
IMPROVING THE EFFICIENCY AND ROBUSTNESS OF
INTRUSION DETECTION SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Prahlad Fogla

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4700367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMPROVING THE EFFICIENCY AND ROBUSTNESS OF
INTRUSION DETECTION SYSTEMS

Approved by:

Wenke Lee, Advisor
School of Computer Science
Georgia Institute of Technology

Hariharan Venkateswaran
School of Computer Science
Georgia Institute of Technology

Mustaque Ahamad
School of Computer Science
Georgia Institute of Technology

Nick Feamster
School of Computer Science
Georgia Institute of Technology

Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved:

ACKNOWLEDGEMENTS

I would like to sincerely thank my research advisor, Dr. Wenke Lee, for his continual

support and guidance. He was always eager to discuss new ideas and encouraged me

to think independently. He has taught me the art of research for which I will always

be thankful to him.

I am grateful to all the committee members for their remarks and comments.

Without their insightful suggestions, this thesis would not have been complete. I

specially want to thank Dr. Hariharan Venkateswaran for the hours of wonderful

discussions on anything theory. I want to thank Prof. Mustaque Ahamad for his

guidance through my initial years in the Ph.D program at Georgia Tech.

I want to thank Dr. Emilie Danna for her advice on optimization techniques and

various approximation heuristics. I want to thank my colleage, Dr. Roberto Perdisci

for his insights on machine learning.

I also want to thank all of my friends for being there in both the good times and

the hard times. I am thankful to them for making my stay at Georgia Tech a pleasant

experience.

And thanks to my family for instilling the value of education in me.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF SYMBOLS OR ABBREVIATIONS xi

SUMMARY . xii

I INTRODUCTION . 1

1.1 Efficiency . 2

1.2 Robustness . 4

II RELATED WORK . 5

2.1 String Matching Algorithms . 5

2.2 Intrusion Detection Systems . 8

III EFFICIENT APPROXIMATE STRING MATCHING ALGORITHM . . 13

3.1 Introduction . 13

3.2 Tree Model . 14

3.2.1 Notations . 14

3.2.2 Tree Structure . 15

3.2.3 Tree Redundancy Pruning 17

3.2.4 Suffix Links . 20

3.2.5 Pruned Trees with Suffix Links 24

3.3 String Matching . 28

3.3.1 Exact String Matching . 28

3.3.2 Variable Length Matching 30

3.4 Evaluation . 31

3.4.1 Dataset . 31

3.4.2 Experiments . 34

iv

3.4.3 Results . 35

3.4.4 Comparison with Rabin-Karp 37

3.5 Summary . 40

IV ROBUSTNESS OF IDS AGAINST EVASION ATTACKS 42

4.1 Blending Attacks . 42

4.1.1 Polymorphic Attacks . 42

4.1.2 Polymorphic Blending Attacks 44

4.1.3 Steps of Polymorphic Blending Attacks 47

4.1.4 Attack Design Issues . 50

4.2 Case Study . 51

4.2.1 Notations . 51

4.2.2 PAYL . 52

4.2.3 Evading 1-gram . 53

4.2.4 Evading 2-gram . 57

4.2.5 Complexity of Blending Attacks 60

4.2.6 Experiments . 60

4.2.7 Results . 63

4.3 A Formal Framework . 70

4.3.1 Modeling Anomaly Detection Systems 71

4.3.2 Polymorphic Attacks Section Models 74

4.3.3 Polymorphic Blending Attack 77

4.4 Formal Analysis . 79

4.4.1 Attack Vector . 79

4.4.2 Polymorphic Decryptor . 86

4.4.3 Padding . 87

4.4.4 Encrypted Attack Code and Key 87

4.5 Experiments and Results . 103

4.5.1 PAYL 1-gram Evasion . 104

v

4.5.2 PAYL 2-gram Evasion . 106

4.6 Countermeasures . 108

4.6.1 Drawbacks of Current Anomaly IDSs 109

4.6.2 Improving the Robustness of an (s)FSA IDS 115

4.6.3 Experiments . 120

4.6.4 Results . 123

4.7 Summary . 128

V CONCLUSION . 130

5.1 Discussion . 133

APPENDIX A EFFICIENCY . 134

APPENDIX B ROBUSTNESS . 138

REFERENCES . 145

VITA . 151

vi

LIST OF TABLES

1 System call data . 32

2 Bernoulli and Markovian Dataset . 33

3 Notations . 51

4 HTTP Traffic dataset . 62

5 IDS anomaly threshold setting that detects all the polymorphic attacks
sent by the CLET engine . 64

6 Number of packets required for the convergence of attacker’s training 64

7 Anomaly thresholds for different false positive rates in IDS models.
Bracketed entries are the the numbers of packets required to evade the
IDS using the local and global substitution scheme, respectively. . . . 69

8 Truth table and corresponding key table for clause x1 ∨ x3 ∨ x8 90

9 Truth table and corresponding key table for clause x1 ∨ x3 ∨ x8 93

10 Monitoring speed (in secs/100K packets) 127

vii

LIST OF FIGURES

1 Tree built from text 1000011011 for substrings of length 4. There are 7
length-4 substrings (4-grams) present in the text, namely {1000, 0000,
0001, 0011, 0110, 1101, 1011}. Each leaf node corresponds to one sub-
string in the set. 16

2 (a) Tree redundancy pruning algorithm; (b) matching using pruned
tree. In both figures, a path up to the solid and dash-dot lines are
present in the pruned tree. The dotted part is pruned or absent in the
tree. 18

3 The pruned version of the tree shown in Figure 1. The subtrees of
nodes 3, 9, and 11 were removed because they were similar to the
subtrees of nodes 1, 6, and 4, respectively. 19

4 Proof of correctness of matching algorithm using pruned tree. The
paths up to the solid and dash-dot lines are present in the pruned tree.
The dotted part is pruned or absent in the tree. 20

5 Tree shown in Figure 1 with suffix links. Solid lines are the regular
links to child nodes. Dashed lines are suffix links. The path traced
by the bold solid and dashed lines, (0, 1, 4, 9, 16, 12, 5, 10, 17), is the
path followed while matching query 011000. A mismatch is found at
node-12 where there is no child for character 0. 21

6 Suffix links added to the pruned tree shown in Figure 3. Solid lines
are child links and dashed are suffix links. Node-17’s immediate suffix
node-7 was pruned from the tree. So it points to immediate suffix node
of node-7. Bold lines show the path traced by matching algorithm for
query (011000). At node-12 we found a mismatch and substring 1100
was marked rejected. 24

7 String matching of text T and query Q. X is longest prefix match of
Q present in T . Alphabets x and y are different. 29

8 Length-3 substring matching of query 011000 using the tree in con-
structed in Figure 6. All the nodes at depth 3 are considered leaves
and all nodes below them (i.e. node 17 and 19) are considered non-
existent. When we reach nodes 12 and 10, we do not try to go any
further down to depth-4 node. Instead we traverse the suffix links and
continue matching the next character for the next length-3 substring. 30

9 Number of Unique Sequences in Dataset 33

viii

10 Average depth as a function of sequence length. Solid lines in the figure
corresponds to the average depth of the unpruned trees. The average
depth of the unpruned trees is equal to the sequence length for all the
datasets. 35

11 Space complexity of different datasets. 36

12 Training and matching time for substring matching. 39

13 Character distribution of normal and attack packets 44

14 Attack Scenario of Polymorphic Blending Attack 46

15 1-gram multibyte encoding. The frequency of the normal character is
f(a, b) = {0.5, 0.5}. Sorted weights of the nodes are {0.6, 0.4, 0.35, 0.25,
0.25, 0.15}. Using the proposed algorithm we get S : {p, q, r, s} 7→
{ba, bb, aa, ab} . 57

16 2-gram multibyte encoding. e0 = da, e1 = bc. w = 01101010. ŵ =
bdabcbcbdabcbdabcbda . 57

17 Packet length distribution . 61

18 Observed unique 1-grams and 2-grams 62

19 Anomaly score of Artificial Profile . 65

20 Comparison of frequency distribution of normal profile and attack packet 67

21 Anomaly score of the blending attack packets (with local substitution)
for artificial profile and IDS profile 67

22 Anomaly score of the blending attack packets (with global substitution)
for artificial profile and IDS profile 68

23 Simple sFSA IDS containing 3 tuples 75

24 Simple attack example. Attack code is 4 byte string with NUL and SOH

ASCII characters. 75

25 Position of different attack section in attack. 77

26 Construction of a sFSAids for a given Hamiltonian graph 83

27 FSAα and attack substring for clause x1 ∨ x3 ∨ x8. For convenience,
we represent normi by just i. 90

28 FSA and Skey ac corresponding to the SAT problem 91

29 FSAα for clause x1 ∨ x3 ∨ x8 . 93

30 FSA and Skey ac corresponding to the SAT problem 94

31 DAG corresponding to example FSA 97

ix

32 SAT representation of example DAG 97

33 Anomaly score or error distance of 1-gram blending attack. The plots
with prefix att and ids corresponds to distance from the artificial pro-
file and the IDS profile, respectively. xor and sub corresponds to the
PBA generated for XOR and substitution based schemes using our
framework. prev denotes the algorithm from previous paper. 105

34 Anomaly scores of 2-gram blending attacks. 108

35 Example of an imprecise sFSA model. The circles represent normal
data points and the crosses represent attack data points. The rect-
angular box is the complete feature space. The ellipse represents the
normal boundary. 110

36 Example of feature extraction. Unlike the original normal boundary
(ellipse), the normal boundary for the new IDS (shaded area) does not
contain any attacks. 116

37 Example of classifier improvement. 118

38 Example of IDS improvement using multi classifier. To remove the
false positive, IDS considers area under ellipse as normal. However,
using two model with features using f1

new and f2
new, respectively, IDS

can ensure that only shaded area is normal and PBAs lie outside the
normal. 120

39 Polymorphic blending attack size for 1-gram PAYL 124

40 Polymorphic blending attack size for 2-gram PAYL 125

41 Reducing sub-graph isomorphism to 2-gram matching problem 140

x

LIST OF SYMBOLS OR ABBREVIATIONS

DAG Directed Acyclic Graph.

FSA Finite State Automaton.

FSM Finite State Machine.

IDS Intrusion Detection System.

ILP Integer Linear Program.

KLT Karhunen-Loeve Transform.

n-gram Substring of length n. Also called q-gram.

PCA Principal Component Analysis.

q-gram Substring of length q. Also called n-gram.

SAT Satisfiability problem.

sFSA Stochastic Finite State Automaton.

xi

SUMMARY

With the increase in the complexity of computer systems, existing security

measures are not enough to prevent attacks. Intrusion detection systems have become

an integral part of computer security to detect attempted intrusions. Intrusion detec-

tion systems need to be fast in order to detect intrusions in real time. Furthermore,

intrusion detection systems need to be robust against the attacks which are disguised

to evade them.

We improve the runtime complexity and space requirements of a host-based anomaly

detection system that uses q-gram matching. q-gram matching is often used for ap-

proximate substring matching problems in a wide range of application areas, including

intrusion detection. During the text pre-processing phase, we store all the q-grams

present in the text in a tree. We use a tree redundancy pruning algorithm to reduce

the size of the tree without losing any information. We also use suffix links for fast

linear-time q-gram search during query matching. We compare our work with the

Rabin-Karp based hash-table technique, commonly used for multiple q-gram match-

ing.

To analyze the robustness of network anomaly detection systems, we develop a

new class of polymorphic attacks called polymorphic blending attacks, that can effec-

tively evade payload-based network anomaly IDSs by carefully matching the statistics

of the mutated attack instances to the normal profile. Using PAYL anomaly detection

system for our case study, we show that these attacks are practically feasible. We

develop a formal framework which is used to analyze polymorphic blending attacks

for several network anomaly detection systems. We show that generating an opti-

mal polymorphic blending attack is NP-hard for these anomaly detection systems.

xii

However, we can generate polymorphic blending attacks using the proposed approxi-

mation algorithms. The framework can also be used to improve the robustness of an

intrusion detector. We suggest some possible countermeasures one can take to im-

prove the robustness of an intrusion detection system against polymorphic blending

attacks.

xiii

CHAPTER I

INTRODUCTION

Security of computer systems has become a major concern with critical societal infras-

tructures relying on computers. Considering the complexity of the softwares deployed

in network system, intrusion prevention measures like firewalls and cryptographic pro-

tocols are deemed insufficient in ensuring the security of the system. Multiple layers

of security is required to avoid attacks on the system and to detect possible attacks on

the system. Intrusion detection system (IDS) has become an integral part of computer

security infrastructure. IDS monitors computers or networks for unauthorized access

or activity. IDS detects an attempted, failed or successful intrusion on the system.

An IDS can be classified based on the input data or the detection mechanism.

Depending on the data used by an IDS, the IDS can be classified into a network

IDS or host-based IDS.

• Network IDS: A network IDS analyzes the data transmitted over a network. A

network IDS can protect a big network, a LAN, or a single host. Data used by

a network IDS includes, packet header data, packet statistics, and application

layer payload data. Various network statistics such as rate of incoming pack-

ets, rate of failed connections, and average session length can also be used for

detection purposes.

• Host-based IDS: A host-based IDS is deployed on the host machine to be pro-

tected. Various host-related data like commands executed, cpu usage, hard-disk

access, memory usage, audit logs and others can be used by a host-based IDS

to detect an intrusion. Sequence of system calls executed by a program can also

be used for the detection of an intrusion.

1

Based on the detection mechanism, an IDS can be classified into a misuse IDS or

an anomaly IDS.

• Misuse IDS (or Signature IDS): A misuse detector uses known patterns of at-

tacks called signatures to catch intrusions. A misuse IDS generates signatures

from a given set of attacks. While monitoring, it checks if an attack pattern is

present in the monitored data and takes appropriate action when a signature is

matched. Hence, misuse IDSs can only detect known attacks.

• Anomaly IDS: An anomaly detector records the normal usage patterns of the

system. Any system usage which deviates significantly from the normal profile

is considered a possible intrusion and an alarm is raised. Unlike a misuse IDS,

an anomaly IDS does not require knowledge of attack patterns and thus can

possibly detect new attacks.

The two main requirements of an intrusion detector are efficiency and accuracy.

In case of an active attacker who is trying to avoid detection, robustness of the IDS is

a more practical measure than accuracy. In this dissertation, we analyse and improve

on both efficiency and robustness of anomaly detection systems.

1.1 Efficiency

An efficient IDS should be fast and should require less memory. This is essential

to detect an attack as early as possible. This is also required so that the IDS can

be deployed on a high speed network or a heavily loaded server without significant

resource overheads. Misuse IDS and anomaly IDS rely on matching monitored data

with attack patterns and normal patterns to detect intrusions. One of the main factors

affecting the speed of an intrusion detector is the speed of the matching algorithm it

uses. Also, the memory requirement of an IDS is dependent on the space needed to

store the patterns used for matching. Thus, it is crucial that the matching algorithm

be fast and require minimal memory.

2

The substring matching problem presented in this dissertation is motivated by a

host-based anomaly detection system proposed by Forrest et al. [19]. Normal behav-

ior of a program is observed via its interaction with the underlying operating system,

which can be characterized by the sequence of system calls generated by the pro-

gram. Forrest et al. observed that small sequences of system calls are very consistent

throughout different normal executions of a program. We can build a normal profile of

a program using the substrings of the system call sequences generated by the sample

executions of the program. While monitoring, we can observe the substrings of the

system calls generated by the program and check if they match the stored substrings.

If a substring does not have a match, an alarm is raised.

The above anomaly detection system requires matching constant-length substrings

(called q-grams) present in the observed program and the normal database. The above

substring matching problem is called q-gram matching. q-gram matching has been

used extensively in many application areas including information retrieval, signal pro-

cessing, pattern recognition, and computational biology. In computational biology,

genomic sequences show high level of matching for small length substrings. In in-

formation retrieval, filtration-based approximate string matching algorithms require

efficient search of all the q-grams shared by query and text. In some word processors,

q-gram matching is performed for approximate matching and finding misspellings.

q-gram matching is also used in signal processing for approximate matching.

An anomaly detection system uses a huge set of training normal patterns to avoid

false positives. For a huge pattern size, current q-gram matching algorithms become

unacceptable. In Section 3, we present a tree-based model for an efficient q-gram

matching. The proposed algorithm is extremely memory efficient and is faster than

existing algorithms.

3

1.2 Robustness

The accuracy of an IDS is decided using its false positive rate and true positive (also

called true detection) rate. The false positive rate is the fraction of normal data which

is incorrectly labeled by an IDS as an attack. True positive rate is the fraction of

attack data, successfully detected by an IDS. Ideally, an IDS should detect all the

attacks and label all the normal packets as normal. Thus, for an ideal IDS, false

positive rate is 0 and true positive rate is 1. Practically, an IDS is said to be accurate

if it detects most of the attacks while incorrectly labeling very few normal activities

as attacks. That is, an accurate IDS should have a very low false positive rate and a

high true positive rate.

Although useful, these two metrics are not sufficient to evaluate an IDS. The false

positive rate and the true positive rate are calculated using a test set containing

normal data and attack data. In the face of a sophisticated attacker who actively

tries to evade the IDS, the IDS may produce much higher false positives or may

have much lower true positive rate. For example, in case of an anomaly detection

system, an attacker can intelligently craft an attack that is very similar to the normal

pattern. The IDS will not be able to detect this attack. These type of attacks are

called mimicry attacks.

Mimicry attacks have been proposed for host-anomaly detection systems. But no

mimicry attacks have been designed for network anomaly IDSs. We present a novel

polymorphic attack, called Polymorphic Blending Attack, to analyse the robustness

of network anomaly IDSs. We show that these attacks are practical for a wide range

of network anomaly IDSs. We developed a framework that can be used to analyse the

complexity of generating polymorphic blending attacks. We also propose algorithms

to automatically generate polymorphic blending attacks. The framework can also be

used to improve the robustness of the IDS.

4

CHAPTER II

RELATED WORK

2.1 String Matching Algorithms

The problem of substring matching has been studied extensively by researchers in sev-

eral fields. Initial research was mainly focused on complete string matching, required

for keyword search in a database. But later the focus shifted to substring matching

and approximate string matching. In approximate string matching, a query matches

a text with at most k-mismatches.

Suffix trees are used extensively for different string processing problems. A suffix

tree can be used for linear time search of a single string in a text. Various algorithms

were suggested by Weiner [73], McCreight [37], and Ukkonen [63] for efficient suffix

tree generation. Chen and Seiferas [7] proposed a simple technique to efficiently

generate a tree to store all the sub-words of a word.

Knuth-Morris-Pratt (KMP) [26] proposed a string searching algorithm. The algo-

rithm preprocesses the query to compute a shift function, which is used in the search

phase later. The search phase has runtime complexity of O(m + n) where n is the

length of text and m is the length of query. Boyer-Moore (BM) [4] suggested a faster

algorithm which is now widely implemented for string searching in shell commands

(grep) and some editors. The query preprocessing phase of the BM algorithm is of

O(m) complexity and the matching phase has the worst case of O(mn) time com-

plexity. But for English text, the average runtime complexity of the BM algorithm

is much smaller than the worst case, and is around three times better than the KMP

algorithm. Sunday [55] improved on the BM algorithm by improving the BM’s shift

function and adding a similar shift function used in the KMP algorithm. Sunday’s

5

algorithm has the worst case of O(m + n), and its expected runtime is smaller than

the BM algorithm.

String matching algorithm with multiple texts was proposed by Aho-Corasick

(AC) [1]. The AC algorithm preprocesses the texts to create a deterministic finite

automaton (DFA), which is similar to Trie structure. The algorithm reads the succes-

sive characters in the query and makes state transitions based on the next character

in the query. The algorithm takes linear time to the length of the query. Coit et

al. [10] proposed a fast string matching algorithm, the AC BM algorithm, for intru-

sion detection. The algorithm stores the texts in a tree similar to Aho-Corasick. Its

matching process uses techniques similar to Boyer-Moore.

The above algorithms are based on Boyer-Moore and work well for large queries

with a small character size (σ). They do not perform very well for large character

sizes or huge texts.

Approximate string matching [38] has also been studied extensively. Landau and

Vishkin [33] proposed an O(kn + km log m) approximate string matching algorithm

where k is the number of allowed mismatches. The Lanadu-Vishkin algorithm was

improved by the Galil-Ginacarlo algorithm [21], which has O(kn + m log m) time

complexity. Tarhio and Ukkonen [59] proposed a Boyer-Moore algorithm based

approach for approximate string matching. Cole and Hariharan [11] presented an

O(n(1 + k3/m)) algorithm based on dynamic programming. Wu et al. [75] used DFA

for approximate matching in O(mn/ log s) where s is the number of states in DFA.

No approximate string matching algorithm is known to have a worst case complexity

less than O(kn).

A lot of work has been done on filtration based approximate string matching.

Filtration based algorithms first choose a set of positions in the text which are poten-

tially similar to the pattern. Then each pre-selected position is verified for a match

using an accurate string matching technique. Karp and Rabin [24] first described a

6

filtration based approach for exact string matching. Navarro and Baeza-Yates ([39],

[40]) proposed an O(kn logσ m/σ) approximate string matching algorithm by improv-

ing on the idea developed by Wu and Manber [74]. Later, q-gram based filtration

algorithms ([62], [6], [56]) were developed for approximate matching. q-gram filtra-

tion approach is based on observation that if a pattern approximately matches a

substring of the text, then they share a certain number of q-grams for sufficiently

large q. Finding all q-grams shared by the pattern and the text is done by hash-

ing. The algorithm proposed in our paper can be used to find all q-grams efficiently.

Chang and Marr [6] proposed filtering based algorithm with an average complexity

of O(n(k+logσ m)
m

). Furthermore, they proved that this is a lower bound on the average

complexity. In practice, filtration based string matching algorithms are the fastest,

but their applicability is limited by the error level.

The Rabin-Karp algorithm [24] searches for a substring within a text by hashing.

It is suitable for searching multiple patterns of the same length in the text. Suppose

we are matching patterns of length q in a text T. First, we compute the hashes of

the text patterns and store them in a hash-table. Next we compute and match the

hashes of all substrings of the query with the hashes of the text patterns. If two

hashes match, then there is a very high probability that the two substrings match.

To be completely sure, one can perform a naive matching on the two substrings. In

case the hashes do not match, then we can say for sure that the substrings do not

match. The main idea of Rabin-Karp is to efficiently compute hashes of successive

substrings in constant time by using the hash of the previous substring. Using such

a hashing function, matching can be done in expected time of O(m).

QUASAR, proposed by Burkhardt et al. [5], finds all the substrings in a text which

has a maximum of k mismatching q-grams as in query. QUASAR uses a suffix array

to retrieve the positions of any given q-gram in the text. Searching of a given q-gram

is done using a hash-table. The preprocessing phase of QUASAR takes O(n log n)

7

time. The matching of a query string takes O(nm) time. The space complexity of

the matching algorithm is O(5n + qS), where S is the number of unique q-grams in

text. The high complexity of QUASAR is because it tries to find all the positions in

the text that have a possible matching alignment with the query string.

All of the above string matching algorithms are not suitable for multiple q-gram

matching. The best known string matching algorithm takes O(n logσ m
m

) expected time.

When applied to multiple q-gram matching, the algorithms have an average complex-

ity of O(n logσ q
q

m). This is not acceptable for situations where text size is huge. When

applied to q-gram matching problem, Aho-Corasick algorithm takes O(qm) time. The

Rabin-Karp algorithm works in linear time of the query size but needs lot of space to

store the hash-table. Furthermore, it needs to create separate hash-tables for different

values of q.

2.2 Intrusion Detection Systems

Transforming attack packets to avoid detection is a common practice among attack-

ers. Attackers can exploit the ambiguities present in the traffic stream to transform

an attack instance to another so that an IDS is not able to recognize the attack pat-

tern. IP and TCP transformations ([23, 44]) techniques are used to evade NIDS that

analyzes TCP/IP headers. Vigna et al. [66] discussed multiple network, application

and exploit layer (shellcode polymorphism) mutation mechanisms. A formal model

to combine multiple transformations was presented by Rubin et al. [48]. Multiple

tools such as Fragroute [54], Whisker [45], and AGENT [48] are available that can

perform attack mutation.

Code polymorphism has been used extensively by virus writers to write polymor-

phic viruses. Mistfall, tPE, EXPO, and DINA [57, 76] are some of the polymor-

phic engines used by virus writers. Worm writers have also started using polymor-

phic engines. ADMmutate [32], PHATBOT [22], and JempiScodes [50] are some of

8

the polymorphic shellcode generators commonly used to write polymorphic worms.

Garbage and NOP insertions, register shuffling, equivalent code substitution, and en-

cryption/decryption are some of the common techniques used to write polymorphic

shellcodes.

Numerous approaches have been proposed to detect polymorphic attacks. In [61],

Toth et al. proposed a technique to locate the presence of executable shellcode inside

the payload. They used abstract execution of network flows to find the MEL (Max-

imum Executable Length) of the payload. The flow is marked suspicious if its MEL

is above certain length. Chinchani et al. [8] performed fast static analysis to check if

a network flow contains exploit code. STRIDE [2] focuses on detecting polymorphic

sleds used by buffer overflow attacks. In [29], Kruegel et al. used structural analysis

of binary code to find similarities between different worm instances. Using a graph

coloring technique on a worm’s control flow graph, this approach is able to accurately

model the structure of the worm. Given a set of suspicious flows, Polygraph [41]

generates a set of disjoint invariant substrings that are present in multiple suspicious

flows. These substrings can then be used as a signature to detect worm instances. In

a recent work, Perdisci et al. [42] proposed an attack on Polygraph [41] where noise is

injected into the dataset of suspicious flows so that Polygraph is not able to generate

a reliable signature for the worm. Shield [69] uses transport layer filters to block

the traffic that exploits a known vulnerability. Filters are exploit-independent, and

vulnerabilities are described as a partial state machines of the vulnerable application.

In [9], Christodorescu et al. proposed an instruction semantics based worm detection

technique. The proposed approach can detect code polymorphism that uses instruc-

tion reordering, register shuffling, and garbage insertions. It is worth noting that

unless the attacker combines the polymorphic blending attack proposed in this paper

with other evasion techniques, the approaches cited above [2, 8, 9, 29, 41, 61, 69] may

be able to detect the attack.

9

Several attack specification languages have been developed by researchers to repre-

sent the attack signatures efficiently and dis-ambiguously. NETSTAT [15] represents

the attack events using a state based machine called STATL. Snort [46] represents

a signature using regular expressions consisting network bytes. It also uses other

packet attributes. Liang et al. [34] presented extended FSA based attack signatures.

GARD [47] is a tool for regular language based generation of attack instances. It is

observed that many of the proposed signatures are based on regular grammar or state

machine.

A number of attacks aimed at evading Host-based anomaly IDS have been devel-

oped. Wagner et al. [68] and Tan et al. [58] presented mimicry attacks against the stide

model [20] developed by Forrest et al. The main idea behind these mimicry attacks

was to inject dummy system calls into an attack sequence to make the final system

call sequence look similar to the normal system call sequence. As a defense against

mimicry attacks as well as other impossible path attacks [17, 67], more advanced de-

tection approaches (e.g., [16, 17]) were proposed, which use call stack information

along with the system call sequences. Recently, a more sophisticated mimicry attack

was proposed by Kruegel et al. [28], which can evade most system call based anomaly

IDS.

Several application payload-based anomaly IDS [30, 35, 36] have been proposed

which monitor the payload of a packet for anomalies. NETAD and LERAD [35, 30]

models the first few bytes of the application layer headers of a packet using a set

of rules. In [31], Kruegel et al. proposed six different models, namely, length, char-

acter distribution, probabilistic regular grammar, token set, attribute presence, and

attribute order for detection of http attacks. They modeled different http attributes

like URL path, SQL query string, etc. Sekar et al. [51] presented an anomaly detec-

tion system based on network protocol specifications. Specification is defined using

extended finite state automaton. Statistical features based on the state transitions

10

are monitored to detect anomalies.

PAYL, proposed by Wang and Stolfo [71], records the average frequency of occur-

rences of each byte in the payload of a normal packet. A separate profile is created

for each port and packet length. In their recent work [72], the authors suggested an

improved version of PAYL that computes several profiles for each port. At the end of

the training, clustering is performed to reduce the number of profiles. They proposed

that instead of byte frequency, one can also use an q-gram model in a similar fashion.

One main drawback of the system is that they do not consider an advanced attacker,

who may know the IDS running at the target and actively try to evade it. In this

paper we provide strong evidence that such byte frequency based anomaly IDS are

open to attacks and may be easily evaded.

[3] raises the doubts on the security of machine learning based IDS in the face

of a determined resourceful attacker. It discussed the possible manipulation of the

IDS training process so that the normal space of IDS is gradually moved to include

attack packets. Polymorphic blending attack takes a different approach and modifies

the attack instance to move it closer to the normal space. CLET [13], an advanced

polymorphic engine, comes closest to our polymorphic blending attack. It performs

spectrum analysis to evade IDS that use data mining methods for worm detection.

Given an attack payload, CLET adds padding bytes in a separate cramming bytes

zone (of a given length) to try and make the byte frequency distribution of the attack

close to the normal traffic. However, the encoded shellcode (using XOR) in CLET

may still deviate significantly from the normal distribution and the obtained poly-

morphic attack may be detected by the IDS. A preliminary work by Kolesnikov et al.

[27] introduced and cursorily explored polymorphic blending attacks. In this paper

we present a systematic approach for evading byte frequency-based network anomaly

IDS, and provide detailed analysis of the design, complexity and possible counter-

measures for the polymorphic blending attacks. We also show that our polymorphic

11

blending technique is much more effective than CLET in evading byte frequency-based

anomaly IDS.

12

CHAPTER III

EFFICIENT APPROXIMATE STRING MATCHING

ALGORITHM

3.1 Introduction

Given a text string, T, and a query string, Q, the problem of q-gram matching is to

find all the substrings of length q in the query which are also present in the text. This

problem can be easily extended to multiple text strings. Since the set of normal or

attack patterns needs to be extensive, there is usually a huge number of text patterns

in intrusion detection. The length of the query is much smaller than the text.

Existing string or substring matching algorithms are not suitable for the q-gram

matching problem and do not have good runtime efficiency. The expected run-time

complexity of the best existing string matching algorithm is sub-linear to the length

of the text. They do not apply well to multiple q-gram matching with a huge text

size. Some string matching algorithms with multiple texts have complexity of the

length of the query. When used for multiple q-gram matching, they take q×m time,

where m is the length of query.

A simple solution for the problem is to record all the unique q-grams present in

the text and store them in a hash-table. While matching, we can get each of the

q-grams in the query and check if it is present in the hash-table. If the calculation

of the hash function takes time t, then the total time to match the query will be

O(mt) where m is the length of the query. The Rabin-Karp algorithm follows a

similar idea and presents an efficient method to calculate hashes. The Rabin-Karp

algorithm is the only existing algorithm that we are aware of which works well for the

given problem. We present a new q-gram matching algorithm that is more efficient

13

than the Rabin-Karp algorithm. Although our work was motivated by applications

in intrusion detection, the algorithm is general and is applicable to other domains.

The solution we propose makes use of interpretability and efficiency of the tree

structure to develop a linear time algorithm for the q-gram matching problem. In the

preprocessing step, all the q-grams present in the text are extracted and stored in a

tree structure. This tree structure is similar to the Trie structure used for storing

dictionaries. We can add suffix links [37] for efficient runtime substring matching.

This tree may become very big depending on the character size, the structure of the

text, and the value of q. We also propose a tree redundancy pruning algorithm to

reduce the size of the tree. The proposed solution has the same linear time complexity

as a hash-table but with a smaller constant. It also uses less storage space than a

hash-table. In addition, our approach can be used to perform q-gram matching for

all the different values of q (1 ≤ q ≤ Max Tree Depth). A hash-table method, on the

other hand, can be used for only one value of q.

3.2 Tree Model

The tree structure provides a general framework for a systematic study of stream

data. Trees are computationally efficient for storage, addition, and searching for sets

of strings. Tree structures have been used extensively in many applications. For ex-

ample, decision tree classifiers are successfully used in areas such as character/speech

recognition, medical diagnosis, and remote sensing. Prefix trees are used to store and

search through dictionaries. Suffix trees are a widely used data structure for text

processing.

3.2.1 Notations

In the discussion that follows, we use x, y to represent arbitrary characters and X, Y

to represent arbitrary substrings. X[i, · · · , j] represents a substring of X that starts

with the ith character and ends with the jth character. T represents the provided text

14

and Q stands for the query string. A substring is said to be accepted by a substring

matching algorithm if it was matched successfully. The substring is rejected if no

match was found. For any string X, its length is denoted by |X|. X[i] denotes the

ith character of string X. xX and Xx mean string X is appended with character

x at the start and at the end, respectively. T represents the tree used to store the

q-grams of the text T. Figure 1 shows an example tree to store length-4 substrings

(or 4-grams) of text 1000011011. Ts is the tree with suffix link, Tp is the tree after

pruning, and Tsp is the pruned tree with suffix link. The concepts of a pruned tree

and a suffix link will be explained in later sections. q denotes the length of the

matching substring. N(l) is the number of nodes at depth l of the tree, and NT

is the total number of nodes in the tree. Each node of the tree corresponds to a

substring present in the text. For convenience, we use the term node X[i, · · · , j] to

denote the tree node corresponding to substring X[i, · · · , j]. For example, node 13 in

the Figure 1 is referred as node T [2, · · · , 5] because it refers to substring T [2, · · · , 5]

(0000). Node X[i + 1, · · · , j] is called immediate suffix node of the node X[i, · · · , j].

Node X[i+ l, · · · , j] is called longest suffix node of the node X[i, · · · , j] if none of the

nodes X[i + l′, · · · , j], 1 ≤ l′ < l, exists in the tree. Two trees T1 and T2 are said to

be identical if, for all nodes in T1, there is a corresponding node in T2 with the same

path from the root, and vice versa. Tree T1 is similar to tree T2 if both trees are

identical until depth d where d = min(depth(T1), depth(T2)).

3.2.2 Tree Structure

A set of strings of length q can be efficiently represented using a depth q tree (T).

A node in the tree at depth l is associated with a substring of length l. Also, a link

between a node at depth l− 1 and a node at depth l is associated with the character

at position l in the string. Figure 1 shows an example sequence and the corresponding

tree for sequence length 4. Constructing such a tree requires q(|T | − q + 1) time.

15

0

1 2

3 4 5

13 14 15 16 17

6

12

1918

111087

0

0

0 0 0

01

1

1 1

1

0 1

0 1

1

1

0

(1)

(10) (11)

(100)

(1000) (1011)

(101) (110)

(1101)(0110)

(011)

(01)(00)

(001)

(0011)(0001)(0000)

(000)
1

(0)

9

Figure 1: Tree built from text 1000011011 for substrings of length 4. There
are 7 length-4 substrings (4-grams) present in the text, namely {1000, 0000,
0001, 0011, 0110, 1101, 1011}. Each leaf node corresponds to one substring in the
set.

Consider the substring matching problem with query Q[1, · · · , m]. For each sub-

string Q[i, · · · , i+q−1], 1 ≤ i ≤ |Q|−q+1 in the query, start from the root node and

traverse the tree. At depth l, choose the link corresponding to character Q[i + l + 1].

If at any depth-l node, there is no link corresponding to character Q[i + l + 1], then

the substring is not present in the text. If we reach the end of the substring, then we

have found a match and the substring is present in the text. A formal description of

q-gram matching algorithm using T is presented in Algorithm 1.

Consider the problem of matching the query Q = (011000) for the tree shown in

Figure 1 with q = 4. Substrings of length 4 are (0110, 1100, 1000). For substring

0110, we will travel nodes (0, 1, 4, 9, 16), in the given order, and reach the end of the

substring. But when we try substring 1100, we will traverse nodes (0, 2, 6, 12) and

then stop at node-12 because there is no link for character 0. At this point we can

conclude that substring 1100 is not present in the text. Substring 1000 is matched

successfully by traversing nodes (0, 2, 5, 10, 17). The above matching process takes at

most O(q) steps to match each substring present in the query. Thus, |Q| length query

will take O(q|Q|) time.

16

3.2.3 Tree Redundancy Pruning

The number of nodes in the tree increases with the number of unique substrings in

the text and with the tree depth. The space required to store the tree may become

unmanageable for a very large number of unique substrings. We have developed a

tree redundancy pruning algorithm which removes redundant nodes present in a tree.

Let us revisit the tree constructed in Figure 1. By looking at node-6, one can

infer that substring 11 can be followed by only 01. Now suppose we are matching

query (011xy). While matching 011x, we can stop after reaching node-9. Then we

can check if x is equal to 0 or not while matching the next substring 11xy. Thus,

we can safely remove the child node (node-16) of node-9. This removal of node-16

should not affect the substring matching capability of the tree. Similarly, the child

of node-11 can be removed because the existence of 1 after 101 can be checked while

matching the next substring 01?? (‘?’ matches all characters.) Following the same

idea, we can remove all the children of node-3.

Suppose we construct a tree (T) with depth q as shown in Figure 2(a). If for any

node xX at depth l, the (q− l)-depth subtree rooted at xX is similar1 to the subtree

rooted at node X, we remove the subtree of node xX and make node xX a leaf node.

We repeat this for all the nodes. The final tree (Tp) will be the pruned version of the

original tree (T). Pseudo-code for pruning a tree is given in Algorithm A. A pruned

version of the tree in Figure 1 is shown in Figure 3.

To prune a tree, for each node, we need to compare the subtree rooted at that

node and the subtree rooted at its immediate suffix node. Comparison of two trees

takes time linear to the number of nodes in the tree. Thus the total time required to

prune the tree is O(N2
T), where NT is total number of nodes in the tree.

1Recall the definition of tree similarity from section 3.2.1

17

(−)

(xX)

S
 1

(X)

S
 2

(x)

(a) Pruning Algorithm: Subtrees S1

and S2 are similar. Remove S1.

Q[i,..,i+q−1]

i+qi

Q[i−1,..,i+q−2]

Q[i−q+l+2,..,i+l+1]

i−1i−q+l+2

Q

1 i+l i+l+1

(b) Marking previous substrings af-
ter finding a mismatch.

Figure 2: (a) Tree redundancy pruning algorithm; (b) matching using pruned tree.
In both figures, a path up to the solid and dash-dot lines are present in the pruned
tree. The dotted part is pruned or absent in the tree.

Consider the substring matching problem with query Q[1, · · · , m]. While match-

ing a substring Q[i, · · · , i+q−1], if we reach the end of the substring Q[i, · · · , i+q−1],

it is successfully matched and is accepted. If we find a mismatch at character

Q[i+ l +1], 0 ≤ l ≤ q− 2, (see Figure 2(b)), the substrings Q[i− q + l +2, · · · , i+ l +

1], Q[i− q + l + 3, · · · , i + l + 2], · · · , Q[i, · · · , i + q − 1] are marked rejected. If any

node in the path of Q[i, · · · , i + q − 1] is pruned, we may reach the leaf node before

the end of the substring. In such a case we just mark it as pending and continue

to match the next substrings. In the end, the substrings which are not rejected and

marked pending are accepted. The detailed description of the matching algorithm

using Tp is given in Algorithm 3.

The complexity of the matching algorithm depends on the effect of pruning on

the text and also on the query string. The worst case can be O(q|Q|), which is same

as the original tree matching algorithm. We will discuss more results on the effect of

pruning in section 3.4.2.

Theorem 3.2.1 Substring matching using Tp is equivalent to substring matching us-

ing T .

18

0

1 2

3 4 5

17

6

12

19

1110

0

0

01 1

0 1

0 1

1

1

0

(1)

(10) (11)

(100)

(1000)

(101) (110)

(1101)

(011)

(01)(00)

(0)

9

Figure 3: The pruned version of the tree shown in Figure 1. The subtrees of nodes
3, 9, and 11 were removed because they were similar to the subtrees of nodes 1, 6,
and 4, respectively.

Proof We shall first prove that if a substring Q[i, · · · , i+q−1] is accepted by the tree

T , then it should also be accepted by the pruned tree Tp. If node Q[i, · · · , i+ q−1] is

not pruned, then we will reach the end of the substring while matching it, and it will

be accepted by the pruned tree. But if the path to node Q[i, · · · , i + q− 1] is pruned

at Q[i, · · · , i+j] (see Figure 4(a)), then it will be marked pending. Consider matching

the next q − 1 substrings (Q[i + α + 1, · · · , i + α + q], ∀ 0 ≤ α ≤ q − 2). We should

not find any mismatch before character Q[i + q] because Q[i + α + 1, · · · , i + q − 1]

are substrings of Q[i, · · · , i + q − 1]. Thus Q[i, · · · , i + q − 1] will not be marked as

rejected because there is no future mismatch in the overlapping substrings, and will

be accepted by the pruned tree Tp.

Now we will prove the second part, that if a substring is rejected by tree T , then

it will also be rejected by pruned tree Tp. Suppose substring Q[i, · · · , i + q− 1] is not

matched successfully in T at character Q[i + l + 1], 1 ≤ l ≤ q − 2. If the path is not

pruned then the substring will also be rejected by the pruned tree. Suppose the path is

pruned at Q[i, · · · , i+j], for some 1 ≤ j ≤ l. Suppose character Q[i+l] is not pruned in

the subtree of node Q[i+l′, · · · , i+j], 1 ≤ l′ ≤ j−1 (see Figure 4(b)). All the subtrees

19

Q[i,..,i+q−1]

i+l’i

Q

1 i+qi+j

Q[i+q,..,i+2q−1]

Q[i+1,..,i+q]

α αQ[i+ +1,..,i+ +q]

Q[i+q−1,..,i+2q−2]

(a) Successful matching of sub-
string Q[i, · · · , i + q − 1]. There
should be no mismatch before char-
acter Q[i + q].

Q[i,..,i+j]

Q[i+1,..,i+j]

Q[i+l’−1,..,i+j]

Q[i+l’,..,i+j]

S
S

S
i

S
i+1

i+l’−1
i+l’

(b) Subtrees Si, · · · , Si+l′−1 are sim-
ilar (identical up to length q−j−1)
to subtree Si+l′ . All these subtrees
except Si+l′ are pruned.

Figure 4: Proof of correctness of matching algorithm using pruned tree. The paths
up to the solid and dash-dot lines are present in the pruned tree. The dotted part is
pruned or absent in the tree.

Si+α, ∀ 0 ≤ α < l′, are similar to the subtree Si+l′ . Since path Q[i+j+1, · · · , i+l+1]

is not present in subtree Si, the path will not be present in subtree Si+l′ . Thus while

checking for substring Q[i + l′, · · · , i + l′ + q − 1], we will find a mismatch at node

Q[i + l′, · · · , i + l]. This is because character Q[i + l + 1] is not supposed to follow

character Q[i + l] in subtree Si+l′ . At this point substring Q[i, · · · , i + q − 1] will be

marked rejected along with all the substrings Q[i + k, · · · , i + k + q − 1], 0 ≤ k ≤ l′.

3.2.4 Suffix Links

Let us consider the unpruned tree developed in Section 3.2.2. The matching process

described for the tree involves duplicated checking. This is due to the overlap of

consecutive substrings. We are checking the presence of sub-substring Q[i+1, · · · , i+

q − 1] while matching both substrings Q[i, · · · , i + q − 1] and Q[i + 1, · · · , i + q]. To

remove these redundant checks, we include suffix links in the tree structure. The

idea of a suffix link was introduced by McCreight [37] to build a time efficient suffix

search tree. Suffix link at each node points to the immediate suffix of the substring

corresponding to that node. For example, suffix link at node xX should point to

node X. When we match substring xX, we can trace the suffix link and go directly

to node X. To check for next substring, we do not need to start again from the root.

20

0

1 2

3 4 5

13 14 15 16 17

6

12

1918

111087

0

0

0 0 0

01

1

1 1

1

0 1

0 1

1

1

0

(1)

(10) (11)

(100)

(1000) (1011)

(101) (110)

(1101)(0110)

(011)

(01)(00)

(001)

(0011)(0001)(0000)

(000)
1

(0)

9

Figure 5: Tree shown in Figure 1 with suffix links. Solid lines are the regular links
to child nodes. Dashed lines are suffix links. The path traced by the bold solid and
dashed lines, (0, 1, 4, 9, 16, 12, 5, 10, 17), is the path followed while matching query
011000. A mismatch is found at node-12 where there is no child for character 0.

We only need to check the last character of the next substring.

To add suffix links in the unpruned tree, traverse to each node xX in the tree and

create a suffix link from node xX to node X. Suffix link at the root node points to

itself. Pseudo-code for adding suffix link in an unpruned tree is given in Algorithm 4.

Figure 5 shows an example tree with suffix links. Creating a suffix link from a depth-l

node requires us to traverse from a root to its suffix. This will take O(l) time. Thus,

to construct a suffix link of every node in the tree (with depth q) will take worst-case

O(qNT) time, where NT is total number of nodes in the tree.

Consider the substring matching problem with query Q[1, · · · , m]. For the first

substring, we start from the root node and go down until we find a mismatch or

reach a leaf node. If we reach a leaf node Q[i, · · · , i + q− 1] after matching character

Q[i + q− 1], we accept the substring Q[i, · · · , i + q− 1]. To match the next substring

Q[i + 1, · · · , i + q], we traverse the suffix link and try to match character Q[i + q].

If we find a mismatch while trying to match character Q[i + l + 1] at node

Q[i, · · · , i + l], we reject Q[i, · · · , i + q − 1]. To match the next substring Q[i +

21

1, · · · , i + q], we traverse the suffix link to reach node Q[i + 1, · · · , i + l] and continue

the matching process by checking for character Q[i + l + 1]. We can continue in a

similar fashion until we reach the end of the query. A detailed description of substring

matching using Ts is shown in Algorithm 5.

The complete path traced while matching query (011000) is shown in bold in

Figure 5. Before proving the equivalence of substring matching with trees T and Ts,

we would like to state some properties that are hold during substring matching using

Ts.

Lemma 3.2.1 If while matching query Q[1, · · · , m] using Ts, we have processed up

to Q[i], then the current node is the longest suffix of Q[1, · · · , i] present in the tree

Ts.

By Induction For i = 1, it is trivial to see that we will be at the longest suffix

of string Q[1] after processing Q[1]. If character Q[1] is present in the tree, we

will progress to node Q[1]. If Q[1] is not present in the tree, we will be at the

root node. Suppose the lemma holds for some i = k < m and the current node

X = Q[k−l+1, · · · , k] is the longest suffix of Q[1, · · · , k] present in the tree. Suppose

the longest suffix of Q[1, · · · , k + 1] present in the tree is Q[k − l′ + 1, · · · , k, k + 1],

0 ≤ l′ ≤ l. In this case, node Q[k− l′+1, · · · , k] will have child Q[k+1]. Also, none of

Q[k−j+1, · · · , k], l′ < j < l will have child Q[k+1], otherwise Q[k−j+1, · · · , k+1]

is the longest suffix of Q[1, · · · , k+1] present in the tree. We want to prove that after

processing Q[k+1] we will reach node Q[k− l′+1, · · · , k, k+1]. While trying a match

for Q[k+1], starting from node X, we will traverse through l− l′ suffix links checking

for child Q[k +1]. We will find a match only when we reach node Q[k− l′ +1, · · · , k].

At this point we will traverse the child node of Q[k − l′ + 1, · · · , k] and reach node

Q[k− l′ + 1, · · · , k + 1]. Thus, we will be at the longest suffix node of Q[1, · · · , k + 1]

after processing Q[k + 1]. By induction, the lemma should hold for all i ≤ m.

22

Theorem 3.2.2 Substring matching using Ts is equivalent to substring matching us-

ing T .

Proof To show the equivalence of the two matching algorithms, we will prove that

if a substring Q[i, · · · , i + q− 1] in a query is accepted by T , then it will be accepted

by Ts, and vice versa. If substring Q[i, · · · , i + q − 1] is accepted by tree T , then

there exists a leaf node Q[i, · · · , i+q−1] in the tree which is also the longest possible

suffix of Q[1, · · · , i + q − 1] present in the tree. While matching the query using tree

Ts, after we process Q[i + q − 1], according to lemma 3.2.1, we will reach the longest

suffix node of Q[1, · · · , i+ q−1] present in the tree. From above, this node is the leaf

node Q[i, · · · , i + q − 1]. Thus, tree Ts will also accept substring Q[i, · · · , i + q − 1].

Also, if tree Ts accepts Q[i, · · · , i+q−1], it means that after processing Q[i+q−1],

we will be at depth-q leaf node, say X. According to lemma 3.2.1, X should also be

the longest suffix of Q[1, · · · , i + q − 1]. But length q suffix of Q[1, · · · , i + q − 1] is

Q[i, · · · , i + q − 1]. This means that node X corresponds to node Q[i, · · · , i + q − 1].

Since node Q[i, · · · , i + q − 1] is present in the tree, substring Q[i, · · · , i + q − 1] will

also be accepted by the tree T .

The above matching algorithm is linear to the length of the query. For a traversal

of a child link in the tree, we are successfully matching a character and progressing to

the next character. For a suffix link traversal from a non-leaf node, we are successfully

finding a substring mismatch and we can proceed to the next substring while rejecting

the current substring. For a suffix link traversal from a leaf node, we are successfully

finding a matching substring and we can proceed to the next substring while accepting

the current substring. There are |Q| characters in the query and |Q|−q+1 substrings.

Thus, the total number of link traversals including child nodes and suffix links is at

most |Q|+ (|Q| − q + 1) = O(|Q|).

23

0

1 2

3 4 5

17

6

12

19

1110

0

0

01 1

0 1

0 1

1

1

0

(1)

(10) (11)

(100)

(1000)

(101) (110)

(1101)

(011)

(01)(00)

(0)

9

Figure 6: Suffix links added to the pruned tree shown in Figure 3. Solid lines are
child links and dashed are suffix links. Node-17’s immediate suffix node-7 was pruned
from the tree. So it points to immediate suffix node of node-7. Bold lines show
the path traced by matching algorithm for query (011000). At node-12 we found a
mismatch and substring 1100 was marked rejected.

3.2.5 Pruned Trees with Suffix Links

As with the original tree, we would like to add suffix links in the pruned tree to make

the matching process faster. But we cannot make a direct link from a node xX to

its immediate suffix node X because it is possible that the node X was deleted in

the pruning process. Consider a node Q[i, · · · , i + j] present in the pruned tree. The

longest suffix of Q[i, · · · , i + j] present in the tree is Q[i + l′, · · · , i + j]. Suppose we

reach node Q[i, · · · , i+ j] while matching a substring. While matching the next l′−1

substrings, we will not match beyond Q[i+j] because the path is pruned before Q[i+j]

(see Figure 4(b)). Since we have already matched up to Q[i + j] successfully, there is

no need to check these l′ − 1 substrings. Thus, when we reach node Q[i, · · · , i + j],

we can directly go to node Q[i + l′, · · · , i + j] and continue checking. Thus, the suffix

link at the node Q[i, · · · , i + j] points to the node Q[i + l′, · · · , i + j].

To add suffix links in a pruned tree, traverse to each node X in the tree and create

a suffix link from node X to node Y , where Y is the longest suffix node of X present

in the pruned tree. The suffix link at the root node points to itself. Pseudo-code for

24

adding suffix links in a pruned tree is given in Algorithm 6. Figure 6 shows a pruned

tree with suffix links. Substring matching using tree Tsp is very similar to substring

matching using tree Ts.

Consider the substring matching problem with query Q[1, · · · , m]. For the first

substring, we start from the root node and go down until we find a mismatch or reach

a leaf node. If we reach a depth-q node (a leaf node) Q[i, · · · , i+q−1] after matching

character Q[i + q− 1], we accept the substring Q[i, · · · , i + q− 1]. To match the next

substring Q[i + 1, · · · , i + q], we traverse the suffix link and try to match character

Q[i + q].

Suppose we reach a leaf node Q[i, · · · , i + l], l < q − 1, after matching character

Q[i + l]. This means that children of this node were pruned during the redundancy

pruning. We mark substring Q[i, · · · , i+ q−1] as pending. To match next substring,

we traverse the suffix link and try to match character Q[i + l + 1].

On the other hand if we find a mismatch at node Q[i, · · · , i + l] for character

Q[i + l + 1], then the substrings Q[i− q + l + 2, · · · , i + l + 1], Q[i− q + l + 3, · · · , i +

l + 2], · · · , Q[i, · · · , i + q − 1] are marked rejected. After marking the substring, we

traverse the suffix link of node Q[i, · · · , i + l] and continue matching Q[i + l + 1] for

the next substring Q[i + 1, · · · , i + q]. At the end, all the substrings which are not

marked rejected are accepted. The formal description of the matching algorithm is

shown in Algorithm 7.

The path traced while matching the query Q = (011000) for the tree in Figure 6 is

shown in bold lines. Before proving the equivalence of substring matching with trees

Tp and Tsp, we would like to state some properties of substring matching using Tsp.

Lemma 3.2.2 If while matching query Q[1, · · · , m], we have processed up to Q[i],

then the current node is the longest suffix of Q[1, · · · , i] present in tree Tsp.

by Induction For i = 1, it is trivial to see that we will be at the longest suffix

of string Q[1] after processing Q[1]. If character Q[1] is present in the tree, we

25

will progress to node Q[1]. If Q[1] is not present in the tree, we will be at the

root node. Suppose the lemma holds for some i = k < m and the current node

X = Q[k−l+1, · · · , k] is the longest suffix of Q[1, · · · , k] present in the tree. Suppose

the longest suffix of Q[1, · · · , k + 1] present in the tree is Q[k − l′ + 1, · · · , k, k + 1],

0 ≤ l′ ≤ l. In this case node Q[k − l′ + 1, · · · , k] will have child Q[k + 1] and nodes

Q[k − j + 1, · · · , k], l′ < j ≤ l are either pruned or do not have child Q[k + 1].

While trying a match for Q[k + 1], we will travel through suffix links checking for

child Q[k + 1]. We will find a match only when we reach node Q[k − l′ + 1, · · · , k].

At this point we will traverse child node of Q[k − l′ + 1, · · · , k] and reach node

Q[k− l′ + 1, · · · , k + 1]. Thus we will be at the longest suffix node of Q[1, · · · , k + 1]

after processing Q[k + 1]. By induction lemma should hold for all i ≤ m.

Theorem 3.2.3 Substring matching using Tsp is equivalent to substring matching

using Tp.

Proof To show the equivalence of two matching algorithms, we will prove that if a

substring Q[i, · · · , i+ q− 1] is marked accepted by Tp, then it will be marked accepted

by Tsp, and vice versa. We will also prove that if a mismatch is found while matching

substring Q[i, · · · , i + q − 1] by Tp, then a mismatch will be found by Tsp, and vice

versa. From these two observations, it is implied that if a query is marked first as

pending in Tp and accepted (or rejected) later, it will be marked as pending in Tsp and

accepted (or rejected) later, and vice versa.

If substring Q[i, · · · , i+q−1] is marked accepted by tree Tsp, then after processing

Q[i + q − 1], we will be at depth-q leaf node, say X. According to lemma 3.2.2,

X should also be the longest suffix of Q[1, · · · , i + q − 1]. But length q suffix of

Q[1, · · · , i+ q−1] is Q[i, · · · , i+ q−1]. This means that node X corresponds to node

Q[i, · · · , i + q − 1]. Since node Q[i, · · · , i + q − 1] is present in the tree, substring

Q[i, · · · , i + q − 1] will be accepted by tree Tp.

26

If substring Q[i, .., i + q− 1] is marked accepted by tree Tp, then there exists a leaf

node Q[i, · · · , i+q−1] in the tree, which is also the longest suffix of Q[1, · · · , i+q−1]

present in the tree. While matching query using tree Tsp, after we process Q[i+q−1],

according to lemma 3.2.2, we will reach the longest suffix node of Q[1, · · · , i + q − 1]

present in the tree. From the above, this node is a leaf node Q[i, .., i + q − 1]. Thus

Tsp will accept substring Q[i, .., i + q − 1].

If Tsp finds a mismatch for substring Q[i, · · · , i+q−1] at node Q[i, · · · , i+j], then

node Q[i, · · · , i+j] does not have child Q[i+j+1]. While matching Q[i, · · · , i+q−1]

using Tp, we will reach node Q[i, · · · , i + j], and find a mismatch while looking for

child Q[i + j + 1].

Suppose Tp finds a mismatch for substring Q[i, · · · , i+q−1] at node Q[i, · · · , i+j].

While matching using Tsp, after we match character Q[i+j], according to lemma 3.2.2,

we will be at the longest suffix node of Q[1, · · · , i+j]. Suppose the longest suffix node

is Q[i− l, · · · , i+j], 0 ≤ l ≤ q−j−1. Since Q[i+j+1] is not a child of Q[i, · · · , i+j],

Q[i + j + 1] can not be a child of Q[i− l′, · · · , i + j], ∀0 ≤ l′ ≤ l. Thus, we will find a

mismatch at node Q[i− l, · · · , i+j] while matching substring Q[i− l, · · · , i− l+q−1],

and traverse the suffix link and again try to match Q[i + j + 1]. We will continue

to find mismatch, traverse suffix links and will eventually reach node Q[i, · · · , i + j]

and still cannot match character Q[i + j + 1]. Thus, we have found a mismatch for

Q[i, · · · i + q − 1].

Corollary 3.2.1 Substring matching with Tsp is equivalent to substring matching us-

ing T .

Proof This is followed immediately from Theorem 3.2.1 and Theorem 3.2.3.

The above matching algorithm is linear to the length of the query. For every child

link traversal, we successfully match a character and progress to the next character.

For every suffix link traversal from a leaf node, we mark the current substring as

27

accepted or pending and proceed to the next substring. For every suffix link traversal

from a non-leaf node, we find a substring mismatch and proceed to match the next

substring after marking the previous overlapping pending substrings as rejected.

Finally, every substring is marked either once, accepted or rejected, or twice, first

pending and then accepted or rejected. There are |Q| characters in the query and

|Q| − q + 1 substrings. Thus, the total number of link traversals including child and

suffix links is at most |Q|+ 2× (|Q| − q + 1) = O(|Q|).

3.3 String Matching

3.3.1 Exact String Matching

If T is the text and Q is the query, then the exact string matching problem is to find

if Q is a substring of T . We will prove that we can use the above q-gram matching for

exact string matching. But first, we will prove some results on the number of nodes

at a given depth of the tree. We will assume that the text is converted to an infinite

length string by adding an infinite number of end symbol ($) at the end.

Theorem 3.3.1 For any depth l, N(l) ≤ N(l + 1), where N(l) is the number of

nodes at depth l in tree T .

Proof Every node X in the tree should have at least one child x. Otherwise, the text

string will end after we encounter X in the text. But this is a contradiction because

X is assumed to be an infinite length string. Thus, for every node at depth l, we will

have at least one node at depth l + 1. Thus, the number of nodes at depth l + 1 is at

least N(l).

Theorem 3.3.2 ∃l0, s.t. N(l0) = N(l0 + 1)

Proof Assume N(l) < N(l + 1) for all l. For l = |T | + 2, where |T | is the length

of original text without end symbols added at the end, we will have N(l) > |T | + 1.

28

But the number of unique substrings cannot be more than |T |+ 1. We have reached

a contradiction. Thus, ∃l0, s.t.N(l0) = N(l0 + 1).

Theorem 3.3.3 If, for some depth l0, N(l0 + 1) = N(l0), then

N(l + 1) = N(l) = N(l0), ∀l ≥ l0, (1)

Proof If we go down the tree, the number of nodes will increase if and only if there is

at least one node with two or more children. Suppose the theorem does not hold for

some l ≥ l0, that is N [l + 1] > N [l] and node X[1, · · · , l] at depth l has two children

x and x′. Since the substrings X[1, · · · , l]x and X[1, · · · , l]x′ are present in the tree,

their suffix X[l − l0, · · · , l]x and X[l − l0, · · · , l]x′ should also be present in the tree.

Then the depth l0 node X[l − l0, · · · , l] should have two children for x and x′. Thus,

N(l0 + 1) > N(l0). This is a contradiction. Thus we have proved the theorem.

Q

T

0 i

x

y

i+li+l−l
0

X

X

Figure 7: String matching of text T and query Q. X is longest prefix match of Q
present in T . Alphabets x and y are different.

Exact String Matching Algorithm Given a text T , make it an infinite length

string by adding special end symbols at the end. Build a (l0 +1)-depth tree where the

number of nodes stops increasing after depth l0. Given a query Q, perform q-gram

matching with q = l0 + 1. If no mismatch is found then the query is a substring of

the text, otherwise it is not.

Theorem 3.3.4 Query Q is a substring of text T if and only if no mismatch is found

while performing q-gram matching with q = l0 + 1, where N(l0 + 1) = N(l0).

29

Proof It is easy to see that if the query is a substring of the text, then there will

be no mismatch. We need to prove that if Q is not a substring of the text, then we

will have at least one mismatching q-gram. Suppose the maximum prefix match of a

query in the text starts at i-th position in T and the length of matched prefix is l. If

l ≤ l0, then substring Q[i, · · · , i + l0] is not present in the text and while performing

q-gram matching, we will find a mismatch for this substring. The case where l > l0 is

shown in Figure 7. Alphabet x and y are different. Since the substring Xx is in the

text, it should be present in the tree. Since node X is depth-l0 node, it cannot have

two children, otherwise, N(l0) < N(l0 + 1). Thus, substring Xy cannot be present in

the tree because otherwise depth l0 node X will have two children, namely, x and y.

So we will find a mismatch at node X in the tree while matching character y from

the query. Thus, the exact matching problem is the same as q-gram matching.

3.3.2 Variable Length Matching

0

1 2

3 4 5

17

6

12

19

1110

0

0

01 1

0 1

0 1

1

1

0

(1)

(10) (11)

(100)

(1000)

(101) (110)

(1101)

(011)

(01)(00)

(0)

9

Figure 8: Length-3 substring matching of query 011000 using the tree in constructed
in Figure 6. All the nodes at depth 3 are considered leaves and all nodes below them
(i.e. node 17 and 19) are considered non-existent. When we reach nodes 12 and 10,
we do not try to go any further down to depth-4 node. Instead we traverse the suffix
links and continue matching the next character for the next length-3 substring.

The tree model can be used to perform q-gram matching where q is the same as

30

the maximum depth of the tree. But in many cases, one does not know what sequence

length is appropriate. Also, one might need to use different values of q depending

on the policy and the situation. For example, in intrusion detection, the value of q

is determined by the current required false alarm rate and detection rate. One may

want to have larger q for a better detection rate and sometimes a smaller q for a

small false alarm rate. We would not want to create a separate tree for each sequence

length. This would require more resources and might be cumbersome to maintain.

Given a desired maximum sequence length (say L), we can construct a pruned

tree with suffix links as proposed earlier. This tree can be used to perform substring

matching of lengths smaller or equal to L. While matching for length q < L, we can

assume that all the nodes at depth q are leaves and there are no nodes below depth q.

Now we can use the same algorithm proposed above for length q substring matching.

Consider the problem of matching the text 1000011011 (the original tree is shown

in Figure 1) with query 011000 for sequence length 3. All 3-grams in the query are

present in the text and we should not find any mismatch. Figure 8 shows the path

followed by the algorithm while matching 011000 for sequence length 3.

3.4 Evaluation

We use performance measurements to show the effectiveness of the pruning algorithm.

We demonstrate the savings in space because of pruning. We also show the average

time complexity of the substring matching using the pruned tree Tp. These two

experiments also help us understand the use of tree redundancy pruning to reduce

the matching overhead when using pruned tree Tp.

3.4.1 Dataset

For our experimentation purpose, we use the system call sequence datasets made

available by University of New Mexico (UNM). These datasets were generated for the

stide intrusion detection system developed at UNM [64]. The character size is the

31

number of different possible system calls, which is equal to 182. In order to collect the

data, the given program was started and requests were sent to this program. These

requests were either sent by a real user or automatically generated by a program.

During the processing of requests, the program makes some calls to the underlying

operating system. We can use the trace command to record these system calls made

by the program in the order they were invoked. The properties of the datasets in-

cluding their sizes are shown in Table 1. Each dataset consists of multiple sequences

generated by multiple runs of the program. As the name suggests, synthetic sendmail

and synthetic ftp datasets were generated at UNM using automatically generated

synthetic requests. Real Sendmail data was generated by an MIT sendmail server

with real user requests. Since the MIT system call trace was very large, only a small

fraction (consisting of 5.3 million data points) was used in our experiments. Further

information about the dataset may be obtained from [64].

Table 1: System call data

DataSet Filename Number of System Calls

Synthetic Sendmail sendmail.daemon 1.556M

Synthetic FTP nonself1 180,315

Real Sendmail MIT 5.23M

To observe the effect of tree redundancy pruning on other datasets, we also gener-

ated some random data. In particular, we generated random data with independent

Bernoulli distribution and Markovian distribution. Mathematical formulation for

Bernoulli distribution is shown in equation 2.

si =

 1, with probability p;

0, with probability 1− p
(2)

where p is the probability of occurrence of 1 in data.

In a markov model, the current output depends on the current state of the model.

32

For simplicity, we are assuming a simple markov model with binary output. The

current output depends on values of the previous two outputs. The sequence satisfies

the following stochastic distribution:

si =

1, if (si−2, si−1) = (0, 0);

0, if (si−2, si−1) = (1, 1);

1 with prob. p1, if (si−2, si−1) = (0, 1);

1 with prob. p2, if (si−2, si−1) = (1, 0)

(3)

where p1 and p2 are two prescribed probabilities.

The properties of Bernoulli and Markovian datasets are shown in Table 2. We

used two separate Bernoulli datasets with different values of p.

Table 2: Bernoulli and Markovian Dataset
DataSet Parameters Number of data points

Bernoulli p = 0.25 250,000

Bernoulli p = 0.50 250,000

Markovian p1 = 0.25, p2 = 0.75 5,000,000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20 25 30 35

N
u
m

 o
f
U

n
iq

u
e
 S

e
q

Sequence Len

ftp
sendmail

MIT

(a) System call Data

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 5 10 15 20 25 30 35

N
u
m

 o
f
U

n
iq

u
e
 S

e
q

Sequence Len

markov
bernoulli(p=0.25)
bernoulli(p=0.50)

(b) Bernoulli and Markovian Data

Figure 9: Number of Unique Sequences in Dataset

Figure 9 shows the number of unique sequences in the different datasets. As we

expect, the number of unique sequences increases as we increase the sequence length.

The MIT dataset shows more diversity and the number of unique sequences increases

33

rapidly. For the ftp and sendmail dataset, the number of unique sequences remains

very low and increases very slowly. For Markovian and Bernoulli dataset, the number

of unique sequences increases very fast. This is due to the random nature of these

datasets. For Bernoulli dataset, the number of unique sequences stops increasing

rapidly after sequence length 24 when it approaches its maximum value of |T | − q,

where |T | is the number of data points and q is the sequence length.

3.4.2 Experiments

To determine the average time complexity of substring matching using a pruned tree

Tp, we calculate the average depth of leaf nodes in the tree. This gives us the expected

time taken to match a substring. The average depth of a tree can be computed as

Avg.Depth =

∑
x∈Leaves depth(x)

|Leaves|
, (4)

where Leaves is the set of all leaf nodes.

The space required to store a tree is directly proportional to the number of nodes

and links in the tree. For each node in the tree, there is one incoming link from its

parent and one outgoing suffix link. Thus, the number of links is twice the number of

nodes. Thus, the space required to store the tree is roughly three times the number

of nodes in the tree. In order to compare the space requirements of the unpruned

and pruned trees, we calculate the number of nodes for both. We also compared the

average space requirements for tree structures with those for hash-tables. Assuming

the load factor of hash-table is 1, the minimum space required by the hash-table is

q×#(entries in hash− table), where q is the sequence length. The number of entries

in the hash-table is equal to the number of unique substrings in the text.

Spacetree = 3×NT , (5)

Spacehash = q ×#(unique substrings of length q) (6)

34

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 D

e
p
th

Sequence Len

unpruned
ftp

sendmail
MIT

(a) System call Data

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 D

e
p
th

Sequence Len

unpruned
markov

bernoulli(p=0.25)
bernoulli(p=0.50)

(b) Bernoulli and Markovian Data

Figure 10: Average depth as a function of sequence length. Solid lines in the figure
corresponds to the average depth of the unpruned trees. The average depth of the
unpruned trees is equal to the sequence length for all the datasets.

3.4.3 Results

Figure 10 shows the effect of pruning on the average depth of the tree for different

sequence lengths. Every leaf node in the unpruned tree is at depth q, where q is

the sequence length. Thus, the average depth of the unpruned tree is the same as

the sequence length for all datasets. Compared with the unpruned tree, the average

depth of the pruned tree increases slowly as we increase the sequence length. Thus,

even if we increase the sequence length, there is a small increase in the amount of

processing required to match a substring using pruned tree Tp. The effect of pruning is

more apparent for ftp and sendmail.daemon data as we increase the sequence length.

Pruning reduces the average depth by very small value for the Markovian dataset.

The subtrees rooted at the bottom of the tree are similar to the subtrees rooted at

their suffix nodes. Therefore, they are pruned during the redundancy pruning. Thus,

the average depth reduces by a small value. For Bernoulli dataset, pruning works

very well for small sequence lengths. This is because for small q, Bernoulli data

contains all the possible length-q substrings. Thus, after pruning, the tree reduces

to a depth-1 tree with just 3 nodes. For larger sequence lengths, there is not much

gain from pruning for Bernoulli data because the data is random in nature. After

35

sequence length 24 when the number of unique sequences stops increasing rapidly,

Bernoulli data again shows significant reduction in average depth.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25 30 35

S
p
a
c
e
 R

e
q
u
ir
e
m

e
n
t

Sequence Len

hash
unpruned

pruned

(a) FTP Data

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 5 10 15 20 25 30 35

S
p
a
c
e
 R

e
q
u
ir
e
m

e
n
t

Sequence Len

hash
unpruned

pruned

(b) Sendmail.daemon Data

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 5 10 15 20 25 30 35

S
p
a
c
e
 R

e
q
u
ir
e
m

e
n
t

Sequence Len

hash
unpruned

pruned

(c) MIT Data

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 5 10 15 20 25 30 35

S
p
a
c
e
 R

e
q
u
ir
e
m

e
n
t

Sequence Len

hash
unpruned

pruned

(d) Markovian data

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 D

e
p
th

Sequence Len

hash
unpruned

pruned

(e) Bernoulli data (p=0.25)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 D

e
p
th

Sequence Len

hash
unpruned

pruned

(f) Bernoulli data (p=0.50)

Figure 11: Space complexity of different datasets.

The space required to store the unpruned and pruned tree is shown in Figure 11.

It also shows the minimum space required for a hash-table based matching scheme.

For a practical hash-tables with few collisions, we would require more space. The

36

space requirement of the unpruned tree is slightly more than the hash-table scheme.

But for the pruned tree, the space requirement is much less. This means that many of

the nodes are being pruned during the pruning process. For larger sequence lengths,

pruning reduces the space complexity by an order of 10. Thus, pruning yields a large

space saving.

The space requirement for Markovian and Bernoulli datasets is shown in Figure 11

(d), (e), & (f), respectively. For both datasets, space requirement of the unpruned

tree is smaller than the hash-table. For Bernoulli dataset, space requirement of hash-

table eventually becomes less than the unpruned tree for higher sequence lengths.

As for the system call data, pruning shows large savings in space and reduces the

space requirement by 4 times. Change in space requirements is more visible for larger

sequence lengths.

3.4.4 Comparison with Rabin-Karp

In addition to the above experiments, we also compared our tree model with the

Rabin-Karp based hashing technique. For this purpose, we implemented both algo-

rithms in C++. For the given training data, we built a pruned tree with suffix links

and performed matching for the testing data. For the Rabin-Karp algorithm, for the

given training data, we generated hashes for all the given length substrings present

in the data and stored them in the hash-table. While matching the test data, we

efficiently generated the successive hashes and checked if that hash value was present

in the hash-table. If hash value was found, we considered it as a match. We did not

perform further exact matching. If we did not find the value in the table, we got

a mismatch. For hashing purposes, we considered a substring as a number in some

base. The hash value of the substring was simply the number represented by the

substring modulo a big prime. Equation 7 and 8 shows the hashing and rehashing

mechanism used in our implementation.

37

hashXi
= (xib

q−1 + · · ·+ xi+q−1) mod p, (7)

where X is the string, Xi is ith substring, xi is ith character in the string, p is a

random prime, and b is the base.

hashXi+1
= ((hashXi

− bq−1xi)× b + xi+q) mod p (8)

Value of bq−1 can be pre-calculated once at the start. The above rehashing tech-

nique is efficient and takes constant time to calculate. Thus the first hash can be

calculated in time O(q) and further hashes can be calculated in constant time using

equation 8. Thus, the calculation of hashes of all the q-grams in the query will take

O(|Q|) time, which is linear to the length of the query. We used the same datasets

as earlier for comparison. We computed the time taken for preprocessing of the data

for both models and compared their runtime overhead for testing the data. For sim-

plicity, we used the same set of data for both training and testing. For efficiency, we

set b to 256 and p to a 32-bit random prime.

The time taken to train and perform substring matching is shown in figure 12.

For the tree-based algorithm, the training time is calculated as the sum of the time

taken to record the unique sequences, build the tree, create suffix links, prune the

suffix tree and adjust the suffix links. The training time for tree model is proportional

to the square of the size of the tree. The training time of the Rabin-Karp algorithm

depends on the time to compute the hash and the time to store the hash in a table.

Computing hashes takes constant time. Thus, the training time of Rabin-Karp does

not change much as we increase the sequence length. Compared with Rabin-Karp,

the tree model takes more time to train, and the time increases with sequence length.

This is acceptable because training is an offline process and is performed just once.

The matching time is almost constant for both algorithms and does not change

with sequence length. This is because the matching time of both the Rabin-Karp

38

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25 30 35

T
im

e
(m

s
)

Sequence Len

rabin-train
tree-train

rabin-match
tree-match

(a) FTP Data

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 0 5 10 15 20 25 30 35

T
im

e
(m

s
)

Sequence Len

rabin-train
tree-train

rabin-match
tree-match

(b) Sendmail.daemon Data

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5 10 15 20 25 30 35

T
im

e
(m

s
)

Sequence Len

rabin-train
tree-train

rabin-match
tree-match

(c) MIT Data

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30 35

T
im

e
(m

s
)

Sequence Len

rabin-train
tree-train

rabin-match
tree-match

(d) Markovian data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35

T
im

e
(m

s
)

Sequence Len

rabin-train
tree-train

rabin-match
tree-match

(e) Bernoulli data (p=0.25)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

T
im

e
(m

s
)

Sequence Len

rabin-train
tree-train

rabin-match
tree-match

(f) Bernoulli data (p=0.50)

Figure 12: Training and matching time for substring matching.

39

algorithm and the tree model are independent of the sequence length. The matching

time complexity of both algorithms is linear to the length of the query. The tree

model takes considerably less time for matching than Rabin-Karp. This is because

computation of rehash takes more time than traversing a link in the tree. Since

matching is an online process, even a small time saving can be a significant advantage.

3.5 Summary

When applied to q-gram matching problems with huge text size, the computation time

required by previous string matching algorithms become unacceptable. The Rabin-

Karp algorithm is the only known algorithm which works well for q-gram matching.

But the Rabin-Karp algorithm can produce false matches because of the limitations

of hashing. Also, for different values of q, the Rabin-Karp algorithm needs to create

separate hash-tables. This requires a large amount of space.

We presented a fast q-gram matching algorithm. The algorithm pre-processes

the text and stores it in a tree structure that is efficient for storage and addition

of new substrings. We also presented a pruning algorithm to reduce the size of the

tree. Suffix links were added to the tree structure to facilitate a linear time substring

matching algorithm. In addition, we proved that a substring tree of sufficient length

can be used to perform exact string matching. Finally, we performed experiments on

system call sequence data as well as Bernoulli and Markovian data to show the effect

of pruning on runtime and space overheads.

Construction of a tree T takes O(q|T |) time. In the worst case, redundancy

pruning and adding suffix links take O(NT
2) and O(NT q) time, respectively. The

matching algorithm using the tree T takes O(q|Q|) time. q-gram matching with the

pruned tree Tp has the worst case of O(q|Q|) time. But as seen in figure 10, the

expected time for matching is very small for system call data. When using trees with

suffix links, Ts or Tsp, the matching algorithm is linear to the size of query and does

40

not depend on the size of the text. For system call data, the space requirement for the

unpruned tree with suffix links, Ts, is a little more than the hash-table based q-gram

matching system. But for the pruned tree with suffix links, Tsp, the space requirement

is very modest and is much smaller than that required for the hash-table. Even for

large sequence lengths, the space required to store a pruned tree is less than the

size of the text. The tree algorithm has a better running time for matching than the

Rabin-Karp algorithm. Also, the tree model has an additional advantage in its ability

to perform multiple length q-gram matching using the same tree.

41

CHAPTER IV

ROBUSTNESS OF IDS AGAINST EVASION ATTACKS

In this section we will analyze the robustness of network anomaly detection systems.

First we will briefly discuss the attack polymorphism techniques and why anomaly

detection system are effective in detection of polymorphic attacks. Then we will look

at polymorphic blending attacks. We also present the case study for polymorphic

blending attacks using PAYL IDS. Then we present a formal framework for polymor-

phic blending attacks and analyze it. Then we show experimental results and finally

present techniques for improving robustness of IDSs.

4.1 Blending Attacks

4.1.1 Polymorphic Attacks

A polymorphic attack is an attack that is able to change its appearance with every

instance. Thus, there may be no fixed or predictable signature for the attack. As a

result, it may evade detection because most current intrusion detection systems and

anti-virus systems are signature-based. Exploit mutation and shellcode polymorphism

are two common ways to generate polymorphic attacks. In general, there are five

components in a polymorphic attack:

1. Attack Vector: an attack vector is used for exploiting the vulnerability of the

target host. Certain parts of the attack vector can be modified to create mutated

but still valid exploits. Several attack mutation techniques [23, 44, 66, 48] have

been proposed to transform attack vector. Some of the common techniques

used for attack mutation are http transformation, multiple requests in same

connection, ftp request padding, tcp packet fragmentation, etc. There might

42

still be certain parts, called the invariant, of the attack vector that have to be

present in every mutant for the attack to work. If the attack invariant is very

small and exists in the normal traffic, then an IDS may not be able to use it as

a signature because it will result in a high number of false positives.

2. Attack Body: the code that performs the intended malicious actions after the

vulnerability is exploited. Common techniques to achieve attack body (shell-

code) polymorphism include register shuffling, equivalent instruction substitu-

tion, instruction reordering, garbage insertions, and encryption. Different keys

can be used in encryption for different instances of the attack to ensure that

the byte sequence is different every time.

3. Polymorphic Decryptor: this section contains the part of the code that decrypts

the shellcode. It decrypts the encrypted attack body and transfers control to

it. Polymorphism of the decryptor can be achieved using various code obfusca-

tion techniques such as instruction reordering, instruction substitution, register

shuffling, and nop insertions.

4. Decryption table: used by polymorphic decryptor to decrypt the encrypted

attack code.

5. Padding: extra junk data appended in the attack for obfuscation purpose.

4.1.1.1 Anomaly Detection System

The polymorphic attacks generated using different attack mutation and code ob-

fuscation techniques are very effective in evading misuse detection system. Anomaly

detection systems [71, 30, 31] that look at the payload of a packet have been proposed

to detect the polymorphic attack. A normal HTTP request packet predominantly con-

tains printable ASCII characters. Figure 13(a) shows the byte frequency distribution

of a normal HTTP request packet payload. On the other hand, polymorphic attack

43

instances contain exploit code and input data that are typically not used in normal

activities. The exploit code and the data may contain characters that have very low

probability of appearing in a normal packet. Figure 13(b) shows the byte frequency

distribution of a polymorphic attack packet payload. An anomaly IDS can easily

differentiate between polymorphic attack instances and normal packets by looking at

the byte frequency distribution of the packet payload. PAYL anomaly IDS [71, 72],

which monitors the n-gram (or equivalently q-gram) frequency distribution of packet

payload, is shown to be very effective in detection of polymorphic attacks.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200 250

R
el

at
iv

e
F

re
qu

en
cy

Character

(a) Normal HTTP Request Packet

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200 250

R
el

at
iv

e
F

re
qu

en
cy

Character

(b) Attack Packet

Figure 13: Character distribution of normal and attack packets

4.1.2 Polymorphic Blending Attacks

Clearly, if a polymorphic attack can “blend in” with (or “look” like) normal, it can

evade detection by an anomaly-based IDS. Normal traffic contains a lot of syntactic

and semantic information, but only a very small amount of such information can

be used by a high speed network-based anomaly IDS. This is due to fundamental

difficulties in modeling complex systems and performance overhead concerns in real-

time monitoring. The network traffic profile used by high speed anomaly IDS, e.g.,

PAYL, typically includes simple statistics such as maximum or average size and rate

of packets, frequency distribution of bytes in packets, and range of tokens at different

offsets.

44

Given the incompleteness and the imprecision of the normal profiles based on

simple traffic statistics, it is quite feasible to launch what we call polymorphic blending

attacks. The main idea is that, when generating a polymorphic attack instance, care

can be taken so that its payload characteristics, as measured by the anomaly IDS,

will match the normal profile. For example, in order to evade detection by PAYL

[71, 72], the polymorphic attack instance can carefully choose the characters used in

encryption and pad the attack payload with a chosen set of characters, so that the

resulting byte frequency of the attack instance closely matches the normal profiles

and thus will be considered normal by PAYL.

4.1.2.1 A Realistic Attack Scenario

Before presenting the general strategies and techniques used in polymorphic blend-

ing attacks, we present an attack scenario and argue that such attacks are realistic.

Figure 14 shows the attack scenario that is the basis of our case study. There are a

few assumptions behind this scenario:

• The adversary has already compromised a host X inside a network A which

communicates with the target host Y inside network B. Network A and host

X may lack sufficient security so that the attack can penetrate without getting

detected, or the adversary may collude with an insider.

• The adversary has knowledge of the IDS (IDSB) that monitors the victim host

network. This might be possible using a variety of approaches, e.g., social

engineering (e.g., company sales or purchase data), fingerprinting, or trial-and-

error. We argue that one cannot assume that the IDS deployment is a secret, and

security by obscurity is a very weak position. We assume IDSB is a payload

statistics based system (e.g., PAYL). Since the adversary knows the learning

algorithm being used by IDSB, given some packet data from X to Y , the

45

Figure 14: Attack Scenario of Polymorphic Blending Attack

adversary will be able to generate its own version of the statistical normal profile

used by IDSB.

• A typical anomaly IDS has a threshold setting that can be adjusted to obtain

a desired false positive rate. We assume that the adversary does not know

the exact value of the threshold used by IDSB, but has an estimation of the

generally acceptable false positive and false negative rates. With this knowledge,

the adversary can estimate the error threshold when crafting a new attack

instance to match the IDS profile.

We now explain the attack scenario. Once the adversary has control of host X,

it observes the normal traffic going from X to Y . The adversary estimates a normal

profile for this traffic using the same modeling technique that IDSB uses. We call

this an artificial profile. With it, the adversary creates a mutated instance of itself

in such a way that the statistics of the mutated instance match the artificial profile.

When IDSB analyzes these mutated attack packets, it is unable to discern them from

normal traffic because the artificial profile can be very close to the actual profile in use

46

by IDSB. Thus, the attack successfully infiltrates the network B and compromises

host Y .

4.1.2.2 Desired Characteristics

Clearly, the key for a polymorphic blending attack to succeed in evading an IDS is to

be able to learn an artificial profile that is very close to the actual normal profile used

by the IDS, and create polymorphic instances that match the artificial profile. There

are other desirable properties. First, the blending process (e.g., with encoding and

padding) should not result in an abnormally large attack size. Otherwise, a simple

detection heuristic will be to monitor the network flow size. Second, although we do

not put any constraint on the resources available to the adversary, the polymorphic

blending process should be economical in terms of time and space. Otherwise, it

will not only slow down the attack, but also increase the chance of detection by

the local IDS (e.g., IDSA or host-based IDS.) More formally, given a description of

the algorithm that the IDS uses to learn and match the normal profile and an attack

instance, the time (and space) complexity of the algorithm used to apply polymorphic

blending to the attack instance should be a small degree polynomial with respect to

the initial attack size. Algorithms that require exponential time and space may not

be practical. Since the learning time should be small, the blending algorithm should

not require to collect a lot of normal packets to learn the normal statistics.

4.1.3 Steps of Polymorphic Blending Attacks

The polymorphic blending attack has three basic steps: (1) learn the IDS normal

profile; (2) encrypt the attack body; (3) and generate a polymorphic decryptor.

4.1.3.1 Learning The IDS Normal Profile

The task at hand for the adversary is to observe the normal traffic going from a host,

say X, to another host in the target network, say Y , and generate a normal profile

47

close to the one used by the IDS at the target network, say IDSB, using the same

algorithm used by the IDS.

A simple method to get the normal data is by sniffing the network traffic going

from network A to host Y . This can be easily accomplished in a bus network. In

a switched environment, it may be harder to obtain such data. Since the adversary

knows the type of service running at the target host, he can simply generate normal

request packets and learn the artificial profile using these packets.

In theory, even if the adversary learns a profile from just a single normal packet,

and then mutates an attack instance so that it matches the statistics of the nor-

mal packet perfectly, the resulting polymorphic blended attack packet should not be

flagged as an anomaly by IDSB, provided the normal packet does not result in a false

positive in the first place. On the other hand, it is beneficial to generate an artificial

profile that is as close to the normal profile used by IDSB as possible, so that if a

polymorphic blended attack packet matches the artificial profile closely it has a high

chance of evading IDSB. In general, if more normal packets are captured and used

by the adversary, she will be able to learn an artificial normal profile that is closer to

the normal profile used by IDSB.

4.1.3.2 Attack Body Encryption

After learning the normal profile, the adversary creates a new attack instance and

encrypts (and blends) it to match the normal profile. A straightforward byte sub-

stitution scheme followed by padding can be used for encryption. The main idea

here is that every character in the attack body can be substituted by a character(s)

observed from the normal traffic using a substitution table. The encrypted attack

body can then be padded with some more garbage normal data so that the poly-

morphic blended attack packet can match the normal profile even better. To keep

the padding (and hence the packet size) minimal, the substituted attack body should

48

already match the normal profile closely. We can use this design criterion to produce

a suitable substitution table.

To ensure that the substitution algorithm is reversible (for decrypting and running

the attack code), a one-to-one or one-to-many mapping can be used. A single-byte

substitution is preferred over multi-byte substitution because multi-byte substitution

will inflate the size of the attack body after substitution. An obvious requirement of

such encryption scheme is that the encrypted attack body should contain characters

from only the normal traffic. Although this may be hard for a general encryption

technique (because the output typically looks random), it is an easy requirement for

a simple byte substitution scheme. However, finding an optimal substitution table

that requires minimal padding is a complex problem. We can instead use a greedy

method to find an acceptable substitution table. The main idea is to first sort the

statistical features in the descending order of the frequency for both the attack body

and normal traffic. Then, for each unassigned entry with the highest frequency in the

attack body, we simply map it to an available (not yet mapped) normal entry with

the highest frequency. This procedure is repeated until all entries in the attack body

are mapped. The feature mapping can be translated to a character mapping and a

substitution table can be created for encryption and decryption purposes.

4.1.3.3 Polymorphic Decryptor

A decryptor first removes all the extra padding from the encrypted attack body and

then uses a reverse substitution table (or decoding table) to decrypt the attack body

to produce the original attack code (shellcode).

The decryptor is not encrypted but can be mutated using multiple iterations of

shellcode polymorphism processing (e.g., mapping an instruction to an equivalent

one randomly chosen from a set of candidates). To reverse the substitution done

during blending, the decryptor needs to look up a decoding table that contains the

49

required reverse mappings. The decoding table for one-to-one mapping can be stored

in an array where the i-th entry of the array represents the normal character used to

substitute attack character i. Such an decoding table contains only normal characters.

Unused entries in the table can be used for padding. On the other hand, storage of

decoding tables for one-to-many mapping or variable-length mapping is complicated

and typically requires larger space.

4.1.4 Attack Design Issues

4.1.4.1 Incorporating Attack Vector and Decryptor

We discussed in Section 4.1.3.2 that the encryption of the attack body is guided by

the need to make the attack packet match the normal statistical profile (or more

precisely, the learned artificial profile).

The attack vector, decryptor, and substitution table are not encrypted. Their

addition to the attack packet payload alters the packet statistics. The new statistics

may deviate significantly from the normal profile. In such a case, we must find a

new substitution table in order to match the whole attack packet to the normal

profile. First, we take the normal profile and subtract the frequencies of characters

in the attack vector, decryptor, and existing substitution table. Next, we find a

new substitution table using the adjusted normal profile. If the statistics of the new

substitution table is not significantly different from the old substitution table, we use

the new substitution table for encryption. Otherwise we repeat the above steps.

4.1.4.2 Packet Length based IDS Profile

If IDSB has different profiles for packets of different lengths, as in the case of PAYL, the

substitution phase and padding phase need to use the normal profile corresponding

to the final attack packet size. A target length greater than the length of the original

attack packet (before polymorphic blending) is chosen at first. The encryption step

is then applied and the packet is padded to the target length. If the statistics of the

50

resulting attack packet is not very close to the normal profile, a different target length

is chosen and the above process is repeated. Another strategy is to divide the attack

body into multiple small packets and perform the polymorphic blending process for

all of them separately.

4.2 Case Study

To demonstrate that polymorphic blending attacks are feasible and practical, we show

how an attack can use polymorphic blending to evade the anomaly IDS PAYL. PAYL has

been shown to be effective in detecting polymorphic attacks and worms [71, 72]. For

this reason we used PAYL in our case study. We used the 2-gram version in addition

to the 1-gram version to evaluate how polymorphic blending attack is affected when

an IDS uses a more comprehensive model.

4.2.1 Notations

Table 3: Notations
U Set of all possible distinct alphabets
N Set of all distinct alphabets in the normal traffic
M Set of all distinct alphabets in the attack body
u |U |
cn |N |
cm |M |
w Original attack body
ŵ Substituted attack body before padding
ẃ Substituted attack body after padding
‖s‖ Length of a string s
f(x) Probability of x in normal traffic
f̂(x) Probability of x in ŵ
g(y) Probability of y in attack body w
TN Set of all tuples present in the traffic
TM Set of all tuples present in the attack

S : M 7→ N Mapping from M to N

51

4.2.2 PAYL

PAYL uses n-gram (or equivalently q-gram) analysis by recording the frequency distri-

bution of n-grams in the payload of a packet. A sliding window of width n is used to

record the number of occurrences of all the n-grams present in the payload. A sepa-

rate model is generated for each packet length. These models are clustered together

at the end of the training to reduce the number of models. Furthermore, the length

of a packet is also monitored for anomalies. Thus a packet with an unseen or very low

frequency length is flagged as an anomaly. {f(xi), σ(xi)} represents the PAYL model

of normal traffic, where xi is the ith gram, which is a character in 1-gram PAYL, and

a tuple in 2-gram PAYL. f(xi) is the average relative frequency of xi in the normal

traffic, and σ(xi) is the standard deviation of xi in the normal traffic. The anomaly

score as calculated by PAYL is shown in Equation 9.

score(P) =
∑

i

(f̊(xi)− f(xi))/(σ(xi) + α) (9)

Here, P is the monitored packet, f̊(xi) is the relative frequency of the ith gram xi in

P , and α is a smoothing factor used to prevent division by zero. For convenience we

will use the term frequency to denote relative frequency.

We evaluated our polymorphic blending attack with the first version of PAYL as

described in [71]. Wang et al. [72] proposed some improvements on PAYL in their

recent version. We believe that our attack still works for this new version of PAYL.

The main improvement of the new version is to use multiple centroids for a given

packet length, so that a low false positive rate can be achieved using a relatively

low anomaly threshold. In this case, our polymorphic blending attack has to use the

same learning algorithm as the new version of PAYL. Furthermore, more normal traffic

needs to be used to learn an artificial profile that is close to the actual normal profile.

Thus, the effect is that our attack may take a little more time. The new version also

matches ingress suspicious traffic with egress suspicious traffic to find worms. This

52

feature does not have any effect on our attack because the attack instances blend in

with normal.

4.2.3 Evading 1-gram

To evade 1-gram PAYL, the frequency of each character in the attack packet should

be close to the average frequency recorded during the learning phase. We substitute

the characters in the attack packet with the characters seen in the normal traffic, and

apply sufficient amount of padding so that the 1-gram frequencies of the resulting

packet match the normal profile very closely. We first present analytical results on the

amount of padding required to match the substituted attack body with the normal

profile perfectly. Then we present a substitution algorithm that uses the padding

criteria to minimize the amount of required padding.

In the following sections, we assume that the normal frequency f(x) has already

been adjusted for the attack vector, the decryptor, and the decoding table (as dis-

cussed in Section 4.1.4.1, these parts need to be accounted for when computing the

frequencies of characters to find a suitable substitution).

4.2.3.1 Padding

Let ŵ and ẃ be the substituted attack body before and after padding, respectively.

Let n be the number of distinct characters in the normal traffic. ‖s‖ denotes the length

of a string s, and λi denotes the number of occurrences of the normal character xi in

the padding section of the blending packet. Then,

‖ẃ‖ = ‖ŵ‖+
cn∑
i=1

λi (10)

Suppose the relative frequency of character xi in the normal traffic and the substituted

attack body is f(xi) and f̂(xi), respectively. Since the final desired frequency of xi

is f(xi), the number of occurrences of xi in the blending packet should be ‖ẃ‖f(xi).

53

Thus, λi can be defined using the following equation:

λi = ‖ẃ‖f(xi)− ‖ŵ‖f̂(xi), 1 ≤ i ≤ cn (11)

Equation 11 can be re-written as,

‖ẃ‖ =
λi + ‖ŵ‖f̂(xi)

f(xi)
, 1 ≤ i ≤ cn (12)

Since f(x) and f̂(x) are relative frequency distributions,
∑

i f(xi) =
∑

i f̂(xi)= 1.

Unless they are identical, there exists some character xi for which f̂(xi) > f(xi). The

character xi is perhaps “overused” in the substituted attack body. It is trivial to see

that we need to pad all the characters except the one that is most overused. Let xk

be the character that has highest overuse and δ be the degree of overuse. That is,

δ = δk = maxi{δi}, where δi =
f̂(xi)

f(xi)
, 1 ≤ i ≤ cn (13)

Since no padding is required for character xk, λk = 0. Putting this value in Equation

(12) we get:

‖ẃ‖ =
0 + ‖ŵ‖f̂(xk)

f(xk)
= δ‖ŵ‖ (14)

The amount of padding required for each character xi can be calculated by substitut-

ing the value of ‖ẃ‖ in Equation (11):

λi = ‖ŵ‖(δf(xi)− f̂(xi)) (15)

Thus, using the padding defined by the above equation, we can match the final attack

packet perfectly to the normal frequency f(x). Furthermore, the amount of padding

required by the above equation is the minimum amount that is needed to match the

normal profile exactly. Please refer to Appendix B.1 for the proof.

4.2.3.2 Substitution

The analysis in Section 4.2.3.1 shows that the amount of padding can be minimized

by minimizing δ, which is max(f̂(xi)
f(xi)

). This in turn means that the objective of the

54

substitution process is to minimize the resulting δ. There are two possible cases for

substitution. The first is when the number of distinct characters present in the attack

body (cm) is less than or equal to the number of distinct characters present in the

normal traffic (cn), i.e. cm ≤ cn. In this case we can perform single-byte encoding,

either one-to-one or one-to-many. If cm > cn, we need to use multi-byte encoding.

4.2.3.2.1 Case: cm ≤ cn We suggest a greedy algorithm to generate a one-to-

many mapping from the attack characters to the normal characters that provides an

acceptable solution and is computationally efficient. Our algorithm tries to minimize

the ratio δ locally for each substitution assignment.

Let xi represents a normal character and yj represent an attack character. Let

f(xi) be the frequency of character xi in normal traffic and g(yj) be the frequency of

character yj in the attack body. Let S(yj) be the set of normal characters to which

yj is mapped. Let t̂f(yj) = Σxi∈S(yj)f(xi). The probability that yj is substituted by

xi, xi ∈ S(yj), during substitution is f(xi)

t̂f(yj)
. Thus, the number of occurrences of xi

in the substituted attack body is
f(xi)×g(yj)

t̂f(yj)
. We then have δi =

(f(xi)×g(yj)/t̂f(yj))

f(xi)
=

g(yj)

t̂f(yj)
. Our greedy algorithm tries to minimize this ratio δi locally. The substitution

algorithm is as follows.

Sort the normal character frequency f(x) and the attack character frequency g(y)

in descending order. For the first cm characters, map yi to xi and set S(yi) = {xi}

and t̂f(yi) = f(xi),∀1 ≤ i ≤ cm. For the (cm + 1)th normal character, xcm+1, find

an attack character (yj) with maximum ratio of
g(yj)

t̂f(yj)
. Assign xcm+1 to yj and set

S(yj) = {xcm+1} ∪ S(yj) and t̂f(yj) = t̂f(yj) + f(xcm+1). This is performed for each

of the remaining characters until we reach the end of the frequency list f(x). While

substituting alphabet yj in the attack body, we choose a character xi from the set

S(yj) with probability f(xi)

t̂f(yj)
.

Consider an example where f(a, b, c) = {0.3, 0.4, 0.3}, attack body w = qpqppqpq,

55

and g(p, q) = {0.5, 0.5}. According to the above algorithm, initially, b and a are

assigned to p and q respectively. At this point, ratio g(p)
ˆtf(p)

= 1.25 and g(q)
ˆtf(q)

= 1.66. So

we assign c to q. Thus, p will be substituted by b and q will be substituted by a with

probability 0.5 and by c with probability 0.5. Thus, the attack after substitution can

be ŵ = cbabbcba.

In our experiments, we used a simple one-to-one mapping where characters with

the highest frequencies in the attack packet are mapped to characters with the highest

frequencies in normal traffic. This simple mapping is shown to be sufficient for the

blending purpose.

4.2.3.2.2 Case: cm > cn We suggest a heuristic based on Huffman encoding

scheme to obtain a small attack size after encoding. Given the frequency distribution

of the characters in the attack body being encoded, Huffman encoding provides a

minimum length packet after encoding. The weights of the nodes in Huffman tree

is the sum of the relative frequencies of all its descendant leaf nodes. The weight of

a leaf node is the frequency of a given character in the attack body. Every edge in

the tree is assigned to a character from the normal profile. In the original Huffman

coding the edges of the Huffman tree are labeled randomly. Random labeling of the

edges may give us a very large value of δ. We developed a heuristic to assign labels to

edges of Huffman tree to find a mapping that gives us a very small δ. Before stating

the heuristic, we present the problem of optimally assigning the labels to the edges

in Huffman tree:

Given a Huffman tree, assign labels l(v) ∈ N to the vertices v in the tree, such

that after substitution, δ = max(f̂(x)
f(x)

),∀x ∈ N , is minimum. The constraint on the

label l(v) is that if parent(v1) = parent(v2), then l(v1) 6= l(v2).

We propose a greedy algorithm to find an approximate solution for the above

problem. First sort the vertices in descending order of their weight and initialize the

56

capacity of each character cap(xi) = f(xi),∀xi ∈ N . Then starting from the leftmost

unlabeled vertex vj, find a character xi with the maximum cap(xi) and that is not

assigned to any of the direct siblings of vj. Assign xi to vj and reduce the capacity of

xi by the weight of the vertex. Repeat until all the vertices are assigned. The labels

generated by the above algorithm are used for the substitution process. An example

is explained in Figure 15.

b

p q

1

r s

0.4 0.6

ab

0.15 0.25 0.25 0.35

baa

Figure 15: 1-gram multibyte encoding. The frequency of the normal character is
f(a, b) = {0.5, 0.5}. Sorted weights of the nodes are {0.6, 0.4, 0.35, 0.25, 0.25, 0.15}.
Using the proposed algorithm we get S : {p, q, r, s} 7→ {ba, bb, aa, ab}

d

a

b

c

Figure 16: 2-gram multibyte encoding. e0 = da, e1 = bc. w = 01101010. ŵ =
bdabcbcbdabcbdabcbda

4.2.4 Evading 2-gram

The 1-gram PAYL model assumes that the bytes occurring in the stream are indepen-

dent. It does not try to capture any information of byte sequencing of the normal

traffic. The 2-gram model on the other hand can capture some byte sequencing infor-

mation. It records the frequencies of all the 2-grams present in the normal traffic. It is

57

easy to see that by matching 2-grams we are inherently performing 1-gram matching

as well.

For 2-gram, the polymorphic blending process needs to match the frequencies of

not only all the characters but also all the tuples. Similar to 1-gram substitution,

one can either use single-byte encoding or multi-byte encoding for substitution. For

single-byte encoding, the goal is to find a one-to-one or one-to-many mapping that

ensures that all the tuples in the substituted attack body are also present in normal

profile. In Appendix B.2, we show that this is NP-complete for the general case

by reducing the well known sub-graph isomorphism problem [12] to the mapping

problem. Unlike single-byte encoding, it is possible for an attacker to find a multi-

byte encoding scheme that produces only valid 2-grams. Here, we present a viable

multi-byte encoding scheme.

4.2.4.1 Multi-byte Encoding

A 2-gram normal profile can be viewed as a Moore machine (FSM) which has a state

for each character in N . Every state is a start state and end state. A transition from

state v1 to state v2 exists if and only if 2-gram v1v2 exists in normal profile. This

FSM represents the language accepted by the IDS with given 2-gram profile. Strings

generated by the FSM contain only normal 2-grams. Characters in an attack body

can be mapped to paths in this FSM. For example, suppose the state machine has two

cycles reachable from each other. e1 and e2 be two edges such that e1 is present only

in the first cycle and e2 is present only in the second cycle. Given a bit representation

of the attack body, we can encode 0 using e0 and 1 using e1. We can generate any

bit string represented using these two tuples interleaved by other non-informative

characters present in the cycles and in the paths between two cycles. Figure 16 shows

an example of such an encoding scheme. Such an encoded attack string will have a

very large size. We use it to show the existence of an encoding scheme that is able

58

to match the normal 2-grams. We can generate a more efficient encoding scheme by

using the entropy measure of transitions at each state. The complete details of such

an encoding scheme are not addressed in this paper. The authors suggest readers to

refer to coding theory for more on entropy based encoding.

4.2.4.2 Approximate Single-Byte Encoding

As discussed above, the problem of finding a single-byte substitution is hard for 2-

gram. On the other hand, multi-byte encoding may increase the size of the attack

packets considerably. We can use a simple approximation algorithm to find a good

one-to-one substitution. The algorithm performs single byte substitution in such a

way that tuples with high frequencies in the attack packet are greedily matched with

tuples with high frequencies in normal traffic.

The details of the algorithm are as follows. First, sort the normal tuple frequencies

f(xi,j) and the attack tuple frequencies g(yi,j) in descending order. Initially, all tuples

in the list f(xi,j) are marked unused and the substitution table is cleared. The

frequency list g(y) is traversed from the top. For every tuple yi,j in the sorted attack

tuple list, the list f(x) is traversed from the beginning to find an unmarked tuple

xi′,j′ so that substituting yi with xi′ and yj with xj′ does not violate any mappings

that were already made. The tuple xi′,j′ is marked and the substitution table is

updated. The above algorithm is fast and provides consistent reversible matching.

The algorithm does not guarantee to provide the best substitution, i.e., the closest

distance to the target frequency distribution.

4.2.4.3 Padding

We introduce an efficient padding algorithm that does not provide minimal padding

but tries to match the target distribution in a greedy manner. Let df (xi,j) be the

difference between the frequency of tuple xi,j in the normal profile and the substituted

attack body. Find a tuple xk,l from the list of normal tuples that starts with the last

59

padded character (xk) and that has the highest df (xk,m),∀1 ≤ m ≤ 256. The second

character of the tuple, xl, is padded to the end of the packet and df (xk,l) is reduced.

This step is repeated until the blending attack size reaches a desired length.

4.2.5 Complexity of Blending Attacks

We now summarize the methods provided above and analyze the hardness of a poly-

morphic blending attack while keeping the design goals (Section 4.1.2.2) in mind. For

1-gram blending, although finding a substitution that minimizes the padding seems

to be a hard-problem and may take exponential time, we have proposed greedy algo-

rithms that find a good substitution that require small amount of padding to perfectly

match the normal byte frequency. For 2-gram blending, finding a single-byte substi-

tution that ensures only normal tuples after substitution is shown to be NP-hard (see

the proof in Appendix B.2). An approximation algorithm can be used to efficiently

compute a substitution that may introduce a few invalid tuples. A multibyte encoding

scheme can achieve a very good match with no invalid tuples at the expense of very

large attack sizes. An attacker has to therefore consider several trade-offs between the

degree of matching, attack size, and time complexity to mount successful blending

attacks.

4.2.6 Experiments

In our evaluation, we first established a baseline performance by sending polymorphic

instances (generated using the CLET polymorphic engine) of the attack to PAYL and

verified that all of the instances were detected by the IDS as anomalies. Then, without

changing the configuration of PAYL, we used our polymorphic blending techniques to

generate attack instances to see how well they can evade the IDS.

60

4.2.6.1 Experiment Setup

4.2.6.1.1 Attack Vector We chose an attack that targets a vulnerability in Win-

dows Media Services (MS03-022). The attack vector we selected exploits a problem

with the logging ISAPI extension that handles incoming client requests. It is based

on the implementation by firew0rker [18]. The size of the attack vector is 99 bytes

and is required to be present at the start of the HTTP request. The attack needs to

send approximately 10KB of data to cause the buffer overflow and compromise the

system. Our attack body opens a TCP client socket to an IP address and sends system

registry files. The size of the unencrypted attack body is 558 bytes and contains 109

different characters. During the blending process, we divided our attack into several

packets. If our final blending attack after padding does not add up to 10KB, we just

send some normal packets as a part of the attack to cause the buffer overflow. The

decryptor was divided into multiple sections and distributed among different packets.

The attack body was divided among all the attack packets.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200 1400 1600

F
re

q
u

e
n

c
y
 o

f
p

a
c
k
e

ts

Packet length

IDS Data
Attack Data

Figure 17: Packet length distribution

4.2.6.1.2 Dataset We collected around 7 days of HTTP traffic (4.7M packets) com-

ing to our department’s network in November 2004. We used several IDSs, including

61

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
u

m
b

e
r

o
f

u
n

iq
u

e
 g

ra
m

s

Number of packets (in thousands)

1-gram
2-gram

Figure 18: Observed unique 1-grams and 2-grams

Table 4: HTTP Traffic dataset

Data Type Feature
Packet length

418 730 1460

IDS Training
Num. of Pkts 16,490 540 1,781
One Grams 106 90 128
Two Grams 4,325 3,791 3,903

Attack Training
Num. of Pkts 2,168 82 249
One Grams 89 86 86
Two Grams 2,847 2,012 2,196

Snort, to verify that this data contains no known attack. We removed all the packets

with no TCP payload. We used around 4.3M packets (1.9GB) for IDS training to

obtain the IDS normal profiles. A separate profile was created for each TCP payload

length (or simply packet length). The full payload section of each packet was used

to compute the profiles. The last day of the HTTP traffic was made available to the

attacker to learn the artificial profile. We also used cross-validation, i.e., randomly

picking one of the 7 days for attack training and the rest for IDS training, to verify

the results of our experiments.

The packet length distributions in the IDS training dataset and the attack training

dataset are shown in Figure 17. Among this packet lengths, we chose three different

62

lengths to implement the blending attack, namely 418, 730 and 1460. These packets

lengths are large enough to accommodate the attack data into a small number of

packets. These lengths also occurred frequently in the training dataset. A separate

artificial profile was created for each packet length using the attack training data of

the same packet length. Thus, we generated three 1-gram models and three 2-gram

models for different packet lengths. Table 4 shows the details of the datasets used

for the evaluation. The numbers of unique 1-grams and 2-grams in the data are also

shown in the table.

4.2.7 Results

Training time of 1-gram and 2-gram PAYL: We performed experiments on the

training time required to learn the profiles used by PAYL. Figure 18 shows the numbers

of unique 1-grams and 2-grams observed in HTTP traffic stream. Since the numbers of

observed 1-gram and 2-gram continue to increase as new packets arrive in the stream,

the training of profiles for 1-gram and 2-gram takes a long time to converge. We

trained our IDS model using all of the available IDS training data.

Traditional polymorphic attacks: To the best of our knowledge, CLET [13]

is the only publicly available tool that implements evasion techniques against byte

frequency-based anomaly IDS. For this reason we used CLET as our baseline. As

mentioned in Section 2.2, given an attack CLET adds padding bytes in the payload

to make the byte frequency distribution of the attack close to the normal traffic.

However, CLET does not apply any byte substitution technique (see Section 4.2.3.2).

Further, CLET does not address the evasion of 2-gram PAYL explicitly. We also

generated polymorphic attacks using other well known tools (e.g., ADMutate [32]),

and verified that they are less effective than CLET in evading PAYL.

We generated multiple polymorphic instances of our attack body using CLET and

tested them against PAYL. Each attack instance contained one or more attack packets

63

of given length. Different amount of bytes were crammed (padded) to obtain the

desired attack size. Attack training data was used to generate spectral files used for

cramming by the CLET engine. A polymorphic attack instance will evade an IDS

model if and only if all the attack packets corresponding to the attack instance are

able to evade the IDS. Thus, the anomaly score of an attack instance was calculated

as the highest of all the anomaly scores (Equation 9) obtained by the attack packets

corresponding to the attack instance. Table 5 shows the anomaly threshold setting

of different PAYL models that result in the detection of all the attack instances. The

anomaly thresholds were calculated as the minimum anomaly score over all the attack

instances. Using the given thresholds, both 1-gram and 2-gram PAYL were successful

in detecting all the instances of the attack. Having established this “baseline” per-

formance, we would like to show that our blending attacks can evade PAYL even if a

lower threshold is used.

Table 5: IDS anomaly threshold setting that detects all the polymorphic attacks
sent by the CLET engine

Packet Length 1-gram 2-gram
418 872 1,399
730 652 1,313
1460 355 977

Table 6: Number of packets required for the convergence of attacker’s training
Packet Length 1-gram 2-gram

418 8 20
730 8 18
1460 14 40

4.2.7.1 Artificial Profile

We used a simple convergence technique, similar to PAYL, to stop the training of the

artificial profile. At every certain interval (convergence check interval) we check if the

Manhattan 1 distance between the artificial profiles at the last interval and the current

64

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45 50

A
n
o
m

a
ly

 S
c
o
re

Number of attack training packets

1460
730
418

(a) 1-gram

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

A
n
o
m

a
ly

 S
c
o
re

Number of attack training packets

1460
730
418

(b) 2-gram

Figure 19: Anomaly score of Artificial Profile

interval is smaller than a certain threshold (convergence threshold). It stops training if

the distance is smaller than the threshold. We set the convergence threshold (= 0.05)

to be the same as the original implementation of PAYL. The artificial profile does

not have to become very stable or match the normal profile perfectly because some

deviation from the normal profile can be tolerated. To reduce the training time we set

the convergence check interval to 2 packets. Thus, if we see two consecutive packets

of a given length that are close to the learned profile, we stop training. Table 6 shows

the number of packets required to converge the artificial profile of different packet

lengths. As expected, the artificial profile converges very fast. The 1-gram profile

converges faster than the 2-gram profile for the same packet length. We show that

a small number of packets are enough to create an effective polymorphic blending

attack. In practice, the attacker can use more learning data to create a better profile.

Figure 19 shows the anomaly score of the artificial normal profile, as calculated

by the IDS normal profile, versus the number of attack training packets used to

learn the artificial profile. As the number of attack training packets increases, the

anomaly score of artificial normal profile decreases, which means that the artificial

profile trained using more packets is a better estimation of the PAYL normal profile.

The score needs to be less than the anomaly threshold of PAYL for the blending attack

packets to have a realistic chance of evading PAYL. For all attack training sizes shown

65

in Figure 19, the score is well under the threshold (Table 5) used to configure PAYL

to detect all the traditional (without blending) polymorphic attack instances.

4.2.7.2 Blending Attacks for 1-gram and 2-gram PAYL

For each packet length, we generated both the 1-gram and 2-gram PAYL normal profiles

using the entire IDS training dataset (i.e., the first 14 days of HTTP traffic). For each

packet length, the 1-gram and 2-gram artificial normal models were learned using a

fraction of the attack training dataset. The learning stops at the point the models

converge, as shown in Table 6.

We used the one-to-one single-byte substitution technique discussed in Section

4.2.3.2.1 for constructing the blending attack against 1-gram PAYL, and the single

byte encoding scheme discussed in Section 4.2.4.2 for the blending attack against

2-gram PAYL. Two sets of blending experiments were performed. In the first set of

experiments, the substituted attack body was divided into multiple packets and each

packet was padded separately to match the normal profile. A single decoding table

is required to decode the whole attack flow. In the second set of experiments, the

attack body was first divided into a given number of packets. Each of the attack

body sections were substituted using one-to-one single byte substitution and then

padded to match the normal frequency. Individually substituting the attack body

for each packet allowed us to match the statistical profile of the substituted attack

body closer to the normal profile. But it requires a separate decoding table for

each packet, thus reducing the padding space considerably. For convenience, we call

the first set of experiments global substitution, and the second local substitution. If

m > n for any of the above experiments, we simply substituted the low frequency

attack characters using non-existing characters in the normal. This increased the

error in blending attack but reduced the complexity of the blending attack algorithm.

Figure 20 shows the comparison of the frequency distribution of different characters

66

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200 250

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Character

norm
attack

(a) Original attack packet

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200 250

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Character

norm
attack

(b) 1-gram Blending Packet for packet
length 1460

Figure 20: Comparison of frequency distribution of normal profile and attack packet

present in the HTTP traffic. The byte frequency distribution of the original attack

instance is very different from the normal profile because the normal data has mainly

printable ASCII characters whereas the attack payload has many characters that are

unprintable. Thus, this was easily detected by both 1-gram and 2-gram IDS models.

The attack was substituted and padded to obtain a single packet of length 1460. As

shown in Figure 20(b), the frequency distribution of attack payload after substitution

and padding becomes almost identical to the PAYL normal profile. This demonstrates

the effectiveness of our polymorphic blending techniques. We studied how dividing

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

ATT-1460
IDS-1460
ATT-730
IDS-730
ATT-418
IDS-418

(a) 1-gram

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

ATT-1460
IDS-1460
ATT-730
IDS-730
ATT-418
IDS-418

(b) 2-gram

Figure 21: Anomaly score of the blending attack packets (with local substitution)
for artificial profile and IDS profile

an attack instance into several packets and blending them separately help match

67

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

ATT-1460
IDS-1460
ATT-730
IDS-730
ATT-418
IDS-418

(a) 1-gram

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

ATT-1460
IDS-1460
ATT-730
IDS-730
ATT-418
IDS-418

(b) 2-gram

Figure 22: Anomaly score of the blending attack packets (with global substitution)
for artificial profile and IDS profile

the attack packets with the artificial profile and evade PAYL. The experiments were

performed with the number of attack packets ranging from 1 to 12. We checked the

anomaly score of each attack packet as calculated by both the artificial profile and the

IDS profile. Similar to the anomaly score of attack instances generated by CLET, the

anomaly score of a blending attack instance was calculated as the highest of all the

scores obtained by the attack packets corresponding to the blending attack instance.

Figure 21 and Figure 22 show the anomaly scores of blending attacks with local

substitution and global substitution, respectively. For each attack flow, we show the

score of the packet with the highest score. It is evident that if the attack is divided

into more packets, it matches the profile more closely. The reason is that if the

attack body is divided into multiple fragments, for each packet there is more padding

space available to match the profile. Also, local substitution works better than global

substitution scheme for all cases except for 2-gram blending for packet length 418.

Since our substitution table contains only normal 1-grams but may contain foreign

2-grams, a large substitution table may produce a large error for the 2-gram model.

Considering that small packets have small padding space to reduce the error caused

by the substitution table, having an individual substitution table in each packet can

cause large error.

68

Although the score of the blending attack as calculated by the IDS model is greater

than the score calculated by the artificial normal profile, it is still much lower than

the anomaly threshold set for the detection of traditional polymorphic attacks.

Thus, our experiment clearly shows that unlike traditional polymorphic attacks,

our blending attack is very effective in evading 1-gram and 2-gram PAYL for all the

packet lengths and number of attack packets.

Table 7: Anomaly thresholds for different false positive rates in IDS models. Brack-
eted entries are the the numbers of packets required to evade the IDS using the local
and global substitution scheme, respectively.

False Positive 418 730 1460

1-gram 2-gram 1-gram 2-gram 1-gram 2-gram

0.1 61.07 (17,-) 373.4 (-,12) 63.70 (5,7) 467.6 (5,5) 74.50 (3,3) 447.7 (2,2)

0.01 78.61 (12,15) 456.9 (22,8) 143.6 (2,3) 625.5 (3,3) 81.98 (3,3) 531.0 (2,2)

0.001 125.5 (5,7) 561.8 (7,6) 164.6 (2,3) 670.5 (3,3) 239.2 (1,1) 931.9 (1,1)

0.0001 166.8 (5,5) 582.6 (7,5) 244.5 (2,2) 805.0 (2,2) 243.4 (1,1) 935.0 (1,1)

4.2.7.3 Impact of IDS False Positive Rate

We also studied the effect of false positive rates on the detection of blending attacks.

Anomaly threshold for a given false positive rate (fp) is set such that only fp fraction

of normal data has anomaly score higher than the anomaly threshold. The anomaly

thresholds for different false positive rates are shown in Table 4.2.7.2. The number of

attack packets required to evade the IDS successfully for a given threshold is shown

in the parenthesis. As we increase the false positive rate, we need to divide the attack

into more packets to keep the score below the anomaly threshold. Thus, keeping a

high false positive rate may increase the size of the blending attack. From the table

we can infer that even if the IDS keeps its false positive rate high to detect more

attacks, blending attack can still easily evade it using an attack size as small as 3,650,

i.e. five packets of length 730.

69

Since 2-gram PAYL records some sequence information along with byte frequencies,

it seems to be a good representation of normal traffic. In our experiments we found

that 2-gram PAYL consistently produces higher anomaly score than 1-gram PAYL for

all attack packet lengths. But at the same time, the 2-gram IDS needs to set very

high anomaly thresholds to avoid high false positive rates. Thus, in practice, the

2-gram PAYL is actually only marginally more effective than the 1-gram version in

detecting attacks.

Blending attacks can be successfully launched on both 1-gram and 2-gram models.

Larger packet lengths are more suitable for blending attacks. With few exceptions,

the local substitution scheme works better than the global substitution scheme. The

2-gram model provides only marginal advantage over the 1-gram model in detecting

blending attacks but requires huge space to store the model. Thus, the 2-gram model

may not be a better choice over the 1-gram model.

4.3 A Formal Framework

In Section 4.1 & 4.2, we presented basic concepts behind polymorphic blending at-

tacks. The principal observation is that a network IDS, monitoring high-speed and

high-volume traffic, typically uses simple statistical features instead of complex struc-

tural or semantic information to model the normal traffic. An attacker can exploit

this simplicity or limitation to devise attacks capable of evading the IDS. However,

the blending techniques presented earlier are not general enough. They are based on

some heuristics which work well for PAYL but not necessarily other anomaly detection

systems. We would like to develop techniques which can be used to generate PBAs

for a wide range on anomaly IDSs.

In this section, we study the following problem: given an anomaly detection system

and an attack, can one automatically generate PBA instances? Our approach is

to develop a formal framework that starts with the models for IDSs and different

70

sections of a polymorphic attack. Based on these models, we can then reason about

the complexity of the problem of generating a PBA, and develop general algorithms

for solving the problem. We first discuss the class of IDS targeted by polymorphic

blending attacks present in this section. We also present models for different attack

sections. Then we discuss the structure of the polymorphic blending attack and

detailed steps used to generate polymorphic blending attack. Based on the models,

we reason the complexity of matching different attack sections with the normal model.

4.3.1 Modeling Anomaly Detection Systems

Earlier, we considered a class of anomaly detection systems that use only simple byte

statistics of the normal traffic. We would like to generalize the concept of polymorphic

blending attack to include a wide range of anomaly detection systems that use other

structural information of the normal traffic.

Since a polymorphic attack typically mutates only the packet payload, we limit

our scope to payload-based anomaly detection systems. These systems record the

statistics and structure of the bytes preset in the normal network traffic packets. Such

anomaly IDS proposed by researchers include PAYL [71], NETAD[35], LERAD [36],

service-specific IDS [30], and structure based detection of Web attacks by Kruegel

et al. [31]. We observe that these IDS can be represented as either Finite State

Automaton (FSA) or equivalently stochastic Finite State Automaton (sFSA). sFSA

is similar to FSA and has a probability assigned to all the transitions in the FSA.

4.3.1.1 PAYL

PAYL records the average frequency of different unique n-grams that appear in normal

traffic packets. An n-gram model can be described using an sFSA where each state

represents the unique (n − 1)-gram corresponding to the last (n − 1) bytes in the

packet. A transition from state A(a0a1 · · · an−2) to state A′(a1a2 · · · an−1) exists if

and only if n-gram (a0a1....an−2an−1) is present in the normal traffic. The probability

71

of a transition is equal to the probability of the corresponding n-gram in the normal

traffic. Every state is a start state and every state is an accept/end state. For example,

1-gram model can be represented using a single state sFSA: for every unique byte in

the normal traffic, there exists a transition from the state to itself; and the probability

of the transition is the same as the frequency of the byte in normal traffic.

4.3.1.2 Anagram

Anagram [70] is an another payload based network anomaly detector based on n-gram

matching. Anagram records all the n-grams which are commonly present in normal

traffic. However unlike PAYL, Anagram does not record the frequency of n-gram.

Also, Anagram uses higher value of n (4 ≤ n ≤ 7) than PAYL (n = 1or2). An FSA

can be used to represent all the n-grams stored by Anagram. Each state represents

the unique (n−1)-gram present in the packet. A transition from state A(a0a1 · · · an−2)

to state A′(a1a2 · · · an−1) exists if and only if n-gram (a0a1....an−2an−1)is present in

the Anagram model.

4.3.1.3 NETAD and LERAD

Mahoney et al. presented a series of anomaly IDSs that use some network level data

along with some payload data to detect intrusions. These systems use attributes

such as bytes or words present at specific positions in the payload. An applica-

tion layer LERAD rule is of the form (if, word1 = x1, · · · , wordm−1 = xm−1 then

wordm ∈ {x1,m, · · · , xn,m}). Such a rule can be seen as regular grammar of the form

(x1{spaces}x2 · · ·xm−1{spaces}{x1,m| · · · |xn,m}). Multiple rules can be combined us-

ing the ‘&’ term to obtain a single regular grammar.

4.3.1.4 Structure-Based Systems

Kruegel et al. presented an IDS for Web services. A Web traffic packet is divided into

attributes and different attributes are recorded using different byte characteristics,

72

including: attribute length, byte frequency, byte structure using sFSA, and token

set. As in PAYL, byte frequency can be represented using a sFSA with one state.

Token set (T = {t1, · · · , tn}) can be seen as a regular grammar of the form (t1| · · · |tn).

Models of the different attributes can be combined to form a single sFSA. The length

constraint on an attribute is handled separately during the blending attack generation.

In summary, the above anomaly detection systems can be represented using a

(s)FSA. For convenience, the (s)FSA corresponding to an IDS is called (s)FSAids.

4.3.1.5 Distance Calculation

Along with an (s)FSA model, an anomaly detection system uses a classifier to deter-

mine if an observed packet matches the (s)FSA or not. First the IDS finds a path

taken by the monitored packet in the normal (s)FSA. For an FSA IDS, we calculate

the number of times each error transition is covered by the monitored packet. For

an sFSA IDS, we calculate the frequency with which each transition is taken in the

sFSA. The frequency of each transition in the path is then used as a feature by the

classifier to determine the distance between the monitored packet and the normal

profile.

This distance metric should be small for packets that are accepted by the FSA

with few errors and vice versa. In case of sFSA, the distance should be small if for all

the transitions, the number of times the transition is taken in the monitored packet is

proportional to the transition probability. If the distance is smaller than a threshold,

the packet is considered normal. Otherwise, the packet is considered anomalous.

The IDSs discussed above use a simple distance metric for the classifier. For

an FSA IDS, the distance metric is defined using a weighted sum of all the error

transitions taken by the monitored data.

There are several distance metrics that are used for sFSA IDS. A typical IDS

distance metric considered in this framework is weighted L1 distance metric. The

73

distance between an sFSAids and a monitored packet is defined as in equation 16.

However, the results presented for the framework should be applicable to other dis-

tance metrics.

d =
∑

t

wt × |pt −
lt
l
|, (16)

where, pt is the probability of transition t, lt is the number of times transition t is

taken in the monitored packet and l is the length of the path taken by the monitored

packet.

4.3.1.6 An Example

We have shown that a wide range of intrusion detection systems that use byte statis-

tics and structure of a normal packet can be represented using either an FSA or an

sFSA. One main reason for using an FSA (or equivalently, regular expression) is that

determining whether a string is generated by an FSA is very fast, and thus the IDS

can be used to monitor high speed networks.

In this work, we assume that the attacker is trying to evade an IDS that can be

represented using either an FSA or sFSA. Figure 23 shows a simple example of a

sFSA IDS. The IDS accepts strings containing only following tuples: ab, ba, and bb.

We use this simple IDS as a running example throughout this section.

The distance of a string from FSA is defined by Equation 17.

dist =
∑

c1,c2∈{a,b}

|nc1c2

l − 1
− pc1c2| (17)

where nc1c2 denotes the number of times transition c1 to c2 is taken by the input

string, l is the length of the string, and pc1c2 is the probability of transition c1 to c2

in the sFSA.

4.3.2 Polymorphic Attacks Section Models

Now we model different attack sections of a polymorphic attack: Attack Vector;

Polymorphic Decryptor; Encrypted Attack Code; Key; and Padding.

74

b,0.2

b,0.4

a, 0.4

Figure 23: Simple sFSA IDS containing 3 tuples

aaba

AV

cbb

Dec

k1k2

Key

00h 01h 00h 00h

Attack Code

aaba

AV

cbb

Dec

k1k2

Key

00h⊕ k1 01h⊕ k2 00h⊕ k1 00h⊕ k2

Encrypted Attack Code

Figure 24: Simple attack example. Attack code is 4 byte string with NUL and SOH

ASCII characters.

4.3.2.1 Attack Vector

Multiple techniques exist to mutate an attack vector. These mutation techniques

modify the network protocol data along with the application layer data, while en-

suring that the modified attack instance will still compromise the system. Some of

the common techniques are multiple protocol rounds, divergence from protocol spec-

ification, SSL null record insertion, TCP fragmentation, HTTP padding, and shellcode

polymorphism.

Regular grammars or a state-based machines have been commonly used by the

developers of misuse detection systems to write attack signatures. Several of these

signatures are used to detect malicious payload. These signatures primarily represent

parts of attack vectors. Snort uses a regular expression to define an attack. NETSTAT

uses a state machine to represent attack events. Several other misuse IDSs uses an

equivalent of regular expression for attack specification.

Recently, Shai et al proposed a grammar based approach (GARD) to represent all

the possible mutations of an attack. The attack was divided into three phase: attack

pre-condition, attack execution, and attack confirmation. Each of these phases were

75

represented using a state automaton. Also, in their previous work (AGENT) Shai et

al modeled attacks using a regular grammar generated using a set of inference rules.

In this framework, we consider attack vectors that can be represented using an

FSA. For convenience, the FSA corresponding to an attack vector is called FSAav.

4.3.2.2 Polymorphic Decryptor

Some of the shell-code obfuscation techniques used by attackers to generate polymor-

phic decryptors are:

• Garbage insertion: Operations which does not have any effect on the seman-

tics of the decryptor. For example, modifying unused registers and memory

locations.

• Instruction reordering: Re-ordering instructions that do not depend on each

other.

• Equivalent code substitution: Substituting an instruction or a set of instructions

with another set of instructions with same functionality.

• Register shuffling: Using a different register to store a given variable.

Most of the shell code obfuscation techniques are context-aware operations and

thus the set of all obfuscated code cannot be represented sufficiently using context-

free languages. Thus, we need a context-sensitive language to represent polymorphic

decryptor code.

4.3.2.3 Attack Code

Similar to polymorphic decryptor, attack code can also be mutated using different

shell-code obfuscation techniques presented in Section 4.3.2.2. Thus, the language

representing attack code also needs to be context sensitive.

76

DecryptorAttack Vector Encrypted Attack Code PaddingKey

Figure 25: Position of different attack section in attack.

4.3.2.4 Key

Attacker can theoretically encrypt an attack code using any encryption key without

affecting the working of the attack. Thus, the language representing a key is simply

all the possible strings of length k, where k is the length of the key. In other words,

key is Σk, where Σ is the set of all characters.

4.3.2.5 Padding

Similar to key, an attacker can pad an attack packet with any random data. There-

fore, the language representing the padding is Sigmalp , where lp is the length of the

padding.

4.3.3 Polymorphic Blending Attack

As discussed earliler, a polymorphic blending attack contains up to five sections. An

attack vector is required to be present in all the attacks. An attack code is required if

adversary wants to execute an arbitrary code at victim. A polymorphic decryptor and

a decryption table need to be present if adversary decides to encrypt the shell-code.

Padding is optional and may help adversary in closely matching the normal profile.

The positioning of each attack section in an attack may depend on the semantics

of the attack, which is decided by the adversary when designing the attack. In this

discussion, we assume that all the five sections are present in the attack packet and

they are positioned as showed in Figure 25. However, the discussion on generating

polymorphic blending attack and its complexity should hold for other positioning

of the sections. The discussion also applies even if some of the attack sections are

missing.

77

4.3.3.1 Polymorphic Blending Attack Steps

Lets assume that an attacker has learned the (s)FSA corresponding to the (artificial)

normal profile of the targeted IDS. The next step is to design an attack packet that

can be accepted by the (s)FSA.

To generate a polymorphic blending attack, adversary needs to generate different

attack sections that matches the normal profile. First adversary decides the position-

ing of each attack section in the attack. Then each attack section is generated in a

separate step. Each section is matched to the normal profile in the same order as the

section is positioned in the attack. We use the positioning shown in Figure 25 for our

polymorphic blending attack.

First we generate a suitable attack vector. The choice of attack vector depends

on the vulnerability on the victim side. To stay undetected, attack vector should be

small and should also look like normal. For an FSA IDS, the attack vector should

traverse the FSA with minimal number of invalid transitions. For an sFSA IDS,

in addition being taking valid transitions, the attack vector should also match the

transition probabilities.

Then we adjust the (s)FSA for what have been already matched by the attack

vector. First, we identify the path taken by the attack vector in the (s)FSA. If

there does not exist such a complete path (e.g., some transitions are not in the

(s)FSA), there will be an error matching the attack vector with the normal profile.

The start state of the (s)FSA is set to the end state of the path traversed by the

attack vector. For an sFSA IDS, the transition probabilities of each transition is also

adjusted according to the number of times the transition was taken in the attack

vector.

The next step is to generate a polymorphic decryptor. Similar to the attack vector,

the polymorphic decryptor should also match the adjusted (s)FSA. After generating

the polymorphic decryptor, the start state of the (s)FSA is adjusted for the generated

78

decryptor. In case of an sFSA, the transition probabilities of the sFSA is also adjusted.

The next step is to generate an attack code. The choice of the attack code depends

on what adversary wants to do after she has compromised the system. After deciding

on the attack code, adversary needs to determine an encryption key to encrypt the

attack code. The requirement on the encryption key is that the encrypted attack

code and the decryption key should be accepted by the adjusted (s)FSA (i.e., there

exists a corresponding path). For a sFSA, an additional requirement is to also match

the transitions probabilities.

The final step is to pad the attack packet to get a desired packet length. For an

sFSA IDS, padding can be used to match the final attack packet even closer to the

normal profile.

We use a simple blending attack (shown in Figure 24) to demonstrate different

concepts presented in the paper. We use an XOR encryption scheme with key length

2 (obviously, the encryption key and the decryption key is the same in an XOR

scheme). The attack vector, decryptor, key, and attack code are concatenated in the

given order to produce an attack packet payload.

For convenience of discussion, we denote the string corresponding to the decryp-

tion key concatenated with the encrypted attack code as Skey ac.

4.4 Formal Analysis

In this section, we discuss the complexity of matching different attack sections with

the normal model. We also present algorithms that can used to match each attack

sections with the normal model.

4.4.1 Attack Vector

Our aim is to generate an attack vector that matches the normal profile. We consider

attack vectors that can be represented using an FSA. We show that for an FSA IDS,

it is easy to generate an attack vector of given length that is accept by the FSA with

79

minimum number of errors. But generating an attack vector with minimum distance

to the sFSA IDS is NP-complete problem.

4.4.1.1 FSA IDS

To find a matching attack vector, we need to find a string which is accepted by both

FSAav and FSAids. We find the intersection of FSAav and FSAids, which will also

be an FSA. If the intersection is not empty, adversary can obtain a desired attack

vector by generating a string that is accepted by the intersected FSA. In case the

intersection is empty, following algorithm can be used to find an attack vector string

that is accepted by the IDS with minimum errors.

First, we add all the error states and transitions in the IDS FSA. For all the valid

transitions, the cost of the transition is set to 0. For all the error transitions, the

cost of the transition is set to 1. We call this IDS with error transitions and cost,

augFSAids. Then we compute the intersection of FSAav and augFSAids. We the

intersection FSA, FSAav∩augids. To generate an attack vector of given length lav, we

need to find a minimum cost path of length lav from the start state q0 to an end

state in FSAav∩augids. This problem is very similar to shortest path problem and

can be solved using a polynomial-time algorithm. The algorithm is very similar to

Bellman-Ford algorithm which is used to solve single source shortest path problem.

We maintain two arrays, dq and pq of length lav at each state q of FSAav∩augids.

dq[i] at node q contains the minimum distance from q0 to q using path of length i.

pq[i] contains the previous node in that path. The algorithm contains of lav steps. In

the ith step, algorithm determines the min-cost path of length i from q0 to q, ∀q ∈ Q.

The min-cost path of length i is determined by relaxing every transition in FSAav∩augids.

An edge (q1, q2) is relaxed by testing whether the min-cost distance to state q2 can be

reduced by taking the ith transition of the path through q1. If the min-cost distance

is reduced, the dq2 [i] is updated as dq1 [i − 1] + cost(q1, q2). The pseudo-code of the

80

algorithm is given in Appendix B.5.

Once we find a min-cost path of length lav from start state to all the other states,

we choose the final state which has minimum cost path of length lav.

If an adversary wants to generate min-error attack vector, irrespective of the length

of the attack vector, we can use Bellman-Ford algorithm to find min-cost path from

q0 to all the final states. Again, we choose the final state which has minimum cost

path.

4.4.1.2 sFSA IDS

In the case of sFSA IDS, along with matching the transitions, the attack vector should

also match the transition probabilities. The distance between the sFSA and attack

vector is calculated using the distance metric in equation 16. We show that unlike

matching FSA IDS, matching attack vector to sFSA IDS is a hard problem. It is

impractical to try brute force by generating all the possible attack vectors and try

matching them to the sFSA. The brute force approach will take time exponential

to the number of nodes in the FSAav. We prove that generating attack vector that

matches the sFSA within a given error bound is NP-complete.

We formally define the problem of finding an attack vector that is accepted by

the sFSA IDS.

Definition 4.4.1 Given an attack vector FSAav and an IDS sFSAids, the problem

PBAsFSA
av is to find a string which is accepted by FSAav and also matches the tran-

sition probabilities of sFSAids within an error bound, ε.

Theorem 4.4.1 Problem PBAsFSA
av is NP-complete.

Proof For a problem to be NP-complete, the problem should be in NP and should

be NP-hard.

A problem is in NP if a given solution can be verified for its correctness in poly-

nomial time. Given an attack vector string, we can easily verify in polynomial time

81

whether or not the string is accepted by the FSAav. We can also verify if the distance

between the attack vector and the sFSAids is within the error bound. Thus, we can

efficiently verify if the string is a correct solution or not.

To prove that the problem is NP-hard, we reduce a well known NP-complete

problem, namely Hamiltonian cycle problem, to PBAsFSA
av . For a given directed

graph G(V, E), we create an FSAav and sFSAids such that solution of PBAsFSA
av is

equivalent to the Hamiltonian cycle in graph G(V, E).

Let Σ be the set of input characters which contains a character ci for each vertex

vi ∈ V . Suppose w is an arbitrarily big positive integer which is multiple order of

magnitudes greater than ‖V ‖‖E‖. The FSAav is the set of all the substrings of length

2‖V ‖, that is, FSAav = Σ2‖V ‖.

The sFSAids is constructed as follows. For each vertex vi ∈ V , we create two

states qi1 and qi2 . We introduce a transition from state qi1 to state qi2 on input ci

with transition probability of 1
2‖V ‖ and cost w. We denote this kind of transition

as Tv. Also, for each edge (vi, vj) in E, we introduce a transition of type Te from

state qi2 to state qj1 on input cj with transition probability 1
2‖E‖ and cost 1. States

qi1 , 1 ≤ i ≤ ‖V ‖ are both start state and final state. Figure 26 shows construction of

a sFSAids for a sample directed graph. The cost of taking a non-existing transition

in the graph is w. Please note that any path in above sFSAids which consists of only

valid transition will be of form TvTeTvTe · · ·TvTe and corresponding string will be of

form ci1ci2ci2ci3ci3 · · · cilcilcl+1.

Now, we prove that this transformation is indeed a reduction and graph G has

a Hamiltonian cycle if and only if there exists an attack vector which matches the

sFSAids with an error bound of ‖E‖−‖V ‖
‖E‖ .

Suppose, graph G has a Hamiltonian cycle v1v2 · · · v‖V ‖v1. Then we can con-

struct an attack vector c1c2c2c3c3 · · · c‖V ‖c‖V ‖c1. This attack vector takes only the

valid transitions in sFSAids. The transition probabilities are matched exactly for

82

w,c2w,c1

w,c3

w,c4

,c11

,c21

,c21

,c31
,c31

,c41

11

12

12

22 32

13

42

14

1

2

3

4

Figure 26: Construction of a sFSAids for a given Hamiltonian graph

all type Tv transitions. Thus error contributed by such transitions is zero. For all

type Te transitions (qi2 , qj1) traversed by the attack vector, the error contributed is

given in equation 18. There are ‖V ‖ such Te transitions covered by the attack vector.

Therefore, total error due to such transitions is ‖E‖−‖V ‖
2‖E‖ . For all the valid transitions

(qi2 , qj1) not traversed by the attack vector, the error contributed is given in equa-

tion 19. There are (‖E‖ − ‖V ‖) such Te transitions not covered by the attack vector

and the total error due to such transitions is ‖E‖−‖V ‖
2‖E‖ . Thus, the final error is ‖E‖−‖V ‖

‖E‖

which is precisely the bound.

errij = 1 ∗ (
1

2‖E‖
− 1

2‖V ‖
) =

‖E‖ − ‖V ‖
2‖E‖‖V ‖

(18)

errij =
1

2‖E‖
(19)

Conversely, suppose there exists an attack vector of length 2‖V ‖ with error below

‖E‖−‖V ‖
‖E‖ . Since this bound is smaller than w, attack vector takes only valid transitions

in the sFSAids and also takes all the transitions of type Tv exactly once. Thus, attack

vector is of form ci1ci2ci2ci3ci3 · · · ci‖V ‖ci‖V ‖ci1 . In this case, there exists an edge from

each vij to vij+1
, 1 ≤ j ≤ ‖V ‖. Thus, cycle vi1vi2vi3 · · · vi‖V ‖vi1 is a Hamiltonian cycle.

83

4.4.1.3 Approximate Solution

In section 4.4.1.2, we showed that the problem of finding an attack vector that matches

the sFSAids is NP-complete. That is, it may take time exponential to the desired

length of the attack vector. Although an attacker may not have any time restrictions,

a polynomial time solution is clearly more desirable. Rather than finding the optimal

solution which tries to match the attack vector as close as possible, an attacker may

simply apply some heuristics that produce an approximate solution using much less

resources (time and memory). We can also reduce the PBAsFSA
av problem to some

other domain which has good approximate solvers.

4.4.1.3.1 Greedy Heuristic Greedy algorithms are used widely for finding ap-

proximate solutions. The idea is to make a local optimal decision at each stage. Using

this we hope to get near the global optimal solution. The local decision for PBAsFSA
av

problem is made based on minimizing the current error. The greedy algorithm takes

lav stage and at each stage it generates a character in the attack vector.

We start at the start state of both FSAav and sFSAids. We consider all the

transitions from the start state in FSAav that can lead to a final state in total lav

steps. Out of all these transitions we choose one that minimizes the distance between

current generated attack vector string (which is simply the character corresponding

to that transition in FSAav) and sFSAids. Suppose after i − 1 steps, the algorithm

has already generated an attack vector string c1c2 · · · ci−1 and it is at state qi−1 in

FSAav. At ith step, we consider all the transitions from qi−1 that can lead to final

state in next lav − i steps. We choose the transition to state qi that produces ci such

that, c1c2 · · · ci−1ci is at the minimum distance to sFSAids.

84

4.4.1.3.2 Reduction A greedy heuristic may not give us a good approximate

solution in many cases because the problem does not exhibit a clear optimal sub-

structure. In such cases, we can reduce the PBAsFSA
av problem to Integer Linear

Programming (ILP) problem. ILP is known to be NP-complete, but there exist sev-

eral good heuristics to solve big ILP problems. An ILP problem tries to find the

minimum of a linear cost function over a set of variables. These variables are re-

stricted by a finite number of linear constraints. All the variables in the solution

should be integer.

First, we find an FSAav∩ids that is an intersection of FSAav and sFSAids. For

every state qi
av and qj

ids in FSAav and sFSAids respectively, we have a state qij

in FSAav∩ids. For every transition t(i1, i2)
av and t(j1, j2)

ids in FSAav and sFSAids

respectively, we have a transition t(iij1, i2j2) from state qi1j1 to state qi2j2 in FSAav∩ids.

Now the PBAsFSA
av problem is equivalent to finding a string that is accepted by

FSAav∩ids with minimum error as defined by equation 20.

d =
∑

t(j1,j2)∈sFSAids

wt(j1,j2) × |
∑

t(i1,i2)∈FSAav
lt(i1j1,i2j2))

lav

− pt(j1,j2)| (20)

Now we generate an ILP problem corresponding to a PBAsFSA
av problem. For each

transition t(iij1, i2j2) in the FSAav∩ids, we have a variable hiij1,i2j2 which represents

the number of times transition t(iij1, i2j2) is taken in the generated attack vector.

The length of the path can be represented using equation 21.

∑
transition t∈FSAav∩ids

ht = lav (21)

The necessary and sufficient condition for a valid path from start state to a final

state can be represented using the following three equations.

85

∑
t∈IN(q0)

ht + errq0 + 1 =
∑

t∈OUT (q0)

ht, (22)

∑
t∈IN(qf)

ht + errqf
=

∑
t∈OUT (qf)

ht + 1, (23)

∑
t∈IN(qij)

ht + errqij
=

∑
t∈OUT (qij)

ht, ∀qij ∈ FSAav∩ids, qij /∈ {q0, qf} (24)

where IN(v) and OUT (v) is the set of in and out transitions of vertex v, respectively.

q0 and qf is the start state and final state, respectively.

The minimization criteria for the ILP problem which minimizes the distance be-

tween normal profile and attack vector can be written as:

∑
t(j1,j2)∈sFSAids

wt(j1,j2) × |
∑

t(i1,i2)∈FSAav
ht(i1j1,i2j2)

lav

− pt(j1,j2)| (25)

Solving above ILP for the given minimization criteria provides the desired attack

vector with minimum distance to the sFSAids.

4.4.2 Polymorphic Decryptor

A set of all polymorphic code that can be used to decrypt a given encrypted attack

code can be represented satisfactorily using context sensitive language. Thus the

problem of generating a suitable decryptor that matches the normal profile can be

seen as a problem of finding an intersection of a context sensitive language and an

(s)FSA. Problem related to finding an intersection between a context sensitive lan-

guage and any other language in general is un-tractable. Thus, we cannot find an

appropriate decryptor automatically. In this work, we assume that the decryption

code is generated out of band. This decryption code should preferably be small and

should contain mainly ASCII characters. Adversary can generate the decryptor ei-

ther manually or using a polymorphic code engine. However, the adversary cannot

guarantee that generate decryptor matches optimally to the (s)FSA IDS.

86

4.4.3 Padding

As discussed in section 4.3.2.5, padding can be represented using Σlp , where lp is the

length of padding. Padding can be seen as a special case of attack vector where FSA

for padding accepts all the strings of a given length. All the results regarding gener-

ating an attack vector can be applied to padding. A suitable padding for FSA IDS

can be generated in polynomial time using the algorithm presented in section 4.4.1.1.

NP-completeness proof, shown in section 4.4.1.2, can be used to prove that finding

an optimal padding which matches a given sFSA IDS is NP-complete. Furthermore,

the greedy algorithm and ILP reduction shown in section 4.4.1.3 can be used to find

a suitable padding.

4.4.4 Encrypted Attack Code and Key

In section 4.2, we used a simple byte substitution scheme for encryption. During

encryption, every attack character in the attack body is substituted by a normal

character. To store the reverse substitution (or decoding) table of the simple byte

substitution scheme, we use the same technique as before: the index of the decod-

ing table determines the attack character, and the entry at an index is the normal

character used to substitute the corresponding attack character.

The encryption techniques studied in this section include both XOR encryption

scheme and the byte substitution scheme. It is important to consider XOR because

there are several existing polymorphism tools that use XOR based encryption. These

tools may be extended to generate PBA. Unlike substitution, the decryption key for

XOR is the same as the encryption key, and can be stored in a straight forward

manner.

Both substitution and XOR are very simple schemes and are used in more complex

encryption schemes. By studying PBA with these simple schemes, we hope to develop

a understanding as well as solutions applicable to more complex schemes.

87

We want to find an encryption key so that the attack packet sections of the

decryption key and the encrypted attack code, or Skey ac, can be accepted by the FSA

or the adjusted sFSA (for convenience, in this section we simply call the adjusted

sFSA a sFSA). We will show that this is a hard problem even when using very simple

encryption schemes, namely, substitution and XOR. As a corollary, the problem is

hard when using more complex encryption schemes. The most direct and important

corollary, however, is that the problem of generating a suitable encrypted attack code

is a hard problem.

A brute force approach to find the encryption key requires to generate every

possible key and check the distance (as defined by the IDS) of the Skey ac to the

(s)FSA. For a simple substitution-based (encryption) scheme, this will take at least

nPm(n−m)n−m iterations, where n is the number of unique normal characters and m

is the number of unique attack characters. For XOR encryption with key of length l,

finding an optimal polymorphic blending attack will take at least nl iterations. These

numbers can very large, and thus a brute force approach is often impractical.

In this section, we first analyze the hardness of finding an encryption key that

ensures Skey ac is a valid string accepted by the FSAids (without any transition prob-

abilities). We show that this problem is NP-complete. Thus, it may not be solvable

deterministically in polynomial time of the key length l or m. We show this result

for both byte substitution based encryption and XOR based encryption. This re-

sult can be extended to show that even if we allow solution to contain ε fraction of

invalid transitions, the problem is still NP-complete. We extend the above results

and argue that the problem of finding an encryption key that optimally matches the

Skey ac to sFSA or finding a solution within an ε range of the optimal solution is also

NP-complete.

88

4.4.4.1 Substitution Based Encryption Scheme

We formally define the problem of finding a substitution key that ensures Skey ac is

accepted by the FSA of an IDS.

Definition 4.4.2 Given an attack code and the FSA of an IDS, the problem PBAFSA
sub

is to find a one-to-one mapping from attack characters to normal characters so that

Skey ac is accepted by the given FSA.

Theorem 4.4.2 Problem PBAFSA
sub is NP-complete.

Proof For a problem to be NP-complete, the problem should be in NP and should

be NP-hard.

A problem is in NP if a given solution can be verified for its correctness in polyno-

mial time. Given an one-to-one mapping, we can easily generate the decryption key

(a table) and the encrypted attack code. Since FSA is a decidable language, we can

verify in polynomial time whether or not Skey ac string will be accepted by the FSA.

Thus, we can efficiently verify if the one-to-one mapping is correct or not.

To prove that the problem is NP-hard, we reduce the well known 3-SAT problem

to PBAFSA
sub . Consider a 3-SAT problem with q, q ≤ 128 variables and r clauses.

If q is smaller than 128, we add dummy unused variables to make total number of

variables 128. Suppose the 3-SAT problem is,

SAT = (x10 ∨ x11 ∨ x12) ∧ (x20 ∨ x21 ∨ x22) ∧ · · · ∧ (xr0 ∨ xr1 ∨ xr2),

where x10, x11, · · · , xr2 ∈ {x0, x0, x1, x1, · · ·x127, x127}.

Given the above 3-SAT, we design PBAFSA
sub problem as follows. For every variable

xi in the 3-SAT, we have an attack character atti, two normal characters normi and

normi+128, and a corresponding entry eatti in the decryption table. eatti ,∀128 ≤ i ≤

255, is a dummy decryption table entry. The value of the variable xi is related to eatti

89

FSA
α

Attack Substring

129 136

129

129

136

136

1

8

1

1

1

8

8

8

att attatt 8 1 3

131

131

3

131

131

3

3

Figure 27: FSAα and attack substring for clause x1 ∨ x3 ∨ x8. For convenience, we
represent normi by just i.

as follows.

xi = 1, if and only if eatti = normi and eatti+128
= normi+128, (26)

= 0, if and only if eatti = normi+128 and eatti+128
= normi (27)

Table 8: Truth table and corresponding key table for clause x1 ∨ x3 ∨ x8

x1 x3 x8 eatt1 eatt3 eatt8

0 0 0 norm129 norm131 norm136

0 0 1 norm129 norm131 norm8

0 1 1 norm129 norm3 norm8

1 0 0 norm1 norm131 norm136

1 0 1 norm1 norm131 norm8

1 1 0 norm1 norm3 norm136

1 1 1 norm1 norm3 norm8

For every clause clauseα, 1 ≤ α ≤ r in the 3-SAT, we construct a section of FSA

(FSAα) as shown in Figure 27. First, we construct the truth table of the clause

(see Table 8). For each entry in the truth table, we have a path containing three

transitions where each transition corresponds to the value of a variable in the truth

table entry. In addition to FSAα, 1 ≤ α ≤ r, we have a section of FSA (FSAKT) of

length 256 corresponding to the key.

90

FSA FSA FSA FSA r1 2KT

(Enc. Key) (Attack Substring 1) (Attack Substring 2) (Attack Substring r)

KEY + ATTACK CODE

Figure 28: FSA and Skey ac corresponding to the SAT problem

Also, for every variable xi or xi in a clauseα, we have an attack character atti

in the attack code. Thus for every clause clauseα, we have a substring (strα) of

length 3 in the attack code. Figure 27 shows an example attack code substring for a

hypothetical clause. The encoded attack substring will be eatt1eatt3eatt8 .

In Figure 27, we can observe that the encrypted strα is accepted by the FSAα

if and only if the encoding of attack characters are chosen from one of the entries

in the given encoding table shown in Table 8. Since every entry in the encoding

table corresponds to an entry in the truth table of the clauseα, the encrypted strα is

accepted by the FSAα if and only if clauseα is true.

The final FSA, FSASAT , and the attack code corresponding to the 3-SAT problem

are shown in Figure 28. The construction of the above FSASAT takes polynomial

time. Please note that there exists a solution to the given PBAFSA
sub problem if and

only if the encrypted strα is accepted by FSAα for all 1 ≤ α ≤ r.

If the above PBAFSA
sub problem has a solution mapping eatti , 0 ≤ i ≤ m− 1, then

one can find assignments for variables xi, 0 ≤ i ≤ 127 using Equation 27. Since

Skey ac is accepted by FSASAT for mapping eatti , 0 ≤ i ≤ m − 1, the encrypted strα

is accepted by FSAα for all 1 ≤ α ≤ r. However, the encrypted strα is accepted by

FSAα only if clauseα is true. Thus, all clauses of the 3-SAT problem is true and the

3-SAT is satisfied.

91

Also, if there exists an assignment of variables xi such that the 3-SAT problem

is satisfied, then we can compute eatti using Equation 27. Since 3-SAT is satisfied,

all clauseα, 1 ≤ α ≤ r, are true. But clauseα is true only if the encrypted strα is

accepted by FSAα. Thus, all encrypted strα, 1 ≤ α ≤ r, are accepted by FSAα, and

Skey ac is accepted by FSASAT .

From above, we can conclude that PBAFSA
sub is at least as hard as 3-SAT. Since

3-SAT is NP-hard, PBAFSA
sub is also NP-hard. Since PBAFSA

sub is also in NP, PBAFSA
sub

is an NP-complete problem.

4.4.4.2 XOR Encryption Scheme

We formally define the problem statement of finding a XOR encryption key that

ensures Skey ac is accepted by the FSA of an IDS.

Definition 4.4.3 Given an attack code and the FSA of an IDS, the problem PBAFSA
xor

is to find an encryption key, of length l, so that Skey ac is accepted by the given FSA.

Theorem 4.4.3 Problem PBAFSA
xor is NP-complete.

Proof The proof of NP-completeness of PBAFSA
xor is similar to the proof of PBAFSA

sub .

First we show that PBAFSA
xor is in NP. Given a solution encryption key (k0k2 · · · kl−1),

we can easily generate the encrypted attack code and hence the Skey ac. We can easily

verify in polynomial time if Skey ac is accepted by the FSA or not. Thus, the problem

is verifiable in polynomial time.

Now we show a reduction from 3-SAT to PBAFSA
xor . Consider a 3-SAT problem

with q, q ≤ 128 variables and r clauses. If q is smaller than 128, we add dummy

unused variables to make total number of variables 128. Suppose the 3-SAT problem

is,

SAT = (x10 ∨ x11 ∨ x12) ∧ (x20 ∨ x21 ∨ x22) ∧ · · · ∧ (xr0 ∨ xr1 ∨ xr2),

where x10, x11, · · · , xr2 ∈ {x0, x0, x1, x1, · · ·x127, x127}.

92

127/255

127/255

127/255

127/255

127/255

127/255

127/255

131

131

131

131

3

3

3

136

136

136

8

8

8

8

d d
3 1278

d

130

2

130

2

130

2

130

2

130

2

130

2

130

2

0/128

0/128

0/128

0/128

0/128

0/128

0/128

129

129

129

1

1

1

1

d d d
0 1 2

Figure 29: FSAα for clause x1 ∨ x3 ∨ x8

Given above 3-SAT, we design PBAFSA
xor problem as follows. For every variable

xi in 3-SAT, we have an attack character atti and two normal characters: normi and

normi+128. The value of the variable xi is related to XOR encryption key ki at ith

position is as follows.

xi = 1, if and only if ki = normi, (28)

= 0, if and only if ki = normi+128 (29)

Table 9: Truth table and corresponding key table for clause x1 ∨ x3 ∨ x8

x1 x3 x8 k1 k3 k8

0 0 0 norm129 norm131 norm136

0 0 1 norm129 norm131 norm8

0 1 1 norm129 norm3 norm8

1 0 0 norm1 norm131 norm136

1 0 1 norm1 norm131 norm8

1 1 0 norm1 norm3 norm136

1 1 1 norm1 norm3 norm8

For every clause clauseα in the 3-SAT, we have a FSA section, FSAα, which is

generated as follows (see Figure 29). First, we construct the truth table for clauseα

as shown in Table 9. For every entry in the truth table, we create a path of length 128

in FSAα. If a variable xi is present in the clause, its corresponding ith transition in

93

k
(l −1)

k
(l −1)

k
(l −1)

k
(l −1)

FSA FSA FSAKT 1 r

(00h 00h) (00h 00h)Key + Non−Encrypted Attack Code:

Key + Encrypted Attack Code:
0 1

(k k k)
0 1

(k k k)
0 1

(k k k)

0 1
(k k k)

Figure 30: FSA and Skey ac corresponding to the SAT problem

FSAα has transition for normi. Otherwise, if variable xi is present in the clause, its

corresponding ith transition in FSAα has transition for normi+128. If neither xi nor

xi, is present in the clause, then the corresponding transition in FSAα has transitions

for both normi and normi+128. In addition to FSAα, 1 ≤ α ≤ r, we have a section

of FSA, FSADT , of length 128 corresponding to the decryption key.

Also, for every clause, we have a attack code substring of length 128 consisting

only of byte 00h (the NUL ASCII character). Thus, the encrypted attack code for this

given clause is 00 · · · 0 ⊕ k0 · · · k127 = k0 · · · k127.

The encrypted strα is accepted by the FSAα if and only if partial keys are chosen

from one of the entries in the given key table in Table 9. Since every entry in the

key table corresponds to an entry in the truth table of clauseα, the encrypted strα is

accepted by the FSAα if and only if clauseα is true.

The final FSA, FSASAT , and attack code corresponding to the 3-SAT problem

are shown in Figure 30. It takes polynomial time to construct FSASAT . Please note

that there exists a solution to the given PBAFSA
xor problem if and only if the encrypted

strα is accepted by FSAα for all 1 ≤ α ≤ r.

If the above PBAFSA
xor problem has a solution encryption key key, then we can find

assignments for variables xi, 0 ≤ i ≤ 127 using Equation 29. Since Skey ac is accepted

94

by FSASAT for key key, the encrypted strα is accepted by FSAα for all 1 ≤ α ≤ r.

The encrypted strα is accepted by FSAα only if clauseα is true. Thus, all clauses are

true and we have a solution for the 3-SAT problem.

Also, if there exists a 3-SAT solution assignment of variables xi, then using Equa-

tion 27 we can compute the encryption key. All clauseα, 1 ≤ α ≤ r, of the 3-SAT

is true for the given variable assignment. Since clauseα is true only if the encrypted

strα is accepted by FSAα, all encrypted strα, 1 ≤ α ≤ r, are accepted by FSAα.

Thus, Skey ac is accepted by FSASAT .

Thus, PBAFSA
xor is as hard as 3-SAT. Since PBAFSA

xor is also in NP, PBAFSA
xor is an

NP-complete problem.

4.4.4.3 Corollaries

We have now proved that finding an encryption key that ensures Skey ac is accepted by

the FSA of an IDS is NP-complete. Suppose we allow the solution to have ε‖Skey ac‖

number of invalid transitions, the problem still remains NP-hard because of the fact

that (1− ε)-SAT (or ε-UNSAT, ε < 1) is an NP-hard problem.

Now consider the problem of finding an encryption key that optimally matches

the Skey ac to sFSA. This problem is considered harder than PBAFSA
sub/xor because in

addition to the requirement of using only valid transitions of the sFSA, we need

to match the probability of each transition in the sFSA. Thus, finding the suitable

encryption key for sFSA should be NP-hard. Following similar logic above, we can

also conclude that finding an encryption key which matches the Skey ac to sFSA within

ε bound of the optimal solution is also NP-hard.

Substitution and XOR are among the simplest encryption schemes. In fact, the

more complex encryption schemes such AES and DES [25] use substitution and XOR

as basic operations. Since we have shown that the problem is hard when the simpler

schemes are in use, we can conclude that the problem is still hard when using the

95

other more complex encryption schemes.

To conclude, we have shown that finding an encryption key that ensures Skey ac is

accepted by the (s)FSA of an IDS is a hard problem (NP-complete).

4.4.4.4 Approximate Solutions

The most direct and important corollary is that the problem of generating a polymor-

phic blending attack by encrypting attack code is hard. In Section 4.4.4.1 and 4.4.4.2,

we showed that the problem of finding an appropriate encryption key for a polymor-

phic blending attack is very hard. That is, it may take time exponential to the key

length or character size. Although an attacker may not have any time restrictions, a

polynomial time solution is clearly more desirable. There are good heuristic solvers

available for the SAT problems or Integer Linear Programming (ILP) problems. These

solvers provide approximate solutions in very reasonable amount of time. If we have

a non-stochastic, or FSA based, IDS, we can reduce the polymorphic blending attack

problem to a SAT problem. For a sFSA based IDS, we can map the problem to ILP.

Before we show the SAT or ILP reduction, we would reduce the problem of finding

an appropriate encryption key to the problem of finding a path from the start state

to accept states in a Directed Acyclic Graph (DAG). An edge in the DAG may have

constraints of the form ki = j, j ∈ U , where U is the set of all characters. The

chosen path should contain minimal number of conflicting constraints. In addition,

we may have some restrictions on the frequency of occurrences of edges corresponding

to the frequency matching requirement for sFSA. In the following sections, we use

the example shown in Figures 23 and 24 to illustrate the concept.

4.4.4.4.1 Construction of DAG Given a (s)FSA, a key length (lk), and an

attack code ac of length lac, we construct a DAG of depth lk + lac as follows. Suppose

s0 is the end state of the path in (s)FSA as traced by the attack vector and the

decryptor. v0 is the root vertex of the DAG corresponding to state s0. At every

96

depth d of the DAG, we have a set of vertices Vd = {vdi
} such that the state vi is

reachable from state s0 in exactly d transitions in (s)FSA. The accept vertices of

the DAG are the leaf vertices at depth lk + lac, which correspond to accept states in

the (s)FSA. There exists an edge edij
from vdi

to v(d+1)j
if and only if there exists a

transition tij from state vi to state vj in (s)FSA. The weight of the edge is proportional

to the probability of transition tij. The constraint constrdij
associated with an edge

edij
at depth d is shown below.

constrdij
= (kd == charij), if d < lk,

= (kac[d−lk] == charij), if d ≥ lk and substitution,

= (k(d mod lk) ⊕ ac[d− lk] == charij), if d ≥ lk and XOR

where charij is the normal character corresponding to transition tij and ac[i] is the

attack character at the i position of attack code. An example construction of DAG is

shown in Figure 31. The DAG corresponds to the example FSA and example attack

shown in Figure 23 and 24, respectively.

k = a

k = b

k = b

k = a

k = b

k = b
0

0

0
k = a

k = b

k = b
0

0

0
k = a

k = b

k = b

s
0

k = a

k = b

0

0

1

1

1

k = a

k = a

k = b

1

1

1

1

1

1

Figure 31: DAG corresponding to example FSA

x0a

0x b

1 x a

1bx

1bx 0x b 0x b

x0a x0a

0x b 0x b

1 x a

1 x a

1bx

1bx

1bx

1 x a

Figure 32: SAT representation of example DAG

97

The problem of finding an appropriate encryption key for a given attack code and

FSA is equivalent to finding a path from the root vertex to an accept vertex in the

DAG. Given a path Pdag in DAG consisting of edges with no (or minimal) conflicting

constraints, we can find the encryption key by setting the constraints of the edges on

the path to true. The path Pfsa followed by Skey ac in the (s)FSA is similar to the

path Pdag. If edij
is an edge at depth d in Pdag then transition tij is in Pfsa at depth

d.

4.4.4.4.2 Translation to SAT If the given IDS is an FSA with no probabilities

on transitions, the problem of finding a appropriate path in DAG can be translated

to SAT. First, we translate the DAG problem to CIRCUIT-SAT [12]. Then we can

efficiently translate CIRCUIT-SAT to SAT. For each constraint of the form ki = j in

the DAG, we have a variable xij that is true if and only if the constraint is satisfied,

and false otherwise. Now we can directly translate the DAG to CIRCUIT-SAT. A

vertex v with input degree degin in DAG has a corresponding OR gate (ORv) in

CIRCUIT-SAT with degin inputs. For every outgoing edge (with some constraint

ki = j) of a vertex v, we have a AND gate whose input is xij and ORv. The final

output is OR of all the accept states. Figure 32 shows the conversion of our example

DAG to CIRCUIT-SAT. We can then efficiently translate the CIRCUIT-SAT into a

SAT problem. In the given SAT problem, we need to add additional requirement

that a given key ki is assigned to only one normal character. This means if xij is

true then xij′ is false for all j′ 6= j. Also, for substitution based encryption scheme,

we need to add additional clauses in the SAT to ensure that a normal character is

assigned to a single attack character. These cardinality constraints can be efficiently

represented in SAT [53]. Furthermore, for a substitution scheme, there exists empty

entries in the decryption key table corresponding to the characters not present in the

attack code. These characters can be mapped to any unassigned normal character.

98

This requirement can be written as clause
∧

j∈N((
∨

i∈M xij) ∨ (
∨

i∈M xij)), where M

and N are the set of attack and normal characters, respectively. We can solve the

final SAT problem using one of the several available SAT solvers, which are capable

of solving huge SAT (or ε-UNSAT) problems in reasonable time.

4.4.4.4.3 Translation to ILP For a sFSA IDS, we propose to translate the

problem of finding a good path in a DAG into a Integer Linear Programming problem.

ILP is known to be NP-hard but there exist multiple good heuristics to solve big ILP

problems. An ILP tries to find the minimum of a linear function over a set of variables

defined by a finite number of linear constraints. All the variables in the solution should

be integer. An ILP is called 0-1 ILP if all the variables are required to be either 0

or 1. Now we will show the reduction of finding the optimal path in a DAG to ILP

problem.

For every edge edij
at level d in the DAG, we have a variable hedij

.

hedij
= 1 if edge edij

is in the solution path of DAG, (30)

= 0 otherwise (31)

For every constraint xi = j in the DAG, we have a variable constrij.

constrij = 1 if constraint xi = j is true in the solution of DAG, (32)

= 0 otherwise (33)

There is a valid path from start vertex to an accept vertex if and only if the number

of selected outgoing edges at start state is one, the number of selected incoming edges

is equal to the number of selected outgoing edges for all the intermediate vertices, and

the number of selected incoming edges is equal to one for one of the end vertices. An

edge is selected if it is in the solution path. These three conditions can be represent

in terms of linear equations as follows:

99

∑
e∈OUT (v0)

he + errv0 = 1 (34)

∑
e∈IN(Vaccept)

he + erraccept = 1 (35)

∑
e∈IN(vdi)

he + errdi =
∑

e∈OUT (vdi)

he,∀ vdi at depth d,∀1 ≤ d ≤ lk + lac − 1 (36)

where IN(v) and OUT (v) is the set of in and out edges of vertex v, respectively. vdi is

the ith vertex at depth d. The err terms account for invalid paths in the solution and

are 0 if the path conditions are satisfied. In case, the condition is not satisfied, errdi

can be either 1 or -1 depending on the difference of the number of selected incoming

and outgoing edges at given node.

At any depth d, 0 ≤ d ≤ lk + lac − 1, the number of edges from vertices at depth

d to vertices at depth d + 1 should be one. That is,

∑
e∈OUT (Vd)

he + errVd
= 1,∀0 ≤ d ≤ lk + lac − 1 (37)

where Vd is the set of vertices at depth d. Again, the errVd
term account for the

errors. errVd
can take values 0 or 1 depending on the number of outgoing edges at a

given depth.

If an edge in the DAG is chosen in the path, the corresponding constraint should be

satisfied. Suppose constre represents the constraint associated with edge e. Then the

requirement can be satisfied using following equation: constre ≥ he,∀ edge e ∈ DAG.

Further, we can ensure that a given key is assigned to only one character by using

following equation: ∑
j∈U

constrij = 1,∀0 ≤ i ≤ lk (38)

where U is the set of all possible characters and lk is the key length.

100

For one-to-one byte substitution scheme, a normal character should not be as-

signed to multiple attack characters. That is,

∑
i∈M

constrij ≤ 1,∀j ∈ N (39)

where M and N are the set of attack and normal characters, respectively. The fol-

lowing set of equations ensure that the characters not present in the attack character

set are mapped only to normal characters not assigned to attack characters.

NACj × ‖M‖ ≥
∑
i∈M

xij,∀j ∈ N, (40)

NACj +
∑
i∈M

xij ≤ 1,∀j ∈ N (41)

The first equation makes sure that NACj is 1 if any non-attack character is mapped

to a normal character j. The second equation ensures that if NACj is 1, then normal

character j is not assigned to any attack character, and, vice-versa.

The above set of equations guarantee that there exists a path from the start vertex

and the end vertex with some errors. Now we present the minimization criteria to

reduce the errors and the distance of Skey ac from the sFSA. Assume a distance metric

of the form:

dist =
∑

transition t∈sFSA

κt × |pt −
numt

lk + lac

| (42)

where κt is some constant associated with transition t, pt is the probability of the

transition to be taken in sFSA, and numt is the number of times the transition t is

taken by the Skey ac.

The minimization criteria for the ILP problem can be then written as:

∑
transition t ∈sFSA

constt × |pt −
∑

d hdt

lk + lac

|+ σ × (
∑

v∈Vdag

|errv|+
∑

d

errVd
) (43)

where Vdag is the set of vertices in the DAG and σ is the weight of the errors caused

by taking a invalid transition in the sFSA. Note that the |α−β| term in minimization

can be rewritten as absdiff where, α− β ≥ −absdiff and α− β ≤ absdiff .

101

Solving the above ILP for the given minimization criteria will provide the en-

cryption key. Using this we can generate the encrypted attack code and prepare the

polymorphic blending attack packet by concatenating attack vector, decryptor, de-

cryption key, and the encrypted attack code. We can then perform padding to match

the final attack packet even closer to the normal.

4.4.4.4.4 Heuristic Solutions Rather than finding the optimal solution, an at-

tacker may simply apply some heuristics that produce an approximate (or good

enough) solution using much less resources (time and memory). Here we present

a simple heuristic that finds a good approximate solution very efficiently.

The heuristic is based on the hill climbing search algorithm, which is used widely

in artificial intelligence and constraint solving. Hill climbing starts with an initial

solution and iteratively improves it. At each step, the algorithm looks at neighbor-

ing solutions and choose one that is better than current solution. The definition of

neighbors depends on the problem domain.

We now present our heuristic. Given an IDS and an attack instance, we choose a

random encryption key and calculate the distance between Skey ac and (s)FSA. Now,

we randomly choose a ki to modify in the key. For all the possible character (c) values,

we first temporarily assign ki = c. For a substitution scheme, if c is already assigned

to some attack character kj, we temporarily swap the normal characters assigned to

ki and kj. We then find the new distance to (s)FSA using the temporary key. We

choose the character that reduces the distance by the maximum value and assign it

to ki. At this point, a new key position (kj) is chosen to modify and the process is

repeated. This above process is iterated for the desired number of iterations or till a

satisfactory solution is produced.

It is possible in the above approach to reach a local maximum that is not very close

to the optimal solution. We reach a local maximum if modifying any key increases the

102

distance to (s)FSA. To overcome this problem, whenever we reach local maximum, we

choose a small set of key positions and set them to some random values, and restart

the above iterative process of finding solution. The idea is by randomly picking

another starting point in the solution space, the new solution point may belong to a

locale that has better local maximum.

The above heuristic can give us very good solution depending on the number of

iterations. The pseudo-code for the heuristic is shown in Appendix B.4

4.5 Experiments and Results

The motivation of our research was to address the open problem: given an anomaly

detection system and an attack, can one automatically generate the PBA instances?

Thus, in our experiments, we wanted to directly compare our formal framework with

the more ad-hoc approaches developed before. The key elements of our experiment

set-up were the same as in Section 4.2. We used the same anomaly detection sys-

tems, namely, PAYL 1-gram and 2-gram, as well as the same attack and same traffic

datasets, as in Section 4.2.6.1. The results showed that, although our framework

is based on an abstract model of IDS and uses general algorithms, it automatically

generated PBA instances that were more evasive (i.e. better matched the IDS normal

profiles) than or at least as good as the PBA instances from the more PAYL specific

algorithms in Section 4.2.

Briefly, the experimental dataset contains 7 days of Web traffic with 4.7 million

packets. 4.3 million packets were used for training the IDS profile. A part of the

remaining traffic was used to generate/train an artificial profile used by the attacker.

We generated PAYL 1-gram and 2-gram models (using the 14 days of traffic) for

three different packet lengths, namely, 418, 730, and 1460. The attack vector is based

on the implementation of firew0rker [18]. More information of the dataset can be

found in Section 4.2.6.

103

For all the experiments, we divided the attack flow into multiple packets. The

attack vector was placed at the start of the first packet. The decryptor was divided

into several sections and allotted to different attack packets. The attack body was

also divided into multiple chunks. The sFSA corresponding to the artificial profile was

adjusted for attack vector and polymorphic decryptor. A separate encryption key for

each attack body fragment was generated using our framework to match the adjusted

artificial profile. Each attack body fraction was encrypted using the corresponding

key and appended to the corresponding attack packet. Then each attack packet was

padded to the desired packet length. The final attack packets were then used together

to launch an attack.

4.5.1 PAYL 1-gram Evasion

We applied our framework to generate polymorphic blending attacks to evade 1-gram

PAYL, using substitution-based encryption and XOR encryption, respectively. For

the XOR scheme, we used a 64 byte key. For each encryption scheme, we translated

the problem of finding the optimal encryption key for 1-gram evasion to an ILP

problem. We used ILOG CPLEX to solve the ILP problems. CPLEX is a commercial

optimization tool for solving Mixed Integer Programs (MIP). We obtained a near-

optimal solution (i.e., encryption key) for the ILP problems. The attack code was

then encrypted using this key, and padding was performed. For comparison, we also

generated polymorphic blending attacks using the greedy one-to-one local substitution

scheme presented in Section 4.2.3.2.1.

It took 6.5 seconds on average to solve an ILP problem on a Pentium-M 2GHz

machine. The solution provided was within 0.2% of the optimal solution. Figure 33

shows the distance of the attack flow from the artificial profile and the IDS profile.

The results for both substitution and XOR encryption schemes, as well as the greedy

scheme from Section 4.2.3.2.1, are shown in the figure. The x-axis shows the number

104

of packets attack flow was divided into and the y-axis shows distance of the attack

flow from the artificial profile and IDS normal profile. This distance is the maximum

of the distances of individual attack packets in a flow. A horizontal line corresponding

to anomaly error threshold for the 1% IDS false positive is also shown.

 50

 100

 150

 200

 250

 300

 350

 400

 3 4 5 6 7 8 9 10 11 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

att-xor
ids-xor
att-sub
ids-sub
att-prev
ids-prev

(a) 418

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

att-xor
ids-xor
att-sub
ids-sub
att-prev
ids-prev

(b) 730

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

att-xor
ids-xor
att-sub
ids-sub
att-prev
ids-prev

(a) 1460

Figure 33: Anomaly score or error distance of 1-gram blending attack. The plots
with prefix att and ids corresponds to distance from the artificial profile and the IDS
profile, respectively. xor and sub corresponds to the PBA generated for XOR and
substitution based schemes using our framework. prev denotes the algorithm from
previous paper.

The error distance of attack generated for substitution based encryption using

ILP is almost identical to the greedy approach. Thus, the greedy 1-gram blending

approach also provides a near optimal substitution table.

The error distance for attacks generated using the XOR encryption scheme is

much higher. This is expected. For substitution, by replacing attack characters

with normal characters, we can ensure that only normal characters are present in

105

the mutated attack packet. For XOR, it is harder to find an appropriate key such

that it contains only normal characters and XORing it with attack characters also

results in only normal characters. For packet length 418 and 730, the error distance

of PBA generated using XOR based scheme is twice or more than the substitution-

based scheme. For packet length 1460, the error distance for XOR based scheme is

comparatively smaller. Also, the difference decreases as the number of attack packets

in the attack flow increases. The large amount of padding space available masks the

error produced by the attack code in XOR based scheme.

In the graphs, all the attack points below the horizontal error threshold line will

not be detected by the IDS with a 1% false positive rate. If the false positive rate is

decreased, typically the anomaly error threshold is increased. That is, the horizontal

line is moved up, and more attack points will be missed by the IDS.

For packet length 730 and 1460, we need only two packets to evade PAYL 1-gram

when using substitution. The IDS can be evaded using attack flow of size as low as

1460. For packet length 418, we need 8 packets to evade the IDS. The XOR based

scheme can also evade the IDS for packet lengths 730 and 1460, although with bigger

attack size. For packet length 418, XOR needs to divide attack packets into many

more number of packets in order to evade the IDS.

4.5.2 PAYL 2-gram Evasion

We also generated polymorphic blending attacks to evade PAYL 2-gram. We used

the heuristic presented in Section 4.4.4.4.4 to generate such attacks. We started

with a random solution and iterated the hill climbing steps 25000 times. The best

encryption key seen during the process was recorded. The attack code was then

encrypted using this key and the attack packet was padded to the desired length. The

distance of the attack flow from the normal profiles was recorded. For comparison, we

also generated the polymorphic blending attacks using the greedy 2-gram blending

106

algorithm presented in Section 4.2.4.2.

For substitution based encryption, it took 10min on average to perform 25000

iterations on a given problem. For XOR encryption, performing 25000 iterations took

little more than an hour on average. The time of each iteration is dependent on the

range of keys and the number of terms in the distance calculation. For substitution,

the range of keys is all the normal characters; whereas in XOR, the range of keys can

be set of all the possible characters. Also, since XOR is not able to match the normal

profiles closely, there several new 2-grams in the attack packet and thus the number

of terms in the distance calculation may become big. These two reasons attribute to

long running time for XOR.

The distances of the attack packets from the normal profiles are shown in Fig-

ure 34. The results for substitution-based encryption and XOR encryption, as well

as the greedy scheme are shown, along with a horizontal line corresponding to error

threshold of the 1% IDS false positive rate.

Using substitution, our heuristic-based approach is able to better match the nor-

mal profile than the previous greedy approach for most attack instances. For packet

length 418, when the number of attack packets is 8 or 9, the previous approach

matches the normal profile better than the heuristic from our framework. Checking

the distance of individual attack packets, we observed that for some packets, the

heuristic got stuck in a bad local maximum for considerable number of iterations.

Thus, the heuristic was not able to find a good solution in the given number of iter-

ations. In such cases, one can restart the heuristic using another random solution or

run the heuristic for more number of iterations.

Compared with PAYL 1-gram, we needed more number of attack packets to evade

PAYL 2-gram. The minimum attack size required to evade the PAYL 2-gram is 2190,

or 3 packets of length 730.

107

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 5 6 7 8 9 10 11 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

att-xor
ids-xor
att-sub
ids-sub
att-prev
ids-prev

(a) 418

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 6 8 10 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

att-xor
ids-xor
att-sub
ids-sub
att-prev
ids-prev

(b) 730

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12

A
n
o
m

a
ly

 S
c
o
re

Number of attack packets

att-xor
ids-xor
att-sub
ids-sub
att-prev
ids-prev

(a) 1460

Figure 34: Anomaly scores of 2-gram blending attacks.

4.6 Countermeasures

The experimental results reported above show that the statistical models used by

current network anomaly detection systems are not sufficiently accurate in detecting

deliberate evasion attempts. By following the ideas presented in this thesis, it may

be fairly easy to devise different blending algorithms in order to evade other network

anomaly IDSs that rely solely on packet statistics.

Given an IDS that is vulnerable to a polymorphic blending attack, we want to

identify the shortcomings of the IDS and improve the IDS so that these evasive attacks

are harder to generate. It is desirable to modify the IDS so that the IDS is resistant

to blending attacks generated using any attack vector, attack code, or decryptor. In

the following section, we present the drawbacks of current anomaly IDSs and steps

that can be taken to improve the robustness of an IDS.

108

4.6.1 Drawbacks of Current Anomaly IDSs

As discussed earlier, current anomaly IDSs can be modeled as an (s)FSA. An IDS also

uses a classifier to discriminate attacks from normal data. The input features used

by the classifier are the transition frequencies of each transition in the (s)FSA. The

existence of evasive attacks can be attributed to shortcomings in the FSA model or

features. These attacks may also be possible due to unsuitable classifiers or distance-

metrics used by the IDS. Some of the drawbacks of anomaly IDSs are:

• Imprecise (s)FSA model

• Non-discriminating and noisy features

• Distance-based classifier

• Deterministic algorithm

• Single feature set

4.6.1.1 Imprecise (s)FSA model

Anomaly detection systems presented in Section 4.3.1 use simple statistics or packet

structure to represent the normal traffic. Since any service provided over a network

follows certain application level protocols, a normal request to the service should fol-

low the given protocol syntax and semantics. These application syntax and semantics

related information cannot be modeled accurately using simple statistics of network

packets. Therefore, the simple statistics, and hence the (s)FSA, used by a payload

network anomaly IDS is an imprecise representation of normal traffic. It may be

possible to match the statistics using a polymorphic blending attack instance. Fig-

ure 35 shows a hypothetical scenario where the (s)FSA model is not precise enough to

detect polymorphic blending attacks. Attacks match the normal profile very closely

and overlap with normal data in the feature space. In the given scenario, the (s)FSA

109

model used by the IDS is not sufficient to detect PBAs. We need a new (s)FSA model

to detect PBAs.

b,0.2

b,0.4

a, 0.4

IDS sFSA:

Blended Attack: bababbabab

(a) FSA model view

o oo

ooo
o
o

o

ooo

o
o o

o o
o
o

o o
o

oooooo
o
o

oo
o o o o o

oo

oo

oxxx
x

x

x
x

x
x x x

o

x

x

x

x

x

(b) Feature space view

Figure 35: Example of an imprecise sFSA model. The circles represent normal
data points and the crosses represent attack data points. The rectangular box is the
complete feature space. The ellipse represents the normal boundary.

Instead of using simple statistics, an IDS should use normal protocol semantics.

By using more protocol semantics and syntactic information, the IDS can represent

the structure of normal traffic more precisely. It should be harder for an adversary to

compromise a system while following the normal protocol semantics. Some protocol-

based, or equivalently specification-based anomaly detection systems proposed in the

IDS research community are [65, 52]. Protocol-based anomaly detection systems

ensure that the monitored traffic follows certain protocol semantics. They also check

if some statistical patterns of these semantic information match the normal statistics.

The protocol-based anomaly detection systems are effective in detection of attacks

which misuse protocols.

However, modeling protocol syntax and semantic is computationally more expen-

sive than measuring simple traffic statistics. A typical protocol-based IDS requires

parsing the traffic, checking the syntax of the packets, maintaining a state to follow

the status of the flow, and matching the semantics. This process requires a lot of

memory and processing time. In addition, a protocol-based anomaly IDS needs to

know all the applications running in the network along with their detailed protocol

110

specification. This may be infeasible if the system provides multiple services, or if the

protocol semantics are frequently modified. Furthermore, the protocol semantic pat-

terns learnt from a given normal dataset do not generalize well for previously unseen

normal access to the service. Thus, such an IDS may produce a lot of false positives.

Therefore, the trade-off between detection accuracy, hardness of evasion, operational

speed, and the IDS management has to be considered.

4.6.1.2 Non-discriminating and noisy features

Not all the features in a given feature set are useful for detection purposes. A feature

may be non-discriminating; that is, the value of the feature is the same for both

the normal data and attack data. It may also be noisy with very high standard

deviation. These features can actually reduce the IDS accuracy. For example, in

case of n-gram PAYL, there can be some n-grams whose frequencies are inconsistent

throughout different normal packets and may force the IDS to have a higher error

threshold. Thus, a PBA that was above the error threshold and detectable by the

IDS otherwise, may not be detectable if we use these noisy n-grams. An IDS should

perform feature extraction and select a set of features that are useful in differentiating

attacks from the normal.

Principal Component Analysis (PCA) is commonly used for feature extraction.

PCA is useful only if data from both classes are present. Initially, the features are

de-correlated using Karhunen-Loeve Transform (KLT). PCA assumes that the dif-

ference between classes are contained in the high variance features. To improve the

performance of the classifier, only the features with high variance are chosen and low

variance features are removed.

The anomaly IDS is a one-class classifier and data from only normal class is

assumed to be available. Unlike a multi-class classifier, the feature extraction principle

used for PCA does not hold true and high variance features may not necessarily be

111

good in finding outliers. Tax and Muller [60] showed that for one-class classification,

features with low variance features are informative and are better for finding outliers.

To improve the IDS, we should choose low variance features. The less noisy features

set should be better in detecting polymorphic blending attacks.

4.6.1.3 Distance-based classifier

Once an IDS has determined the value of features (or state transition frequencies),

it uses a classifier to calculate its distance from the original set of normal features.

Most of the current proposed IDSs use a very simple distance-based classifier similar

to the Minkowski distance metric. These classifiers use a weighted sum of deviation

of features from the mean normal value of the feature. They also assume that the

features are independent. This assumption significantly reduces the complexity and

the overhead of the distance calculation. But due to their simple design and flawed

assumptions, these classifiers may not be well suited for anomaly detection.

Furthermore, the classifier performance depends on the characteristics of the data.

The distance-based classifiers used by anomaly IDSs work well if the normal data

follows Gaussian distribution and the attack data is linearly separable from the normal

data. It is possible for the normal data to follow different distributions which may

not be suitable for such distance-based classifiers. Thus, these classifiers may not

differentiate between the normal data and attacks satisfactorily.

Therefore, instead of using a simple distance-based classifier, an anomaly IDS

needs to use more powerful classifiers. Some of the powerful and complex classifiers

are decision trees, neural networks, bayesian networks, hidden markov models and

support vector machines. There is no single classifier that works best for all given

problems [49]. Thus, an IDS designer needs to determine the data characteristics

and use empirical tests to find the best classifier. Some of these classifiers are high

resource consuming and may not be suitable for real-time detection purposes. Again

112

we need to find a middle-ground between run time resource overheads and detection

accuracy.

4.6.1.4 Deterministic algorithm

Most of the current proposed anomaly IDSs use a deterministic algorithm or classifier

to detect attacks. We assume that the adversary knows the complete detection mech-

anism, including the learning algorithm, and the detection algorithm. In polymorphic

blending attacks, the adversary uses these information along with the blending algo-

rithms presented here to generate attacks that are able to evade the IDS.

A possible countermeasure is to introduce randomness in the IDS model. Consider

an IDS that uses multiple profiles, say X number of profiles, to represent the normal

traffic. These normal profiles are generated using different classifiers and different

sets of features, that are at least partially independent. Suppose the IDS also uses

an input parameter that is generated randomly. Based on the value of this random

parameter, the IDS may use different feature sets and classifiers to detect intrusions.

Since the adversary does not know the value of these parameters, the adversary has

two options while generating a polymorphic blending attack.

1. First, the adversary may try to guess which profile is being used currently by

the IDS for detection and may try to generate a polymorphic blending attack to

evade that particular normal profile. If the adversary guesses correctly, he/she

has a high chance of evading the IDS. But if the adversary guesses wrong,

then given that the features used in different normal profiles are different and

partially independent, there is a small chance that the attack might match the

normal profile currently used by the IDS. Thus, with high probability, the attack

will be detected by the IDS. Since the probability of the adversary guessing

correctly is small (around 1
X

), the overall chances of the adversary succeeding

in evading the IDS is small.

113

2. The adversary may try to match all the normal profiles in order to ensure that

the attack is not detected, no matter which normal profile is being used by the

IDS. But matching all the profiles may be significantly harder than matching a

single profile.

Thus, in both cases using randomization makes it harder for the adversary to

evade the IDS. Unlike other countermeasures, using randomization does not have

any evident performance dis-advantages. But determining sets of features that are

partially independent and are also sufficient in detecting attacks may not be easy. One

needs to take care in ensuring that each randomized model is adequate in detection

of traditional attacks.

4.6.1.5 Single feature set

Anomaly IDSs discussed in Section 4.3.1 use a single feature set to represent a given

packet or a section of a packet. For example, PAYL uses n-gram distribution of

the whole payload to represent normal payloads. [31] uses a statistical feature or

structure to represent a given section of normal traffic. Therefore, for each section,

the adversary is required to match a single statistical model to evade the IDS.

A better defense approach is to use multiple IDS models that use independent

features to record normal profiles. A monitored packet is normal if and only if the

packet matches all or a majority of the models. Therefore, in order to evade detection,

a polymorphic blending attack created by the adversary will need to match all (or

the majority) of the models. This can be significantly harder than matching a single

model if features used for different models are independent. Independent features

ensure that matching one model does not automatically imply matching other models.

An IDS using multiple models [43] is shown to be effective in detection of polymorphic

blending attacks.

114

Using multiple models for detection requires significantly more computing re-

sources, including cpu and memory, as compared to a single model. Also, multiple

models may be restrictive and a new unseen normal pattern may not be accepted

by all or a majority of the models. Thus, we expect the IDS to have a higher false

positive rate.

4.6.2 Improving the Robustness of an (s)FSA IDS

To improve the robustness of an (s)FSA IDS, we need to identify the shortcomings

of the IDS and improve on it using the principles presented in Section 4.6.1.

4.6.2.1 Improving (s)FSA

Figure 35 shows an example vulnerable sFSA IDS and a blending attack for the IDS.

Since the PBA matches very closely to the sFSA, irrespective of the classifier used,

the IDS will not be able to detect the attack. Therefore, the sFSA used by the IDS

is not sufficient to detect the attacks. The IDS needs to improve the sFSA to detect

the attacks.

A possible approach to improve an (s)FSA model is to modify the current (s)FSA

by deleting transitions from the (s)FSA. First, we collect many attack instances for

different known attacks on the system. For each of these instances, we generate several

polymorphic blending attacks using techniques described in previous sections. We find

transitions in the sFSA that are traversed frequently by many polymorphic blending

attacks. Finally, we delete these transitions from the (s)FSA. The new modified

(s)FSA should be able to detect the PBAs that were generated earlier. However,

there may be lot of normal packets taking these removed transitions. Therefore,

the modified (s)FSA IDS may have high false positive rate. Furthermore, once the

adversary knows which transitions have been removed from the (s)FSA, she may

generate PBAs that do not traverse the deleted transitions and thus the modified

(s)FSA may not detect new PBAs. Therefore, modifying an (s)FSA is not a judicious

115

choice to improve the robustness of the IDS. An IDS developer needs to completely

redesign the IDS by choosing better protocol semantic features.

4.6.2.2 Feature Extraction

Once we decide to use a given (s)FSA model to detect attacks, we can improve the

features used by the IDS classifier. We can remove the features that are noisy or not

useful in discriminating attacks from the normal.

If we do not have attack data available, we can perform feature extraction by

performing Karhunen-Loeve transform on the normal training data and selecting low

variance features. Given the initial set of features, we calculate the correlation matrix.

Eigenvectors and corresponding eigenvalues are calculated for the given correlation

matrix. The low variance features are the eigenvectors with smaller eigenvalues.

Therefore, we choose the eigenvectors with small eigenvalues. We can use this ap-

proach to improve the IDS shown in figure 36. Instead of using two features f1 and

f2, we can perform Karhunen-Loeve transform for the normal dataset, and get two

new uncorrelated features, fnew
1 and fnew

2 . Since fnew
1 is the low variance feature, we

use it for detection. For the same false positive rate, the new IDS using single feature

is better able to detect PBAs as compared to the original IDS.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

o

o
o

oo
oo

o
o

o
o

o
o

o
oo

ooo
oo

o o
o
o x

x

x

x

x

x

x

f2f f21

f1

new new

x

o

Figure 36: Example of feature extraction. Unlike the original normal boundary
(ellipse), the normal boundary for the new IDS (shaded area) does not contain any
attacks.

116

In case the attack data set is available, it is possible to use PCA and select discrim-

inating features. First, we collect many attack instances for different known attacks

on the system. For each of these attack instances, we generate several polymor-

phic blending attacks, using techniques described in section 4.4. We use these PBAs

along with the normal training data and find new set of features using Karhunen-

Loeve transform. Then, we choose features that have high variance. Selected features

should be effective in detecting PBAs generated using the attack vector and the at-

tack code used during PCA. However, this approach may not be helpful in detecting

PBAs generated using other attack vectors and attack codes. In fact, choosing high

variance features may actually reduce the detection capability of the IDS.

4.6.2.3 Improved classifier

Suppose features used by an IDS are not noisy and are good for discriminating attacks

from the normal. But due to the classifier’s limitation, the IDS may not be able to

discriminate attack from the normal. An example of such a classifier problem is shown

in figure 37(a). The data points and the PBAs are mapped to mutually separate

spaces. However, they are not separable by an IDS which uses a simple distance-

based classifier. In this scenario, to improve the robustness of the IDS, we need to

use a powerful classifier. Since it is not possible to use a classifier that works best for

all types of features and datasets, we need to experiment with several classifiers and

choose the one that works best for the given training dataset and training features.

The robustness of the IDS shown in figure 37(a) can be improved by using a better

classifier that uses a different decision surface as shown in figure 37(b).

4.6.2.4 Randomization

There are several ways to include randomization in the IDS to make it harder for an

adversary to generate PBAs. Some of the randomization techniques are:

117

o

ooo
o
o

o

o
o o

o o
o
o

o o
o

ooo
o
o

oo
o o o o o

o
o

ooo oo
o

oo
o

oo o o
o

o
ooo
xx

x xxxx
x
xx
x

(a) Original Classifier

o

ooo
o
o

o

o
o o

o o
o
o

o o
o

ooo
o
o

oo
o o o o o

o
o

ooo oo
o

oo
o

oo o o
o

o
ooo
xx

x xxxx
x
xx
x

(b) Improved Classifier

Figure 37: Example of classifier improvement.

• Feature Selection: From a given feature set, we can randomly choose a subset

of features to be used by the classifier for detection. These subset of features

should be adequate to discern attacks from the normal. Features can be chosen

from the original feature set or from the transformed (for example Karhunen-

Loeve transform) feature set.

• Merge features: We can randomly merge features from the original feature set

to obtain a new feature set. The new features can be calculated as linear

combination of chosen features. Using a pseudo-random number generator, we

can choose a certain number of features from the original feature set and merge

them. We can also use a hash function to hash original features and merge

features which have the same hash-value.

A preferred method to merge a set of features is to use Karhunen-Loeve trans-

form on the original subset of features and choose the transformed feature with

minimum variance.

• Distance calculation: We can use different randomization techniques for distance

calculation. An IDS can randomly choose a classifier from a set or pre-chosen

classifiers that are known to work well. Also, the IDS can use randomization

by tuning the parameters used by the classifier. In these cases, randomization

118

is used to exploit the different generalization capabilities of different classifiers.

This approach may not be effective as different models still use the same set of

features.

• Data Sampling: Another dimension of randomization is to monitor different

parts of the data. Unlike traditional IDSs which monitor the complete data

payload, we can create multiple models, each representing the normal pattern

of a particular portion of the payload [70]. During monitoring, we can use a

subset of these models for detection. Since the adversary does not know which

portion of the payload is monitored by the IDS, the adversary needs to ensure

that each portion of the attack packet matches the normal profile.

4.6.2.5 Multiple feature sets

To improve a given (s)FSA IDS, we generate a multiple subset of features that are

independent. We cannot obtain completely new sets of features that are indepen-

dent of current feature set because that will require further knowledge of the normal

traffic. Instead, we can divide the initial feature set into multiple subsets of features

that are uncorrelated and possibly independent. First, we take the initial features

and de-correlate them using Karhunen-Loeve transform [14]. We can also use Inde-

pendent Component Analysis to get a new feature set that is independent. Then, we

divide the transformed features into multiple independent or uncorrelated subsets.

This approach is useful if each individual transformed feature subset is sufficient for

detecting intrusions.

In figure 38, the IDS using both the features cannot detect PBAs for a given false

positive rate. However, suppose the IDS creates two models using feature f1
new and

f2
new, respectively. Also, suppose a packet is considered normal if and only if the

output of at least one of these two models is normal. Thus, using multiple models

with different feature sets, the IDS will be able to detect the attacks while maintaining

119

same false positive rate. This improvement approach is useful in the cases where the

adversary cannot match individual features very closely.

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

oo
o
o

o
o

o

o
oo

ooo
o o

f f21

o
o

o

xx

x

xx

x

x

x
o
oo

o o

o
oo

o
o

o
o

new new

f1

2f

Figure 38: Example of IDS improvement using multi classifier. To remove the false
positive, IDS considers area under ellipse as normal. However, using two model with
features using f1

new and f2
new, respectively, IDS can ensure that only shaded area is

normal and PBAs lie outside the normal.

Please note that, depending on the characteristics of polymorphic blending attacks

and quality of the feature set (or the (s)FSA model), it may or may not be possible

to improve the robustness of the IDS using the techniques discussed above.

4.6.3 Experiments

We performed experiments to determine the effectiveness of different improvement

techniques presented in Section 4.6.2. We used PAYL 1-gram and 2-gram anomaly

detection systems for our experiments. We compared the robustness of improved

PAYL IDS with the original PAYL IDS. We also measured the monitoring time of

improved PAYL and compared it with the original PAYL to demonstrate the perfor-

mance trade-off of different improvement techniques.

4.6.3.1 Experiment Setup

4.6.3.1.1 Dataset We used the same training dataset as in Section 4.6.2. The

dataset contained 7 days of traffic coming to the CoC web server. Normal data packets

from five hosts/LANs were chosen to train the artificial profile used by the adversary.

Out of the rest of the data, 1 day of traffic was used to train the IDS normal profile

120

and the remaining 6 days of traffic were used to test the IDS. We used 7-fold cross-

validation to verify the results of our experiments.

4.6.3.1.2 Blending Attack Three different attacks were used for the experi-

ment. We used the windows media services attack (MS03-022) and same attack body

as discussed in Section 4.2.6.1.1. In addition, we used two attacks on Windows NT IIS

based on DDK and CodeRed attacks. DDK attack exploits the buffer overflow vulnerabil-

ity present in Windows IIS (MS01-033). CodeRed also exploits a similar vulnerability

(MS01-044) present in Windows IIS.

From our previous experiments, it is evident that the packets of length of 1460 are

best suited for polymorphic blending attacks. Therefore, we divided the attack into

multiple packets of length 1460. Attack vectors were placed at the location required

by the given attack. The decryptor was divided into several sections and allotted to

different attack packets. The sFSA corresponding to the artificial profile was adjusted

for the attack vector and the polymorphic decryptor.

Also, since substitution based attacks are better in matching normal profile, we

generated blending attacks using one-to-one byte substitution. For 1-gram PAYL,

PBAs were generated using the greedy algorithms presented in Section 4.2.3.2.1. For

2-gram PAYL, heuristics discussed in Section 4.2.4.2 were used to generate PBAs.

The attack body was divided into multiple fragments. A separate encryption key

for each attack body fragment was generated to match the adjusted artificial profile.

Each attack body fragment was encrypted using the corresponding key and appended

to the corresponding attack packet.

Finally each attack packet was padded to the desired packet length. We used the

greedy algorithms presented in Section 4.2.3.1 to generate a suitable padding. The

final attack packets were then used to launch an attack.

The polymorphic blending attacks were generated for the original PAYL 1-gram

121

and 2-gram IDS. Since the number of training packets used to train the artificial

profile is small compared to one used to train the IDS, the artificial profile is not

accurate. Therefore, during the feature extraction, or support vector calculation in

SVM-classifier, or other feature manipulation, the extracted features or the support

vectors are significantly different than the ones generated for the IDS. Due to this

reason, PBAs generated using the improved IDS algorithm matches worse to the

IDS profile as compared to PBAs generated using the original PAYL. Therefore, we

present the results for PBAs generated using the original PAYL IDS. Also, the results

presented here are the average of results from 5 different hosts/LANs used for the

training of the artificial profile.

4.6.3.2 Improvements on PAYL

We use techniques discussed in Section 4.6.2 to improve the robustness of PAYL 1-

gram and 2-gram IDS. We used feature extraction to extract good features from the

original feature set. We also improved on the simple distance metric used by PAYL.

We also experimented with different randomization techniques to further improve on

the original PAYL.

4.6.3.2.1 Feature Extraction To remove noisy n-gram features used by PAYL,

we perform Karhunen-Loeve transform and chose the low variance direction. The

initial set of features used for the transformation consists of all the frequently occur-

ring n-grams along with one extra feature. The extra feature corresponds to all the

n-grams that are rare or absent in the training dataset. We calculated the correlation

matrix of the input features using the training dataset. Then we calculate the eigen-

vectors and the eigenvalues for the correlation matrix. Then we choose 0.2 fraction of

eigenvectors with the smallest eigenvalues as the new set of features and used them

for intrusion detection.

122

4.6.3.2.2 Randomization We used four different randomization techniques to

make PAYL more robust. Each randomized method was repeated 10 times for vali-

dation purpose. The average of the 10 iterations is reported in the results.

• Basic Feature Selection: We randomly choose half of the original features

(that is 50% of the seen n-grams) and used them for detection.

• Transformed Feature Selection: We also performed random feature selec-

tion after Karhunen-Loeve transform. After finding the eigenvectors and eigen-

values of the correlation matrix, we removed very high-variance eigenvectors. Of

the remaining eigenvectors, we randomly choose half of the transformed features

and used them for detection.

• Feature Merging: We randomly merged n-grams to obtain a new feature set.

To merge a given subset of features into one feature, we performed Karhunen-

Loeve transform and chose the eigenvector with the smallest eigenvalue. All

the new features were generated by merging a fixed number of n-grams. The

n-grams to be merged were chosen using pseudo-random number generator.

• Randomized Data Sampling: The payload was divided into multiple sec-

tions and for every instantiation of IDS, a random sections was monitored.

4.6.4 Results

Improved IDSs along with original n-gram models were first tested using traditional

polymorphic attacks. All IDSs were able to detect all the traditional polymorphic

attacks. Next we generate polymorphic blending attacks to test the robustness of our

IDSs.

Figure 39 shows the size of the blending attack required to evade improved 1-gram

PAYL anomaly IDSs proposed in Section 4.6.3.2. Bigger attack size implies more

robust IDS. Bar touching the 30K attack size indicates that none of the blending

123

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1e-05 1e-04 0.001 0.01 0.1

A
tta

ck
 s

iz
e

False Positive Rate

original
extraction
select-orig

select-klt
merge

data-mon

(a) Windows media services attack

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1e-05 1e-04 0.001 0.01 0.1

A
tta

ck
 s

iz
e

False Positive Rate

original
extraction
select-orig

select-klt
merge

data-mon

(b) CodeRed attack

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1e-05 1e-04 0.001 0.01 0.1

A
tt
a
ck

 s
iz

e

False Positive Rate

original
extraction
select-orig

select-klt
merge

data-mon

(c) DDK attack

Figure 39: Polymorphic blending attack size for 1-gram PAYL

124

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1e-05 1e-04 0.001 0.01 0.1

A
tta

ck
 s

iz
e

False Positive Rate

original
extraction
select-orig

select-klt
merge

data-mon

(a) Windows media services attack

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1e-05 1e-04 0.001 0.01 0.1

A
tta

ck
 s

iz
e

False Positive Rate

original
extraction
select-orig

select-klt
merge

data-mon

(b) CodeRed attack

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1e-05 1e-04 0.001 0.01 0.1

A
tta

ck
 s

iz
e

False Positive Rate

original
extraction
select-orig

select-klt
merge

data-mon

(c) DDK attack

Figure 40: Polymorphic blending attack size for 2-gram PAYL

125

attack instances were able to evade the IDS. As we decrease the false positive rate,

IDS increases the error threshold to avoid false positives and consequently it is easier

for an adversary to evade the IDS. Therefore, as we decrease the false positive rate,

smaller attack sizes are required to avoid detection.

IDS that uses feature extraction, transformed feature selection, and merging are

considerably more robust than the original PAYL. The 1-gram features used by PAYL

contains many noisy 1-gram and thus it does not perform very well. However, fea-

ture extraction, transformed feature selection, and merging, all three remove noisy

features and retain only the features that are more helpful in detection. Thus, these

three techniques considerably improve the robustness of the original PAYL. Random

data monitoring and basic feature selection are very basic techniques and moderately

improve the robustness of the IDS. Since both these techniques involve sampling, they

might discard potentially important features or data. Therefore, in some occasions,

both of these two techniques might reduce the robustness of the IDS.

Blending attack size required to evade improved 2-gram PAYL anomaly IDSs is

shown in Figure 40. An optimized and fine tuned original 2-gram PAYL is more effec-

tive than 1-gram model in the detection of polymorphic attacks. For 2-gram PAYL,

feature extraction, transformed feature selection, and feature merging improves the

robustness by using better features.

Since size of attack body and attack vector used by CodeRed is the largest of all

three attacks, it requires largest attack size to evade the IDS. On the other hand,

windows media services attack, with smallest attack code, requires smallest attack

size to escape detection.

The monitoring speed of each IDS was measured. The IDS was deployed on a

2.4Ghz Linux machine with 2GB RAM. Testing data was read from a tcpdump file

and time taken to classify the complete dataset was recorded. Table 4.6.4 shows the

monitoring speed of different IDSs. 1-gram monitoring takes considerably less time

126

than 2-gram matching. This is due to the following two reasons. 2-gram feature is

more complex and takes more time to calculate. Also, the number of unique 2-gram

is much higher than number of unique 1-grams (Section 4.2.7).

Basic feature extraction and data sampling methods monitor a sub-sample of space

monitored by the original PAYL. Therefore, on an average they are faster than PAYL.

In feature merging, IDS merges n-grams using KLT. But the extra time for merging

is compensated by reduction in the number of features and also the overall speed

is faster. Feature extraction and transformed feature selection requires multiplying

eigenvector matrix to n-gram features. Hence, they take considerable time to monitor

the data.

Table 10: Monitoring speed (in secs/100K packets)
IDS Original Feature Basic Transformed Feature Data

Model Extraction Feature Feature Merging Sampling
Selection Selection

1-gram 6.33 13.70 4.75 12.67 4.63 6.21
2-gram 786.1 1225 500 1183.6 172 597.6

Considering both robustness and run time efficiency, randomization appears to be

the best robustness improvement strategy. Techniques like random feature merging

improves the robustness of an IDS and at the same time increases efficiency. Since

these randomization techniques sub-sample the monitoring space, there is a risk of

increased false negatives. Some of the other countermeasures make IDS very robust,

but they also consume more resources and are more complex in design and imple-

mentation. In short, trade-offs between robustness and other performance measures

need to be carefully considered before choosing a suitable IDS.

127

4.7 Summary

Existing polymorphic techniques can be used to evade signature-based IDSs because

the attack instances do not share a consistent signature. But anomaly IDSs can de-

tect these attack instances because the polymorphism techniques fail to mask their

statistical anomalies. We presented a new class of polymorphic attacks called poly-

morphic blending attacks that overcomes this very shortcoming. The idea is to first

learn the normal profiles used by the IDS, and then, while creating a polymorphic

instance of an attack, make sure that its statistics match the normal profiles.

We described the basic steps and general techniques that can be used to devise

polymorphic blending attacks. We primarily use encryption and padding to modify

and generate a blended attack instance that matches the normal profile. We presented

a case study using the anomaly IDS PAYL to demonstrate that these attacks are

practical and feasible. Our experiments showed that polymorphic blending attacks

can evade PAYL while traditional polymorphic attacks cannot. We also showed that

an attacker does not need a large number of packets to learn the normal profile and

to blend in successfully.

We presented a formal framework for polymorphic blending attacks. We mod-

eled a variety of IDSs as either FSA or stochastic FSA. We also modeled different

polymorphic attack sections using FSA. We determined the complexity of generat-

ing different attack sections that match the (s)FSA IDS. Matching attack vector and

padding with an FSA IDS can be done in polynomial time using an algorithm sim-

ilar to Bellman-Ford algorithm. The problem of matching attack vector, padding,

or attack body with an sFSA IDS was proved to be NP-complete. We presented

some techniques to reduce these NP-complete problems to a satisfiability problem or

an integer linear programming problem. Thus, optimization algorithms available in

these problem domains can be used to generate near-optimal attack sections. We

also proposed a heuristic that can be used to find suitable attacks efficiently. We

128

validated our framework using PAYL 1-gram and 2-gram. The polymorphic blending

attacks generated using optimization solvers and heuristics were closely able to match

the normal profile. They performed better than the greedy algorithms proposed in

the case-study.

We discussed the drawbacks of current anomaly IDSs due to which these poly-

morphic blending attacks exist. We also proposed techniques to improve the given

anomaly IDS so that it becomes harder to generate a blending attack. Using exper-

iments, we showed that the proposed techniques are indeed useful in improving the

robustness of anomaly detection systems. However, improving the robustness of an

anomaly IDS may also increase the computation complexity of the IDS. Thus the

trade-off needs to be considered.

129

CHAPTER V

CONCLUSION

In this dissertation, we focused on two important aspects of an IDS, namely, run-time

efficiency and robustness. The IDS should be efficient to be able to detect intrusions

in real-time. Also, the IDS should correctly classify normal activities as normal and

attack activities as attack, even in the presence of an adversary who is actively trying

to evade it.

To detect intrusions in real-time, the IDS should be fast and should require min-

imal memory. Since most of the resources in an IDS is typically consumed by the

approximate string matching component, an important problem to address is the

efficiency of approximate string matching algorithm.

We presented a fast algorithm for an approximate string matching problem, namely

q-gram matching, used by various host-anomaly IDSs and network anomaly IDSs. q-

gram matching is also used in other applications including, genome sequence match-

ing, misspelling detection, and pattern recognition. To contain false positives, the

training dataset of an anomaly IDS should be extensive. For huge text sizes, previous

string matching algorithms become unacceptable. Rabin-Karp algorithm works fast

for q-gram matching but requires large memory and produces false matches. The large

memory requirement of the Rabin-Karp method prohibits the IDS in being deployed

inside the kernel where it is suitable to perform system-call based detection.

We presented a tree-based algorithm to perform fast and memory efficient q-

gram matching. The text is pre-processed and stored in a tree. Tree pruning was

used to reduce the memory requirements and suffix links were added to make the

matching fast and efficient. Our experiments showed that the proposed algorithm is

130

faster and more memory efficient than the previous algorithms. Compared to Rabin-

Karp algorithm, the space saving is by an order of magnitude. Space saving is more

apparent for high values of q. Since our model is very space efficient, it is suitable for

deployment in the kernel. This reduces the time required by the IDS to obtain the

monitored data and further improves the overall efficiency of the IDS.

Even though we improved the efficiency of q-gram matching used by various IDSs,

other factors may affect the performance of the IDS. Some of these factors are, data

acquisition time and latency, alert management, and alert reporting. These factors

need to be considered while designing an efficient IDS with real-time detection capa-

bilities. Also, our algorithm is applied to a particular approximate string matching

algorithm. As IDSs are evolving, they are using more complex detection models

and pattern matching approaches. For example, some IDSs use machine learning

techniques like SVM, genetic algorithms, and neural networks for pattern matching.

Different run-time optimization techniques and algorithms are required to make these

IDSs efficient.

Our algorithm can also be used to improve the efficiency of other applications that

use q-gram matching. An interesting future work is to apply our algorithm to other

applications and analyse the performance gains.

Ideally, we would like an IDS to detect all the attacks and make no mistakes.

However, an IDS typically generates both false positives and false negatives. False

negatives or undetected attacks can be particularly high if an adversary is actively

trying to evade the IDS. Thus, it is important to determine how robust an IDS is in

the face of such active attacks.

We proposed a novel attack called polymorphic blending attack to analyse the

robustness of network anomaly IDSs. To generate these attacks, we assume that the

adversary knows the IDS training and monitoring algorithm. The adversary first es-

timates the normal profile (or pattern) used by the IDS. Then the adversary modifies

131

an initial attack instance so that the final attack instance matches the normal pro-

file. The initial attack instance is modified using different polymorphism techniques

including encryption and padding. Using an example IDS, we show that polymorphic

blending attacks are indeed feasible.

We presented a formal framework to analyse the complexity of polymorphic blend-

ing attacks. We showed that in general, it is NP-complete to generate a PBA that

optimally matches the normal profile. However, approximation algorithms proposed

in Section 4.4 can be used to generate an attack instance that closely matches the

normal profile and can easily evade IDSs.

Using polymorphic blending attacks, we successfully demonstrated that current

network anomaly IDSs are not robust against evading attacks. Based on the shortcom-

ings of current anomaly IDSs, we proposed some techniques to improve the robustness

of an IDS. Our experiments showed that these techniques are effective in improving

the robustness of IDSs.

Our framework considers IDSs that can be represented using (s)FSA. The frame-

work does not incorporate IDSs that use more expressive automatons. Also, modeling

of some attack sections, especially decryptor and attack body, is limited. We want

to extend our framework to include other IDSs. We would also like to include sim-

ple shellcode obfuscation techniques in our framework. Furthermore, we want to

include encryption techniques, other than one-to-one byte substitution and XOR, in

our framework.

Our proposed framework considers each attack sections separately. A separate

algorithm is presented to match each section with the (s)FSA IDS. Another possible

approach is to combine models for all the attack sections to create a single model

representing the attack packet. Then, the adversary can match the combined model

with the normal profile. Compared to the separate model approach, using a combined

attack model may generate better matching because, by using the combined attack

132

model, the adversary can exploit the collective structure of different sections. But

matching the combined attack model is considerably more complex than matching

the sections separately. An interesting future work is to find an efficient algorithm to

match the combined attack model and the normal profile.

5.1 Discussion

The two issues, efficiency and robustness, discussed here are notably dependent on

each other. To a certain extent, these two parameters are somewhat conflicting in

nature. In Section 4.6, we observed that improving the robustness of an IDS requires

better features and consequently reduced efficiency, and vice versa, using simple sta-

tistical features for efficiency sacrifices robustness. It is not clear as to what the best

trade-off is.

It is hard to find the best compromise because the robustness of an IDS is not

easily quantifiable. Some of the criteria of robustness is the size of the attack, the

probability of successful evasion, and the amount of time and computing resources

used by the adversary. Many of these factors are not measurable. This makes it

harder to evaluate the effectiveness of an IDS improvement technique. Other factors,

like false positives, false negatives, and IDS management, complicate things further.

A unified framework to evaluate an IDS is highly desirable. The framework should

take all the important factors related to the IDS operation into consideration. The

framework should let users assess the shortcomings of the IDS and suggest steps for

rectification.

133

APPENDIX A

EFFICIENCY

Algorithm 1 q-gram matching using T
for all q-grams, Q[i, · · · , i + q − 1], i = 1 to |Q| − q + 1 do

Set current node as root of the tree T
for j = 0 to q − 1 do

if the current node does not have a child for character Q[i + j] then
reject the current substring Q[i, · · · , i+ q− 1] and match the next substring
starting from the root node

else
traverse to the child node for character Q[i + j]

end if
end for
if j = q − 1 and we reach a leaf node then

accept substring Q[i, · · · , i+q−1] and match the next substring starting from
the root node

end if
end for

Algorithm 2 Tree Redundancy Pruning

for all the nodes Q[i, · · · , j] present in the tree T do
Compare subtrees rooted at node Q[i, · · · , j] and its immediate suffix node Q[i+
1, · · · , j]
if the two subtrees are similar then

prune the subtree rooted at Q[i, · · · , j] and make Q[i, · · · , j] a leaf node
end if

end for

134

Algorithm 3 q-gram matching using Tp

for all q-grams, Q[i, · · · , i + q − 1], i = 1 to |Q| − q + 1 do
Set current node as root of the tree T
for j = 0 to q − 1 do

if the current node is a leaf node then
mark the current substring Q[i, · · · , i + q − 1] as pending and match the
next substring starting from the root node

else if the current node does not have a child for character Q[i + j] then
for k = 0 to q − j − 1 do

if Q[i− k, · · · , i− k + q − 1] is marked pending then
mark Q[i− k, · · · , i− k + q − 1] as rejected

else
continue matching the next substring starting from the root node

end if
end for
break

else
traverse to the child node for character Q[i + j]

end if
end for
if j = q − 1 and we reach a leaf node then

mark the current substring Q[i, · · · , i + q− 1] as accepted and match the next
substring starting from the root node

end if
end for
mark all the pending substrings as accepted

Algorithm 4 Adding suffix links in T
for all the nodes Q[i, · · · , j] present in the tree T do

create a suffix link from node Q[i, · · · , j] to its immediate suffix node Q[i +
1, · · · , j]

end for

135

Algorithm 5 q-gram matching using Ts

Set the current node as the root of tree Ts

for i = 1 to |Q| − q + 1 do
while the current node does not have a child for character Q[i] and we have not
reached the root node do

suppose the current node is at depth j
reject the current substring Q[i− j, · · · , i− j + q − 1]
traverse the suffix link and match character Q[i] for next substring

end while
if the current node is the root node and we still do not have a child for character
Q[i] then

character Q[i] is not in the tree, start matching with next character Q[i + 1]
end if
traverse to the child node for character Q[i]
if the current node is a leaf node then

accept the current substring (Q[i− q + 1, · · · , i])
traverse the suffix link

end if
end for

Algorithm 6 Adding suffix links in Tp

for all the nodes Q[i, · · · , j] present in the tree T do
for k = 1 to j − i do

if node Q[i + k, · · · , j] exists in Tp then
create a suffix link from node Q[i, · · · , j] to it longest suffix node Q[i +
k, · · · , j]

end if
end for

end for

136

Algorithm 7 q-gram matching using Tsp

Set current node as root of the tree Tsp

for i = 1 to |Q| − q + 1 do
while the current node does not have a child for character Q[i] or we have not
reached the root node do

/* A mismatch is found at current node for character Q[i] */
suppose the current node is at depth j
for k = 0 to q − j − 1 do

if substring Q[i − j − k, · · · , i − j − k + q − 1] is marked pending or is
unmarked then

mark substring Q[i− j − k, · · · , i− j − k + q − 1] as rejected
else

break
end if

end for
traverse the suffix link

end while
if the current node is the root node and we still do not have a child for character
Q[i] then

character Q[i] is not in the tree, start matching with next character Q[i + 1]
end if
traverse to the child node for character Q[i]
if the current node is a leaf node then

if the current node is at depth q then
mark the current substring (Q[i− q + 1, · · · , i]) as accepted

else
mark the current substring (Q[i− q + 1, · · · , i]) as pending

end if
traverse the suffix link

end if
end for
mark all the pending and unmarked substrings as accepted

137

APPENDIX B

ROBUSTNESS

B.1 Proof of Optimal Padding for 1-gram Blending Attack

We prove that the padding calculated using Equation (15) is minimum for matching

the 1-gram profile exactly.

Theorem B.1.1 λi ≥ 0, ∀1 ≤ i ≤ cn

Proof We prove the theorem by contradiction. Assume that for some j, λj < 0.

Then from Equation (15), ‖ŵ‖(δf(xj)− f̂(xj)) < 0. Thus, δ <
f̂(xj)

f(xj)
. This contradicts

Equation (13), therefore, all λi ≥ 0.

The frequency of a character xi in the packet after padding is f́(xi) = ‖ŵ‖f̂(xi)+λi

‖ẃ‖ .

Using Equation (15) and Equation (12), f́(xi) = f(xi). Thus, the final attack packet

after padding has the exact target distribution, f(xi).

Theorem B.1.2 The padding calculated using Equation (15) is the minimum re-

quired padding to match frequencies exactly.

Proof Suppose we perform padding using Equation (15). Suppose there exists an-

other packet (say p, ‖p‖ < ‖ŵ‖) with smaller padding and matches the frequencies

exactly. Since λk = 0, the number of occurrences of xk in p cannot decrease. Thus,

frequency of xk in packet p is fp(xk) = ‖ŵ‖f̂(xk)
‖p‖ = ‖ẃ‖f(xk)

‖p‖ > f(xk). Thus, packet p

does not match the normal frequencies exactly. Thus, we have reached a contradic-

tion.

138

B.2 Proof of Hardness of 2-gram Single-Byte Encoding

First, we look at the problem of evading a simple IDS that stores all the 2-grams

present in the normal stream. While monitoring, it checks if all the 2-grams present

in the traffic are also present in the normal 2-gram list. In the event that the IDS finds

a 2-gram that was not present in normal traffic, IDS raises an alarm. Blending the

attack packet with the normal traffic requires the attacker to transform the packet

such that all the 2-grams in the packet after substitution are also present in the

normal 2-gram list. Matching the frequencies of the tuples is at least as hard as the

above simplified problem.

Suppose we have a normal traffic profile (N, TN) and an attack packet description

(M, TM), where N and M is the set of normal and attack characters, respectively.

TN and TM is the set of different 2-grams present in normal traffic and the attack,

respectively. Also, the attacker is allowed to do only one-to-one substitution from M

to N . Then, blending of the packet translates to finding a substitution S such that

all the tuples in S(w) are also present the normal profile. That is if a1a2 ∈ TM , then

S(a1a2) ∈ TN .

Theorem B.2.1 The problem of finding a one-to-one substitution S to match 2-

grams is NP-complete.

Proof To prove that the problem is in NP-complete, we need to show that the

problem is polynomial time verifiable and NP-hard.

Given a solution substitution S for the 2-gram matching problem, we can calculate

S(w) in O(‖w‖) steps. For each 2-gram present in S(w), checking if it is present

in TN can be done in O(‖w‖.TM) steps. Thus, this problem is poly-verifiable and

consequently in NP.

To show that the problem is NP-hard, we reduce the problem of sub-graph iso-

morphism to substitution problem. A sub-graph isomorphism problem is that given

139

N

a

b

c

d

x

y

z

N = {a, b, c, d} M = {x, y, z}

T = {xy, yx, yz, zy, zx, xz}T = {ab, ba, bc, cb, cd, dc, da, ad}
M

Figure 41: Reducing sub-graph isomorphism to 2-gram matching problem

two graphs G(V, E) and G′(V ′, E ′), decide whether G′ is a sub-graph of G. Math-

ematically, we want to check if there is a mapping S(V ′ 7→ V), s.t. ∀(v1, v2) ∈

E ′, (S(v1), S(v2)) ∈ E.

Suppose, N = V . For each edge e = (v1, v2) ∈ E, add two 2-grams (v1v2, v2v1) in

the normal profile (TN). Suppose M = V ′. For each edge e′ = (v1, v2) ∈ E ′, we add

two 2-grams (v1v2, v2v1) in the attack profile (TM).

If the above 2-gram matching problem has a solution, then we can find a mapping

S(V ′ 7→ V) such that for all 2-grams (a1a2) ∈ TM , S(a1a2) ∈ TN . Since the 2-grams

in TM correspond to edges in G′ and the 2-grams in TN correspond to edges in G,

the above statement suggests that ∀e′ ∈ G′, S(e′) ∈ G. This means that graph G′ is

isomorphic to a sub-graph of G with mapping given by S.

Also, if there does not exist a solution to the 2-gram matching problem, then there

does not exists a substitution St such that G′ is a sub-graph of G after substitution.

Otherwise, St will result in a successful 2-gram mapping.

Thus, the 2-gram matching problem is at least as hard as the sub-graph isomor-

phism problem. It is known that the sub-graph isomorphism problem is NP-complete.

Also, we have already proved that the 2-gram matching problem is in NP. Thus, the

2-gram matching problem is NP-complete.

Even if an IDS allows constant number of mismatches, it can be shown that

the problem still remains NP-complete. This is followed by the result that sub-graph

140

isomorphism with constant number of edge insertion, deletion, and substitution is also

NP-complete. This means that an attacker cannot get the substitution that will match

the normal profile with a small constant number of mismatched 2-grams. Also, the

one-to-one substitution problem can be easily reduced to one-to-many substitution.

Thus, solving one-to-many substitution is also hard.

B.3 Pseudo-codes for PAYL blending

Algorithm 8 Substitution algorithm for 1-gram blending (cm ≤ cn)

sortdesc(f)
sortdesc(f́)
for i = 1 to cm do

S[yi] = {xi}
t̂f [i] = f [i]

end for
for i = cm + 1 to cn do

minRatio = infinity
for j = 1 to cm do

ratio = t̂f [j]

f́ [j]

if minRatio > ratio then
label = j

end if
end for
S[ylabel] = addToSet(xi)
t̂f [label] += f [i]

end for
for i = 1 to cn do

k = S−1[yi] = inverse map of xi

prob[yk is substituted by xi in attack body] = f [i]
tf [k]

end for

141

Algorithm 9 Substitution algorithm for 1-gram blending (cm > cn)

nv = number of vertices in the tree excluding root vertex
cap[i] = f [i]
wt[i] = weight of vertex i
wtT =

∑
i=1,cn

wt[i]

wtn[i] = wt[i]
wtT

= Normalized weight
sortdesc(wtn)
for i = 1 to nv do

minDiff = infinity
for j = 1 to cn do

if minDiff > |cap[j]− wtn[i]| then
setLabel = true
for all sibling = children of parent[i] do

if label[sibling] == j then
setLabel = false;

end if
end for
if setLabel == true then

minDiff = |cap[j]− wtn[i]|
label[i] = j
cap[j] = cap[j]− wtn[i]

end if
end if

end for
end for

142

B.4 Hill-Climbing heuristic

Algorithm 10 Pseudo-code for Hill Climbing Heuristic

curr key = generate random key()
curr dist = calculate distance(curr key)
best key = curr key
best dist = curr dist
for MAX times do

ki = get random key index()
min tmp dist = INF
for j in key range do

tmp key = curr key
set (ki = j) in tmp key
tmp dist = calculate distance(tmp key)
if tmp dist < min tmp dist then

min tmp dist = tmp dist
new key val = j

end if
end for
if min tmp dist < curr dist then

set (ki = new key val) in curr key
curr dist = min tmp dist

end if
if curr dist < min dist then

best key = curr key
best dist = curr dist

end if
if local maxima is reached then

for i = 1 to 5 do
k = get random key index()
v = get random key value()
set (k = v) in curr key

end for
end if

end for

143

B.5 Matching Attack Vector

Algorithm 11 Pseudo-code for Matching Attack Vector and FSA IDS

FSAav = Attack Vector FSA
AFSAids = Normal Profile FSA with error states and transitions
FSAint(Σ, Q, q0, δ, F) = FSAav

⋂
AFSAids

for i = 0 to n do
for q in Q do

dist[q][i] = ∞
prev[q][i] = φ

end for
end for
dist[q0][0] = 0
reachable[0] = q0

for i = 1 to lav do
for edge (q1, q2, c) ∈ F do

alt = dist[q1][i− 1] + cost(q1, q2)
if alt < dist[q2][i] then

dist[q2][i] = alt
prev[q2][i] = q1

end if
end for

end for

144

REFERENCES

[1] Aho, A. and Corasick, M., “Efficient string matching: An aid to bibliographic
search,” Communications of the ACM, vol. 18, pp. 333–340, June 1975.

[2] Akritidis, P., Markatos, E. P., Polychronakis, M., , and Anagnos-
takis, K., “Stride: Polymorphic sled detection through instruction sequence
analysis,” In 20th IFIP International Information Security Conference, 2005.

[3] Barreno, M., Nelson, B., Sears, R., Joseph, A. D., and Tygar, J. D.,
“Can machine learning be secure?,” Proceedings of the ACM Symposium on In-
formation, Computer, and Communication Security (ASIACCS), 2006.

[4] Boyer, R. and Moore, J., “A fast string searching algorithm,” Communica-
tions of the ACM, vol. 20, p. 762, October 1977.

[5] Burkhardt, S., Crauser, A., Ferragina, P., Lenhof, H., Rivals, E.,
and Vingron, M., “q-gram based database searching using a suffix array
(quasar),” in RECOMB ’99, pp. 77–83, 1999.

[6] Chang, W. and Marr, T., “Approximate string matching and local simi-
larity,” in Proceedings of the 5th Annual Symposium on Combinatorial Pattern
Matching, pp. 259–273, 1994.

[7] Chen, M. and Seiferas, J., “Elegant and efficient subword tree construction,”
Combinatorial Algorithms on Words, pp. 97–107, 1985.

[8] Chinchani, R. and Berg, E., “A fast static analysis approach to detect exploit
code inside network flows,” In Recent Advances in Intrusion Detection, 2005.

[9] Christodorescu, M., Jha, S., Seshia, S., Song, D., and Bryant, R.,
“Semantics-aware malware detection,” In Proceeding of the IEEE Security and
Privacy Conference, 2005.

[10] Coit, J., Staniford, S., and McAlerney, J., “Towards faster string match-
ing for intrusion detection or exceeding the speed of snort,” DARPA Information
Survivability Conference and Exposition (DISCEX II ’02), vol. 1, pp. 367–373,
2001.

[11] Cole, R. and Hariharan, R., “Approximate string matching: A simpler faster
algorithm,” SIAM Journal on Computing, vol. 31, no. 6, pp. 1761–1782, 2002.

[12] Cormen, T. H., Leiserson, C. E., and Rivest, R. L., “Introduction to
algorithms,” The MIT Press/McGraw-Hill, 1990.

145

[13] Detristan, T., Ulenspiegel, T., Malcom, Y., and Underduk, M., “Poly-
morphic shellcode engine using spectrum analysis,” Phrack Issue 0x3d, 2003.

[14] Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern classification,” John
Wiley and Sons, 2001.

[15] Eckmann, S. T., Vigna, G., and Kemmerer, R. A., “Statl: An attack
language for state-based intrusion detection,” JOURNAL OF COMPUTER SE-
CURITY, vol. 10, pp. 71–104, 2002.

[16] Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W., and Miller, B.,
“Formalizing sensitivity in static analysis for intrusion detection,” In Proceedings
the IEEE Symposium on Security and Privacy, 2004.

[17] Feng, H., Kolesnikov, O., Fogla, P., Lee, W., and Gong, W., “Anomaly
detection using call stack information,” In Proceedings of the IEEE Security and
Privacy Conference, 2003.

[18] Firew0rker, “Windows media services remote command execution exploit,”
http://www.k-otik.com/exploits/07.01.nsiilog-titbit.cpp.php, April 2005.

[19] Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T., “A sense
of self for Unix processes,” in Proceedinges of the 1996 IEEE Symposium on
Research in Security and Privacy, pp. 120–128, IEEE Computer Society Press,
1996.

[20] Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T., “A sense of
self for unix processes,” In Proceedings of the IEEE Symposium on Security and
Privacy, 1996.

[21] Galil, Z. and Giancarlo, R., “Improved string matching with k-
mismatches,” SIGACT News, vol. 17, no. 4, pp. 52–54, 1986.

[22] Group, T. I., “Phatbot trojan analysis,”
http://www.secureworks.com/research/threats/phatbot, June 2007.

[23] Handley, M. and Paxson, V., “Network intrusion detection: Evasion, traffic
normalization, and end-to-end protocol semantics,” In 10th USENIX Security
Symposium, 2001.

[24] Karp, R. and Rabin, M., “Efficient randomized pattern-matching algorithms,”
IBM Journal of Research and Developement, pp. 249–260, 1987.

[25] Kaufman, C., Perlman, R., and Speciner, M., “Network security: Private
communication in a public world,” Prentice Hall, 2002.

[26] Knuth, D., Morris, J., and Pratt, V., “Fast pattern matching in strings,”
SIAM Journal on Computing, vol. 6, no. 1, pp. 323–360, 1977.

146

[27] Kolesnikov, O. M., Dagon, D., and Lee, W., “Advanced polymorphic
worms: Evading ids by blending in with normal traffic,” 2003.

[28] Kruegel, C., Kirda, E., Mutz, D., Robertson, W., and Vigna, G., “Au-
tomating mimicry attacks using static binary analysis,” In 14th Usenix Security
Symposium, 2005.

[29] Kruegel, C., Kirda, E., Mutz, D., Robertson, W., and Vigna, G.,
“Polymorphic worm detection using structural information of executables,” In
Recent Advances in Intrusion Detection, 2005.

[30] Kruegel, C., Toth, T., and Kirda, E., “Service specific anomaly detection
for network intrusion detection,” In Proceedings of ACM SIGSAC, 2002.

[31] Kruegel, C. and Vigna, G., “Anomaly detection of web-based attacks,” In
Proceedings of ACM CCS, pp. 251–261, 2003.

[32] Ktwo, “Admmutate: Shellcode mutation engine,”
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz, June 2007.

[33] Landau, G. and Vishkin, U., “Efficient string matching with k-mismatches,”
Theoretical Computer Science, pp. 239–249, 1986.

[34] Liang, Z. and Sekar, R., “Fast and automated generation of attack signa-
tures: a basis for building self-protecting servers,” Proceedings of the 12th ACM
Conference on Computer and Communications Security (ACM CCS), pp. 213 –
222, 2005.

[35] Mahoney, M., “Network traffic anomaly detection based on packet bytes,” In
Proceedings of ACM SIGSAC, 2003.

[36] Mahoney, M. and Chan, P., “Learning nonstationary models of normal net-
work traffic for detecting novel attacks,” In Proceedings of SIGKDD, 2002.

[37] McCreight, E., “A space-economical suffix tree construction algorithm,” Jour-
nal of the ACM, vol. 23, no. 2, pp. 262–272, 1976.

[38] Navarro, G., “A guided tour to approximate string matching,” ACM Comput-
ing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[39] Navarro, G. and Baeza-Yates, R., “Fast and practical approximate string
matching,” Information Processing Letters, vol. 59, pp. 21–27, 1996.

[40] Navarro, G. and Baeza-Yates, R., “Faster approximate string matching,”
Algorihtmica, vol. 23, no. 2, pp. 127–158, 1999.

[41] Newsome, J., Karp, B., and Song, D., “Polygraph: Automatically generat-
ing signatures for polymorphic worms,” In Proceeding of the IEEE Security and
Privacy Conference, 2005.

147

[42] Perdisci, R., Dagon, D., Lee, W., Fogla, P., and Sharif, M., “Mislead-
ing worm signature generators using deliberate noise injection,” In Proceedings
of the IEEE Security and Privacy Conference, 2006.

[43] Perdisci, R., Gu, G., and Lee, W., “Using an ensemble of one-class svm
classifiers to harden payload-based anomaly detection systems,” ICDM, 06.

[44] Ptacek, T. and Newsham, T., “Insertion, evasion, and denial of service: Elud-
ing network intrusion detection,” Technical Report T2R-0Y6, Secure Networks,
Inc., 1998.

[45] Puppy, R. F., “A look at whisker’s anti- ids tactics just how bad can we ruin
a good thing?,” www.wiretrip.net/rfp/txt/whiskerids.html, 1999.

[46] Roesch, M., “Snort-lightweight intrusion detection for networks,” In Proceed-
ings of the 13th USENIX conference on System administration, pp. 229 – 238,
1999.

[47] Rubin, S., Jha, S., and Miller, B. P., “Language-based generation and
evaluation of nids signatures,” In Proceeding of the IEEE Symposium on Security
and Privacy, 2005.

[48] Rubin, S., Jha, S., and Miller, B., “Automatic generation and analysis of
nids attacks,” In Annual Computer Security Applications Conference (ACSAC),
2004.

[49] Schaffer, C., “A conservation law for generalization performance,” Interna-
tional Conference on Machine Learning, 1994.

[50] Sedalo, M., “Jempiscodes: Polymorphic shellcode generator,”
www.shellcode.com.ar/en/proyectos.html.

[51] Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang,
H., and Zhou, S., “Specification-based anomaly detection: A new approach
for detecting network intrusions,” Proceedings of the 9th ACM conference on
Computer and communications security (ACM CCS), 2002.

[52] Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H.,
and Zhou, S., “Specification-based anomaly detection: a new approach for de-
tecting network intrusions,” in CCS ’02: Proceedings of the 9th ACM conference
on Computer and communications security, pp. 265–274, 2002.

[53] Sinz, C., “Towards an optimal cnf encoding of boolean cardinality constraints,”
In Principles and Practice of Constraint Programming, pp. 827–831, 2005.

[54] Song, D., “Fragroute: a tcp/ip fragmenter,”
www.monkey.org/∼dugsong/fragroute, 2002.

148

[55] Sunday, D., “A very fast substring search algorithm,” Communications of the
ACM, vol. 33, no. 8, pp. 132–142, 1990.

[56] Sutinen, E. and Tarhio, J., “On using q-gram locations in approximate string
matching,” in Proceedings of the Third Annual European Symposium on Algo-
rithms, pp. 327–340, 1995.

[57] Szor, P., “Advanced code evolution techniques and computer virus generator
kits,” The Art of Computer Virus Research and Defense, 2005.

[58] Tan, K., Killourhy, K., and Maxion, R., “Undermining an anomaly-based
intrusion detection system using common exploits,” In Recent Advances in In-
trusion Detection, 2002.

[59] Tarhio, J. and Ukkonen, E., “Boyer moore approach for approximate string
matching,” Proceedings of SWAT’90, pp. 348–359, 1990.

[60] Tax, D. M. J. and Muller, K.-R., “Feature extraction for one-class classifi-
cation,” in ICANN, pp. 342–349, 2003.

[61] Toth, T. and Kruegel, C., “Accurate buffer overflow detection via abstract
payload execution,” In Recent Advances in Intrusion Detection, 2002.

[62] Ukkonen, E., “Approximate string-matching with q-grams and maximal
matches,” Theoretical Computer Science, vol. 92, no. 1, pp. 191–211, 1992.

[63] Ukkonen, E., “On-line construction of suffix trees,” Algorithmica, vol. 14,
pp. 249–260, 1995.

[64] UNM, “University of New Mexico system call dataset,”
http://cs.unm.edu/∼immsec/systemcalls.htm, June 2007.

[65] Uppuluri, P. and Sekar, R., “Experiences with specification-based intrusion
detection,” in RAID ’00: Proceedings of the 4th International Symposium on
Recent Advances in Intrusion Detection, pp. 172–189, 2001.

[66] Vigna, G., Robertson, W., and Balzarotti, D., “Testing network-based
intrusion detection signatures using mutant exploits,” In Proceedings of the ACM
Conference on Computer and Communication Security (ACM CCS), pp. 21–30,
2004.

[67] Wagner, D. and Dean, D., “Intrusion detection via static analysis,” In Pro-
ceeding of IEEE Symposium on Security and Privacy, 2001.

[68] Wagner, D. and Soto, P., “Mimicry attacks on host-based intrusion detection
systems,” In Proceedings of the ACM Conference on Computer and Communi-
cation Security (ACM CCS), 2002.

149

[69] Wang, H. J., Guo, C., Simon, D. R., and Zugenmaier, A., “Shield:
Vulnerability-driven network filters for preventing known vulnerability exploits,”
In the Proceedings of ACM SIGCOMM, 2004.

[70] Wang, K., Parekh, J. J., and Stolfo, S. J., “Anagram: A content anomaly
detector resistant to mimicry attack,” Recent Advances in Intrusion Detection
(RAID), 2006.

[71] Wang, K. and Stolfo, S., “Anomalous payload-based network intrusion de-
tection,” In Recent Advances in Intrusion Detection, 2004.

[72] Wang, K. and Stolfo, S., “Anomalous payload-based worm detection and
signature generation,” In Recent Advances in Intrusion Detection, 2005.

[73] Weiner, P., “Linear pattern matching algorithms,” IEEE Symposium on
Switching and Automata Theory, pp. 1–11, 1973.

[74] Wu, S. and Manber, U., “Fast text searching allowing errors,” Communica-
tions of the ACM, vol. 35, pp. 83–91, 1992.

[75] Wu, S., Manber, U., and Myers, E., “A subquadratic algorithm for ap-
proximate limited expression matching,” Algorithmica, vol. 15, no. 1, pp. 50–67,
1996.

[76] Yetiser, T., “Polymorphic viruses: Implementation, detection, and protec-
tion,” Technical Report, VDS Advanced Research Group, 1993.

150

VITA

Prahlad Fogla is a doctrol candidate in Computer Science at Georgia Institute of

Technology. He received his BSc degree (2000) in Computer Science from Indian

Institute of Technology and an MSc degree (2003) in Computer Science from Georgia

Institute of Technology. His research interests include computer security and worm

detection.

151

