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SUMMARY

Integration of accurate, and detailed molecular simulation models with system

tools is a growing research area, because molecular simulations enable design and

optimization of processes at a molecular scale. This opens up possibilities to control

quality of products used in many applications, such as microelectronic devices. Such

a model-based approach is already common for macroscopic processes, but not for

microscopic or molecular models and structures. That is because there are two major

issues that need to be resolved for the integration of molecular simulations and systems

tools (e.g. dynamic analysis and optimization techniques) to take place.

The first issue is the development of accurate molecular simulation models for

processing, using experimental data. In this thesis, we focus on stochastic molecular

simulations since continuum models can not successfully capture the dynamics asso-

ciated with interactions between molecules, and molecular dynamics simulations can

not predict over long processing time scales. We bring forward a stochastic model of

a process used in applications such as printer inks, and automotive coatings: synthe-

sis of hyperbranched polymers using difunctional A2 oligomers, and trifunctional B3

monomers. Currently, the kinetics of this process, as well as the process conditions

affecting the polymer structure and properties, are not clearly understood. There are

many possible different reaction mechanisms that can influence the polymer struc-

ture development in this system. Even though some of these mechanisms, such as

cyclization reactions, have been taken into account in the past, a comprehensive sim-

ulation study for hyperbranched polymers does not exist. Also, previous approaches

in modeling hyperbranched polymers lack close integration with experimental data.

Because of these reasons, we developed a kinetic Monte Carlo (KMC) model, which
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takes into account a wide range of reaction mechanisms, using experimental data.

By implementing our simulation model, we compare the effects of different synthe-

sis routes on the properties of polymers, such as average molecular weight, and the

degree of branching. These synthesis routes involve melt polymerization (with no

solvent), and solution polymerization. In melt phase, we consider the influence of

cyclization and endcapping reactions, and unequal reactivity of different monomer

units on the polymer structure. On the other hand, in solution polymerization, we

consider the effects of monomer concentration. These models are an important step

toward rational process design to achieve desired polymer structures.

The second major issue in the integration of molecular simulations with dynamic

analysis and optimization tools is the development of reduced order models from high

dimensional stochastic simulation models. These molecular simulations possess a fine

level of description of the process physics compared to the macroscopic (continuum)

models. However, due to their high computational cost, it is not feasible to employ

them for optimization and control tasks. Hence, reduced order models are needed for

design purposes. Current model reduction algorithms in the literature contain too

many assumptions about system dynamics to alleviate the computational burden as-

sociated with the reduction. These assumptions include large separation between the

time scales of low and high order moments describing the system state and existence

of steady state operating points for linearization purposes. In this thesis, we present

a novel model reduction algorithm that can potentially be applied to any nonlinear

dynamic system even when these assumptions are not valid. Epitaxial deposition of

gallium arsenide (GaAs), used in manufacturing high performance microelectronic de-

vices, is used to illustrate our model reduction algorithm. First, the state space of the

simulation model is characterized by running a limited set of simulations with various

material flux profiles, and characterizing surface snapshots during these simulations.

The characterization of the dynamic state is performed by using a correlation function

xiii



describing the correlation between the steps on film surfaces. The rationale is that

only a small fraction of all possible film surface configurations are accessible in this

process, and a limited set of simulations can access these configurations. The model

reduction algorithm consists of applying principal component analysis (PCA) to high

dimensional simulation data for reduction of the state dimension, self organizing map

(SOM) for grouping similar surface snapshots, and simple cell mapping (SCM) for

identifying the transitions between different surface configuration groups. After iden-

tifying the model, its predictive ability is evaluated by a large set of simulations with

highly dynamic material flux profiles. The computed distribution of the prediction

error, which lacks in most model reduction studies for nonlinear systems described by

molecular simulations, demonstrates the accuracy the model. As another part of the

evaluation, we critically evaluate the effects of model reduction parameters, such as

dimension of the state, number of surface configuration groups, and the quality of the

data used to identify the model on its predictive ability under a wide range of process

conditions. Dynamic process optimization, which is an important systems task, is

also performed by using the reduced order model to compute the material flux profile

(with minimum deposition time) that leads to the optimized film structure. For this

optimization, the reduced order model provides 11 orders of magnitude reduction in

the computational time, compared to the high dimensional molecular simulations.

As a part of the future work, we also discuss how our model reduction scheme could

be applied to the hyperbranched polymerization process, through a dynamic state

description with monomer-monomer correlation functions. Our reduction approach

is potentially applicable to any molecular simulation, as long as an appropriate state

description is used. Challenges include the difficulty of fully validating the reduced or-

der model. In order to achieve rationale material design using molecular simulations,

close integration of experiments and modeling is critical.
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CHAPTER I

INTRODUCTION

The objective of this thesis is to propose modeling techniques to enable the design and

optimization of material systems which require descriptions via molecular simulations.

These kinds of systems are quite common in materials and engineering research [123].

The first step in performing design and optimization tasks on such systems is the

development of accurate simulation models from experimental data. In the first part

of this thesis, we present a novel simulation model for the hyperbranched polymer-

ization process of difunctional A2 oligomers, and B3 monomers. Unlike the previous

models developed by other groups [23, 31, 107, 106], our model is able to simulate

the evolution of the polymer structure development under a wide range of synthesis

routes, and in the presence of cyclization and endcapping reactions. Furthermore,

our results are in agreement with the experimental data, and add insight into the

underlying kinetic mechanisms of this polymerization process.

The second major step in our work is the development of reduced order process

models that are suitable for design and optimization tasks, using simulation data.

We illustrate our approach on a stochastic simulation model of epitaxial thin film

deposition process [54]. Compared to the widely used approach called equation-free

modeling [36], our method requires fewer assumptions about the dynamic system.

The assumptions required in equation-free modeling include a wide separation be-

tween the time scales of low and high order moments describing the system state,

and the accuracy of the time derivatives of system properties computed from molecu-

lar simulation data, despite the potentially large amount of fluctuations in stochastic

simulations [8]. Unlike the recent similar studies [8, 120], our study also includes the

1



analysis of prediction error which is important to evaluate the predictions of the re-

duced order model, compared to the high dimensional molecular simulations. Hence,

we address two major issues in this thesis: development of simulation models from

molecular experimental data, and derivation of reduced order models from molecular

simulation data. These two aspects of modeling, which are illustrated in Figure 1 are

both necessary to design and optimize processing conditions of materials for which

continuum level descriptions are not available or accurate enough.

Build a 
molecular

simulation model

Perform

experiments

Identify a reduced order 
model to perform dynamic 
analysis, optimization etc.

Figure 1: Two important modeling aspects related to molecular simulations.

1.1 Motivation

We are currently in an era where many materials design problems require models with

explicit atomic scale interactions. An example is the design of integrated circuits.

The material properties are functions of processing conditions such as temperature,

and pressure within a reactor. Hence, process models that describe the relationship

between inputs (processing conditions) and outputs (material properties) are needed

for analyzing and designing material systems. When continuum assumptions are not

valid at very small scales, developing accurate and realistic continuum models from

material and energy balances closed through constitutive relations is not possible.

Therefore, descriptions of processes at finer levels than macroscopic ones are required.

As a result of this, and the growth in computational power over the last two decades,

dynamics of material systems are commonly simulated by molecular simulations (e.g.

molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations). For material

systems which evolve in seconds or larger time scales, KMC simulations are widely

used due to the inaccessibility of these time scales by MD simulations. Even though

the general KMC algorithm is well established over the years, some major challenges
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include the determination of microscopic events to take into account in the simulations

(e.g. reaction, diffusion, and adsorption events), and the computation of the kinetic

parameters of these events [123].

Hyperbranched polymers are materials with a large potential to be used in many

applications due to their favorable properties (e.g. low viscosity and high solubil-

ity). However, a comprehensive KMC model for hyperbranched polymerization does

not exist in the literature. In this thesis, we present such a simulation model by

identifying the rates of several proposed reaction mechanisms in the polymerization

of difunctional A2 oligomers, and B3 monomers. Compared to the existing models

[23, 31, 107, 106], our model enables the evaluation of different synthesis routes by

giving insights about the polymer structure development. Such an approach is neces-

sary to design polymerization processes that are targeting specific polymer structure

and properties in the future.

For material systems with dynamics that are appropriately described only by

molecular simulations, design and optimization is usually not straightforward due to

the high computational load of these simulations. This computational load originates

from the disparity between the time and length scales of microscopic processes in

the simulations and the evolutions of macroscopic material properties. Since these

design and optimization problems are multiscale in nature, they can not be solved

directly by employing molecular simulations. The common practice in the literature

for solving these kinds of problems is the derivation of reduced order models from

simulation data. These reduced order models provide a mapping between the process

inputs and outputs (material properties). However, current approaches for model

reduction and engineering design are only limited to highly simplified KMC simulation

models (with 1 or 2 dimensional lattices, small system sizes, and just a few types of

reaction/adsorption/diffusion events) [4, 32, 33, 86]. In past model reduction studies,

a very low order representation of the system state is assumed (e.g. surface roughness
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of a thin film [32, 33]) ignoring the effects of higher order moments (e.g. coordinates

of each atom on the thin film surface that would give a certain surface roughness)

on the material properties. In these studies, it is also assumed that the higher order

moments become functionals of the low order ones to perform computations of the

time derivatives of the system properties easily by using short simulations [8]. This

assumption leads to a huge reduction in the number of possible states that the system

can be in (dimension of the state space), which can be overly simplistic for non-trivial,

realistic systems. The time derivatives obtained from short simulations are generally

used to propagate the system dynamics for longer times by extrapolation (without

running extra simulations) [36], hence reducing the computational load for dynamic

optimization. However, due to the extensive amount of noise in stochastic molecular

simulations, the derivative information coming from the short simulations may not

be accurate, and can cause large errors when predicting the evolution of the system

state [8]. Another deficiency of these studies is the lack of evaluation of the model

reduction error, which is necessary to validate any model reduction approach. In order

to address all these issues, we propose a novel model reduction algorithm for design

and optimization that offers high dimensional state descriptions, time derivative free

predictions, and a comprehensive approximation error analysis. This algorithm is

illustrated on epitaxial deposition of gallium arsenide (GaAs) thin films, using a pair

correlation function between steps on the film surface to describe the dynamic state

of the system during the simulations.

1.2 Outline of the Thesis

The remaining chapters of this thesis are organized as follows: In Chapter 2, we give

an overview of the KMC simulations, their general algorithm, and common challenges

in their implementation. These challenges include the development of KMC models,

their integration with control and optimization tools, and possible inefficiencies due
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to the wide separation between the time scales of microscopic processes taking place

during these simulations. Then, we describe two material systems that are used as

case studies in this thesis: Hyperbranched polymers and epitaxially deposited thin

films. These descriptions are followed by the past modeling work done to understand

the dynamics associated with the processing in these two material systems.

In Chapter 3, we present a KMC simulation model for the hyperbranched poly-

merization of difunctional A2 oligomers, and B3 monomers. This model, whose kinetic

parameters are derived from experimental data, is employed to study the effects of

using different synthesis routes on the polymer structure development. These syn-

thesis routes include melt polymerization of A2 and B3, and solution polymerization

with dropwise addition of A2 into B3. We show that factors such as the extent of

cyclization reactions, varying reactivity of the B groups, and the presence of mono-

functional endcapping reactions can influence the polymer properties (e.g. molecular

weight, and degree of branching) significantly.

Even though high order molecular simulations provide a description of the state

evolution at a finer level than macroscopic (continuum) models, they do not provide

a reduced order process model that can easily be inverted, which is necessary for

process design and optimization. This is illustrated in Figure 2. We identify the

main challenge associated with this approach as the limited measurements, which are

necessary to validate the reduced order model. In addition, to build a reduced order

model, one must describe the dynamic state of the system in the simulations. In the

last part of Chapter 3, we discuss the ways dynamic state can be described in the

hyperbranched polymerization simulations. Then, in Chapter 4, we present a novel

model reduction algorithm that enables the use of molecular simulations for design

and optimization. This algorithm generates a reduced order process model from high

dimensional KMC simulation data. In order to illustrate our algorithm, we use an

existing KMC model for the epitaxial deposition of gallium arsenide (GaAs). Unlike
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the other model reduction studies in the literature, our study includes a comprehensive

evaluation of the reduction error. Also, it does not rely on numerous assumptions,

such as a very low order representation of the system state.

KMC

simulation

Process inputs 

(e.g. material flux, 
chamber pressure)

Process outputs 

(e.g. film roughness, 

step density)

Model inversion for design: 
Given an output, what would 
be the optimal input profile?

Figure 2: Model inversion problem.

In model reduction studies, it is important to derive the distribution of the error

originating from the approximations associated with the order reduction (from high

order KMC simulations to reduced order dynamic models). In Chapter 5, we address

this issue by evaluating the predictive ability of our reduced order model. First, we

run a large set of simulations with highly dynamic and random input profiles. Then,

we compute the prediction error for these simulations, and the cumulative distribution

function. Results show that the overall prediction error is quite low. In the last part

of this chapter, we perform dynamic optimization using the reduced order model.

The optimal flux profile that reaches the optimized film structure is computed by

an approach motivated by dynamic programming. Here, the reduced order model

provides a reduction of 11 orders of magnitude in the computational time, compared

to the full KMC simulations.

In Chapter 6, we evaluate the effects of model reduction parameters such as the
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dimension of the state, the number of configurations in the state space, and the

quality of the training data that is used to build the dynamic model on the accuracy

of the model predictions. Here, we derive two differently sized models with respect

to the number of configurations in their state space and compare their performance.

We identify that the dominant source of prediction error in the model is the quality

of the training data. Finally, we present a method for improving the quality of the

training data by exploring the state space of the simulations systematically.

7



CHAPTER II

PRELIMINARIES

In this chapter, we present a general kinetic Monte Carlo (KMC) simulation algo-

rithm, and discuss some major challenges of KMC simulations. Then, we give an

overview of the two material systems that are simulated using KMC methods: hy-

perbranched polymers and thin films. That is followed by a brief review of the work

done in modeling these two classes of materials.

2.1 KMC simulations and their challenges

Monte Carlo (MC) simulations are most commonly used to compute equilibrium prop-

erties. However, Kinetic Monte Carlo (KMC) simulations are also able to describe

evolution in time. The KMC algorithm was simultaneously proposed by Bortz et

al. [10] and Gillespie [38, 37]. It is based on the assumption that the evolution of a

system is the result of a series of discrete events. An event can be any microscopic

process, such as adsorption (atom attaching to a surface), surface diffusion (atom

hopping on a surface), desorption (atom leaving a surface), or a reaction between two

molecules.

KMC simulations are an alternative to solving the master equation, which de-

scribes changes in a system with respect space and time. The master equation is

expressed as:

dPH(t)

dt
=

∑
H′

kH′→HPH′(t) −
∑
H′

kH→H′
PH(t) (1)

where t and PH(t) are the time and the probability of the system being in config-

uration H. Here, the probability of a transition from configuration H ′ to H is kH′→H .
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Due to the large number of possible system configurations, and the large dimension of

the state vector (i.e. set of variables describing the state of a configuration) in many

physical systems, it is not possible to solve the master equation analytically. For ex-

ample, in a thin film deposition simulation with a substrate having 50× 50 sites; and

a maximum surface height of 10 for each site, the number of possible surface config-

urations is 1050×50. In this case, the analytical solution of the master equation would

require solving 1050×50 coupled differential equations (one for each configuration). A

KMC simulation simply provides a single stochastic realization of the master equa-

tion, and by averaging a large set of simulation results, one can obtain the expected

system behavior under a specific set of conditions.

2.1.1 The general KMC algorithm

Let’s consider a thin film deposition process with the events of adsorption, desorption,

and diffusion. In this process, the rate of an adsorption event is the product of species

flux and surface area, whereas the rates of a hopping or desorption event α is defined

by rα = υ × exp(−Bα/(kB/T )) where υ is the attempt frequency, kB is Boltzmann’s

constant, T is the temperature of the surface, and Bα is the energy barrier associated

with event α. Following are the three steps of the KMC algorithm:

• The initial arrangement of atoms or molecules is specified and the possible

transitions from this configuration are evaluated. Then, based on generated

random numbers, one transition and its location are selected. The selection

criterion is expressed as:

Pr−1
j=1 kj

PR
j=1 kj

≤ ζ1 ≤
Pr

j=1 kj
PR

j=1 kj
where ki is the rate proportional to both the event rate ri

associated with the energy barrier βi, and the number of sites at which event i

can take place. In the above expression; r, which is the selected event number,

can take any integer value from 1 to R where R is the total number of the

possible events, and it depends on the current configuration of the system. The
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random number ζ1, which is used for event selection, comes from a uniform

distribution from 0 to 1.

• After this selection, based on a second random number ζ2, a site at which the

event r takes place is selected. The selection criterion is similar to the previous

one: s−1
S

≤ ζ2 ≤ s
S

where S is the total number of sites where event r can take

place and s is the site number which is picked. After that, the event is executed

at the selected site. It should be noted that, for a given event number, all sites

have an equal probability for selection and no searching is needed. This results

in saving computational time.

• Incrementing the simulation clock is the final step of the algorithm. The fol-

lowing formula with a third uniformly distributed random number ζ3 between

0 and 1 is used: Δt = − ln S
PR

j=0 kj
.

These steps are repeated until a certain time (or surface coverage in thin film

deposition) is reached during a simulation run.

2.1.2 Challenges in KMC simulations

Following are the major challenges in implementing KMC simulations:

• Determining the parameters in the simulations: In order to carry out KMC

simulations, one needs a full list of the events that can take place in a simulation

step, together with the rates of these events. This information can be extracted

by first principles methods (e.g. molecular dynamics simulations or density

functional theory calculations [70]), or alternatively from experimental data

[54].

In order to simulate the epitaxial deposition of GaAs, we use an existing KMC

model in the literature [54]. The kinetic parameters in this model (e.g. activa-

tion energies of diffusion, and desorption events) are functions of interactions
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energies between Ga-Ga and As-As pairs on the surface. Derivation of these ki-

netic parameters is based on the inequalities of the interaction parameters, and

their consistency with the STM images. In another study, Kratzer et al. used ab

initio energy (or first principles) minimization calculations to derive the kinetic

parameters of this process [70, 69]. We selected the first KMC model [54] for

our simulations since it is applicable for a wider range of surface configurations.

For the KMC model of our second process, hyperbranched polymerization, we

propose several reaction mechanisms and determine the rate constants of re-

actions (e.g. cyclization and noncyclization reactions) from experimental data

[117, 118], such as the polymer molecular weight.

• Large separation between time scales of events: In KMC simulations, there is

usually a large separation between time scales of individual events. For example,

in thin film deposition while a diffusion event happens very frequently (due to its

low activation energy), adsorption is quite rare (e.g. millions of diffusion events

for an adsorption event). Since we always aim for a certain surface coverage

in these simulations, and adsorption is the only event that increases surface

coverage, millions of diffusion events need to be executed in order to observe

significant surface coverage change on the film surface. Also, after the execution

of each event, events lists, which store the number of sites at which events can

occur, need to be updated. All these factors lead to a high computational cost

that needs to be dealt with efficient search (for event type and event site) and

update algorithms. The high computational cost also prohibits the direct use

of KMC simulations for design and optimization purposes. Therefore, reduced

order process models that describe the mapping between process inputs and

outputs need to be derived from a limited set of simulations.

In engineering, direct inversion of an algebraic model (Figure 2) is usually not
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possible, which is why numerical methods are developed. They involve making

predictions to efficiently search for the best solution (e.g. optimal operating con-

ditions). But it is difficult to use them with KMC simulation models, because

(1) each prediction (simulation) can take a long time, and (2) derivatives of sys-

tem variables are often needed. However, derivatives are not directly available in

KMC simulations, and are difficult to approximate numerically due to noise in

these simulations. In order to address this problem, optimization methods such

as Nelder-Mead and Hooke-Jeeves algorithms, which do not require derivatives,

are used in past studies [4, 8]. These methods only use the evaluation of the

objective functions (using the KMC simulation) for optimization instead of the

derivatives. Another alternative to these deterministic optimization methods is

simulated annealing [64], which is a stochastic method that is widely used in

process engineering [123]. One example is a study by Raimondeau et al., where

the authors used simulated annealing to determine the parameters of a reduced

order model obtained from the KMC simulations of catalytic oxidation reaction

of CO on platinum [102].

2.2 Hyperbranched polymerization

The shape and topology of organic molecules has a profound effect on their prop-

erties [2]. In the last two decades, synthetic polymer chemists have introduced a

new class of highly branched macromolecules which are composed of multifunctional

monomers, and are classified as either dendrimers or hyperbranched polymers. These

versatile materials display several unique properties when compared with their linear

analogs. Their favorable properties include low solution and melt viscosities, high

solubilities and the presence of very large number of functional end groups that offers

the possibility for further modification for various specialty applications. Dendrimers

are typically synthesized using multi-step reactions and they offer superior control of
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molecular size, shape, and functionality. On the other hand, hyperbranched polymers

are less ordered but are easier to synthesize.

A number of excellent reviews, which describe the synthetic methodologies for

the preparation of a wide variety of hyperbranched and dendritic polymeric systems

through condensation, addition or ring-opening reactions, are available [35, 53, 57,

60, 124, 131]. These include polyesters [47, 75, 113, 114], polyamides [44, 59, 92],

poly(ester-amides) [119], polyphenylenes [63, 62], poly(ether sulfones) [17, 83, 87],

poly(etherketones) [46, 91], polyethers [109, 112], polyurethanes [13, 27, 34, 76, 77,

108], polyureas [34, 76], polycarbonates [9] and others [35, 53, 57, 60, 124, 131].

2.2.1 Past work in the molecular modeling of hyperbranched polymers

Modeling studies of polymer networks have long been used to explain experimental

observations in an adhoc fashion, and modeling is often used to steer the discovery

of synthetic methods and the formation of novel architectures. Early work of Flory

[28] and Stockmayer [110, 111], on the step growth of multifunctional monomers was

based on the assumption that there was no cycle formation in these polymerization

processes, which enabled the calculation of molecular weight using an infinite series

solution. The models of Flory and Stockmayer are useful because they enable quanti-

tative predictions of polymer properties. While it is intuitive that a branched polymer

that is composed of A2 and B3 monomers will ultimately gel, the model generates

the quantitative prediction of gelation at 87% A conversion for the stoichiometry of

A2 : B3 = 1 : 1 [111]. More recently, this method has been extended to include the

effect of cycle forming reactions on the gel point [14].

In order to predict the time-evolution of polymerization, kinetic models based on

mass-action kinetics are often employed. Ordinary differential equations are used to

describe the concentration of each type of branching unit [101, 51]. For example,

a trifunctional monomer may exist in four states: no reactions (free), one reaction
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(terminal), two reactions (linear), and fully reacted (dendritic). These models are

typically of low dimension and may be solved analytically in some cases, or numeri-

cally in others. A disadvantage of this modeling approach is that no information is

provided on the molecular weight distribution of the resulting polymer.

When prediction of the molecular weight and its distribution are desired, popu-

lation balance models are commonly used, in which the concentration of polymers of

each possible size is computed [22, 23, 43, 101, 132]. Therefore, these models have

high dimension. For systems of linear polymers composed of a single monomer type,

the kinetics is fully described by the number of monomers in the polymer. Thus, if

one models the concentration of polymers up to a maximum size of 1000 monomeric

units, then the dimension of the model is also 1000. However, in branched polymers,

more information is needed to describe the kinetics, such as the number of reactive

end groups in the polymer. When several descriptors are needed to describe each

polymer, the dimension of the population balance model grows rapidly [22]. For the

model considered in this thesis, six descriptors are used to describe each polymer:

the number of A2 monomers, the number of B3 monomers, the number of unreacted

A groups in the polymer, the number and type of unreacted B groups (linear or ter-

minal), and the number of end-capping agents. Solving a population balance model

with six descriptors would be very intensive computationally.

Generating functions and the method of moments are often used to reduce the

dimension of the population balance models. However, this approach becomes much

more difficult as the number of descriptors grows, since moments must be included

for each descriptor. The difficulty of this approach is illustrated by the recent pa-

per of Dusek, Duskova-Srmckova, and Voit [22], in which unequal reactivities and

monofunctional reagents were considered separately, but not simultaneously.

Cycle formation was neglected by Flory and Stockmayer, but it is a major factor

in the structural development of dendritic and hyperbranched polymers [23, 42, 43,
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72, 73]. The method of moments has been extended to describe cycle formation in

hyperbranched polymers composed of AB2 monomers [23] and the AB2 + B3 system

[31]. This extension is enabled because in these systems, a maximum of one cycle is

possible, at which point the polymer cannot grow further. In contrast, in the A2 +B3

system, there is no limit on the maximum number of cycles. Infinite series solutions

have been developed to predict the gel point in the A2+B3 system, but do not include

additional effects such as unequal reactivities of the groups in B3, and the effect of

monofunctional reagents [14].

As an alternative to mass action kinetic models that use concentration variables,

Monte Carlo simulations have been performed for hyperbranched polymers, so that

more realistic kinetics can be included and the structural information can be ob-

tained. For example, the Wiener index can be computed for each polymer in the

simulation, which is related to viscosity [127]. In the Monte Carlo simulations, indi-

vidual monomers are reacted with each other to build up the polymer, using random

numbers to select each event. Each monomer is tracked throughout the simulation,

and information regarding its connection to other monomers is stored. Monte Carlo

simulations may be used to describe only the connectivity of the polymers, without

describing their spatial positions [23, 31, 107, 118] or lattice Monte Carlo simulations

can be performed in which each monomer is associated with a spatial position in the

lattice [15]. Direct comparison between experimental data and Monte Carlo simula-

tions has been limited to date, but these simulations can be valuable in interpreting

experimental results [23, 118]. As computational resources grow, Monte Carlo simu-

lations become an increasingly attractive alternative to population balance modeling,

since their major drawback has been the amount of computation required.

Another modeling approach is to describe the structural development of hyper-

branched polymers using atomistically detailed algorithms [2, 127]. These studies
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are limited to the growth of single polymers at a time because of the high computa-

tional cost, so they are not as useful for predicting the molecular weight distribution.

However, if the conformation of the polymer changes throughout the reaction and

this strongly influences the kinetics, then it may be necessary to include this level of

detail.

2.3 Thin film deposition

Thin film deposition, which involves the deposition of a material (precursor) onto a

substrate, is a critical step in manufacturing integrated circuits and MEMS devices.

The thickness of a thin film can vary from tens of microns to single atomic layers

depending on the deposition process, and the application in which the thin film is

used.

In a thin film deposition process, the precursor can be in the gas-phase (e.g.

chemical vapor deposition), or liquid phase (e.g. chemical deposition with plating).

The production of the precursor can be achieved by the ionization of the atoms

of a metal (e.g. in sputtering), or by gas-phase reactions (e.g. in chemical vapor

deposition) [105].

As device size becomes smaller, film thickness and tolerance approach the atomic

scale. Therefore, uniform and smooth thin film surfaces are desired for high device

performance. Surface processing is commonly used in developing integrated circuits

in order to build features with dimensions of 100 nm and below [50, 126]. Some other

applications of surface processing are mechanical coatings [30], thermal coatings [88]

and MEMS devices [12].

2.3.1 Past work in the molecular modeling of thin film deposition

The structure of a thin film is usually a strong function of process inputs such as

pressure and temperature. As a result, process models that describe the relationship

between inputs and outputs are needed to control the microstructure of thin films.
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If the morphological features of the thin film surface are much larger than the

mean free path of the particles, continuum assumptions can be used for modeling.

Such an approach implemented by Kardar et al. [58] is based on solving a partial dif-

ferential equation that describes the evolution of surface height. When the continuum

assumptions are not valid at such small scales (i.e. the mean free path of particles are

comparable to the feature size of a material), developing accurate continuum models

is not possible. An alternative approach is simulating the dynamics of the system by

means of molecular simulations, such as molecular dynamics (MD) and Monte Carlo

(KMC) simulations. In MD simulations, Newton’s equations of motion are solved for

the position of each atom in a system. Given the initial location of each atom, a

potential energy function is used to compute the interaction between atom pairs and

this information allows the computation of the trajectory of each atom over a time

interval. Due to the computational demands of MD, it is not possible to simulate

thin film growth which usually takes minutes or hours using this approach. On the

other hand, KMC simulation is a stochastic method that simulating the evolution

based on randomly generated numbers. Some examples of KMC models used for thin

film growth include Gilmer’s work on Al thin films [55] and the work of Srolovitz on

diamond deposition [6].

In some cases, a wide separation of length scales associated with different kinds of

reaction or diffusion phenomena can make the multiscale modeling of thin film growth

necessary [123]. For example, for the epitaxial film growth, stochastic KMC can be

used to capture the film surface evolution as a result of microscopic processes taking

place on the surface (e.g. diffusion of individual atoms). In addition, a continuum

model can be necessary to capture the dynamics in the bulk phase. In a past study,

a PDE model for the fluid phase was coupled with a KMC model to investigate the

transitions between different growth modes by Lam and Vlachos [78, 122]. Similar

studies by Pricer, Drews et al. also involved using hybrid models that are composed
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of continuum and KMC models for the electrodeposition of Cu [20, 21, 78, 99, 100,

122]. In this case, the continuum model provided the flux values as an input to the

KMC simulations, whereas KMC simulations input the concentration values into the

continuum model.

Even though the simulation models give insight about process dynamics, their high

computational load prohibits the direct use of them for dynamic analysis and opti-

mization tasks [123]. Several approaches have been developed in the past few years

to integrate molecular simulations with dynamic analysis and optimization through

reduced order modeling. One approach is the derivation of stochastic time evolution

equations from the probabilistic master equation [39], under assumptions that are

mostly applicable for well-mixed reacting systems. An alternative approach for con-

structing stochastic differential equations from molecular simulations of film growth

is the generation of stochastic spatially distributed PDEs for the height profile of a

surface [24]. These models describe continuum behavior and dynamics, and thus are

not appropriate for modeling surface structure at atomic scales. This modeling ap-

proach, with stochastic PDEs, has been used recently to control the surface roughness

in a thin film deposition process on a one-dimensional lattice [85]. On the other hand,

controller design based on molecular simulations is an active area of research [93]. In

a recent study [104], a reduced order stochastic model obtained from KMC and finite

difference simulation data has been used to design a feedback-feedforward controller

in order to maintain the current density during the copper electrodeposition process

at a constant level.

In order to explicitly model and predict discrete atomic scale structure, a model is

required that does not average over the small length scales. One approach to address

this issue is equation-free computing, which was first used for stability and bifurcation

analysis [36]. A low-dimensional system state was assumed (based on macroscopic
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arguments), and short simulations were run from specific initial conditions to approxi-

mate time-derivatives. In this methodology, also called the timestepper, the evolution

of a process is captured using short simulations. The input of a timestepper is a cer-

tain initial condition at time t, and the output is the state at time t + dt, where dt

is the duration of the simulation clock. If the dynamics of a system is described by

deterministic differential equations, the timestepper would simply be the integration

of these equations for a dt amount of time, and it would return the final system state.

When such equations do not exist in closed form, a timestepper can use small scale

realizations of system dynamics (molecular simulations). In that case, the following

steps need to be taken by the timestepper:

1. Lifting: In this step, a certain macroscopic initial condition is used to gener-

ate a set of microscopic system configurations with that initial condition. For

example, the lifting step can involve generating multiple surface configurations

that have the same surface coverage in a thin film deposition process. In other

words, these configurations would be microscopically different in terms of the

location of atoms, but they would be at the same surface coverage level.

2. Evolution: The system is simulated using microscopic scale realizations (molecu-

lar simulations). Starting from each microscopic system configuration generated

in the lifting step, molecular simulations are run under certain input conditions.

3. Restriction: Using the simulation results obtained in the evolution step, a

macroscopic system state is computed. This usually requires averaging the

results of molecular simulations run in the evolution step.

In order for timestepper approach to be feasible for a physical system, an impor-

tant condition should exist. Generating a distribution of microscopic system config-

urations with a common macroscopic state should not be computationally too de-

manding. Even though generating that kind of configuration sets is straightforward
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when the state description is compact, lifting may involve extremely high compu-

tational demand for systems described by high dimensional state vectors (e.g. pair

correlation functions describing the relative orientation of atoms on a film surface).

Also, for the timestepper approach to be successful, high order moments of micro-

scopic realizations, which can rapidly change, need to converge onto a slow manifold

even if these realizations are initialized inaccurately. The inaccurate initialization can

possibly occur for many physical systems since the number of possible microscopic

configurations consistent with a certain macroscopic property can be infinitely large.

In that case, the system state predicted after the restriction step might be inaccurate.

More recently, timestepper method has also been applied for optimization [8].

However, the reduction in computational time achieved by this method, compared to

running full molecular simulations, and may not be sufficient to make the approach

practical when many predictions over long time intervals are required.

In an alternative approach presented by Gallivan and Murray [33], molecular sim-

ulations were used to construct Markov models, with discrete states describing groups

of similar configurations. This grouping strategy was based on the similarity of the

roughness and coverage values, and enabled computation of the optimal temperature

profile by penalizing the surface roughness and temperature changes during the thin

film deposition. The construction of this explicit low-order model reduced the com-

putational load by four orders of magnitude relative to the KMC simulations. This

significant reduction was critical for making the dynamic simulation and optimization

feasible over macroscopic processing times.

The construction of a dynamic model relies on the existence and knowledge of the

system state. While a low-order state was selected in previous studies using physical

[33] or mathematical arguments [36], the detailed structure in a molecular simulation

may not even have a low-order representation. For example, high order statistical mo-

ments may not always be slaved to the low order statistical moments (coarse variables)
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that are describing the system state, as was assumed in equation-free computing [36].

In order to address these issues, the study by Oguz and Gallivan [97] proposed the

use of high-dimensional step-step correlation functions, which provide a more detailed

state description of the film surface, compared to the surface roughness alone. This

study demonstrated the implementation of principal component analysis (PCA) for

reducing the state dimension and self organizing map (SOM) for automated group-

ing of the similar states in the state space. In a more recent study, Varshney and

Armaou [121] also used spatial correlation functions to characterize the state of their

film growth simulation, and used equation-free computing to simulate the dynamics

[36].
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CHAPTER III

MODELING AND EXPERIMENTAL VALIDATION OF

STRUCTURE DEVELOPMENT IN HYPERBRANCHED

POLYMERS

Highly branched polymers, which include dendritic, hyperbranched or multibranched

polymers, are interesting and versatile materials and display several unique properties

when compared with their linear analogs. These include low solution and melt viscosi-

ties, high solubilities and the presence of very large number of functional end groups

that offers the possibility for further modification for various specialty applications.

Discussion of the synthetic methodologies for preparation of a wide range of hy-

perbranched and dendritic polymers can be found in several extensive review articles

[57, 60, 125]. Many of the past experimental studies have focused on the synthesis and

characterization of ABn type monomers (n ≥ 1), particularly with AB2 monomers

[35, 57, 60, 125]. However, very few of the ABn type monomers are commercially

available due to their lack of symmetrical functionality and tendency to react pre-

maturely [125]. As a result, A2 + B3 polymerization has recently been the subject of

extensive research [25, 26, 56, 68, 73, 74, 84, 130] since it provides an alternative and

more convenient way to synthesize highly branched polymers. In contrast to poly-

merization of ABn type monomers, these systems offer a wider range of molecular

structures depending on the monomeric types and processing conditions. For exam-

ple, A2 + B3 polymerization has been performed by heating a mixture of A2 + B3

(mixed together or one pot) [117] and also by dropwise addition of A2 into B3 [118].

The molar ratio of A2 to B3 can also be varied [22, 28, 125]. The third main syn-

thesis option (dropwise addition of B3 into A2) is known to lead very high degree
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of branching that leads to crosslinking at very low conversions [95]. Therefore, it is

not a preferred synthesis method and we focus on the other two methods. All of the

mentioned synthesis methods, in which only the A and B functional groups react, are

illustrated in Figure 3.

Dropwise
addition of 
A2 into B3

Mix  A2 and B3 at low T, 
then heat up 

(batch or one pot polymerization)

Dropwise
addition of 
B3 into A2

B
Difunctional
A2 monomer B B

Trifunctional
B3 monomer

AA

Figure 3: Different synthesis methods using A2 + B3 polymerization.

In this chapter, we present a Kinetic Monte Carlo (KMC) model, and use it to

interpret the experimental findings and elucidate the underlying kinetics of hyper-

branched polymerization of A2 +B3 systems. In the first section, we study a solution

polymerization process by dropwise addition of A2 into B3 in which the solution con-

centration influences the extent of cyclization, which affects the gel point and polymer

properties significantly. In the second section, we study a melt polymerization process

of one pot A2 + B3 polymerization with no solvent, where the extent of cyclization

is negligible. But in this case, due to the aromatic nature of the B3 monomers used,

it is possible to observe reduced B group reactivity after the reaction of a B group

in a free B3 (with 3 unreacted B groups). Therefore, we mainly consider the effects

of unequal reactivities, and also endcapping reactions on the structure development

of hyperbranched polymers for the melt polymerization case. In the final section, we

discuss how the high dimensional and computationally expensive KMC simulation

model and experimental data can be used to derive a reduced order model for design
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and optimization of the hyperbranched polymerization process.

3.1 Synthesis of hyperbranched polyurethaneureas in solu-
tion

In this section, we present a KMC simulation model for the hyperbranched polymer-

ization of difunctional A2 oligomers, and B3 monomers with dropwise A2 addition

into a B3 solution. Using this model and the experimental data, we study the ef-

fects of solution concentration on the polymer structure development. By changing

the monomer concentration and the extent of cyclization, we obtain polymers with

different molecular weight and degree of branching.

3.1.1 Experimental Procedure

Experiments were performed by Serkan Unal in Dr. Timothy Long’s group in Virginia

Tech. Isocyanate end-capped Poly(tetramethylene oxide)-glycol (A2 in this system)

was prepared in bulk at 80◦C under the catalytic action of 100 ppm of dibutyltin di-

laurate (T-12). Polymerization reactions for the preparation of hyperbranched poly-

mers based on PTMO were carried out in THF/IPA (25/75; v/v) solutions, at room

temperature, under strong agitation. During the reactions oligomeric A2 (isocyanate

end-capped PTMO) solution was always added into B3 (polyoxyalkylenetriamine,

also known as TRI) solution drop-wise. In order to monitor the growth in the molec-

ular weight of the products, samples were withdrawn from the reactor at different

amounts of A2 addition and endcapped with cyclohexyl isocyanate prior to analysis

by size exclusion chromatography (SEC) using a multiple angle laser light scattering

(MALLS) detector. Structures of A2 and B3 are shown in Figure 4.

3.1.2 Simulation Procedure

Similar to the experimental procedure followed, initially, N molecules of B3 are

present in the system, and molecules of A2 are then added sequentially during each
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Bis(4-isocyanatohexyl)methane (HMDI)

                         OCN CH2 NCO

HMDI and capped PTMO-2000

               H   O                  O   H 
                |     ||                                                    ||    | 
   OCN CH2 N C O (CH2CH2CH2CH2O)n O C N CH2 NCO

Polyoxyalkylenetriamine (TRI)

       CH2[OCH2CH(CH3)]x-NH2
        |                
    CH3CH2CCH2[OCH2CH(CH3)]y-NH2
                  |   
                  CH2[OCH2CH(CH3)]z-NH2

Figure 4: Chemical structures of monomeric and oligomeric A2 and B3.
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simulation run.

The simulations consist of three steps. First, an A2 monomer is added to the

system. An unreacted B group is then selected, and is reacted with one of the two

A groups. Each unreacted B group in the system has an equal probability of being

selected, independent of molecular structure. In the third step, the remaining A group

is reacted with another B group. When no cyclization is allowed, then the A group

and the B group must be selected from different molecules, but each eligible B group

has the same probability of selection.

B

B

BAA
AA

B

B

B+

B

B

BAA

B

B

B

AA

B

B
BAA

B

B

B

AA

Non-cyclic

reaction

Cyclization

Figure 5: Cyclization versus non-cyclization reactions.

Cyclization is an important factor in step-growth reactions leading to the forma-

tion of dendritic and hyperbranched macromolecules [23, 42, 43, 72]. In the simulation

studies cyclization, which is illustrated versus non-cyclization reactions in Figure 5,

was taken into account in the following manner: an A group and a B group in the

same molecule may react, but the selection probability for each B group is not equal.

Instead, there is one selection probability for each B group in the same molecule

as the A group, and a different probability for each B group not in that molecule.

The selection probabilities are calculated from rates, using the kinetic Monte-Carlo

(KMC) simulation algorithm of Bortz and co-workers [10], in which the selection

probability of each event is proportional to its rate. In the simulations, a variable

cyclization parameter γ is defined, such that γ = (kc/knc)/N , in which kc is the per
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end group rate of cyclization reaction, and knc is the rate when a non-cyclization

reaction occurs. In the simulations, rather than the individual values of kc and knc,

their ratio γ is critical for structure evolution. A high γ value would indicate dilute

conditions in which the functional groups in the same molecule would be more likely

to react with each other than the functional groups in other molecules. Other than

dilution, faster mixing can also change the γ value. With fast mixing, the γ value

would be low since faster mixing would increase the chance of intermolecular (non-

cyclization) reactions. During calculations, the cyclization parameter γ was varied

and the development of molecular characteristics such as number average molecular

weight (Mn), weight average molecular weight (Mw), polydispersity (PDI), degree of

branching (DB), and cycles per molecule were determined. These characteristics are

known to have significant effects on the rheological and thermal properties of poly-

mers [89]. DB was calculated using: DB = (D + T )/(D + L + T ), where D, L and

T indicate dendritic, linear and terminal units in the polymer that are illustrated in

Figure 6. The dependence of cyclization probability on conversion is not explicitly

built in the KMC model used in simulations, because rate constants do not depend

on conversion or molecular structure. However, as the monomer conversion increases,

cyclization events become more likely due to the smaller number of molecules and

the higher number of unreacted groups per molecule. Consequently, an increase in

cyclization probability with conversion is implicitly built into the simulation model.

In the simulations presented here, the simulation size N = 1000. Smaller and

larger simulation sizes of N = 100, N = 700 and N = 1300 were also studied. The

simulations with N = 100 differ significantly from the larger simulations, but the

simulations with N = 700, N = 1000 and N = 1300 agree quantitatively, suggesting

that the results reported in this study (N = 1000) are not dependent on the system

size. The only exception occurs when there is no cyclization. In this case the simu-

lations with N = 700 and N = 1000 differ near full conversion, mainly because the
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Figure 6: Dendritic, linear and terminal B3 units.

molecular weight is equal to the total weight in the system. However, this regime is

not relevant to the experimental data and is not reported.

To mimic various levels of cyclization in the polymers formed, the simulations were

carried out at different cyclization ratios, such as γ = 0 (no cyclization), γ = 0.01

and γ = 0.1 (low cyclization) and γ = 1 (very high cyclization). Molecular weights

of A2 and B3 are taken as 2500 and 440 g/mol, to mimic the experimental system

based on isocyanate capped PTMO-2000 and TRI.

Similar to the experiments, during simulations oligomeric A2 is added into B3

slowly up to a stoichiometric ratio of A2 : B3 = 1.15 or 115% A2.

3.1.3 Results

Figures 7(a) and (b) show the Monte Carlo simulation results on the development

of the number average Mn and weight average Mw molecular weights as a function

of A2 addition, for a 1000 × 1000 (A2 × B3) system. As depicted in Figure 7(a),

regardless of the cyclization ratio, a slow increase in Mn values were observed until

a fairly large amount of A2 (about 75%) is added into the system. This is followed
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by a sharp increase for polymers in which the cyclization is not taken into account,

where Mn value is theoretically expected to reach infinity, as predicted by Flory’s

theory [29, 28]. As expected, the growth in the number average molecular weight

Mn is severely limited for polymers that show moderate to high level of cyclization.

As depicted in Figure 7(a), even at the fairly low cyclization ratio of γ = 0.01, at

100% A2 addition, a very dramatic reduction in Mn is observed, where it only reaches

to about 60,000 g/mol. At a cyclization ratio of 0.1, Mn is further reduced and

reaches to only about 20,000 g/mol at 100% A2 addition. Simulations performed

assuming the highest cyclization ratio of γ = 1 clearly show the formation of very

low molecular weight products, which is expected. As clearly demonstrated in Figure

7(b), cyclization has less of an effect on the development of Mw. Even at a cyclization

ratio of γ = 0.1, Mw reaches to very high values. Only at the highest cyclization ratio

of γ = 1, similar to Mn, there is a dramatic reduction in Mw. Simulations clearly

indicate that cyclization delays the onset of gel formation well beyond the theoretical

A2 conversion of 75%. In order to make a direct comparison, Figures 7(a) and (b)

give the experimental results on Mn and Mw in addition to the results of Monte Carlo

simulations. It is interesting to note that experimental Mn and Mw values obtained

for polymerizations at 25% solids agree fairly well with simulations, where cyclization

ratio is low (γ = 0− 0.01). Even more interestingly, experimental Mn and Mw values

obtained for polymerizations at 10% solids agree very well with simulations where

degree of cyclization is higher (γ = 0.1).

Figures 8(a) and (b) show simulation results on the polydispersity index (PDI)

and the degree of branching (DB) as a function of A2 addition. As depicted in Figure

8(a), PDI shows a gradual increase as A2 is added into the system and reacted with

B3. As expected, after about 60% A2 addition there is a dramatic increase in PDI for

all systems, except for the case of very high cyclization, or when γ = 1. Simulation

results on the degree of branching (DB) as a function of cyclization parameter γ
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Figure 7: Comparison of experimental and simulation results on the development of
average polymer molecular weight as a function of A2 addition and cyclization ratio
for a 1000 × 1000 A2 × B3 system. (a) Number average molecular weight and (b)
weight average molecular weight. Experimental data: (o) experiment with 25% solids
by weight, and (*) 10% solids by weight. Simulation data: γ = 0 (solid line), γ = 0.01
(dashed line), γ = 0.1 (dotted line), γ = 1 (dash-dotted line).
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Figure 8: Kinetic Monte Carlo simulations on the polydispersity index (PDI) (a)
and the degree of branching (DB) (b) as a function of A2 addition. γ = 0 (solid line),
γ = 0.01 (dashed line), γ = 0.1 (dotted line), γ = 1 (dash-dotted line).
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and amount of A2 added are depicted in Figure 8(b). It is important to note that

at the beginning of the simulations there is only B3 species in the system, so DB =

1.0. As A2 is added into the system and reacts with B3, DB starts going down

slowly and levels off around 0.5 − 0.6 after about 80% A2 addition for simulations

where cyclization parameter is low (γ = 0 − 0.1). Interestingly, for the system with

highest cyclization parameter (γ = 1), the behavior is quite different. Monte Carlo

simulations indicate that in this system with very high cyclization probability, even

at low A2 additions, DB starts around 0.75 and gradually moves to about 0.5-0.6

similar to the other systems. Frey has pointed out that DB statistically approaches

0.5 for the case of polymerization of AB2 monomers [51], calculated using DB =

(D+T )/(D+L+T ) [47]. Our simulations resulted in a DB value of 0.53 at complete

A2 addition without cyclization. This is in excellent agreement with simulations of

Frey [51] and also with the DB values observed experimentally in A2 + B3 systems

[17]. With the inclusion of cyclization, DB goes up slightly from this value of 0.53,

as shown in Figure 8(b).

Another important characteristic of such highly branched polymers, the number

of cyclization events per molecule, as a function of A2 conversion is shown in Fig-

ure 9. For small cyclization ratios (γ = 0.01 and γ = 0.1) and low conversions, the

number of cyclic species per molecule are negligible until about 80% A2 addition. As

the amount of A2 exceeds 80% and high molecular weight polymers are obtained,

cyclization increases and reaches to about 2 per molecule. Interestingly, simulation

results given in Figure 9 on the amount of cyclization per molecule, for high cycliza-

tion ratio (e.g. γ = 1) and high conversions seems to be somewhat contradictory

to expectations, since they are much smaller. However, since the molecular weight

of the polymer formed is strongly suppressed due to extensive cyclization, in these

simulations polymers formed have very low molecular weights (Figures 7(a) and (b)).

In other words, in these cases only very small molecules which also have a smaller
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total number of cycles are formed.
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Figure 9: Number of cyclization events per molecule, as predicted by the kinetic
Monte-Carlo simulations as a function of A2 addition, at different levels of cyclization.
γ = 0.01 (dashed line), γ = 0.1 (dotted line), γ = 1 (dash-dotted line).

3.2 Synthesis of hyperbranched polyetheresters in melt

In the previous section, we used a simple KMC simulation model to explore the role

of cyclization in the dropwise A2 addition into a B3 in a solvent. Herein we consider

a similar statistical framework to explore a wider range of phenomena, for a batch

A2 + B3 reaction in a melt. The Monte Carlo simulations are used to interpret the

experimentally measured number-averaged molecular weight, weight-averaged molec-

ular weight, and the density of branched units, by considering the effects of the

cyclization reactions, unequal reactivities, and endcapping on the structure develop-

ment of hyperbranched polymers.
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3.2.1 Experimental Procedure

Highly branched poly(ether ester)s were synthesized in the melt phase using an

oligomeric A2 + B3 polymerization strategy. Condensation of poly(propylene gly-

col) (A2 oligomer) and trimethyl 1,3,5-benzenetricarboxylate (B3 monomer) gen-

erated highly branched structures. The conversion and degree of branching were

measured with 1H NMR spectroscopy, and the molecular weight (number-average,

weight-average, and polydispersity) was characterized by size exclusion chromatog-

raphy (SEC) using a multiple angle light scattering (MALLS) detector, at six points

throughout the polymerization process. Additional experiments were also performed

in which two different monofunctional endcapping reagents were added for the pur-

pose of delaying the gel point. This experimental work is by Unal and Long [117],

and can be consulted for further detail on the experimental procedures. In this thesis,

we interpret these experiments through a comparison with Monte Carlo simulations,

utilizing alternative assumptions and kinetic models. Because the error in the SEC

measurements is approximately 10%, our goal is not to achieve exact agreement be-

tween the experiments and modeling, but to compare the trends and magnitudes.

3.2.2 Simulation Procedure

This study focuses on the use of a model to interpret the experimental data. Each

simulation starts with N monomers of A2 and N monomers of B3 in the system, since

the monomers were polymerized with a 1 : 1 molar ratio during the experiments. At

each step in the simulation, all of the available (unreacted) functional groups are

listed. Then, using a random number, an A group and a B group are selected from

the list and the reaction is executed. This is followed by updating the list of available

A and B groups, molecular weights of the molecules, and the number of dendritic,

linear and terminal units in the system.

The probability of selecting a particular pair of A and B groups is proportional
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to the reaction rate for that pair, which yields the correct time-evolution of the

system [10]. Therefore, a model is needed for the reaction rates of various events.

The first effect that is considered in this effort is the formation of cycles through

intramolecular reactions (5). Polymerization was performed in the melt, which was

hypothesized to minimize cycle formation due to high concentration of reactants,

so cyclization reactions are taken into account in the simulations to address this

hypothesis. While selecting an A group (from A2 oligomers) and a B group (from

B3 monomers) for reaction at each simulation step, some pairs are favored more than

the others. If the reaction of an A − B pair leads to cycle formation, the selection

probability of that particular pair is promoted by the cyclization parameter γ, such

that γ = (kc/knc)/N , where kc is the rate of cyclization reactions for each A−B pair

and knc is the rate of non-cyclization reactions for each A−B pair. N appears in the

parameter γ since the number of intermolecular reactions in the simulations grows

as N2, while intramolecular reactions are initially proportional to N . Although γ is

constant throughout each simulation, the overall number of cycle-forming reactions

increases with conversion, because the number of possible cycle-forming reactions

increases with molecular weight. We use different values of γ in the simulations to

explore the effect of cycle formation on the resulting polymer.

In addition to cyclization and non-cyclization reactions, we also consider end-

capping reactions between E groups (from monofunctional end-capping reagents)

and B groups, with a rate constant of ke. The ratio ε = ke/knc is then the second

parameter in our kinetic model. In a second set of simulations, γ and ε have been

varied to observe their effects on the development of molecular characteristics such

as number average molecular weight (Mn), weight average molecular weight (Mw),

polydispersity index (PDI = Mw/Mn) and the fraction of dendritic units (fD). fD

is calculated using: fD = D/(D + T + L), where D,L and T indicate the number of

dendritic, linear and terminal units in the system (illustrated in Figure 6). We plot
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fD in the simulation results (as opposed to fL, fT ), or DB since fD is the quantity

extracted from the 1H NMR measurements [117].

Depending on the properties of the monomers, such as their molar mass or electro-

static interactions, unequal reactivities of their groups can also affect the structural

development of hyperbranched polymers. End groups usually have higher reactivities

than the groups along the length of the chains because of the lower kinetic excluded

volume effect [89]. This causes the linear units to have lower reactivities than the

terminal units. In order to simulate unequal reactivities of the B groups, we define

a third parameter ρ. For each unreacted B group in a B3 monomer, we check the

reaction state of the other two B groups in the monomer. We then consider three

possible cases of unequal reactivity. For this purpose, we define k1 to be the rate of

reaction of a B group in a free B3 monomer, k2 to be the rate of a B group in a ter-

minal unit, and k3 for a B group in a linear unit. We assign reaction rates in the ratio

of ρ = k1/k2 = k2/k3. k1 is expected to be enhanced relative to k2 due to the greater

mobility of the free B3 monomer and its ability to diffuse through the polymer, while

k2 may be different from k3 due to blocking, free volume, and electrostatic consider-

ations. In order to isolate these two effects, we have also performed simulations with

ρ12 = k1/k2 and k2 = k3, and then also with ρ23 = k2/k3 and k1 = k2.

For the simulation results presented in this study, the system size is N = 10, 000.

Smaller and larger simulation sizes of N = 1000, 3000, 5000 and 7000 have also been

used. The simulation results with N = 1000 differ significantly from the simulations

with larger N . On the other hand, simulations with larger N agreed quantitatively.

This suggests that the trends reported in this study are not dependent on the system

size. Additionally, for the case of no cycle formation and equal B3 reactivity, we com-

pared our weight-averaged molecular weight with the analytical theory of Stockmayer

[111], and the error is approximately 1%. Clearly, if one is interested in describing

the approach to gelation with no bound on the molecular weight, then the system
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size would also need to approach a macroscopic number of monomers (1023), and

studies have been performed to quantify this tradeoff [107]. However, in these simu-

lations, only molecular weights up to 500, 000 g/mol are presented, since this is the

range of the experimental data. Furthermore, the error in the SEC measurements is

approximately 10%, so an error of 1% in the model predictions is not significant.

3.2.3 Results

Monte Carlo simulations have been carried out in order to assess the effects of cy-

clization, unequal reactivities, and end-capping reactions on the polymer structure

development. Molecular weights of A2 (PPG-1000) and B3 (TMT) are 1060 and 252

g/mol, whereas the molecular weights of two types of end-capping reagents, PPG-

M-1000 and dodecanol, are 1200 g/mol and 187 g/mol, respectively. The simulation

system containing 10, 000 × 10, 000 A2 and B3 monomers yielded molecular weights

in the same range as those observed in the experiments. Similar to the experiments,

simulations have been initialized with an equal number of A2 and B3 monomers in the

system. The simulations results plotted are averages over 50 independent realizations.

3.2.3.1 Effects of cyclization reactions

The melt polymerization was previously considered to be sufficiently concentrated so

that the cycle formation would be negligible [117]. We first investigate the extent of

cyclization via the simulations. Extent of cyclization (EOC) is defined as the fraction

of reactions between A and B that is intramolecular, and is a quantity that has

been measured previously using MALDI-ToF for linear polymers but is less reliably

measured in hyperbranched polymers due to the many possible isomers [71, 74].

Figures 10(a) and (b) show the experimental [117] and simulated evolution of

the weight-average molecular weight Mw and the polydispersity PDI as a function

of A2 conversion, for the 10, 000 × 10, 000 A2 + B3 system with different γ values.

The reactivity ratio ρ is 1 and no monofunctional reagents are present. For all γ
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values, a slow increase in Mw and PDI values was observed until about 80% A2

conversion. Above 80% A2 conversion, a sharp increase in Mw and PDI takes place in

all the systems, except for the one with the highest level of cyclization (γ= 1). The

experimental data for PDI and Mw are most consistent with a value of γ around

10−2. The ideal limit of no cycle formation, modeled by Flory, is the solid curve with

γ = 0.

Mw and PDI development in systems with cyclization ratios in the range of

γ = 0 to 10−2 all agree reasonably well with the experimental data. Due to the

variability of the experimental measurements, the goal of the modeling is not to

match the experiments exactly, but to assess the magnitude of the various effects.

The simulation with γ = 1 has a lower Mw and PDI at high conversions, compared

to the experimental data. This suggested that the extent of cyclization, which is

the fraction of reactions that are cycle forming, was quite low during the experiment.

Figure 11 shows that the system with γ = 1 reaches an extent of cyclization of 0.09 at

90% A2 conversion. Interestingly, even such a low extent of cyclization dramatically

suppressed the Mw and PDI as illustrated in Figures 10(a) and (b). Figure 11 also

shows that with γ = 10−3 or γ = 10−2, the extent of cyclization is less than 3%. This

result supports the original hypothesis, that melt polymerization would suppress the

effect of cycle formation on molecular weight and gelation.

Another important characteristic of hyperbranched polymers is the fraction of

dendritic units fD, which is directly proportional to the extent of branching in the

system. The development of fD at different γ levels is shown in Figure 10(c) as a

function of A2 conversion. As γ is increased from γ = 10−1 to γ = 1, an increase in

fD is observed at A2 conversions of 60% and above. This trend was expected, since

cyclization reactions enhance the number of dendritic groups via the formation of

small, fully reacted polymers with no free groups. However, the evolution of fD is not

consistent with the experimental data for any value of γ. For all γ, the simulations
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predict a higher fraction of dendritic units.
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Figure 10: Comparison of simulation and experiment [117] (*). In the simulations,
the cyclization ratio γ is varied. γ = 0 (solid line), γ = 10−3 (dashed line), γ = 10−2

(dotted line), γ = 10−1 (dash-dotted line). (a) Weight-average molecular weight Mw

(b) polydispersity index PDI (c) fraction of dendritic units fD. Agreement between
experiments and simulations is not achieved for fD at any value of γ.

3.2.3.2 Effects of unequal reactivities

The disagreement of fD between the experiments and simulations suggests that there

is an additional effect that suppresses the amount of branching during the experi-

ments, other than the effect of cyclization reactions. It could be attributed to the

lower reactivity of free B groups in linear units relative to the free B groups in the
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Figure 11: Simulation predictions of extent of cyclization. In the simulations, the
cyclization ratio γ is varied: γ = 10−3 (dashed line), γ = 10−2 (dotted line), γ = 10−1

(dash-dotted line). For the γ = 0 case (solid line), EOC=0.

terminal units or completely unreacted B3 monomers. However, this would also re-

duce the molecular weight. In order to assess this trade-off quantitatively, additional

simulations have been performed during which the reactivity of free B groups is mod-

ified, based on the overall state of the B3 monomer. In these simulations presented in

this section, γ = 0 since the previous section demonstrated that cyclization did not

play a major role in this system.

Figure 12 shows the evolution of the simulations with different levels of reactivity

ratio ρ. With ρ = 1, the simulations are identical to those in Figure 10, while larger ρ

reduces the amount of branching and also the molecular weight and distribution. The

reduction in molecular weight was expected since the polymers are becoming more

linear, but the reduction of molecular weight and polydispersity is not as dramatic

as it is with cyclization. Even for the extreme value of ρ = 10, gelation is delayed

but not completely suppressed. In Figure 12(c), the increase in ρ causes a decrease in

fD, as expected, but the shape of the curves does not match the experimental data.
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In the data, the fraction of dendritic units rises quite high at late conversion, but is

very low at earlier conversions. The 1 : 1 molar ratio of A2 and B3 is important in

understanding this behavior. Due to the 1 : 1 molar ratio, there is an excess of B

groups, so at full A conversion, only 2/3 of the B groups have reacted. If the reactivity

of the third B group is strongly reduced, then there will be few dendritic units that

form, but this is not observed in the experiments. The fact that the experiments

eventually reach a large value of fD near that predicted with ρ = 1 instead suggests

that a B group in a linear unit has a similar reactivity to a B group in a terminal

unit. Therefore, ρ23 = k2/k3 = 1 where k2 is the rate of a B group in a terminal

unit, and k3 is the rate of a B group in a linear unit. This was also supported by

our simulations with ρ23 greater than one. In these simulations, compared to the

experimental data, very low fD values were observed.

The low values of fD around 60% conversion are more consistent with a suppression

of the reaction of terminal units relative to free units, as shown in Figure 13 for various

levels of ρ12. Recall that ρ12 = k1/k2, with k2 = k3. The high reactivity of the free

B3 could be due to its mobility, as well as the fact that B groups in polymers may be

partially blocked by other portions of the polymer. This trend in fD is much more

consistent with the experimental data. A high value of ρ12 = 10 best matches the fD

measurements, while a somewhat lower value of ρ12 near 1.5 − 2 agrees best in the

molecular weight distribution. Our conclusion based on the simulations in Figures 12

and 13 is that a suppressed reactivity of the third B group in the linear unit is not

consistent with the observed data. The more consistent explanation is that the free

B3 monomers are more mobile and therefore react faster than B3 in polymer.

3.2.3.3 Effects of end-capping reagents

The third and final simulation study considers the addition of monofunctional reagents

to the A2 +B3 system. Stockmayer’s theoretical studies of highly branched polymers

41



0 20 40 60 80 100
0

2

4

x 10
5

A conversion (%)

M
w

(a)

0 20 40 60 80 100
0

5

10

A conversion (%)

PD
I

(b)

0 20 40 60 80 100
0

0.2

0.4

A conversion (%)

f D

(c)

Figure 12: Comparison of simulation and experiment [117] (*). In the simulations,
ρ = k1/k2 = k2/k3. ρ = 1 (solid line), ρ = 1.5 (dashed line), ρ = 2 (dotted line),
ρ = 10 (dash-dotted line). (a) Weight-average molecular weight Mw (b) polydispersity
index PDI (c) fraction of dendritic units fD.
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Figure 13: Comparison of simulation and experiment [117] (*). In the simulations,
ρ12 = k1/k2 and k2 = k3. ρ12 = 1 (solid line), ρ12 = 1.5 (dashed line), ρ12 = 2
(dotted line), ρ12 = 10 (dash-dotted line). (a) Weight-average molecular weight Mw

(b) polydispersity index PDI (c) fraction of dendritic units fD.
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indicated that addition of a monofunctional end-capping reagent should shift the gel

point to higher monomer conversion values [28, 111, 110]. Thus, delaying the gel point

by terminating some of the B functionalities is the main motivation behind using end-

capping reagents in this system. A molar ratio of monomers as A2 : B3 : E = 1 : 1 : 1

was used in the experiments to ensure that residual B end groups, which would be

expected in an A2 : B3 = 1 : 1 system at full A2 conversion, do not remain in the

system at full conversion.

Figure 14 provides a comparison of the change in the evolution of Mw for the

addition of PPG-M-1000 (1200 g/mol) at the beginning of the reaction. The A

conversion that is plotted also includes the conversion of the end-capping reagent,

since that is measured by NMR. Curves are shown for the values of ρ12 considered

previously in Figure 13. A primary observation is that the addition of the end-capping

reagents has the larger effect when the reactivity ratio is also large. Furthermore, this

effect is only observed when the end-capping reagents also have a higher reactivity

than the A groups in A2 (ε � 1). This might be the case for the dodecanol reagent,

if the end-capping reagent has a higher diffusivity than the A2 due to its lower molar

mass.

In the simulations presented in Figures 14 and 15, we set ε = 1000, although

the results are similar for ε = 10. When ε ≈ 1, the simulations predict that the

end-capping reagents have a negligible effect on the polymer structure. By reacting

with the excess B groups, they only add their extra mass to the polymer. In the

opposite limit, when ε � 1 and ρ12 � 1, the E groups react quickly with the free

B3 monomers, after which the EB3 units begin reacting with A2. Each B3 is thus

bonded to only two A2 monomers, so the polymers have a linear structure.

In the experiments, it was observed that the gel point was completely suppressed

up to 98% conversion of each monomer, and the measured g contraction factor from
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Figure 14: Simulated evolution with end-capping reagents added at the beginning of
the process, with A2 : B3 : E = 1 : 1 : 1. The molecular weight of E (PPG-M-1000) is
1200 g/mol. As in Figure 13, ρ12 = k1/k2 and k2 = k3. ρ12 = 1 (solid line), ρ12 = 1.5
(dashed line), ρ12 = 2 (dotted line), ρ12 = 10 (dash-dotted line). (a) Weight-average
molecular weight Mw (b) polydispersity index PDI (c) fraction of dendritic units fD.
(Note: dendritic units are calculated here based on the number of A-B reactions.
E-B reactions are not considered in the calculation since they do not lead to further
branching.
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Figure 15: Simulated evolution with end-capping reagents added at the beginning
of the process, with variation in stochiometry: A2 : B3 : E = 1 : 1 : 1 (solid line)
and A2 : B3 : E = 1 : 0.9 : 1 (dotted line with markers). The molecular weight of
E (PPG-M-1000) is 1200 g/mol. ρ12 = k1/k2 = 1.5 and k2 = k3. (a) Weight-average
molecular weight Mw (b) Polydispersity index PDI (c) Fraction of dendritic units
fD.
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GPC was more consistent with a highly branched polymer (large fD) [117]. Our sim-

ulations do predict a suppression of molecular weight with the end-capping reagents,

but gelation is only delayed and not completely suppressed. At the extreme value

ρ12 = 10, a significant reduction in fD is also implied, but at lower values of ρ12 high

levels of branching are still predicted.

In the presentation of the experimental results [117], it was suggested that ester in-

terchange of the A2 with the monofunctional reagents might account for the observed

reduction in molecular weight. While this interchange would cause a randomization

of the polymer, at the high conversion of 98% it does not provide a consistent ex-

planation for the extreme reduction in molecular weight. At 98% conversion, most

of the A2 monomers freed up by ester interchange would have reacted with another

B3 monomer. Other effects not included in the model could be causing the suppres-

sion of gelation observed in the experiments, such as the spatial distribution of the

monomers in the polymer. These effects could be exacerbated when the end-capping

reagents are added, since all B groups must eventually react, even those buried or

blocked in the center of the spherical polymer. Possibly, at high conversion, such

groups are more likely to undergo cyclization reactions, which would suppress the

molecular weight.

An alternative explanation was also suggested by our simulations. We observed

that the simulation results are extremely sensitive to the stoichiometry near A2 : B3 :

E = 1 : 1 : 1. In particular, if there is a reduction in the amount of B3, then not all

of the A2 groups will be able to react with B groups, and the molecular weight will

be reduced. This may be a particular issue in the experiments, since B3 loss may be

facilitated by the nitrogen purge at the final polymerization temperature of 180◦C.

Due to the uncertainty in the final stoichiometry measurements, it is not possible to

eliminate this effect. The simulations suggest that that our chosen stoichiometry of

1 : 1 : 1 is not a robust operating point, due to the extreme sensitivity of the molecular
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weight on the stoichiometry. Figure 15 shows a comparison of the simulations with

A2 : B3 : E = 1 : 1 : 1 and with 1 : 0.9 : 1. At this stoichiometry, 90% A2 conversion

is the maximum that can be achieved, and gelation is completely suppressed at full

B3 conversion.

3.3 State space modeling of hyperbranched polymers

So far in this chapter, we have investigated the ways that synthesis route affects

basic polymer structure properties such as molecular weight and degree of branch-

ing. Even though these results can help process design to a certain extent by giving

insight about differences in polymer structure development under a range of poly-

merization conditions, that is not enough to obtain a process model that can be used

for optimization of the synthesis route, which would be necessary to target and reach

precisely defined polymeric structures. Even with a very accurate KMC simulation

model, one can not perform such an optimization due to the high computational load

of these simulations. This model inversion problem (i.e. for a given output, what

is the optimal input profile?) was previously illustrated in Figure 2. Reduced order

models which can adequately describe the relationship between process inputs and

polymer properties and also can be easily inverted, are necessary for accomplishing

design and optimization.

During hyperbranched polymerization, the system status can be described by a

vector including the number averaged molecular weight, degree of branching, and

the polydispersity index. However, hyperbranched polymers can have a high number

of geometrical isomers due to the stochastic reaction of each added monomer into

the system. These geometrical isomers can have the same molecular weight and

branching properties, but a wide range of aspect ratios. The disperse nature of the

aspect ratio of geometrical isomers can potentially lead to differences in solubility,

and also a wide range in solid-state packing and physical properties [61]. Because
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of these factors, variables other than number averaged molecular weight and degree

of branching are needed to differentiate between isomers while describing the status

of a polymerization system. Topological indices are such descriptors that are widely

implemented using the graph theory [45]. In chemical graphs, atoms are represented

by vertices, and bonds are drawn as lines that connect the vertices. In graph theory

terminology, these lines are referred to as the edges of a graph.

Topological indices can detect very small differences in branching, and are useful

for modeling quantitative structure-property relationships. For example, the Wiener

index [129, 128] of organic substances is well correlated with properties such as heat of

formation, density, boiling point, and viscosity [18]. This index gives the total number

of bonds between all atom pairs in a molecule along the shortest path between the

atoms. In general, for a set of isomers, Wiener index decreases when number of

branches and branch length increases. In other words, the most compact molecule in

a set of isomers has the smallest Wiener index. Therefore, Wiener index is maximum

for the linear chain in a set of isomers.

The following is an example that shows the calculation of this index for the

molecule A given in Figure 16.

3

1 2 4 5

Molecule A

3

1 2 4

5

Molecule B

Figure 16: Two isomeric polymers with the same molecular weight and different
branching.

• Atom pairs with interdistance of 1: 1-2, 2-4, 4-5, 2-3 (4 pairs)

• Atom pairs with interdistance of 2: 1-4, 2-5, 3-4, 1-3 (4 pairs)
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• Atom pairs with interdistance of 3: 1-5 ,3-5 (2 pairs)

Wiener index W= (4 × 1) + (4 × 2) + (2 × 3) = 18

Similarly, W can be computed for Molecule B:

• Atom pairs with interdistance of 1: 1-2, 2-3, 2-4, 2-5 (4 pairs)

• Atom pairs with interdistance of 2: 1-4, 1-5, 1-3, 3-4, 3-5, 4-5 (6 pairs)

• Atom pairs with interdistance of 3: None

Wiener index W= (4 × 1) + (6 × 2) = 16

Since Molecule B is more branched (less linear) it has a lower Wiener index than

Molecule A.

Another topological index that is used to quantify polymer branching is the com-

plexity index K [7]. K is defined as the total number of subgraphs in a molecular

graph. These subgraphs include vertices, edges, two-edge subgraphs, three-edge sub-

graphs, etc., and finally the complete molecular graph itself. As a molecule becomes

more complex (more branched), the number of subgraphs that it contains increases,

resulting in a higher K value. The calculation of K for Molecule A in Figure 16 is

given below:

• List of vertices: 1, 2, 3, 4, 5 (Total=5)

• List of edges: 1-2, 2-4, 2-3, 3-5 (Total=4)

• List of 2-edge subgraphs: 1-2-4, 1-2-3, 2-3-5, 4-2-3 (Total=4)

• List of 3-edge subgraphs: 1-2-3-4, 1-2-3-5, 4-2-3-5 (Total=3)

• List of 4-edge subgraphs: whole graph (Total=1)

K=5+4+4+3+1=17

Similarly, K can be computed for Molecule B:
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• List of vertices: 1, 2, 3, 4, 5 (Total=5)

• List of edges: 1-2, 2-4, 2-3, 3-5 (Total=4)

• List of 2-edge subgraphs: 1-2-4, 1-2-3, 1-2-5, 3-2-4, 3-2-5, 4-2-5 (Total=6)

• List of 3-edge subgraphs: 1-2-3-4, 1-2-3-5, 2-3-4-5, 1-2-4-5 (Total=4)

• List of 4-edge subgraphs: whole graph (Total=1)

K=5+4+6+4+1=20

In this case, molecule B has a higher index since it is more branched.

Degeneracy of a topological index (TI) occurs when two chemical graphs have

the identical TI. In that case, the TI will not be adequate to differentiate between

these graphs. Since this problem is widely seen with basic TI’s such as W and K

that are described above, alternative TI’s that can capture subtle differences between

very similar graphs are developed. Some of these TI’s are the Hosoya index, Randic’s

connectivity index, Kier Hall topological indices and Balaban’s index. A detailed

discussion of these indices can be found elsewhere [5].

An alternative way to characterize the dynamic system in the KMC simulations

is using pair correlation functions [3, 90]. In our case, the pairs would be formed by

monomer units. First, we classify the B3 monomers in the system with at least one

reacted B as terminal B3 units (with 2 free or unreacted B groups), linear B3 units

(with 1 free B group) and dendritic units (with no free B groups). This classification

was previously illustrated in Figure 6. Let mi be the status of monomer i which

can take one of the 3 values (D for a dendritic unit, L for a linear unit, and T for

a terminal unit). Since mi can take any of these values, a monomer pair mimj can

take 6 values (DD, DT, DL, TT, TL, LL). As a result, monomer pair correlation

function (MPC) can be defined as MPCi,j(r) =
∑n

j=1 mimj where r is the shortest

topological distance between monomers i and j in terms of the number of bonds,
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and n is the total number of monomer units in a molecule. The distance r can

take any value from 0 to n − 1. For a linear molecule with n monomer units, the

distance between the end points of the graph would be n− 1. One can get a detailed

characterization of the polymer system by computing the MPC function of each

molecule. However, one drawback of this approach would be the high dimensional

state description, especially for a system with large number of molecules since each

molecule’s state vector would have 6 × (n − 1) × n2 variables. This drawback can

be dealt by reducing the dimensions of the data while preserving a high extent of

information in it. For example, the whole molecular weight range of the polymers in

the system can be divided into bins, and the average MPC function for each MW

bin can be computed. Also, this characterization should be carried out under a wide

range of process conditions to characterize the state space of the system as much as

possible.

Once the typical system states are found, a reduced order model can be developed

by identifying the transitions between these typical states. Such an approach has

recently been used by Gallivan [32] and the author [96, 97] for KMC simulations of

a thin film deposition process in which the state was described using macroscopic

variables such as film roughness and island density [32], and step-step correlation

functions [96, 97]. A challenge in this approach is the possibility of having a very

large number of accessible configurations in the state space (e.g. polymer systems

with specific MPC function distributions). In those studies, authors suggest group-

ing similar states and representing each group with a single configuration and state

vector before identifying the transitions between different states. Since system identi-

fication requires running simulations starting from each configuration, this grouping

strategy can be very helpful for making the identification of the model computation-

ally tractable.

After the system identification is completed, and the reduced order model that
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describes the relationship between process conditions and the state is obtained, an-

other challenge would be the validation of the model using experimental data. As

described in Section 3.2.1, experimental tools for characterizing the molecular weight

distribution (size exclusion chromatography) and the degree of branching (1H NMR

spectroscopy) are available. The reduced order model can be used to design process

inputs that target polymeric structures with specified properties, and these inputs can

also be used in experiments. Comparison of the experimental data and the reduced

order model’s predictions would give insight about the weaknesses of the model (e.g.

regions of the state space of the polymerization process with low data density where

model predictions are inaccurate). However, this procedure is not straightforward,

and it would definitely involve an iterative process in which the model would be con-

tinually improved using new experimental data. Once the model is validated, it can be

used for optimization of the process. One example would be the identification of the

optimal monomer feed rate profile that involves minimum number of switches of the

feed rate to synthesize a specified polymer product at a given monomer conversion.

In this section, we outlined a model reduction scheme that could be used to derive

a reduced order process model from high dimensional KMC simulation data. In the

later chapters of this thesis, we formalize this methodology and demonstrate it for a

thin film deposition process.

3.4 Conclusions

In the first section of this chapter, formation of highly branched, segmented polyuretha-

neureas based on oligomeric A2+B3 approach, where A2 is slowly added onto B3, were

investigated by experimental studies and kinetic Monte-Carlo simulations. SEC re-

sults clearly demonstrated the formation of high molecular weight segmented copoly-

mers with very high polydispersity values, typical of highly branched polymers. When

polymerization reactions are conducted in dilute solutions no gelation was observed
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even at stoichiometric ratios of A2/B3 well beyond the theoretical gel point of 0.75.

This is attributed to high degree of cyclization in dilute solutions causing the sup-

pression of molecular weight. Results obtained from KMC simulations supported this

hypothesis.

In the second section of this chapter, the formation of highly branched poly (ether

ester)s by the melt condensation of an A2 oligomer with a B3 monomer has been stud-

ied. The simulations demonstrated that unequal reactivities can play an important

role in the structure development of hyperbranched polymers, even when it has a little

impact on the molecular weight. The results also indicate that the presence of end-

capping reagents delays the gel point. However, the effect of end-capping agents also

depends strongly on the ratios of the various monomers and their reactivity ratios.

These results are motivating our further study of the role of end-capping reagents in

the A2 + B3 system.

In the last section, we suggested a model reduction approach to convert the high

dimensional KMC simulation model into a reduced order process model that can be

used for process design and optimization to target specific polymeric structures. The

suggested approach involves exploration of the state space using KMC simulations,

identification of typical states, and the transitions between them. Challenges of this

approach, such as describing the dynamic state in the simulations, and validation

of the reduced order model, are also discussed. We conclude that pair correlation

functions are very suitable for the state description as long as their high dimension

can be reduced while preserving information. On the other hand, model development

is very likely to involve a recursive process using new experimental data which is

necessary to explore a wide range of polymeric structures.

As the final conclusion of this chapter, KMC simulations provide a tool for quan-

titatively assessing the effects of simple reaction mechanisms on molecular structure

evolution, enabling the consideration of a broader range of mechanisms than with
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analytical models. They relate process inputs to molecular structure and thus, can

also enable the design of molecular structure via design of the process.
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CHAPTER IV

MODEL REDUCTION OF STOCHASTIC MOLECULAR

SIMULATIONS

The second application considered in this thesis is the epitaxial growth of gallium

arsenide (GaAs). GaAs is deposited by various methods including ultra-high vac-

uum molecular beam epitaxy (MBE) and chemical vapor deposition. There are many

advantages to using GaAs over silicon in transistors. GaAs has a higher saturated

electron velocity and higher electron mobility, allowing devices to function at fre-

quencies excess of 250 GHz. Also, GaAs devices generate less fundamental noise than

silicon devices at ultrahigh radio frequencies. Having a direct band gap, GaAs can be

used to emit light unlike silicon, which has an indirect band gap and is a poor light

emitter.

MBE deposition of GaAs occurs with a rate of approximately one layer per second.

Hence, the growth morphology in this process develops on the order of seconds. Even

with a further increase in computer power, such a time scale will not be accessible to

simulations using molecular dynamics (MD). Even though MD can capture atomic

vibrations on the order of picoseconds, slower events like an atom overcoming an

energy barrier and moving to a new site in the crystal lattice will be infrequent

when this technique is used. However, the slower events will be dominant in terms of

capturing the dynamics of the process. Therefore, we use Kinetic Monte Carlo (KMC)

simulations to reach the time scales of these slower events. A KMC simulation model

on a zincblende crystal structure has been developed to describe epitaxial growth

of GaAs [54]. This model includes the rates (derived from experiments) of over one

thousand possible events taking place on the surface. These events include adsorption,
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Figure 17: Types of events that take place during the MBE deposition of GaAs.
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Figure 18: Schematic of the modeling approach.

desorption, and surface diffusion of gallium and arsenic species as shown in Figure

17.

In this chapter, we propose an algorithm for developing reduced order models

from high dimensional stochastic simulation models. These molecular simulations

possess a fine level of description of the process physics compared to the macroscopic

(continuum) models. However, due to their high computational cost, it is not feasible

to employ molecular simulations for optimization and control tasks. Hence, reduced

order models are needed. Our modeling approach, which consists of four steps, is

illustrated in Figure 18. Characterization of the state space, reduction of state di-

mension, discretization of the state space, and model identification gives us a reduced

order dynamic model.
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4.1 Characterization of the state space

The first critical step in our approach is to define the state space of the system,

which is a non-trivial task for molecular simulations. When the state of the stochas-

tic simulation is defined as the position of each atom in the system, each realization

of the stochastic simulation gives a completely different state. However, control and

optimization objectives are generally based on overall system properties that define

the material structure. In order for a reduced order model to meet these objectives,

overall system properties should not change significantly between realizations that

are performed under the same nominal process inputs. Therefore, we consider sym-

metries in the stochastic simulations instead of the exact position of each atom in

the system and use relative positions of each atom type (e.g. gallium or arsenide) to

characterize the system state. This concept is commonly used in analyzing atomic

scale simulations through the pair correlation function [3, 90]. Even though it is still a

high dimensional description, this function captures the frequency of atom pairs that

are certain distances apart from each other. When simulating the thin film deposition

processes, a height-height correlation function can also be used to characterize the

microscopic state. This function is a special type of pair correlation function based on

the height of the surface atoms. It can be computed by taking the Fourier transform

of the surface height for the purpose of removing symmetries. However, this function

is extremely sensitive to noise in the KMC simulations. In our GaAs demonstration,

step-step correlation (SSC) function is used to describe the microscopic state of the

system during the simulations since it captures the discrete changes due to the lo-

cation of atomic steps with a small number of modes. This approach is equivalent

to taking the Fourier transform of the derivative of the surface height instead of the

absolute value of it. The SSC function gives the distance and orientation between

pairs of steps on the surface, where a step is defined as a change in height from one

atomic surface site to the next.
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As shown in Figure 19, we define the 2D coordinates (i, j) of each atom using two

crystallographic directions [54], where the third coordinate k is the height of the atom.

As illustrated in Figure 19, i, j and k increase by one when we move by one lattice

unit in [110], [110] and [001] directions, respectively. Defining the surface height to

be h(i, j) for the atomic site (i, j), the presence of an up step in direction i can be

computed as:

su,i(i, j) =

⎧⎪⎨
⎪⎩

1 if h(i + 1, j) > h(i, j);

0 if otherwise.

On the other hand, an up step in direction j is computed using the following

relation:

su,j(i, j) =

⎧⎪⎨
⎪⎩

1 if h(i, j + 1) > h(i, j);

0 if otherwise.

Down steps are computed similarly by reversing the inequalities. Then, the SSC

function in direction i is defined to be SSCk,l,i(r) =
∑ni

j=1 sk,i(i, j)sl,i(i, j) where r

is the distance between the steps, and k and l may each take values of u or d to

denote the up and down steps, respectively. Since the occurrence of every type of

step pair (up-up, up-down, down-up and down-down) is counted on the surface in

four different directions i, −i, j and −j, there are sixteen types of functions in the

whole SSC function of a surface snapshot. This spatial correlation function is high-

dimensional and may contain redundant information. The data is also noisy. Noise is

reduced by performing multiple realizations under identical conditions and averaging

the results. After averaging, PCA is used to determine the number of independent

variables needed to fully determine the SSC function. This technique is widely used

to eliminate linear correlations among the variables in data sets. It is a crucial step

in our study. The reduced state dimension makes it possible to construct a compact

dynamic model.
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Figure 19: Relationship between the crystallographic directions and two dimen-
sional coordinates used for constructing the lattice. Dashed region is the β2(2 × 4)
reconstruction of GaAs. Dark and white atoms are As and Ga atoms, respectively.
The atomic radius decreases with increased depth.
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The KMC simulations have been carried out using the kinetic barriers calculated

by Itoh [54] with the following parameters:

• Growth temperature: 580◦C

• Film deposition interval: 0.20 monolayers (ML)

• Incident arsenic dimer (As2) flux: 0.4 ML/s

• Incident gallium (Ga) flux: Varied between 0.06-0.20 ML/s (0.06, 0.08, 0.10,...,

0.20) flux range where the model is valid.

• Lattice size: 300x300 (90000 surface atoms) with periodic boundary conditions

The starting surface in our simulations is the thermodynamic ground state of

GaAs(001), the β2(2×4) reconstruction shown in Figure 19, which prevails in a wide

range of growth conditions.

Snapshots of surfaces have been recorded at surface increments of 0.01 ML, start-

ing from an initial surface in the β2(2 × 4) configuration, up to 0.20 ML coverage.

Eight constant input simulations were performed at Ga fluxes of 0.06 ML/s, 0.08

ML/s, 0.10 ML/s,..., 0.20 ML/s and we will refer this as Training Simulation Set 1.

In Training Simulation Set 2, we again have 8 simulations, but this time the flux

is kept constant up to 0.10 ML coverage (middle of the deposition), and the flux is

switched to a different value at that coverage point. To explore the KMC state space

even further, we perform 60 additional simulations (Third Training Simulation Set),

where two flux switches are made at 0.07 and 0.14 ML coverage points.

The SSC function has been computed as S ∈ R
dS for each snapshot. S is obtained

by combining the 16 different portions of the SSC function, which has been evaluated

for four different types of step pairs in four different directions on the surface (4x4=16

combinations). Each portion has 300 variables (one for each interatomic distance or

lattice unit), which is equal to the lattice size. Therefore, dS has a value of 4800
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(300×16 = 4800). We have a total number of snapshots ns=1521 (76 simulations, 20

snapshots for each simulation, plus the snapshot of the initial state of the system). S

of all snapshots in the training data are collected in D ∈ R
4800×1521. Before performing

PCA, D is first transformed into D′ ∈ R
4800×1521 with the following elements:

D′
i,j = Di,j − Dmean,i. (2)

Here, Dmean ∈ R
4800 is defined as:

Dmean,i =

(∑ns

j=1 Di,j

)
ns

(i = 1, 2, ...4800). (3)

In order to complete the pre-processing of D, D′ is transformed into D′′ ∈
R

4800×1521.

D′′
i,j = D′

i,j/Dstd,i (i = 1, 2, ...4800, j = 1, 2, ...1521) (4)

Dstd ∈ R
4800 is defined as:

Dstd,i =

√∑ns

j=1(Di,j − Dmean,i)2

ns

(5)

Hence, by pre-processing D, the variance of each variable in the SSC function is

made equally important before PCA is carried out. In other words, small features

with low variance will not be neglected.

4.2 Reduction of the state dimension

The dimensionality of a data set is defined as the number of variables which are

used to describe each object (e.g. surface snapshot). However, there might be sig-

nificant correlations between these variables. Principal component analysis (PCA) is

a widely used method for reducing the dimensionality of a data set by eliminating

linear correlations [79].
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A principal component is a linear combination of the variables:

PCi =
v∑

j=1

ai,jbj (6)

where PCi is the ith principal component, ai,j is the coefficient of the variable bj

and v is the number of variables. The first principal component of a data set is the

linear combination of variables which gives the best fit straight line when the data is

plotted in the v-dimensional space.

In general, to represent all the variance in the data, all the principal components

are needed. On the other hand, in many cases, a few principal components may be

enough to explain a significant portion of the data variation. If the number of the

principal components which can capture most of the variance of data is one or two,

then a graphical representation is possible.

To compute the principal components, singular value decomposition can be per-

formed on covariance of a data matrix B. When there are s number of observations

and v number of variables, B matrix will have s columns and v rows. The covariance

matrix of B is Z = BT B (if B is a zero-mean and unit-variance matrix). The first prin-

cipal component is the eigenvector of Z with the largest eigenvalue, the second princi-

pal component corresponds to the second largest eigenvalue, and so on. The amount

of variance captured by mode i is proportional to the ith eigenvalue λi. In other

words, principal component i accounts for λi/
∑v

j=1 λj of the variance in the original

data. Therefore, the first m principal components account for
∑m

j=1 λj/
∑v

j=1 λj of

the total variation in the data. Principal component analysis is straightforward to

implement, but it is only able to find linear correlations. Nonlinear correlations may

also exist within the data set.

In this study, PCA has been performed through the singular value decomposition

of matrix D′′ by computing the singular values of this matrix. The squares of the

singular values correspond to the eigenvalues of the covariance matrix of D′′, and the
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ratio of each eigenvalue to the sum of all eigenvalues (normalized eigenvalue) is plotted

against the principal components. The point on the plot, where a sudden decay of the

normalized eigenvalue is seen, gives the minimum number of principal components

(the minimum dimension n) that can reconstruct the data effectively. At this point,

we project each snapshot’s SSC function onto the first n principal components D′′. We

define x ∈ R
n as the coefficient set with these new coordinates. Each x characterizes

a particular snapshot. As a result of PCA, small features in the SSC function, which

do not contribute to the variance of the D′′ significantly, are eliminated. We note that

this could create a problem later while grouping similar surface structures according

to first n principal components, because these small features may possess valuable

information about the differences between the surface structures and their evolution

in time.

4.3 Discretization of state space

We use self-organizing map (SOM) for the discretization of the state space. SOM

is a neural-network model and algorithm that is widely employed for visualization

of high dimensional data. Identification and monitoring of complex process states,

which are sometimes very hard to interpret and analyze, are among the most common

engineering applications of the SOM [66].

Let’s assume that we have some data where each data sample or input vector is

described by an n-dimensional y(t) where t is the sample index. In order to map the

data onto a two dimensional array, which can represent the data in two dimensions,

SOM algorithm can be used. Each node in SOM contains a model vector mi which

is the same size as each y(t). Initial values of the model vector components can be

assigned randomly or along a two-dimensional subspace spanned by the two principal

eigenvectors of the input data [67]. Each input vector y(t) is mapped onto a particular

node represented by mi, which matches best with y(t). The matching of an input
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vector with a map unit is based on some metric (e.g. Euclidean distance between

y(t) and mi). The SOM algorithm is made up of repeating the following steps:

• An input vector y(t) is compared with all the model vectors mi, and the model

vector that matches y(t) best (minimum Euclidean distance) is selected as the

best matching unit . This unit is also called the winner. The input vector for

which mi is the winner, is called a “hit” for mi.

• The model vector of the winner node and a number of its neighbors are changed

towards the input vector y(t). The following relation is used to make that

update:

mi(k + 1) =

⎧⎪⎨
⎪⎩

mi(k) + α(k)[y(t) − mi(k)] if i ∈ Nc(k);

mi(k) otherwise.

where k is the discrete time index of the model vectors, α ∈ [0, 1] is a scalar that

defines the learning rate and Nc(k) specifies the radius of the neighborhood of the

winner node on the map, which will be updated once y(t)’s best matching unit mi,

is found. The goal of the SOM learning process is that, for each sample input vector

y(t), the winner and the nodes in its neighborhood are changed closer to y(t). At

the beginning of this learning process, neighborhood radius is generally taken as a

large value, and it shrinks during the process. Using this approach, global order is

obtained at the beginning. Towards the end, radius gets smaller and local corrections

of the model vectors are made. Also, the rate α(k) decreases as the map evolves.

After performing PCA and obtaining a coefficient set to characterize each surface

snapshot, we use SOM to eliminate some of the nonlinear correlations within the data

set by employing MATLAB’s SOM Toolbox. Snapshots with very similar microstruc-

tures are grouped by SOM, and snapshots in the same group are viewed as equivalent

when identifying the dynamic model in the next step. The PCA data is discretized
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as a part of this step, since snapshots are grouped among the nodes of SOM. As a

result, the number of discrete states is finite. The computational load for the model

identification is also reduced with the grouping achieved by SOM. Because, during

model identification, rather than the transitions between each surface structure, only

the transitions between the groups are computed.

Various training procedures for SOM are described elsewhere [65]. In this study,

prototype vectors are initialized along the first two principal components of the train-

ing data. Also, SOM training is accomplished by sequential, rather than the batch-

wise comparison of snapshots to the overall map, and then updating the prototype

vectors m ∈ R
n of the map nodes to match and organize the snapshots. Once the map

is trained, each snapshot is associated with the node that has the closest prototype

vector, as measured by the Euclidean distance. The default number of nodes in the

map is computed by the SOM toolbox using a heuristic formula which is a function

of the number of data points (snapshots) in the data matrix. The map size can also

be increased to provide a finer discretization of the state space. Another important

SOM parameter, the ratio of the side lengths of the map, is set equal to the ratio of

the two largest eigenvalues of the data matrix.

4.3.1 Results

In this study, PCA is used to find the minimum dimension that can represent the

microscopic state of the surface snapshots recorded during the simulations. This

method consists of computing the variance captured by each principal component

of the entire data set and selecting the most important principal components that

can reconstruct the data well. Figure 20 shows the normalized eigenvalues of each

principal component. A knee shape is observed after the second principal component

and the first two principal components capture nearly all of the variance within the

data set.
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Figure 20: Normalized eigenvalues versus principal components.

However, data reconstructions with 2 and even more principal components showed

us that at least 5 components are needed in order to effectively represent our data.

Specifically, 5 principal components reconstructed the small clusters of atoms on

the surface (with a size of less than 20 lattice units) much better than 2 principal

components. Figure 21 illustrates this comparison for two different snapshots. Here,

SSCup,down,i at a radius of 1 represents the adatom density, where as SSCup,down,i at a

radius of 2 is the dimer density. The oscillations in the size range of 5 to 15 lattice units

represent the density of islands with that size range. In the longer range, correlations

between the atoms are much lower because of the clustering due to diffusion. The

rise in the SSCup,down,i near a radius of 300 is due to the relatively high density of

voids compared to the other longer range correlations (step pairs) that have smaller

distances between them.

As already defined in Section 2.2, the coefficient set x for each surface snapshot is

obtained by taking the inner product of the snapshot’s SSC function with the n = 5

principal components of the data matrix D′′. This reduced representation, which

includes the coefficient sets of every snapshot, is used to train an SOM. For training,
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Figure 21: Comparison of the reconstructions of SSCup,down,i with the original data
using 2 and 5 modes. The region enclosed with the gray dashed line represents the
surface structures with a size of less than 20 lattice units.
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we used the default map size, which is a function of the number of surface snapshots

in the training data. Each SOM node has its own prototype vector having the same

dimension as each snapshot in the data set (n = 5). As a result, each map node also

has its own SSC function S, which is the PCA reconstruction of its prototype vector

v. Thus, each map node is associated with a type of surface.

The quality of the resulting map can be evaluated by calculating the average

quantization error over the input data, given by ‖x − vBMU‖2, where vBMU is the

prototype vector for the best matching unit, for the snapshot with the projection

vector x [65]. In words, the Euclidean distance between each surface snapshot and

its best matching SOM node is computed, and the average of these distances gives

the average quantization error.

In order to see the effects of training data on the map quality, we generated

multiple maps while keeping the map size at 192 nodes. For each map, the training

phase has taken approximately 3 minutes using a Pentium 4 processor with a speed

of 3 GHz. The first map SOM1 is trained with 161 surface snapshots (from Training

Simulation Set 1), the second map SOM2 is trained with 321 surface snapshots (from

Training Simulation Sets 1 and 2) and SOM3 is trained using all of the 1521 surface

snapshots (from Training Simulation Sets 1, 2 and 3). Table 1 shows the statistics

of three maps with 192 nodes, which were trained using these three different data

sets. SOM1 and SOM2 have similar statistics, except that SOM2, which has been

trained with a larger data set, has a larger number of surface snapshot groups. This

suggests that Training Simulation Set 2, where the flux was changed in the middle of

the simulations at 0.10 ML surface coverage, enabled us to see surface structures that

had not been accessible through constant input simulations (Training Simulation Set

1). On Table 1, as we move from SOM2 to SOM3, we again observe an increase in the

number of surface snapshot groups. Therefore, we conclude that Training Simulation

Set 3 (during which the flux has been changed twice during the simulations) explored
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the KMC state space even further, producing additional surface structures compared

with Training Simulation Sets 1 and 2. SOM3 has an average quantization error of 5.1,

whereas the average prototype vector size is 53.0. If needed, the average quantization

error can be reduced by adding more nodes to the map, but we were able to obtain

a useful model with SOM3.

Table 1: Statistics of three SOMs trained using different data sets.

Map Training Quant. Proto. Topog. Number
sim. sets error vec. size error of groups

SOM1 1 4.1 54.1 0.01 119
SOM2 1, 2 4.8 54.4 0.02 142
SOM3 1, 2, 3 5.1 53.0 0.01 175

Another SOM metric is the topographic error, which is the proportion of all the

data vectors for which first and second best matching units are not adjacent on the

map [65]. SOM3 also has a topographic error of 0.01, which means that for only 15

of the 1521 snapshots, the first and second best matching units were not adjacent on

the SOM. Topology preservation is not required for a good state representation, but

it aids in visualization of the dynamics on the map.

To illustrate the clustering of nodes, which are represented by prototype vectors,

a graphic display called unified distance matrix (U-matrix) is used [116]. Let’s say we

have a 3×1 sized map represented by the prototype vectors m(1),m(2)andm(3). The

U-matrix will be a 5×1 vector with the following elements: u(1),u(1, 2),u(2),u(2, 3),u(3)

as shown in Figure (22).

In Figure 22, u(i, j) is the distance between prototype vectors m(i) and m(j)

and u(k) is the mean of the surrounding values, e.g. u(2) = (u(1, 2) + u(2, 3))/2.

In a real U-matrix with a color index, each U-matrix unit u(i) or u(i, j) would have

a color according to its magnitude, here all map units have the same color which

means u(1) = u(1, 2) = u(2) = u(2, 3) = u(3). The U-matrix shows graphically
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Figure 22: U-matrix for a 3 × 1 SOM.

which neighboring nodes are similar or different with respect to the prototype vectors

representing them. This helps in the visualization of data clustering.

Figure 23 shows the film coverage levels associated with the SOM nodes. As a

reminder, film coverage levels of surface snapshots are recorded at increments of 0.01

monolayers (ML), starting from the initial surface configuration at 0 ML, up to 0.20

ML. In Figure 23, 17 map nodes (out of 192 nodes) are empty since they were not

the best matching units for any surface snapshot. Also, the film coverage increases

as we move to the right portion of the map. As an approximation, it can be said that

each column of the map corresponds to a specific film coverage level. On the other

hand, Figures 24 and 25, which show the trajectories of simulations with constant

flux at the minimum and maximum settings , indicate that each row of the map is

associated with a constant flux simulation trajectory.

Figures 26 and 27 show SOM1 and SOM3. SOM1, which is trained with only

the constant flux simulation data, has a 20 % narrower color index range in its U-

matrix ([2.21, 45.3] for SOM1 versus [3.24, 56.9] for SOM3). This is expected since

varying flux simulations generated a wider range of surface configurations leading to

a wider color index for the U-matrix of SOM3. U-matrices for both maps indicate

that both maps are quite uniform in the sense that neighboring map nodes have quite

similar prototype vectors since the blue color, which corresponds to low Euclidean

distances between the neighboring prototype vectors, dominates in both figures. Low

71



0.01

0.02

0.03

0.03

0.03

0.03

0.04

0.04

0.04

0.04

0.05

0.05

0.06

0.02

0.04

0.04

0.04

0.05

0.05

0.06

0.05

0.06

0.08

0.05

0.05

0.06

0.05

0.06

0.06

0.06

0.07

0.08

0.08

0.08

0.07

0.07

0.06

0.07

0.07

0.07

0.07

0.07

0.08

0.07

0.08

0.08

0.1

0.09

0.1

0.08

0.09

0.08

0.08

0.08

0.09

0.09

0.09

0.08

0.09

0.09

0.09

0.09

0.1

0.1

0.1

0.1

0.1

0.09

0.1

0.1

0.11

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.12

0.11

0.12

0.11

0.12

0.11

0.12

0.11

0.12

0.11

0.12

0.11

0.12

0.11

0.12

0.12

0.13

0.12

0.13

0.13

0.13

0.13

0.13

0.12

0.14

0.13

0.13

0.13

0.13

0.12

0.14

0.13

0.14

0.13

0.14

0.14

0.15

0.14

0.15

0.15

0.15

0.14

0.15

0.14

0.15

0.15

0.15

0.14

0.14

0.14

0.15

0.15

0.16

0.16

0.16

0.16

0.17

0.16

0.16

0.16

0.17

0.16

0.17

0.16

0.17

0.16

0.16

0.17

0.18

0.17

0.18

0.17

0.18

0.18

0.18

0.17

0.18

0.17

0.18

0.17

0.19

0.17

0.18

0.18

0.19

0.18

0.2

0.19

0.2

0.19

0.19

0.18

0.2

0.18

0.19

0.19

0.2

Figure 23: Values of film surface coverage (in monolayers) for each node of SOM3.

Figure 24: Trajectory of a training simulation on SOM3. Ga flux is kept constant
at the minimum flux (0.06 ML/s) during this simulation.
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Figure 25: Trajectory of a training simulation on SOM3. Ga flux is kept constant
at the maximum flux (0.20 ML/s) during this simulation.

topographic error for these maps (Table 1) previously supported this conclusion.

SOM1 and SOM3 also include 5 component planes each of which represent an

element of prototype vector m ∈ R
5 . The component planes shown under the titles

of “Variable1” to “Variable5” are the values of the first to the fifth elements of the

prototype vectors. As seen on the maps (Figures 26 and 27) and according to the

Figures 24 and 25, the first element of the prototype vectors roughly change with

the flux variable as we move from the top of the maps to their bottom portions. On

the other hand, second element of these vectors are analogous to film coverage value

that changes from left portion to the right portion of the map, but do not change as

we move vertically on the map. Figure 23 previously supported this conclusion. The

remaining three elements of the prototype vectors (Variable3, Variable4 and Vari-

able5) have much lower values than the first two variables since the first two principal

components were able to capture more than 99% of variance in the simulation data.

Hence, the grouping of snapshots is mainly determined by the first two variables. As

a result, using SOM, we are able to visualize the system dynamics in a 2-dimensional
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fashion, where two major axes of the map correspond to gallium flux and surface cov-

erage variables (or the portions of the training data vectors on the first two principal

components).
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SOM 30−Aug−2007
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Figure 26: SOM1 (generated using the Training Simulation Set 1) and its U-matrix.

At this point, three SOMs have been generated. Only one of them, SOM3, will be

used to identify a dynamic model, since it has been trained with the most extensive

amount of training data.

4.4 Model Identification

4.4.1 Simple Cell Mapping

Characterization of the surface snapshots from all of the training simulations gives

the system’s state space. As explained in the previous section, the surface snapshots

are grouped into discrete states using SOM, according to their similarities in terms

of surface morphology. These groups represent the cells, and simple cell mapping

(SCM) or generalized cell mapping (GCM) can be used to obtain a global view of
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Figure 27: SOM3 (generated using the Training Simulation Sets 1, 2 and 3) and its
U-matrix.

the behavior of the system [52]. A cell map is formed by dividing the state space

into a finite number of cells (using SOM) and approximating the behavior of the

system by means of transitions between the cells. SCM is a deterministic approach

in which each cell is mapped into exactly one other cell for a particular input. In

GCM, each cell can have several image cells. In other words, a cell can be mapped to

several other cells. Using this stochastic approach, we can assign a probability of the

system being in a cell at a specific time and extract the dynamic properties. In the

current study, we implement the SCM approach to identify the dynamic model for

the process, because SCM provides a deterministic model to describe the evolution

of the surface structure under different material flux profiles. The following are the

steps used for model identification:

• One surface configuration is selected from a particular map node.

• A new simulation is started from that surface configuration and run for an
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incremental coverage interval with one of the flux settings.

• The final surface structure is recorded and the configuration group, which

has the closest microstructure to that final structure, is obtained. In other

words, the flux-dependent transition (from one configuration group to another)

is found.

When the above procedure, also illustrated in Figure 28, is repeated for every

map node and each flux setting, we identify a reduced order dynamic model. The

identification procedure requires running 146 × 8 = 1168 KMC simulations (for 146

map nodes and 8 flux settings), which takes approximately 7.3 days using a computer

cluster made up of 16 computers, each having an Intel Xeon processor with a speed

of 2.66 GHz.

Simple cell 
mapping

Flux setting 1

Flux setting 2

Figure 28: Schematic of simple cell mapping.

The reduced order model is described as:

p[j + 1] = A(u[j])p[j] (7)
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where j is the time step (or coverage level) number, u[j ] ∈ R is the input (or

flux) value, p ∈ R
m is the probability vector describing the configuration group

that the system is currently in and A ∈ R
m×m is the transition matrix. The value

of m (dimension of p) is equal to the number of configuration groups in the state

space (the number of cells in the cell map). In our model, there are 149 surface

configurations. 146 of the number of initial configurations (with coverage values of

0.02 to 0.18 ML coverages) used for the model identification, and the remaining 3

configurations are associated only with 0.20 ML surface coverage. These 3 states are

assumed to transition into themselves since 0.20 ML is the highest possible surface

coverage value. We define p as:

pi =

⎧⎪⎨
⎪⎩

1 if i = l;

0 if i 	= l.

Here, l is the number of the current system configuration. The transition matrix

A is a function of the input. Therefore, in the reduced order model, we have eight

transition matrices for eight flux settings. A is a highly sparse matrix. The sum

of the elements in each column of A is equal to one, because for each column, only

one element of A is non-zero, whereas the other elements are equal to zero. In other

words, there is only one possible transition from each configuration group under a

particular input. This construction of A is due to the deterministic nature of the

simple cell map. If the system makes a transition from configuration s to t at time

step j with the flux setting u[j], this transition can be represented by a transition

matrix with the following properties:

Ak,s =

⎧⎪⎨
⎪⎩

1 if k = t;

0 if k 	= t.

At time step j, the surface properties of the system are given by x[j] (set of

projection coefficients defined in Section 4.2):
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x[j] = Xp[j] (8)

where X ∈ R
n×m has the v ∈ R

n (prototype vector) of each configuration group

(SOM node). In other words, v of the configuration group i is vi = {X1 ,i , X2 ,i , X3 ,i , X4 ,i , X5 ,i}.

4.4.2 K-nearest neighbor algorithm

Cell mapping can be generalized to enable interpolation between cells. In order to

carry out the interpolation, we use the k-nearest neighbor algorithm [80] and predict

the evolution of x for a given flux profile. When k=1, this algorithm produces results

identical to simple cell mapping and no interpolation is made. The following steps

represent the k-nearest neighbor algorithm when k=2:

1. Let xold be the vector representing the surface state at an initial film coverage.

This vector is compared with all the prototype vectors on the SOM and its

best matching unit (BMU) and second BMU are found based on the Euclidean

distances between these vectors. Let these two SOM nodes have prototype

vectors v1 and v2, where v1 and v2 represent the first BMU and second BMU,

respectively.

2. Compute the distances d1 = ‖xold−v1‖2 and d2 = ‖xold−v2‖2.

3. Compute the weights associated with these two distance values w1 = (1/d1)/(1/d1+

1/d2) and w2 = (1/d2)/(1/d1 + 1/d2).

4. Predict the system state at the next step from xnew = w1.v3 + w2.v4, where

xnew is the state vector prediction for the next step, v3 and v4 are the prototype

vectors of the nodes determined from cell mapping results (v1 transitions into

v3, and v2 transitions into v4 under the particular flux setting).

5. Set xold = xnew and repeat steps 2-4 to make predictions at higher film coverage

values. At each coverage value, the predicted x can be converted to the high
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dimensional SSC function by multiplying the elements of x with the eigenvectors

obtained from the training data D′′.

The algorithm described above is the k-nearest neighbor algorithm with k=2.

Here, the interpolation between prototype vectors provides the opportunity to im-

prove the accuracy of the prediction. On the other hand, when k=1, k-nearest neigh-

bor algorithm is identical to SCM. In that case, the second BMU is not identified and

the weights are not computed.

4.5 Conclusions

In this chapter, we proposed a novel model reduction algorithm that makes use of the

high dimensional KMC simulation data to derive reduced order process models. The

proposed algorithm is used on high dimensional KMC simulations of epitaxial GaAs

thin film deposition. This algorithm consists of three steps: applying principal com-

ponent analysis (PCA), self organizing map (SOM) and simple cell mapping (SCM)

to identify a dynamic process model. First, a spatial correlation function is used to

describe the state space of the system by the characterization of surface snapshots

generated under different material flux profiles. Then, a minimum state dimension

that can represent the system state is found using PCA. After this reduction step,

SOM is employed to group similar surface structures. SOM results led to the identi-

fication of a dynamic model through the computation of flux-dependent transitions

between surface configuration groups with simple cell mapping (SCM). This dynamic

model is evaluated in the next chapter.
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CHAPTER V

PERFORMANCE EVALUATION OF THE DYNAMIC

MODEL

In model reduction studies, it is important to derive error bounds originating from

the approximations associated with the order reduction (from high order KMC sim-

ulations to reduced order dynamic models). In this chapter, we address this issue by

evaluating the predictive ability of our reduced order model. We also use our model

for dynamic optimization of the thin film deposition process.

5.1 Local Error Quantification

The core hypothesis of our model reduction approach is that the surface structures

in the same configuration group (SOM node) should show similar dynamic behavior

under identical process input (material flux). SCM, which is used to extract a dynamic

process model in this study, is also useful for testing this hypothesis. We define the

cell mapping error (CME), which is illustrated in Figure 29, to quantify the different

dynamic behaviors of surface structures which belong to the same configuration group.

The following is the procedure we used to find CME:

1. Randomly, select one surface structure from a map node and identify where

this structure is mapped on the SOM under a particular flux setting (first cell

mapping).

2. Randomly, select another surface structure from the same map node and run

another simulation starting with this new surface structure and perform SCM

again (second cell mapping).
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3. Compute CME = ‖S1 − S2‖2/(‖S1 + S2‖2/2), where S1 and S2 are the SSC

functions of the SOM nodes coming from the first and second cell mapping,

respectively. It should be noted that these functions are reconstructed from the

prototype vectors of the map nodes.

4. Repeat steps 1-3 for all SOM nodes under all flux settings.

Cell Mapping error:

||S1-S2|| / [( ||S1|| + ||S2|| ) / 2] 

S1

S2

Assumption: Structures in
the same node should show
identical dynamic behavior

under same input. If the assumption
is correct for one step

If the assumption
is incorrect

Cell mapping error=0

If the assumption
is correct for
multiple steps

Figure 29: Computation of the cell mapping error.

CME is computed by picking two different surface structures from each node and

performing SCM under each of the eight flux settings. In order to characterize the

distribution of CME, its cumulative distribution function is computed as illustrated

in Figure 30. This function is defined as CDF (y) = P (CME ≤ y) and gives the value

of the probability that CME ≤ y for a given y. Figure 31 shows the CDF of the

CME. 52% of the mappings are identical, with both surfaces evolving to the same

map node. In those cases, CME = 0. Also, with a 0.90 probability CME ≤ 0.0075,

supporting the fact that there is a very strong chance for surface structures in the

same group to show similar dynamic behavior. In order to reduce CME, a larger

SOM can be used. The trade-off is that this would increase the dimension of the cell

map and the computational load associated with the system identification step.
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each node under each

flux setting
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Compute the probability 
of having certain error values

Figure 30: Computation of the distribution of the cell mapping error.
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Figure 31: Cumulative distribution function of the cell mapping error.
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Figure 32: Flux profile of a test simulation.

5.2 Global Error Quantification

In Chapter 4, a dynamic model is constructed by finding the flux dependent tran-

sitions between the nodes of SOM3 under all flux settings. In order to test the

predictive ability of our model, 1210 test simulations are performed. In these simula-

tions, we split the film coverage domain (from 0 to 0.20 ML) into 10 equal intervals.

The gallium flux value is kept constant in each interval. However, its value randomly

changes when moving from one coverage interval to the next. This strategy provides

very different flux profiles than the ones used to generate the training data, which

involved a maximum of two flux switches. Figure 32 shows the flux profile for one of

these simulations during which the flux is randomly changed at each step.

As described in Chapter 3, surface snapshots from the test simulations at different

coverage levels (10 surface snapshots from 0.02 ML to 0.20 ML film coverage) are

characterized using SSC functions, and the state vector (or coefficient set) x ∈ R
n of

each surface snapshot is computed. Then, each x is matched with an SOM node based

on the criteria of minimum Euclidean distance between x and the prototype vectors

of the SOM nodes. In other words, the best matching unit for each x is sought.

For the test simulation with the flux profile shown in Figure 32, the predicted

trajectory and the KMC simulation trajectory are given in Figure 33. Here, the

prediction comes from cell mapping or k-nearest neighbor algorithm (with k=1), and

each hexagon represents an SOM node corresponding to a surface structure group.
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Figure 33: Trajectories of the KMC test simulation (red line) and the prediction
(black line) on SOM3.

The simulation follows a path starting from the SOM Node 1 (initial surface structure)

and moves to the right hand side of the SOM as the film coverage increases. Since each

simulation starts from SOM Node 1 and the transitions from each node under all flux

settings are known, the prediction of the simulation trajectory (using the dynamic

model) is straightforward. Figure 33 indicates that there is an agreement between

the predicted trajectory and the trajectory of the KMC simulation. Similar results

were obtained for all test simulations. In some instances, these trajectories passed

through neighboring SOM nodes. However, as Table 1 indicates, SOM3 has a very low

topographic error. Hence, neighboring SOM nodes are similar, so slight differences

between these trajectories do not jeopardize the accuracy of the state predictions.

SOM Node 186 represents the predicted film structure at the final coverage value

(0.20 ML). Figure 37 shows the SSC function reconstructed from the prototype vec-

tor of this SOM node. The reconstruction agrees with the KMC simulation’s SSC

function. Hence, our dynamic model is capable of predicting the final film structure

quite well. This figure also illustrates that the noise in the KMC simulation data

is considerably reduced when the SSC function is reconstructed from the prototype
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Figure 34: Reconstruction of the SSC function with the prototype vector of the
SOM Node 186 and the original KMC simulation data at final film coverage.

vector.

We also tested the consistency of the dynamic model with the training data by

reproducing the trajectories of simulations in this data set. From the results, we

concluded that the dynamic model was able to reproduce trajectories of the simu-

lations in Training Simulation Sets 1, 2 and 3 well. Figures 35 and 36 shows the

estimated and real trajectories of two constant flux simulations (with the minimum

and maximum flux settings 0.06 ML/s and 0.20 ML/s) supporting our conclusion.

These figures also show that rougher surfaces (produced with higher material flux)

are collected at the bottom of the SOM. On the contrary, lower flux simulations follow

trajectories through upper regions of the SOM. With the lower material flux, there

are more diffusion events per an adsorption event. Therefore, more diffusion events in

the lower flux conditions lead to smoother surfaces compared to higher flux conditions

with less number of diffusion events per an adsorption event.

In order to evaluate the performance of the reduced order dynamic model, we

quantify the prediction error for the test simulations, which were not included in
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Figure 35: Trajectories of a training simulation (red line) and the prediction (black
line) on SOM3. Ga flux is kept constant at 0.06 ML/s during this simulation.

Figure 36: Trajectories of a training simulation (red line) and the prediction (black
line) on SOM3. Ga flux is kept constant at 0.20 ML/s during this simulation.
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the training data. The global (multi-step) error associated with the predicted SSC

function is defined as:

ESSC = ‖Ss − Sp‖2/‖Ss‖2, (9)

where Ss is computed from the KMC simulation data and Sp is reconstructed from

the predicted state vector v (prototype vector of the SOM node). The values of

ESSC at different film coverage levels (for the test simulation with the flux profile

in Figure 32) are less than 0.018 according to Figure 37. This figure compares the

error in the predictions made using the k-nearest neighbor algorithm with different

k values. For this particular test simulation, predictions are less accurate with k=2.

Because, for that simulation, the best matching unit of the predicted state shows

a different dynamic behavior than the second best matching unit. This suggests a

high cell mapping error for those map units. However, for more than 90% of the

test simulations, predictions did not change when k value was increased from 1 to

2. This is because, at low film coverage levels, different surface configuration groups

(corresponding to different SOM nodes) do not possess significantly different surface

features (or different x) and they are mapped to the same SOM node at subsequent

coverage levels. Therefore, throughout the rest of this section, we only report the

results obtained with k=1, which is identical to simple cell mapping.

As a part of the global error quantification, we also computed ESSC at nine evenly

distributed film coverage values (0.04 ML, 0.06 ML,..., 0.20 ML) for three large test

simulation sets (with random input profiles), none of which had been in the SOM

training data. It should be noted that the SOM node 1, which represents the initial

film structure at 0 ML, maps to the same SOM node at 0.02 ML with all flux settings.

Hence, the prediction error at 0.02 ML is not computed. The three test simulation

sets include 300, 600 and 1210 simulations, respectively. Figure 38 compares the mean

values of ESSC at different film coverage levels for these three test simulation sets and
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Figure 37: The evolution of ESSC for the test simulation with k=1 and k=2.

also the Training Simulation Set 3. The mean ESSC is below 0.012 at all coverage

levels. It is interesting to note that the dynamic model was able to predict the final

film structure in the training simulations with less error than the test simulations.

This is because of the fact that the data from the training simulations were used as

an input in the system identification, where as our dynamic model was not as familiar

with some of the surface structures produced during the test simulations, especially

at high film coverage.

As shown in Table 2, the mean values of ESSC for the predictions associated

with the test simulation sets are around 0.006, but the standard deviation values

are comparable to the mean values indicating a wide distribution of the prediction

error. In order to get a more clear idea about the distribution of ESSC , its cumulative

distribution function (CDF) is computed for the three test simulation sets and also

the Training Simulation Set 3. Figure 39 shows that the CDF curves of the test

simulation sets are very similar and enlarging the size of the simulation set does not

change the distribution of the prediction error significantly. Also, the probability of

having an ESSC less than 0.01 is around 90%, which again supports the fact that the
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Figure 38: The mean value of ESSC at different film coverage levels for three test
simulation sets and the training data.

reduced order dynamic model has a good prediction capability.

Table 2: Mean and standard deviation values of ESSC for three test simulation sets.

Test simulation set Mean Standard deviation
1 0.0057 0.0035
2 0.0058 0.0037
3 0.0058 0.0037

In the last part of this section, we compare different types of prediction error

to understand the major factors contributing to the inaccuracies in the model pre-

dictions. We define two alternatives to ESSC in order to investigate the effect of

normalization (using Dmean and Dstd defined in Section 2.1.) on the prediction error.

The first alternative to ESSC is

ESSC′ = ‖S′
s − S′

p‖2/‖S′
s‖2 (10)

where S′
s and S′

p are the normalized versions of Ss and Sp:
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Figure 39: Cumulative distribution function of the ESSC for three test simulation
sets.

S′
s,i = Ss,i − Dmean,i (i = 1, 2, ...4800) (11)

S′
p,i = Sp,i − Dmean,i (i = 1, 2, ...4800) (12)

Dmean,i was already defined in Section 2.1. The second alternative to ESSC is:

ESSC′′ = ‖S′′
s − S′′

p‖2/‖S′′
s‖2 (13)

where S′′
s and S′′

p are the normalized versions of S′
s and S′

p, respectively:

S′′
s,i = S′

s,i/Dstd,i (i = 1, 2, ...4800) (14)

S′′
p,i = S′

p,i/Dstd,i (i = 1, 2, ...4800) (15)

Dstd,i was also defined in Section 2.1. Table 3 shows that mean value of ESSC′′

(0.2675) is much higher than that of ESSC′ (0.1758). Comparison of the CDF of ESSC′

and ESSC′′ given in Figure 40 also shows a higher ESSC′′ for any value of the CDF.
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This indicates that features with large variance are predicted more accurately than

the ones with small variance. It follows then, that the features with small variance

are more noise-corrupted in the KMC simulations.

The quantization error, which is defined in Section 2.3.1, provides a minimum

bound on the prediction error. The average quantization error (Eq) for SOM3 is

0.1094. This error is due to the discretization of the state space, and does not include

any additional error propagated from one step to the next one through the dynamics

of the thin film deposition process. Therefore, we define another kind of prediction

error as

Ex = ‖xs − xp‖2/‖xs‖2. (16)

Here, xp ∈ R
5 represents the predicted state and xs ∈ R

5 is computed from the KMC

simulation data:

xp,i = S′′
p · Ui

T (i = 1, 2, ...5) (17)

xs,i = S′′
s · Ui

T (i = 1, 2, ...5) (18)

where Ui ∈ R
4800 is the ith principal component of D′′.

As shown in Table 3, the mean value of Ex, which is computed from the prediction

of states in Test Simulation Set 3, is twice as high as Eq incurred during the training

of SOM3. From this result, it can be concluded that the propagation error due to

dynamics is not negligible and accounts for approximately half of Ex. Hence, the

other half of the prediction error comes from the discretization of the state space.

Figure 40, which compares the CDF of Ex and Eq, also supports this conclusion.

According to this figure, with a 0.50 probability, Eq ≤ 0.10 and Ex ≤ 0.18.
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Table 3: Mean values of Eq, Ex, ESSC′ and ESSC′′ . Eq, which is computed for each
data vector and the prototype vector of the data vector’s best matching unit on SOM,
is the difference between data vector and prototype vector during SOM training. The
other errors are the normalized versions of ESSC .

Error type Mean
Eq 0.1094
Ex 0.2277

ESSC 0.0057
ESSC′ 0.1758
ESSC′′ 0.2675
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Figure 40: Cumulative distribution function of different types of error.

5.3 Optimization of the final film structure and the depo-
sition time

In this section, the dynamic model is used to minimize the deposition time to reach

a particular surface configuration. One desired structure is a very regular surface

with many large islands and a very low Ga adatom (isolated Ga atom) density. This

surface structure can be identified by minimizing:

F = ai − bici (19)
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where ai, bi, and ci are the values of Ga adatom density, typical island size and the

number of islands with the typical island size for surface configuration i, respectively.

From the Training Simulation Sets 1, 2 and 3, we extract ai, bi, and ci values of the

surfaces at 0.20 ML surface coverage.

According to equation (19), the optimal surface structure is Snapshot 861 (from

Simulation 43). A portion of that surface structure is shown in Figure 41. Snapshot

861 is matched with the Node 182 of SOM3 during the training. This node is accessible

through a constant input simulation with a flux of 0.08 ML/s. Identification of the

flux profile that would reach Node 182 in the minimum amount of time can be posed

as a dynamic programming problem [49].

Let the decision variables dq(q = 1, 2, 3, ...11) be the immediate destinations on

different stages. In this problem, we have 11 stages for 11 film coverage levels (0 ML,

0.02 ML, 0.04 ML,...0.20 ML) and dq corresponds to the map node number at stage

q. Thus the route (trajectory) of the deposition is d1, d2, d3, ...d11, where d1 = 1 and

d11 = 182 since the initial surface structure is represented by SOM Node 1 and the

final (optimal) surface structure is in Node 182.

Let fq(s, dq) be the total cost of the best overall policy for the remaining stages,

given that we are in state s (number of the map node we are currently in), ready

to start stage q, and dq (the number of the map node we are moving to) is selected

as our immediate destination. Here, the total cost is the deposition time and each

deposition interval is 0.02 ML long. Given s and q, let d∗
q denote any value of dq that

minimizes fq(s, dq) and let f ∗
q (s) be the corresponding minimum value of fq(s, dq).

Thus,

f ∗
q (s) = min

dq

fq(s, dq) = fq(s, d
∗
q) (20)

where

fq(s, dq) = cs,dq + fq+1(s, dq+1) (21)
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Figure 41: A portion of the optimal surface structure. The initial surface structure
has regular trenches (dark areas), and as the deposition is performed, clusters form
in and on top of the trenches.

Here, the cost cs,dq , is the time incurred while moving from s to dq, given by:

cs,dq = L/Fs,dq , (22)

where L is the length of a single coverage interval (0.02 ML) and Fs,dq is the value of

the gallium flux that provides a transition from state s to dq. The ultimate destination

reached at the end of stage 11, f ∗
11(182) = 0. The objective is to find f ∗

1 (1) and the

corresponding route. Dynamic programming can solve this problem by successively

finding f ∗
10(s), f ∗

9 (s), f ∗
8 (s)..f ∗

2 (s) and using f ∗
2 (s) to solve for f ∗

1 (s). This is achieved

by eliminating some of the suboptimal trajectories as we move from f ∗
10(s) to f ∗

1 (s).

Because of the limited state space obtained by grouping similar surface configuration

groups, it is possible to solve this dynamic optimization problem (finding the optimal

flux profile) using exhaustive enumeration (without eliminating the suboptimal paths

at each step) in a short amount of time.

We used eight flux settings (0.06,0.08,...0.20 ML/s) and found the optimal input

profile that would give us minimum deposition time to get to SOM Node 182. Each

input profile is a sequence of 10 flux values, and there is a flux value for each coverage

interval. Having eight flux settings and 10 coverage intervals, there are 810 possible

input profiles. According to the dynamic model, only 20% of these profiles are able to
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Figure 42: Optimal flux profile computed by the dynamic model.

reach SOM Node 182. Running each simulation takes about 24 hrs utilizing an Intel

Xeon processor with a speed of 2.66 GHz, so it would have taken 2.9 million years

to run all of the 810 simulations with a single processor. However, using our dynamic

model, it took only 5 minutes to predict the evolution of the film structure during

these simulations. The minimum cost was obtained with the input profile shown in

Figure 42.

Figure 43 shows the real and the estimated trajectories of this KMC simulation

on SOM3. Again, we have a good agreement between these two trajectories. This

particular input profile provided a 48% reduction in the deposition time to reach

optimal structure when compared with the constant input KMC simulation under

0.08 ML/s Ga flux. The values of ESSC , ESSC′ and ESSC′′ for the prediction of the

final film structure are 0.0159, 0.2207 and 0.2312, respectively. These values are

within the range of cumulative distribution functions shown in Figures 39 and 40.

In order to visualize the accuracy of this prediction, we also plotted a portion of the

SSC functions, which belonged to the actual KMC simulation data, its best matching

unit on the map (Node 184) and Node 182 (predicted film structure). According to

Figure 44, the simulation data is much noisier than the reconstructions. Also, the

lower peak value of the SSC function (around radius=12) of the SOM Node 182 is

slightly off compared to the one coming from the KMC simulation. However, the

plateau corresponding to the number of step pairs which are distanced with more

than 20 lattice units is captured well with the prediction. Hence, these two SSC
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Figure 43: Trajectories of the KMC simulation (red line) with the optimal flux
profile and the prediction (black line) on SOM3.

functions are very similar. This similarity indicates that the dynamic model, once

again, does a good job in terms of predicting the final film structure. Furthermore,

this prediction can be improved by increasing the size of the training data set and

number of SOM nodes in the cell map, or possibly by placing a greater weight on the

important, but small sized features, during the training of the SOM.

5.4 Conclusions

In this chapter, we evaluated the performance of the dynamic model derived from

KMC simulation data of epitaxial GaAs deposition process. This evaluation involved

quantification of different types of error associated with the model reduction approach.

Analysis of the cell mapping error (CME), which is the one-step prediction error,

showed that the structures within the same configuration groups show very similar

dynamic behavior under same input conditions. The global error associated with this

model reduction approach has also been characterized using 1210 test simulations

with highly dynamic input profiles and turned out to be fairly low (less than 0.006 on

average for 10890 predictions). Furthermore, the minimization of the deposition time
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Figure 44: Reconstructions of the SSC function with the prototype vectors of the
SOM nodes 182, 184 and the original simulation data.

to reach a desired film structure has also been achieved using the compact dynamic

model. The reduced order model provides an 11 orders of magnitude reduction in the

computational time compared to the high dimensional molecular simulations. Unlike

the existing approaches used for dynamic optimization using stochastic simulation

models [36], our approach does not involve frequent calls to the molecular simulation

code which is computationally expensive.
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CHAPTER VI

EVALUATION OF THE MODEL REDUCTION

PARAMETERS

In this chapter, we present a critical evaluation of the model reduction parameters

which can affect the predictive ability of the model. The parameters we consider here

are the dimension of the state, number of configuration groups in the model, and the

training data that is used for system identification. In the final section of this chapter,

we focus on the effects of training data on model quality, and propose a novel state

space exploration method that could improve the model’s predictive ability under a

wide range of process conditions.

6.1 Effects of the state dimension

In Chapter 4, we used a training data set to characterize the state space of the epi-

taxial deposition of GaAs. This characterization involved collecting a series of surface

snapshots during kinetic Monte Carlo (KMC) simulations of this thin film deposition

process under various input profiles. Since the dimension of the step-step correla-

tion (SSC) function used for characterization was too high for system identification

purposes, we have used principal component analysis (PCA) for reducing the state

dimension. This reduction was done by eliminating the principal components which

do not contribute to the variance of the data matrix significantly. After analyzing

the eigenvalues of the covariance matrix (Figure 20) and data reconstructions with

different number of principal components (Figure 21), we have retained 5 principal

components, since that was enough to reconstruct the data effectively, capturing more

than 99% of the variance. The state of each snapshot is computed by projecting its
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SSC function onto the first 5 modes, and keeping the projection coefficients as x ∈ R
5,

rather than the whole projection.

The number of principal components retained while reducing the state dimension

can affect the results of the next step in the model reduction algorithm: discretization

of the state space using self organizing map (SOM). After PCA is performed and the

state vector x is computed for each surface snapshot, SOM groups similar snapshots.

Grouping is based on the Euclidean distances between state vectors (i.e. snapshots in

similar states are grouped together), and snapshots in the same group are represented

by only one surface structure and a vector v (prototype vector of the SOM node) while

identifying the dynamic model. This reduces the computational load for system

identification significantly since only the transitions between surface configuration

groups (not the individual surface configurations) are identified. In order to study

the effects of state dimension on the SOM results, we trained SOMs with differently

sized data vectors x. Table 4 compares the SOM results when 2, 5, 10 and 20

principal components are used to compute the state of the surface snapshots in the

training data. SOM7, which is trained with two dimensional state vectors, has the

lowest prototype vector size since principal components 3, 4, and 5 are ignored in

that case. However, rest of the map statistics is quite similar. We also look at

the way surface snapshots are grouped by these maps. Since there are too many

snapshots to consider, we only focus on the ones at the highest coverage of 0.20 ML.

According to our analysis, these 76 snapshots are divided into 10 groups, and the

snapshots within a group are in the same SOM node in all of the maps. For example,

snapshots 1, 13, 20, 24, 32, 36, 39, and 47 are grouped together in these 4 maps.

Only 2 of the 76 snapshots move between different groups in different maps. The

similarity of the statistics and grouping of SOM3, SOM5, SOM6 and SOM7 indicates

that the number of principal components retained does not have a significant effect

on the SOM results, and therefore the system identification step. In fact, even 2
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principal components are enough for consistent grouping of SOM. However, at least

5 principal components are needed to reconstruct SSC functions of the snapshots

effectively (discussed in Section 4.3.1), which is necessary for identifying an accurate

dynamic model. For other problems, very high order principal components might

be necessary to differentiate between configurations that are slightly different than

each other in terms of their state. In those cases, during SOM training, elements

within the state vectors that are associated with the high order principal components

could be weighted higher. Therefore, they would have a significant effect on the SOM

grouping despite the very low percent variance captured by the high order principal

components associated with them.

Table 4: Statistics of SOMs trained with differently sized data vectors.

Map State Quant. Proto. Topog. Number
dimension error vec. size error of groups

SOM3 5 5.1 53.0 0.013 175
SOM5 10 5.4 53.3 0.018 177
SOM6 20 5.7 53.0 0.012 175
SOM7 2 4.2 52.8 0.013 175

6.2 Effects of map size on the model predictions

In Chapter 4, we used an SOM with 192 map nodes to group 1521 snapshots in order

to build a dynamic model. When the map size is increased, a finer discretization of

the state space can be performed. For such a larger map with 775 nodes (SOM4),

statistics are compared with the smaller map (SOM3) in Table 5. SOM4 has a much

lower quantization error since it has more nodes and thus fewer snapshots per node.

On the other hand, its topographic error is 3% which is slightly higher than SOM3’s

topographic error (1%) since there is a higher chance of first and second best matching

units of a snapshot not being adjacent when the number of map nodes increases. Here
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a topographic error of 3% means that, for 45 of the total 1521 surface snapshots in the

training data, the first and second best matching units on the map were not adjacent.

Even though the larger map (SOM4) has a slightly higher topographic error than the

smaller one (SOM3), both can be regarded as high quality maps with low quantization

and topographic errors. Low quantization error shows that SOM nodes are able to

represent the data vectors that are matched with them. In this case, approximation

of the data vectors in a map node by a single prototype vector is justified. On

the other hand, low topographic error is desirable for preservation of the topology

(i.e. similarity of the neighboring SOM nodes on the map), and visualization of the

system dynamics. For example, an SOM with low topographic error can provide a

comparison of the KMC simulation trajectories and the trajectories predicted by the

dynamic model based on their paths on the SOM.

Table 5: Statistics of differently sized SOMs.

Map Map Quant. Proto. Topog. Number
size error vec. size error of groups

SOM3 192 5.1 53.0 0.01 175
SOM4 775 2.8 53.0 0.03 554

One important model reduction parameter is the computational load for the sys-

tem identification step. As explained in Section 4.4.1, system identification required

simulations starting from 146 initial conditions for SOM3 which took approximately

7.3 days using 16 Intel Xeon processors with 2.66 GHz speed that were run in parallel.

The number of initial conditions is 286 for SOM4, doubling the computational time

necessary to identify the transitions between different partitions of the state space.

As the initial conditions to be used, we consider SOM nodes associated only with even

film coverage values (0 ML, 0.02 ML, 0.04 ML,..., 0.18 ML). This leads to the elim-

ination of the SOM nodes associated only with odd coverage values (0.01 ML, 0.03
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ML, 0.05 ML,..., 0.19 ML). Also, SOM nodes which exclusively contain snapshots at

the largest film coverage in the training data (0.20 ML) are not considered since the

maximum film coverage level that can be simulation by the KMC model is 0.20 ML.

Therefore, running simulations with the initial condition of 0.20 ML film coverage

would lead to 0.22 ML, which would violate the maximum coverage level constraint.

Furthermore, states described SOM nodes which only contain snapshots at 0.20 ML

(3 nodes of SOM3, and 19 nodes of SOM4) are assumed to be absorbing states [103]

that are impossible to leave. As a result, a total of 149 surface configurations are con-

sidered in the low dimensional model derived from SOM3, with 146 configurations up

to 0.18 ML coverage, and 3 configurations at 0.20 ML. On the other hand, the high

dimensional model obtained from SOM4 has 305 surface configurations where 286 of

them belong to film structures up to 0.18 ML coverage and the remaining 19 are at

0.20 ML. Therefore, the number of initial conditions used for system identification is

less than the number of snapshot groups for both maps (Table 5).

While generating surface snapshots for the training data, our sampling interval

was 0.01 ML. In other words, during the training simulations, a surface snapshot

was recorded at every 0.01 ML film coverage starting from 0.01 ML until 0.20 ML.

After using SOM to discretize the state space by these simulations, we identified

the transitions between different cells or partitions of the state space (SOM nodes).

This procedure, which is called cell mapping, is described in Section 4.4.1. Simple

cell mapping involves running short simulations (short bursts of the KMC simulation

model) starting from each surface configuration described by an SOM node, and

identifying the final structure in these simulations, and their best matching units

on the SOM. Using this technique, all possible transitions within the state space

are represented as transitions on the SOM. One important thing to note is that the

interval used in these short simulations was 0.02 ML (each short simulation was run

for 0.02 ML starting from the initial condition). The length of this interval is twice
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the length of the coverage interval used while collecting data (0.01 ML). We made this

selection to avoid the occurrence of absorbing states in the model before the maximum

film coverage level. An absorbing state is defined as a state which is impossible to

leave [103] since it transitions into itself repeatedly. Because of the structure of

the reduced order model (described in Section 4.4.1), if the structure of a surface

does not change significantly during a short burst used for identifying the transition

out of that state, and stays in its starting map node, then the transition matrix

(described by equation (6) in Section 4.4.1) would dictate the repeated occurrence of

this process. In this case, the film state would get stuck in the same SOM node. Since

the system trajectory is required to move from left to right on SOM3 and SOM4 as

the film coverage increases, such a case would be unrealistic. Therefore, instead of

using the sampling interval of 0.01 for the length of the short simulations for system

identification, we used twice that value to ensure continuously moving trajectories on

the map as the film coverage increases.

In this section, we compare the predictive abilities of the low and high dimensional

dynamic models (obtained from SOM3 and SOM4, respectively), and quantify how

the extra computational load necessary to identify the latter improved the model

performance. Dynamic input profiles used in Training Simulation Sets 1, 2 and 3

(described in Section 4.1) mostly involved small changes between intermediate values

of gallium flux using 8 discrete flux settings (0.06 ML/s, 0.08 ML/s, 0.10 ML/s...

0.20 ML/s). Since the dynamic model was trained using the data coming from these

simulations, a good way to test the predictive accuracy of the model under different

conditions is using flux switches between the maximum and minimum settings. Be-

cause, low flux settings produce smooth surfaces compared to the high flux conditions

that result in less number of diffusion events per an adsorption, and therefore rough

surfaces. Because of this, flux switches between two extreme values can potentially

produce new behavior which is not observed in the training data generated with small
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Figure 45: Periodic flux profile in a test simulation.

Figure 46: Trajectories of a test KMC simulation (red line) and the prediction
(black line) on SOM3.

changes in the flux. Figure 45 shows a flux profile of a simulation in which switches

between the extreme flux settings are made. The comparison of the trajectories of this

KMC simulation and the predicted trajectory on both maps (Figures 46 and 47) show

that there is an agreement between these trajectories using both models. The low

value of the quantization error and topographic error for these maps, together with

the similarity of the simulation trajectories, and the predicted ones suggest that both

models perform well for this specific test simulation even though the high dimensional

one required twice the computational load for its identification.
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Figure 47: Trajectories of a test KMC simulation (red line) and the prediction
(black line) on SOM4.

A better way to compare the performance of the models identified from SOM3

and SOM4 is the quantification of the model error. First, we define the relative

quantization error over the test simulation data as Erq = ‖xs − vBMU‖2/‖xs‖2. In

words, it is the Euclidean distance between the state vector of a surface snapshot

and the prototype vector of its best matching unit with respect to the norm of the

snapshot’s state vector. Figure 48 shows that Erq is lower with the larger SOM

(SOM4) at almost all coverage levels. This was expected since the larger map has

more nodes that can match with a wider range of possible system states. As a result,

the larger map has a lower approximation error associated with the discretization of

the state space. Figure 49 indicates that at 0.10 ML film coverage, SOM4 does a

slightly better job than SOM3 in terms of reconstructing the KMC simulation data.

In this figure, a portion of SSCup,down,i coming from the KMC simulation data is

compared with its reconstructed form using the prototype vectors of its best matching

units on SOM3 and SOM4.

A similar trend is observed when we compare the state prediction error Ex =
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Figure 48: The value of the relative quantization error Erq at different film coverage
levels for the test simulation with the flux profile given in Figure 45.
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Figure 49: A portion of SSCup,down,i from the KMC simulation data at 0.10 ML film
coverage, and its reconstructed form using the prototype vectors of its best matching
units on SOM3 and SOM4.
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Figure 50: The value of the state prediction error Ex at different film coverage levels
for the test simulation with the flux profile given in 45.

‖xs − xp‖2/‖xs‖2 of the high and low dimensional models identified from SOM4

and SOM3, respectively (Figure 50). State prediction error represents the normalized

difference between the predicted state (xp) and the state in the KMC simulation (xp).

According to Figure 50, high dimensional model gives more accurate predictions at

almost all coverage levels. Again for illustration purposes, we compare SSCup,down,i

from the KMC simulation data and the predictions of both models, and observe that

the high dimensional model does a slightly better job in terms of capturing the SSC

features (Figure 51).

Results presented in Figures 48, 49, 50 and 51 are only for a single test simulation

that has drastic changes in its flux profile. In order to compare the distributions

of the prediction error with the large and the small models, we vary the flux using

the minimum and maximum flux settings and 10 coverage intervals, and explore

the state space much more aggressively compared to the 1210 test simulations we

used in Chapter 4, which included the intermediate flux settings as well. In these

simulations, the flux value is kept constant at 0.06 ML/s (minimum setting) and
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Figure 51: A portion of SSCup,down,i coming from the KMC simulation data at 0.14
ML film coverage and the prediction of the low and high dimensional models.

0.20 ML/s (maximum setting) in each coverage interval of 0.02 ML, and we consider

all possible flux sequences (210 simulations). We use ESSC (previously defined in

Section 6.2.) to quantify the error. As a reminder this error function is defined as

ESSC = ‖Ss − Sp‖2/‖Ss‖2 where Ss is the computed SSC function from the KMC

simulation data, and Sp is reconstructed from the predicted state vector using the first

5 principal components of the training data. As shown in Figure 52, the cumulative

distribution function of ESSC of the high dimensional model is slightly above the one

for the low dimensional model indicating that the high dimensional model has a better

prediction capability under the conditions that involve switches between minimum

and maximum flux settings. However, despite the much higher computational load

necessary to derive the high dimensional model, the improvement in the predictive

ability is minimal. According to Figure 52, with a 50% probability, ESSC ≤ 0.025 for

the low dimensional model. On the other hand, with the same probability, ESSC ≤
0.024 for the high dimensional model. Therefore, the low dimensional model is a better

alternative in terms of the trade-off between computational efficiency and predictive
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ability.

Figure 52 also shows another interesting comparison between the CDFs of the

prediction error of the low dimensional model with two different sets of flux profiles.

According to this figure, when flux profiles that involve switches between minimum

and maximum flux settings (0.06 ML/s and 0.20 ML/s) are used instead of all 8 flux

settings that include intermediate flux values (0.06 ML/s, 0.08 ML/s, 0.10 ML/s...

0.20 ML/s), prediction error increases significantly. Because the training data did

not include many simulations in which the flux value was switched between extreme

flux settings, and was unfamiliar with some of the surface configurations that are

generated under such extreme conditions. Since we have used a data based modeling

approach for model identification, the quality of the training data in terms of its

ability to include the accessible states as much as possible, is very important for

model’s prediction accuracy under a wide range of process conditions. Therefore,

for a better model with higher prediction accuracy, it would be desirable to include

training simulations with cleverly designed input profiles in order to excite system

dynamics as much as we can for system identification purposes. This is an issue

about state space exploration which we talk about in the next section.

6.3 Effects of state space exploration

It is well known in process control that while using models derived from input-output

data (i.e. empirical models), the prediction accuracy of the model can be highly

dependent on the training data used for system identification [98, 115]. The iden-

tification signals that are used to generate training data determine the response of

the system, and therefore the information relevant to system dynamics that will be

captured. One commonly used approach to generate input profiles that can excite

a wide range of dynamic behavior is the pseudo-random binary sequence (PRBS)

technique with two input levels (e.g. high and low input settings). However, it is
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Figure 52: Cumulative distribution functions of the prediction error for 1210 test
simulations with the low dimensional model, and the 1024 exploration simulations
with the low and high dimensional models.

known that this technique is not capable of identifying nonlinear systems which are

very common in process control [40]. This is due to the PRBS technique’s inabil-

ity to excite nonlinearities in system dynamics [19, 94]. In general, for linear model

identification, input signals should have amplitudes that are small enough to prevent

nonlinear effects [41]. On the other hand, for nonlinear model identification, am-

plitudes should be large enough to excite the nonlinearities of a process. Another

important factor in nonlinear system identification is the frequency of the changes

in the input level, which should be as much as possible while staying within feasible

levels of frequency. Therefore, multilevel PRS inputs, where the number of input set-

tings is much larger than two, are commonly used for nonlinear system identification.

One example is a study where 31 levels of inputs are used [1]. In most cases, such a

high number of input levels is not necessary to identify reliable models [11]. In fact,

“plant friendliness” is defined as a technique’s ability to generate the input-output

data that can minimize the uncertainty in model parameters in the shortest time

while having the input and output variance within desired ranges. Such an approach
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is Model On Demand used by Braun et al. [11] to perform system identification

for a rapid thermal processing reactor, and a pilot scale brine-water mixing tank.

Unlike the traditional nonlinear system identification techniques, which make use of

very large data sets representing the whole state space (global modeling), Model on

Demand is developed as a local modeling technique. With this data, models are

built ’on demand’ when needed, around the neighborhood of the available data. The

identification of the model is posed as an optimization problem where the goal is to

minimize the estimation error. Since this optimization is done locally, and without

requiring a non-convex optimization scheme, error is smaller compared to global ap-

proaches. Also, Model on Demand allows incorporation of the a priori information

into the design of multi-level PRS signals and minimizes the number of simulations

needed for system identification. However, this local modeling approach is computa-

tionally more demanding than global approaches because of the neighborhood search

around each data point to identify the model by regression. Even though such local

approaches can have higher computational demands, their superior performance can

outweigh this disadvantage. In a recent thesis by Lee [81], a dynamic programming

approach for nonlinear control using input-output data, and local approximators was

advocated (dynamic programming was described earlier in Section 5.3). In that study,

the author approximates the cost-to-go function around the data points in the state

space with adequate data density to control an adiabatic CSTR. Similar to Braun

[11] and Lee [81], our approach is a local modeling approach since we divide the state

space into cells (SOM nodes), and each cell is approximated by a prototype vector

computed by the states grouped within that particular cell.

In the previous section, we demonstrated that the quality of the training data

can be improved by using input profiles that involve switches between the extreme

values of the gallium flux. When such simulations were not included extensively in the

training data, and the dynamic model was used to predict the behavior of the system
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in these simulations, prediction accuracy decreased significantly as shown in Figure

52. The sensitivity of model predictions to the quality of the training data can be a

problem when the dynamic model is used to solve an optimal control problem such

as minimization of the deposition time to reach a certain film surface configuration.

This problem was described earlier in Section 5.3. When a model identified from

input-output data is reliable in only a certain fraction of the state space, optimal

inputs need to be searched cautiously. Because, in certain regions of the input space

with little or no training data, extrapolations for model prediction can lead to poor

predictions. Furthermore, if the local fitting error is high, interpolation can also

cause the same problem. In such cases, searching for the optimal input values can be

restricted to the parts of the state space with adequate amount of training data. One

such approach in the context of neural networks was proposed by Leonard et al. [82]

where a validity index that quantifies the reliability of model predictions is used for

both “local goodness of fit” in the case of interpolations and extrapolations.

One approach to address the model inaccuracies, while performing optimization, is

penalizing predictions of the model in certain regions of the state space. Lee recently

proposed [81] imposing a penalty term in the objective function to limit the search

for the optimal inputs within the explored regions of the state space. In our study, we

address this problem by solving the optimal control of deposition (minimization of the

deposition time to reach a specific thin film structure) by restricting our search within

the state space discretized by SOM. This can prevent the extrapolation problem. On

the other hand, in order to prevent poor interpolation, we can include a penalty

term in the cost function (deposition time for a given sequence of inputs) for the

transitions in the state space with high cell mapping error. This type of error is

described earlier in Section 5.1. It quantifies the local error which originates from

representing multiple surface structures in an SOM node using a single prototype

vector. If the cell mapping error is very low, then all surface structures grouped
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together in the SOM node are expected to show very similar or identical dynamic

behavior under same input conditions. In that case, the reduction in the number of

possible states by grouping similar surface configurations is justified. For the SOM

nodes associated with high cell mapping error, by including a penalty term in the cost

function, we can penalize the poor local approximation and obtain a more reliable

solution to the problem of minimizing the thin film deposition time.

Another alternative approach to address the issue of model inaccuracies in certain

regions of the state space is continually updating the dynamic model by systematic

explorations of the state space. Similar approaches in the past contain studies of Her-

nandez et al. [48], and Chikkula et al. [16] who updated the model parameters with

new identification data in a recursive fashion. More recently, using a model free ap-

proach, Lee [81] proposed a technique which involved adding the cost-to-go functions

in unexplored regions of the state space to prevent inaccurate extrapolations around

the existing data points. In this section, we address the same problem by proposing

a novel state space exploration method that involves updating the principal compo-

nents that span the explored state space at each film coverage level. In this approach,

after characterizing surface snapshots and updating the principal components, SOM

is used to identify surfaces with state vectors that are significantly different than the

prototype vectors of their best matching units. If the quantization error for a snap-

shot (i.e. the Euclidean distance between the state vector of the snapshot and the

prototype vector of its best matching unit) is much higher than the average quanti-

zation error of the whole SOM, we use this system state as an initial condition for

state space exploration by running short simulations (for 0.02 ML) until the next film

coverage level. Because such a difference between the state and prototype vectors

would indicate the SOM’s inability to effectively represent the surface configuration

with the prototype vector of its node, and this might lead to prediction inaccuracies

since all surface structures matched with and SOM node are represented by a single
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prototype vector.

Following is the strategy we propose for systematic state space exploration of

expitaxial GaAs deposition with KMC simulations:

• Starting at the initial surface configuration (β2(2 × 4) reconstruction of GaAs

shown in Figure 19), we run 8 simulations under all flux settings (0.06 ML/s ,

0.08 ML/s, 0.10 ML/s,..., 0.20 ML/s) for a film coverage interval of 0.02 ML,

and record surface snapshots generated at the end of these simulations.

• Starting from each of the 8 surface snapshots at 0.02 ML described above, we

run 8 eight more simulations under all flux settings until the next film coverage

level (0.04 ML). When these simulations are finalized, a total of 64 more surface

snapshots are recorded (8 initial conditions × 8 simulations per initial condition

= 64 surface snapshots.)

• Once again, starting from each of the 64 surface snapshots generated in the

previous step, we run 8 simulations under all flux settings to reach the next film

coverage level (0.06 ML). This gives us 512 (8 × 64) more surface snapshots.

At this point, we collect the SSC functions of all snapshots generated until 0.06

ML (8 + 64 + 512 = 584 surface snapshots) and the initial surface configuration

(a total of 585 snapshots) in a data matrix. Then, the principal components of

this data matrix are found, and the state vector of each snapshot is computed

by using the first 5 principal components. Details of this procedure are given

in Section 4.2.

• Following the state space characterization, SOM is trained with the state vectors

of 585 surface snapshots to identify surface configuration groups. The average

quantization error of this SOM (average Euclidean distance between state vec-

tors and the prototype vectors) is 7.23, whereas average prototype vector norm is

54.1 (13.4% average quantization error relative to the average prototype vector
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norm). Using the SOM results, we find that for 71 of the 512 surface snapshots

at 0.06 ML coverage, quantization error is higher than the selected minimum

threshold (30% average quantization error relative to the average prototype vec-

tor norm). This threshold must be greater than the average value for the whole

SOM, but it should not be too high. Because, in that case, very few surface

structures (or none) would be picked as starting points for further state space

exploration.

• Starting from each of the 71 initial conditions picked in the previous step, we run

8 simulations under all flux settings until 0.08 ML film coverage and characterize

the final surface snapshots (71× 8 = 568 snapshots). Since these structures are

obtained from a very thorough exploration of the state space (unlike the train-

ing simulations), we characterize the distribution of the prediction error ESSC

(defined in section 5.2) to see if the model performs poorly while predicting the

evolution of the system under input conditions that were possibly not included

in the training data. Figure 53 compares the CDF of the ESSC for these state

space exploration simulations and the 1210 test simulations which did not in-

volve systematic exploration of the state space. According to this figure, the

model performs equally well in both cases. Therefore, we conclude that at this

coverage level, accessible surface configurations in the KMC simulation model

are explored well enough with the training simulations and further exploration

might not be necessary. One reason for this behavior is the similarity of the

surface snapshots that are generated under a wide range of flux conditions at

early coverage levels. This was previously demonstrated in Figure 23 where

the number of SOM nodes that contained surface snapshots at early coverages

(0 ML-0.08 ML) were fewer than the rest of the nodes. Because, these fewer

nodes were able to group more snapshots per node compared to the other nodes

associated with 0.10 ML coverage level and higher due to the similarity of the
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Figure 53: Cumulative distribution functions of the prediction error for 1210 test
simulations, and the 568 exploration simulations with the small model at a film
coverage of 0.08 ML.

state vectors of surface snapshots generated earlier in the training simulations.

• In order to carry out the state space exploration further, we collect all the sur-

face snapshots generated until 0.08 ML, characterize them using SSC functions,

compute their states, and use SOM once again for grouping similar snapshots.

The resulting SOM has an average quantization error 6.60 with an average

prototype vector size of 57.4 (11% average quantization error relative to the

average prototype vector size). The threshold we choose for identifying new

surface configurations (20% error) is about twice the average. We identify 30

surface snapshots (at 0.08 ML coverage level) for which the quantization er-

ror is above that threshold as new surface configurations which possibly have

not been explored previously, and not included in the training data. These 30

structures are used as initial conditions in the next step for further state space

exploration.

• Starting from each of the 30 initial conditions selected in the previous step,

we run 8 simulations under all flux settings until 0.10 ML film coverage and
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Figure 54: Cumulative distributions function of the prediction error for 1210 test
simulations, and the 240 exploration simulations with the small model at a film
coverage of 0.10 ML.

characterize the final surface snapshots (30 × 8 = 240 snapshots). The gallium

flux profiles that were used to generate these structures are used as inputs to

the dynamic model and the prediction error ESSC is computed once again as

the difference between the predictions and the actual KMC simulation results.

Figure 54 shows that the CDF of the ESSC for these predictions is below the

one for the 1210 test simulations which had randomly generated input profiles.

We conclude that the state space exploration until 0.10 ML generated some

surface configurations that the dynamic model was unfamiliar with, that led

to poor predictive performance. This indicates that a systematic state space

exploration method based on updating the principal components that span the

state space and expanding the SOM (or cell map) with new states can be useful

to improve model’s predictive ability under a wide range of process conditions.
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6.4 Conclusions

In this chapter, we presented a critical evaluation of the model reduction parameters

which can affect the predictive ability of the model. These parameters are the dimen-

sion of the state, number of configuration groups in the model, and the training data

that is used for system identification. First, we show that projecting the data onto

more than five principal components do not change the data vectors, and therefore

the grouping of similar data vectors by the SOM. Then, we compare the predictive

ability of two dynamic models that include different number of surface configuration

groups (SOM nodes) and conclude that the high dimensional model generates very

similar predictions despite the fact that it is computationally twice as demanding to

identify, compared to the low dimensional one. In the final section of this chapter, we

focus on the effects of training data on model quality, and propose a novel state space

exploration method that can improve the model gradually by updating the principal

components that span the state space, and expanding the SOM at each film coverage

level.
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CHAPTER VII

CONTRIBUTIONS AND FUTURE WORK

7.1 Contributions

This thesis proposed modeling techniques for the design and optimization of material

systems that require atomic scale models for simulation. The necessity to capture

detailed interactions in these systems leads to high dimensional state description,

and a high number of possible events in the system that take place at a wide range of

length and time scales. These factors result in prohibitive computational costs when

one tries to use molecular simulation models directly for design and optimization.

Therefore, in addition to development of accurate simulation models, reduced order

models with lower computational cost are also necessary. The major contributions in

this thesis are:

1. A KMC simulation model for hyperbranched polymerization process, and the

investigation of the effects of different synthesis routes on the polymer structure

using simulations and experiments.

2. A model reduction algorithm that enables the use of high dimensional molecular

simulation data for the dynamic optimization of epitaxial deposition of gallium

arsenide.

In Chapter 3, we presented a KMC simulation model for the hyperbranched poly-

merization of difunctional A2 oligomers, and B3 monomers. This model, whose kinetic

parameters are derived from experimental data, is employed to study the effects of the

synthesis routes on the polymer structure development. Comparing the experimen-

tal and simulation results, we showed that in melt polymerization (with no solvent),

119



the extent of cyclization reactions is negligible. We also observed that the poly-

mer structure is strongly affected by the high reactivity of free B3 units (compared

to the partially reacted B3 units), and the presence of endcapping reactions in the

medium. In the rest of Chapter 3, we focus on the solution polymerization of an

A2 +B3 system with dropwise addition of difunctional A2 into B3. Our modeling and

experimental studies showed that dilution of the B3 solution promotes cyclization

reactions, delays the gel point, and suppresses the polymer molecular weight. These

results indicated that KMC simulations provide a tool for understanding the effects of

simple reactions mechanisms on the polymer structure by enabling the consideration

of a broader range of mechanisms compared to analytical models. Furthermore, the

results also suggested that simulations and experiments can be potentially used for

designing and controlling the process with process inputs such as solution concentra-

tion, or monomer feed rates.

Molecular simulations generally have high dimensional state description (e.g. coor-

dinates of thousands of atoms), and high dimensional state space (number of possible

system configurations). Therefore, they are not compatible with the existing design,

and optimization tools. In order to address this issue, in the last section of Chapter 3,

we suggested a model reduction approach to derive a reduced order process model for

hyperbranched polymerization from KMC simulations and experimental data. De-

scription of the dynamic state in the simulations, and experimental validation of the

reduced order model have been identified as the major challenges of this approach. In

Chapter 4, we formalized this novel model reduction algorithm that makes use of the

high dimensional simulation data (representing the evolution of the system properties

in a set of simulations) to derive a reduced order process model. To demonstrate our

algorithm, we employed an existing KMC simulation model for the epitaxial depo-

sition of gallium arsenide (GaAs). By implementing principal component analysis

(PCA) to reduce the dimensions of the state vector of each surface configuration,
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self-organizing map (SOM) for grouping similar surface configurations, and simple

cell mapping and k-nearest neighbor method (for identifying the transitions between

the surface configuration groups), we obtained a reduced order model of the process.

This algorithm does not rely on a wide separation between the time scales of low

and high order system statistics, existence of steady state points, or the accuracy of

the time derivatives of system properties, which are generally computed from short

simulations to be used for optimization in other studies.

In the first part of Chapter 5, to validate our model reduction algorithm, we

computed the distribution of the error resulting from the reduction. First, we gener-

ated simulation data by recording and characterizing surface snapshots in simulations

which have input profiles different than the ones used for identifying the model. These

new simulations were called test simulations, where as the simulations already used

for model identification were called training simulations. After predicting the evo-

lution of the system state in the test simulations, we computed the distribution of

the prediction error. Results showed that the overall prediction error is quite low

even though the training simulation set was small (76 simulations with constant and

varying gallium flux profiles) compared to the test simulation set (1210 simulations

with randomly varying gallium flux profiles).

In the second part of Chapter 5, we performed dynamic optimization of the thin

film deposition to determine the optimal flux profile that can reach a given final film

structure in the minimum amount of time. Unlike the other approaches for dynamic

optimization of molecular simulations, our approach does not need the computation of

the derivatives of system variables which would require running extra simulations at

each step of the optimization in the presence of noise originating from the stochastic

nature of the simulations. Since we identify the state space, and the transitions

between different partitions of the state space, it was also possible to perform dynamic

optimization. In our model, each partition (cell) of the state space is represented
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by a typical surface configuration rather than all the surface configurations within

that partition. Therefore, while performing dynamic optimization, it was enough

to just consider the transitions between a limited number of configurations. This

simplification led to an 11 orders of magnitude reduction in computational time for

the optimization compared to the high dimensional KMC model.

In Chapter 6, we evaluated the model reduction parameters such as the dimension

of the state, cell map (SOM) size (number of configuration groups in the state space),

and the quality of the training data. Despite the high computational load associated

with its identification, the high dimensional model did not significantly improve our

prediction capability. We also showed that the major source of prediction error was

the quality of the training data. Finally, in the last section of this chapter, we

presented a novel state space exploration method that can be used to identify the

unexplored regions of the state space by updating the principal components, and

training the SOM at each coverage level.

The following is the list of publications resulted from this work:

• Journal publications

– Oguz, C., Cakir, S., Yilgor, E., Gallivan, M. A., and Yilgor, I., “Investi-

gation of the influence of polymerization procedure on polymer topology

and properties in branched polymers obtained by A2 + B3 approach.” in

preparation to be submitted to Polymer.

– Oguz, C. and Gallivan, M. A., “Optimization of a thin film deposition

process using a dynamic model extracted from molecular simulations.”

accepted for publication in Automatica.

– Oguz, C., Unal, S., Long, T. E., and Gallivan M. A., “Interpretation of

molecular structure and kinetics in melt condensation of A2 oligomers, B3

monomers, and monofunctional reagents,” Macromolecules, vol. 40, pp.
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6529-6534, Sep. 2007.

– Oguz, C. and Gallivan, M. A., “A data-driven approach for reduction of

molecular simulations,” International Journal Of Robust And Nonlinear

Control, vol. 15, pp. 727-743, Oct. 2005.

– Unal, S., Oguz, C., Yilgor, E., Gallivan, M., Long, T. E., and Yilgor,

I., “Understanding the structure development in hyperbranched polymers

prepared by oligomeric A2 + B3 approach: comparison of experimental

results and simulations,” Polymer, vol. 46, pp. 4533-4543, June 2005.

• Peer reviewed conference proceedings

– Oguz, C. and Gallivan, M. A., “Identification and Evaluation of a Dy-

namic Model for a Thin Film Deposition Process,” Proceedings of the

2007 American Control Conference, (2007) 4124-4129.

– Oguz, C. and Gallivan, M. A., “Identification of a Dynamic Model for a

Thin Film Deposition Process,” Proceedings of the 2006 IEEE Interna-

tional Joint Conference on Neural Networks, (2006) 937-980.

– Oguz, C. and Gallivan, M. A., “Dynamics of materials processing at the

molecular scale,” Proceedings of the 2004 International Symposium on

Nonlinear Theory and its Applications (2004) 135-138.

7.2 Future work

Following are the main directions for future work based on the modeling framework

presented in this thesis:

1. Extension of the model reduction approach to dynamic optimization of hyper-

branched polymerization: The first step for this extension would be the iden-

tification of the state for the polymer system. Other than molecular weight
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and degree of branching, more descriptive variables, such as topological indices

with low degeneracy, and monomer-monomer correlation functions would be

necessary. Then, the state space of this polymerization process can be explored

using different process conditions (e.g. solution concentration, and monomer

feed rate). Exploration can be carried out by using experiments and KMC

simulations. After dividing the state space into different partitions (cells), and

a low order input-output model can be obtained by identifying the transitions

between them. The next challenging step in this approach would be the valida-

tion of the reduced order model with more experiments. Similar to the way we

have used a reduced order model for optimizing the thin film deposition, hyper-

branched polymerization can also be optimized to target polymeric structures

with certain molecular weight, degree of branching and other properties.

2. Recursively updating the model by systematic exploration of the state space: In

our approach, the reduced order model is obtained from the training simulations

with random input profiles. This may cause the model to be inaccurate in some

regions of the state space, which are poorly explored. However, a systematic

exploration of the state space can overcome this problem. For example, for the

epitaxial deposition process, the principal components that span the state space

can be updated after each surface coverage interval. This can be followed by the

discretization of the state space by self organizing map (SOM). At that point,

states that are significantly different from the prototype vector of their map

node can be identified to continue simulations in these directions which require

further exploration as described in Section 6.3. The new data, coming from the

further exploration, can be used to update the dynamic model by expanding

the cell map (or the dynamic model) in a recursive fashion at every coverage

level until the state space is thoroughly explored, and the transitions between

the explored states are found using cell mapping.
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3. Dynamic optimization of molecular systems with continuous and multivariable

input space: In this study, we used the dynamic model developed for the epi-

taxial gallium arsenide deposition for dynamic optimization of the process with

only eight discrete flux settings. However, using interpolation techniques, such

as k-nearest neighbor algorithm, the evolution of the state with under inter-

mediate flux values can be predicted. Furthermore, dynamic optimization can

be carried out for multivariable and continuous input space by implementing

gradient optimization techniques [49].

125



REFERENCES

[1] A., B. H. and M., Z., “Design of pseudorandom perturbation signals for
frequency-domain identification of nonlinear systems,” in 11th IFAC Symposium
on System Identification, vol. 3, pp. 1635–1640, 1997.

[2] Aerts, J., “Prediction of intrinsic viscosities of dendritic, hyperbranched and
branched polymers,” Computational And Theoretical Polymer Science, vol. 8,
no. 1-2, pp. 49–54, 1998.

[3] Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids. Oxford
University Press, 1996.

[4] Armaou, A., Kevrekidis, I. G., and Theodoropoulos, C., “Equation-
free gaptooth-based controller design for distributed complex/multiscale pro-
cesses,” Computers & Chemical Engineering, vol. 29, pp. 731–740, Mar. 2005.

[5] Balaban, A. T., “Can topological indices transmit information on properties
but not on structures?,” Journal Of Computer-Aided Molecular Design, vol. 19,
pp. 651–660, Sept. 2005.

[6] Battaile, C. C., Srolovitz, D. J., and Butler, J. E., “A kinetic monte
carlo method for the atomic-scale simulation of chemical vapor deposition: Ap-
plication to diamond,” Journal Of Applied Physics, vol. 82, pp. 6293–6300, Dec.
1997.

[7] Bertz, S. H. and Sommer, T. J., “Rigorous mathematical approaches to
strategic bonds and synthetic analysis based on conceptually simple new com-
plexity indices,” Chemical Communications, pp. 2409–2410, Dec. 1997.

[8] Bindal, A., Ierapetritou, M. G., Balakrishnan, S., Armaou, A., Ma-

keev, A. G., and Kevrekidis, I. G., “Equation-free, coarse-grained com-
putational optimization using timesteppers,” Chemical Engineering Science,
vol. 61, pp. 779–793, Jan. 2006.

[9] Bolton, D. H. and Wooley, K. L., “Synthesis and characterization of hy-
perbranched polycarbonates,” Macromolecules, vol. 30, pp. 1890–1896, Apr.
1997.

[10] Bortz, A. B., Kalos, M. H., and Lebowitz, J. L., “New algorithm
for monte-carlo simulation of ising spin systems,” Journal Of Computational
Physics, vol. 17, no. 1, pp. 10–18, 1975.

126



[11] Braun, M. W., Rivera, D. E., and Stenman, A., “A ’model-on-demand’
identification methodology for non-linear process systems,” International Jour-
nal Of Control, vol. 74, pp. 1708–1717, Dec. 2001.

[12] Brown, I. G., Anders, A., Dickinson, M. R., MacGill, R. A., and
Monteiro, O. R., “Recent advances in surface processing with metal plasma
and ion beams,” Surface & Coatings Technology, vol. 112, pp. 271–277, Feb.
1999.

[13] Bruchmann, B. and Schrepp, W., “The aa* plus b*b-2 approach - a simple
and convenient synthetic strategy towards hyperbranched polyurea-urethanes,”
E-Polymers, p. 014, Apr. 2003.

[14] Cail, J. I. and Stepto, R. F. T., “The gel point and network formation -
theory and experiment,” Polymer Bulletin, vol. 58, pp. 15–25, Jan. 2007.

[15] Cameron, C., Fawcett, A. H., Hetherington, C. R., Mee, R. A. W.,
and McBride, F. V., “Step growth of an ab(2) monomer, with cycle forma-
tion,” Journal Of Chemical Physics, vol. 108, pp. 8235–8251, May 1998.

[16] Chikkula, Y. and Lee, J. H., “Robust adaptive predictive control of non-
linear processes using nonlinear moving average system models,” Industrial &
Engineering Chemistry Research, vol. 39, pp. 2010–2023, June 2000.

[17] Czupik, M. and Fossum, E., “Manipulation of the molecular weight and
branching structure of hyperbranched poly(arylene ether phosphine oxide)s pre-
pared via an a(2)+b-3 approach,” Journal Of Polymer Science Part A-Polymer
Chemistry, vol. 41, pp. 3871–3881, Dec. 2003.

[18] Diudea, M. V. and Gutman, I., “Wiener-type topological indices,” Croatica
Chemica Acta, vol. 71, pp. 21–51, Mar. 1998.

[19] Doyle, F., I. P. R. O. B., Identification and control using Volterra models.
New York, NY: Springer-Verlag, 2002.

[20] Drews, T. O., Ganley, J. C., and Alkire, R. C., “Evolution of sur-
face roughness during copper electrodeposition in the presence of additives -
comparison of experiments and monte carlo simulations,” Journal Of The Elec-
trochemical Society, vol. 150, pp. C325–C334, May 2003.

[21] Drews, T. O., Webb, E. G., Ma, D. L., Alameda, J., Braatz, R. D.,
and Alkire, R. C., “Coupled mesoscale - continuum simulations of copper
electrodeposition in a trench,” Aiche Journal, vol. 50, pp. 226–240, Jan. 2004.

[22] Dusek, K., Duskova-Smrckova, M., and Voit, B., “Highly-branched off-
stoichiometric functional polymers as polymer networks precursors,” Polymer,
vol. 46, pp. 4265–4282, May 2005.

127



[23] Dusek, K., Somvarsky, J., Smrckova, M., Simonsick, W. J., and
Wilczek, L., “Role of cyclization in the degree-of-polymerization distribution
of hyperbranched polymers - modelling and experiments,” Polymer Bulletin,
vol. 42, pp. 489–496, Apr. 1999.

[24] Edwards, S. F. and Wilkinson, D. R., “The surface statistics of a granular
aggregate,” Proceedings Of The Royal Society Of London Series A-Mathematical
Physical And Engineering Sciences, vol. 381, no. 1780, pp. 17–31, 1982.

[25] Emrick, T., Chang, H. T., and Frechet, J. M. J., “An a(2)+b-3 ap-
proach to hyperbranched aliphatic polyethers containing chain end epoxy sub-
stituents,” Macromolecules, vol. 32, pp. 6380–6382, Sept. 1999.

[26] Fang, J. H., Kita, H., and Okamoto, K., “Hyperbranched polyimides for
gas separation applications. 1. synthesis and characterization,” Macromolecules,
vol. 33, pp. 4639–4646, June 2000.

[27] Feast, W. J., Rannard, S. P., and Stoddart, A., “Selective conver-
gent synthesis of aliphatic polyurethane dendrimers,” Macromolecules, vol. 36,
pp. 9704–9706, Dec. 2003.

[28] Flory, P. J., “Fundamental principles of condensation polymerization,”
Chemical Reviews, vol. 39, no. 1, pp. 137–197, 1946.

[29] Flory, P. J., “Molecular size distribution in three dimensional polymers .6.
branched polymers containing a-r-bf-1 type units,” Journal Of The American
Chemical Society, vol. 74, no. 11, pp. 2718–2723, 1952.

[30] Frazier, A. B., Warrington, R. O., and Friedrich, C., “The miniatur-
ization technologies - past, present, and future,” Ieee Transactions On Industrial
Electronics, vol. 42, pp. 423–430, Oct. 1995.

[31] Galina, H. and Lechowicz, J. B., “Kinetic and monte-carlo modelling of
hyperbranched polymerisation,” E-Polymers, p. 012, Mar. 2002.

[32] Gallivan, M. A., Modeling and Control of Epitaxial Thin Film Growth. PhD
thesis, California Institute of Technology, 2003.

[33] Gallivan, M. A. and Murray, R. M., “Reduction and identification meth-
ods for markovian control systems, with application to thin film deposition,”
International Journal Of Robust And Nonlinear Control, vol. 14, pp. 113–132,
Jan. 2004.

[34] Gao, C. and Yan, D., “”a(2)+cbn” approach to hyperbranched polymers with
alternating ureido and urethano units,” Macromolecules, vol. 36, pp. 613–620,
Feb. 2003.

[35] Gao, C. and Yan, D., “Hyperbranched polymers: from synthesis to applica-
tions,” Progress In Polymer Science, vol. 29, pp. 183–275, Mar. 2004.

128



[36] Gear, C. W., Kevrekidis, I. G., and Theodoropoulos, C., “’coarse’ in-
tegration/bifurcation analysis via microscopic simulators: micro-galerkin meth-
ods,” Computers & Chemical Engineering, vol. 26, pp. 941–963, Aug. 2002.

[37] GILLESPIE, D. T., “General method for numerically simulating stochas-
tic time evolution of coupled chemical-reactions,” Journal Of Computational
Physics, vol. 22, no. 4, pp. 403–434, 1976.

[38] GILLESPIE, D. T., “Exact stochastic simulation of coupled chemical-
reactions,” Journal Of Physical Chemistry, vol. 81, no. 25, pp. 2340–2361, 1977.

[39] Gillespie, D. T., “The chemical langevin equation,” Journal Of Chemical
Physics, vol. 113, pp. 297–306, July 2000.

[40] Godfrey, K., Perturbation signals for system identification. Hertfordshire,
UK: Prentice Hall International, 1993.

[41] Godfrey, K. R., Barker, H. A., and Tucker, A. J., “Comparison of
perturbation signals for linear system identification in the frequency domain,”
Iee Proceedings-Control Theory And Applications, vol. 146, pp. 535–548, Nov.
1999.

[42] Gong, C. G., Miravet, J., and Frechet, J. M. J., “Intramolecular cy-
clization in the polymerization of ab(x) monomers: Approaches to the control
of molecular weight and polydispersity in hyperbranched poly(siloxysilane),”
Journal Of Polymer Science Part A-Polymer Chemistry, vol. 37, pp. 3193–3201,
Aug. 1999.

[43] Hanselmann, R., Holter, D., and Frey, H., “Hyperbranched polymers
prepared via the core-dilution slow addition technique: Computer simulation
of molecular weight distribution and degree of branching,” Macromolecules,
vol. 31, pp. 3790–3801, June 1998.

[44] Hao, J. J., Jikei, M., and Kakimoto, M. A., “Synthesis and compar-
ison of hyperbranched aromatic polyimides having the same repeating unit
by ab(2) self-polymerization and a(2)+b-3 polymerization,” Macromolecules,
vol. 36, pp. 3519–3528, May 2003.

[45] Harary, F., Graph Theory. Reading, MA: Addison-Wesley, 1969.

[46] Hawker, C. J. and Chu, F. K., “Hyperbranched poly(ether ketones): Manip-
ulation of structure and physical properties,” Macromolecules, vol. 29, pp. 4370–
4380, June 1996.

[47] Hawker, C. J., Lee, R., and Frechet, J. M. J., “One-step synthesis
of hyperbranched dendritic polyesters,” Journal Of The American Chemical
Society, vol. 113, pp. 4583–4588, June 1991.

129



[48] HERNANDEZ, E. and ARKUN, Y., “Control of nonlinear-systems using
polynomial arma models,” Aiche Journal, vol. 39, pp. 446–460, Mar. 1993.

[49] Hillier, F. S. and Lieberman, G. J., Introduction to Operations Research.
New York: McGraw-Hill, 2005.

[50] Holloway, P. H., , and McGuire, G. E., Handbook of compound semi-
conductors: growth, processing,characterization, and devices. Park Ridge, New
Jersey: Noyes Publications, 1995.

[51] Holter, D., Burgath, A., and Frey, H., “Degree of branching in hyper-
branched polymers,” Acta Polymerica, vol. 48, pp. 30–35, Jan. 1997.

[52] Hsu, C. S., Cell-to-cell mapping : a method of global analysis for nonlinear
systems. New York: Springer-Verlag, 1987.

[53] Hult, A., Johansson, M., and Malmstrom, E., “Hyperbranched poly-
mers,” Branched Polymers Ii, vol. 143, pp. 1–34, 1999.

[54] Itoh, M., “Atomic-scale homoepitaxial growth simulations of reconstructed
iii-v surfaces,” Progress In Surface Science, vol. 66, pp. 53–153, Feb. 2001.

[55] Jaraiz, M., Rubio, E., Castrillo, P., Pelaz, L., Bailon, L., Bar-

bolla, J., Gilmer, G. H., and Rafferty, C. S., “Kinetic monte carlo
simulations: an accurate bridge between ab initio calculations and standard
process experimental data,” Materials Science In Semiconductor Processing,
vol. 3, pp. 59–63, Mar. 2000.

[56] Jikei, M., Chon, S. H., Kakimoto, M., Kawauchi, S., Imase, T., and
Watanebe, J., “Synthesis of hyperbranched aromatic polyamide from aro-
matic diamines and trimesic acid,” Macromolecules, vol. 32, pp. 2061–2064,
Mar. 1999.

[57] Jikei, M. and Kakimoto, M., “Hyperbranched polymers: a promising new
class of materials,” Progress In Polymer Science, vol. 26, pp. 1233–1285, Oct.
2001.

[58] KARDAR, M., PARISI, G., and ZHANG, Y. C., “Dynamic scaling of
growing interfaces,” Physical Review Letters, vol. 56, pp. 889–892, Mar. 1986.

[59] Kim, Y. H., “Lyotropic liquid-crystalline hyperbranched aromatic
polyamides,” Journal Of The American Chemical Society, vol. 114, pp. 4947–
4948, June 1992.

[60] Kim, Y. H., “Hyperbranched polymers 10 years after,” Journal Of Polymer
Science Part A-Polymer Chemistry, vol. 36, pp. 1685–1698, Aug. 1998.

[61] Kim, Y. H. and Webster, O., “Hyperbranched polymers (reprinted from star
and hyperbranched polymers, pg 201-238, 1999),” Journal Of Macromolecular
Science-Polymer Reviews, vol. C42, no. 1, pp. 55–89, 2002.

130



[62] Kim, Y. H. and Webster, O. W., “Water-soluble hyperbranched polypheny-
lene - a unimolecular micelle,” Journal Of The American Chemical Society,
vol. 112, pp. 4592–4593, May 1990.

[63] Kim, Y. H. and Webster, O. W., “Hyperbranched polyphenylenes,” Macro-
molecules, vol. 25, pp. 5561–5572, Oct. 1992.

[64] KIRKPATRICK, S., GELATT, C. D., and VECCHI, M. P., “Optimiza-
tion by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[65] Kohonen, T., “The self-organizing map,” Proceedings Of The Ieee, vol. 78,
pp. 1464–1480, Sept. 1990.

[66] Kohonen, T., Oja, E., Simula, O., Visa, A., and Kangas, J., “Engineer-
ing applications of the self-organizing map,” Proceedings Of The Ieee, vol. 84,
pp. 1358–1384, Oct. 1996.

[67] Kohonen, T., Self-organizing maps. New York: Springer, 1995.

[68] Komber, H., Voit, B., Monticelli, O., and Russo, S., “H-1 and c-13 nmr
spectra of a hyperbranched aromatic polyamide from p-phenylenediamine and
trimesic acid,” Macromolecules, vol. 34, pp. 5487–5493, July 2001.

[69] Kratzer, P., Morgan, C. G., and Scheffler, M., “Density-functional
theory studies on microscopic processes of gaas growth,” Progress In Surface
Science, vol. 59, pp. 135–147, Sept. 1998.

[70] Kratzer, P., Morgan, C. G., and Scheffler, M., “Model for nucleation
in gaas homoepitaxy derived from first principles,” Physical Review B, vol. 59,
pp. 15246–15252, June 1999.

[71] Kricheldorf, H. R., Lomadze, N., Polefka, C., and Schwarz, G.,
“Multicyclic poly(ether ester)s by polycondensation of oligo(ethylene glycol)s
and trimesoyl chloride,” Macromolecules, vol. 39, pp. 2107–2112, Mar. 2006.

[72] Kricheldorf, H. R. and Schwarz, G., “Cyclic polymers by kinetically con-
trolled step-growth polymerization,” Macromolecular Rapid Communications,
vol. 24, pp. 359–381, Apr. 2003.

[73] Kricheldorf, H. R., Vakhtangishvili, L., and Fritsch, D., “Syn-
thesis and functionalization of poly(ether sulfone)s based on 1,1,1-tris(4-
hydroxyphenyl) ethane,” Journal Of Polymer Science Part A-Polymer Chem-
istry, vol. 40, pp. 2967–2978, Sept. 2002.

[74] Kricheldorf, H. R., Vakhtangishvili, L., Schwarz, G., and Kruger,

R. P., “Cyclic hyperbranched poly(ether ketone)s derived from 3,5-bis(4-
fluorobenzoyl)phenol,” Macromolecules, vol. 36, pp. 5551–5558, July 2003.

131



[75] Kricheldorf, H. R., Zang, Q. Z., and Schwarz, G., “New polymer syn-
theses .6. linear and branched poly(3-hydroxy-benzoates),” Polymer, vol. 23,
no. 12, pp. 1821–1829, 1982.

[76] Kumar, A. and Meijer, E. W., “Novel hyperbranched polymer based on
urea linkages,” Chemical Communications, pp. 1629–1630, Aug. 1998.

[77] Kumar, A. and Ramakrishnan, S., “Hyperbranched polyurethanes with
varying spacer segments between the branching points,” Journal Of Polymer
Science Part A-Polymer Chemistry, vol. 34, pp. 839–848, Apr. 1996.

[78] Lam, R. and Vlachos, D. G., “Multiscale model for epitaxial growth of films:
Growth mode transition,” Physical Review B, vol. 6403, p. 035401, July 2001.

[79] Larose, D. T., Data Mining Methods and Models. Wiley-IEEE Press, 2006.

[80] Larose, D. T., Discovering Knowledge in Data. Hoboken, New Jersey: John
Wiley and Sons, Inc., 2005.

[81] Lee, J. M., A study on architecture, algorithms, and applications of approx-
imate dynamic programming-based approach to optimal control. PhD thesis,
Georgia Institute of Technology, 2004.

[82] LEONARD, J. A., KRAMER, M. A., and UNGAR, L. H., “A neural
network architecture that computes its own reliability,” Computers & Chemical
Engineering, vol. 16, pp. 819–835, Sept. 1992.

[83] Lin, Q. and Long, T. E., “Synthesis and characterization of a novel ab(2)
monomer and corresponding hypperbranched poly(arylene ether phosphine
oxide)s,” Journal Of Polymer Science Part A-Polymer Chemistry, vol. 38,
pp. 3736–3741, Oct. 2000.

[84] Lin, Q. and Long, T. E., “Polymerization of a(2) with b-3 monomers: A
facile approach to hyperbranched poly(aryl ester)s,” Macromolecules, vol. 36,
pp. 9809–9816, Dec. 2003.

[85] Lou, Y. M. and Christofides, P. D., “Feedback control of surface roughness
using stochastic pdes,” Aiche Journal, vol. 51, pp. 345–352, Jan. 2005.

[86] Makeev, A. G., Maroudas, D., and Kevrekidis, I. G., “”coarse” sta-
bility and bifurcation analysis using stochastic simulators: Kinetic monte carlo
examples,” Journal Of Chemical Physics, vol. 116, pp. 10083–10091, June 2002.

[87] Martinez, C. A. and Hay, A. S., “Synthesis of poly(aryl ether) dendrimers
using an aryl carbonate and mixtures of metal carbonates and metal hy-
droxides,” Journal Of Polymer Science Part A-Polymer Chemistry, vol. 35,
pp. 1781–1798, July 1997.

132



[88] Matthes, B., Broszeit, E., Zucker, O., and Gauer, P., “Investigation
of thin aln films for piezolayer-field effect transistor applications,” Thin Solid
Films, vol. 226, pp. 178–184, Apr. 1993.

[89] McKee, M. G., Unal, S., Wilkes, G. L., and Long, T. E., “Branched
polyesters: recent advances in synthesis and performance,” Progress In Polymer
Science, vol. 30, pp. 507–539, May 2005.

[90] Mcquarrie, D. A., Statistical Mechanics. University Science Books, 2000.

[91] Miller, T. M., Neenan, T. X., Kwock, E. W., and Stein, S. M., “Den-
dritic analogs of engineering plastics - a general one-step synthesis of dendritic
polyaryl ethers,” Journal Of The American Chemical Society, vol. 115, pp. 356–
357, Jan. 1993.

[92] Monticelli, O., Mariani, A., Voit, B., Komber, H., Mendichi, R.,
Pitto, V., Tabuani, D., and Russo, S., “Hyperbranched aramids by the
a(2)+b-3 versus ab(2) approach: influence of the reaction conditions on struc-
tural development,” High Performance Polymers, vol. 13, pp. S45–S59, June
2001.

[93] Murray, R. M., “Future directions in control, dynamics, and systems:
Overview, grand challenges, and new courses,” European Journal Of Control,
vol. 9, no. 2-3, pp. 144–158, 2003.

[94] NOWAK, R. D. and VANVEEN, B. D., “Random and pseudorandom in-
puts for volterra filter identification,” Ieee Transactions On Signal Processing,
vol. 42, pp. 2124–2135, Aug. 1994.

[95] Oguz, C., Cakir, S., Yilgor, E., A., G. M., and I., Y., “Influence of
polymerization procedure on the topology of highly branched polymers in a2+b3
systems: A modeling study.” Submitted to Division of Polymer Chemistry for
the 235th ACS National Meeting in 2008, New Orleans, LA.

[96] Oguz, C. and Gallivan, M. A., “Optimization of a thin film deposition
process using a dynamic model extracted from molecular simulations.” accepted
for publication in Automatica.

[97] Oguz, C. and Gallivan, M. A., “A data-driven approach for reduction of
molecular simulations,” International Journal Of Robust And Nonlinear Con-
trol, vol. 15, pp. 727–743, Oct. 2005.

[98] Parker, R. S., Heemstra, D., Doyle, F. J., Pearson, R. K., and Ogun-

naike, B. A., “The identification of nonlinear models for process control using
tailored ”plant-friendly” input sequences,” Journal Of Process Control, vol. 11,
pp. 237–250, Apr. 2001.

133



[99] Pricer, T. J., Kushner, M. J., and Alkire, R. C., “Monte carlo simula-
tion of the electrodeposition of copper - i. additive-free acidic sulfate solution,”
Journal Of The Electrochemical Society, vol. 149, pp. C396–C405, Aug. 2002.

[100] Pricer, T. J., Kushner, M. J., and Alkire, R. C., “Monte carlo simula-
tion of the electrodeposition of copper - ii. acid sulfate solution with blocking
additive,” Journal Of The Electrochemical Society, vol. 149, pp. C406–C412,
Aug. 2002.

[101] Radke, W., Litvinenko, G., and Muller, A. H. E., “Effect of core-
forming molecules on molecular weight distribution and degree of branching
in the synthesis of hyperbranched polymers,” Macromolecules, vol. 31, pp. 239–
248, Jan. 1998.

[102] Raimondeau, S., Aghalayam, P., Mhadeshwar, A. B., and Vlachos,

D. G., “Parameter optimization of molecular models: Application to surface
kinetics,” Industrial & Engineering Chemistry Research, vol. 42, pp. 1174–1183,
Mar. 2003.

[103] Ross, S. M., Introduction to Probability Models. Academic Press, 2006.

[104] Rusli, E., Drews, T. O., Ma, D. L., Alkire, R. C., and Braatz,

R. D., “Robust nonlinear feedback-feedforward control of a coupled kinetic
monte carlo-finite difference simulation,” Journal Of Process Control, vol. 16,
pp. 409–417, Apr. 2006.

[105] Smith, D. L., Thin-Film Deposition: Principles and Practice. McGraw-Hill
Professional, 1995.

[106] Somvarsky, J. and Dusek, K., “Kinetic monte-carlo simulation of network
formation .1. simulation method,” Polymer Bulletin, vol. 33, pp. 369–376, Aug.
1994.

[107] Somvarsky, J. and Dusek, K., “Kinetic monte-carlo simulation of network
formation .2. effect of system size,” Polymer Bulletin, vol. 33, pp. 377–384, Aug.
1994.

[108] Spindler, R. and Frechet, J. M. J., “Synthesis and characterization of
hyperbranched polyurethanes prepared from blocked isocyanate monomers by
step-growth polymerization,” Macromolecules, vol. 26, pp. 4809–4813, Aug.
1993.

[109] Srinivasan, S., Twieg, R., Hedrick, J. L., and Hawker, C. J.,
“Heterocycle-activated aromatic nucleophilic substitution of ab(2) poly(aryl
ether phenylquinoxaline) monomers .3.,” Macromolecules, vol. 29, pp. 8543–
8545, Dec. 1996.

134



[110] Stockmayer, W. H., “Theory of molecular size distribution and gel formation
in branched-chain polymers,” Journal Of Chemical Physics, vol. 11, pp. 45–55,
Feb. 1943.

[111] Stockmayer, W. H., “Molecular distribution in condensation polymers,”
Journal Of Polymer Science, vol. 9, no. 1, pp. 69–71, 1952.

[112] Sunder, A., Hanselmann, R., Frey, H., and Mulhaupt, R., “Controlled
synthesis of hyperbranched polyglycerols by ring-opening multibranching poly-
merization,” Macromolecules, vol. 32, pp. 4240–4246, June 1999.

[113] Trollsas, M., Atthoff, B., Claesson, H., and Hedrick, J. L., “Hyper-
branched poly(epsilon-caprolactone)s,” Macromolecules, vol. 31, pp. 3439–3445,
June 1998.

[114] Trollsas, M. and Hedrick, J. L., “Hyperbranched poly(epsilon-
caprolactone) derived from intrinsically branched ab(2) macromonomers,”
Macromolecules, vol. 31, pp. 4390–4395, June 1998.

[115] Tsai, P. F., Chu, J. Z., Jang, S. S., and Shieh, S. S., “Developing a robust
model predictive control architecture through regional knowledge analysis of
artificial neural networks,” Journal Of Process Control, vol. 13, pp. 423–435,
Aug. 2003.

[116] Ultsch, A. and Siemon, H. P., “Kohonen’s self organizing feature maps for
exploratory data analysis,” in Proceedings of ICNN’90, International Neural
Network Conference, pp. 305–308, 1990.

[117] Unal, S. and Long, T. E., “Highly branched poly(ether ester)s via
cyclization-free melt condensation of a(2) oligomers and b-3 monomers,” Macro-
molecules, vol. 39, pp. 2788–2793, Apr. 2006.

[118] Unal, S., Oguz, C., Yilgor, E., Gallivan, M., Long, T. E., and Yil-

gor, I., “Understanding the structure development in hyperbranched polymers
prepared by oligomeric a(2)+b-3 approach: comparison of experimental results
and simulations,” Polymer, vol. 46, pp. 4533–4543, June 2005.

[119] van Benthem, R. A. T. M., Meijerink, N., Gelade, E., de Koster,

C. G., Muscat, D., Froehling, P. E., Hendriks, P. H. M., Vermeulen,

C. J. A. A., and Zwartkruis, T. J. G., “Synthesis and characterization
of bis(2-hydroxypropyl)amide-based hyperbranched polyesteramides,” Macro-
molecules, vol. 34, pp. 3559–3566, May 2001.

[120] Varshney, A. and Armaou, A., “Multiscale optimization using hybrid
pde/kmc process systems with application to thin film growth,” Chemical En-
gineering Science, vol. 60, pp. 6780–6794, Dec. 2005.

135



[121] Varshney, A. and Armaou, A., “Identification of macroscopic variables for
low-order modeling of thin-film growth,” Industrial & Engineering Chemistry
Research, vol. 45, pp. 8290–8298, Dec. 2006.

[122] Vlachos, D. G., “The role of macroscopic transport phenomena in film
microstructure during epitaxial growth,” Applied Physics Letters, vol. 74,
pp. 2797–2799, May 1999.

[123] Vlachos, D. G., “A review of multiscale analysis: Examples from systems
biology, materials engineering, and other fluid-surface interacting systems,” AD-
VANCES IN CHEMICAL ENGINEERING, vol. 30, pp. 2–63, 2005.

[124] Voit, B., “New developments in hyperbranched polymers,” Journal Of Poly-
mer Science Part A-Polymer Chemistry, vol. 38, pp. 2505–2525, July 2000.

[125] Voit, B., “Hyperbranched polymers - all problems solved after 15 years of
research?,” Journal Of Polymer Science Part A-Polymer Chemistry, vol. 43,
pp. 2679–2699, July 2005.

[126] Weldon, M. K., Queeney, K. T., Eng, J., Raghavachari, K., and
Chabal, Y. J., “The surface science of semiconductor processing: gate oxides
in the ever-shrinking transistor,” Surface Science, vol. 500, pp. 859–878, Mar.
2002.

[127] Widmann, A. H. and Davies, G. R., “Simulation of the intrinsic viscosity of
hyperbranched polymers with varying topology. 1. dendritic polymers built by
sequential addition,” Computational And Theoretical Polymer Science, vol. 8,
no. 1-2, pp. 191–199, 1998.

[128] WIENER, H., “Structural determination of paraffin boiling points,” Journal
Of The American Chemical Society, vol. 69, no. 1, pp. 17–20, 1947.

[129] WIENER, H., “Relation of the physical properties of the isomeric alkanes to
molecular structure - surface tension, specific dispersion, and critical solution
temperature in aniline,” Journal Of Physical And Colloid Chemistry, vol. 52,
no. 6, pp. 1082–1089, 1948.

[130] Yan, D. Y. and Gao, C., “Hyperbranched polymers made from a(2) and bb
’(2) type monomers. 1. polyaddition of 1-(2-aminoethyl)piperazine to divinyl
sulfone,” Macromolecules, vol. 33, pp. 7693–7699, Oct. 2000.

[131] Yates, C. R. and Hayes, W., “Synthesis and applications of hyperbranched
polymers,” European Polymer Journal, vol. 40, pp. 1257–1281, July 2004.

[132] Zhou, Z. P. and Yan, D. Y., “Distribution function of hyperbranched poly-
mers formed by ab(2) type polycondensation with substitution effect,” Polymer,
vol. 47, pp. 1473–1479, Feb. 2006.

136



VITA

Cihan Oguz was born in Ankara, Turkey in 1981. He finished high school in METU

College in 1998, and got his B.S. degree in Chemical Engineering from Middle East

Technical University in June 2002 as an Honor Student. In August 2002, he started

the PhD program in the School of Chemical and Biomolecular in Georgia Institute

of Technology. At Georgia Tech, his research was focused on modeling of thin film

deposition and hyperbranched polymerization processes. His dissertation title was

”Control-oriented modeling of discrete configuration molecular scale processes: Ap-

plications in polymer synthesis and thin film growth“. He defended his thesis on

October 26, 2007. After graduating with a PhD degree in Chemical and Biomolecu-

lar Engineering, he will work as a post-doctoral researcher in Dr. Hana El Samad’s

group at UCSF’s Biochemistry and Biophysics Department.

137


