set and if not less or equal

settopmask.or.o Set top mask if the previous mask was set or if overflow

settopmask.or.not.o Set top mask if the previous mask was set or if not overflow

settopmask.or.b Set top mask if the previous mask was set or if below

settopmask.or.not.b Set top mask if the previous mask was set or if not below

settopmask.or.e Set top mask if the previous mask was set or if equal

settopmask.or.not.e Set top mask if the previous mask was set or if not equal

settopmask.or.be Set top mask if the previous mask was set or if below or equal

settopmask.or.not.be Set top mask if the previous mask was set or if not below or equal

settopmask.or.s Set top mask if the previous mask was set or if sign

settopmask.or.not.s Set top mask if the previous mask was set or if not sign

settopmask.or.l Set top mask if the previous mask was set or if less

settopmask.or.not.l Set top mask if the previous mask was set or if not less

settopmask.or.le Set top mask if the previous mask was set or if less or equal

settopmask.or.not.le Set top mask if the previous mask was set or if not less or equal

STLOCAL - Store a general purpose register value to the local memory

Instruction Description

st1 local[r2 + immed6] = r1 Store 8-bit data of r1 to the address (r2 + immed6) of the local memory

st2 local[r2 + immed6] = r1 Load 16-bit data of r1 to the address (r2 + immed6) of the local memory

st4 local[r2 + immed6] = r1 Load 32-bit data of r1 to the address (r2 + immed6) of the local memory

st8 local[r2 + immed6] = r1 Load 64-bit data of r1 to the address (r2 + immed6) of the local memory

84

STLOCAL++ - Store a general purpose register value to the local memory (post-increment type)

Instruction Description

st1++ local[r2] = r1, r3 Store 8-bit data of r1 to the address r2 of the local memory, and increase r2 by r3

st2++ local[r2] = r1, r3 Load 16-bit data of r1 to the address r2 of the local memory, and increase r2 by r3

st4++ local[r2] = r1, r3 Load 32-bit data of r1 to the address r2 of the local memory, and increase r2 by r3

st8++ local[r2] = r1, r3 Load 64-bit data of r1 to the address r2 of the local memory, and increase r2 by r3

STPODALL - Store a general purpose register value to the local memory of other PE

Instruction Description

st1 podall[r2 + immed6] = r1 Store 8-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

st2 podall[r2 + immed6] = r1 Load 16-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

st4 podall[r2 + immed6] = r1 Load 32-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

st8 podall[r2 + immed6] = r1 Load 64-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

STPODALL++ - Store a general purpose register value to the local memory of other PE (post-increment type)

Instruction Description

st1++ podall[r2] = r1, r3 Store 8-bit data of r1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, and

increase r2 by r3

st2++ podall[r2] = r1, r3 Load 16-bit data of r1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, and

increase r2 by r3

st4++ podall[r2] = r1, r3 Load 32-bit data of r1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, and

increase r2 by r3

st8++ podall[r2] = r1, r3 Load 64-bit data of r1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE, and

increase r2 by r3

85

STPODCOL - Store a general purpose register value to the local memory of other PE in the same column

Instruction Description

st1 podcol[r2 + immed6] = r1 Store 8-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column

st2 podcol[r2 + immed6] = r1 Load 16-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column

st4 podcol[r2 + immed6] = r1 Load 32-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column

st8 podcol[r2 + immed6] = r1 Load 64-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column

STPODCOL++ - Store a general purpose register value to the local memory of other PE in the same column (post-increment type)

Instruction Description

st1++ podcol[r2] = r1, r3 Store 8-bit data of r1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column

st2++ podcol[r2] = r1, r3 Load 16-bit data of r1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column

st4++ podcol[r2] = r1, r3 Load 32-bit data of r1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column

st8++ podcol[r2] = r1, r3 Load 64-bit data of r1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th row

and in the same column

STPODROW - Store a general purpose register value to the local memory of other PE in the same row

Instruction Description

st1 podrow[r2 + immed6] = r1 Store 8-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and in the (r2+immed6)[27:24]th column

st2 podrow[r2 + immed6] = r1 Load 16-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

same row and in the (r2+immed6)[27:24]th column

st4 podrow[r2 + immed6] = r1 Load 32-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

same row and in the (r2+immed6)[27:24]th column

st8 podrow[r2 + immed6] = r1 Load 64-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

same row and in the (r2+immed6)[27:24]th column

86

STPODROW++ - Store a general purpose register value to the local memory of other PE in the same row (post-increment type)

Instruction Description

st1++ podrow[r2] = r1, r3 Store 8-bit data of r1 to the address r2[19:0] of the local memory of the PE in the same row and in

the r2[27:24]th column

st2++ podrow[r2] = r1, r3 Load 16-bit data of r1 to the address r2[19:0] of the local memory of the PE in the same row and

in the r2[27:24]th column

st4++ podrow[r2] = r1, r3 Load 32-bit data of r1 to the address r2[19:0] of the local memory of the PE in the same row and

in the r2[27:24]th column

st8++ podrow[r2] = r1, r3 Load 64-bit data of r1 to the address r2[19:0] of the local memory of the PE in the same row and

in the r2[27:24]th column

STSYS - Store a general purpose register value to the system memory

Instruction Description

st1 sys[r2 + immed6] = r1 Store 8-bit data of r1 to the address (r2 + immed6) of the system memory

st2 sys[r2 + immed6] = r1 Load 16-bit data of r1 to the address (r2 + immed6) of the system memory

st4 sys[r2 + immed6] = r1 Load 32-bit data of r1 to the address (r2 + immed6) of the system memory

st8 sys[r2 + immed6] = r1 Load 64-bit data of r1 to the address (r2 + immed6) of the system memory

STSYS++ - Store a general purpose register value to the system memory (post-increment type)

Instruction Description

st1++ sys[r2] = r1, r3 Store 8-bit data of r1 to the address r2 of the system memory, and increase r2 by r3

st2++ sys[r2] = r1, r3 Load 16-bit data of r1 to the address r2 of the system memory, and increase r2 by r3

st4++ sys[r2] = r1, r3 Load 32-bit data of r1 to the address r2 of the system memory, and increase r2 by r3

st8++ sys[r2] = r1, r3 Load 64-bit data of r1 to the address r2 of the system memory, and increase r2 by r3

87

STXMMLOCAL - Store a XMM register value to the local memory

Instruction Description

stxmm1.scalar local[r2 + immed6] = xmm1 Store 8-bit data of xmm1 to the address (r2 + immed6) of the local memory

stxmm2.scalar local[r2 + immed6] = xmm1 Load 16-bit data of xmm1 to the address (r2 + immed6) of the local memory

stxmm4.scalar local[r2 + immed6] = xmm1 Load 32-bit data of xmm1 to the address (r2 + immed6) of the local memory

stxmm8.scalar local[r2 + immed6] = xmm1 Load 64-bit data of xmm1 to the address (r2 + immed6) of the local memory

stxmm.pack local[r2 + immed6] = xmm1 Load 128-bit data of xmm1 to the address (r2 + immed6) of the local memory

STXMMLOCAL++ - Store a XMM register value to the local memory (post-increment type)

Instruction Description

stxmm1++.scalar local[r2] = xmm1, r3 Store 8-bit data of xmm1 to the address r2 of the local memory, and increase r2 by r3

stxmm2++.scalar local[r2] = xmm1, r3 Load 16-bit data of xmm1 to the address r2 of the local memory, and increase r2 by r3

stxmm4++.scalar local[r2] = xmm1, r3 Load 32-bit data of xmm1 to the address r2 of the local memory, and increase r2 by r3

stxmm8++.scalar local[r2] = xmm1, r3 Load 64-bit data of xmm1 to the address r2 of the local memory, and increase r2 by r3

stxmm++.pack local[r2] = xmm1, r3 Load 128-bit data of xmm1 to the address r2 of the local memory, and increase r2 by r3

STXMMPODALL - Store a XMM register value to the local memory of other PE

Instruction Description

stxmm1.scalar podall[r2 + immed6] = xmm1 Store 8-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

stxmm2.scalar podall[r2 + immed6] = xmm1 Load 16-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

stxmm4.scalar podall[r2 + immed6] = xmm1 Load 32-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

stxmm8.scalar podall[r2 + immed6] = xmm1 Load 64-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

stxmm.pack podall[r2 + immed6] = xmm1 Load 128-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of

((r2+immed6)[27:24], (r2+immed6)[23:20]) PE

88

STXMMPODALL++ - Store a XMM register value to the local memory of other PE (post-increment type)

Instruction Description

stxmm1++.scalar podall[r2] = xmm1, r3 Store 8-bit data of xmm1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE,

and increase r2 by r3

stxmm2++.scalar podall[r2] = xmm1, r3 Load 16-bit data of xmm1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE,

and increase r2 by r3

stxmm4++.scalar podall[r2] = xmm1, r3 Load 32-bit data of xmm1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE,

and increase r2 by r3

stxmm8++.scalar podall[r2] = xmm1, r3 Load 64-bit data of xmm1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20]) PE,

and increase r2 by r3

stxmm++.pack podall[r2] = xmm1, r3 Load 128-bit data of xmm1 to the address r2[19:0] of the local memory of (r2[27:24], r2[23:20])

PE, and increase r2 by r3

STXMMPODCOL - Store a XMM register value to the local memory of other PE in the same column

Instruction Description

stxmm1.scalar podcol[r2 + immed6] = xmm1 Store 8-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column

stxmm2.scalar podcol[r2 + immed6] = xmm1 Load 16-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column

stxmm4.scalar podcol[r2 + immed6] = xmm1 Load 32-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column

stxmm8.scalar podcol[r2 + immed6] = xmm1 Load 64-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

(r2+immed6)[27:24]th row and in the same column

stxmm.pack podcol[r2 + immed6] = xmm1 Load 128-bit data of xmm1 to the address (r2 + immed6)[19:0] of the local memory of the PE in

the (r2+immed6)[27:24]th row and in the same column

89

STXMMPODCOL++ - Store a XMM register value to the local memory of other PE in the same column (post-increment type)

Instruction Description

stxmm1++.scalar podcol[r2] = xmm1, r3 Store 8-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th

row and in the same column

stxmm2++.scalar podcol[r2] = xmm1, r3 Load 16-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th

row and in the same column

stxmm4++.scalar podcol[r2] = xmm1, r3 Load 32-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th

row and in the same column

stxmm8++.scalar podcol[r2] = xmm1, r3 Load 64-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th

row and in the same column

stxmm++.pack podcol[r2] = xmm1, r3 Load 128-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the r2[27:24]th

row and in the same column

STXMMPODROW - Store a XMM register value to the local memory of other PE in the same row

Instruction Description

stxmm1.scalar podrow[r2 + immed6] = r1 Store 8-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the same

row and in the (r2+immed6)[27:24]th column

stxmm2.scalar podrow[r2 + immed6] = r1 Load 16-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

same row and in the (r2+immed6)[27:24]th column

stxmm4.scalar podrow[r2 + immed6] = r1 Load 32-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

same row and in the (r2+immed6)[27:24]th column

stxmm8.scalar podrow[r2 + immed6] = r1 Load 64-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

same row and in the (r2+immed6)[27:24]th column

stxmm.pack podrow[r2 + immed6] = r1 Load 128-bit data of r1 to the address (r2 + immed6)[19:0] of the local memory of the PE in the

same row and in the (r2+immed6)[27:24]th column

90

STXMMPODROW++ - Store a XMM register value to the local memory of other PE in the same row (post-increment type)

Instruction Description

stxmm1++.scalar podrow[r2] = xmm1, r3 Store 8-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the same row

and in the r2[27:24]th column

stxmm2++.scalar podrow[r2] = xmm1, r3 Load 16-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the same row

and in the r2[27:24]th column

stxmm4++.scalar podrow[r2] = xmm1, r3 Load 32-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the same row

and in the r2[27:24]th column

stxmm8++.scalar podrow[r2] = xmm1, r3 Load 64-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the same row

and in the r2[27:24]th column

stxmm++.pack podrow[r2] = xmm1, r3 Load 128-bit data of xmm1 to the address r2[19:0] of the local memory of the PE in the same row

and in the r2[27:24]th column

STXMMSYS - Store a XMM register value to the system memory

Instruction Description

stxmm1.scalar sys[r2 + immed6] = xmm1 Store 8-bit data of xmm1 to the address (r2 + immed6) of the system memory

stxmm2.scalar sys[r2 + immed6] = xmm1 Load 16-bit data of xmm1 to the address (r2 + immed6) of the system memory

stxmm4.scalar sys[r2 + immed6] = xmm1 Load 32-bit data of xmm1 to the address (r2 + immed6) of the system memory

stxmm8.scalar sys[r2 + immed6] = xmm1 Load 64-bit data of xmm1 to the address (r2 + immed6) of the system memory

stxmm.pack sys[r2 + immed6] = xmm1 Load 128-bit data of xmm1 to the address (r2 + immed6) of the system memory

STXMMSYS++ - Store a XMM register value to the system memory (post-increment type)

Instruction Description

stxmm1++.scalar sys[r2] = xmm1, r3 Store 8-bit data of xmm1 to the address r2 of the system memory, and increase r2 by r3

stxmm2++.scalar sys[r2] = xmm1, r3 Load 16-bit data of xmm1 to the address r2 of the system memory, and increase r2 by r3

stxmm4++.scalar sys[r2] = xmm1, r3 Load 32-bit data of xmm1 to the address r2 of the system memory, and increase r2 by r3

stxmm8++.scalar sys[r2] = xmm1, r3 Load 64-bit data of xmm1 to the address r2 of the system memory, and increase r2 by r3

stxmm++.pack sys[r2] = xmm1, r3 Load 128-bit data of xmm1 to the address r2 of the system memory, and increase r2 by r3

91

XFERBLK - Transfer a block of data from the local memory to the local memory of a neighbor PE

Instruction Description

xferblk.n nn[r1] = local[r2], r3 Copy a block of data (block size: r3) from the local memory space, starting from the addresss r1,

to the local memory space, starting from the address r2, of the northern neighbor PE (Northmost

PE copies to the southmost PE)

xferblk.e nn[r1] = local[r2], r3 Copy a block of data (block size: r3) from the local memory space, starting from the addresss r1,

to the local memory space, starting from the address r2, of the eastern neighbor PE (Eastmost PE

copies to the westmost PE)

xferblk.w nn[r1] = local[r2], r3 Copy a block of data (block size: r3) from the local memory space, starting from the addresss r1,

to the local memory space, starting from the address r2, of the western neighbor PE (Westmost

PE copies to the eastmost PE)

xferblk.s nn[r1] = local[r2], r3 Copy a block of data (block size: r3) from the local memory space, starting from the addresss r1,

to the local memory space, starting from the address r2, of the southern neighbor PE (Southmost

PE copies to the northmost PE)

xferblk.n strided nn[r1] = local[r2], r3 Copy blocks of data (block size: r3, the number of blocks: ar10, the block-stride of neighbor’s

memory space: ar11) from the local memory space, starting from the addresss r1, to the local

memory space, starting from the address r2, of the northern neighbor PE (Northmost PE copies

to the southmost PE)

xferblk.e strided nn[r1] = local[r2], r3 Copy blocks of data (block size: r3, the number of blocks: ar10, the block-stride of neighbor’s

memory space: ar11) from the local memory space, starting from the addresss r1, to the local

memory space, starting from the address r2, of the eastern neighbor PE (Eastmost PE copies to

the westmost PE)

xferblk.w strided nn[r1] = local[r2], r3 Copy blocks of data (block size: r3, the number of blocks: ar10, the block-stride of neighbor’s

memory space: ar11) from the local memory space, starting from the addresss r1, to the local

memory space, starting from the address r2, of the western neighbor PE (Westmost PE copies to

the eastmost PE)

xferblk.s strided nn[r1] = local[r2], r3 Copy blocks of data (block size: r3, the number of blocks: ar10, the block-stride of neighbor’s

memory space: ar11) from the local memory space, starting from the addresss r1, to the local

memory space, starting from the address r2, of the southern neighbor PE (Southmost PE copies

to the northmost PE)

xferblk.n nn[r1] = strided local[r2], r3 Copy blocks of data (block size: r3, the number of blocks: ar10, the block-stride of local memory

space: ar11) from the local memory space, starting from the addresss r1, to the local memory

space, starting from the address r2, of the northern neighbor PE (Northmost PE copies to the

southmost PE)

xferblk.e nn[r1] = strided local[r2], r3 Copy blocks of data (block size: r3, the number of blocks: ar10, the block-stride of local memory

space: ar11) from the local memory space, starting from the addresss r1, to the local memory

space, starting from the address r2, of the eastern neighbor PE (Eastmost PE copies to the

westmost PE)

xferblk.w nn[r1] = strided local[r2], r3 Copy blocks of data (block size: r3, the number of blocks: ar10, the block-stride of local memory

space: ar11) from the local memory space, starting from the addresss r1, to the local memory

space, starting from the address r2, of the western neighbor PE (Westmost PE copies to the

eastmost PE)

xferblk.s nn[r1] = strided local[r2], r3 Copy blocks of data (block size: r3, the number of blocks: ar10, the block-stride of local memory

space: ar11) from the local memory space, starting from the addresss r1, to the local memory

space, starting from the address r2, of the southern neighbor PE (Southmost PE copies to the

northmost PE)
92

E.4 L-format POD Instructions
MOVL - Move a 64-bit immediate value to a general purpose register

Instruction Description

movl r1 = immed64 Move a 64-bit immediate value to r1. This instruction consumes entire G/X/M slots.

93

