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Abstract—This paper explains an episodic-memory based 

approach for computing anticipatory robot behavior in a 

partially observable environment. Inspired by biological 

findings on the mammalian hippocampus, here, the episodic 

memories retain a sequence of experienced observation, 

behavior, and reward. Incorporating multiple machine learning 

methods, this approach attempts to help reducing the 

computational burden of the partially observable Markov 

decision process (POMDP). In particular, the proposed 

computational reduction techniques include: 1) abstraction of 

the state space via temporal difference learning; 2) abstraction 

of the action space by utilizing motor schemata; 3) narrowing 

down the state space in terms of the goals by employing 

instance-based learning; 4) elimination of the value-iteration by 

assuming a unidirectional-linear-chaining formation of the state 

space; 5) reduction of the state-estimate computation by 

exploiting the property of the Poisson distribution; and 6) 

trimming the history length by imposing the cap on the number 

of episodes that are computed. Furthermore, claims 5) and 6) 

were empirically verified, and it was confirmed that the state 

estimation can be in fact computed in an O(n) time (where n is 

the number of the states), more efficient than a conventional 

Kalman-filter based approach of O(n2). 

I. INTRODUCTION 

S the robotic technologies keep advancing and start 

interweaving into our lifestyle, it is inevitable that some 

robots will be soon required to make instant decisions in life-

or-death situations for humans. The robots deployed in the 

domains such as military [1, 2], nursing [3, 4], and search-

and-rescue [5, 6] are the obvious candidates. These robots 

will be expected to behave in an anticipatory manner. In 

other words, they will have to be able to assess the current 

situation, predict the future consequence of the situation, and 

execute an action to have desired outcome based on the 

assessment and the prediction. For the humans, such critical 

decisions are made by experts based on their experiences. 

Similarly, for the robots, the premise here is that experience 

matters as well. The question is then how to store the 

experience into the robot’s memory and utilize it without 

delay when it is necessary. 

We have previously investigated an anticipatory robot 

navigation method [7], in which a robot constructs a 

cognitive map while simultaneously localizing itself relative 

to it. The cognitive map consists of episodic memories. 

Inspired by the notion proposed by neuroscientists [8], the 
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core idea of the episodic memory is that it stores a temporal 

sequence of events where each event consists of sensory and 

behavioral information. While retaining the core concept, in 

this paper, we extend the episodic memory from a mere 

“map” notion into a framework to solve partially observable 

Markov decision process (POMDP) problems efficiently. 

The objective of an MDP problem is to find the best 

action for a current state that maximizes expected rewards. 

While solving a standard (stochastic) MDP problem itself 

suffers from a computational complexity as the state space 

broadens, solving a POMDP problem is known for its severe 

computational burden because the current state cannot be 

assessed directly and therefore has to be estimated first. 

Unfortunately, when dealing with real robots, the assumption 

of the complete observability cannot be guaranteed because 

various types of uncertainties influence the robot’s state. 

Hence, a challenge for the robotics researchers has been to 

find a computationally tractable solution while working in a 

partially observable environment. 

II. RELATED WORK 

 The standard approach to POMDP problems is to use 

Bayes’ rule. Most notably, Cassandra et al. [9] laid out one 

of the first Bayesian-based frameworks for the artificial 

intelligence community. In robotics, Koenig and Simmons 

[10] have developed a computational architecture for robot 

navigation that incorporates POMDP. Representing the 

environment with a topological map, in their method, the 

optimal policies were refined (offline) through the Baum-

Welch algorithm. 

 Various attempts have been made to reduce the 

computational load associated with the POMDP 

computation. One way to accomplish such reduction is to 

represent the state space hierarchically. For example, in 

Theocharous and Mahadevan’s approach [11], the state 

space was abstracted based on spatial granularities. Through 

their experiment using a real robot, the hierarchical 

dissection of the state space was proven effective especially 

when covering a large area. Likewise, Pineau et al. [12] 

tackled a POMDP problem by decomposing the action space 

hierarchically. The application of their method on a real 

robot in nursing homes has successfully provided necessary 

assistances to the elderly residents. It should be noted that 

our method presented here also utilizes the notion of abstract 

action (behavior) that is composed with lower level motor 

schemata (which themselves can be represented 
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hierarchically). 

 Another way to reduce the state space is via sampling. 

Thrun [13] has demonstrated that Monte Carlo sampling 

over belief space can attain solutions that are near optimal. 

On the other hand, instead of sampling based on the belief 

distribution, Pineau et al. [14] proposed a sampling method 

based on the shape of the value function. More specifically, a 

finite set of sampling points is selected, which is enough to 

recover the value function through a piecewise linear 

function. For each computational cycle, a new set of 

sampling points is selected by stochastically simulating the 

trajectory of the previous points; hence, the old points are 

thrown away if found irrelevant (i.e., trimming the history 

length). Correspondingly, our episodic-memory-based 

method can be viewed as a form of trajectory sampling [15]; 

instead of exhausting computational effort on sweeping the 

entire state space, state parameters are updated only for those 

residing along the trajectory of performing a task. 

There is also an alternative to the Bayesian-based 

approach for solving POMDP problems. McCallum [16] 

applied an instance-based learning method to estimate the 

current state. More specifically, from its memory, the robot 

retrieves the k nearest neighboring states that correspond to 

the current state based on the current sequence of action, 

perception, and reward. The state parameter (Q-value), 

which is used to obtain an optimal policy, is determined by 

the votes from the k states. Ram and Santamaria [17] also 

took a similar approach to identify the current state in the 

context of continuous case-based reasoning. In their method, 

however, the retrieved case was used to directly alter 

behavioral parameters in order to obtain desired behavioral 

effects. Our method presented here also utilizes the instance-

based learning. However, in stead of directly identifying the 

current state, it was employed to help narrow down the state 

space based on the goals. 

III. ANTICIPATORY ROBOT CONTROL 

The diagram in Figure 1 shows our proposed 

computational steps that integrate multiple machine learning 

methods to compute anticipatory behavior for a robot. While 

we have proposed in [18] that these steps can be employed to 

compute improvisational behavior as well, in this paper, we 

will limit our discussion to the anticipatory behavior aspect 

only. 
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Figure 1: Computational steps for the anticipatory robot control 

A. Episodic Memory 

Our computational steps utilize episodic memory, whose 

biological inspiration comes from the mammalian 

hippocampus [7]. As shown in Equation 1, an episodic 

memory (E) consists of a temporal sequence of events (e), 

where n is the number of events in the episode, and a goal 

(g), which the robot was pursuing during the episode: 

 }),,...,,{( 21 geeeE n=  (1) 

The event can be considered as a snapshot of the world at a 

certain instance during the episode. More specifically, the 

event consists of a set of observation (o), behavior (b), and 

reward (r): 

 },,{ rboe =  (2) 

o (observation) is an m-length vector of sensor readings (z) 

where m is the number of sensors that the robot is integrated 

with: 

 },,,{ 21 mzzzo K=  (3) 

b (behavior) is defined as a set of motor schemata [19] (σ) 

that are instantiated at the instance: 

 },,,{ 21 βσσσ K=b  (4) 

r (reward) is a value of the reward signal at the instance, 

which is modulated by a separate function (Subsection 

III.C). Finally, g (goal) is a particular perceptual state that 

the robot was attempting to reach during the episode 

(Subsection III.C). As for the observation above, the goal is 

denoted with the m-length vector of sensor readings: 

 },,{ 21

g

m

gg zzzg K=  (5) 

Note that episodes are partitioned based on goals. In other 

words, a new episode starts when the robot starts pursuing a 

new goal and ends when the robot stops pursuing it. Hence, 

the number of events in each episode varies depending on 

how long the particular goal was pursued by the robot. 

B. Anticipatory Behavior Computation 

As proposed in [18], anticipatory robot behavior is 

computed by the following four steps: event sampling, 

episode recollection, event matching, and behavior selection 

(Figure 1). Each step employs a different machine learning 

method, namely temporal difference learning, instance-based 

learning, recursive Bayesian filtering, and MDP, 

respectively. Note that the combination of the recursive 

Bayesian filtering and MDP is used to provide the solution 

for the POMDP problem in our case. 

1) Event Sampling: The goal of event sampling is to 

construct a model of the world in terms of the episodic 

memories (Equation 1). More specifically, given a 

continuous stream of sensor readings, discrete states are 

temporally abstracted in this step. In order to abstract an 

event from the input data stream, a simple (model-free) 

reinforcement learner, namely TD(λ) [20], is used. In this 

case, the sole purpose of the learner is to predict the current 

observation based on the previous observation as fast as 

possible. The assumption here is that, at the instance when 

the learner fails to predict the observation, the robot must be 
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entering a new state; hence the state parameters are 

remembered. The observation is learned at the individual 

sensor reading (z) level. At an instance t, based on the 

previous sensor reading (zt–1), each current sensor reading is 

predicted by a simple linear equation (Equation 6): 

 1 −=′
ttt zwz  (6) 

where w is a weight. Here, at each time cycle, w is updated 

with the TD(λ) update rule [20]: 

 ∑
=

−
+

′∇′−+=
t

k
k

kt

tttt zzzww
1

1 )( λα  (7) 

where α is a learning rate, λk
 is an exponential weighting 

factor (eligibility trace), and the gradient kz′∇  is a partial 

derivative of kz′  with respect to the weights
*
. 

 The error of the prediction is monitored at each time cycle 

in order to decide when to sample an event. The error is 

measured in terms of a root-mean-squared (RMS) difference 

of the predicted and actual observations. If the error at t is 

larger than the one before and after, a new event is sampled 

(Equation 8): 









−′>−′

−′≥−′

= ++

−−

otherwisefalse

)()(

and )()( iftrue

)( 11rmsrms

11rmsrms

sample tttt

tttt

oofoof

oofoof

tf  (8) 

where frms is a function that returns a RMS of a vector. Figure 

2 shows the error between predicted and actual observations 

when a simulated robot (integrated with sonar sensors) 

proceeds along a corridor of a typical office building. Each 

tip of the spikes represents the occurrence of an event, and, it 

shows how events are clustered around salient features of the 

environment such as open doors and a corridor junction. 
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Figure 2: Comparison between the prediction errors and the 

passage of the (simulated) robot. 

2) Episode Recollection: One way to compute the best 

behavior is to consider all the episodes collected by the robot 

to find the best policy (as we did in [7]). However, as the 

number of episodes increases, the computational power that 

is necessary to process all of them also increases. In this step, 

in order to allocate the computational power to those only 

relevant to the current situation, the episodes are 

 
* ∇z′k  = zk-1 ⇐ Equation 6. 

preprocessed, and irrelevant episodes are filtered out by an 

instance-based learning method. 

The core of instance-based learning algorithms is a set of 

similarity and classification functions [21]. Taking the 

current goal (gcur) as a query point, our similarity function is 

implemented with a Gaussian-based likelihood function 

(Equation 9): 

 ),( ][curL EE ggf=ρ  (9) 

The likelihood function (fL) returns the similarity value (ρE) 

in terms of the likelihood of a sample (the first input 

parameter) given a measurement (the second input 

parameter). In this case, we examine the similarities between 

the current goal (gcur) and the goal of the querying episode 

(g[E]) that we wish to evaluate. 

 Once the similarity is computed, the classification function 

determines whether the episode is relevant to the current goal 

or not (Equation 10). More specifically, for any episode that 

is in the robot’s memory (C), if ρE of the episode is above a 

predefined threshold (θρ), the episode will be classified as 

relevant and added to the collection of relevant episodes 

(MRel). Note that, in order to reduce the computation time in 

the event matching step (below), the size of MRel is restricted 

to a predefined number, K. In other words, the K latest 

episodes which meet the similarity condition are selected 

(Equation 10): 

 }}{|{
:1:1:1rel ρθρ ≥∧⊆=
KEKK CEEM  (10) 

The effect of K with respect to the computation time of the 

event matching step is reported in Section IV. 

3) Event Matching: This step is invoked whenever a new 

event is captured by the event sampler. It is equivalent to the 

state estimation process in POMDP. From the collection of 

the relevant episodes computed above, events that best 

represent the current state are determined by a recursive 

Bayesian filter, the probabilistic method commonly used for 

solving the simultaneous localization and mapping (SLAM) 

problem [22]. At first, for each relevant episode, the 

posterior probabilities (belief) of being at some event (eq) in 

the episode given the history of the observations (
τo ) and 

executed behaviors (
τ

b ) are solved by the following 

recursive equation
†
: 

∑
∈

−−
−−

−

=
Ee

qqq b|oepe|bep|eopb|oep
1

 ),(),()(),( 11

11

τ

ττ
ττττ

ττ η (11) 

where η is a normalization factor, )|( qeop τ  is the sensor 

model, ),( 1−ττ e|bep q  is the motion model, and 

),( 11

1

−−
−

ττ
τ b|oep  is the belief of the previous computational 

cycle. 

 To implement the sensor model, which is the conditional 

probability of observing oτ given the query event (eq), we 

employ the same Gaussian-based likelihood function used in 

Equation 9. More specifically, the similarity (ρsensor) of the 

current observation (oτ) and the ones recorded in the 

querying event ( ][ qeo ) is computed as our sensor model 

 
† See [7] for derivation. 
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(Equation 12): 

 ),()|( ][L qesensorq oofeop ττ ρ ==  (12) 

 The motion model is the transition probability of the robot 

arriving at the target event (eq) if the previous event is 1−τe  

and behavior bτ is executed. In the certainty equivalence 

approach [23], the transition probabilities may be estimated 

by taking the statistic of the transitions while exploring the 

environment [24]. On the other hand, in our episodic-

memory-based approach, since events are formed in a 

unidirectional linear chain (Equation 1), the motion model 

can be computed in terms of how many events the robot 

needs to advance in order to reach eq from 1−τe . Let ej be 

1−τe , Equation 13 shows our implementation of the motion 

model:  









≠>+

=>+

=

otherwise

 and  if else),( 

 and  if),(

),|( P

P

m

qmqjm

qmqj

jq bbjqeef

bbjqeef

ebep

ε

εκ

ε

τ

τ

τ
 (13)

where εm is some small number to ensure that the probability 

does not become absolutely zero, κm is a discount factor, and 

fP is a function that returns the probability of the robot 

reaching eq from ej based on the Poisson distribution. Let us 

define dj:q to denote the distance between ej and eq in terms 

of event numbers and d  to denote the average number of 

events that the robot advances within one computational 

cycle. The Poisson-based function is then implemented as: 

 
!

 )exp(
),Poisson(),(

:

)(

:P

:

qj

d

qjqj
d

dd
ddeef

qj−
==  (14) 

In other words, the motion model is the probability from the 

Poisson distribution if the index of eq is greater than the 

index of 1−τe , and bτ is the same behavior that is stored in eq 

(if the behaviors mismatch, the probability is discounted). 

Since the posterior probabilities are computed whenever the 

event sampling step captures a new event, the value of d  is 

assumed to be 1.0. Note that, as shown in Figure 3, the 

probability of this Poisson distribution becomes near-zero 

when the distance from ej to eq becomes 6. This property can 

be in fact exploited to reduce the computational burden of 

the event matching (state estimate) step for each episode 

from O(n
2
) to O(n) by computing the motion model in 

Equation 11 for only 5 events (instead of n events). The 

empirical result of this optimization is reported in Section 

IV. 
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Figure 3: The probability mass function for the 

Poisson distribution. 

 After the posterior probabilities for all of the events in the 

episode are computed, the one with the highest probability is 

considered to be the event that best represents the current 

state. However, it is possible that the current state is novel, 

and none of the events could correspond to the current state. 

Hence, we introduce an assumption here that, if the posterior 

probability distribution is spread evenly around the average 

value rather than having a distinct peak, the current state is 

considered to be novel. One way to check such novelty is to 

compare the highest probability value with a predefined 

threshold as we did in [7]. Another approach is, as suggested 

by Tomatis et al. [25], to use the entropy of the posterior 

probability distribution. More specifically, the entropy (H) of 

the posterior probability distribution for an episode (E) is 

computed by: 

 ),|(log),|()( 2

ττττ boepboepEH i
Ee

i

i

∑
∈

−=  (15) 

Having a high entropy value infers that the probability 

distribution is close to uniform. Thus, only if H(E) is below 

the predefined threshold, the event with the highest posterior 

probability in the episode is considered to be matched ( ][̂ Ee ) 

to the current state: 

 






∅

≤
= ∈

otherwise 

 )( if),(argmax
ˆ

][
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Ee

E

EHb|oep
e i

θττ

 (16) 

Note that, if the previous step (episode recollection) yields 

k episodes as relevant, there will be at most k matched 

events. Here, the set of all relevant episodes that contain 

valid matched events is denoted with 
relM̂ : 

 })(|{ˆ
relrel HEHMEEM θ≤∧∈∀=  (17) 

4) Behavior Selection: Based on the matched events found 

in the above step, the most appropriate behavior for 

anticipation will be selected in this step. At first, the utility 

(U) of each event is computed using a Bellman equation: 

 ∑
∈′

+
′′−=

Ee
iiii eUebepreU )( ),|()( 1  (18) 

where ri is the reward value stored in ei. Note that 

),( 1 ii e|bep +
′  is the same transition probability computed for 

the motion model (Equation 13). Generally, in MDP 

problems, the Bellman equation has to be iterated for a 

number of times to obtain converged utility values (value 

iteration). On the other hand, in our case, because events are 

formed in a unidirectional linear chain
‡
, from the end event 

to the start event, the utility value can be computed by a 

recursive (dynamic programming) fashion but without any 

iteration. 

 Next, we define a new function, Γ+
(b), which returns a set 

of relevant episodes that contain valid matched events, and, 

in those episodes, the events stored right after the matched 

events contain b (Equation 19): 

 












∈∧=

∧⊆∧∈
∀=Γ
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++
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ˆ
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iEi

ii

ebee

EeeME
Eb  (19) 

 
‡ εm in the transition probability (Equation 13) is zero in this case. 
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 Finally, based on the utility values and Γ+
(b), we select the 

best behavior ( ∗
b ) by a maximization function (Equation 

20): 

∑∑
∈′Γ∈

+

∗ ′′
Γ

=
+ Ee

E
bEb

eUebep
b

b )( )ˆ,|(   
|)(|

1
maxarg ][

)(

 (20) 

where ),( 1 ii e|bep +
′  is the same transition probability used in 

Equations 13 and 18. Note that Equation 20 is equivalent of 

how an optimal policy is computed in a standard MDP 

problem. However, while the standard MDP assumes only 

one state that are representing the current state, in our case, 

as much as the number of episodes returned by Γ+
(b) there 

are events that represent the current state. Hence, the 

expected utility of executing b is averaged over the number 

of those events. 

C. Goal and Reward 

As mentioned above, episodes are partitioned based on the 

goals, and the goals are used as the keys to retrieve relevant 

episodes from the memory at the episode recollection step. 

Let G be a set of all possible goals. A unique goal (gcur) for 

the current instance is chosen by the robot based on a 

motivation function (Equation 21):  

 ),,(maxarg motivcur µogfg
Gg∈

=  (21) 

where fmotiv is the motivation function that returns the degree 

of motivation for pursuing a particular goal (g) given the 

current observation (o) and the internal state (µ). The use of 

motivation has been exploited by many robotics researchers, 

especially in behavior-based robotics [26-30]. In those cases, 

motivation influences behaviors directly by adjusting 

behavior parameters such as the activation level. On the 

other hand, in our case, motivation influences behaviors by 

setting a goal, and the goal influences behaviors by recalling 

right episodic memories. It should be noted, however, that 

our implementation of fmotiv is still preliminary at this point. 

 Furthermore, based on the goal, the robot modulates a 

single reward signal. Being saved in each event, the reward 

signal influences the choice of behaviors by providing their 

utilities. In our implementation (Equation 22), the reward 

signal is determined by three factors: 1) the similarity 

between the current goal and the current observation; 2) the 

similarity between the predicted observation ( ][Eo ′′ ) and the 

actual observation; and 3) the innate rewarding states (ω) and 

the current observation. These similarities are computed by 

the same likelihood function (fL) used in Equations 9 and 12, 

and they are weighted by predefined constants (κg, κo, and 

κω): 

∑
Ω∈Γ∈

+′′+=
+

ω
ω ωκκκ ),(),(max),( L][L

)(
curLcur *

ofoofogfr E
bE

og  

(22)

Note that, here, the predicted observation is not the same 

observation predicted by TD(λ) above (Equation 6); in this 

case, the observation is predicted based on the matched 

events obtained by Equation 16. More specifically, given an 

episode (E), ][Eo ′′  is the observation stored in the event right 

after the matched event ( ][̂ Ee ): 

 }ˆ},{|{ ][11][ EiiiiiiE eeeoEeeoo =∧∈∧⊆=′′
−−  (23) 

The innate rewarding states are particular perceptual states 

that are inherently important for the robot. For example, a 

voltage reading that indicates the battery being full may be 

one of the innate rewarding states. The importance of such 

states is appropriately weighted by the corresponding 

weights (κω). Note that κω can have a positive or negative 

value. For example, a reading from a tactile sensor indicating 

that the robot is violently hitting some object can be 

considered as an innate rewarding state with a negative 

weight. 

IV. OPTIMIZATION AND EMPIRICAL RESULTS 

One of the most computationally expensive part of a 

Bayesian-based POMDP approach is the state estimation 

(event matching in our case). Given n states (events), it 

requires an O(n
2
) computation time to compute the full 

posterior probabilities by the recursive Bayesian filter 

because the transition probability (motion model) has to be 

computed n times for each of the n states (Equation 11). 

Incidentally, localization using a Kalman filter (also 

Bayesian) requires an O(n
2
) computation time [31]. If 

implemented naively, the event matching step of our 

computational method proposed here requires O(kn
2
) where 

k is the number of relevant episodes (Equation 10) and n is 

the number of the events in each episode. However, by 

imposing k to be constant and assuming the transition 

probability to be from the Poisson distribution, event 

matching can be done in an O(n) time. The following 

experimental results verify the claim. 

A. Implementation 

The anticipatory behavior computational method proposed 

in Section III was implemented within a two-layer 

architectural framework, AIR (Figure 4), consisting of the 

episodic subsystem (deliberative layer) and the behavior 

subsystem (reactive layer). The episodic subsystem takes the 

current sensor readings, identifies the current goal, 

modulates the reward value, samples events, compiles 

episodes, saves/retrieves the episodes, and computes the 

anticipatory behavior. The behavior subsystem retains the 

repertory of motor schemata and executes the ones specified 

by the episodic subsystem. 

AIR (executed as a Java program) interacts with the 

environment simulated in Gazebo [32] (a high fidelity 3D 

simulator developed by University of Southern California). 

More specifically, AIR receives sensor readings of 

ActiveMedia Pioneer 2 DX emulated in Gazebo (Figure 5) 

and sends back the control commands. The sensor readings 

and the motor commands are relayed by HServer [33], which 

communicates with AIR (running on Dell Latitude X200 

with Pentium III; 933 MHz) and Gazebo (running on Dell 

Dimension 4700 with Pentium 4; 3.00 GHz) through the 

shared memory and a socket connection, respectively (Figure 
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Figure 4: AIR Architecture 
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Figure 6: Communications among AIR, HServer, and Gazebo 

B. Limited Transitions vs. Full Transitions 

As mentioned above, since the events in an episode are 

formed in a unidirectional linear chain, our claim here is that 

the event matching of each episode can be computed in an 

O(n) time if we exploit the property of the Poisson 

distribution. In this experiment, we compared the cases 

between the computing the event matching step when the 

property of the Poisson distribution was exploited (limited 

transitions) and not exploited (full transitions). For the 

limited-transitions case, the motion model in Equation 11 

was computed for only 5 relevant events. 

The average computation time for the event matching was 

recorded while the Pioneer 2 DX robot, autonomously driven 

by AIR, navigated the hallway in a simulated indoor 

environment (Figure 7). The robot was equipped with the 16 

sonar sensors and 16 bumper sensors. Note that no odometry 

information was ever used. AIR computed the anticipatory 

behavior based on a sole training episode stored in the 

memory. The training episode was constructed by manually 

instantiating a combination of AvoidObstacle, 

MoveForward, and SwirlObstacle schemata and assigning a 

reward at the end of the episode. For each case, the size of 

the training episode in the memory was varied from 20 

events to 200 events with the increment of 10 events (i.e., 19 

different sizes). For each condition, the testing was lasted 10 

event-matching cycles, and it was repeated 20 times. Hence, 

the computation time of the each data point was averaged 

over 200 measurements. 
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Figure 7: The experimental indoor environment simulated in 

Gazebo 

The result, the average event matching computation time 

of each condition with respect to the number of the events in 

the episode, is plotted in Figure 8. Expectedly, when all of 

the possible transitions were taken into account upon 

computing the motion model, the computation time increased 

quadratically with respect to the number of events. When the 

computation was broken down to the sensor model and 

motion model parts, the motion model computation did 

indeed exhibit the quadratic increase while the increase of 

the sensor model computation remained linear. On the other 

hand, in the limited-transitions case, the overall event 

matching time was increased only linearly with respect to the 

number of events, consistent with the O(n) claim. The 

computations for both sensor and motion models were 

evidently also linear. 
Event Matching Computation Time

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200 220

Size of an Episode (# of Events)

T
im

e
 (

m
s)

1. Limited Transitions: Total

2. Limited Transitions: Sensor Model

3. Limited Transitions: Motion Model

4. Full Transitions: Total

5. Full Transitions: Sensor Model

6. Full Transitions: Motion Model

Trend of Line 1 (Linear)

Trend of Line 2 (Linear)

Trend of Line 3 (Linear)

Trend of Line 4 (Quadratic)

Trend of Line 5 (Linear)

Trend of Line 6 (Quadratic)

 
Figure 8: The average computation time required for the event 

matching step with respect to the size of the episode (the size of 

the history is fixed) 
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C. Limited History vs. Full History 

One of the main differences between the conventional 

POMDP approaches and our method here is that, in our 

method, there could be multiple events that are considered to 

be the current states. If there are k relevant episodes retrieved 

by the episode collection step (Equation 10), the posterior 

probabilities have to be computed for at most the k episodes. 

Naturally, if the robot increases the experience, the k value 

also increases. As mentioned above, our hypothesis here is 

that we can impose a cap on the number episodes that are 

considered to be relevant without compromising the quality 

of the performance. To test this hypothesis, two cases, the 

event matching with an imposed cap on the number of the 

relevant episodes (limited history) and without imposing the 

cap (full history) were evaluated. For the limited-history 

case, the latest 5 episodes that meet the goal condition 

(Equation 9) were selected. 

The experiment was conducted in the same indoor 

environment as the previous experiment using the same robot 

and the sensor configuration. During the training, the robot 

was dispatched from Room 8 (see Figure 7), the combination 

of AvoidObstacle, EnterOpening, MoveForward, 

SwirlObstacle, TurnLeft, and TurnRight schemata were 

manually instantiated in order to navigate the robot into 

Room 2 via the hallway. The robot received a reward upon 

arriving Room 2. For each case, there were initially 5 

training episodes in the memory, and the size of the history 

were accumulated up to 15 episodes during the testing. Each 

testing was repeated four times. To reach Room 2, each run 

generally required over 300 event-matching cycles; hence 

the event matching computation time for each condition was 

averaged over more than 1200 measurements. Furthermore, 

the quality of the performance was measured in terms of the 

total distance the robot traveled (path length) and the time 

the robot took to reach the goal. 

The graphs in Figure 9 shows the averaged computation 

time required for the event matching step with respect to the 

number of episodes in the robot’s memory. It can be 

observed that, if all episodes in the memory were taken into 

consideration, the overall computation time increased 

linearly (same for both sensor model and motion model 

computations). On the other hand, when the cap was 

imposed on the number of the relevant episodes, those 

computation times remained constant (with minor 

variances
§
). Note that, for the limited-history case, the 

experiment was able to be carried out even when the size of 

the history reached 15 without any problem. On the other 

hand, for the full-history case, the robot could not reach the 

goal after the size of the history reached to 13 because the 

increased event matching time seemed to have started 

interfering with other parts of the computation (e.g., event 

sampling). As shown in Figure 10, even if only a limited 

 
§ The variances most likely came from the different numbers of events in 

the different episodes. 

history was taken into account, the performance in terms of 

the path-length did not seem to have been compromised. 

Similarity, the time to reach the goal (Figure 11) did not 

seem to have been affected by the imposed cap
**

. 
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Figure 9: The average computation time required for the event 

matching step with respect to the size of the history 

 
Figure 10: Comparison of the performances in terms of the path 

length of the robot (the vertical whiskers indicate the 95% 

confidence) 

 
Figure 11: Comparison of the performances in terms of the time 

the robot took to reach the goal (the vertical whiskers indicate the 

95% confidence) 

V. CONCLUSION 

In this paper, a biologically-inspired episodic-memory 

based approach for anticipatory behavior computation was 

explained. Forming episodic memories in a unidirectional-

 
** In fact, the mean value for the limited-history case was less than the 

full-history one even though the difference was not statistically significant 

(p = 0.09). 
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linear-chaining fashion, this approach incorporates multiple 

machine learning methods, namely temporal difference 

learning, instance-based learning, recursive Bayesian 

filtering, and MDP. This approach attempts to solve the 

computational burden of the POMDP through: 1) abstraction 

of the state space via temporal difference learning; 2) 

abstraction of the action space by utilizing motor schemata; 

3) narrowing down the state space in terms of the goals by 

employing instance-based learning; 4) eliminating the value-

iteration by assuming unidirectional-linear-chaining 

formation of the states; 5) reducing the state-estimate 

computation by exploiting the property of the Poisson 

distribution; and 6) trimming the history length by imposing 

the cap on the number of episodes that are computed. In 

particular, claims 5) and 6) were empirically verified, 

confirming that the state estimation can be computed in an 

O(n) time (where n is the number of the states). 
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