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to thank Dr. Miroslav Begović, Dr. Bernard Kippelen, and Dr. Gabriel A. Rincón-Mora

at School of Electrical and Computer Engineering, and Dr. W. Brent Carter at School of

Materials Science and Engineering for serving as members of my dissertation committee.

I would like to extend my sincere appreciation to Dr. Dong Seop Kim and Dr. Abasifreke

U. Ebong for helpful instructions and discussions on device physics, processing, and char-

acterization and Ms. Denise Taylor for her administrative assistance. I would also like to

thank Mr. Bala R. Bathey, Dr. Mark D. Rosenblum, and Dr. Juris P. Kalejs (currently

at JPK Consulting) at SCHOTT Solar, Inc. for providing EFG Si wafers and meaningful

discussions, Dr. Jack I. Hanoka at Evergreen Solar, Inc. for providing String Ribbon Si

wafers, Dr. Sergei Ostapenko and Dr. Igor Tarasov (currently at SDI Tampa) at University

of South Florida for performing a scanning photoluminescence analysis, Dr. Bhushan L. So-

pori at NREL for his instructions of LBIC system, and members at NREL Characterization

and Testing Groups for their help.

Finally, I gratefully acknowledge former and current members of University Center of

Excellence for Photovoltaics at Georgia Institute of Technology, Dr. Ji-Weon Jeong at LG

Chem, Dr. Vijay Yelundur at Georgia Tech, Dr. Ben Damiani at Intel, Dr. Mohamed

M. Hilali at Advent Solar, Alan Ristow, Vichai Meemongkolkiat, Manav Sheoran, Ajay

Upadhyaya, Brian Rounsaville, Vijaykumar Upadhyaya, Keith Tate, and Dean C. Sutter

for their friendship and creating a great work environment.

This research has been supported in part by the United States Department of Energy

under Contract DE-FC36-00GO10600 and in part by the National Renewable Energy Lab-

oratory under Contract AAT-2-31605-02.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Opportunity and Challenges in PV Energy Conversion . . . . . . . . . . . 1

1.2 Specific Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Task 1: Investigation and demonstration of enhanced defect hydro-
genation in mc-Si materials using rapid thermal processing . . . . . 5

1.2.2 Task 2: Fundamental understanding of carrier lifetime enhancement
in EFG Si through RTP-assisted reduction of hydrogen-defect disso-
ciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Task 3: Fabrication and characterization of record high-efficiency
String Ribbon Si solar cells using photolithography and screen-printed
front contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Task 4: Development of an analytical model to assess the impact of
material inhomogeneity on String Ribbon Si solar cell performance 7

1.2.5 Task 5: Application of the analytical model to project the efficiency
potential in the presence of inhomogeneous defect distribution . . . 7

II FUNDAMENTALS OF CRYSTALLINE SILICON MATERIALS AND
SOLAR CELLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Solar Cell Operation and Carrier Recombination Lifetime in Multicrystalline
Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Solar cell operation and performance parameters . . . . . . . . . . 9

2.1.2 Carrier recombination mechanisms and bulk lifetime . . . . . . . . 12

2.1.3 Understanding of carrier recombination at the structural defects . . 14

2.1.4 Carrier lifetime measurement techniques . . . . . . . . . . . . . . . 15

2.2 Crystal Growth Technologies of Promising Ribbon Silicon Materials . . . . 19

2.2.1 Edge-defined film-fed growth (EFG) Si . . . . . . . . . . . . . . . . 21

2.2.2 String Ribbon Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



2.2.3 Ribbon growth on substrate (RGS) . . . . . . . . . . . . . . . . . . 23

2.2.4 Dendritic web Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Impurity Gettering and Defect Passivation Techniques for Minority Carrier
Recombination Lifetime Enhancement . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Phosphorus diffusion-induced impurity gettering . . . . . . . . . . . 26

2.3.2 Aluminum alloying-induced impurity gettering . . . . . . . . . . . . 27

2.3.3 PECVD SiNx-induced defect hydrogenation . . . . . . . . . . . . . 28

2.3.4 Rapid thermal processing for solar cell fabrication and defect hydro-
genation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III HISTORY, PROGRESS, AND CURRENT STATUS OF PROMISING
PV TECHNOLOGIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 History and Progress of High-Efficiency Crystalline Si Solar Cells . . . . . 37

3.2 History and Progress of High-Efficiency Solar Cells on Low-Cost mc-Si Ma-
terials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Industry-Scale Large-Area Solar Cells . . . . . . . . . . . . . . . . . . . . . 42

IV INVESTIGATION AND DEMONSTRATION OF ENHANCED DE-
FECT HYDROGENATION IN MULTICRYSTALLINE SILICON MA-
TERIALS USING RAPID THERMAL PROCESSING . . . . . . . . . 49

4.1 Investigation of Contact Firing Time on Carrier Lifetime Enhancement in
Multicrystalline Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Characterization, Results and Discussion . . . . . . . . . . . . . . . . . . . 51

4.2.1 IQE measurements and SEM analysis of FZ Si solar cells for estab-
lishing the process for effective Al-BSF formation . . . . . . . . . . 51

4.2.2 Lifetime enhancement by P diffusion-induced gettering and PECVD
SiNx defect hydrogenation in multicrystalline silicon materials . . . 52

4.3 Investigation of PECVD SiNx-Induced Defect Hydrogenation in EFG Si as
a Function of Contact Firing Temperature . . . . . . . . . . . . . . . . . . 56

4.4 Development of Manufacturable Belt Co-Firing Process for Maximum Hy-
drogenation in EFG Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

V FUNDAMENTAL UNDERSTANDING OF MINORITY CARRIER LIFE-
TIME ENHANCEMENT IN EFG SILICON THROUGH CHARAC-
TERIZATION OF PECVD SILICON NITRIDE FILMS AND RAPID
THERMAL PROCESSING-ASSISTED REDUCTION OF HYDROGEN-
DEFECT DISSOCIATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



5.1 Characterization of PECVD SiNx Films as a Source of Hydrogen Atoms for
Defect Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 FTIR measurements to detect the change in N-H and Si-H concen-
trations in PECVD SiNx films upon annealing . . . . . . . . . . . . 62

5.1.2 SIMS analysis of hydrogen at the PECVD SiNx/Si interface . . . . 64

5.2 Understanding of Kinetics of Hydrogen-Defect Dissociation Process in EFG
Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Room-Temperature Scanning Photoluminescence Mapping to Study the Hy-
drogen Passivation and Reactivation of Defects in EFG Silicon . . . . . . . 71

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

VI FABRICATION AND ANALYSIS OF RECORD HIGH-EFFICIENCY
STRING RIBBON SILICON SOLAR CELLS . . . . . . . . . . . . . . . 77

6.1 Device Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Device Characterization and Analysis . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Solar cell results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.2 Carrier lifetime measurements using quasi-steady-state photocon-
ductance technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.3 Light beam-induced current scans and internal quantum efficiency
measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.4 Effect of defect hydrogenation on cell performance . . . . . . . . . . 89

6.2.5 Analysis of performance limiting factors in 18.3% String Ribbon Si
cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

VII UNDERSTANDING OF THE EFFECT OF MATERIAL INHOMO-
GENEITY ON STRING RIBBON SILICON SOLAR CELL PERFOR-
MANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.1 Light beam-induced current scans and internal quantum efficiency
measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.2 Extraction of effective diffusion length Leff from the IQE response . 98

7.3 Theoretical and Experimental Assessment of Impact of Electrically Active
Defects on Solar Cell Performance . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Development of the analytical model to assess the loss in VOC re-
sulting from inhomogeneity . . . . . . . . . . . . . . . . . . . . . . 101

vii



7.3.2 Model calculations to assess the loss in VOC of a cell with two regions
of different recombination intensity . . . . . . . . . . . . . . . . . . 104

7.3.3 Model calculations to assess the loss in VOC of a cell with three
regions of different recombination intensity . . . . . . . . . . . . . . 106

7.3.4 Application of the analytical model to defective cells . . . . . . . . 107

7.3.5 Analysis of the record high-efficiency and average String Ribbon Si
cells using an analytical model . . . . . . . . . . . . . . . . . . . . . 109

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VIIIAPPLICATION OF AN ANALYTICAL MODEL TO DETERMINE
THE IMPACT OF MATERIAL INHOMOGENEITY ON SMALL- AND
LARGE-AREA MULTICRYSTALLINE SILICON SOLAR CELL PER-
FORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.1 Device Modeling and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1.1 Application and validation of the inhomogeneity model . . . . . . . 114

8.1.2 Inhomogeneity-induced loss in open-circuit voltage of large-area EFG
Si cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2 Guidelines for Achieving High-Efficiency Ribbon Silicon Solar Cells . . . . 129

8.2.1 Variations in ∆VOC values as a function of material and device pa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.2 Effect of improving carrier lifetime in the good region and BSRV in
the presence of defects . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.3 Design of 17%-efficient planar ribbon mc-Si cells in the presence of
defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

IX ATTEMPTS TO MINIMIZE AREA FRACTION AND RECOMBINA-
TION INTENSITY OF LOW DIFFUSION LENGTH REGIONS BY
HIGH-TEMPERATURE THERMAL CYCLES AND DOUBLE-SIDED
PECVD SILICON NITRIDE-INDUCED DEFECT HYDROGENATION138

9.1 Effect of P Diffusion-Induced Impurity Gettering . . . . . . . . . . . . . . 139

9.2 Effect of Intense PECVD SiNx-Induced Defect Hydrogenation . . . . . . . 142

X GUIDELINES FOR FUTURE WORK . . . . . . . . . . . . . . . . . . . . 147

10.1 Surface Texturing for Effective Light Trapping . . . . . . . . . . . . . . . . 147

APPENDIX A — DETAILED PROCESS SEQUENCE: SCREEN-PRINTED
CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

viii



APPENDIX B — DETAILED PROCESS SEQUENCE: PHOTOLITHOGRAPHY-
DEFINED CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

APPENDIX C — SAMPLE PREPARATION FOR CARRIER LIFE-
TIME MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

ix



LIST OF TABLES

Table 1 Performance of ribbon Si growth technologies. . . . . . . . . . . . . . . . 20

Table 2 Material quality of ribbon Si materials. . . . . . . . . . . . . . . . . . . 20

Table 3 Progress of laboratory-scale mc-Si solar cell performance. All efficiencies
were confirmed independently. . . . . . . . . . . . . . . . . . . . . . . . 43

Table 4 Progress of large-area solar cell performance on low-cost mc-Si materials. 48

Table 5 Average cell parameters on FZ Si fabricated by three different scheme of
firing step ]1. Peak firing temperature was 750°C. . . . . . . . . . . . . 51

Table 6 Average cell parameters on HEM, EFG, and String Ribbon Si. Peak
firing temperature was 750°C. . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 7 Average cell parameters for each firing scheme. Firing time was 1 s for
all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 8 Average values of PL intensities for Ibb, Idef, and R-parameter in each
annealing step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 9 Average and best solar cell performance parameters. (*) denotes the
efficiency measured and verified at NREL. . . . . . . . . . . . . . . . . . 80

Table 10 Suns-VOC measurements on selected solar cells. The second-diode ideal-
ity factor (n2) was assumed to be 2.0. . . . . . . . . . . . . . . . . . . . 86

Table 11 PC1D inputs for FZ and String Ribbon Si solar cells. . . . . . . . . . . 88

Table 12 Solar cell performance parameters using PC1D simulations with carrier
lifetime of 2 µs for photolithography and screen-printed contacts. . . . . 89

Table 13 Measured and simulated characteristics on FZ and String Ribbon Si cells
using the input parameters listed in Table ??. . . . . . . . . . . . . . . . 90

Table 14 Analysis of performance limiting factors on 18.3% String Ribbon Si cell. 91

Table 15 Measured String Ribbon Si solar cell parameters and LBIC responses . 97

Table 16 PC1D input parameters for String Ribbon Si solar cell simulation. . . . 100

Table 17 Measured and simulated solar cell parameters on String Ribbon Si using
an extracted Leff of 870 µm. . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 18 Summary of model calculations for loss in VOC. . . . . . . . . . . . . . . 117

Table 19 Cell performance of large-area EFG Si cells used in this study. . . . . . 124

Table 20 Calculated and measured loss in VOC for large-area EFG Si cells. . . . . 127

Table 21 Material and device baseline parameters for model calculations. . . . . . 130

Table 22 Initial input parameters used for device modeling in PC1D. . . . . . . . 134

x



Table 23 Average cell results of standard (A) and intense gettering (B) processes. 141

Table 24 Average cell results of standard (C) and intense hydrogenation (D) pro-
cesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Table 25 Average values of PL intensities for Ibb in each process step. . . . . . . 146

xi



LIST OF FIGURES

Figure 1 PV module shipment from 1982 to 2006. . . . . . . . . . . . . . . . . . . 2

Figure 2 US energy consumption by source in 2005. . . . . . . . . . . . . . . . . . 2

Figure 3 US renewable energy consumption by source in 2005. . . . . . . . . . . . 3

Figure 4 World cell/module production by substrate in 2006. . . . . . . . . . . . 4

Figure 5 A schematic of a solar cell with p − n junction. . . . . . . . . . . . . . . 10

Figure 6 I − V characteristic of a solar cell in the dark and under illumination. . 10

Figure 7 An equivalent circuit of a p − n junction solar cell. . . . . . . . . . . . . 11

Figure 8 Three recombination mechanisms: (a) SRH, (b) radiative, and (c) Auger. 13

Figure 9 A schematic illustration of carrier recombination on dislocation. . . . . . 15

Figure 10 Configuration of the carrier lifetime measurement system (WCT-100)
used in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 11 EFG Si ribbon growth: a schematic of EFG Si growth. . . . . . . . . . . 21

Figure 12 Pictures of EFG Si growth system: (a) octagonal EFG Si wafers and (b)
EFG Si growth in production line. . . . . . . . . . . . . . . . . . . . . . 22

Figure 13 String Ribbon Si growth: a schematic of String Ribbon Si growth. . . . 23

Figure 14 A picture of String Ribbon Si growth. Two ribbons are grown simulta-
neously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 15 RGS Si ribbon growth: a schematic of RGS Si growth. . . . . . . . . . . 25

Figure 16 Dendritic web Si ribbon growth: a schematic of web Si growth. . . . . . 26

Figure 17 Concept of impurity gettering process. . . . . . . . . . . . . . . . . . . . 27

Figure 18 Selected data of hydrogen diffusivity in Si. . . . . . . . . . . . . . . . . . 32

Figure 19 Schematics and evolution of high-efficiency monocrystalline Si solar cells:
(a) First modern crystalline Si cell, (b) Black Cell, (c) PESC, (d) Back-
Contact Cell (e) PERC, and (f) PERL Cell. . . . . . . . . . . . . . . . . 38

Figure 20 High-efficiency laboratory-scale mc-Si solar cells: (a) UNSW honeycomb
textured PERL-type cell and (b) Fraunhofer ISE 20.3% cell. . . . . . . . 41

Figure 21 Schematics of high-efficiency industry-scale monocrystalline Si solar cells:
(a) Sanyo HIT cell and (b) SunPower back-contact cell . . . . . . . . . . 44

Figure 22 Schematics high-efficiency industry-scale mc-Si solar cells: (a) Kyocera
RIE textured cell and (b) UKN mechanical grooved buried contact cell. 46

Figure 23 Long-wavelength IQE response of FZ Si cells. . . . . . . . . . . . . . . . 52

xii



Figure 24 SEM micrograph of Al-BSF region in FZ Si: (a) 750°C/1 s and (b)
750°C/120 s firing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 25 Carrier lifetime measurements on HEM, EFG, and String Ribbon Si.
Error bar indicates a standard deviation. . . . . . . . . . . . . . . . . . 54

Figure 26 Efficiencies of EFG Si cells as a function of a firing temperature. Error
bar indicates a standard deviation. . . . . . . . . . . . . . . . . . . . . . 58

Figure 27 Average carrier lifetime achieved for each firing scheme. Error bar indi-
cates a standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 28 (a) Process sequence of belt-line co-firing used in this experiment and (b)
efficiency distribution of EFG Si solar cells. Cell size is 4 cm2. . . . . . . 60

Figure 29 FTIR spectra in the range of 2000 to 3500 cm−1. . . . . . . . . . . . . . 63

Figure 30 Change of the total bonded hydrogen concentration after high tempera-
ture process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 31 SIMS depth profile of deuterium at Si surface after SiNx deposition and
anneal in an RTP unit at 750°C for 1, 60, and 120 s . . . . . . . . . . . 66

Figure 32 Normalized lifetime (τf/τi) of a hydrogenated bare EFG Si sample as a
function of annealing temperature for 1 s. . . . . . . . . . . . . . . . . . 67

Figure 33 Normalized lifetime (τf/τi) of a hydrogenated bare EFG Si sample as a
function of annealing time at 550°C. . . . . . . . . . . . . . . . . . . . . 68

Figure 34 A comparison of simulation and experimental data showing a fraction of
passivated defect as a function of annealing temperature for 1 s annealing
of a hydrogenated bare EFG Si sample (ν=1.0×1014 s−1). . . . . . . . . 70

Figure 35 A comparison of simulation and experimental data showing a fraction
of passivated defect in a hydrogenated EFG Si sample as a function of
annealing time at 550°C (ν=1.0×1014 s−1). . . . . . . . . . . . . . . . . 70

Figure 36 Room-temperature PL spectra on EFG Si after RTP dehydrogenation at
600°C/1 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 37 Room-temperature PL mappings of (a) band-to-band (Ibb), (b) defect
band (Idef), and (c) point-by-point ratio of Ibb(hydrogenated)/Ibb(initial)
representing the increase in lifetime. The mapping size is 50×22 mm2,
step=0.5 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 38 Line scan through a PL map to quantify the loss in carrier lifetime
[Ibb(hydrogenated)/Ibb(dehydrogenated)] and R-parameters (Idef/Ibb) changes
after hydrogenation and 700°C dehydrogenation. . . . . . . . . . . . . . 75

Figure 39 Progress of laboratory-scale ribbon (EFG and String Ribbon) Si solar cells. 78

Figure 40 Distribution of cell efficiency on String Ribbon Si fabricated by (a) pho-
tolithography and (b) screen-printed front contacts. Cell size is 4 cm2.
Units are % in efficiency, mV in VOC, and mA/cm2 in JSC. . . . . . . . 81

xiii



Figure 41 I − V curves of record high-efficiency String Ribbon Si cells fabricated
with photolithography (18.3%) and screen-printed (16.8%) contacts. Both
cells were tested and confirmed by National Renewable Energy Laboratory. 81

Figure 42 Histogram of solar cell efficiencies fabricated by photolithography and
screen-printing front contacts. . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 43 I−V curves of high-efficiency EFG Si cells fabricated with photolithogra-
phy (18.2%) and screen-printed (16.6%) contacts. Both cells were tested
and confirmed by National Renewable Energy Laboratory. . . . . . . . . 83

Figure 44 Average lifetime in 2.0–3.0 Ωcm String Ribbon Si after each process step.
Measurements were performed on several wafers and points (5 wafers
and total 40 points) to account for the inhomogeneous material quality.
QSSPC technique was used at an injection level of 1.0×1015 cm−3. Error
bar in the graph represents the standard deviation. . . . . . . . . . . . . 84

Figure 45 LBIC maps of (a) 18.3% (SR1-4) and (b) 17.1% (SR1-3) String Ribbon
Si cells. PVScan 5000 system with 980 nm laser was used. . . . . . . . . 86

Figure 46 IQE response of 2.5 Ωcm FZ and 2.0-3.0 Ωcm String Ribbon Si cells.
Simulated IQE response, corresponding to Leff value of 1590 and 1060
µm, was obtained by PC1D. . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 47 LBIC scans of String Ribbon Si solar cells. High, moderate, and low VOC

cells are shown in left, center, and right sides, respectively. . . . . . . . 96

Figure 48 Light-biased IQE response of selected regions (A1, A2, A3, C2, and C3)
in String Ribbon Si solar cells and simulated (PC1D) IQE response cor-
responding to Leff values of 870 µs, 95 µm, and 90 µm. . . . . . . . . . . 98

Figure 49 Calculated loss in VOC as a function of defective region with different Leff

ratio or recombination intensity. Cell was divided into two regions (high
and low Leffs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 50 Calculated loss in VOC for each area fraction of defective regions as a
function of moderate region. . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 51 Histograms of LBIC response shown in Fig. ??. Maximum LBIC response
was 0.62 A/W for all three cells. . . . . . . . . . . . . . . . . . . . . . . 108

Figure 52 Methodology developed in this model. . . . . . . . . . . . . . . . . . . . 109

Figure 53 IQE response of 17.1% String Ribbon Si cell (SR1-3) in high (A) and low
(B) LBIC response regions. Simulated IQE response, corresponding to
Leff value of 1060 and 85 µm, was obtained by PC1D. . . . . . . . . . . 110

Figure 54 LBIC scans of 4 cm2 String Ribbon Si solar cells. . . . . . . . . . . . . . 115

Figure 55 Measured IQE response on String Ribbon Si solar cells. . . . . . . . . . 116

Figure 56 LBIC scans of 4 cm2 HEM and EFG Si solar cells. . . . . . . . . . . . . 118

Figure 57 Measured and simulated IQE response on HEM mc-Si solar cells. . . . . 119

xiv



Figure 58 Measured and simulated IQE response on EFG Si solar cells. . . . . . . 120

Figure 59 PC1D simulations of cell efficiency as a function of bulk carrier lifetime. 121

Figure 60 Procedure to obtain τbu from τA, τB, area fraction of regions A and B. . 122

Figure 61 Relationship between τB, area fraction, ∆VOC, and τbu. The cell SR6
(τbu = 9 µs, ∆VOC = 40 mV, τB = 2.0 µs, and AB = 40%) is also shown
in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 62 LBIC scans of 100 cm2 EFG solar cells. . . . . . . . . . . . . . . . . . . 125

Figure 63 Measured and simulated IQE response in specified locations in Fig. ??. 126

Figure 64 Linear approximation of Leff in µm from LBIC response in A/W. The
best and worst points of LBIC response are indicated in the plot. . . . . 128

Figure 65 Model calculations for ∆VOC as a function of (a) base resistivity, (b) cell
thickness, (c) τB, and (d) τavg. . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 66 Model calculations of VOC as a function of carrier lifetime in region A
(τA). Device thickness is 300 µm. . . . . . . . . . . . . . . . . . . . . . . 132

Figure 67 Contour plot of (a) current and (b) future ribbon Si solar cell efficiencies
as a function of area fraction of region B and τB. . . . . . . . . . . . . . 135

Figure 68 Process sequence for standard and intense gettering processes. . . . . . 140

Figure 69 Cell configuration used in this study. . . . . . . . . . . . . . . . . . . . . 140

Figure 70 Cell efficiency distribution of standard (A) and intense gettering (B) pro-
cesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 71 Process sequence for standard and intense hydrogenation processes. . . 143

Figure 72 Cell efficiency distribution of standard (C) and intense hydrogenation (D)
processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Figure 73 Front and rear PL scans (Ibb) of four EFG Si samples: 1) unprocessed
or as-grown, 2) P diffused and PECVD SiNx on the front, 3) P diffused,
PECVD SiNx on the front and Al-BSF on the rear, and 4) P diffused and
PECVD SiNx on the front and rear. . . . . . . . . . . . . . . . . . . . . 145

Figure 74 Results of PC1D simulations with and without surface texturing as a
function of carrier lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 75 Surface texturing using an acidic etch (H2SO4/HF/HNO3) solution on
String Ribbon Si. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xv



SUMMARY

The cost of photovoltaic (PV) systems needs to be reduced by a factor of three to four

to make PV cost-effective with conventional energy sources. This can be accomplished by

fabricating high-efficiency cells on low-cost materials using simple and high-throughput cell

fabrication technologies. Currently, more than 90% of PV modules are produced from crys-

talline Si, and most of it is grown in the form of ingot and then sliced into wafers accounting

for ∼50% of the PV module manufacturing cost. This cost can be significantly reduced by

using the ribbon-type crystalline Si materials, which can be grown directly from the Si

melt. This eliminates the need for ingot slicing and deep chemical etch required for surface

damage removal. However, the growth of the ribbon Si materials leads to relatively high

concentration of metallic impurities and structural defects, resulting in very low as-grown

carrier lifetime, typically 1–5 µs. These lifetime values are not sufficient to produce high-

efficiency cells. Edge-defined film-fed grown (EFG) and String Ribbon Si materials are two

promising ribbon Si candidates for the cost-effective PV and are the main focus of the work

described in this thesis. The overall goal of this research is to produce high-efficiency cells

on EFG and String Ribbon Si by enhancing the carrier lifetime during the cell processing

through characterization and understanding of electrically active defects and technology

development to passivate them. Extensive device modeling has been performed to quan-

titatively assess the impact of defect inhomogeneity on cell performance. The research in

this thesis was divided into five major tasks discussed below.

The objective of the first task (Chap. IV) was to demonstrate that the rapid thermal

processing (RTP) can enhance the defect hydrogenation and provide a high-quality Al-doped

back surface field (Al-BSF) simultaneously. Firing of screen-printed contacts influences the

degree of defect hydrogenation as well as the quality of Al-BSF. The RTP provides a better

opportunity to tune the firing cycle for the best results. Both monocrystalline float-zone

xvi



(FZ) Si and mc-Si (cast, EFG, and String Ribbon) cells were fabricated simultaneously

using an RTP firing of screen-printed contacts to accomplish this task. The FZ Si cells

were analyzed to investigate the RTP firing time dependence of Al-BSF quality, which was

quantified in terms of the uniformity of Al-BSF and open-circuit voltage (VOC) using a

scanning electron microscopy (SEM), current-voltage measurements, and long-wavelength

internal quantum efficiency (IQE) measurements. It was found that a short RTP firing cycle

(1 s) is sufficient to provide the Al-BSF quality as good as 60 and 120 s firing cycle. The mc-

Si cells were used to study the effectiveness of the rapid firing on defect hydrogenation, which

was assessed through the carrier lifetime measurements using a photoconductance tool. The

lifetime measurements revealed that a short firing cycle enhanced the carrier lifetime in

ribbon Si materials from 8–12 µs, after the P diffusion gettering, to ∼100 µs. In addition,

cell efficiency as high as 16.1% was achieved on EFG Si using the optimized contact firing

process developed in this task. An attempt was made to transfer the fabrication process

established in the RTP system to a more manufacturable continuous belt-line furnace. The

rapid co-firing of the front and back contacts in a belt-line furnace also produced ∼16%-

efficient ribbon Si cells.

The second task (Chap. V) deals with the fundamental understanding of rapid firing-

induced effective defect hydrogenation. In this task, it was found that there are two sources

for hydrogenation: plasma-enhanced chemical vapor deposited (PECVD) SiNx film itself

contains ∼1022 cm−3 atomic hydrogen and the SiNx/Si interface directly underneath the

PECVD SiNx also traps ∼1020 cm−3 atomic hydrogen. Characterization and analysis of

the two primary hydrogen sources, PECVD SiNx film and SiNx/Si interface, were per-

formed using Fourier Transform Infrared and Secondary Ion Mass Spectrometry techniques

in order to explain why short firing cycle can enhance the carrier lifetime effectively. It

was found that, upon contact firing, the release of hydrogen atoms from SiNx films and

SiNx/Si interface slows down with annealing time, indicating that the two sources are not

an infinite source of hydrogen for defect passivation. Degree of defect hydrogenation was

assessed by carrier lifetime enahncement, which raised the lifetime in ribbon Si materials

close to 100 µs. In selected cases, the hydrogenated bare EFG Si samples were re-annealed
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systematically to study the dehydrogenation kinetics by monitoring the rate of decrease in

carrier lifetimes and determine the activation energy of hydrogenated defects. Activation

energy for hydrogen-defect dissociation was found to be 2.4–2.6 eV, which falls between

the published activation energies for the dissociation of hydrogen-impurity and hydrogen-

dislocation complexes. This suggested that the hydrogenation in ribbon Si materials may

involve the passivation of impurity-decorated dislocations. This was also supported by a

scanning photoluminescence (PL) study, which showed a defect band at 0.8 eV below the

conduction band, which is attributed to dislocations or impurity-dislocation complexes in

the literature. Scanning PL spectroscopy maps clearly demonstrated that defective or low

carrier lifetime regions were effectively passivated during the rapid hydrogenation anneal

and the same regions were reactivated rapidly during the dehydrogenation anneals, which

were performed in the range of 400–700°C in a few seconds after removing the PECVD

SiNx film. It was concluded that the rapid hydrogenation was the result of the competition

between injection of hydrogen atoms from the SiNx film and the dissociation from hydro-

genated defects during the contact firing cycle. Since the injection or supply of hydrogen

slows down with time but its dissociation from defects continues at the same rate, rapid or

short firing cycle gives a better passivation.

In the third task (Chap. VI), understanding of defect passivation and technology devel-

opment in tasks 1 and 2 were used to construct an appropriate process sequence for achieving

the record high-efficiency String Ribbon Si solar cells (4 cm2) using both photolithography-

defined (18.3%) and screen-printed (16.8%) front grid contacts. A combination of device

fabrication, characterization, and analysis was used to explain the benefit of the process

technologies developed in this research and the potential of ribbon Si solar cells.

In the fourth task (Chap. VII), an effort was made to improve the understanding of the

impact of spatial distribution of defect inhomogeneities on fully processed high-efficiency

String Ribbon Si solar cells with screen-printed contacts. Since ribbon Si materials generally

have as-grown carrier lifetimes less than 5 µs, first, an attempt was made to enhance the

gettering and defect hydrogenation techniques to raise the area-average lifetime above 90

µs in order to increase the sensitivity and the impact of low diffusion length regions on
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cell performance. Then, a simplified analytical model was developed to estimate the loss

in VOC of String Ribbon Si cells based on the area fraction and recombination intensity of

the defective regions in the cells. Model calculations were compared with the experimental

data to demonstrate the accuracy of the model developed in this task.

In the fifth task (Chap. VIII), the analytical model developed in task 4 was utilized

to assess the performance loss in cast, EFG, and String Ribbon Si solar cells. The model

calculations were also extended to large-area industry-type EFG Si cells in order to verify the

acceptability of the analytical model for device characterization. A roadmap was established

for achieving high-efficiency ribbon Si solar cells in the presence of distributed active defects

using a combination of the analytical model and PC1D simulations. Advanced design

features were incorporated to develop cell designs that can lead to high-efficiencies (>17%) in

the presence of defects. Contour plots were generated to establish the relationship between

cell efficiency and the combination of area fraction and carrier lifetime in the defective

regions.

In Chap. IV, attempts were made to improve the material homogeneity and cell perfor-

mance by applying high-temperature thermal cycles and double-sided hydrogenation process

into cell fabrication to mitigate the defective regions in mc-Si cells. It was found that it

is quite difficult to eliminate the defective regions using conventional process technologies,

and further investigation is necessary to understand the nature of unpassivated defects for

achieving high-efficiency cells.

Finally, PC1D simulations revealed that the successful implementation of the surface

texturing can raise the ribbon Si cell efficiency to >18%.
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CHAPTER I

INTRODUCTION

1.1 Opportunity and Challenges in PV Energy Conversion

The demand for energy is growing rapidly because of the rapid increase in the worlds’

population and the rise in the standard of living. The majority of this demand has been

supplied by fossil fuels (oil, coal, and natural gas). However, the use of fossil fuels for

power generation causes pollution and a significant release of greenhouse effect gases, such

as CO2 and NOx. In addition, fossil fuels, especially oil, are depleting at a rapid pace.

Photovoltaic (PV) is one of the most promising sustainable energy technologies that can

solve the energy and environmental problems simultaneously because the solar energy is

essentially free, unlimited, and not localized in any part of the world and solar cells convert

it into electrical energy with zero emission. In the last ten years, the average annual growth

of PV module shipment has been greater than 35%/yr, as shown in Fig. 1 [1]. According

to the United States PV Industry Roadmap, by the year 2020, PV could supply 15% of

the new generating capacity needed in the United States each year and may become 10%

of the United States energy portfolio by the year 2030. In spite of its attractiveness and

advantages, PV accounted for less than 0.06% of the energy consumed in US in 2005 (Figs.

2 and 3 [2]), because the cost of PV electricity is roughly three to four times higher than

the electricity produced from conventional fossil fuels. Currently, the cost of a PV module

is about $3–4/W, which needs to decrease to about $1/W to be able to compete with

conventional fossil fuels. This target can be achieved by fabricating high-efficiency cells

on low-cost materials using high-throughput processes. The problem today is that high-

efficiency cells are too expensive, and the low-cost cells are not stable or efficient enough

to meet the $1/W target. This provided the motivation for achieving high-efficiency solar

cells on low-cost crystalline Si materials in this research.
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Figure 1: PV module shipment from 1982 to 2006.
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Most of the PV modules today (>90%) are produced from crystalline silicon [1]. Un-

fortunately, the crystalline silicon substrates alone account for 44% of the cost of a PV

module [3]. Therefore, the use of a low-cost silicon substrate and cell fabrication technolo-

gies without appreciably compromising the cell efficiency should help in achieving the goal

of cost-effective PV system. Cast and ribbon mc-Si materials involve relatively simpler

and cheaper crystal growth technologies than the monocrystalline Si, such as float zone

(FZ) and Czochralski (Cz) silicon. The ribbon silicon materials, which is the focus of this

research, offer an additional advantage in cost reduction by eliminating the kerf loss asso-

ciated with the wafer slicing and deep chemical etching associated with slicing damage [4].

However, the ribbon Si materials suffer from a relatively high concentration of metallic

impurities and structural defects. This limits the as-grown carrier lifetime in the range of

1.0 to 5.0 µs, which is not sufficient to produce high-efficiency cells. The challenge is to

take advantage of the low-cost silicon mateiral and to develop fabrication technologies that

can enhance the carrier lifetime during the cell processing, without any additional steps,

to achieve high-efficiency and cost-effective ribbon Si solar cells. If all the active defects
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cannot be passivated during cell processing, then it is also critical to understand and assess

the impact of remaining defects on cell performance and establish cell designs that can

produce high-efficiency cells in the presence of defects. High-efficiency is critical for cost

effectiveness because 1.0% increase in absolute cell efficiency in a 1.0 GW production line,

which produces 14% efficient cells, could result in ∼70 MW increase in annual production

capacity. This amounts to $280M increase in annual revenue using a current PV module

cost of $4.0/W. This provided the motivation for improving the efficiency of ribbon Si cells

in this research through fundamental understanding of defects, material inhomogeneity,

technology development, device modeling, and cell fabrication.

1.2 Specific Research Objectives

The overall goal of this study is to fabricate high-efficiency ribbon Si solar cells through

enhanced defect passivation, technology development, and fundamental understanding of

the impact of active defects on ribbon Si solar cell performance. A systematic approach to

meet this objective is outlined in the following five tasks. Task 1 involves the investigation

and optimization of the defect hydrogenation process using an appropriate combination of

plasma-enhanced chemical vapor deposited (PECVD) SiNx and screen-printed contact firing

4



in a rapid thermal processing (RTP) system to inject atomic hydrogen from PECVD SiNx

film into the bulk silicon. Since the firing cycle also influences the quality of Al-doped back

surface field (Al-BSF), the firing cycle is optimized to achieve an effective defect passivation

as well as back surface passivation simultaneously. Task 2 deals with the fundamental

understanding of hydrogenation-induced carrier lifetime enhancement in defective materials.

In this task, a model is developed to explain and quantify the lifetime enhancement resulting

from the rapid firing of cells, which utilizes the kinetics of hydrogen-defect dissociation.

Based on the fundamental understanding from this model, a contact firing cycle during the

RTP is established to maximize the retention of hydrogen at the defect sites for maximum

lifetime enhancement. In task 3, cell fabrication processes developed in this research are

integrated in proper sequence to achieve record high-efficiency String Ribbon Si solar cells

using photolithography-defined as well as screen-printed front grid contacts. Cell analysis is

also performed in this task to quantify and explain the loss mechanisms in the record high-

efficiency ribbon Si cells. In task 4, a simplified analytical model is developed to quantify the

effect of material inhomogeneity on the open-circuit voltage of String Ribbon Si solar cells

resulting from the remaining unpassivated defects. In task 5, the analytical model developed

in task 4 is applied to cast, EFG, and String Ribbon Si solar cells to assess the performance

loss resulting from the distributed active defects. In addition, the defect inhomogeneity

model is used in conjunction with solar cell modeling to predict the cell performance in the

presence of distributed active defects and provide guidelines for achieving high-efficiency

cells via defect engineering and cell design. The specific tasks proposed in this research are

described in more detail below.

1.2.1 Task 1: Investigation and demonstration of enhanced defect hydrogena-
tion in mc-Si materials using rapid thermal processing

The lifetime in as-grown ribbon Si is too low to achieve high-efficiency cells. Therefore, it is

important to enhance the carrier lifetime during the cell processing. Phosphorus diffusion-

induced impurity gettering and PECVD SiNx-induced defect hydrogenation are routinely

used as a part of solar cell fabrication processes to enhance the carrier lifetime in defective

Si materials. The objective of this task is to demonstrate that the rapid thermal processing

5



can enhance the defect hydrogenation and also provide a good Al-BSF simultaneously.

Both monocrystalline (FZ) and mc-Si (cast, EFG, and String Ribbon) cells are fabricated

simultaneously using RTP to accomplish this task. FZ Si cells are analyzed to investigate

the RTP firing time dependence of Al-BSF quality, and the mc-Si cells are used to study the

effectiveness of RTP on defect hydrogenation. The Al-BSF quality is quantified in terms

of back surface recombination velocity (BSRV) using scanning electron microscopy (SEM)

and long-wavelength internal quantum efficiency (IQE) measurements on FZ Si cells. Defect

passivation is assessed through carrier lifetime measurements.

1.2.2 Task 2: Fundamental understanding of carrier lifetime enhancement in
EFG Si through RTP-assisted reduction of hydrogen-defect dissociation

It is known that PECVD SiNx-induced defect hydrogenation plays an important role in

enhancing the carrier recombination lifetime in ribbon Si solar cells. Atomic hydrogen re-

leased from the PECVD SiNx film during the contact firing cycle penetrates the bulk Si

and attaches itself to defects to passivate them. However, the degree of passivation is a

strong function of firing cycle. In this task, an RTP system is used to optimize the de-

fect hydrogenation process through basic understanding of the passivation mechanism. In

selected cases, hydrogenated bare EFG Si samples are reannealed systematically to study

the dehydrogenation kinetics by monitoring the rate of change in minority carrier lifetimes

to determine the activation energy of hydrogenated defects. Scanning photoluminescence

spectroscopy is performed to identify the nature of passivated defects and understand the

process of hydrogen dissociation from the active defects in EFG Si. In addition, the under-

standing gained from the RTP and photoluminescence study is used to develop a co-firing

process for front and rear screen-printed contacts in a continuous belt furnace to achieve

high carrier lifetime and high-efficiency EFG Si solar cells.

1.2.3 Task 3: Fabrication and characterization of record high-efficiency String
Ribbon Si solar cells using photolithography and screen-printed front
contacts

In this task, understanding of defect passivation and technology development in tasks 1 and

2 are combined to construct appropriate process sequence to achieve record high-efficiency

6



String Ribbon Si solar cells using both photolithography-defined and screen-printed front

grid contacts. A combination of device fabrication, characterization, and analysis is used to

explain the benefit of the process technologies developed in this research and the potential

of ribbon Si solar cells.

1.2.4 Task 4: Development of an analytical model to assess the impact of
material inhomogeneity on String Ribbon Si solar cell performance

Inhomogeneously distributed electrically active defects are frequently found to be present in

mc-Si materials, even after effective P diffusion gettering and defect passivation. Their dis-

tribution and recombination activity can significantly degrade the cell performance. There-

fore, understanding and assessment of the impact of the inhomogeneous distribution of

defects on solar cell performance has become an area of active investigation. In this task,

an effort is made to improve the understanding of the impact of spatial distribution of defect

inhomogeneities on fully processed high-performance screen-printed String Ribbon Si solar

cells. Since ribbon Si materials generally have as-grown carrier lifetimes of less than 5 µs,

first, an attempt is made to enhance the gettering and defect hydrogenation techniques to

raise the area-average lifetime to above 90 µs in order to increase the sensitivity and the

impact of low diffusion length regions. Then, a simplified analytical model is developed to

approximately determine the loss in open-circuit voltage (VOC) of String Ribbon Si cells

based on the area fraction of low diffusion length regions mixed with high diffusion length

regions. Model calculations are compared with the experimental data to demonstrate that

the loss in VOC resulting from material inhomogeneity can be predicted with reasonable

accuracy for most cells by dividing the cell into two regions using the simple analytical

model.

1.2.5 Task 5: Application of the analytical model to project the efficiency
potential in the presence of inhomogeneous defect distribution

The analytical model developed in task 3 is utilized to assess the performance loss in cast,

EFG, and String Ribbon Si solar cells. A roadmap is established for achieving high-efficiency

ribbon Si solar cells in the presence of distributed active defects using a combination of

analytical model and PC1D device simulations. Advanced design features are incorporated

7



to develop cell designs that can lead to high efficiencies in the presence of defects. Contour

plots are generated to establish the relationship between cell efficiency and the combination

of area fraction and carrier lifetime of defective regions.
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CHAPTER II

FUNDAMENTALS OF CRYSTALLINE SILICON

MATERIALS AND SOLAR CELLS

2.1 Solar Cell Operation and Carrier Recombination Life-

time in Multicrystalline Si

A solar cell is a semiconductor device that converts sunlight directly into electricity via

photovoltaic effect. The photovoltaic effect is a physical phenomena that generates voltage

across the junction from the absorption of photons. When the sunlight is incident on the

surface of a semiconductor with p − n junction, the built-in field at the junction separates

the carriers (electrons and holes) generated by photons in the bulk. Electrons are collected

in n-type region, and holes in p-type region, resulting in the carrier separation and voltage

generation across the junction. A schematic of a basic crystalline Si solar cell with p − n

junction is shown in Fig. 5 . In this section, basic theory and physics of solar cell operation

and carrier recombination mechanisms are reviewed.

2.1.1 Solar cell operation and performance parameters

The solar cell efficiency is defined as the product of its short-circuit current density (JSC),

open-circuit voltage (VOC), and fill factor (FF ).

η =
JSC · VOC · FF

Pin

=
Jmp · Vmp

Pin
, (1)

where Pin is the incident power on the cell, and FF is the measure of squareness of the

current-voltage (I − V ) curve and can be expressed as [5]:

FF =
Jmp · Vmp

JSC · VOC
. (2)

Jmp and Vmp are the current density and voltage at the maximum power point, indicated

in Fig. 6, which contains the dark and illuminated I − V curves of a solar cell.
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The illuminated I − V characteristic of the solar cell is expressed as [5]:

J = JL − Jo1

[

exp
q(V + JRs)

kT
− 1
]

− Jo2

[

exp
q(V + JRs)

n2kT
− 1
]

−
(V + JRs)

Rsh

, (3)

where Jo1 represents the diode saturation current density that results from the thermal

generation of minority carriers in the base and emitter regions. The Jo2 corresponds to the

junction leakage current density, which represents the carrier generation-recombination in

the space-charge region. An equivalent circuit of a p − n junction solar cell is illustrated

in Fig. 7. The n2 is the ideality factors for second-diode and normally 2.0 [6, 7]. However,

n2 may vary depending on the energy level of the recombination center in the space-charge

region. Rs is the series resistance, and Rsh is the shunt resistance.

The open-circuit voltage, VOC, can be expressed as [5]:

VOC =
nkT

q
ln

(

JSC

Jo1
+ 1

)

, (4)

where n is the diode ideality factor of single-diode model, k is the Boltzmann’s constant, T

is the temperature, q is the electron charge, and Jo1 is the saturation current density. The
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Jo1 can be expressed as [5]:

Jo1 = Joe + Job

=
qn2

i Dp

NDLp

[

SfLp/Dp + tanh(Wn/Lp)

1 + (SfLp/Dp) tanh(Wn/Lp)

]

+
qn2

i Dn

NALn

[

SbLn/Dn + tanh(Wp/Ln)

1 + (SbLn/Dn) tanh(Wp/Ln)

]

,

(5)

where Joe and Job are the emitter and base components of saturation current density,

Dp and Dn are the diffusion coefficient of hole and electron, ND and NA are the doping

concentrations of emitter and base, Sf and Sb are the front and back surface recombination

velocities, Wn and Wp are the thickness of emitter and base regions, and Lp and Ln are

the minority carrier diffusion lengths in the emitter and base, respectively. The minority

carrier diffusion length in a p-type bulk material, Lb, can be expressed as [5]:

Lb = Ln

=
√

Dnτb, (6)

where τb is the minority carrier lifetime in the bulk. Clearly, Jo1 and VOC are a strong

function of carrier lifetime (τb).

2.1.2 Carrier recombination mechanisms and bulk lifetime

It has been shown in the previous section that the cell performance is a strong function of

total carrier recombination in the cell. There are multiple ways in which a minority carrier

can recombine in a cell. Net result of all carrier recombination mechanism is characterized

by a recombination lifetime. Three main recombination mechanisms determine the carrier

recombination lifetime: 1) radiative recombination τrad, 2) Auger recombination τAuger, and

3) Shockley-Read-Hall (SRH) recombination τSRH. These recombination mechanisms are

illustrated in Fig. 8. The net carrier recombination lifetime in the bulk (τb) can be expressed

as [8]:

1

τb

=
1

τrad
+

1

τAuger
+

1

τSRH
. (7)

The radiative recombination is less important in Si, because it is an indirect bandgap

material and its radiative lifetime is extremely high. The radiative recombination lifetime
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Figure 8: Three recombination mechanisms: (a) SRH, (b) radiative, and (c) Auger.

is expressed as [8]:

τrad =
1

B(po + no + ∆n)
, (8)

where B is the radiative recombination coefficient (2.0×10−15 cm3/s at 300K in Si [9]), po

is the equilibrium hole concentration, no is the equilibrium electron concentration, and ∆n

is the injected or excess electron concentration. The Auger recombination is important in

the heavily doped emitter region. The Auger lifetime is expressed as [8]:

τAuger =
1

Cp(p2
o + 2po∆n + ∆n2)

, (9)

where Cp is the Auger recombination coefficient (10−31–10−30 cm6/s at 300K in Si). The

SRH recombination is generally the most important process in Si (especially in low-cost Si

materials) because of the presence of impurities and structural defects in the bulk, which can

introduce deep energy levels or traps within the bandgap. During the SRH recombination

process, electron-hole pairs recombine through the deep-level traps, characterized by the

density (NT ), energy level (ET ) in the bandgap, and capture cross section (σn and σp for

electrons and holes, respectively). The SRH recombination lifetime is expressed as [8]:

τSRH =
τpo(no + n1 + ∆n) + τno(po + p1 + ∆p)

po + no + ∆n
, (10)
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where ∆p is the excess hole concentration, and n1, p1, τno, and τpo can be defined as:

n1 = ni exp
(ET − Ei)

kT
, (11)

p1 = ni exp
−(ET − Ei)

kT
, (12)

τno =
1

σnνthNT

, (13)

τpo =
1

σpνthNT

, (14)

where ni is the intrinsic carrier concentration, and νth is the thermal velocity of the carriers

(1.1×107 cm/s at 300K in Si [10]). Under low-injection level, the concentration of excess

minority carrier (electron) is small compared to the concentration of majority carrier at

equilibrium (∆n = ∆p � po) and Eq. (10) reduces to:

τSRH ' τno(1 + p1/po). (15)

For a midgap trap, p1 � po and Eq. (15) can further be simplified to [8]:

τSRH ' τno

=
1

σnνthNT

, (16)

which again shows that the SRH recombination lifetime is primarily a function of the active

defect density in the bulk.

2.1.3 Understanding of carrier recombination at the structural defects

It is well known that the structural defects in mc-Si materials cause a decrease in the carrier

lifetime. Carrier recombination at the structural defects is complex and can be understood

through the illustration of energy band diagram. The band structure of impurity-decorated

dislocation is shown in Fig. 9 [11], where EDe and EDh are the shallow dislocation bands,

and EM is the deep level trap induced by the presence of impurity. For clean dislocations,

the recombination between EDe and EDh takes place through the direct channel of RDe-Dh.

The decoration of dislocation by impurity, which has an energy level of EM , gives rise to

additional recombination channels, RC-M, RV-M, RDe-M, and RDh-M, and hence, enhances

the carrier recombination activity. In general, impurities and structural defects are non-

uniformly distributed over the mc-Si wafer. Therefore, the recombination activity of these
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Figure 9: A schematic illustration of carrier recombination on dislocation.

defects varies significantly from one wafer to another and within a wafer depending on the

distribution and concentration of impurities in the bulk. Once impurities are trapped at

dislocation sites, it is difficult to remove them from the bulk using conventional gettering

techniques. It has been reported in the literature [12] that many structural defects in ribbon

Si materials become decorated with impurities during the crystal growth, which makes it

very challenging to achieve high-efficiency cells on low-cost defective materials.

2.1.4 Carrier lifetime measurement techniques

High carrier lfetime is the key to achieving high-efficiency cells. There are many techniques

to measure the carrier lifetime in Si [13]. The photoconductance tool (WCT-100) used in

this study was developed by Sinton [14]. The illustration of lifetime measurement system

is shown in Fig. 10. A flash lamp is used to generate excess carriers in the wafer and con-

ductance, σ, is measured with the help of an rf bridge from which the carrier concentration

can be estimated. An effective lifetime is them obtained from the slope of the decay curve.

The measured lifetimes are always effective lifetime (τeff), which is composed of bulk
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Figure 10: Configuration of the carrier lifetime measurement system (WCT-100) used in
this study.

and surface recombination effects [13].

1

τeff
=

1

τb

+
1

τs

'
1

τb

+
2S

W
, (17)

where τb and τs are the bulk and surface recombination lifetime, respectively, S is the surface

recombination velocity, and W is the substrate thickness. The τb approaches τeff when S

is low. The S can be reduced to less than 10 cm/s on monocrystalline Si material using a

I2/methanol solution for surface passivation during the measurements [15].

The transient photoconductance decay (PCD) and quasi-steady-state photoconductance

(QSSPC) measurements have been utilized in this study to extract the carrier lifetime in Si

wafers. The effective carrier lifetime can be expressed as a generalized equation [16].

τeff =
∆n

U

=
∆n

G − R

=
∆n

G − d∆n
dt

, (18)
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where ∆n is the excess carrier density, U is the net recombination rate, G is the carrier

generation rate, R is the carrier recombination rate, and d∆n/dt is the carrier recombination

rate. There are two modes of measuring carrier lifetime. In mode 1, which is referred to as

photoconductance decay (PCD), short pulses are applied to generate carriers and the decay

of carrier concentration is measured in between the pulses. In mode 2, which is referred

to quasi-steady-state photoconductance (QSSPC), pulse duration is large relative to decay

sampling. Since there is no carrier generation between the light pulse during the transient

PCD measurements when carriers recombine and photoconductance decreases (G=0), Eq.

(18) can be written as:

τeff,PCD = −
∆n
d∆n
dt

. (19)

In the quasi steady-state mode, when the pulse interval is larger than sampling interval,

d∆n/dt=0, and hence Eq. (18) can be written as:

τeff,QSSPC =
∆n

G
. (20)

The transient PCD mode is capable of measuring the carrier lifetime greater than 50 µs,

while QSSPC set-up enables us to accurately measure the carrier lifetime less than 60 µs [17].

Since most of mc-Si materials have as-grown carrier lifetime less than 50 µs, the QSSPC

technique has been employed extensively for carrier lifetime measurements in this research.

The QSSPC technique has been developed by Sinton and Cuevas [17] to determine

the carrier lifetime from the steady-state photoconductance. Under the steady-state il-

lumination, the rates of electron-hole pair generation and recombination are equal. The

generation and recombination rates can be expressed as current densities, and total recom-

bination within the wafer can be expressed in terms of an effective carrier lifetime [18]. In

steady-state,

Jph = Jrec

=
q∆nW

τeff
. (21)

Equation (21) assumes an uniform distribution of excess carriers (∆n) across the wafer.

The increase in conductance due to the photogenerated excess carriers can be expressed
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as [18]:

σL = q(∆nµn + ∆pµp)W

= q(µn + µp)∆nW, (22)

where σL is the increase in conductance, q is the electron charge, and µn and µp are the

mobilities of electron and hole. Substituting Eq. (22) into Eq. (21) gives:

τeff =
σL

Jph(µn + µp)
(23)

The Jph can be expressed as [14]:

Jph = Jph,1 sun · X · T, (24)

where Jph,1 sun is the photogenerated current density at one sun illumination (38 mA/cm2,

pre-set), X is the illumination intensity in suns, and T is the wafer transmission coefficient,

which is typically 0.60–0.65 for bare Si wafer [19] because >35% of light is reflected from a

bare Si wafer.

In this research, the processed cells are etched down to bare Si using a sequence of

chemical solutions of 2:1:1 H2O:H2O2:HCl for Al removal, 1:1 HNO3:H2O for Ag removal,

10:1 H2O:HF for SiNx removal, and 15:5:2 HNO3:CH3COOH:HF for P-doped n+ emitter

and Al-BSF removal. The bare Si wafers are then immersed into an I2/methanol solution

for surface passivation, which makes τeff ' τb during the measurements. The recombination

lifetime is determined at an injection level of 1.0×1015 cm−3 to avoid the effect of shallow

traps on carrier lifetime [20].

The photoconductance tool used in this study offers a fast and an accurate extraction of

carrier lifetime. However, the drawback of this measurement is that it can only measure an

average lifetime over the region of ∼10 cm2 [21] because of the size of the rf coil used to sense

the conductance. In addition, the sensitivity is not completely uniform across the active

area of measurement [22]. Since the grain size of mc-Si materials is typically mm2 to cm2, it

might be difficult to correlate the area-averaged carrier lifetime with cell performance [23].

Recently, microwave-detected photoconductance decay (µW-PCD) measurements have been
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utilized by some research institutes for characterization of mc-Si materials and cells (e.g.

Fraunhofer ISE [24], ISFH [25], and University of Konstanz [26]). A potential advantage

of using µW-PCD system is its ability to map the carrier lifetime over the active area with

high resolution [27]. The mapping of carrier lifetime enables point-by-point comparisons of

the carrier lifetime before and after impurity gettering and defect hydrogenation processes.

2.2 Crystal Growth Technologies of Promising Ribbon Sil-
icon Materials

The cast mc-Si grown by heat exchanger method (HEM) is currently the most popular

material for PV accounting for more than 55% of PV modules [28]. However, cast mc-Si

technology requires ingot growth and slicing to obtain wafers. Ribbon Si growth technology

reduces the material cost further by eliminating the slicing process. The ribbon Si materials

are pulled directly from the Si melt, which is ideal for maximizing the use of Si. The use

of ribbon Si as a substrate should help in decreasing the cost of PV modules because the

growth technology is simpler, and equipment is less expensive compared to monocrystalline

Si, such as FZ, Cz, and cast mc-Si materials.

While ribbon Si materials offer the advantages for cost reduction, they usually suffer

from lower material quality and throughput. The single-furnace performance for ribbon

Si growth is shown in Table 1 [29]. Most of the ribbon Si materials are multicrystalline,

except for dendritic web, which is essentially monocrystalline with central twin plains.

Ribbon Si experiences high thermal stress during the crystal growth. Therefore, it contains

high density of structural defects, such as dislocations and twin boundaries, in addition to

impurities, such as Fe and C. The material quality, including the dislocation density and

some of the impurity concentrations, of the selected ribbon Si materials is shown in Table

2 [29].

The ribbon Si crystal growth techniques are reviewed in the following section. In addi-

tion, impurity gettering and defect hydrogenation techniques are introduced.
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Table 1: Performance of ribbon Si growth technologies.

20005-165-81-2
Dendritic

web

2-37500-1250012.5600-1000RGS

11755-165-81-2
String

Ribbon

1001658-12.51.65
EFG

octagon

Furnaces/

100 MW

Throughput

(cm2/min)

Width

(cm)

Pull speed 

(cm/min)
Method

Table 2: Material quality of ribbon Si materials.

104-1051018N.D.5-30, n
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105-1072x101810182, pRGS

5x105<5x10164x10171-3, p
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105-106<5x101610182-4, pEFG
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Figure 11: EFG Si ribbon growth: a schematic of EFG Si growth.

2.2.1 Edge-defined film-fed growth (EFG) Si

Edge-defined film-fed growth (EFG) Si is extensively used and studied in this research. The

EFG ribbon Si technology was first introduced for sapphire growth using molybdenum dies

by LaBelle in 1972 [30] and was first applied to Si ribbons using graphite shape-defining

dies and later to silicon tubes in 1975 by Ciszek [31]. In this growth technique, liquid Si

rises by capillarity up a narrow channel in the shaping die and spreads across the die’s top

surface, which defines the base of the meniscus from which the shaped crystal solidifies. The

schematic of EFG Si growth is shown in Fig. 11. EFG is the first non-conventional crystal

growth technique that was transferred to the large scale production in the PV industry.

Octagonal tubes (Fig. 12) with 10.0−12.5 cm wide flat faces are now used for production

of PV substrates [32]. Pulling rates are about 2.0 cm/min, but the 80 cm effective width

increases the throughput up to 160 cm2/min or ∼20 m2/day, which is about 20 times higher

than single ribbon pull technologies, such as Web and String Ribbon Si growth. A graphite

crucible and a graphite shaping die are used with induction heating. After the growth,

rectangular 10.0–12.5 cm wide wafers are cut by a Nd:YAG laser from the tube faces (Fig.
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(a)

(b)

Figure 12: Pictures of EFG Si growth system: (a) octagonal EFG Si wafers and (b) EFG
Si growth in production line.

12 [33,34]). The EFG Si is not a monocrystalline material but is made of elongated grains

and twins in the range of mm to cm wide and many cm long. Efficiencies of 18.2% [35]

and 16.4% [36] have been reported recently by Georgia Tech and SCHOTT Solar on this

material using laboratory and manufacturable cell process technologies, respectively. EFG

Si cells are in full commercial production at SCHOTT Solar, Inc. with an annual production

of >40 MW [37].

2.2.2 String Ribbon Si

String Ribbon Si is also extensively used in this research and represents a promising candi-

date for cost-effective PV. String Ribbon Si growth technique was introduced in 1980. This

technique uses foreign filaments or strings to support the ribbon Si in betwee the dendrites.

The growth takes place directly from a pool of molten Si without a die. The position of

the edges is maintained by two strings fed through the bottom of the crucible, which pass

through the melt to support the meniscus and the ribbon. The thickness of the ribbon is

controlled by surface tension, heat loss from the ribbon, and the pull rate. The schematic of
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Figure 13: String Ribbon Si growth: a schematic of String Ribbon Si growth.

String Ribbon growth is shown in Fig. 13 [38]. String Ribbons have been grown as wide as

8 cm, with the standard commercial cell size of 8×15 cm2 and ∼300 µm thick (Fig. 14 [38]).

The ribbons are pulled at a rate of about 1−2 cm/min, giving a throughput of about ∼10

cm2/min. Efficiencies of 17.9% [39] and 15.4% [40] have been reported recently by Georgia

Tech and University of Konstanz on this material using laboratory and manufacturable cell

process technologies, respectively. String Ribbon Si cells are currently in full commercial

production at Evergreen Solar, Inc. with an annual production of >15 MW [41]. Evergreen

Solar has recently developed a way to pull two ribbons simultaneously and is currently

working on four ribbon growth technology to enhance the throughput.

2.2.3 Ribbon growth on substrate (RGS)

Ribbon growth on substrate (RGS) is another promising ribbon Si technology. however,

RGS is not investigated in this research. In the RGS growth technique, the Si melt reservoir

and die are placed in close proximity to the top surface of a substrate on which the ribbon

is grown (Fig. 15 [42]). The principle is to have a large wedge-shaped crystallization

front. The die contains the melt and acts to fix the width of the ribbon. The thickness
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Figure 14: A picture of String Ribbon Si growth. Two ribbons are grown simultaneously.

of the ribbon is controlled by the shape of the die, pulling rate, and surface tension. The

directions of crystallization and growth are nearly perpendicular, in contrast to dendritic

web and String Ribbon, where they are parallel. The area of the growth interface is now very

large compared to the ribbon thickness. Columnar grains penetrate the ribbon thickness.

Impurity segregation across the thickness of the ribbon occurs. The grain size is comparable

to the ribbon thickness. After cooling, the Si sheet is separated from the coated substrate [4].

The R&D on RGS solar cells has been conducted at ECN in The Netherlands and at

University of Konstanz in Germany [43] and efficiencies as high as 12.3% (25 cm2) have

been reported using screen-printing technology [44].

2.2.4 Dendritic web Si

Dendritic web is one of the oldest ribbon Si technologies, which produces essentially monocrys-

talline ribbon Si. The dendritic web Si is grown directly from molten Si in a crucible without

any shaping devices. Development of dendritic web was first initiated at Westinghouse in

1970s [45]. A seed is dipped into molten Si and spreads laterally to form a button. When

the seed is withdrawn from the melt, two secondary dendrites propagate from the ends of
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Figure 15: RGS Si ribbon growth: a schematic of RGS Si growth.

the button into the silicon melt, forming a frame to support the freezing ribbon. The width

of the ribbon is controlled by the position of the two dendrites that support the liquid film,

and typical growth rates are 1−3 cm/min [4]. A schematic of dendritic web growth system

is shown in Fig. 16. Dendritic web typically has no grain boundaries, but it does have

multiple twin boundaries running parallel to the external surfaces. An efficiency of 17.3%

has been reported using a laboratory-scale process [46]. Dendritic web is also not used in

this research.

2.3 Impurity Gettering and Defect Passivation Techniques
for Minority Carrier Recombination Lifetime Enhance-

ment

The as-grown mc-Si materials suffer from relatively low carrier lifetime because of impurities

and defects. However, optimized cell processing can significantly enhance the carrier lifetime

in finished devices. Fortunately, P diffusion for emitter formation and Al alloying on the

rear for Al-BSF formation can getter or extract impurities from the bulk, and annealing
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Figure 16: Dendritic web Si ribbon growth: a schematic of web Si growth.

of PECVD SiNx can inject hydrogen to passivate defects. These techniques are critical for

achieving high-efficiency ribbon Si cells and discussed in the following sections.

2.3.1 Phosphorus diffusion-induced impurity gettering

Transition metal impurities give rise to deep levels in silicon and can degrade the bulk

lifetime if present in 1011–1016 cm−3 range [47]. The P diffusion-induced impurity gettering

technique has been studied extensively and implemented to improve the material quality

by gettering the metal impurities [48, 49]. It has been shown in the literature that fast

diffusers like Fe and Cr in the bulk are easier to getter than the slow diffusers like Ti and

Mo [50]. In the crystalline Si solar cell fabrication process, the purpose of P diffusion is not

only to form the n+ emitter but also enhance simultaneously the minority carrier diffusion

length by removing the impurities in the bulk Si by the well-known gettering effect called

kick-out mechanism [51]. A gettering process, illustrated in Fig. 17 [52], involves three

physical steps induced by heat treatment: (1) release of impurities from active region, (2)

diffusion of impurities through the bulk, and (3) capture of impurities in the gettering

site [52]. During the P diffusion, silicon interstitials are injected into bulk while kicking
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Figure 17: Concept of impurity gettering process.

out the substitutinal harmful impurities into the interstitial sites where they can move

rapidly to the sink formed by misfit dislocations generated near the surface being diffused.

Although the P diffusion gettering has been implemented successfully in PV industry, it

has also been reported in the literature that the effectiveness of P diffusion gettering is

quite poor in regions of high dislocation density [12,53]. It was found in [12] that some low

diffusion length regions in EFG Si are highly resistant to diffusion length improvement by P

gettering. The experimental results in [12] suggested that some of the structural defects in

EFG Si become decorated with precipitated metallic impurities during the crystal growth,

and such clusters of precipitated metal impurities are highly stable and cannot be gettered

by conventional techniques. There is a need to improve the understanding of the effect

of defect clusters on mc-Si solar cells and develop technologies to mitigate their effect. In

addition, it was reported in [53] that carrier lifetime in cast mc-Si wafers from bottom (low

dislocation density) region of ingots improves significantly after gettering, as opposed to the

wafers from the top region of ingot, which contains high dislocation density.

2.3.2 Aluminum alloying-induced impurity gettering

Annealing of Al layer on Si at high temperature (>577°C) can provide impurity getteing

sites during the formation of Al-BSF. Al is usually deposited on the rear side of wafers by
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evaporation (laboratory-scale) or screen-printing (industry-scale) technique. Upon anneal-

ing of Al on Si, molten Al/Si layer is formed, which serves as sink for impurities because

of much higher solubility of impurities in the molten Al/Si layer than solid Si [54]. A high

segregation coefficient between the solid and the liquid layers provides the driving force for

impurity gettering into the rear surface.

McHugo et al. [48] attempted to improve minority carrier diffusion length by annealing

an evaporated Al layer (2.5 µm) on the rear surface of the mc-Si wafers at 800–950°C for

3 hours and found that the very low quality regions showed no appreciable response to

gettering process. Joshi et al. [55] also made an effort to getter impurities by annealing of

evaporated Al (1.0 µm) on commercial cast mc-Si materials. Carrier lifetime did improve,

however, it was found that even after the Al gettering at 1100°C for 4 hours, there was a

wide range of diffusion length distribution.

Screen-printed Al has been employed by manufacturers because it provides low-cost and

high-throughput process compared to the evaporated Al. However, unlike the high purity Al

used for the vacuum evaporation process, the screen-printable Al conductor paste contains

impurities, such as Fe. Narasimha et al. [56] observed the degradation of cell performance

when Al-BSF was formed at elevated temperatures (>850°C). This degradation was the

result of injection of impurities from the screen-printed Al layer into the bulk Si, which

degraded the carrier lifetime throughout the device.

2.3.3 PECVD SiNx-induced defect hydrogenation

2.3.3.1 Hydrogen passivation of metallic impurities

Another technique that is known to enhance the carrier lifetime in defective Si is hydrogen

passivation of defects. The advantages of defect hydrogenation are that it can be performed

at low-temperature for a short time, which is consistent with the contact firing cycle. In

this technique, hydrogen is incorporated during the PECVD SiNx deposition, which is done

to form the anti-reflection coating. PECVD SiNx film undergoes rapid thermal treatment

during the firing of screen-printed contacts. Upon firing, hydrogen atoms are released from

SiNx film and diffuses into the bulk Si and interacts with metallic impurities and structural
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defects. The interaction of hydrogen with transition metal impurities has been extensively

studied by many researchers. It is well known that exposure of Si to a source of atomic

hydrogen leads to the passivation of both acceptor [57] and donor [58] impurities. Deep-level

transient spectroscopy (DLTS) has been used to identify hydrogen passivation of deep-level

impurities in monocrystalline Si [59]. There are two proposed mechanisms for the hydrogen

passivation of acceptors. One was qualitatively proposed by Sah et al. [57], which involves

the compensation of the acceptor by the donor state introduced by hydrogen in p-type

Si. The mobile H+ is attracted to the negatively charged acceptor ion, where it becomes

covalently bonded forming a neutral acceptor-hydrogen complex. The other mechanism

was suggested based on observation of IR spectra of hydrogenated p-type Si samples [60],

which showed silicon-hydrogen vibrational absorption band at ∼1870 cm−1. The proposed

mechanism in [60] involves atomic hydrogen tied to one of the four Si atoms surrounding

the substitutional B atom, leaving all the valence bonds satisfied. The hydrogen atom is

inserted between the B atom and one of its four Si atom neighbors, forming a bond to

the Si atom (Si-H). The B atom then relaxes toward the plane of its three Si neighbors.

The hydrogen passivation of n-type dopants in Si was first demonstrated by Johnson et

al. [61], who showed that the sheet carrier density decreased for thin n-type layers were

exposed to a hydrogen plasma at 150°C while the carrier mobility increased. One suggested

mechanism involves compensation of the donor ions by the deep acceptor state introduced

by hydrogen (H−) in n-type Si. The H− is attracted to the positively charged donor (D+),

where it becomes covalently bonded, forming a neutral donor-hydrogen complex. Bergman

et al. [62], based on observation of IR absorption bands, suggested that hydrogen is bonded

to Si rather than to the donor directly.

It has been demonstrated that substitutional Pt in Si behaves as a model impurity to

study the hydrogen passivation because H-Pt complex is thermally stable, and H-Pt bonds

in Si are readily identified by IR vibrations [63]. Recently, Stavola et al. [64, 65] combined

IR spectroscopy with introduction of Pt as trace impurities to trap and detect hydrogen

in Si to determine the concentration and depth of hydrogen introduced into Si during the

firing of SiNx film. In [64], hydrogen incorporation into Si by post-deposition anneal of a
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SiNx film was investigated for different deposition technologies [PECVD and hot-wire CVD

(HWCVD)] and annealing treatments [rapid thermal processing (RTP) and tube furnace].

The results in [64] indicated that HWCVD provided the most effective hydrogenation of Pt

impurities in Si. The SiNx film deposited in a low-frequency (50 kHz) PECVD reactor at

425°C was also effective in introducing hydrogen into Si. On the other hand, the SiNx film

deposited in high-frequency (13.56 MHz) PECVD reactor at 300°C introduced significantly

less hydrogen into Si than the films deposited in HWCVD or low-frequency PECVD reactors.

This is consistent with the results of carrier recombination lifetime measurements reported

in [66], which showed that the area-average lifetime of processed String Ribbon Si wafers

increased from 5–6 µs to 106 µs by the post-deposition anneal of low-frequency PECVD

SiNx, as opposed to only 29 µs for high-frequency PECVD SiNx. In addition, RTP was

found to be more effective than furnace anneal for hydrogen injection. This demonstrates

that PECVD SiNx is an effective source of hydrogen and an appropriate post-deposition

anneal can be very effective in passivating lifetime-limiting defects.

2.3.3.2 Hydrogen passivation of structural defects

It is well known that the structural defects such as dislocations and grain boundaries in mc-Si

act as recombination centers for carriers, causing lifetime degradation in mc-Si materials. It

has been shown that the dangling bonds in grain boundaries can be passivated by deuterium

diffusion [67] and plasma hydrogenation [68,69], where the density of dangling bonds at grain

boundary in polycrystalline Si film was significantly reduced by hydrogenation. Johnson et

al. [67] found that a factor of approximately 103 more deuterium should be incorporated

in the polycrystalline Si film than the density of dangling bonds for effective passivation.

In [69], the hydrogen passivation depth along the grain boundary in EFG Si was reported

using plasma hydrogenation process, which showed that surface recombination velocity S

of the grain boundary tends to decrease as the depth of hydrogen diffusion increases. The

EBIC micrographs revealed that the passivation depth was in the range of 5−200 µm.

Even though there is sufficient evidence in the literature that atomic hydrogen provides
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a passivation of electrically active impurities and structural defects, there is limited infor-

mation about how to utilize its potential for maximizing defect hydrogenation, especially

during the cell fabrication process without introducing additional processing steps. Most

mc-Si materials should benefit from hydrogenation because they contain significant number

of lifetime-limiting defects that become electrically inactive by interacting with hydrogen.

2.3.3.3 Diffusion of hydrogen in crystalline Si

For hydrogen to fully passivate the defects in crystalline Si, it needs to diffuse through the

entire bulk. The diffusion coefficient of an impurity in a semiconductor follows Arrhenius

behavior, D = Do exp(−Ea/kT ), where Ea is the activation energy, and the prefactor

Do includes entropy effects. The motion of hydrogen in semiconductors is known to be

influenced by interactions with impurities. The most straightforward situation occurs at

high temperatures (T>1000K), where hydrogen diffuses as an isolated particle (i.e., atomic

hydrogen in either neutral or positively charged state). The first determination of the

hydrogen diffusion coefficient in Si was performed by Van Wieringen and Warmoltz [70],

who obtained the following relationship in the temperature range of 1090–1200°C:

DH = 9.4 × 10−3 exp
(−0.48 eV

kT

)

(25)

Extrapolation of the above equation gives DH of ∼10−6 cm2/s at 350°C. However, other

researchers reported much lower values at the similar temperatures. Figure 18 shows the

selected data of hydrogen diffusivity in crystalline Si [71–73]. The huge difference in diffu-

sion coefficient values at low temperatures (350–400°C) from Eq. (25) and the experimental

results (Fig. 18) suggests that diffusion of hydrogen at low temperatures may be hindered

by some physical effects, which are not taken into account in Eq. (25). The diffusion of

hydrogen in multicrystalline Si is more complex than that in monocrystalline Si because

of the interaction of defects with hydrogen. The experimental results described above are

based primarily on monocrystalline Si. Sopori et al. [74] have reported the observation of

a higher bulk diffusivity of hydrogen in cast multicrystalline and silicon sheet. The hy-

drogenation was performed with a low-energy Kaufman ion source in an energy range of
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Figure 18: Selected data of hydrogen diffusivity in Si.

500–2000 eV. The implanted samples were analyzed by cross-sectional transmission elec-

tron microscopy, secondary ion mass spectroscopy (SIMS), electron beam-induced current

(EBIC), and infrared (IR) spectroscopy, and hydrogen diffusivity was expressed as:

D = 1.0 × 10−4 exp
(−Φ

kT

)

, (26)

where ΦFZ=0.56 eV, ΦCz=0.58 eV, and Φmulti=0.50 eV. It was suggested in [74] that the

diffusivity of hydrogen in Si depends on the processes that the wafer has undergone prior

to hydrogenation. Thus, diffusion and migration of hydrogen in defective Si is still not fully

understood and could be material or process dependent.

2.3.4 Rapid thermal processing for solar cell fabrication and defect hydrogena-
tion

Most PV manufacturers have been employing the conventional belt furnace for contact firing

because of its high-throughput. However, an RTP system is an attractive tool for solar cell

fabrication because it allows excellent control of temperature ramp-up and cooling rates as

well as peak-holding interval. RTP systems have been used successfully in the laboratory for

many crystalline Si solar cell fabrication steps, such as oxidation for surface passivation [75],
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diffusion for shallow emitter formation [76], and firing for screen-printed contacts [77, 78].

In this research, an RTP system is used extensively for screen-printed contact firing. This

section provides an overview of the RTP along with the motivation for applying it to low-cost

Si solar cells.

The crystalline Si wafers are subjected to many high-temperature treatments during the

fabrication of microelectronic devices or integrated circuits (ICs). The high-temperature

processing is mostly done by a conventional furnace process (CFP), where the Si wafers are

heated and cooled down slowly. In PV industry, the belt furnace is frequently employed for

diffusion and contact firing process to increase the throughput.

The motivation for using RTP is that most low-cost defective materials used for PV ap-

plications show lifetime degradation upon prolonged exposure to high temperatures (>950°C).

The RTP offers several advantages over CFP. CFP involves separate and lengthy furnace

diffusions and oxidations at high temperatures. This requires extensive wafer cleaning, pro-

longs cell processing, uses more chemicals and gases, and consumes a large thermal budget

(i.e. greater power consumption). RTP allows fast ramp-up and cooling rates, which reduce

the cell processing time. In addition, high-energy photons can accelerate semiconductor pro-

cessing. All these advantages translate into reduced cell processing cost. Lower thermal

budget may prevent defect interactions that often reduce bulk lifetime in low-cost defec-

tive materials. The challenge is to incorporate these advantages of RTP into an optimized

process sequence that leads to cost reduction without sacrificing cell efficiency.

Even though investigators have been trying to use RTP for solar cell fabrication, not

much attention has been focused on exploiting the use of RTP for maximizing defect hydro-

genation in mc-Si solar cells. Shorter process times along with rapid ramp-up and cooling

rates may enhance the retention of hydrogen at defects to improve defect passivation and

reduce the interaction between screen-printed pastes and defects to reduce the possibility

of junction shunting, which can lead to lower fill factor and performance of solar cells. This

provided the motivation in this research to investigate and optimize the rapid thermal firing,

which in a single short step can enhance PECVD SiNx-induced defect hydrogenation, im-

prove contact quality, and provide high-quality uniform Al-BSF to produce high-efficiency
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ribbon Si solar cells.
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CHAPTER III

HISTORY, PROGRESS, AND CURRENT STATUS OF

PROMISING PV TECHNOLOGIES

Besides crystalline Si, several other promising PV technologies are being investigated over

the years, such as thin-film cells, III-V-based compound semiconductor cells, dye-sensitized

cells, and organic/polymer cells. Currently, crystalline Si accounts for more than 90% of

the PV module shipment [1]. Thin-film semiconductors, such as a-Si, CdTe, and CI(G)S,

have about 6–7% of the market share. The concentrator cells using III-V materials accounts

only for ∼0.04%, and dye-sensitized and organic cells have negligible market share at this

time.

The multijunction solar cells based on III-V compound semiconductors are fabricated

by depositing multiple thin films using Molecular Beam Epitaxy or Metal-Oxide Chemical

Vapor Deposition technique for space [79] and concentrator [80] applications. Recently,

Spectrolab achieved 40.7% efficient GaInP/Ga(In)As/Ge multijunction concentrator cell

under an illumination of 240 suns. In spite of its high efficiency, the III-V compound solar

cells are the most expensive cells on a per-unit-area basis because of the cost of materials

and processing.

The dye-sensitized solar cells have a simple structure that consists of two electrodes and

an iodide-containing electrolyte. One electrode is composed of dye-coated highly porous

nanocrystalline titanium dioxide deposited onto a transparent conducting substrate. The

other electrode is a transparent conducting substrate or a tin oxide coated glass. An ef-

ficiency of 10.6% has been reported (cell area: 0.16 cm2) from Swiss Federal Institute of

Technology [81]. However, the stability issue still remains [82]. Significant R&D activities

are going on in companies, such as Konarka Technologies, Inc. [83] and Peccell Technologies,

Inc. [84], to commercialize this technology.

Organic solar cells are fabricated in the form of thin films (typically 100 nm) of organic

35



semiconductors, such as polymers or small-molecule compounds (e.g. polyphenylene viny-

lene, copper phthalocyanine and carbon fullerenes). Cell efficiencies are typically in the

range of 1–5%. However, like dye-sensitized solar cells, organic solar cells also suffer from a

performance degradation over time due to the exposure to oxygen, humidity, and temper-

ature [85]. The organic solar cells are still in R&D phase awaiting commercialization [86].

Thin-film technologies, including amorphous Si, polycrystalline CdTe, and CuInGaSe2,

are among the promising candidates because they have the potential of reducing the material

and manufacturing cost. The absorbing material is only 1–3 µm thick and the cell technology

provides the opportunity for monolithic integration. These technologies currently have

issues with efficiency, reliability, and scalability. The efficiencies are generally less than 10%

and production capacities are below 100 MW.

Crystalline Si provides an intermediate path between the high-cost, high-performance

multijunction cells and low-cost, low-performance thin-film cells. Crystalline Si materials

offer stable and high-efficiency PV modules using established processing technologies. How-

ever, Si materials grown by ingot methods requires a slicing to obtain wafers. In the case

of cast mc-Si wafers, which currently dominates the material for producing PV modules,

more than 65% of Si is lost as a form of kerf loss during the wafer slicing and subsequent

deep chemical surface etching processes [87]. This makes the wafer cost high. Further cost

reduction is possible by reducing the material cost. The ribbon Si materials, which are the

focus of this study, offer an unique opportunity to reduce the material cost by eliminating

the wafer slicing process because ribbon Si can be grown directly from the Si melt, as dis-

cussed in Chap. II. In addition, thin (<200 µm) ribbon growth is possible and makes it

attractive to cost-effective PV material.

In this chapter, history, progress, and current status of commercialized crystalline Si PV

technologies are discussed.
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3.1 History and Progress of High-Efficiency Crystalline Si
Solar Cells

The crystalline Si solar cell was first invented at Bell Laboratories in 1954 by Chapin, Fuller,

and Pearson [88]. The p − n junction cell is shown in Fig. 19(a) in which the thin layer of

p-type (B-doped) Si was formed over an n-type monocrystalline Si. The efficiency of this

device was about 6.0%.

A significant improvement in cell efficiency was achieved in 1972 at COMSAT Labora-

tories by applying the grid contacts on the front of the cells using photolithography tech-

nique [89,90]. This allowed much shallower diffused layers for junction formation, reducing

the effect of dead layers and increasing the short-wavelength response. The improved solar

cell was called “Violet Cell”, and efficiency was reported to be about 14% [89]. In 1974,

COMSAT Laboratories announced another improvement on cell performance by employing

the surface texturing technique and back surface field formation [91]. The random pyramid

texturing was developed in microelectronics and applied to cell fabrication by COMSAT

Laboratories, helping in the reduction of reflection loss. The back surface field was devel-

oped at NASA Lewis Research Center [92] by driving impurities, such as Al or B, into the

backside of a p-type wafer. The resulting impurity concentration gradient or step (p − p+)

repelled the electrons generated in the base region towards the front junction, improving

the long-wavelength response. The solar cell, shown in Fig. 19(b), was called “Black Cell”,

and efficiency was reported to be about 17% [90].

In 1984 and 1986, University of New South Wales (UNSW) achieved 19.1% and 20.9%

efficient cells, known as passivated emitter solar cell (PESC), on planar and microgrooved

FZ Si wafers, respectively [93, 94]. The PESC technology involved the P diffusion for

emitter formation at 800–950°C, thin (10 nm) passivating thermal oxide growth at 800–

850°C, photolithography-defined front grid contacts, Ti/Pd evaporation, Ag plating, and

ZnS/MgF2 double-layer antireflection (DLAR) coating. The microgrooved surface textur-

ing, shown in Fig. 19(c), was formed by NaOH anisotropic etching using photolithography

and masking oxide growth.
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(a) (d)

(b) (e)

(c) (f)

Figure 19: Schematics and evolution of high-efficiency monocrystalline Si solar cells: (a)
First modern crystalline Si cell, (b) Black Cell, (c) PESC, (d) Back-Contact Cell (e) PERC,
and (f) PERL Cell.
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The next major achievement was announced by Stanford University in 1988, first suc-

cessful implementation of point-contact formation [95, 96]. The device structure is shown

in Fig. 19(d). In this design, the effect of shading loss associated with grid contact for-

mation can be eliminated since the metal contacts are placed on the rear side of the cell.

However, the performance of the rear contact cells depends strongly on the quality of the

base material and surface passivation, because the photo-generated carriers have to travel a

long distance from the point of generation near the illuminated surface. King et al. [95,96]

achieved an efficiency of 22.3% using thermal oxide for surface passivation and lightly doped

(100 Ωcm) monocrystalline FZ Si (n-type) substrate. The rear point-contact cells have been

commercialized by SunPower Corporation.

In 1989, UNSW reported a passivated emitter and rear cell (PERC) with an efficiency

of 22.8% [97] on 0.2 Ωcm monocrystalline FZ Si materials. The schematic of PERC cell is

shown in Fig. 19(e). In this design, an inverted pyramid texturing technique was employed

to reduce the reflection loss from the front surface. The front and rear passivation layers

were formed by thermally grown oxide. The passivating and masking oxides for inverted

pyramid texturing formation were grown in an O2 with 2% trichloroethane ambient at

1000°C. The use of chlorine-based processing is to maintain high minority carrier lifetime

during the cell processing and to improve the passivation quality. The rear Al layer, in

conjunction with thermally grown oxide, acts as an effective reflector.

The highest conversion efficiency confirmed to date has been achieved by the passivated

emitter, rear locally diffused (PERL) cell, shown in Fig. 19(f) [98]. The difference between

PERC and PERL designs is the presence of the locally diffused regions on the rear side.

These locally diffused regions enable good electrical contacts to base regions and reduce

surface recombination velocity. This structure has resulted in 24.7% PERL cell on higher

resistivity (1.0 Ωcm) FZ Si materials.
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3.2 History and Progress of High-Efficiency Solar Cells on
Low-Cost mc-Si Materials

Since Si substrate accounts for ∼45% cost of a PV module, an extensive research is be-

ing conducted on low-cost Si materials, such as cast mc-Si and ribbon Si, which tend to

be multicrystalline in nature and contain higher concentration of metallic impurities and

structural defects.

In 1996, Georgia Tech reported 1.0 cm2 18.6% cell on 0.65 Ωcm cast mc-Si material

[99]. Cell fabrication process involved a 900°C/30 min P gettering diffusion followed by a

second high-temperature step, which produced an excellent SiO2 emitter surface passivation

and an Al-BSF. Defect hydrogenation process was performed by a forming gas anneal at

400°C. Front grid contacts were formed by a combination of lift-off photolithography, metal

evaporation, and electroplating.

In 1998, 1.0 cm2 19.8% mc-Si solar cell was reported by UNSW [100] using the well-

known PERL-type processing [98] and honeycomb surface texturing technique, shown in

Fig. 20(a). The 1.5 Ωcm, 260 µm thick mc-Si substrate was provided by Eurosolare.

Photolithography was used to form the honeycomb textured surface. An acid solution

(HNO3:HF = 50:1) was used to isotropically etch into the substrate to form hemispherical

wells. After the surface texturing, a standard PERL-cell process (described in previous

section) with a double-layer (ZnS/MgF2) AR coating was implemented to complete the cell

fabrication.

In 2004, Fraunhofer ISE announced the highest efficiency 1.0 cm2 solar cell with an

efficiency of 20.3% on 0.6 Ωcm, 99 µm thick cast mc-Si material provided by Kawasaki

Steel [101]. The device structure of this 20.3% mc-Si cell is shown in Fig. 20(b). The

fabrication process involved plasma surface texturing, 3.5 hours rear surface wet oxidation,

photolithography-defined front grid contacts, thin thermal oxide for front surface passiva-

tion, laser-fired rear point contacts, and a double-layer (TiO2/MgF2) antireflection (DLAR)

coating. The unique feature of this device is the formation of local BSF and point-contacts

using a laser.

Significant progress in ribbon Si cell efficiencies has also been reported by many research
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(a)

(b)

Figure 20: High-efficiency laboratory-scale mc-Si solar cells: (a) UNSW honeycomb tex-
tured PERL-type cell and (b) Fraunhofer ISE 20.3% cell.
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groups. In 1994, Sana et al. [102] reported 14.1% 1.0 cm2 EFG Si cell using laboratory-scale

processing. The fabrication process involved impurity gettering by annealing of evaporated

Al, thermal oxide for emitter surface passivation, lift-off photolithography front grid con-

tacts, a forming gas anneal at 400°C for 3.5 h for defect hydrogenation, and ZnS/MgF2

DLAR coating.

In 2003, Hahn and Geiger [103] reported 16.7% (EFG) and 17.7% (String Ribbon) 4.0

cm2 ribbon Si cells using laboratory-scale processing. The fabrication process involved an

Al-gettering step at 800°C for 30 min, a POCl3 diffusion for n+ emitter formation, thermal

oxidation for emitter surface passivation, firing of screen-printed Al for Al-BSF formation,

photolithography-defined front grid contacts, Al evaporation for rear contact, microwave-

induced remote hydrogen plasma defect passivation at 320°C for 60 min, and deposition of

ZnS/MgF2 DLAR coating.

The highest ribbon mc-Si solar cell efficiencies of 18.2% on EFG Si and 17.9% on String

Ribbon Si (both 4.0 cm2) have been reported by Georgia Institute of Technology [35, 39].

The fabrication process involved photolithography-defined front grid contacts, rapid thermal

processing of SiNx-induced defect hydrogenation and Al-BSF formation, and SiNx/MgF2

DLAR coating. These high-efficiency cells have clearly demonstrated the potential of low-

cost Si materials. However, the expensive and time-consuming processes to realize the

advanced cell designs, such as thermal oxide surface passivation, photolithography-defined

contacts with metal evaporation, and elaborate surface texturing for effective light trap-

ping, make them non-manufacturable. Table 3 [35,39,46,99–105] summarizes the efficiency

progress along with the key process technologies used in achieving high-efficiency laboratory-

scale mc-Si cells.

3.3 Industry-Scale Large-Area Solar Cells

Production-scale cells fabricated with manufacturable processing technologies have also

made a significant progress in recent years.
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Table 3: Progress of laboratory-scale mc-Si solar cell performance. All efficiencies were
confirmed independently.
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POCl
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(a)

(b)

Figure 21: Schematics of high-efficiency industry-scale monocrystalline Si solar cells: (a)
Sanyo HIT cell and (b) SunPower back-contact cell

Sanyo Electric achieved high-efficiency cells using hetero-junction with intrinsic thin-

layer (HIT) technology, which features a very thin intrinsic amorphous Si (a-Si) layer in-

serted between p-type a-Si and n-type crystalline Si. The novel HIT cell structure, shown

in Fig. 21(a) [106], is attractive because (i) intrinsic a-Si layer provides an excellent sur-

face passivation and high-quality p − n junction formation, (ii) low-temperature processes

(<200°C) prevents any thermal degradation of material quality, and (iii) lower tempera-

ture coefficient for efficiency degradation (−0.25%/°C for HIT as opposed to −0.45%/°C

for conventional cells [106]) increases the energy production. Sanyo has achieved HIT cells

(100 cm2) with an efficiency of 21.5% (confirmed by AIST) in the laboratory and 19.5% on

the production line. The annual production of HIT cells/modules was about 155 MW in

2006 [107].
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SunPower Corp. is commercializing novel high-efficiency back-contact cells [108]. In

back-contact cell design, interdigitated n+ and p+ diffused regions as well as grid lines

are located on the rear-side of the wafers, as shown in Fig. 21(b). Key design features

that contribute to high-efficiency include localized back contacts, which reduce contact

recombination losses, zero contact shading, which permits an optimization of light trapping

and passivation, and a backside metallization, which provides better internal reflection from

the backside and low series resistance. SunPower Corp. has achieved 21.5% (confirmed by

NREL) cell on a 1.0 MW/yr pilot line [108]. The annual production of SunPower’s back-

contact cells was about 63 MW in 2006 [107].

In 2004, Kyocera Corp. reported 17.7% (confirmed by JET) production-scale cast mc-

Si solar cells on 255 cm2, 1.5 Ωcm resistivity, and 280 µm thick substrate, as shown in

Fig. 22(a) [109]. The process sequence involved reactive ion etching for front surface

texturing, POCl3 n+ emitter formation (90 Ω/sq), PECVD SiNx deposition, screen-printed

metallization, and full-area Al-BSF and Ag grid contacts formation in a beltline furnace.

The average efficiency was 17.4%. Kyocera’s annual production was about 180 MW in

2006 [107].

In 2006, University of Konstanz reported 18.1% (confirmed by Fraunhofer ISE) large-

area (138 cm2) cast mc-Si cell using mechanical V-texturing, LPCVD SiNx deposition,

buried front contacts by mechanical grooving, electroless plating of Ni and Cu, Al screen-

printing for Al-BSF formation, and Al evaporation for rear contact formation [110]. The

device structure is shown in Fig. 22(b).

ECN reported 17% mc-Si solar cells on 156 cm2, 1.5 Ωcm resistivity, and 270 µm thick

materials using all in-line process [111]. IMEC reported 16.1% mc-Si cells on 156 cm2, 1.5

Ωcm resistivity, and 150 µm thick materials using i -PERC process. They also achieved

16.6% mc-Si cells on 100 cm2 and 180 µm thick materials and 17.3% 100 cm2 cells on 105

µm thick monocrystalline Cz Si [112].

The best reported efficiencies for large-area ribbon Si cells have been somewhat lower

than cast mc-Si cells probably because of the higher concentration of impurities and struc-

tural defects. University of Konstanz reported over 15% efficient 80 cm2 String Ribbon Si
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(a)

(b)

Figure 22: Schematics high-efficiency industry-scale mc-Si solar cells: (a) Kyocera RIE
textured cell and (b) UKN mechanical grooved buried contact cell.
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solar cells [40] using industry-type fabrication process. Recently, 92.3 cm2 16.4% EFG Si

cell was reported by RWE [36] (currently SCHOTT Solar), involving the emitter forma-

tion using POCl3 liquid source, SiNx AR coating deposition in a PECVD reactor, full-area

Al-BSF and Ag grid contact formation in a beltline furnace, and SiNx/MgF2 DLAR coating.

A summary of large-area mc-Si solar cell results along with the key process technologies

is shown in Table 4 [36,40,109–111,113–124].
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Table 4: Progress of large-area solar cell performance on low-cost mc-Si materials.
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CHAPTER IV

INVESTIGATION AND DEMONSTRATION OF

ENHANCED DEFECT HYDROGENATION IN

MULTICRYSTALLINE SILICON MATERIALS USING

RAPID THERMAL PROCESSING

As discussed in Chapter II, the ribbon Si has very low as-grown minority carrier lifetimes

in the range of 1–5 µs, which is not sufficient for achieving high-efficiency cells (>15%) with

screen-printed contacts. Solar cell fabrication usually involves P diffusion for n+ emitter

formation and PECVD SiNx deposition for anti-reflection coating. Both P diffusion-induced

gettering and PECVD SiNx-induced defect hydrogenation have been shown to improve

the minority carrier lifetime in bulk Si [125]. This chapter demonstrates how the use

of rapid thermal processing can enhance the defect hydrogenation without sacrificing the

Al-doped back surface field (Al-BSF) quality. This is accomplished by fabricating both

monocrystalline Si (FZ) and mc-Si (cast mc-Si, EFG, and String Ribbon) cells. The FZ

Si cells are analyzed to investigate the firing time-dependence of Al-BSF quality, and the

mc-Si cells are analyzed to study the defect hydrogenation, bulk lifetime, and efficiency

enhancement due to rapid contact firing. An optimization process is further performed in

order to investigate the effectiveness of PECVD SiNx-induced defect hydrogenation as a

function of the contact firing temperature using EFG Si. The understanding gained from

the RTP study is used to develop a co-firing process for front and back screen-printed

contacts in a continuous belt furnace to achieve high-efficiency EFG Si solar cells.
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4.1 Investigation of Contact Firing Time on Carrier Life-
time Enhancement in Multicrystalline Silicon

In this study, 1.6 Ωcm cast mc-Si grown by heat exchanger method (HEM), 3–4 Ωcm EFG,

and 3–4 Ωcm String Ribbon Si are used. These materials are p-type and have a thickness

of ∼300 µm. HEM, EFG, and String Ribbon Si are provided by GT Solar Technologies

(Merrimack, NH), SCHOTT Solar (Billerica, MA), and Evergreen Solar (Marlboro, MA),

respectively. FZ Si wafers (2.5 Ωcm, 300 µm thick) are also processed to assess the effect

of contact firing time on Al-BSF quality. After the initial cleaning process, the wafers

were P diffused in a POCl3 furnace at a set temperature of 877°C for 20 min to form

n+ emitter with a sheet-resistance of 40−50 Ω/sq. A SiNx AR layer with a thickness of

∼800 Å and a refractive index of 2.0 was deposited in a low-frequency (50 kHz) PECVD

reactor at 425°C. A commercial Al paste was screen printed on the entire back surface

followed by an anneal in a rapid thermal processing (RTP) system (AG Associates Heatpulse

610) at 750°C for 1, 60, and 120 s in conjunction with the temperature ramp-up rate of

100°C/s and cooling rate of −40°C/s to form Al-BSF and promote PECVD SiNx-induced

defect hydrogenation (firing step ]1). The temperature of the sample during the heat

treatment in an RTP system was monitored by a thermocouple mounted on the front

surface. A commercial Ag paste was also screen printed on the front and annealed in an

RTP system with similar ramp-up and cooling rates for grid contact formation (firing step

]2). Samples were finally isolated by dicing saw and forming gas annealed at 400°C for

10 min. Several 4 cm2 solar cells were fabricated on each large-area wafer. The solar cell

parameters were extracted by illuminated and dark current-voltage (I − V ) measurements.

After the solar cell characterization, samples were stripped down to bare Si by chemical etch

and lifetime was measured at several locations at an injection level of 1.0×1015 cm−3 by

quasi steady-state photoconductance (QSSPC) technique [20] using photoconductance tool

(Sinton Consulting WCT-100). The I2/methanol solution was used for surface passivation

during the lifetime measurement. Cross-sectional Scanning Electron Microscopy (SEM)

(Hitachi 3500H) was also used to investigate the uniformity of Al-BSF region. Prior to the

SEM measurements, samples were broken along the crystal direction followed by etching in
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Table 5: Average cell parameters on FZ Si fabricated by three different scheme of firing
step ]1. Peak firing temperature was 750°C.

1816.40.75534.6629120 s

2016.30.74934.66301 s

FZ 1816.40.74834.862960 s

# of 

cells

Eff.

(%)
FF

JSC

(mA/cm2)

VOC

(mV)

Firing

#1

1:3:6 HF:HNO3:CH3COOH for 10 s. The purpose of this etching is to delineate the Al-BSF

(heavily p-doped) from the bulk (lightly p-doped) region.

4.2 Characterization, Results and Discussion

4.2.1 IQE measurements and SEM analysis of FZ Si solar cells for establishing
the process for effective Al-BSF formation

The open-circuit voltage (VOC) of a solar cell is a strong function of the minority carrier

lifetime as well as the quality of the Al-BSF region. Table 5 shows the average parameters

of FZ Si cells fabricated by contact firing at 750°C for 1, 60, and 120 s. The idea was

to alter the Al-BSF structures by selecting the firing conditions compatible with defect

hydrogenation.

The long-wavelength IQE analysis was performed on the FZ Si cells to assess the quality

of Al-BSF region for each scheme. Since the monocrystalline FZ Si used in this study has

very high carrier lifetime (>300 µs), the IQE response in the long-wavelength region is

related directly to the Al-BSF quality. The IQE response in the long-wavelength region

(800−1100 nm), shown in Fig. 23, was essentially independent of SiNx/Al firing time in the

range of 1–120 s at 750°C (firing step #1), indicating that the Al-BSF quality was essentially
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Figure 23: Long-wavelength IQE response of FZ Si cells.

identical for 1 and 120 s firings. In order to verify this, the cross-sectional SEM analysis was

performed for each scheme to investigate the uniformity and thickness of the Al-BSF region.

Figure 24 shows the SEM pictures of the Al-BSF regions in the FZ samples subjected to

1 and 120 s firing at 750°C. In both cases, the Al-BSF region was quite uniform with an

approximate thickness of ∼7.8 µm. The Al-BSF pictures, VOC, and the IQE demonstrate

that the thickness, uniformity, and quality of Al-BSF region are not a strong function of

RTP firing time in the range of 1–120 s. This is important because, as shown below, a very

short firing provides more effective defect hydrogenation.

4.2.2 Lifetime enhancement by P diffusion-induced gettering and PECVD
SiNx defect hydrogenation in multicrystalline silicon materials

P diffusion-induced impurity gettering technique has been studied and implemented by

many researchers to improve the material quality. In solar cell fabrication process, the

purpose of P diffusion is not only to form n+ emitter but also to improve the material

quality by removing the impurities from Si bulk by gettering effect. The effect of P diffusion

gettering on carrier lifetime is shown in Fig. 25. The lifetime increased from 32 to 88 µs, 3
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Figure 24: SEM micrograph of Al-BSF region in FZ Si: (a) 750°C/1 s and (b) 750°C/120
s firing.

53



30

88

3
9

3
9

164 160

144

103

72 72

99

77 76

0

25

50

75

100

125

150

175

200

As-grown P diffused Processed

750°C/1 s

Processed

750°C/60 s

Processed

750°C/120 s

HEM

EFG

String Ribbon

M
ea

su
re

d
 L

if
et

im
e 

(µ
s)

Figure 25: Carrier lifetime measurements on HEM, EFG, and String Ribbon Si. Error
bar indicates a standard deviation.

to 9 µs, and 2 to 9 µs in HEM, EFG, and String Ribbon Si, respectively. HEM mc-Si wafers

were chosen in the consecutive positions from ingot to minimize the effect of non-uniform

distribution of defects. A significant lifetime enhancement, about a factor of three, was

observed by P diffusion gettering, indicating that metal impurities were effectively gettered

from the Si bulk during the P diffusion. However, in ribbon Si materials, the carrier lifetime

was only 9 µs after P diffusion gettering. This corresponds to minority carrier diffusion

length (Lb =
√

Dnτb) of 167 µm in 3.0 Ωcm material, where Dn is the diffusion coefficient

of electron and τb is the bulk carrier lifetime. This is not sufficient to produce high-efficiency

cells with screen-printed contacts because the Lb of 167 µm is still much less than the wafer

thickness of 300 µm. Note that these lifetime measurements were performed on several

wafers (>10 wafers) and locations for statistical purpose at an injection level of 1.0×1015

cm−3 using QSSPC technique.

Since P diffusion gettering alone is not sufficient to enhance the carrier lifetime to a
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Table 6: Average cell parameters on HEM, EFG, and String Ribbon Si. Peak firing
temperature was 750°C.

4015.20.76633.16001 s

EFG 4214.90.76033.059560 s

4414.90.76532.8591120 s

2416.10.77333.46221 s

HEM 2616.00.76833.462260 s

2615.70.76633.1621120 s

2914.70.77132.1595120 s

3115.10.77232.56001 s

String

Ribbon
3114.80.77332.159560 s

# of cellsEff. (%)FF
J

SC

(mA/cm2)

V
OC

(mV)

Firing

#1

satisfactory level, the next step was to investigate the contact firing conditions to passivate

defects via hydrogenation without degrading Al-BSF quality. Multiple 4 cm2 solar cells

were fabricated on large-area cast and ribbon mc-Si. The average solar cell performance

parameters obtained in this experiment are summarized in Table 6. It is notable that the

highest average solar cell performance was achieved for the 1 s firing case. The highest

average VOC in EFG Si was 600 mV for 1 s firing. It decreased to 595 mV for 60 s and 591

mV for 120 s firing. The maximum EFG Si cell efficiency achieved by 1 s firing scheme was

16.1% (VOC = 614 mV, JSC = 33.7 mA/cm2, FF = 0.779), which was measured at National

Renewable Energy Laboratory (Golden, CO). In the case of String Ribbon Si, the VOC and

JSC showed a similar trend with EFG Si cells, indicating that the short firing cycle provides

very effective defect hydrogenation in ribbon Si materials. The solar cells fabricated on

HEM mc-Si showed little difference in VOC. This is probably because the carrier lifetime

after P diffusion (88 µs) is sufficient to produce solar cells with reasonable performance in

HEM mc-Si. The carrier lifetime of 88 µs is nearly equivalent to the Lb of 500 µm in 1.6

Ωcm material, which is much greater than the substrate thickness of 300 µm.
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It is clear, based on the results shown in Table 6, that the effective defect hydrogena-

tion occurs rapidly during the contact firing. To verify that the short annealing process

enhances the lifetime effectively, processed solar cells were stripped down to bare Si, and

lifetime measurements were performed on each material. A large number of processed

wafers (>10 wafers) were subjected to the lifetime measurements to satisfy the statistical

requirements since the mc-Si materials have an inhomogeneous distribution of electrically

active defects. The results of lifetime measurements on these three kinds of processed wafers

used in this study are shown in Fig. 25. Note that the error bar in Fig. 25 indicates a

standard derivation. A significant enhancement in carrier lifetime was observed after the

SiNx-induced defect hydrogenation during the contact firing process. Consistent with solar

cell data in Table 6, it was found that the lifetime for 1 s firing gave the highest average value

compared to other two firing schemes (60 s and 120 s) in all three materials, supporting the

higher solar cell performance on mc-Si materials in Table 6 for 1 s firing scheme.

4.3 Investigation of PECVD SiNx-Induced Defect Hydro-

genation in EFG Si as a Function of Contact Firing
Temperature

In the previous section, it was found that a rapid contact firing cycle enhances bulk carrier

lifetime as well as cell efficiency because of the effective defect hydrogenation. In this section,

a process optimization was further performed in order to investigate the effect of contact

firing temperature on bulk carrier lifetime and cell efficiency.

EFG Si solar cells were again fabricated by the two-step RTP firing process. After P

diffusion process, the SiNx AR coating was deposited in a PECVD reactor. Commercial

Al paste (Ferro FX53-038) was screen printed on the entire rear surface and the EFG Si

wafers were annealed in an RTP unit at 725, 750, 775, 800, and 825°C for 1 s with a fast

temperature ramp-up rate of 100°C/s and cooling rate of −40°C/s (firing step ]1). The

Ag front grid (Ferro 3349) was then screen printed and fired at 700°C in an RTP unit

with similar ramp-up and cooling rates (firing step ]2). A forming gas contact anneal

was performed at 400°C for 10 min at the end of the process. Thirty-six 4 cm2 cells
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were fabricated for each process scheme in this study to account for the inhomogeneity

in the material quality of the EFG Si. The illuminated and shaded I − V measurements

were performed to extract the cell performance parameters. The first step involved 1 s

hydrogenation at different temperatures, during which PECVD SiNx on the front and Al

on the back were fired simultaneously. The second RTP step involved firing the Ag grid

after screen-printing the Ag paste. The average values of the open-circuit voltage (VOC),

short-circuit current density (JSC), fill factor (FF ), and efficiency for each firing scheme

are shown in Table 7. Table 7 indicates that firing at 775°C for 1 s gave maximum average

VOC (600 mV). Average FF decreased from 0.748 to 0.720 when the firing temperature was

raised from 775°C to 825°C for the Ag paste used in this study. The average cell efficiency

for each scheme as a function of peak hydrogenation temperature is shown in Fig. 26. The

hydrogenation at 775°C for 1 s gave the average efficiency of 15.3% with a maximum of

15.9% (VOC=605 mV, JSC=34.1 mA/cm2, FF=0.769), which was confirmed by National

Renewable Energy Laboratory (Golden, CO). Figure 26 also reveals that hydrogenation at

a higher firing temperature (≥800°C) produces less efficient EFG Si solar cells. The average

cell efficiency for 825°C/1 s hydrogenation was only 13.5%, indicating a 1.8% loss in absolute

efficiency compared to the 775°C/1 s hydrogenation. Such a huge loss in efficiency cannot

be explained by the observed decrease in FF . This loss is largely attributed to the carrier

lifetime degradation because of the enhanced dissociation of atomic hydrogen from the

hydrogenated defect sites at higher temperature.

To support the above hypothesis, QSSPC lifetime measurements were performed after

stripping the cell down to bare Si. An average minority carrier lifetime of 93 µs was achieved

with a maximum of 169 µs for the peak hydrogenation temperature of 775°C, as shown in

Fig. 27. It should be noted that the lifetimes were measured by the QSSPC technique

and averaged over thirty-two different locations (four wafers and eight different locations

per wafer) on EFG Si for each firing scheme. The average carrier lifetime decreased to 74

µs for the 800°C/1 s hydrogenation and to 50 µs for the 825°C/1 s hydrogenation. This

decreasing trend in carrier lifetime at higher temperature is consistent with the trend in cell

performance in Table 7. It is proposed that this decreasing trend in carrier lifetime is the
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Table 7: Average cell parameters for each firing scheme. Firing time was 1 s for all cases.

13.50.72032.4579825°C

14.60.72434.0596800°C

15.30.74833.9600775°C
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Figure 26: Efficiencies of EFG Si cells as a function of a firing temperature. Error bar
indicates a standard deviation.
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Figure 27: Average carrier lifetime achieved for each firing scheme. Error bar indicates a
standard deviation.

result of reactivation of hydrogenated defects at higher annealing temperature. The degree

of hydrogenation is dictated by the competition between the supply of hydrogen atoms to

the defects from the SiNx layer and the dissociation of hydrogen from the defects. These

two processes happen simultaneously during the hydrogenation or firing cycle. More char-

acterizations and modeling are performed in the next chapter to explain this phenomenon.

4.4 Development of Manufacturable Belt Co-Firing Pro-

cess for Maximum Hydrogenation in EFG Silicon

The optimum hydrogenation cycle of 775°C/1 s gave an average EFG Si cell efficiency of

15.3% with a maximum of 15.9%, as shown in Fig. 26. However, this process involved

two-step RTP contact firing where hydrogen passivation of defects was performed at 775°C

for 1 s and the Ag grid contacts were fired at 700°C for 1 s to avoid contact shunting. Since

conventional belt furnace firing is preferred in the PV industry because of high-throughput

and continuous processing, attempts were made to tailor the temperature profile in a belt
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Figure 28: (a) Process sequence of belt-line co-firing used in this experiment and (b)
efficiency distribution of EFG Si solar cells. Cell size is 4 cm2.

furnace to come close to the RTP hydrogenation temperature profile, which can provide

effective hydrogenation along with effective Al-BSF formation and good quality Ag grid

contacts in a single firing step. This co-firing process scheme is shown in Fig. 28(a). To

avoid contact shunting in the single-step firing scheme, without sacrificing significant hy-

drogenation, the hydrogenation temperature had to be lowered slightly, and an appropriate

Ag paste (DuPont 4948) was selected, which could be fired up to 750°C without contact

shunting. This allowed us to hydrogenate the defects effectively by rapid co-firing of con-

tacts in a belt-line furnace, where peak temperature reached ∼750°C for a very short time.

This co-firing process produced a maximum efficiency of 15.9% with an average of 15.1%

based on 103 EFG Si cells (4 cm2) with screen-printed contacts. The efficiency distribution

of nine 4 cm2 EFG Si cells on a large-area EFG Si wafer is shown in Fig. 28(b).

4.5 Conclusions

It was found that the PECVD SiNx-induced defect hydrogenation occurs rapidly during the

screen-printed contact firing process. The effective defect hydrogenation anneal produced

4 cm2 EFG Si solar cells with an average efficiency of 15.4% and a maximum efficiency of
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16.1%. It was also demonstrated that the simultaneous firing of PECVD SiNx on the front

and Al on the back of an EFG Si wafer at an optimum temperature of 750–775°C for only 1

s raised its carrier lifetime from 3 to >90 µs. This is the result of very rapid SiNx-induced

hydrogenation of defects in EFG Si. A manufacturable single-step belt furnace firing process

was also developed in this chapter, which produced a maximum cell efficiency of 15.9% with

an average of 15.1% out of 103 EFG Si cells with screen-printed contacts.
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CHAPTER V

FUNDAMENTAL UNDERSTANDING OF MINORITY

CARRIER LIFETIME ENHANCEMENT IN EFG

SILICON THROUGH CHARACTERIZATION OF PECVD

SILICON NITRIDE FILMS AND RAPID THERMAL

PROCESSING-ASSISTED REDUCTION OF

HYDROGEN-DEFECT DISSOCIATION

To realize maximum benefit from a hydrogenation source, it is critical to optimize the firing

process to achieve high retention of atomic hydrogen at the defect sites. In the previous

chapter, the implementation of a rapid contact firing at an optimum temperature in an

RTP system gave a maximum enhancement in carrier lifetime (∼3 to ∼100 µs) and cell

efficiency (∼16%). In this chapter, characterization of two primary hydrogen sources, bulk

of PECVD SiNx film and SiNx/Si interface, is performed using Fourier Transform Infrared

(FTIR) and Secondary Ion Mass Spectrometry (SIMS) techniques in order to assess the

concentration of hydrogen-related bonds upon contact firing. In addition, a physical model

is developed in this chapter to explain how and why the proper use of the rapid contact firing

cycle can improve the defect hydrogenation in defective EFG Si, resulting in a significant

enhancement in carrier recombination lifetime and cell performance.

5.1 Characterization of PECVD SiNx Films as a Source of
Hydrogen Atoms for Defect Passivation

5.1.1 FTIR measurements to detect the change in N-H and Si-H concentra-
tions in PECVD SiNx films upon annealing

In the solar cell fabrication process, the SiNx films are commonly deposited on the front

surface of the wafers in a PECVD reactor to reduce the reflectance. Moreover, the deposited
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Figure 29: FTIR spectra in the range of 2000 to 3500 cm−1.

SiNx film serves not only as the antireflection coating but also as the source of hydrogen

for reducing the carrier recombination via passivation of defects at the surface and in the

bulk. In the SiNx film, hydrogen is present in the form of nitrogen-hydrogen (N-H) and

silicon-hydrogen (Si-H) bonds. The dissociation of bonded hydrogen in the SiNx film is

generally considered as a source of hydrogen atoms for defect hydrogenation.

FTIR measurements (Lester Lefkowitz/PIX04822) were performed on low-frequency (50

kHz) PECVD SiNx films deposited in this study on 300 µm thick, high-resistivity (500-1000

Ωcm), n-type FZ Si wafers to determine the change in concentration of N-H and Si-H bonds

in the deposited SiNx film as a function of annealing temperature and time. Prior to the

SiNx deposition, FZ Si wafers were etched and cleaned in chemical solutions. The SiNx film

with a refractive index of 2.0 was deposited on both sides of the substrate.

FTIR measurements on the SiNx film usually show two distinct peaks (Fig. 29) at

3340 cm−1 and 2180 cm−1, corresponding to N-H and Si-H bonds, respectively [126]. The

absolute concentrations of N-H and Si-H bonds were determined from the area of their

respective peaks, using the correlation coefficients in [127], after converting transmittance

into absorbance. Consistent with reported data in [128], the concentration of N-H bonds

decreased significantly after high temperature anneal. This is probably because the bonding
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Figure 30: Change of the total bonded hydrogen concentration after high temperature
process.

energy of N-H complex is weaker than that of Si-H complex. The concentrations of total

bonded hydrogen in the SiNx film after various heat treatments in an RTP unit are shown

in Fig. 30. A rapid decrease in bonded hydrogen content was observed when SiNx film was

annealed at high temperature (>750°C). Equally important is the fact that this decrease

is rapid initially (after 1 s anneal) and then slows down. A decrease in concentration of

bonded hydrogen in SiNx film due to high temperature anneal was also observed in [129].

This suggests that the SiNx film provides a limited source of hydrogen and its supply

decreases rapidly with the annealing time.

5.1.2 SIMS analysis of hydrogen at the PECVD SiNx/Si interface

In this section, the hydrogen incorporation at or near the Si surface was quantified by SIMS

analysis (Cameca IMS). In order to detect the hydrogen incorporation by SIMS, ND3 was

substituted for NH3 during the SiNx deposition in the low-frequency PECVD reactor. The

SiNx with a thickness of 725 Å was deposited on surface-polished and B-doped Czchralski

Si substrates with a resistivity of 50 Ωcm and a thickness of 525 µm. The thickness of SiNx

film was measured by using Ellipsometer (Plasmos SD2300) equipped with a 632.8 nm laser.

Prior to the SiNx deposition, the samples were cleaned in chemical solutions and P diffused
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in a POCl3 furnace. A 10 cm diameter Cz wafer was cut into four pieces, and Al paste was

screen printed on the back. The samples were then annealed in an RTP unit at 750°C for

1, 60, and 120 s in conjunction with a temperature ramp-up rate of 100°C/s and cooling

rate of −40°C/s, which are identical to the process used in solar cell fabrication. Prior to

the SIMS measurements, Al and SiNx layers were removed in chemical solutions.

Figure 31 shows the SIMS depth profiles of deuterium (D) in Si after SiNx deposition

in a PECVD reactor and anneal in an RTP unit at 750°C for 1, 60, and 120 s. The

detection limit for deuterium is approximately 3.0×1015 cm−3. The SIMS depth profile

revealed that after the low-frequency PECVD SiNx deposition, the surface concentration

of deuterium had 6.0×1019 cm−3, which can be considered as trapped deuterium at the Si

surface during the SiNx deposition. This trapping is the result of PECVD SiNx deposition-

induced surface damage, which could provide a second source for defect hydrogenation.

The surface concentration of deuterium dropped from 6.0×1019 cm−3 to 2.0×1018 cm−3

after 750°C for 1 s anneal in an RTP. This indicates that the trapped deuterium at or near

the Si surface diffused into bulk Si or the SiNx layer after a 750°C/1 s anneal. It is also

important to note that no appreciable difference in deuterium concentration at the surface

was observed after 1, 60, and 120 s anneal, indicating that the trapped deuterium diffuses

rapidly initially but its supply slows down rapidly during the high temperature (750°C)

anneal. This is consistent with the observations in [130] and [131]. This could explain why

longer anneal times are not as effective and can even be detrimental if the rate of defect

dehydrogenation is fast at the firing temperature. This aspect is modeled and explained in

the next section.

5.2 Understanding of Kinetics of Hydrogen-Defect Disso-
ciation Process in EFG Silicon

The FTIR and SIMS data in the previous sections revealed that the release of hydrogen

atoms from the low-frequency PECVD SiNx films and PECVD SiNx/Si interface is very

rapid initially and then slows down. This implies that the hydrogen supply may decrease

rapidly with time, while hydrogen dissociation from the passivated defects continues during
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Figure 31: SIMS depth profile of deuterium at Si surface after SiNx deposition and anneal
in an RTP unit at 750°C for 1, 60, and 120 s

the holding interval. As a result, a rapid firing should be able to retain more hydrogen

atoms at the defect sites and produce a higher minority carrier lifetime. To understand

and quantify the hydrogen-defect dissociation process, hydrogenated samples (750°C/1 s

firing in RTP) were first etched down to bare Si to remove the hydrogen supply (SiNx film)

and were then reannealed in an RTP unit in the temperature range of 400−700°C for 1

s. Some samples were also reannealed at 550°C for 5−60 s to study the reactivation of

hydrogenated defects as a function of time at lower temperature. Float-zone (FZ) Si with

resistivity of 1.3 Ωcm was used as a control to ensure that the change in carrier lifetime is

primarily due to the hydrogen out-diffusion and not because of any contamination during

the heat treatment. Figure 32 shows a rapid decrease in carrier lifetime above 550°C for

1 s anneal, while no appreciable change in carrier lifetime was observed in FZ Si, which

remained at 270−300 µs after 700°C/1 s and 550°C/60 s RTP annealing. Figure 32 also

shows that the normalized lifetime, τf/τi, where τi and τf are the carrier lifetimes before

and after annealing of hydrogenated samples, respectively, was not affected below 500°C for

the 1 s anneal. However, carrier lifetime dropped from 99 µs to 8.3 µs (τf/τi ' 0.08) after
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Figure 32: Normalized lifetime (τf/τi) of a hydrogenated bare EFG Si sample as a function
of annealing temperature for 1 s.

700°C/1 s annealing. The carrier lifetime decreases with the increased firing time even at

550°C, as shown in Fig. 33. Figures 32 and 33 clearly indicate that the hydrogen-defect

dissociation starts to occur even below the conventional contact firing temperatures in the

range of 700−800°C and its effect could become very significant for longer-holding times if

the hydrogen supply is cut off or becomes limited.

The hydrogen-defect dissociation can be expressed by the following reaction:

XH
dissociation−−−−−−−→ X + H, (27)

where H represents hydrogen and X represents a defect or impurity. Assuming that a

hydrogen-defect complex (XH) dissociates in accordance with the first-order reaction ki-

netics, the rate of change in the density of hydrogen-defect complexes can be expressed

67



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Time (s)

N
o

rm
a
li

z
e
d

 L
if

e
ti

m
e

0

20

40

60

80

100

M
e
a
su

re
d

 L
if

e
ti

m
e
 (
µ

s)

Figure 33: Normalized lifetime (τf/τi) of a hydrogenated bare EFG Si sample as a function
of annealing time at 550°C.

as [132]:

d[XH]

dt
= −k[XH] (28)

∫ N

NO

d[XH]

[XH]
=

∫ t

0
−kdt (29)

ln
N

NO

= −kt, (30)

where k is the reaction rate constant, NO is the density of hydrogen-defect complexes prior

to annealing the hydrogenated sample, and N is the density of hydrogen-defect complexes

after the heat treatment for time, t. Most first-order reactions are characterized by an

activation energy, and their rate is often expressed by the Arrhenius equation [132]:

k = ν exp
(−ED

kBT

)

, (31)

where ν is the frequency factor (frequency of dissociation attempts), ED is the activation

energy, kB is the Boltzmann constant, and T is the temperature. Substituting Eq. (31)

into Eq. (30) gives:

ln
N

NO

= −tν exp
(−ED

kBT

)

, (32)
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or

N

NO

= exp
[

−tν exp
(−ED

kBT

)]

, (33)

where N/NO is the fraction of passivated defects (hydrogen-defect complexes) remaining

after a dehydrogenation anneal [133–136].

Since it is difficult to measure NO and N directly, Eq. (33) was transformed in terms of

measured lifetimes τi and τf , assuming that τ at any stage is inversely proportional to the

concentration of unpassivated active defects. The fraction of passivated defects (hydrogen-

defect complexes), N/NO, can now be written as:

N

NO

=
concentration of passivated defects after annealing

concentration of passivated defects before annealing

=
NT − N ′

NT − N ′

O

, (34)

where N ′

O and N ′ are the concentrations of unpassivated defects before and after annealing,

respectively, which dictate the carrier lifetime. Note that N ′

O and N ′ are inversely propor-

tional to τi and τf , respectively. NT is the total concentration of lifetime-limiting defects

that can be passivated, which is also equal to the unpassivated defect concentration when

all the hydrogenated defects are reactivated and the lifetime does not decrease with further

annealing. The fraction of passivated defects can now be expressed in terms of measured

carrier lifetimes:

N

NO

=
1/τs − 1/τf

1/τs − 1/τi
, (35)

where τs is the saturated lifetime when all the hydrogenated defects are reactivated and the

lifetime does not decrease with further annealing. In this study, the fully dehydrogenated

carrier lifetime, τs, is 8 µs, which is obtained after annealing the samples at 700°C for 60 s.

τi is 99 µs for the temperature-dependence study in Fig. 32 and 91 µs for time-dependence

study in Fig. 33. According to the literature, the attempt dissociation frequency, ν, falls in

the range of 1.0×1013-1014 s−1 and was set to 1.0×1014 s−1 for the model calculations shown

in Figs. 34 and 35 using Eq. (33) [59,135]. The comparison between the experimental data

and model calculations is shown in Figs. 34 and 35. Simulations were performed using Eq.

(33). Figure 34 shows the case for 1 s dehydrogenation at different temperature, and Fig.
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Figure 34: A comparison of simulation and experimental data showing a fraction of pas-
sivated defect as a function of annealing temperature for 1 s annealing of a hydrogenated
bare EFG Si sample (ν=1.0×1014 s−1).
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Figure 35: A comparison of simulation and experimental data showing a fraction of pas-
sivated defect in a hydrogenated EFG Si sample as a function of annealing time at 550°C
(ν=1.0×1014 s−1).
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35 shows the case of annealing at 550°C for different times. Based on the limited data in

the literature, the ED values fall in the range of 1.5−2.5 eV for hydrogen-impurity complex

dissociation, and its value is 3.1 eV for hydrogen-dislocation complex dissociation [59,136].

Two N/NO versus temperature curves were first simulated and plotted on Figs. 34 and

35 using Eq. (33) and ED values of 2.3 eV and 3.1 eV to cover the range of hydrogen

dissociation from impurities and dislocations. The measured carrier lifetime data in Figs.

32 and 33 was then used to calculate N/NO versus temperature according to Eq. (35)

and plotted on Figs. 34 and 35 with the simulated curves. Notice that the experimental

data points fall within the simulated curves for hydrogen-impurity and hydrogen-dislocation

dissociation in both the figures. This supports that the dehydrogenation process involves

reactivation of passivated impurities, dislocations, or impurity-decorated dislocations during

the annealing process. The model fitted to the experimental data gave an activation energy,

ED, of 2.4 eV for ν of 1.0×1013 s−1 and 2.55 eV for ν of 1.0×1014 s−1 in EFG Si.

5.3 Room-Temperature Scanning Photoluminescence Map-

ping to Study the Hydrogen Passivation and Reactiva-
tion of Defects in EFG Silicon

After determining the activation energy for hydrogen-defect dissociation, room-temperature

scanning photoluminescence (PL) spectroscopy was performed in an attempt to identify

the nature of the passivated defects and to understand the process of hydrogen dissociation

from the electrically active defects in EFG Si. The PL spectrum was taken at room-

temperature using AlGaAs laser excitation. The two peaks in the PL spectra are shown in

Fig. 36: one at 0.8 eV corresponding to the defect band with PL intensity of Idef and the

other at 1.1 eV corresponding to the band-to-band PL intensity of Ibb. It has been shown

in [137] and [138] that the defect band peak at 0.8 eV corresponds to impurity-decorated

dislocations, which supports the conclusion from the activation energy analysis in previous

section. PL mappings were performed on a 50×22 mm2 EFG Si piece with spatial resolution

of 0.5 mm. The EFG Si samples were cleaned and phosphorus diffused, coated with SiNx

in a low-frequency PECVD reactor and hydrogenated in an RTP unit at 750°C for 1 s. The
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Figure 36: Room-temperature PL spectra on EFG Si after RTP dehydrogenation at
600°C/1 s.

SiNx AR coating was then removed in 10:1 H2O:HF solution prior to the PL measurements.

The intensity of both bands, Ibb and Idef, at a constant generation rate, G, can be ex-

pressed in terms of effective minority carrier lifetime (τeff), radiative band-to-band recombi-

nation lifetime (τrad), and radiative component of Shockley-Read-Hall lifetime (τSRH). The

τeff is the composite of radiative, non-radiative, and surface recombinations and is generally

dominated by non-radiative recombination in Si [137].

Ibb = C1 × G ×
τeff

τrad
(36)

Idef = C2 × G ×
τeff

τSRH
(37)

τSRH = (Ndef νth σn)−1, (38)

where C1 and C2 are the temperature-dependent Si constants, Ndef is the concentration of

radiative defect centers, νth is the electron thermal velocity, and σn is the electron capture

cross section of radiative centers [137,138]. Equation (36) shows that the Ibb is proportional

to the effective minority carrier lifetime, τeff, since τrad is a constant for a given resistivity

of Si. Thus, PL mapping of the EFG Si wafer will reveal the regions of good lifetime as
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Table 8: Average values of PL intensities for Ibb, Idef, and R-parameter in each annealing
step.

0.02370.01270.0111n.a.*R-parameter

0.3390.6130.708n.a.*Idef

42.80112.47126.3328.81Ibb

700 °C/1 s 

dehydrogenated

600 °C/1 s 

dehydrogenated
HydrogenatedInitial

* PL intensity below detection limit

high Ibb. According to Eq. (37), Idef is inversely proportional to the radiative component

of the Shockley-Read-Hall lifetime. Idef is localized in low lifetime regions and generally

gives nearly inverse contrast to Ibb and effective lifetime maps. The point-by-point ratio of

the two PL intensities gives R (R-parameter), which is proportional to the concentration of

radiative defects at a given illumination intensity. R is expressed by the following equation:

R = Idef/Ibb = const. × Ndef. (39)

R is independent of other recombination channels in the bulk and at the surface.

Table 8 summarizes the two PL intensities and R-parameter after 750°C/1 s hydrogena-

tion and 600°C/1 s and 700°C/1 s dehydrogenation processes. Ibb, which is proportional to

the effective carrier lifetime, increased from 29 to 126 (arbitrary unit) after 750°C/1 s RTP

hydrogenation. The Ibb decreased from 126 to 42 after the subsequent 700°C/1 s dehydro-

genation step. A substantial reduction in Ibb supports rapid dissociation of hydrogen from

defect sites at 700°C, which was also observed experimentally in the previous section.

The PL maps of (a) Ibb, (b) Idef, and (c) point-by-point ratio of Ibb [Ibb(hydrogenated)

/Ibb(initial)] for the EFG Si sample are shown in Fig. 37. Figure 38 shows the results of a
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Figure 37: Room-temperature PL mappings of (a) band-to-band (Ibb), (b) defect band
(Idef), and (c) point-by-point ratio of Ibb(hydrogenated)/Ibb(initial) representing the in-
crease in lifetime. The mapping size is 50×22 mm2, step=0.5 mm.

line-scan through the above sample at a specific location to assess spatial variation in the

reduction in the carrier lifetime [Ibb(dehydrogenated)/Ibb(hydrogenated)] after 700°C/1 s

dehydrogenation and the radiative defect concentration, R, after 750°C/1 s hydrogenation

and 700°C/1 s dehydrogenation. The inverse contrast between Ibb and Idef can be seen in

Fig. 37. It is clear from Figs. 37 and 38 that highly defective regions (low Ibb and high

R) show much greater reduction in the effective lifetime after the 700°C/1 s dehydrogena-

tion. Figure 38 also shows that in the low effective lifetime region, the impurity-decorated

dislocations are the primary carrier recombination center. In addition, the R-parameter

[R(hydrogenated)] is appreciable in those highly defective regions even after the 750°C/1 s

hydrogenation, indicating that all defects are not fully passivated. Finally, the R-parameter

increases dramatically in the defective regions after the 700°C/1 s anneal [R(hydrogenated)

versus R(dehydrogenated)], clearly indicating that significant defect dehydrogenation takes

place in the area with high defect density. This is further supported by the increase in

average R, which is proportional to the active defect concentration, from 0.0111 to 0.0237
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Figure 38: Line scan through a PL map to quantify the loss in carrier lifetime
[Ibb(hydrogenated)/Ibb(dehydrogenated)] and R-parameters (Idef/Ibb) changes after hydro-
genation and 700°C dehydrogenation.

after the 700°C/1 s dehydrogenation (Table 8). Figure 38 indicates that the reduction in the

effective lifetime [Ibb(dehydrogenated)/Ibb(hydrogenated)], which is caused by the increase

in non-radiative recombination centers, seems to be concurrent with the increase in radia-

tive recombination centers or R. This is also supported by the inverse contrast between Ibb

and Idef. Since Ibb increases as τeff increases [Eq. (36)], and τeff is dominated by the non-

radiative recombination centers in Si, the concentration of non-radiative defects decreases

with the increase in Ibb. Also, the PL intensity of Idef decreases with the increase in Ibb

or τeff so τSRH must increase [Eq. (37)]. The τSRH represents the radiative component of

recombination centers, so the concentration of radiative defects also seems to decrease with

the increase in Ibb. Thus, dehydrogenation takes place concurrently from both radiative

and non-radiative recombination defects, which is supported by the concurrent decrease in

Ibb and increase in R.
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5.4 Conclusions

In this chapter, a model was developed to explain the reason for the optimum firing cycle for

defect hydrogenation. The FTIR measurements in SiNx deposited on FZ Si wafer revealed

that the total concentration of bonded hydrogen in SiNx film decreases as a function of

annealing time and temperature, and the rate of release slows down with time at a given

temperature. This indicates that the SiNx film is not an infinite source of hydrogen for

defect hydrogenation. Since the supply of hydrogen decreases with time but the thermally-

induced dehydrogenation of defects continues at the same rate at a given temperature, the

effectiveness of hydrogenation decreases for prolonged firing. The SIMS analysis revealed

that the trapped hydrogen at the damaged surface also diffuses into Si bulk or SiNx layer

after a short annealing process in an RTP unit. As a result, the surface concentration of

deuterium dropped from 6.0×1019 cm−3 (as-deposited) to 2.0×1018 cm−3 (after 750°C/1 s).

A 700°C/1 s anneal in the absence of a hydrogen supply (SiNx removed) lowered the

carrier lifetime of a hydrogenated EFG Si sample from 99 µs to 8 µs, supporting the rapid

dissociation of hydrogen-defect complexes during the hydrogenation cycle. Therefore, the

optimum hydrogenation temperature and the degree of passivation are dictated by the

competition between the supply of hydrogen and dissociation of hydrogen-defect complexes

during the hydrogenation cycle. Activation energy for hydrogen-defect dissociation was

found to be 2.4–2.6 eV, which falls between the activation energies for the dissociation of

hydrogen-impurity and hydrogen-dislocation complexes, suggesting the hydrogenation of

impurity-decorated dislocations in the EFG Si. This was also supported by by a defect

band observed at 0.8 eV below the conduction band in the PL spectra. Scanning PL spec-

troscopy clearly showed that defective or low carrier lifetime regions are strongly passivated

during the hydrogenation anneal and the same regions are reactivated rapidly during the

dehydrogenation anneal. This rapid hydrogenation is the result of the competition between

injection of hydrogen atoms from SiNx film and dissociation from hydrogenated defects.
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CHAPTER VI

FABRICATION AND ANALYSIS OF RECORD

HIGH-EFFICIENCY STRING RIBBON SILICON SOLAR

CELLS

String Ribbon Si is a promising candidate to achieve low-cost and high-efficiency Si solar

cells. However, because of the low-cost crystal growth method and high thermal stresses

during the material growth, String Ribbon Si not only has a high density of structural

defects, such as dislocations, twins, and grain boundaries, but also relatively high concen-

trations of transition metal impurities that act as carrier recombination centers [29], as

discussed in Chapter II. These defects lead to very low as-grown carrier lifetime in the

range of 1–5 µs. Therefore, it is necessary to enhance the minority carrier lifetime during

the solar cell fabrication in order to achieve high-efficiency solar cells. Impurity gettering

during P diffusion, Al-doped back surface field (Al-BSF) formation, and defect hydrogena-

tion from the PECVD SiNx anti-reflection (AR) layer during contact firing are frequently

used in both laboratory and industry with varying degree of success for carrier lifetime

enhancement [139].

In spite of very low as-grown carrier lifetime, conversion efficiencies of ribbon Si solar

cells are approaching or exceeding 15% in production and 18% in laboratory [122]. Figure 39

shows the efficiency progress of laboratory-scale ribbon cells on EFG Si and String Ribbon

Si [35,39,103,105,119,140–146], including the results achieved in this study. Recently, Hahn

and Geiger [103] reported 16.7% EFG and 17.7% String Ribbon Si solar cells (both 4 cm2)

using a combination of photolithography-defined front grid contact, thin thermal oxidation

for front surface passivation, impurity gettering by annealing of evaporated Al, ZnS/MgF2

double-layer AR (DLAR) coating, and microwave-induced remote hydrogen plasma for bulk

defect passivation. Later, 18.2% EFG and 17.9% String Ribbon Si solar cells were reported
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Figure 39: Progress of laboratory-scale ribbon (EFG and String Ribbon) Si solar cells.

by Rohatgi et al. [35, 39] using a laboratory process with photolithography-defined front

grid contacts and DLAR coating. Hahn et al. [40] also reported high-efficiency (15.4% cell

and 16.0% encapsulated) 80 cm2 String Ribbon Si solar cells using screen-printing technique

with a single-layer antireflection (SLAR) coating. Horzel et al. [36] recently reported 16.4%

92 cm2 EFG Si solar cell using industry-scale processing but with SiNx/MgF2 DLAR coating

and laser edge isolation process.

In this chapter, the understanding and fabrication technologies developed in Chap-

ters IV and V are integrated to achieve record high-efficiency ribbon Si solar cells using

photolithography-defined as well as screen-printed front grid contacts. This chapter de-

scribes the fabrication, characterization, and understanding of the high-efficiency ribbon Si

solar cells and their future potential.
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6.1 Device Fabrication

In this study, 2.0–3.0 Ωcm String Ribbon Si, grown at Evergreen Solar, Inc. (Marlboro,

MA), was used. The FZ Si with a resistivity of 2.5 Ωcm was also included for comparison

purpose. All the wafers were p-type (B-doped) with a thickness of ∼300 µm.

After the initial cleaning process, the wafers were P diffused in a POCl3 furnace at

a set temperature of 850°C for 20 min to form an n+ emitter with a sheet-resistance of

90–100 Ω/sq. A SiNx SLAR coating with a thickness of 800 Å and a refractive index of

2.0 was deposited in a low-frequency (50 kHz) plasma-enhanced chemical vapor deposition

(PECVD) reactor at 425°C. The front grid contact was formed by either photolithography

or screen-printing techniques. For photolithography front contact cells, the deposited SiNx

layer was etched down from ∼800 Å to ∼700 Å to implement an optimized SiNx/MgF2

DLAR coating. For screen-printed cells, a commercial Al paste was screen printed on the

entire back surface, and a commercial Ag paste was screen printed on the front followed

by a contact firing in a rapid thermal processing (RTP) system (AG Associates Heatpulse

610). The temperature ramp-up rate of 75 °C/s and cooling rate of −40°C/s helped in

the formation of an Al-BSF and also promoted SiNx-induced defect hydrogenation. The

temperature of the sample during the heat treatment in an RTP system was monitored by

thermocouple mounted on the front surface. For photolithography cells, the front metal

grid was defined by evaporation of Ti, Pd, and Ag and a lift-off process followed by Ag

plating and evaporation of MgF2 film to form DLAR coating. Several 4 cm2 solar cells were

fabricated on each large-area wafer and isolated by dicing saw prior to testing and analysis.

6.2 Device Characterization and Analysis

6.2.1 Solar cell results

Table 9 shows the average and best solar cell performance parameters obtained in this study.

High VOC values were achieved in String Ribbon Si solar cells (average VOC of 613–615 mV

and best VOC of >630 mV). These VOC values are among the highest values reported for

ribbon Si solar cells so far, indicating that the PECVD SiNx-induced defect hydrogenation
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Table 9: Average and best solar cell performance parameters. (*) denotes the efficiency
measured and verified at NREL.

16.80.77134.5631SR4-1-1-9*Best

5215.90.76633.9613SR SPAvg.

17.00.76834.96352-85-1-7-3*Best

1216.80.76034.9634FZ SPAvg.

18.30.78236.8634SR1-4*Best

2117.20.78735.6615SR PLAvg.

18.70.79337.06382-85-1-9-5*Best

1118.60.79037.0636FZ PLAvg.

# cellsEff. (%)FFJSC (mA/cm2)VOC (mV)ID

was quite effective in enhancing the average minority carrier lifetime and reducing the in-

homogeneity of electrically active defects in String Ribbon Si. This was attributed to the

rapid contact firing in the RTP unit. In [144], the highest VOC value of 639 mV was re-

ported on 0.1 Ωcm String Ribbon Si with an efficiency of 14.7%. The conversion efficiency

of 18.3% on 4 cm2 cell achieved in this study with photolithography contact on String

Ribbon Si represents the highest ribbon cell efficiency reported in the literature to date

(Fig. 39). This efficiency value was nearly comparable to the 4 cm2 planar cells (18.7%)

fabricated on high-quality monocrystalline FZ simultaneously. In the case of the cells with

screen-printed contacts, the best efficiency on String Ribbon Si was 16.8%, which is also

comparable to the untextured, screen-printed FZ Si cells (17.0%). Several 4 cm2 cells were

fabricated on large-area String Ribbon Si to study the impact of material inhomogeneity

on the solar cell performance. Figure 40 shows the distribution of cell efficiencies on the

wafers that contain the 18.3% photolithography and 16.8% screen-printed cells, and Fig. 41
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Figure 40: Distribution of cell efficiency on String Ribbon Si fabricated by (a) photolithog-
raphy and (b) screen-printed front contacts. Cell size is 4 cm2. Units are % in efficiency,
mV in VOC, and mA/cm2 in JSC.

shows the I −V curves of record high-efficiency 18.3% String Ribbon Si cell fabricated with

photolithography-defined front contacts as well as 16.8% screen-printed contacts. Those ef-

ficiencies were measured and confirmed at National Renewable Energy Laboratory (Golden,

CO). Figure 42 shows the histogram of cell efficiency distribution for both photolithography

and screen-printed cells fabricated on several different wafers in this study. Out of the 21

String Ribbon cells with photolithography contacts, 9 cells had an efficiency above 17%, 5

cells over 17.5%, and 2 cells over 18.0%. Out of the 52 screen-printed cells, 30 cells were in

the range of 15.5–16.0%, 13 cells exhibited over 16.0% efficiency and 2 cells over 16.5%.

In addition to these record high-efficiency String Ribbon Si cells, the fabrication tech-

nologies developed in Chapters IV and V have resulted in very high-efficiency 4 cm2 EFG

Si cells. The EFG Si wafers were provided from SCHOTT Solar, Inc. (Billerica, MA) and

have a resistivity of 3–4 Ωcm and a thickness of ∼300 µm. Figure 43 illustrates the I − V

curves of high-efficiency EFG Si cells fabricated with photolithography-defined (18.2%) and

screen-printed (16.6%) front contacts. The 18.2% and 16.6% cells were independently tested
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Figure 41: I − V curves of record high-efficiency String Ribbon Si cells fabricated with
photolithography (18.3%) and screen-printed (16.8%) contacts. Both cells were tested and
confirmed by National Renewable Energy Laboratory.
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Figure 43: I − V curves of high-efficiency EFG Si cells fabricated with photolithography
(18.2%) and screen-printed (16.6%) contacts. Both cells were tested and confirmed by
National Renewable Energy Laboratory.

at National Renewable Energy Laboratory and had VOC of 624 mV and 620 mV, JSC of

36.8 mA/cm2 and 35.2 mA/cm2, FF of 0.792 and 0.760, respectively. These high-efficiency

(>18%) EFG Si cells, combined with String Ribbon Si cells, have provided a proof of the

understanding and fabrication technologies developed in Chapters IV and V.

6.2.2 Carrier lifetime measurements using quasi-steady-state photoconduc-
tance technique

The key to achieving such high ribbon Si cell efficiencies was hydrogen passivation of defects

during cell processing. In order to assess the effectiveness of SiNx-induced defect hydrogena-

tion on average lifetime enhancement, the carrier lifetime measurements were performed by

quasi-steady-state photoconductance (QSSPC) technique on several locations at an injec-

tion level of 1.0×1015 cm−3 [20] on as-grown, P diffused, and fully processed String Ribbon

Si wafers. Iodine/methanol solution [15] was used for surface passivation during the lifetime

measurements. Figure 44 shows the results of average carrier lifetime measurements. The

P diffusion gettering process enhanced the carrier lifetime from 2 µs (as-grown) to 8 µs.
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Figure 44: Average lifetime in 2.0–3.0 Ωcm String Ribbon Si after each process step.
Measurements were performed on several wafers and points (5 wafers and total 40 points)
to account for the inhomogeneous material quality. QSSPC technique was used at an
injection level of 1.0×1015 cm−3. Error bar in the graph represents the standard deviation.
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The defect hydrogenation through PECVD SiNx firing resulted in the lifetime enhancement

from 8 µs to 91 µs in String Ribbon Si. Since the material quality of String Ribbon Si is

quite inhomogeneous from wafer to wafer and within a wafer, the lifetime measurements

were performed at 40 different locations on five String Ribbon Si wafers. It is important

to perform the lifetime measurements at several different locations for establishing lifetime

variation because the QSSPC technique itself measures an area-average lifetime over 3.7 cm

diameter region [21].

6.2.3 Light beam-induced current scans and internal quantum efficiency mea-
surements

Table 9 in the previous section showed that the best and average cell efficiencies for String

Ribbon cells were 18.3% and 17.2% with photolithography contacts and 16.8% and 15.9%

with screen-printed contacts, respectively. This gap between the best and average efficiencies

is attributed to non-uniform distribution of active defects, even after the very effective defect

hydrogenation, which raised the average carrier lifetime from 8 µs to 91 µs. In order to

support that the electrically active defects are responsible for this efficiency gap, light beam-

induced current (LBIC) scans were performed on selected String Ribbon Si solar cells using

PVScan 5000 system [147] equipped with 980 nm laser to reveal the spatial non-uniformity

in photoresponse over the entire device area. Figure 45 shows the LBIC scans of 18.3% (SR1-

4) and 17.1% (SR1-3) String Ribbon solar cells. Note that these two cells were selected from

the same wafer. The LBIC maps in Fig. 45 reveal that the 18.3% cell is relatively free of

any localized active defects, which is reflected in the uniform current collection across the

device. However, the 17.1% cell showed the presence of active defects over a considerable

portion of the device. The impact of active defects on cell parameters can also be seen with

the Suns-VOC measurements [148]. The Suns-VOC measurements in Table 10 showed that

the 17.1% cell has much higher reverse saturation current density Jo1 and junction leakage

current density Jo2 compared to the 18.3% nearly defect-free cell. This indicates that the

defects in the 17.1% cell introduced the carrier recombination activity both in the bulk and

depletion regions.

In an attempt to extract the effective minority carrier diffusion length (Leff), the internal
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Figure 45: LBIC maps of (a) 18.3% (SR1-4) and (b) 17.1% (SR1-3) String Ribbon Si cells.
PVScan 5000 system with 980 nm laser was used.

Table 10: Suns-VOC measurements on selected solar cells. The second-diode ideality factor
(n2) was assumed to be 2.0.

63163234.80.87
SR4-1-1-9

(SR SP)

63563738.80.76
2-85-1-7-3

(FZ SP)

60660751.92.31
SR1-3

(SR PL)

63463138.50.95
SR1-4

(SR PL)

63864235.60.60
2-85-1-9-5

(FZ PL)

Measured VOC

(mV)

VOC from Jo1

(mV)
Jo2 (nA/cm2)Jo1 (pA/cm2)ID
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Figure 46: IQE response of 2.5 Ωcm FZ and 2.0-3.0 Ωcm String Ribbon Si cells. Simulated
IQE response, corresponding to Leff value of 1590 and 1060 µm, was obtained by PC1D.

quantum efficiency (IQE) measurements were performed on the 18.3% efficient homogeneous

String Ribbon cell and the 18.7% FZ Si cell. The measured IQE response was fitted to the

simulated IQE response using PC1D program [149]. The Leff value in any region of a solar

cell can be extracted by matching the measured and simulated local area IQE response in

the long-wavelength range (700–920 nm for a 300 µm thick cells) using the PC1D simulation

program [150]. Figure 46 shows the match between measured and simulated IQE response

for the FZ and String Ribbon Si cells. The effective front surface recombination velocity

(FSRV) was also determined by matching the measured and simulated short-wavelength

IQE response [151]. The bulk carrier lifetime of 250 µs was used, which corresponds to the

highest measured lifetime value using QSSPC technique. Base contact (or series resistance)

and internal conductor (or shunt resistance) values were obtained from I−V measurements.

Table 11 shows the key input parameters used in PC1D simulations.

Matching of the simulated IQE with the experimental data gave an Leff value of 1590

µm for the 18.7% FZ Si cell and 1060 µm for the 18.3% String Ribbon cell. The Leff is
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Table 11: PC1D inputs for FZ and String Ribbon Si solar cells.

225

250

3.85x10-8

1.75x10-5 S

(57,000 cm2)

0.4 (0.4 cm2)

Spreading resistance 

measurement

65%, diffuse

SiNx/MgF2 DLAR

70 nm, index = 2.00; 

98 nm, index = 1.38

3.5

40,000

300

2.0

Input (String Ribbon)

200BSRV (cm/s)

1000Bulk lifetime (µs)

3.56x10-8Jo2 (A/cm2)

4.35x10-6 S

(230,000 cm2)

Internal conductor (Shunt resistance)

0.3 (0.3 cm2)Base contact (Series resistance)

Spreading resistance 

measurement

Front doping

65%, diffuseRear internal reflectance

SiNx/MgF2 DLAR

70 nm, index = 2.00; 

98 nm, index = 1.38

Front surface coating

3.5Grid coverage (%)

40,000FSRV (cm/s)

300Thickness (µm)

2.5Base resistivity ( cm)

Input (FZ)Device Parameter
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Table 12: Solar cell performance parameters using PC1D simulations with carrier lifetime
of 2 µs for photolithography and screen-printed contacts.

13.10.77429.7570SP

13.90.78431.1570PL

Eff. (%)FFJsc (mA/cm2)Voc (mV)

given by the following equation [152].

Leff = Lb

(

1 + SLb

Dn
tanh W

Lb

SLb

Dn
+ tanh W

Lb

)

, (40)

where S represents the back surface recombination velocity (BSRV), Lb (=
√

Dnτb) is

the bulk minority carrier diffusion length, τb is the bulk carrier lifetime, and W is the

cell thickness. According to Eq. (40), Leff is primarily a composite of bulk and surface

recombination for a given resistivity and thickness.

6.2.4 Effect of defect hydrogenation on cell performance

In order to quantify the effect of the optimized defect hydrogenation process on String

Ribbon Si cell performance, PC1D simulations were performed using the input parameters

shown in Table 11 with a bulk lifetime of 2 µs, which corresponds to the as-grown lifetime

in String Ribbon Si (Fig. 44). Table 12 shows the results of PC1D simulations with lifetime

of 2 µs for photolithography and screen-printed contacts. If we did not succeed the lifetime

enhancement during the cell processing, the efficiency would have resulted in only 13.9% for

photolithography and 13.1% for screen-printed contacts. These values are 3.7–4.4% lower

than what we have achieved on record high-efficiency cells (18.3% and 16.8%). The PC1D
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Table 13: Measured and simulated characteristics on FZ and String Ribbon Si cells using
the input parameters listed in Table 11.

18.20.78336.8632Simulated

18.30.78236.8634Measured
String

Ribbon

18.60.79137.0636Simulated

18.70.79337.0638Measured

FZ

Eff. (%)FFJSC (mA/cm2)VOC (mV)Material

simulations indicate a successful implementation of the impurity gettering during the P

diffusion and defect hydrogenation during the contact firing.

6.2.5 Analysis of performance limiting factors in 18.3% String Ribbon Si cell

The previous section showed that the best 4 cm2 solar cell performance on String Ribbon

Si can approach that of the untextured FZ Si cells. This indicates that the performance of

well-passivated String Ribbon cell is not limited by the minority carrier lifetime since FZ Si

has a much higher carrier lifetime (≥500 µs). In order to identify the performance limiting

factors in these high-efficiency String Ribbon cells and explore how to improve the efficiency

further, device simulations were performed using PC1D. First, a good match was obtained

between the measured and simulated best String Ribbon Si cell with photolithography

contacts with an efficiency of 18.2% and a VOC of 632 mV (Table 13). Next, the carrier

lifetime was increased from 250 µs to 500 µs in PC1D, which showed an increase of only

0.1% in absolute efficiency with the doubling in carrier lifetime. This suggests that further

lifetime enhancement in good regions of String Ribbon Si will not produce a significant
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improvement in cell performance. This is not surprising because when the bulk quality

becomes high enough, Lb � W , the carrier recombination at the front and/or rear surface

becomes more important. Therefore, the FSRV was decreased in PC1D simulation from

40,000 cm/s to 35,000 cm/s [153], keeping the carrier lifetime fixed at 250 µs. However, no

appreciable improvement was observed due to this FSRV reduction. This means that the

bulk component of saturation current density Job or BSRV is limiting the efficiency. Next,

the BSRV was reduced from 225 cm/s to 100 cm/s, which gave an improvement of 0.2% in

absolute cell efficiency, with a VOC rising to 638 mV. The BSRV of 100 cm/s can be achieved

by employing the appropriate rear surface passivation scheme, such as dielectric passivation.

Recently, very low surface recombination velocity (less than 100 cm/s) was demonstrated

on p-type, 1.5 Ωcm monocrystalline Si by applying the deposition of amorphous Si for rear

surface passivation [154]. The dielectric rear surface passivation scheme can also provide

a significant improvement in the reflection (90–95% as opposed to 60–65% for Al-BSF)

from rear surface [155]. PC1D simulations showed that a combination of improved BSRV

to 100 cm/s and BSR to 90% can drive the planar String Ribbon Si cell efficiency with

photolithography contacts to 19.0% with a VOC of 638 mV, JSC of 38.1 mA/cm2, and FF

of 0.782 on 2.0 Ωcm material (Table 14). Finally, successful implementation of surface

texturing can push the cell efficiency closer to 20%.

6.3 Conclusions

In this chapter, String Ribbon Si solar cells with efficiencies as high as 18.3% and 16.8%

(both 4 cm2) were achieved with photolithography-defined and screen-printed front grid

contacts, respectively, using an optimized defect hydrogenation process for carrier lifetime

enhancement. In addition, 18.2% and 16.6% EFG Si cells were achieved using the identical

process sequence. The 18.3% String Ribbon Si cell is the highest ribbon Si cell efficiency

reported in the literature to date. In this study, the area-average carrier lifetime increased

from 2–3 µs to >90 µs due to a combination of P diffusion-induced impurity gettering and

low-frequency PECVD SiNx-induced defect hydrogenation in String Ribbon Si. It was also

found through LBIC analysis that the gap between the best and an average efficiency is
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Table 14: Analysis of performance limiting factors on 18.3% String Ribbon Si cell.

19.0638
BSRV 100 cm/s

BSR 90%

18.4638
BSRV

225 100 cm/s

18.2633
FSRV

40,000 35,000 cm/s

18.3634
Lifetime

250 500 µs

18.2632Current simulated cell

Efficiency (%)VOC (mV)Parameter

primarily attributed to the presence of electrically active defects within the cell area, even

after the very effective defect hydrogenation, which raised the average carrier lifetime from

8 µs to >90 µs. The presence of inhomogeneously distributed active defects lowered the

solar cell performance significantly by enhancing the carrier recombination in both bulk

and depletion regions. Detailed characterization and analysis revealed that the efficiency of

String Ribbon Si cells with photolithography contacts can be improved to 19% by developing

the high-quality rear surface passivation scheme that can lower the BSRV from 225 cm/s

to 100 cm/s and increase the BSR from 65% to 90%.
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CHAPTER VII

UNDERSTANDING OF THE EFFECT OF MATERIAL

INHOMOGENEITY ON STRING RIBBON SILICON

SOLAR CELL PERFORMANCE

In the previous chapter, the record high-efficiency ribbon Si cells were successfully fabricated

through understanding and development of process technologies, and it was found that the

presence of active defects showed a detrimental effect on cell performance by analyzing and

comparing the high-efficiency and average cells using LBIC scans. However, the inhomoge-

neously distributed electrically active defects are frequently found to be present in the mc-Si

materials, even after effective P diffusion gettering and the SiNx-induced hydrogen passiva-

tion of defects. Therefore, understanding and assessing the impact of the inhomogeneous

distribution of defects on solar cell performance has become an area of active investigation.

For example, Sopori [156] made an attempt to quantify the influence of material inhomo-

geneities on solar cell performance by developing a methodology and technique to extract

an effective minority carrier diffusion length (Leff) from the lateral and vertical distribution

of defects to assess their impact on open-circuit voltage (VOC). Mijnarends et al. [157]

performed numerical simulations to investigate the effect of lateral variations in material

quality on solar cell characteristics and found that the wider distribution of diffusion length

is detrimental to cell performance. In [158], a practical investigation was performed by

fabricating multiple mini solar cells (0.9×0.9 mm2) to examine VOC across the mc-Si wafer.

A strong correlation between local VOC and minority carrier diffusion length was confirmed

in these mini solar cells. It was concluded that a narrow distribution of diffusion length is

desirable. Bell et al. [159] concluded that material inhomogeneities can significantly limit

the voltage output, and grains with the low carrier lifetime determine the VOC of mc-Si

cells. Warta et al. [160] pointed out the limitations of the one-dimensional simulation tools
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for assessing or predicting the performance of a mc-Si solar cell with a defective crystal

structure. A diode network model was proposed and applied to compare the simulated and

measured mc-Si solar cell performance. Nagel et al. [161] used the diode network model

developed in [160] to simulate the solar cell performance parameters on the basis of lifetime

mapping on commercial cast material, neglecting the surface recombination and metal con-

tact effects. In [162], the diode network model was also used to demonstrate that a 20%

defective region can lead to a 30 mV reduction in VOC. Donolato [163] applied the Voronoi

network model to mc-Si with columnar grains and showed that the grains with low carrier

lifetime are responsible for the reduction in VOC. Isenberg et al. showed by two-dimensional

DESSIS simulations that the network model is not applicable if the lateral size of defective

structures is smaller than the thickness or diffusion length in good regions.

In this chapter, an effort is made to improve the experimental and theoretical under-

standing of the impact of spatial distribution of defect inhomogeneities on fully processed

high-performance screen-printed ribbon mc-Si solar cells. Since ribbon Si materials generally

have an as-grown carrier lifetime below 5 µs, an attempt is made to enhance the gettering

and passivation techniques to raise the average carrier lifetime above 90 µs in order to in-

crease the sensitivity and the impact of low diffusion length regions (bad regions). Several 4

cm2 screen-printed String Ribbon Si solar cells are fabricated and a simple methodology is

developed to approximately determine the loss in VOC in these cells resulting from a small

fraction of bad region mixed with a large fraction of good region. Model calculations are

performed by developing and using simple and approximate analytical expressions to assess

the impact of recombination intensity and area fraction of bad regions on VOC. Model calcu-

lations are compared with the experimental data to demonstrate that loss in VOC resulting

from material inhomogeneity can be predicted with reasonable accuracy by dividing the cell

into two regions (best and worst) and using this simple analytical model.

7.1 Experiment

In this study, 300 µm thick, p-type 3–4 Ωcm String Ribbon Si material from Evergreen

Solar, Inc. (Marlboro, MA) was used. After the initial cleaning process, the wafers were P
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diffused in a POCl3 furnace to form 40–50 Ω/sq n+ emitters. A SiNx anti-reflection coating

with a thickness of 800 Å and a refractive index of 2.0 was deposited in a low-frequency

plasma-enhanced chemical vapor deposition (PECVD) reactor. A commercial Al paste was

then screen printed on the entire back surface and an Ag grid was screen printed on the

front, followed by an anneal in a rapid thermal processing (RTP) system to (i) form an Al-

doped back surface field (Al-BSF) on the rear surface, (ii) form a screen-printed Ag ohmic

contact on the front surface, and (iii) promote the SiNx-induced hydrogen passivation of

defects. Several 4 cm2 solar cells were fabricated on each wafer and isolated using a dicing

saw, followed by a forming gas anneal at 400 °C for 10 min. The solar cell parameters were

extracted by illuminated and dark current-voltage (I − V ) measurements. The light beam-

induced current (LBIC) scans were performed on selected solar cells to map the spatial

non-uniformity of photoresponsivity using the PVScan 5000 system [147] equipped with

a 980 nm laser. Several regions on each solar cell were then selected to perform local

light-biased internal quantum efficiency (IQE) measurements to quantify the difference in

material quality in those regions in terms of Leff, which includes bulk and surface effects.

7.2 Results and Discussion

7.2.1 Light beam-induced current scans and internal quantum efficiency mea-
surements

The LBIC scan was performed on each cell to detect the material inhomogeneity in terms of

the recombination intensity of electrically active defects. LBIC measures the short-circuit

current generated at each spot on the cell. Photoresponse is expressed as Amperes/Watt

(A/W). Since several 4 cm2 solar cells were fabricated on each large-area String Ribbon Si

wafer, we selected the wafer containing cells with high, moderate, and low VOC to conduct

our study to evaluate the impact of inhomogeneously distributed electrically active defects

on VOC. Figure 47 shows the LBIC maps of three String Ribbon Si solar cells on the same

wafer with high, moderate, and low VOC. These cells were selected because they also showed

maximum contrast between defective and defect-free regions. Table 15 shows the electrical

performance parameters of these three String Ribbon Si solar cells. The LBIC maps in

Fig. 47 show that cell 1 has relatively uniform current collection over the entire cell area,
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VOC = 578 mV
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0.32

Figure 47: LBIC scans of String Ribbon Si solar cells. High, moderate, and low VOC cells
are shown in left, center, and right sides, respectively.

compared to the other two, with little or no detectable bad regions. This is also reflected in

the high area-averaged LBIC response of 0.568 A/W along with a high VOC of 616 mV and

a cell efficiency of 15.9%. Cells 2 and 3 had a much lower VOC of 592 and 578 mV with cell

efficiencies of 15.0% and 14.1% and corresponding area-averaged LBIC response of 0.504 and

0.454 A/W, respectively (Table 15). After the illuminated I − V measurements and LBIC

scans, light-biased IQE measurements [164] were taken in selected areas of these String

Ribbon Si solar cells, indicated by the circles in Fig. 47. Circles drawn are for visual aid

and larger than the actual spot size (∼1 mm in diameter) used for the IQE measurements.

IQE represents the number of electrons collected per incident photon under short-circuit

condition. This is measured as a function of wavelength. The circled regions A1, A2, and

A3 on cells 1, 2, and 3, respectively, were selected based on the LBIC maps because they

had the highest and nearly equal LBIC responses. These represent the best regions on the

three cells. On the other hand, regions C2 and C3 on cells 2 and 3, respectively, gave the
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Table 15: Measured String Ribbon Si solar cell parameters and LBIC responses

0.45414.10.77831.45783

0.50415.00.77432.75922

0.56815.90.77333.56161

LBIC

(A/W)

Eff.

(%)
FF

JSC

(mA/cm2)

VOC

(mV)
Cell ID

lowest LBIC response, indicating that these regions are the most defective regions on the

cell. Figure 48 shows the light-biased IQE response of all five regions (A1, A2, A3, C2, and

C3). As expected, regions C2 and C3 showed a significant degradation in the IQE response

in the long-wavelength range (>650 nm) relative to regions A1, A2, and A3. The IQE

response in the long-wavelength range is indicative of the combined effect of carrier lifetime

and back surface recombination velocity (BSRV) for 300 µm thick Si cells [165]. Consistent

with the LBIC response, there was no appreciable difference in the IQE response of regions

A1, A2, and A3 in the long-wavelength range, supporting the fact that the best regions on

the three solar cells (1, 2, and 3) are nearly identical, despite the significant difference in

VOC and defect inhomogeneity.

7.2.2 Extraction of effective diffusion length Leff from the IQE response

VOC is a strong function of recombination in the emitter, base, and at the surfaces. Accord-

ing to theory, the VOC can be expressed as follows [5]:

VOC =
kT

q
· ln
( JSC

Joe + Job
+ 1
)

, (41)

where k is the Boltzmann constant, T is the temperature, JSC is the short-circuit current

density, Job is the base components of saturation current density, and Joe is the emitter
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Figure 48: Light-biased IQE response of selected regions (A1, A2, A3, C2, and C3) in
String Ribbon Si solar cells and simulated (PC1D) IQE response corresponding to Leff

values of 870 µs, 95 µm, and 90 µm.

component of saturation current density. Since the three solar cells were selected from the

same wafer, they should have identical emitters, and their Joe, which is a function of emitter

doping profile and surface recombination velocity, can be assumed to be identical. Thus,

the Job, which is a function of carrier lifetime and BSRV, must account for the majority of

the difference in VOC. The Job is expressed as follows [152]:

Job =
qn2

i Dn

NBLeff
, (42)

where q is the electron charge, ni is the intrinsic carrier concentration, Dn is the diffu-

sion coefficient of electron, and NB is the background doping concentration. The effective

minority carrier diffusion length, Leff, is defined as [152]:

Leff = Lb

(

1 + SLb

Dn
tanh W

Lb

SLb

Dn
+ tanh W

Lb

)

, (43)

where S represents the BSRV, Lb (=
√

Dnτb) is the bulk minority carrier diffusion length,

τb is the bulk carrier lifetime, and W is the cell thickness. According to Eq. (43), Leff is

primarily a function of bulk and surface recombination for the fixed resistivity and thickness.
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The Leff value in any region of a solar cell can be extracted by matching the mea-

sured and simulated local area IQE response in the long-wavelength range (700−920 nm

for 300 µm thick cells) using the PC1D simulation program [150]. This was done by de-

termining and/or using the realistic inputs for the PC1D simulations. For example, front

surface recombination velocity (FSRV) was extracted from the measured IQE response in

the short-wavelength range [151]. Front doping was determined by the spreading resistance

measurement. Base contact (or series resistance) and internal conductor (or shunt resis-

tance) values were obtained from illuminated I − V measurements. The internal diode

or junction leakage current (Jo2) value was extracted from the dark I − V measurement,

assuming the second-diode ideality factor of 2.0. Uniform distribution of Dn was assumed

during the Leff extraction using PC1D. The IQE response in long-wavelength range repre-

sents the correct value of Leff, which is composed of Lb and BSRV, regardless of the Dn

and τb values. Figure 48 also shows the match between the measured and simulated IQE

response from all five regions, resulting in an Leff of ∼870 µm for regions A1, A2, and A3,

∼95 µm for region C2, and ∼90 µm for region C3. This was done by fixing the BSRV at

250 cm/s and varying the Lb (or τb) in PC1D until a good match in the long-wavelength

range was achieved. BSRV and Lb were then used to obtain Leff from Eq. (43). Note that

these BSRV and Lb values do not necessarily represent the true BSRV and Lb values, but

they still give the correct value of Leff. This is because the Leff is a function of both Lb

(or τb) and BSRV [Eq. (43)]. This was validated by choosing different values of BSRV

and performing the same procedure on IQE. As expected, different combinations of Lb and

BSRV led to the same Leff value.

The Leff value of 870 µm in region A1, in conjunction with the PC1D inputs in Table

16, was used to obtain the simulated solar cell I − V parameters, which agreed very well

with the measured parameters of cell 1 (Table 17), which was nearly uniform. However, as

expected, there was a significant difference between the measured solar cell parameters of

the defective or low-quality solar cell 3 (Table 17) and the simulated cell parameters when

a Leff of 870 µm was used for the entire cell. Table 17 shows that there is a difference of

37 mV in VOC. This difference is largely attributed to the existence of electrically active
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Table 16: PC1D input parameters for String Ribbon Si solar cell simulation.

5.0x10-5 S

(2.0x104 cm2)

Internal conductor

(Shunt resistance)

2.6x10-8 AJo2

0.75

(0.75 cm2)

Base contact 

(Series resistance)

Spreading resistance 

measurement
Front doping

55%, diffuseRear internal reflectance

78 nm, index = 2.0Front surface coating

6.0%Broadband reflectance

150,000 cm/sFSRV

300 µmThickness

3.0 cmBase resistivity

InputDevice Parameter

defects. This demonstrates that the presence of active defects can significantly lower the

VOC. This is because the cell from the good and bad regions of a device act in parallel and

the lower VOC associated with the bad region pulls down the VOC of the good regions and

the entire cell.

The next section shows the development of a simple analytical model to calculate the

loss in VOC from the area fraction and recombination intensity of the electrically active

defects. The simulated results are then compared with the experimental data in Table 17.

Cell 1, which does not have defect inhomogeneity, agrees well with the simulated cell with

Leff of 870 µm. However, cell 3, which has significant defect inhomogeneity, is far below the

simulated results. Following section deals with the development of an analytical model to

explain the difference between cells 1 and 3.

100



Table 17: Measured and simulated solar cell parameters on String Ribbon Si using an
extracted Leff of 870 µm.

14.131.45783

15.933.56161

15.933.6615Simulated

Eff. (%)J
SC

(mA/cm2)V
OC

(mV)Cell ID

7.3 Theoretical and Experimental Assessment of Impact of

Electrically Active Defects on Solar Cell Performance

7.3.1 Development of the analytical model to assess the loss in VOC resulting
from inhomogeneity

The non-uniform distribution of defects, such as grain boundaries, impurities, and dis-

locations, is common in mc-Si materials. Many of these defects act as localized carrier

recombination centers resulting in spatial variation in Leff.

The first step was to develop a simple and approximate analytical model for the quan-

titative assessment of the effect of distributed Leff on VOC. A mc-Si solar cell is essentially

composed of a number of small solar cells (good and bad regions) in parallel, operating at a

constant potential across the junction as a result of the electrical connection through grid,

emitter, and substrate [21]. The total cell current, I, can be expressed as the summation

of currents from local area cells:

I = I1 + I2 + · · · + Ii. (44)

Assuming the two-diode model and neglecting the series and shunt resistances, Eq. (44)
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can be expressed as:

Io1

[

exp
(qV

kT

)

− 1
]

+ Io2

[

exp
( qV

n2kT

)

− 1
]

=

Io1,1

[

exp
(qV

kT

)

− 1
]

+ Io2,1

[

exp
( qV

n2kT

)

− 1
]

+Io1,2

[

exp
(qV

kT

)

− 1
]

+ Io2,2

[

exp
( qV

n2kT

)

− 1
]

+ · · · + Io1,i

[

exp
(qV

kT

)

− 1
]

+ Io2,i

[

exp
( qV

n2kT

)

− 1
]

, (45)

where V is the junction potential, Io1 and Io2 are the dark saturation current and the junc-

tion leakage current, respectively, and n2 is the second diode ideality factor [166]. Since the

Io2 component generally has a much smaller contribution to total current at VOC compared

to Io1 component, Eq. (45) can be approximated as:

Io1 = Io1,1 + Io1,2 + · · · + Io1,i, (46)

Ioe + Iob = (Ioe,1 + Iob,1) + (Ioe,2 + Iob,2) + · · · + (Ioe,i + Iob,i), (47)

where Ioe and Iob are the emitter and base component of the saturation current, respectively.

Due to the high quality of the solar cell emitters used in this work and the same emitter

quality for good and bad regions, any variation in Io1,i can be attributed to the variation

in Iob,i. Thus, the emitter contributions to the variation in saturation currents Io1,i can be

neglected compared to the base layer contributions Iob,i. Equation (47) can therefore be

approximated to

Iob = Iob,1 + Iob,2 + · · · + Iob,i, (48)

a · Job,avg = a1 · Job,1 + a2 · Job,2 + · · · + ai · Job,i, (49)

Job,avg = A1 · Job,1 + A2 · Job,2 + · · · + Ai · Job,i, (50)

where Job,avg is the area-weighted average of Job, a is the actual area, and Ai is the area

fraction (ai/a) of each region. Since Job is inversely proportional to the Leff [Eq. (42)], Eq.

(50) can be written as:

L−1
eu = A1 · L−1

eff,1 + A2 · L−1
eff,2 + · · · + Ai · L−1

eff,i. (51)
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The area-weighted average or effective uniform value of Leff (Leu) can now be expressed as:

L−1
eu =

n
∑

i=1

(L−1
eff,i × Ai). (52)

The area-weighted average or effective Job (Job,eff) can now be determined by Eq. (42) using

the Leu. Finally, the Job,eff can be used as follows to obtain the VOC.

VOC =
kT

q
ln
(JSC

Jo
+ 1
)

=
kT

q
ln
( JSC

Job,eff + Joe
+ 1
)

'
kT

q
ln
( JSC

Job,eff
+ 1
)

, (53)

where

Job,eff =
qn2

i Dn

NBLeu
. (54)

Note that Eq. (53) ignores the effect of Joe, which is the case for these relatively low VOC

(<620 mV) solar cells where base quality dominates the VOC. To support this assumption,

Joe was measured on high-resistivity (500−1000 Ωcm) n-type FZ Si using a photoconduc-

tance decay technique after double-sided P diffusion, SiNx deposition, and firing in an RTP

unit without the metallization. The measured Joe of 187 fA/cm2, without metallization,

corresponds to a VOC of 671 mV (assuming JSC of 33.5 mA/cm2), which is much higher

than the measured VOC of these cells. The presence of a front grid is expected to lower the

emitter-limited value of VOC somewhat, but it will still be much higher than the actual VOC

of these cells.

The loss in VOC can now be calculated using the following analytical expression:

∆VOC = VOC(defect-free) − VOC(defective)

=
kT

q

[

ln
(JSC,high

Job,high
+ 1
)

− ln
(JSC,avg

Job,eff
+ 1
)]

'
kT

q

[

ln
(JSC,high

Job,high

)

− ln
(JSC,avg

Job,eff

)]

=
kT

q
ln
(JSC,high

JSC,avg
·

Job,eff

Job,high

)

=
kT

q
ln
(JSC,high

JSC,avg
·
Leff,high

Leu

)

, (55)
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where VOC(defect-free) corresponds to the VOC value in the absence of localized bad regions

with uniformly distributed high Leff value (Leff,high=870 µm in this study). VOC(defective)

corresponds to Leu and includes the combined effect of bad regions. The JSC,high and JSC,avg

values, corresponding to Leff,high and Leu were obtained from PC1D simulations by fixing

the BSRV to the same value (250 cm/s) and adjusting the carrier lifetime to obtain the

desired Leff for PC1D simulation. Note that the choice of BSRV does not alter the PC1D

output or JSC significantly as long as the Leff is the same.

7.3.2 Model calculations to assess the loss in VOC of a cell with two regions of
different recombination intensity

Model calculations were performed using Eqs. (52), (54), and (55) to quantify the impact

of inhomogeneous material quality on the VOC of a cell by first dividing it into two regions

(good and bad). The Leff,high for the good region was fixed at 870 µm (Leff ' 3 times

cell thickness W ), the Leff,low for the bad region was varied, and recombination intensity

of the bad region was defined as R = 1 − Leff,low/Leff,high. This R value represents the

recombination activity in the bad region, and it increases with the decrease in Leff,low. The

Leff,low values of 44, 87, 174, and 435 µm were selected for model calculation, corresponding

to recombination intensities of 0.95, 0.90, 0.80, and 0.50, respectively. To generate model

curves, the area fraction of the bad region was varied from 0 to 50% for each recombination

intensity and Eqs. (52), (54), and (55) were used in sequence to calculate Leu, Job,eff, and

∆VOC. JSC,high and JSC,avg were calculated from PC1D using Leff,high and Leu as inputs.

All other inputs (Table 16) were kept the same. Figure 49 shows the results of analytical

model calculations. It shows that 10% of the defective area with a recombination intensity

of 0.95 can reduce VOC by 28 mV of a device that is capable of producing VOC of 623 mV,

which was obtained from Eqs. (53) and (54) using Leu of 870 µm and JSC of 33.5 mA/cm2.

Figure 49 also shows that we need to get below a 5% area fraction with a recombination

intensity of 0.50 to avoid any appreciable loss in VOC. To determine the error associated

with neglecting Joe, the VOC values were also calculated with Joe of 187 fA/cm2, which

is typical for a SiNx passivated 40–50 Ω/sq emitter for screen-printed contacts, using the

104



Recombination Intensity

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Area of Defective Region (%)

V
o

c 
(m

V
)

0.95

0.90

0.80

0.50

Cell 3

Cell 2

Figure 49: Calculated loss in VOC as a function of defective region with different Leff ratio
or recombination intensity. Cell was divided into two regions (high and low Leffs).

following equation:

∆VOC =
kT

q

[

ln
( JSC,high

Job,high + Joe
+ 1
)

− ln
( JSC,avg

Job,eff + Joe
+ 1
)]

. (56)

The error was found to be ±3 mV in this model calculation.

7.3.3 Model calculations to assess the loss in VOC of a cell with three regions
of different recombination intensity

To estimate the error associated with dividing the cell into just two regions, rather than

multiple regions, model calculations were performed to include a third region, referred to

as the moderate region. In this calculation, the area fractions of all three regions (good,

moderate, and bad) were varied. Each curve was obtained by fixing the area fraction of

the bad region first and then varying the area fraction of the moderate region from 0% to

100%. The Leff of the good and bad regions were kept at 870 µm and 95 µm. The Leff in

the moderate region was fixed at 400 µm and calculations were performed using Eqs. (52),
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(54), and (55) in sequence to obtain Leu, Job,avg, and ∆VOC. The modeling results in Fig.

50 reveal that the bad region has the biggest influence on the loss in VOC (17 mV) even

when its area fraction is 10%. This is because, as the moderate area fraction increases from

0% to 50%, for the 10% bad area fraction, the loss in VOC increases from 17 mV to only

24 mV. Figure 50 also shows that if the bad area fraction approaches or exceeds 40%, then

it essentially dominates the loss in VOC, which reaches ∼40 mV in this example. Thus, an

approximate analysis using the best and the worst regions can give a reasonable idea of the

loss in VOC resulting from the inhomogeneous distribution of electrically active defects. One

can choose more than two or three regions for better accuracy using the same methodology.

For a more exact analysis, point-by-point LBIC and IQE maps are needed over the entire

cell area to calculate Leu and Job,eff.
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7.3.4 Application of the analytical model to defective cells

An analytical model and approach developed in the previous sections were applied to the

two defective cells 2 and 3 in Fig. 47. A statistical analysis of LBIC maps in Fig. 47

was used to assess the area fraction of defective regions. The LBIC output gives a map or

range of spectral responses in A/W, which was divided into 16 equal size bins. Figure 51

shows the resulting histograms of the LBIC response for the three cells. Next, each cell was

divided into two regions: good region with a spectral response ranging from 0.48 to 0.62

A/W and bad region with a spectral response ranging from 0.32 to 0.46 A/W, i.e, first 8

bins correspond to the bad region and the last 8 bins correspond to the good region. The

area fraction of the two regions was determined by

Ai =

∑N
i=1 Bi

∑K
i=1 Bi

, (57)

where Bi is the count in the ith bin, N is the number of bins (=8) in that region (e.g.,

0.48–0.62 A/W for good region 1 and 0.32–0.46 A/W for bad region 2), and K is the total

number of bins (=16 in this study). This analysis gave the area fractions of 0.02, 0.19,

and 0.38 associated with the bad regions for cells 1, 2, and 3, respectively. Note that the

grid coverage (6% of cell area) was removed from the histogram in Fig. 51 since there is

no carrier generation below the grid. It is important to note that the same procedure can

be used to divide the LBIC output into multiple regions instead of just two by assigning

different number of bins to each region out of the total of 16.

Recall that the light-biased IQE response in Fig. 48 showed a significant degradation in

the long-wavelength IQE response of regions C2 and C3, relative to regions A2 and A3, and

the measured and simulated IQE match gave Leff values of 95 µm and 90 µm for regions

C2 and C3, respectively, as opposed to 870 µm for regions A2 and A3. According to Eq.

(42), this results in significantly higher Job values of 10−12 to 10−13 A/cm2 in regions C2

and C3 relative to the good regions A2 and A3 where Job of ∼10−14 A/cm2 is obtained.

Using Eq. (52) and a Leff,high of 870 µm and Leff,low of 95 µm with an area fraction of

81% and 19% for the good and bad regions for cell 2 gives a Leu value of 342 µm. Using the

Leff values of 870 and 342 µm along with the PC1D inputs in Table 16, JSC values of 33.6
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Figure 51: Histograms of LBIC response shown in Fig. 47. Maximum LBIC response was
0.62 A/W for all three cells.

mA/cm2 (JSC,high) and 32.6 mA/cm2 (JSC,avg) are obtained from the PC1D simulations.

Note that these JSC values are in good agreement with the measured values of 33.5 mA/cm2

and 32.7 mA/cm2 for cell 1 and 2, respectively (Table 15). Finally, using these JSC and Leff

values in Eq. (55) gives a ∆VOC of 25 mV, which is in good agreement with the measured

VOC difference of 24 mV between cell 1 and 2 (Table 15).

Cell 3 was also analyzed using the same methodology shown in Fig. 52. A Leff,high of

870 µm and Leff,low of 90 µm with a good and bad area fraction of 62% and 38% for cell

3 gave a Leu value of 203 µm, which resulted in a JSC,avg value of 31.6 mA/cm2 from the

PC1D simulation. Note that this JSC value is also in good agreement with the measured

value of 31.4 mA/cm2 for cell 3 (Table 15). Equation (55) gave a ∆VOC of 39 mV, which is

again in good agreement with the measured VOC difference of 38 mV between cells 1 and

3 (Table 15). Cells 2 and 3 are mapped in Fig. 49 to show the agreement between cell

data and model calculations. Even though the model and the procedure outlined above are

valid for multiple-region analysis, a simple two-region analytical model gave a fairly good

idea of the loss in VOC resulting from the material inhomogeneity in these high-performance
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screen-printed mc-Si solar cells.

7.3.5 Analysis of the record high-efficiency and average String Ribbon Si cells
using an analytical model

In the previous chapter, a record high-efficiency (18.3%) ribbon Si cell was achieved using

photolithography-defined front contact formation technique. In spite of the best String

Ribbon Si cell efficiency of 18.3%, the average efficiency was only 17.2%, which was 1.1%

and 1.4% lower in absolute efficiency compared to the best String Ribbon and FZ Si cells,

respectively. This gap in efficiency is mainly attributed to the presence of electrically active

defects in certain region as shown in the following discussion.

The LBIC maps in Fig. 45 revealed that this effect reduced the String Ribbon cell

efficiency from 18.3% to 17.1% along with a 28 mV loss in VOC and 1.0 mA/cm2 loss in

JSC. In order to understand this phenomenon, the IQE measurements were performed on
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high (A) and low (B) LBIC response regions of the 17.1% cell [Fig. 45(b)]. Figure 53 shows

the match between the measured and simulated IQE response in those two regions, which

gave a significantly lower Leff value of ∼85 µm in the defective region (B) compared to 1060

µm in the high LBIC response region.

Next, we applied our simple analytical model (Fig. 52) to quantify the effect of low Leff

region on VOC.

In order to extract the area fraction, Ai, the LBIC response in Fig. 45(b) was divided

into two regions: good region corresponding to photoresponse in the range of 0.56–0.70

A/W and bad region with photoresponse in the range of 0.40–0.54 A/W. The area fraction

of good and bad regions was found to be 85% and 15%, respectively. Using the Leff values

of 1060 µm and 85 µm for the good and bad regions, respectively, an Leu value of 389 µm

was obtained using an Eq. (52).
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The JSC,high of 36.8 mA/cm2 (Table 13) and the JSC,avg of 35.7 mA/cm2 were determined

by the PC1D using Leff of 1060 µm and Leu of 389 µm (BSRV = 225 cm/s and τb = 35

µs). Note that JSC,avg value of 35.7 mA/cm2 is in good agreement with measured JSC of

35.8 mA/cm2 in the 17.1% cell. Finally, Eq. (55) gave the loss in VOC of 27 mV because

of the defect inhomogeneity, which is in good agreement with the measured VOC loss of 28

mV (Table 10).

The fact that 15% electrically active region reduced the VOC by 28 mV and the cell

efficiency by 1.2% in absolute, reiterates the difficultly and challenge in obtaining such high

efficiencies on large area production cells on multicrystalline Si materials. More research

is needed to understand the exact source and nature of these defective regions, along with

the development of the improved material growth and cost-effective defect passivation tech-

niques that can mitigate the influence of inhomogeneously distributed electrically active

defects.

7.4 Conclusions

The effect of electrically active defects on VOC was quantified and evaluated through a

simple and approximate analytical model. Model calculations were performed to reveal the

relationship between the area fraction, recombination intensity of defective region, and the

loss in VOC. In this study, three String Ribbon Si solar cells were used to test this model

and understand the impact of defect inhomogeneity. A two-region analysis using the model

developed in this study gave a reasonable estimate of the loss in VOC resulting from defect

inhomogeneity. LBIC and IQE measurements were used to estimate the area fraction and

recombination intensity of the defective regions. Model calculations showed that a cell with

a 38% area fraction of bad region with a recombination intensity of 0.90 can reduce the VOC

by 39 mV. This agreed well with the experimental data for cell 3, which showed a loss in

VOC of 38 mV. There was also a good agreement between the experimental data and model

calculations, which showed that a 19% area fraction of bad region with a recombination

intensity of 0.89 can reduce the VOC by 25 mV. Model calculations revealed that in order

to keep the loss in VOC below 5 mV in high-performance devices, the area fraction of the
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defective region should be below 20% with a recombination intensity of 0.50 or lower. These

results show the usefulness of the analytical model and methodology developed in this study

in quantitative assessment of the impact of inhomogeneously distributed active defects on

mc-Si solar cell performance. Further research is needed to reduce the area fraction and

recombination intensity of these defective regions by improving the material growth and

defect passivation techniques.
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CHAPTER VIII

APPLICATION OF AN ANALYTICAL MODEL TO

DETERMINE THE IMPACT OF MATERIAL

INHOMOGENEITY ON SMALL- AND LARGE-AREA

MULTICRYSTALLINE SILICON SOLAR CELL

PERFORMANCE

Despite their attractiveness described in Chap. II, multicrystalline Si (mc-Si) solar cells usu-

ally exhibit lower cell performance compared to cells fabricated on FZ and Cz Si [101,167],

as discussed in Chap. III. This is partly because of their low as-grown material quality.

Most mc-Si materials contain a high concentration of metallic impurities and structural de-

fects, which act as carrier recombination centers [4]. The minority carrier lifetime enhance-

ment in EFG and String Ribbon Si has been attempted by many research groups using

P diffusion-induced impurity gettering, PECVD SiNx-induced defect hydrogenation [125],

and microwave-induced remote hydrogen plasma passivation [23]. An area-average lifetime

(τavg) approaching 100 µs has been achieved after cell processing in Chaps. IV and V. Bailey

et al. [12] performed an impurity gettering experiment using a POCl3 source at 950°C for

120 min on FZ, Cz, and edge-defined film-fed grown (EFG) Si and found that low diffusion

length regions in the as-grown EFG Si are highly resistant to diffusion length improvement

by P diffusion-induced impurity gettering. Similar results have been reported by other re-

searchers in the literature [48,168,169]. Jastrzebski et al. [168] found that impurity gettering

by P diffusion significantly improves the minority carrier diffusion length and reduces Fe

and Cr concentrations in the good region, but has no effect on diffusion length in the highly

defective region. It was suggested in [168] that the carrier recombination centers control-

ling lifetime in the defective regions are most likely introduced by crystallographic defects,

which were formed during the crystal growth process. Macdonald et al. [53] performed a
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POCl3 gettering at 900°C for 180 min on the cast mc-Si materials from different ingots and

locations and found that the largest increase in minority carrier lifetime after P gettering

was observed in samples with low dislocation densities and high concentrations of mobile

impurities. Sopori et al. [49] concluded that the effectiveness of any gettering process for

improving large-area mc-Si cell performance is limited by how well it can getter impurities

from heavily dislocated regions. Bell et al. [159] reported that material inhomogeneities

can significantly limit the voltage output because the grains with the low carrier diffusion

length determine the VOC of mc-Si cells. This is because the bad regions act in parallel

with good regions and can lower the VOC [170]. Therefore, a wide spread in diffusion length

within the cell area can be detrimental to device performance [157]. Recently, Geiger et

al. [23] used a spatially resolved lifetime mapping technique to show a substantial scatter

in carrier lifetime (<2 µs to >300 µs) within 5×5 cm2 EFG and String Ribbon Si wafers

after cell processing.

Since defects or material inhomogeneity is an integral part of mc-Si, it is important

to assess its impact on cell performance. In this chapter, an attempt is made to quantify

the effect of material inhomogeneity on cell performance, including cast, EFG, and String

Ribbon Si cells, using an analytical model developed in the previous chapter. In addition,

an approach to high-efficiency (>17%) ribbon Si cells is established by model calculations

in the presence of the material inhomogeneity.

8.1 Device Modeling and Analysis

8.1.1 Application and validation of the inhomogeneity model

To verify the accuracy and acceptability of an analytical model developed in the previous

chapter, several String Ribbon Si solar cells (resistivity of 3.0 Ωcm, cell area of 4.0 cm2,

and thickness of 300 µm) were analyzed using light beam-induced current (LBIC) scans

and local internal quantum efficiency (IQE) measurements. A PVScan 5000 system [147],

equipped with a 980 nm laser, was used for LBIC analysis. The LBIC scans of String Ribbon

Si solar cells (SR1–SR6) along with the cell data are shown in Fig. 54. The LBIC scans

reveal that cell SR1 has nearly uniform current collection over the active area compared
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Figure 54: LBIC scans of 4 cm2 String Ribbon Si solar cells.
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to the other cells. This is reflected in the higher cell performance of SR1 (616 mV in VOC

and 15.9% in efficiency) as well as the higher average LBIC response of 0.568 A/W. The

IQE measurements were performed on selected regions (S1-S6 and R2-R6 in Fig. 54) on

these cells to extract the effective diffusion length, shown in Fig. 55. Based on the LBIC

scans, the best (S1-S6) and the worst (R2-R6) regions were selected for the analysis. The

measured IQE response was matched in the long-wavelength range (700–1000 nm) with a

simulated response using PC1D by fixing the BSRV (250 cm/s) and varying the bulk carrier

lifetime. This gave lifetimes of 150 µs in the good regions (S1-S6) and 2–20 µs in the bad

regions (R2-R6). According to Eq. (43), this corresponds to an Leff of ∼870 µm for the

good regions S1-S6, and 90 µm for region R2, 92 µm for region R3, 79 µm for region R4, 95

µm for region R5, and 282 µm for region R6. It is important to note in this analysis that

the BSRV and lifetime values do not necessarily have to be exact, but they should give the

correct value of Leff. The area fraction of each region was determined by LBIC maps (Fig.

54). The LBIC output, which gives the map of spectral response (A/W), was divided into
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Table 18: Summary of model calculations for loss in VOC.
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two regions (0.50–0.64 A/W range for the good region and 0.34–0.48 A/W range for the

bad region). An image processing program was used to obtain the bad region area fraction

of 0.38, 0.40, 0.40, 0.19, and 0.20 for cells SR2, SR3, SR4, SR5, and SR6, respectively.

Equation (52) was then used to extract the effective uniform diffusion length (Leu) of 203

µm, 199 µm, 174 µm, 342 µm, and 615 µm using the Leff,high of 870 µm in combination with

Leff,low of 90 µm, 92 µm, 79 µm, 95 µm, and 282 µm and bad region area fraction of 38%,

40%, 40%, 19%, and 20% for cells SR2, SR3, SR4, SR5, and SR6, respectively. Finally, Eq.

(55) was applied to obtain ∆VOC (material inhomogeneity-induced loss in VOC) of 38 mV,

40 mV, 44 mV, 19 mV, and 9 mV for each cell. Table 18 shows that these ∆VOC values

calculated from the defect inhomogeneity model are in good agreement with measured loss

in VOC of 38 mV, 37 mV, 40 mV, 20 mV, and 16 mV for cells SR2, SR3, SR4, SR5, and

SR6, respectively, compared to the cell SR1.
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Figure 56: LBIC scans of 4 cm2 HEM and EFG Si solar cells.

To further test the validity of the above analytical model on other inhomogeneous mate-

rials, additional cells fabricated on 1.6 Ωcm cast mc-Si grown by the heat exchanger method

(HEM) and 3.0 Ωcm EFG Si were also characterized by the above methodology to assess the

loss in VOC using Eqs. (43), (52), and (55). The LBIC scans of the two HEM mc-Si (HEM1

and HEM2) and two EFG Si (EFG1 and EFG2) solar cells, along with the measured differ-

ence in VOC and cell data, are shown in Fig. 56. Note that these 4.0 cm2 cells were selected

from the same wafer for each material. Next, the analytical model for inhomogeneity was

applied to calculate the loss in VOC on these cells. Again, LBIC scans reveal that HEM1

and EFG1 have a relatively uniform current collection compared to HEM2 and EFG2. The
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Figure 57: Measured and simulated IQE response on HEM mc-Si solar cells.

local IQE measurements were performed on selected regions H1-H3 on HEM cells and E1-

E3 on EFG Si cells, Fig. 56, to extract the effective diffusion length. Figure 57 shows the

measured and simulated IQE response from regions H1-H3, which gave an effective diffusion

length of 875 µm (Leff,high) for good regions (H1 and H2) and 93 µm (Leff,low) for the bad

region (H3). The same image processing, which divides the LBIC response into two regions

(0.50–0.64 A/W range for the good region and 0.34–0.48 A/W range for the bad region),

gave the bad region area fraction of 0.12 for HEM2 (Fig. 56). Equation (52) then gave Leu

of 437 µm, and finally ∆VOC was found to be 17 mV using Eq. (55), which agreed with the

measured ∆VOC of 14 mV.

The measured and simulated IQE response for the EFG Si cell are shown in Fig. 58,

which gave effective diffusion lengths of 928 µm and 79 µm for good (E1 and E2) and bad

(E3) regions, respectively. The area fraction of the bad region was found to be 15% on

EFG2 from the LBIC map and image processing. The combination of diffusion length and

area fraction gave an Leu of 355 µm using Eq. (52). Finally, the ∆VOC was calculated to
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Figure 58: Measured and simulated IQE response on EFG Si solar cells.

be 26 mV using Eq. (55), which agreed well with the measured ∆VOC value of 30 mV. The

cells analyzed by the above two-region model are summarized in Table 18, which shows a

reasonable agreement between measured and calculated loss in VOC resulting from material

inhomogeneity.

The cells analyzed above had a τavg of 91–154 µs (Table 18), which was determined by

averaging the carrier lifetimes in good (A) and bad (B) regions within the cell, as shown

below.

τavg =
n
∑

i=1

(τi × Ai),

= τA · AA + τB · AB, (58)

where τi is the carrier lifetime in region i, and Ai is the area fraction of region i. The

PC1D simulations were performed to quantify the effect of carrier lifetime on cell efficiency

using the input parameters in Table 16. The PC1D simulations in Fig. 59 indicate that if

the bulk lifetime is in excess of 90 µs, the cell efficiency should be over 15.7%. However,
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cells SR2–SR6 did not exhibit such a high performance. The difference in the simulated

and measured cell efficiencies is attributed to the material inhomogeneity in the mc-Si solar

cells. The good and bad regions in a mc-Si cell are connected in parallel; therefore, the VOC

in the good region is pulled down by the VOC in the bad region.

In this section, an effort is made to transform the inhomogeneous mc-Si cell into a

homogeneous cell of equivalent performance with an effective uniform diffusion length or

a uniform bulk lifetime. Equation (52) is used to obtain the Leu, which is the sum of the

ratio of area fraction and diffusion length (A/Leff). Then, the extracted Leu is used in

place of Leff in Eq. (43), in conjunction with BSRV of 250 cm/s (in our cells), to obtain the

effective uniform bulk diffusion length (Lbu). Finally, the uniform bulk carrier lifetime (τbu)

is calculated from the equation Lbu =
√

Dnτbu. The procedure for extracting τbu from the

area fraction and carrier lifetime in the good and bad regions is outlined in Fig. 60. The

τbu represents the lifetime of a hypothetical homogeneous cell, which will produce VOC and

performance equivalent to the inhomogeneous mc-Si cell. Thus, this model transforms the
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Figure 60: Procedure to obtain τbu from τA, τB, area fraction of regions A and B.

inhomogeneously distributed carrier lifetime into an effective homogeneous lifetime value,

which is easy to relate to and understand.

Based on the methodology described above, the τbu was calculated for HEM, EFG, and

String Ribbon mc-Si cells. Most noteworthy, this analysis revealed that the τbu values are

much lower than τavg values in those cells (Table 18). For example, String Ribbon Si cell

SR6 had a τavg of 91 µs, but its τbu was only 9 µs. To demonstrate that the τbu truly

represents the performance of inhomogeneous mc-Si cells, the loss in VOC was calculated

using Eq. (55) by maintaining the τavg of 100 µs. Model calculations were performed again

by dividing the cell into two regions, A and B. The area fraction of region B was varied

from 0% to 50%, and the lifetime in region B (τB) was also varied from 1.0 µs to 10 µs. The

lifetime in region A (τA) was adjusted each time to keep the τavg of 100 µs based on the area

fraction of the region B and τB. Recall that the combination of area fraction and lifetimes

in good and bad regions gives the Leu using Eq. (52), the Leu gives the ∆VOC using Eqs.

(43) and (55), and finally Leu and BSRV give the value of Lbu and τbu (Fig. 60). Figure
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61 shows two curves; the first curve shows the calculated ∆VOC as a function of the area

fraction of bad region B for a fixed τB of 2.0 µs and τavg of 100 µs, and the second curve

shows the ∆VOC as a function of τbu calculated from Leu and BSRV. The experimental data

for cell SR6 (area fraction of region B ' 40%, τB=2.0µs, and ∆VOC=40 mV), which has

a τavg close to 100 µs, is also plotted on this figure, which shows good agreement between

the measured and modeled ∆VOC of ∼40 mV, curve 1. Curve 2 shows that a ∆VOC of 40

mV corresponds to a τbu value of 9 µs. Thus, a cell with a 40% bad region with τB of 2 µs

and τavg of 100 µs behaves similarly to a homogeneous cell with τbu of 9 µs, which is about

an order of magnitude lower than the average lifetime of 90–100 µs. In this calculation, the

τavg and the base resistivity were assumed to be 100 µs and 3.0 Ωcm, respectively. It can be

concluded that the τbu determines the behavior of the cell more accurately than the τavg.

Figure 61 can be used to determine the τB for any value of AB in a cell with τavg of 100 µs

and τB of 2.0 µs. Such curves can be generated for any combination of τavg and τB using
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Table 19: Cell performance of large-area EFG Si cells used in this study.

12.40.75928.8567C

12.70.76629.2568B

14.60.75432.1603A

Eff. (%)FFJsc (mA/cm2)Voc (mV)ID

the above methodology.

8.1.2 Inhomogeneity-induced loss in open-circuit voltage of large-area EFG Si
cells

The analysis in the previous section was performed on several small-area cells fabricated on

large-area wafers. In this section, we applied the analytical model to large-area industry-

type EFG Si cells. The cell data of the three 100 cm2 EFG Si cells used in this investigation

is shown in Table 19. Cell A had a high VOC value (>600 mV), and the other two cells

(B and C) had much lower VOC (<570 mV). The LBIC scans along with the measured

I −V characteristics of these EFG cells are shown in Fig. 62. The IQE measurements were

performed on several selected locations, shown in Fig. 62. Note that the best and the worst

regions were selected for the IQE measurements. The measured IQE response in the long-

wavelength region was matched with the simulated IQE response (Fig. 63) using PC1D

to extract the Leff values at each of these locations (Fig. 63). It was found that the best

regions had an Leff of 975 µm (τb = 200 µs and BSRV = 250 cm/s), and the worst regions

had an Leff of 90 µm (τb = 2.6 µs and BSRV = 250 cm/s) from the match between measured

and simulated long-wavelength IQE response. The area fractions of good and bad regions

were found to be 90% and 10% for cell A, 64% and 36% for cell B, and 48% and 52% for cell
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Figure 62: LBIC scans of 100 cm2 EFG solar cells.
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C, respectively, using the image processing software and dividing the LBIC response into

two regions of eight bins each (good: 0.50-0.64 A/W and bad: 0.34-0.48 A/W). The model

calculations were performed using these values to assess the loss in VOC, and the results are

summarized in Table 20. Since cell A had the lowest fraction of bad region (Fig. 62), cell A

was used as a reference cell. The calculated and measured losses in VOC were 39 mV and 35

mV for cell B and 47 mV and 36 mV for cell C, respectively, using the two-region analysis.

Since the local IQE measurements were performed only at the two extreme regions (best

and worst) within a cell in this study, the distribution of diffusion length between these two

extreme regions was ignored during the model calculations. The previous section showed

that this worked well for small-area cells. However, large-area cells often contain a wider

distribution of diffusion length over the cell area, which may introduce some error in the

two-region analysis. In order to investigate the error associated with the wide spread of

diffusion length, the model calculations were performed again by dividing the LBIC response

on large-area cells into multiple regions. The Leff value for each region was obtained by
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Table 20: Calculated and measured loss in VOC for large-area EFG Si cells.

3633343747C

3530313339B

Measured

V
OC

(mV)

16-region

V
OC
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8-region

V
OC

(mV)

4-region

V
OC

(mV)

2-region

V
OC

(mV)
ID

linear extrapolation between the measured best and worst Leff values. This is illustrated in

Fig. 64 and avoided the need for additional IQE measurements. The summary of model

calculations using multiple regions (two-, four-, eight-, and 16-region) is also shown in Table

20. Recall that LBIC response is first divided into 16 bins. For two-region analysis, each

region (good and bad) contains eight bins and in 16-region analysis, each bin corresponds

to one region. Area fraction for each region was determined by Eq. (57), and Leff for each

region can be determined by linear approximation of Leff from LBIC response (Fig. 64).

After that, the Leu and ∆VOC can be calculated from Eqs. (52) and (55). Notice that

for cell B, the calculated loss in VOC was 39 mV using the two-region analysis. However,

the ∆VOC was found to be 33 mV, 31 mV, and 30 mV using four-, eight-, and 16-region

analysis, respectively. For cell C, the ∆VOC was 47 mV, 37 mV, 34 mV, and 33 mV using

two-, four-, eight-, and 16-region analysis. The ∆VOC value becomes saturated as we include

more regions into the calculations. The measured ∆VOC was 35 mV and 36 mV for the

cells B and C compared to cell A. However, the 16-region analysis, which is expected to
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be the most accurate analysis in this study, gave a ∆VOC of 30 mV and 33 mV for cells B

and C, respectively. The small gap between the measured and calculated loss in VOC, even

after the 16-region analysis, could be because of the assumption that the reference cell A is

completely uniform over the cell area or the error associated with the linear approximation

of Leff for each region. Thus, the simple inhomogeneity model using four- or eight-region

gives a fairly good idea of the loss in VOC of large-area cells resulting from the distributed

defects. Schindler and Warta [171] have also demonstrated the multiple-region analysis

for device characterization using a combination of the diode-network model and diffusion

length mapping technique.

8.2 Guidelines for Achieving High-Efficiency Ribbon Sili-
con Solar Cells

8.2.1 Variations in ∆VOC values as a function of material and device parameters

In the previous section, the analytical model, which can take the material inhomogeneity

into consideration, was successfully applied to large-area industry-type EFG Si cells to

calculate the loss in VOC resulting from the material inhomogeneity. In this section, model

calculations are performed by varying key material and device parameters to quantify the

impact of each parameter on ∆VOC. According to Eqs. (52) and (55), the ∆VOC is a

function of basic material parameters, such as base doping or resistivity, cell thickness, and

carrier lifetime in good and bad regions. Therefore, a baseline curve of ∆VOC versus area

fraction of the bad region was first established using Eqs. (52) and (55) in conjunction

with material and device parameters shown in Table 21. This calculation was done with

two-region analysis. Next, ∆VOC was calculated by varying one parameter at a time (base

resistivity, cell thickness, τB, and τavg). The results of the sensitivity analysis are shown in

Fig. 65 [(a) base resistivity, (b) cell thickness, (c) τB, and (d) τavg]. Figure 65(a) reveal that

the base resistivity in the range of 1.3 to 5.0 Ωcm has no appreciable effect on ∆VOC. The

cell thickness in the range of 100 to 300 Ωcm also has no significant impact on improving

the ∆VOC. However, Fig. 65(c) shows that ∆VOC is a strong function of the carrier lifetime

in the bad region (τB). For example, if the area fraction of the bad region is 30%, ∆VOC
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Table 21: Material and device baseline parameters for model calculations.

100 µsArea-average lifetime ( avg)
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Figure 65: Model calculations for ∆VOC as a function of (a) base resistivity, (b) cell
thickness, (c) τB, and (d) τavg.
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can be improved by 10 mV by increasing the τB from 2 to 5 µs. However, if τB decreases

from 2 to 0.5 µs, the ∆VOC increases by 18 mV. Figure 65(d) shows that if τavg is improved

from 100 to 200 µs, the ∆VOC increases by 8 mV for a 30% of bad region area fraction with

τB of 2 µs. On the other hand, if τavg decreased to 50 µs, the ∆VOCs decreases by ∼10 mV

because the VOC of the good region decreases.

This section dealt with the effect of material and device parameters on ∆VOC. Next

section deals with the effect of device design and high-quality surface passivation scheme

(BSRV) on VOC in the presence of defects.

8.2.2 Effect of improving carrier lifetime in the good region and BSRV in the
presence of defects

It has been shown in the literature [11,172] that the decoration of structural defects by metal

impurities significantly enhances carrier recombination activity, and removing metal impu-

rities from such defective regions is extremely difficult. On the other hand, regions without

decorated defects can be improved appreciably by effective gettering and passivation.

In the previous sections, we investigated the impact of the bad regions (τB and area

fraction of region B), by fixing the τavg at 100 µs. A combination of the defect inhomogeneity

model and PC1D device simulations is used in this section to assess the impact of improving

the carrier lifetime in the good region A (τA) on the cell performance in the presence of

defects. This is done by fixing the thickness (300 µm), BSRV (250 cm/s), τB (2 µs), and

area fraction of bad region B (20%). Note that in this analysis, the τavg is not fixed at 100

µs. In this study, the VOC was calculated as a function of τA in the range of 100 to 500 µs

using Eqs. (59) and (60). First, Leff in regions A and B was obtained from Eq. (43) using

τA, τB, and BSRV values. Then, the Leu value in Eq. (59) was obtained from Eq. (52)

using the area fractions of the good and bad regions and the corresponding Leff values. The

Job value was then calculated using in Eq. (59), and finally the VOC was calculated using

Eq. (60), neglecting the emitter component of saturation current density, Joe.

Job =
qn2

i Dn

NBLeu
, (59)
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and

VOC =
kT

q
ln
( JSC

Joe + Job
+ 1
)

'
kT

q
ln
(JSC

Job
+ 1
)

, (60)

where q is the electron charge, ni is the intrinsic carrier concentration, Dn is the diffusion

coefficient of electron, and NB is the background doping concentration [152].

The results of model calculations are summarized in Fig. 66. The reference curve

(BSRV = 250 cm/s) in Fig. 66 indicates the VOC values for a uniform material without

any bad region (area fraction of region B is 0%, AB = 0). Model calculations reveal that

an appreciable improvement in VOC (∼14 mV) can be observed when AB is zero and τA is

raised from 100 to 500 µs. However, if defects are present with τB of 2 µs and bad region

area fraction of 20%, the VOC will increase only by 4 mV if τA is increased from 100 to

500 µs with a BSRV of 250 cm/s. If the BSRV is improved from 250 to 100 cm/s, a much

higher increase in VOC of 23 mV can be observed upon increasing τA from 100 to 500 µs
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in the presence of defect inhomogeneity, however, When τB is 2 µs with area fraction of

region B of 20%, the increase in VOC is limited to only 4 mV. These results show that the

full potential of a high-quality rear surface passivation scheme cannot be realized in the

presence of defects. Thus, unless we take care of the real bad regions, improving the good

region or BSRV will not have much impact on device performance.

The next section provides guidelines for achieving 17% planar mc-Si solar cells in the

presence of the defective regions within the cell.

8.2.3 Design of 17%-efficient planar ribbon mc-Si cells in the presence of de-
fects

The quality of mc-Si material depends on many factors, such as silicon feedstock, crystal

growth technique, and growth speed. It is not easy to eliminate the effect of material inho-

mogeneity by improving material growth and cell process technologies. Therefore, in this

section, an approach to high-efficiency (>17%) mc-Si solar cells is outlined in the presence

of electrically active defects. This section shows what level of defect and process engineer-

ing is necessary to achieve >17% mc-Si cells. This is done by combining the inhomogeneity

model with PC1D simulations.

The model used in this section assumes two regions (good and bad) with the τavg fixed

at 100 µs. The base resistivity of 3.0 Ωcm and a thickness of 300 µm are used in the

simulations. The initial input parameters used for model calculations in PC1D are shown

in Table 22, which represent the current status of ribbon Si solar cells. The input value for

carrier lifetime (τbu) in PC1D was determined by the combination of the area fraction (AA

and AB) and lifetime in each region (τA and τB) using Eqs. (43) and (52). The area fraction

of region B and its lifetime τB were varied from 0 to 50% and 1.0 to 30 µs, respectively.

Note that τA was varied each time in order to keep the τavg at 100 µs. The results of PC1D

simulations are shown in Fig. 67(a) in the form of a contour plot. The simulations reveal

that even if the area fraction of the bad region is reduced to less than 10% and the lifetime

in the bad region is improved to greater than 5 µs, the achievable cell efficiency is limited

to only 15.5% using the current cell design.
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Table 22: Initial input parameters used for device modeling in PC1D.

100 µsArea-average lifetime ( avg)

VariableLifetime in regions A ( A) and B ( B)

VariableArea fraction of regions A and B

2.0Second diode ideality factor

2.6x10-8 AJo2

5.0x10-5 S (2.0x104 cm2)
Internal conductor 

(Shunt resistance)

0.75 (0.75 cm2)
Base contact 

(Series resistance)

45 /sq, Spreading 

resistance measurement
Front doping profile

55%, diffuseRear internal reflectance (BSR)

78 nm, index = 2.0Front AR coating

6.0%Grid coverage

250 cm/sBSRV

150,000 cm/sFSRV

300 µmThickness

3.0 cmBase resistivity

ValueParameter
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Figure 67: Contour plot of (a) current and (b) future ribbon Si solar cell efficiencies as a
function of area fraction of region B and τB.
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To enhance the cell efficiency further, some advanced design features need to be intro-

duced along with the improvement in material quality. In these simulations, we investigated

the impact of (i) base resistivity and thickness, (ii) emitter sheet resistance, and (iii) rear

surface passivation and rear reflection on cell efficiency in the presence of defects.

PC1D simulations were performed again to estimate the possible cell efficiencies on

defective Si materials using these variables and design features. Improved material and

device design parameters used in the simulations shown in Fig. 67(b) include 1.3 Ωcm

resistivity, 100 µm thickness, 100 Ω/sq. emitter, 100 cm/s BSRV, and 90% back surface

reflection. The simulations reveal that with the above design modifications, if the area

fraction of the bad region is reduced to less than 10% and the lifetime in the bad region

is improved to greater than 5 µs, cell efficiency can be increased to greater than 17.0% on

defective materials even with no surface texturing. A successful implementation of surface

texturing can raise this efficiency close to 18%.

8.3 Conclusions

An analytical model was developed in this study to understand the impact of highly defective

(low diffusion length) regions on mc-Si solar cell performance. This model gives a reasonable

estimate of the loss in VOC resulting from material inhomogeneity in mc-Si cells. Model

calculations showed that even if the τavg is 100 µs, the VOC value can vary substantially,

depending on the recombination intensity and area fraction of the defective regions.

The analytical model for defect inhomogeneity was applied to large-area EFG Si cells,

which contain a wide spread of diffusion lengths over the cell area. The difference between

calculated and measured loss in VOC becomes smaller when multiple-region analysis, instead

of two-region analysis, is performed on large-area devices.

Model calculations were extended to predict the mc-Si cell performance in the presence

of defective regions. It was found that the impact of improving the lifetime in good regions

or rear surface passivation is very limited in the presence of defects, even if the lifetime in

good regions is improved from 100 to 500 µs and BSRV is reduced from 250 to 100 cm/s.

In order to realize the full potential of high-quality surface passivation and high carrier
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lifetime, the area fraction and recombination intensity of the bad region must be reduced.

Model calculations revealed that if the area fraction of the bad region is reduced to less

than 10% and the lifetime in the bad region is improved to greater than 5 µs, a planar

cell efficiency of 17.0% can be achieved by applying advanced design features, such as high

sheet resistance emitters and effective rear surface passivation. Further research is needed

to reduce the recombination intensity and the area fraction of bad regions. This can be

accomplished by a combination of improving the material growth techniques and developing

a novel defect passivation scheme to deactivate the lifetime-limiting defects.
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CHAPTER IX

ATTEMPTS TO MINIMIZE AREA FRACTION AND

RECOMBINATION INTENSITY OF LOW DIFFUSION

LENGTH REGIONS BY HIGH-TEMPERATURE

THERMAL CYCLES AND DOUBLE-SIDED PECVD

SILICON NITRIDE-INDUCED DEFECT

HYDROGENATION

As discussed in Chap. II, the low-cost ribbon Si materials contain metal impurities and

structural defects, which lead to a very low as-grown carrier lifetime of 1–5 µs. These

lifetimes are not enough to produce high-efficiency cells. Therefore, in Chap. IV, it has

been demonstrated that the PECVD SiNx-induced defect hydrogenation can enhance the

carrier lifetime from 1–5 µs to ∼100 µs. The implementation of an optimized PECVD SiNx-

induced defect hydrogenation in an RTP unit has been shown in Chapter V to produce very

high-efficiency 4 cm2 ribbon Si solar cells (18.2% on EFG and 18.3% on String Ribbon Si)

using photolithography-defined front grid contacts. However, it was found in Chap. VI that

the inhomogeneously distributed unpassivated active defects can lower the cell performance

significantly. A simple analytical model was developed in Chapter VII in order to assess

the impact of active defects on cell performance as a function of the carrier recombination

intensity and area fraction of bad regions. In Chaps. VII and VIII, the analytical model

was developed and applied to several small-area (4 cm2) and large-area (100 cm2) mc-Si

cells to verify the accuracy of the model and used further to establish the guidelines for

achieving high-efficiency cells in the presence of active defects.

It was found in Chap. VIII through the model calculations that the key to achieving

high-efficiency cells on defective mc-Si materials is to improve the material quality or carrier
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lifetime in defective regions. An effort is made in this chapter to improve the material homo-

geneity through the systematic investigation of intense impurity gettering in a conventional

tube furnace and single- and double-sided PECVD SiNx-induced defect hydrogenation by

a combination of cell fabrication and room-temperature scanning photoluminescence (PL)

technique.

9.1 Effect of P Diffusion-Induced Impurity Gettering

The P diffusion-induced impurity gettering technique has been studied extensively and im-

plemented to improve the material quality [48,49]. In the crystalline Si solar cell fabrication

process, the purpose of P diffusion is not only to form the n+ emitter but also enhance si-

multaneously the minority carrier diffusion length by removing the impurities in the bulk

Si by a well-known gettering effect.

Although the P diffusion gettering has been implemented successfully in the PV industry,

it has also been reported in the literature that the effectiveness of P diffusion gettering is

quite poor in regions of high dislocation density [12, 53]. It was found in [12] that low

diffusion length regions in EFG Si are highly resistant to diffusion length improvement by P

gettering. The experimental results in [12] suggested that some of the structural defects in

EFG Si become decorated with precipitated metallic impurities during the crystal growth

that enhance carrier recombination. Clusters of precipitated metal impurities are highly

stable and cannot be gettered by a standard diffusion techniques. There is a need to

improve the understanding of the effect of defect clusters on mc-Si solar cells and develop

technologies to mitigate their effect.

In this experiment, the effect of P diffusion-induced gettering process is revisited by

comparing cells fabricated with standard diffusion process with those fabricated with addi-

tional intense gettering process. The standard and intense gettering processes used in this

study is shown in Fig. 68. In order to ensure the crystallographic properties, large-area

EFG Si wafers (p-type, 300 µm, 3.0 Ωcm) were first cut into two pieces, as shown in Fig. 69.

Cells 1-3 (set A) were subject to standard process, and cells 4-6 (set B) were fabricated with

the intense gettering process. After the initial surface cleaning, samples in set B received an
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Standard Process Intense Gettering Process

Cleaning Cleaning

POCl3 (950°C/7 h)

Surface Etch

POCl3 (45 /sq.) POCl3 (45 /sq.)

PECVD SiNx (front) PECVD SiNx (front)

Al Screen-Print Al Screen-Print 

Ag Screen-Print Ag Screen-Print

RTP Anneal RTP Anneal 

Isolation, FGA, Test Isolation, FGA, Test 

Figure 68: Process sequence for standard and intense gettering processes.

Growth direction

4 5 6

1
0
 c

m

Cut

1 2 3

10 cm

Figure 69: Cell configuration used in this study.
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Table 23: Average cell results of standard (A) and intense gettering (B) processes.

1114.80.77232.1597
Gettered

(B)

1115.10.77532.6597
Standard

(A)

# of cellsEff. (%)FFJSC (mA/cm2)VOC (mV)Process

additional intense gettering process in a POCl3 furnace at 950°C for 7.0 h, which resulted

in a sheet resistance of 1–2 Ω/sq. After this prolonged P pregettering, the diffused regions

were etched off, and the standard P diffusion process was performed at 875°C to form 40–50

Ω/sq n+ emitters. The SiNx layers were deposited in a low-frequency PECVD reactor.

Commercial Al and Ag pastes were then screen printed on the rear and front, respectively,

and fired in an RTP unit to form Al-BSF and Ag front grid contacts. Cells were finally

isolated into 2×2 cm2 and annealed in a forming gas at 400°C for 10 min. The cell results

are summarized in Table 23, and the distribution of cell efficiencies is shown in Fig. 70.

The solar cell parameters were extracted by illuminated and shaded I − V measurements.

It was found that there is no appreciable difference in the cell efficiency between sample set

A and B, indicating that intense pregettering process did not provide any additional help

in removing or deactivating the impurities present in the bulk.
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Cell 1

Eff.=15.9

Voc=603

Jsc=33.8

Cell 2

Eff.=15.5

Voc=601

Jsc=33.4

Cell 3

Eff.=15.8

Voc=606

Jsc=33.4

Cell 4

Eff.=16.0

Voc=604

Jsc=34.1

Cell 6

Eff.=15.9

Voc=605

Jsc=34.1

Cell 5

Eff.=15.8

Voc=602

Jsc=33.9

(a) Standard

(b) Intense Gettering

Figure 70: Cell efficiency distribution of standard (A) and intense gettering (B) processes.

9.2 Effect of Intense PECVD SiNx-Induced Defect Hydro-
genation

Since intense P diffusion gettering did not help mitigation of impurity-decorated defects,

attempt was made to passivate them by more intese hydrogenation step. Large-area (10×10

cm2) EFG Si wafers were first cut into two pieces to ensure the identical crystallographic

properties, as shown in Fig. 69.

After the initial cleaning process, the samples were P diffused in a POCl3 furnace to form

40–50 Ω/sq n+ emitters. Sample set C (Cells 1–3) was processed using the standard fabri-

cation sequence with single-side hydrogenation, and sample set D (Cells 4–6) was processed

with double-sided hydrogenation process. A SiNx antireflection coating with a thickness of

800 Å and a refractive index of 2.0 was deposited on the front of samples in set C and on

the both sides of samples in set D. The set D was then annealed in an RTP unit at 750°C

to inject hydrogen from both sides for additional defect passivation. The initial SiNx layers

were removed in a 10:1 H2O:HF solution and a new SiNx layer was deposited on the front.

Samples in sets C and D received a screen-printing of commercial Al paste on the rear and
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Standard Process Double-sided SiNx Process

Cleaning Cleaning

POCl3 45 /sq POCl3 45 /sq

PECVD SiNx (front/rear)

RTP Anneal

SiNx Removal (HF)

PECVD SiNx (front) PECVD SiNx (front)

Al Screen-Print Al Screen-Print 

Ag Screen-Print Ag Screen-Print

RTP Anneal RTP Anneal 

Isolation, FGA, Test Isolation, FGA, Test 

Figure 71: Process sequence for standard and intense hydrogenation processes.

Ag paste on the front, followed by contact firing in an RTP unit to form Al-BSF and Ag

grid contacts. Cells were finally isolated (2×2 cm2) and forming gas annealed at 400°C for

10 min. Process sequences for sets C and D are shown in Fig. 71.

The average solar cell performance parameters are summarized in Table 24, and the

distribution of cell efficiencies is shown in Fig. 72. Surprisingly, there was no apprecia-

ble difference in the cell performance between the two sets, indicating that the additional

double-sided hydrogenation process was also unable to deactivate the remaining impurity-

decorated defects. This indicates that the nearly full effectiveness of defect hydrogenation

process was achieved with the standard SiNx film deposited on the front only, and no

appreciable enhancement is observed by injecting additional hydrogen from the rear side.

In order to support the effectiveness of PECVD SiNx-induced defect hydrogenation,

scanning photoluminescence (PL) measurements were performed on EFG Si materials sub-

jected to single- and double-side hydrogenation. The PL spectrum was taken at room
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Table 24: Average cell results of standard (C) and intense hydrogenation (D) processes.

1515.00.76233.0596
Intense SiNx

(D)

1514.90.76532.8594
Standard

(C)

# of cellsEff. (%)FFJSC (mA/cm2)VOC (mV)Process

Cell 1

Eff.=15.4

Voc=600

Jsc=33.3

Cell 2

Eff.=15.4

Voc=606

Jsc=33.2

Cell 3

Eff.=15.0

Voc=596

Jsc=33.0

Cell 4

Eff.=15.3

Voc=601

Jsc=33.2

Cell 6

Eff.=15.2

Voc=600

Jsc=33.1

Cell 5

Eff.=15.1

Voc=597

Jsc=33.0

(c) Standard

(d) Intense Hydrogenation

Figure 72: Cell efficiency distribution of standard (C) and intense hydrogenation (D)
processes.
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Figure 73: Front and rear PL scans (Ibb) of four EFG Si samples: 1) unprocessed or
as-grown, 2) P diffused and PECVD SiNx on the front, 3) P diffused, PECVD SiNx on the
front and Al-BSF on the rear, and 4) P diffused and PECVD SiNx on the front and rear.

temperature using AlGaAs laser with a wavelength of 800 nm. For details of PL mea-

surements, see [137] and [173]. Four small samples (5.0×2.5 cm2) were cut from the same

EFG wafer and prepared as follows: 1) unprocessed or as-grown, 2) P diffused and PECVD

SiNx on the front, 3) P diffused, PECVD SiNx on the front and screen-printed Al on the

rear, and 4) P diffused and PECVD SiNx on the front and rear. The P diffusion and SiNx

deposition conditions were kept same as described in previous section. Samples #2, 3, and

4 were annealed in an RTP unit at 750°C for hydrogenation. After the thermal treatment,

Al and SiNx layers were removed in 2:1:1 H2O:H2O2:HCl and 10:1 H2O:HF solutions, re-

spectively, and Al-BSF and P-doped n+ layers were etched in 15:5:2 HNO3:CH3COOH:HF

solution. The maps of PL intensity (band-to-band, Ibb, which is proportional to effective

lifetime [137]) are shown in Fig. 73. The PL measurements were performed from the front

as well as the rear side of the EFG samples to quantify the effect of defect passivation on
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Table 25: Average values of PL intensities for Ibb in each process step.

78918436Rear

75887727Front

P-diffused

+SiN
x

front/rear

P-diffused+SiN
x

front+Al-BSF rear 

P-diffused

+SiN
x

front
As-grown

PL scan 

(I
bb

)

bulk Si. The average values of PL intensity (Ibb) after each process step are summarized in

Table 25.

Figure 73 and Table 25 reveal that the combination of PECVD SiNx on the front and

Al-BSF on the rear produced maximum enhancement in PL response or carrier lifetime.

In addition, there was no appreciable difference in the average PL response for single- and

double-sided hydrogenation. It is important to note that majority of the improvement

came from single-sided hydrogenation and Al-BSF. PL results are consistent with the cell

results, which also showed no appreciable difference between the single- and double-sided

hydrogenation (Table 24). This suggests that all the passivatable defects are passivated

by hydrogen injected from the single-sided SiNx film. Therefore, an additional injection

of hydrogen from rear side does not play a role since the remaining defects are not af-

fected by hydrogen. More research is needed to eliminate unpassivatable defects or enhance

the effectiveness of SiNx-induced defect hydrogenation in order to achieve a homogeneous

distribution of carrier lifetime over the entire cell area and high-efficiency ribbon Si cells.
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CHAPTER X

GUIDELINES FOR FUTURE WORK

10.1 Surface Texturing for Effective Light Trapping

Another way to improve the cell efficiency is to apply a surface texturing for effective

light trapping. PC1D device simulations were performed to quantify the effect of surface

texturing on cell performance. The results of simulations are shown in Fig. 74. The random

pyramid surface texturing was used in these simulations. The PC1D simulations revealed

that the successful implementation of surface texturing can bring an efficiency enhancement

of ∼1.0% in absolute. This means that the record high-efficiency String Ribbon Si cells with

screen-printed contacts (16.8%) achieved in Chap. III can reach an efficiency of 17.8%, as

shown in Fig. 74. However, surface texturing on ribbon Si materials has not been fully

successful because of the presence of structural defects, such as twins and grain boundaries.

Hahn et al. [174] tried to apply an acidic etch for surface texturing (H2SO4/HF/HNO3) on

Strign Ribbon Si materials, shown in Fig. 75. It was reported in [174] that no appreciable

effect was observed on cell efficiency. This could be due to the preferential etching of weakly

bonded silicon sites (twins and grain boundaries). Figure 75 clearly shows the preferential

etch of twinned regions. New texturing techniques need to be developed to reduce the

reflection and increase the ribbon Si cell performance. In addition, a combination of high-

quality rear surface passivation (BSRV = 100 cm/s and BSR = 90%) and surface texturing

can bring the cell efficiency close to 18% with screen-printing technology.
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Figure 75: Surface texturing using an acidic etch (H2SO4/HF/HNO3) solution on String
Ribbon Si.
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APPENDIX A

DETAILED PROCESS SEQUENCE: SCREEN-PRINTED

CONTACTS

A.1 Initial Wafer Cleaning

• DI rinse – 5 min

• H2O:HF 10:1 dip – 1 min

• DI rinse – 5 min

• H2O:H2O2:H2SO4: 2:1:1 dip – 5 min

• DI rinse – 5 min

• H2O:HF 10:1 dip – 1 min

• DI rinse – 5 min

• H2O:H2O2:HCl: 2:1:1 dip – 5 min

• DI rinse – 5 min

• H2O:HF 10:1 dip – 1 min

• DI rinse – 5 min

• N2 dry

A.2 POCl3 Diffusion

• Wafer loading

• Diffusion temperature and time setting – 875°C for 40–50 Ω/sq. and 850°C for 90–100

Ωsq., deposition for 20 min and drive-in for 12 min
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• Run the process

• Wafer unloading

• Phosphosilicate glass removal in H2O:HF 10:1 – 1 min

• DI rinse – 5 min

• N2 dry

A.3 Low-Frequency PECVD SiNx Deposition

• Wafer loading

• Temperature stabilization at 425°C – 15–20 min

• Gas leak check

• Surface pretreatment – NH3 gas flow rate: 1000 sccm, plasma power: 250 W, ambient

pressure: 1.5 torr for 2 min

• Purge – N2 gas flow rate: 1000 sccm for 2 min

• Deposition – NH3 gas flow rate: 3000 sccm, Si3H4 gas flow rate: 300 sccm, plasma

power 150 W, ambient pressure: 2.0 torr for 3.5 min (750–800 Å, n ' 2.0)

• Purge – N2 gas flow rate: 1000 sccm for >4 min

• Wafer unloading

A.4 Al and Ag Screen-Printing

• Belt-dryer temperature and speed setting – 200°C and 2.0 ipm

• Screen and paste selection – Al screen with 200 mesh, Ferro FX53-038 Al conductor

paste

• Printer setting – Snap-off distance: 50 mils

• Dummy printing – Adjust squeegee pressure
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• Printing

• Dry in a belt

• Clean-up Al screen and printer using IPA

• Screen and paste selection – Ag screen (SD2×2-75-8 for 40–50 Ω/sq. emitter and

SD2×2-75-10 for 90–100 Ω/sq. emitter), Ferro CN33-455 Ag conductor paste

• Printer setting – Snap-off distance: 50 mils

• Dummy printing – Adjust squeegee pressure

• Printing

• Dry in a belt

• Clean-up Ag screen and printer using IPA

A.5 Al and Ag Burn-Out Process

• RTC LA-310 belt furnace, recipe name: 425burnout.rcp

• Belt temperature and speed setting – zone 1: 425°C, zone 2: 425°C, zone 3: 425°C,

belt speed: 25 ipm

• Temperature stabilization – 15–20 min

• Wafer loading

• Wafer unloading

A.6 Contact Firing in RTP System

• AG Associates HeatPulse-610, recipe name: EFGFCNT.rcp

• RTP warm-up process – Recipe name: WARM-UP.rcp

• Firing temperature and time setting – Peak temperature: 770°C, peak holding time:

1 s, temperature ramp-up rate: 75°C/s, cooling rate: –40°C
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• Dummy run – Repeat the recipe three times

• Run

A.7 Cell Isolation

• Check dicing system, dicing wheel, cooling water, and vacuum system

• Wheel setting – Height: 8.5 mils from the chuck

• Dummy cut

• Isolation into 2×2 cm2 cells

• Surface cleaning using water and alphawipe

A.8 Forming Gas Anneal

• Check gas pressure

• Wafer loading

• Anneal – 400°C for 10 min

• Wafer unloading
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APPENDIX B

DETAILED PROCESS SEQUENCE:

PHOTOLITHOGRAPHY-DEFINED CONTACTS

B.1 Initial Wafer Cleaning

Same as A.1

B.2 POCl3 Diffusion

Same as A.2

B.3 Low-Frequency PECVD SiNx Deposition

Same as A.3 (thin down to 650–680 Å in a BOE solution for SiNx/MgF2 DLAR)

B.4 Al Screen-Printing

Same as A.4

B.5 Al Burn-Out and Firing

Same as A.5 and A.6

B.6 Rear Al Protection

• Coating of photoresist (SPR220) for rear Al protection – 3000 rpm for 30 s

• Baking – 90°C for 20 min

B.7 Front PR Coating

• HMDS – 3000 rpm for 20 s

• Layer ]1, Microposit 1818 PR – 3000 rpm for 30 s
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• Layer ]2, Microposit 1818 PR – 3000 rpm for 30 s

• Baking – 90°C for 20 min

• Exposure – 12.5 mW/cm2, λ = 405 nm, for 30 s

• Develop – Shipley 351:H2O 1:3 for 40–60 s

• DI rinse – 5 min

• Optical inspection

• BOE (6:1) etch – >40 s

• DI rinse – 5 min

• Baking – 125°C for 30 min

• BOE (6:1) etch – >50 min

• DI rinse – 5 min

B.8 CVC E-Beam Metal Evaporation

• Wafer loading

• Vacuum step

• Ti evaporation – 600 Å

• Pd evaporation – 600 Å

• Ag evaporation – 400 Å

• Vent

• Wafer unloading
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B.9 Lift-Off and PR Removal

• Ultra-sonic bath – 60–120 min

• Dip in Aceton ]1, Aceton ]2, Methanol, and IPA – 40 s each

• DI rinse – 5 min

• N2 dry

B.10 Ag Electro-Plating

• Preparation of Ag plating solution – Cyanide in H2O

• Dip wafers in the solution, make sure an electrical connection, and turn-on the illu-

mination – 5–10 min

• DI rinse – 3 min

• Optical inspection

B.11 Cell Isolation

Same as A.7

B.12 Forming Gas Anneal

Same as A.8
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APPENDIX C

SAMPLE PREPARATION FOR CARRIER LIFETIME

MEASUREMENTS

C.1 Al Removal

• Preparation of Al etch solution – H2O:H2O2:HCl 2:1:1 or Al etchant

• Dipping wafers into the solution – >4 h

• DI rinse – 5 min

• Al removal using alphawipe and IPA

C.2 Ag Removal

• Preparation of Ag etch solution – HNO3:H2O 1:1

• Dipping wafers into the solution – 15 s

• DI rinse – 5 min

• Ag removal using alphawipe and IPA

C.3 PECVD SiNx Removal

• Preparation of etch solution – H2O:HF 10:1

• Dipping wafers into the solution – 10 min

• DI rinse – 5 min

C.4 Al-BSF and n+ Emitter Removal

• Preparation of silicon etch solution – HNO3:CH3COOH:HF 15:5:2

• Dipping wafers into the solution – >8 min
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• DI rinse – 5 min

• N2 dry

C.5 Iodine/Methanol Surface Passivation Solution

• Preparation of iodine/methanol solution – Iodine: 70 mg, Methanol: 250 ml
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