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SUMMARY

While there is an ever increasing adoption of e-sourcing, where a buyer auc-

tions off procurement contracts to a small group of pre-qualified suppliers, there is

a lack of understanding of the impact of dynamic bidding process on procurement

outcomes and bidding behavior. To extend the knowledge of this important issue, in

this thesis, we explore empirically the value of online procurement auction on cost re-

duction, quality management, and winner selection from the buyer’s perspective. We

also explore how incumbent status affects the procurement outcomes. From suppliers’

perspective, we characterize their bidding behavior and examine the effect of incum-

bent status on bidding. First, we collect detailed auction and contract awarding data

for manufacturing goods during 2002-2004 from a large buyer in the high-tech indus-

try. The rich data set enables us to apply statistical model based cluster technique to

uncover heterogeneous bidding behavior of industrial participants. The distribution

of the bidding patterns varies between incumbent and non-incumbent suppliers. We

also find that the buyer bias towards the incumbent suppliers by awarding them pro-

curement contracts more often and with a price premium. Next, focusing on recurring

auctions, we find that suppliers bid adaptively. The adaptive bidding is affected by

the rank of suppliers’ final bids: lower-priced suppliers tend to bid scarcely but ac-

tively in repeated auctions. Finally, with field data of procurement auction for legal

services, we demonstrate that service prices are on average reduced after dynamic

bidding events. Buyer’s cost savings are from both incumbent and non-incumbent

suppliers. Most interestingly, the cost savings are achieved without the sacrifice of

quality. Incumbent winners’ quality is higher, on average, than the quality of buyer’s

supplier base before the auctions, while non-incumbent winner’s quality is lower.

xii



These findings imply that the main value of online procurement auctions for business

services comes from incumbents in the form of reduced price and enhanced quality.

We find that after adjusting for incumbents’ higher quality, incumbent bias disap-

pears. Our results also imply that the buyer might possess important information

about the incumbents, through past experiences, that cannot be easily included in

the buyer’s scoring function due to uncodifiability (Levi, Kleindorfer, and Wu 2003).

Such information plays a key role in buyer’s winner selection decision, and explains

why the buyer sometime chooses one supplier over another ignoring the scoring rule.

The thesis contributes to the field of procurement and auction literature by enhancing

the understanding of the effects of dynamics bidding events and incumbent status,

suggesting various important factors that need to be considered in future research.
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CHAPTER I

INTRODUCTION

1.1 E-Sourcing and Procurement Auctions

E-sourcing, whereby an industrial buyer procures its direct and indirect inputs through

online reverse auctions from a small group of pre-qualified by-invitation only suppli-

ers, has been pushing the boundaries of extant auction theories as well as the “best

practices” of service providers ever since their emergence (Elmaghraby 2007; Pinker,

Seidmann, and Vakrat 2003). As an integrated part of a firm’s e-sourcing strategies,

online reverse auction is an effective tool for buyers to repeatedly purchase production

materials, to shorten the procurement cycle, and to achieve higher cost savings (Jap

2002).

Despite these benefits, there have been concerns in the adoption and usage of

Internet-based enabled procurement auctions due to a lack of understanding of its

execution and consequence. One of the criticisms of online reverse auction stems

from its bias towards the interest of the buyer. It is reported that long-term buyer-

supplier relationship gets damaged when the buyer emphasizes only the final prices

and let the auctions determine the winners (Engelbrecht-Wiggans and Katok 2006).

The pressure of lowering prices and the feeling of being exploited have created sup-

pliers’ resistance to participate (Jap 2002). To respond, software service providers

and buyers have been trying to design better auction mechanisms and include buyer-

specified non-price attributes, such as quality, delivery and payment term to compare

the relative strength of potential suppliers in contract awarding. However, there are

a few questions that remain unclear. First, do buyers discriminate against incumbent

suppliers or bias toward incumbents as documented in the government procurement

1



literatures? Answers to this question will not only help to mitigate suppliers’ re-

sistance in participating, but also help academia better understand the impact of

incumbency in online auction markets. Second, whether e-sourcing through online

reverse auction can achieve quality management has not been explored in depth due

to scarcity of business-to-business (B2B) auctions and contract awarding data. There

is also an urgent need to understand the value of online auction in managing supplier

quality. This is especially important with the increasing use of online procurement

auctions for complex business services, where service quality is a key determinant for

buyers to award procurement contracts.

Another key feature of online procurement auctions is their repetition, as they

are often conducted yearly or quarterly or even daily (Elmaghraby 2007; Pinker,

Seidmann, and Vakrat 2003). Recent analytical work on procurement suggests that

suppliers can learn about the market competitiveness by participating in procure-

ment auctions (Fevrier 2003; Jeitschko 1998). However, it is unclear whether supplier

learning indeed happens in practice. It also remains unknown whether and how in-

formation revealed after the auctions affect suppliers’ bidding behavior in subsequent

auctions.

Unlike business-to-consumer (B2C) and consumer-to-consumer (C2C) auction mar-

kets where auction rules and mechanisms are usually controlled and fixed by market

creators, B2B auctions empower industry buyers with the flexibility to specify various

auction parameters, such as reserve price, bid decrements and so on. More impor-

tantly, online reverse auctions allow the buyers to decide what information to reveal

to the bidders before, during and after the auction events. Such information reve-

lation rules, more than any other factors, seem to determine the ultimate success of

procurement auctions.1

1Source: Private communication with Norbert Ore, an industry expert in strategic sourcing.
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Together, the aforementioned unique characteristics of procurement auctions: in-

cumbency, repetition of auction events and supplier quality management, create a

complex setting that is far different from elegant theoretical underpinnings. With

such new challenges, rise new opportunities. Empirical analyses of valuable data

sets uniquely available from Internet auctions provide a critical first step towards

understanding the effects of online procurement auction design in order to build new

auction “theory about facts” and for “putting auction theory to work” as advocated

by auction theorists (Milgrom 2004). In the next section, we brief recent advancement

of relevant online procurement auction design.

1.2 Online Procurement Auctions Design

Within the last decade, online procurement auctions have quickly evolved from price

only auction design to more complicated mechanisms to improve allocation efficiency

and to achieve sourcing sustainability (Elmaghraby 2007). Driven by the growing

adoption of online procurement auctions, the literature on reverse auctions is also

growing. More sophisticated mechanism designs are proposed to facilitate and guide

business practice (Elmaghraby and Keskinocak 2003; Vries and Vohra 2003). Cram-

ton and Ausubel (2006) summarize most recent advances in procurement auction de-

sign. For the purpose of this thesis, we broadly categorize relevant procurement auc-

tion designs into three streams: (1) Price-only auctions; (2) Hybrid mechanisms, for

example auction plus post-auction bargaining or negotiation; and (3) Multi-attribute

auctions.

In price-only auctions, suppliers are allowed to bid on price alone. This stream

of work mainly focuses on mechanism design and characterizing equilibrium bidding

behavior. Milgrom (2000b) shows non-strategic bidding leads to competitive market

price when goods are substitutes. In a similar setting, Engelbrecht-Wiggans and

Kahn (2005) derive low-revenue equilibria that allow bidders obtain goods at prices

3



lower than competitive price. Although the results of these works are discussed within

the framework of simultaneous ascending-bid auction, they can be easily applied

to reverse auctions with similar rules. When industrial bidders are constrained by

capacity, Gallien and Wein (2005) introduce a “smart-market” mechanism that allows

bidders to adjust their bids and quantity based on current allocation.

Although theoretically sound, price-only auctions’ limitations due to their em-

phasis on short-term success were quickly realized by both buyers and procurement

service providers (Elmaghraby 2007; Jap 2002). To address, academic research pro-

poses varied mechanisms that combine both reverse auctions and post-auction events.

The purpose of such design is to maintain the price discovery feature of auctions, but

alleviate the price pressure on the suppliers (Engelbrecht-Wiggans and Katok 2006;

Salmon and Wilson 2005).

Along the same line, multi-attribute auctions have been gaining more attention

due to its ability to enable buyers to evaluate suppliers along diverse dimensions and

compare their relative strength. These so-called non-price attributes usually include

quality, delivery, payment terms and so on. Buyers are required to specify clearly

their preferences for the attributes and reveal them to the suppliers. Therefore, each

supplier has an index score on the basis of a buyer’s preference. Auction winners

are determined by price and suppliers’ score for the non-price attributes. Theoret-

ically, multi-attribute auctions would result in competitive bidding and allocation

efficiency (Asker and Cantillon 2006; Milgrom 2004; Carr 2003; Snir and Hitt 2003;

Milgrom 2000a; Milgrom 2000b). Multi-attribute auctions have been shown to be

effective and superior to price-only auctions, by increasing buyer’s cost savings and

supplier profits in laboratory experiments (Engelbrecht-Wiggans and Katok 2006;

Chen-Ritzo, Harrison, Kwasnica, and Thomas 2005). In practice, however, buyers

are reluctant to adopt the design due to uncodifiability and unobservability of non-

price attributes (Elmaghraby 2007; Dai, Narasimhan, and Wu 2005).
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Recently, there is a new stream of studies focusing on the so-called buyer deter-

mined auctions (Engelbrecht-Wiggans, Haruvy, and Katok 2006; Chen-Ritzo, Har-

rison, Kwasnica, and Thomas 2005; Silva, Dunne, and Kosmopoulou 2003). These

auctions are similar to the multi-attribute and scoring auctions in the sense that

quality is included in evaluating supplier bids. However, instead of submitting both

price and the corresponding quality level, bidders submit price only bids given the

quality assessment assigned by a buyer prior to the auction. This framework pro-

vides more realist models to abstract the prevalent procurement operations through

online reverse auctions. In general, the studies presented in this thesis belongs to

this framework. We contribute to the field by empirically investigate the effect of

online reverse auctions design on bidding behavior and procurement outcomes for

both manufacturing goods and complex business services. We also quantify the value

of incumbency in various settings. The next section presents the outline of research

projects this thesis.

1.3 Research Outline

The purpose of this thesis is to empirically investigate the effects of incumbent status,

learning and information revelation pertaining to B2B auctions on suppliers’ bidding

behavior and auction outcomes. Table 1 summarizes the outline of this dissertation.

The thesis begins with addressing a seeming puzzle in e-souring, that is, the ever-

increasing adoption of reverse auctions and related concerns about its potential dam-

age to long-term buyer-supplier relationships. Utilizing e-sourcing data of a major

high-tech buyer during 2002-2004, we empirically investigate the relationships among

incumbency, bidding behavior and auction outcomes. The unique data set not only

captures the entire auction history and bidder type (incumbent or non-incumbent

supplier), but also records critical e-sourcing events such as post-auction cost sav-

ings calculations and final contract awarding decisions. Bidding patterns exerted in
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the reverse auctions show that the distribution of bidding strategies is moderated

by incumbent status, which, in conjunction with bidding strategies, have significant

impacts on the auction outcomes. Specifically, we show that

1. At the contract level, suppliers’ final bids depend on incumbent status, bidding

strategies, and their interactions.

2. On average, incumbent winners provide lower cost savings for the buyer.

3. On average, incumbent suppliers are three times as likely to win a contract than

non-incumbent suppliers.

These findings demonstrate that e-sourcing through reverse auctions does not

necessarily damage long-term buyer-supplier relationships.

While auctions are treated as isolated events in Chapter 2, Chapter 3 focuses

on recurring procurement auctions where learning is possible. Econometric analyses

show that suppliers’ final bids at successive auctions are significantly affected by the

prior information learned (for example, suppliers’ rank orders and the lowest bid

price). Moreover, suppliers bid adaptively between auctions, that is, a supplier’s

bidding dynamics are different in successive auctions; such adaptive bidding behavior

is influenced by suppliers’ ordinal ranks acquired after auctions. The findings provide

initial evidence that by participating in earlier auctions, suppliers can learn important

information about the market competitiveness and the efficiency of their bidding

strategies.

Chapter 4 aims to quantify the value of incumbency and online reverse auctions

in procuring complex business services. To the best of our knowledge, it is the first

study that examines the impact of online auctions on both cost savings and quality

management. We find that prices are on average reduced after dynamic bidding

events. Buyer’s cost savings are from both incumbent and non-incumbent suppliers.

We do not find, however, that incumbent winners enjoy price premium compared to

6



non-incumbent winners. The cost savings are achieved without sacrificing quality.

Specifically, incumbent winners’ quality is higher, on average, than the quality of

buyer’s supplier base before the auctions, while non-incumbent winner’s quality is

lower. These findings imply that the main value of online procurement auctions for

business services come from incumbents in the form of reduced price and enhanced

quality.

The rest of the thesis is organized as follows. Chapter 2 describes the methodology

and results of the impacts of incumbent status and bidding behavior on auction out-

comes in procuring manufacturing goods. Chapter 3 gives the detailed research design

and results of supplier learning in repeated auctions. In the context of online reverse

auctions for legal services, Chapter 4 investigates the value of online procurement

auctions and revisit the issue of incumbent bias. Chapter 5 concludes.
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CHAPTER II

PROCUREMENT OF MANUFACTURING GOODS

Perhaps the most critical question for e-sourcing, whereby an industrial buyer pro-

cures its direct and indirect inputs through reverse auctions from a small group of

invited suppliers (Dai, Narasimhan, and Wu 2005), is whether this process damages

buyer-supplier relationships (Engelbrecht-Wiggans and Katok 2006; Beall et al. 2003;

Elmaghraby 2000). Skeptics of e-sourcing sustainability often argue that the price

pressures and sense of exploitation create resistance among suppliers (Jap 2002).

However, this criticism ignores non-price attributes, such as product attributes, qual-

ity, delivery, and buyer and seller types (Milgrom 2000a), that characterize and dis-

tinguish business-to-business (B2B) from consumer auctions. These attributes enable

a buyer to assess suppliers’ relative strength and play decisive roles, according to re-

cent procurement auction theories (Asker and Cantillon 2006; Milgrom 2004; Carr

2003; Milgrom 2000b). Such non-price attributes are often uncodifiable (Levi, Klein-

dorfer, and Wu 2003) or unobservable, which presents a major obstacle to test them

empirically. However, based on previous buyer-supplier relationship, we normally can

observe the identity of incumbent suppliers. The incumbent status reflects not only

the difference along various non-price dimensions, but also possible difference in the

information possessed by different suppliers (Luton and McAfee 1986).

Despite the vast literature pertaining to theoretically sound auction mechanisms,

few of these theories are used in business practice (Milgrom 2000b; Rothkopf and

Harstad 1994). Empirical investigations therefore provide a critical first step toward
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building new auction “theory about facts” and “putting auction theory to work” (Mil-

grom 2004 pp. 26 and pp. 1). In addition to their silence regarding non-price at-

tributes, traditional auction theories focus on the final (or equilibrium) bid but neglect

the dynamic bidding process that leads to it. Although research has begun to inves-

tigate Internet consumer auctions, specifically the impact of the consumer’s strategic

bidding behavior on final bid, seller revenue and auction design (for example, Bapna,

Goes, and Gupta 2004; Easley and Tenorio 2004), studies of online procurement auc-

tions remain rare (Elmaghraby 2007; Pinker, Seidmann, and Vakrat 2003), with the

exceptions of Snir and Hitt (2003), who examine online service procurement auctions,

and Mithas and Jones (2007), who study the impact of auction parameters on buyer

surplus. We are not aware of any previous studies that examine the impact of the

actual bidding behavior of industrial participants in e-sourcing. Prior to this study,

it has remained unknown whether industrial participants employ the same, if any,

bidding strategies in B2B auctions as those that appear in consumer auctions.

We collect a unique data set to address buyer-supplier relationships in e-sourcing.

We also develop a conceptual model of non-price attributes, bidding behavior, and

auction outcomes to apply to this data set. The e-sourcing data from a major buyer in

the high-tech industry during 2002-2004 has several advantages. (1) We can observe

information about a bidder’s type, that is , whether a bidder is an incumbent or a non-

incumbent supplier. This, in conjunction with other constructs such as relationship

and previous auction experience, enables us to proxy non-price attributes. (2) The

data cover the entire auction history, which enables us to study bidding dynamics

through cluster analyses, as well as the impact of bidding behavior on final bids. (3)

The post-auction data, showing the cost savings and final contract awarding, enables

us to link non-price attributes and bidding behavior to auction outcomes and thereby

empirically execute the conceptual model.
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This chapter has two key objectives: To study the bidding dynamics that char-

acterize the bidding behavior of industrial participants and their impact on auction

outcomes, and to examine the impact of non-price attributes on bidding behavior and

auction outcomes.

The institutional analyses shed light on the buyer-supplier relationships puzzle in

e-sourcing and supports theoretical arguments about the roles of incumbent status

in procurement auctions (Levi, Kleindorfer, and Wu 2003; Milgrom 2000a). The key

findings1 can be best illustrated by Figure 1. First, incumbent suppliers, indicated

by closed squares, win the majority (83.1%)2 of the contracts. Second, most points

located above the 45 degree line (for example, point A) with positive cost savings are

closed squares, which offers compelling evidence of the impact of incumbent status

on final contract awards. A point in this area (shaded light gray) means that the

non-incumbent supplier provides potentially higher savings (for example, 80% for

point A) than the incumbent supplier (for example, 30% for point A), though the

non-incumbent suppliers are not awarded the contract in most cases. Third, there

are rare cases such as point B, in which a non-incumbent supplier - indicated by an

open circle - wins the contract despite its lower cost savings to the buyer (less than

10% vs. more than 40% from incumbent supplier for point B)3. In this area (on or

below the 45 degree line with positive cost savings), incumbent suppliers bid equally

or lower than their counterpart non-incumbent suppliers. In addition, we observe

that the buyer sometimes awards contracts with negative savings (for example, the

lower left lined area of Figure 1), and in this specific case, exclusively to incumbent

1In the data, for each procurement contract, there is only one incumbent (or preferred) sup-
plier. We use this unique incumbent supplier in our pairwise cost savings comparison with the
non-incumbent (or non-preferred) supplier that submitted the lowest final bid. The horizontal x-
axis represents the percentage savings from a preferred supplier, and the vertical y-axis is that from
the non-preferred supplier that submitted the lowest bid.

2The estimated probability from the logit model is 95.9%.
3The interviews with the buyer reveal that such scenario is possible, for example, when the quality

of the incumbent supplier has dropped prior to the auction event.
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suppliers.

Figure 1: Impact of Incumbent Status (Preferred suppliers are incumbents. Non-
preferred suppliers are non-incumbents.)

2.1 E-Sourcing Process and Data

We interviewed and collected data from a major buyer in the high-tech industry

that has been using online reverse auctions and other IT tools for sourcing, and has

achieved more than $900 million in cost savings, in the past seven years. For example,

when the company procures direct materials for its digital video recorder product

line, it organizes necessary items such as memory chips and connectors into a single

auction event. The company specifies the quantity of each item and awards contracts

on an item-by-item basis. Contract awarding is not automatically determined by the

auction. Rather, the company manually awards contracts after the auction, taking
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into account non-price attributes such as quality, delivery, and payment terms. Thus,

each item is an independent contract,4 and the auction event consists of multiple

items that are not identical and usually have different values. Next, we describe the

key stages in the buyer’s sourcing business process as depicted in Figure 2.5

Figure 2: Sequence of Events in Buyer’s E-sourcing Process

2.1.1 E-Sourcing Process

2.1.1.1 Prequalification

Prior to an auction event, the buyer calculates a quality score for each supplier on

the basis of its past performance. The score is reported privately to each supplier,

along with its type (that is, incumbent or non-incumbent); only qualified suppliers

are invited to the upcoming auction event. Along with the quality score, suppliers

receive specification data for the procured materials, including drawings of the items,

material numbers, and performance specifications (for example, RFXs such as request

for information/proposal), two weeks prior to the auction event. The procurement

contracts usually have a one-year term.6

2.1.1.2 Auction

Each auction event consists of purchases of multiple items, though bids are not re-

quired for all items. Although the suppliers may bid partial demand, we do not

4For this reason, we use the terms “item” and “contract” interchangeably in this chapter.
5This e-sourcing process is typical; see the survey paper by Elmaghraby (2007).
6Pre-bids are optional for the participating suppliers. When a supplier submits a pre-bid before

an auction event, it serves as that supplier’s first bid when the auction starts.
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observe such behavior in the data set, which suggests supplier capacity does not ap-

pear to be an important issue in our data set. A bid decrement is required for each

new bid. Normally, the bid decrement is less than 1% of the item value, but it only

applies to the supplier’s own previous bid, not the current lowest bid.7 The auction

ends when there is no new bid for any item in the auction during a predefined “quiet”

period.8

2.1.1.3 Information Structure

During the auction, the buyer knows the identities of all suppliers, each and every

supplier’s submitted bid and the bid ranks for every item. However, a supplier only

knows its own rank and the current lowest bid for each item on which it has submitted

bids, as dictated by the Web-based procurement auction software. The supplier

continues to have access to the information even after it stops bidding, as long as it

refreshes the bidding screen from time to time. Suppliers do not know one another’s

identity or cost structure, nor do they know one another’s type (incumbent or non-

incumbent).

2.1.1.4 Contract Awarding

Contracts are awarded manually after the auction. Final bids are evaluated item

by item rather than for a bundle of items. After earning a procurement contract,

suppliers are paid an amount equal to their last bids. The buyer maintains and

updates its list of incumbent suppliers after the auction event, so a non-incumbent

supplier prior to the auction event may enter this list and become an incumbent

supplier; conversely, an incumbent supplier could be dropped from the list due to its

unsatisfying performance. The buyer incurs a switching cost if it changes incumbent

7For example, if supplier A’s last bid is $10, the current lowest bid is $8 and the bid decrement
requirement is $1, the supplier can submit $9 as its next bid, although $9 is still higher than the
lowest bid $8.

8The “quiet” period is usually 5 minutes or less, with unlimited extensions.
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suppliers, but this cost is unknown to the suppliers. After an auction event, the buyer

provides suppliers feedback, such as why suppliers were not awarded the contract.

We note the gap between auction practice and auction theory, as pointed out in the

recent survey of e-sourcing business practices by Elmaghraby (2007). In particular,

only partial rank information - namely, current lowest bid and a supplier’s own ordinal

rank - is revealed to each individual supplier over the course of the auction, provided

that the supplier bids. The situation is also complicated by the manual contract

awarding decision. The academic literature most similar to this study pertains to

multiple-item simultaneous descending auction with rank information - a mix of the

several models we review subsequently (Cramton and Ausubel 2006; Engelbrecht-

Wiggans and Kahn 2005; Parkes and Kalagnanam 2005; Harstad and Rothkopf 2000;

Milgrom 2000b).

2.1.2 Data

We collect two sets of data from the focal buyer: The procurement auction data set

and the cost savings analysis data set. These data record the online procurement

activities of the buyer during 2002-2004. The procurement data cover the entire

bidding history of each auction event, including auction number, supplier number,

item number, supplier name, bidding time, unit price, total price, and quantity of each

item. This data set includes the bidding details on 64 online procurement auction

events pertaining to the purchases of 652 items, in which 149 suppliers submitted

13,036 unique bids. Due to multiple participations by a single supplier, we have data

about 8,612 participations.

The cost savings analysis data set includes information about the incumbent sup-

pliers before and after the auction and their corresponding prices. It also contains

contract awarding information. Combining these two data sets results in a new data

set, such that for each item, we possess the incumbent suppliers’ identities and prices
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Table 2: Descriptive Statistics of Bidding and Awarding Data Sets

Bidding Data Set Bidding with Awarding
Number of auctions 64 36
Number of items 652 233
Number of suppliers 149 106
Number of participations 8,612 2,283
Number of unique bids 13,036 8,622

Table 3: Descriptive Statistics of Awarding Data Set

Mean Std. Dev. Min Max
Contract size (US Dollars) $148,097 $341,777 $390 $2,334,150
Number of items per auction 19.38 6.48 1 41
Number of items per supplier per
auction

13.54 6.80 1 26

Number of suppliers per auction 9.33 2.74 3 16
Number of suppliers per item 4.21 1.46 2 7
Number of bids per item 17.16 14.78 2 81
Number of bids per supplier 3.76 4.22 1 37

prior to and after the auctions.

To ensure a competitive bidding environment, we remove those items with only

one bidding supplier; thus, at least two suppliers compete for a contract. The final

combined data set covers the bidding history of 233 items from 36 auction events,

in which 106 suppliers submitted a total of 8,622 unique bids in 2,283 participatory

events. Tables 2 and 3 summarize these descriptive statistics.

2.2 Conceptual Model

2.2.1 Literature Review

Despite the vast literature on auction theory, few theories have been used in business

practice (Elmaghraby 2007; Milgrom 2000b; Rothkopf and Harstad 1994). We briefly

review those most relevant for the study.
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In a single, indivisible item English auction,9 in equilibrium, bidders with inde-

pendent value employ dynamic bidding strategies (Kamecke 1998). When bidding

is costless, a ratchet bidding strategy10 constitutes the equilibrium (Kamecke 1998;

Vickery 1961), and this equilibrium outcome is also Pareto efficient.11

Ordinal rank information, rather than actual bid price, plays a decisive role in the

framework of an affiliated value auction designed by Harstad and Rothkopf (2000),

who propose an alternating recognition model of English auctions12 based on work

by Milgrom and Weber (1999, 1982). In equilibrium, the bidders compete for the top

two places when they can.

Competitive bidding constitutes the equilibrium strategy for auctioning multi-

ple items simultaneously in ascending order.13 Such auctions have been used in the

Federal Communication Commission (FCC) auctions (Milgrom 2000b). This type

of competitive bidding often is described as straightforward or “non-strategic” bid-

ding (Engelbrecht-Wiggans and Kahn 2005; Milgrom 2000b).

Previous auction theory has little to say about the impact of non-price factors

9In an English auction, buyers bid openly (open cry) against one another. Each new bid must be
higher than the current highest bid by at least a predefined minimum bid increment. The auction
ends when no participant is willing to bid further, at which point the highest bidder pays the price
it bids.

10A ratchet bidder does not bid if it has made the highest offer; otherwise it outbids the current
highest offer by small steps up to its private valuation. This bidding strategy is known as myopic
or pedestrian bidding.

11In the sense that the bidder values the item most wins the auction/item.
12The Harstad and Rothkopf (2000) model has the auctioneer call out a price and ask bidders

to affirm. One affirming bidder is recognized randomly, and then the auctioneer asks for a higher
price to be affirmed by someone else. Having two affirming bidders, the auctioneer proceeds to raise
prices in small increments, alternating between the affirming pair. When one of the affirming pair
is no longer willing to affirm the current price, the auctioneer seeks a replacement from the rest of
the bidder pool. If the auctioneer cannot find a replacement for an existing bidder, the auction ends
with the goods awarded to the last affirming bidder at the last price affirmed.

13In such competitive equilibrium, a bidder bids straightforwardly: In the first round, it bids on
the set of goods for which its demand is greater than zero, it makes new bids in each following round
for the goods whose minimum bid price is lower than its valuation, such that the new bid equals the
minimum bid price. The minimum bid price is the sum of the highest bid from the previous round
and the minimum bid increment.
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and incumbency, with the exceptions of a few recent work in multi-attribute auc-

tions (Asker and Cantillon 2006; Parkes and Kalagnanam 2005; Milgrom 2004; Carr

2003; Snir and Hitt 2003; Milgrom 2000b). If the buyer specifies its preferences for

these attributes explicitly and accurately, the sellers should bid accordingly, which in

theory results in an efficient auction outcome. Although supported to some extent by

recent initial experimental evidence (for example, Engelbrecht-Wiggans and Katok

2006; Chen-Ritzo, Harrison, Kwasnica, and Thomas 2005), no previous study uses

actual e-sourcing data as we do in this chapter (see the call for empirical research in

Elmaghraby (2007)).

A major obstacle for such empirical investigations is that in reality the assumption

of specified buyer preferences for non-price attributes often breaks down for several

reasons. First, the buyer may not (or not want to) use well-defined scoring rules

to weigh various non-price attributes when evaluating bids. This may due to un-

codifiability (Dai, Narasimhan, and Wu 2005; Levi, Kleindorfer, and Wu 2003) or

strategic ambiguity (Elmaghraby 2007). Second, the non-price attributes of suppliers

are not fully available in the buyer’s data set (unobservability). We overcome these

difficulties by taking advantage of the data, with which we can observe the bidder’s

type and focusing on the impact of supplier type on bidding and auction outcomes.

Third, though theory has postulated the impact of bidder characteristics on final

bids, previous literature remains silent about how such characteristics affect bidding

dynamics.

2.2.2 Model Description

We develop a conceptual model to address the two research questions and illustrate the

conceptual model of incumbency, bidding behavior and auction outcomes in Figure

3.

First, we use a dummy variable Supplier type (I) indicates whether a supplier is
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Figure 3: Conceptual Model - Incumbency, Bidding Behavior and Auction Outcomes
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an incumbent or not. The variable takes a value of 1 if the supplier is an incumbent

and 0 otherwise. Second, we apply a new classification method, latent cluster (LC)

analysis to the archived bidding history data, along with the supplier type informa-

tion. This application enables us to study the actual bidding behavior of industrial

participants and classify their bidding strategies. We conjecture that due to informa-

tion asymmetry between incumbent and non-incumbent suppliers, firms should bid

differently. Finally, we measure the auction outcomes using three variables: Suppliers’

final bids, buyer’s cost savings, and contract award decisions. We examine the impact

of incumbent status on auction outcomes directly and, indirectly in conjunction with

uncovered bidding patterns.

Because procurement auctions often involve multiple-item auctions, We conduct

the analyses at both the item and the auction level. Next, we introduce the strategic

variables that we construct to abstract bidding behavior at these two levels.

2.2.3 Constructs

At the item or contract level, we construct the following variables to abstract each

supplier’s bidding behavior: Time of entry (ET c), time of exit (XT c), frequency (FR),

average magnitude of bid decrement (DE),14 and average ordinal rank (RN).15

Time of entry and time of exit are the times of a supplier’s first and last bids,

normalized by the duration of the auction of an item, such that 0 ≤ ET c ≤ XT c ≤ 1.

Frequency is the total number of bids a supplier submits for an item during an

auction. Bid increment represents an important aspect of bidding strategies, and

its magnitude has been used in empirical studies to capture the characteristics of

bidding behavior (Easley and Tenorio 2004). For procurement auctions, we construct

a similar variable, the average magnitude of bid decrement, to capture the change of

14Bid decrement represents the difference between a submitted bid and the current lowest bid.
15Only the ranks after a supplier submitted a bid are included in calculating the supplier’s average

ranks.
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each bid compared with the current lowest bid.16 Finally, competing for ordinal ranks

has become increasingly interesting (for example, Varian 2006a). In the setting, each

supplier knows its current rank among all competitors during the auctions, and the

current lowest bidder has the top rank, that is, rank one. To capture how suppliers

respond to the ordinal rank information they obtain over the course of the auction,

we construct an average ordinal rank variable, which averages a supplier’s ordinal

rank across all bids it submits for an item.

To test the robustness of the classified bidding strategies, we organize the con-

structs into two sets. The first set of constructs includes time of entry, time of exit,

frequency and average magnitude of bid decrement, whereas in the second set, we

substitute average magnitude of bid decrement with average ordinal rank and retain

the rest of the constructs. The findings from both sets are very similar, so we present

only the classification with the average ordinal rank.17

At the auction level, a supplier’s bid is defined as a vector of the bids submitted

for a set of items simultaneously per round. We construct time of entry (ET a) and

time of exit (XT a) at the auction level. Because the suppliers may start bidding for

an item as long as the quiet period has not ended, the number of items included in

a bid can be increased during an auction. Drawing on Gallien and Wein (2005) and

Milgrom (2000b), we construct two variables: Number of items included in the first

bid (NI) and number of items added (NA) to the set during the auction to capture

changes in the set of items.

16Unlike B2C auctions, where the changes are non-negative because of the institution rule, the
value of the construct can be either negative or positive. A negative value is caused by the bid
decrement rule, set by the buyer, which requires the suppliers to lower their bids against their own
bids but not necessarily against the current lowest bid. We calculate the decrement of each supplier’s
bid, divide it by the predefined minimum bid decrement, and average the amount across the total
number of bids the supplier has submitted to get the average magnitude of bid decrement.

17The results with average bid decrement are available upon request.
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2.3 Bidding Behavior

In this section, we describe the latent class analysis method we use for the classifica-

tion and present the findings.

2.3.1 Methodology

We employ a statistical model-based clustering technique called LC cluster analy-

sis (Vermunt and Magidson 2000) rather than the K-means cluster analysis routinely

used in B2C bidding. For the study, LC has several advantages over K-means cluster

analysis (Magidson 2002): (1) Variables do not need to be standardized, and the

assumption of zero correlations among variables within clusters (local independence)

can be relaxed, which not only enables a more realistic model but also decreases the

number of clusters; (2) Bayesian information criteria (BIC) and Akaike information

criteria statistics can be used to determine the optimal number of clusters; and (3)

it can be extended to include covariates to study the impact of external variables on

classification. This last feature of LC enables us to estimate the effects of supplier

type on bidding clusters.

The LC cluster model takes the following specific form:

f(Yi|θ) =
K∑

k=1

πk

J∏
j=1

fk(Yij|θjk) (1)

where Yi is firm i’s values on a vector of constructs. At the item level, the vector

is (ET c, XT c, FR, RN) and at the auction level, the vector is (ET a, XT a, NI,NA).

K is the total number of clusters, and πk denotes the prior probability of belonging

to cluster k. J denotes the total sets of correlated variables, and j is a particular set

of correlated variables.18 Thus, the distribution of Yi given model parameters θ, is

a mixture of class-correlation-specific densities fk(Uij|θjk). Drawing on literature on

B2C bidding (Bapna, Goes, and Gupta 2004; Easley and Tenorio 2004), at the item

18When local independence is assumed, J denotes the number of manifest variables and j a
particular variable.
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level, we correlate ET c with XT c, ET c with FR, and FR with RN . Similarly, at the

auction level, we correlate ET a with XT a , ET a with NI, and NI with NA.

To examine the effects of supplier type, we let Zi denote the type of supplier i

and modify equation (1) as follows:

f(Yi|Zi, θ) =
K∑

k=1

πk|Zi

J∏
j=1

fk(Yij|Zi, θjk) (2)

where πk|Zi
=

exp (αk + βkZi)∑K
k=1 exp (αk + βkZi)

(3)

Together, equations (2) and (3) imply two possible effects of supplier type on

bidding: On the distribution of K bidding patterns through the modification of the

probability of belonging to a certain class πk|Zi
(indirect effect) and on the condi-

tional mean of the constructs fk(Yij|Zi, θjk) (direct effect). For example, without

supplier type Zi, the classification is based solely on the values of the vector of the

construct (ET c, XT c, FR, RN). This method estimates θ, means and variances of

the constructs for each class k. Including Zi in the model, we regress each construct

and each class membership on supplier type. If the impact of Zi on a construct is

significant, we have evidence of a direct effect of supplier type. If any βk is signif-

icant, we have evidence that πk is affected by supplier type, such that it influences

the distribution of bidding behavior. We can compute the distribution of bidding

behavior for each supplier type by plugging in the estimated αk and βk for each class

k in equation (3).

We use the standard Vermunt and Magidson algorithm in the LC analysis software

package Mplus, which is essentially the maximum likelihood method to estimate θ, αk

and βk. We then select the best model on the basis of the log-likelihood (the higher

the better) and BIC (the lower the better).
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2.3.2 Findings

At the item level, we uncover five bidding patterns that we summarize in Table 4.

Column 2 to 5 in Table 4 shows the mean values of the bidding constructs of the

five bidding patterns. Non-strategic (labelled as B0) bidders enter an auction of an

item early, bid frequently while competing for the current lowest bidder rank, and

exit at the end of the auction. Early-evaluator (B1) bidders enter the auction at the

beginning and usually bid a couple of times, then quickly exit. Mid-evaluator (B2)

bidders enter near the middle of the auction, submit a couple of bids and exit about

halfway through. The average ordinal rank of Mid-evaluator bidders is 2.493 (with

1 being the lowest bidder), which suggests they usually do not compete for a top

rank. Opportunist (B3) bidders are similar to Early-evaluators in terms of bidding

frequency and average ordinal rank but they enter and exit the auction toward the

end.19 Participator (B4) bidders behave similarly to Non-strategic bidders except that

they bid less frequently (4.8 times vs. 18.9 times). These uncovered heterogenous

bidding patterns indicate a possible rich bidding strategy space that goes beyond

the equilibrium competitive bidding strategy. Although not explored in the current

study, the findings call for theory building to further investigate the determinants

of various bidding patterns. Our focus in this chapter is to present the existence of

heterogenous bidding patterns and explore how they are affected by incumbent status

empirically.

Splitting the data sample into two sub-samples of incumbent and non-incumbent

suppliers, we estimate αk and βk from equation 3.20 We find that the clusters remain

unchanged, but the distributions are moderated by incumbent status as we show in

Table 5 (Baron and Kenny 1986). Column 2 and 3 show the estimated αk and βk

19Opportunist (B3) bidders seem to follow something like the last-minute bidding strategy in B2C
auctions.

20Non-strategic bidding serves as benchmark strategy, where we set α = 0 and β = 0.
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as specified in equation 3. All αk are significant, while βB2 and βB3 are significant.

Therefore, the distribution of the bidding patterns is affected by the incumbent status.

The last two columns compute the distribution of the uncovered bidding strategies

among the two supplier groups. Furthermore, a two-way Chi-square test confirms the

difference in the distribution and demonstrates that except for Non-strategic bidding,

the proportion of the rest of the bidding strategies differs significantly between the

two supplier types.
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At the auction level, we identify four bidding strategies, which we summarize in

Table 6 in the same fashion as in Table 4. Information-seeking (A1) and Wait-and-see

(A2) suppliers bid on a small set of items, and rarely change the number of items

during the auction. They differ, however, in their entry and exit times: Information-

seeking bidders enter and exit early, whereas Wait-and-see suppliers wait until the end

of the auctions to enter. Adding-by-bidding (A3) and Non-strategic (A0) suppliers

stay longer in the auctions and bid more actively, but Adding-by-bidding suppliers

start with a small set of items and gradually increase that number, whereas Non-

strategic firms start with a large set of items and seldom add items over the course

of the auction. The distribution of these clusters is again mediated by supplier type,

as we show in Table 7.
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2.4 Incumbency, Bidding Behavior, and Auction Outcomes

The purpose of this section is to establish the impact of bidding behavior and incum-

bent status on auction outcomes. We start with describing econometric specifications

of the statistical analyses and then proceed to discuss the findings.

2.4.1 Econometric Specification

2.4.1.1 Item Level

We use two dependent variables to measure the auction outcomes: Suppliers’ Final

Bids and buyer’s Cost Savings. The latter is the buyer’s purchasing price prior to an

auction less the price after the auction. We standardize both variables by the buyer’s

previous purchasing price for the same contract/item. We use the following generic

equation to estimate the effects of incumbent status (I) and bidding strategies:

AuctionOutcome = α + β1I + β2R + β3E

+BiddingStrategyDummies + Controls + ε. (4)

By setting the dependant variable AuctionOutcome to be Final Bids and pooling all

suppliers, we estimate the driving factors for suppliers’ final bids. By setting the

dependant variable AuctionOutcome to be buyer’s Cost Savings and restricting the

analyses to winners only, we estimate the driving factors for the buyer’s cost savings.

To control for supplier experience and relationship between a particular supplier

and the buyer, we include two other variables as the independent variables: num-

ber of additional incumbent items (R) and number of previous participated auctions

(E). The number of additional incumbent items is the number of other items in the

same auction for which this supplier serves as the incumbent supplier and thereby

captures the relationship (R) between the supplier and the buyer. If the supplier is

the incumbent supplier for multiple items, it likely has a stronger relationship with

the buyer. Finally, the number of previous auctions refers to the total number of
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previous reverse auctions in which the supplier has participated, which captures the

supplier’s auction experience (E).

Drawing from previous literature on procurement auctions (for example, Mithas

and Jones 2007), we set the controls for both equations as follows: Number of suppliers

competing for a particular contract, total number of bids a contract receives, auction

length, previous purchasing price (or starting price) of the same contract/item (for

which we use the natural log that essentially measures the contract value), and total

number of contracts a supplier bids during the same auction (which controls for the

suppliers’ auction-level strategies).

We use logit models to analyze the relationship of non-price attributes and bidding

strategies on contract awarding. We estimate a supplier’s probability (p) of winning

the contract conditional on the incumbent status (I) and its bidding strategy, as

follows:

log
p

1− p
= α + β1I + β2R + β3E + BiddingStrategyDummies + Controls + ε. (5)

The control variables include the achieved cost savings, total number of suppliers

bidding for the contract, total number of bids received for a contract, auction duration

for a contract, and total number of contracts on which a supplier bid in an auction

event.

To shed lights on what is the key factor in buyer’s contract awarding decision,

incumbent status or low bid, we estimate the effect of incumbent status and lowest

bidder status by the following logit model:

log
p

1− p
= α + β1I + β2LowestBidderDummy + β3MarkupControls + ε. (6)

where LowestBidderDummy is a dummy variable whose value is 1 if a bidder is the

lowest bidder, 0 otherwise. Variable Markup captures the difference between a sup-

plier’s final bid and the lowest bid. It is normalized by the lowest bid.
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2.4.1.2 Auction Level

At the auction level, we obtain several variables as the basis for the econometric

model. At the auction-level, we use an aggregated variable to indicate incumbency:

TI, the total number of items in an auction event for which a supplier serves as the

incumbent supplier. We estimate the aggregated cost savings provided by a supplier

as:

AggregatedCostSavings = α + β1TI + β2E

+BiddingStrategyDummies + Controls + ε. (7)

The control variables are the total number of suppliers and auction duration.

Let q denote the probability that a supplier is awarded at least one contract,

conditional on its incumbent status and previous auction experience. We estimate:

log
q

1− q
= α + β1TI + β2E + BiddingStrategyDummies + Controls + ε. (8)

The control variables here are total cost savings aggregated at the auction level,

auction duration, total number of suppliers, and total number of contracts.

2.4.2 Impact of Incumbency and Bidding Strategy on Final Bids

We regress the final bid of each supplier for each item using equation (4) to estimate

the impact of incumbent status and bidding strategies on final bids at the item level.

We summarize the findings in Table 8. Due to space limit, we omit the coefficients

of control variables. However, as we expected, the coefficents are all in the right

directions.

Model I is the baseline model, with the robust ordinary least square (OLS) estima-

tor (Greene 2002) of incumbent status. It shows that, altogether, the three variables

I, R,E explain 10.2% of the variance (R2). Individually, incumbent status (I) has a

significant and positive effect on the final bid (0.0375, p < 0.01), such that incumbent
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suppliers’ final bids are 3.75% higher than those of non-incumbent suppliers, on av-

erage. Albeit with a much smaller magnitude, the relationship variable (R) has the

expected positive and significant effects (0.0022, p < 0.1). However, previous auction

experience (E) has a negative and significant effect on final bids, which may suggest

some supplier learning between auctions.21

Model II adds the bidding strategy dummies, and its results confirm those of

Model I, with an increased goodness of fit (R2) of 21.9%. Benchmarked against

Non-strategic bidders, Mid-evaluator’s final bids are the highest on average (0.2796,

p < 0.01), followed by Early-evaluator (0.1730, p < 0.01) and Opportunist (0.1078,

p < 0.05). The behavior of Participators does not have a significantly different

impact on the final bids, which is quite intuitive.22 Models III and IV verify the

robustness of the proxy by testing firm fixed and random effects (Wooldridge 2001),

respectively. The results are similar to those in Model II, while the goodness of fit

remains almost unchanged. This finding suggests that the proxy already reflects the

important difference among suppliers.

To test the interactions between supplier type and bidding strategies, we add

Models V (OLS with an interaction term), VI (supplier fixed effect), and VII (supplier

random effect). Although the results from Models V, VI, and VII are similar overall,23

Model VI is best according to a Hausman specification test. Incumbent suppliers’

final bids are lower than those of non-incumbent suppliers, when we control for the

Early-evaluator (B1) and Mid-evaluator (B2) strategies. Although the coefficient of

supplier type increases to 0.1263 (p < 0.05), it is not large enough to offset the negative

mediating effect (-0.1463 and -0.2228 for B1 and B2). For example: Benchmarked

against the final bids of non-incumbent suppliers using B0, the final bids of incumbent

21Further treatment of supplier learning behavior is entailed in the next chapter.
22Participators differ from the Non-strategic bidders only in their lower bidding frequency, but

what drives the final bid is whether the bidders compete for the top place, not how often they bid.
23Although a couple of coefficients in Model V are insignificant, they still are in the same directions

as those in Models VI and VII.
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suppliers using B2 are higher by 19.51% (p < 0.05),24 whereas the final bids of non-

incumbent suppliers employing the same bidding strategy B2 are higher by 29.16%

(p < 0.01). Therefore, the final bids from incumbent suppliers are lower, controlling

for B2. In contrast, incumbent suppliers’ final bids are higher, controlling for B0, B3,

and B4.

24This is obtained as follows: 0.1263 + 0.2916− 0.2228 = 0.1951.
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In summary, the final bids of Early-evaluator and Mid-evaluator bidders from

non-incumbent suppliers are among the highest; those of Non-strategic, Opportunist,

and Participator bidders from non-incumbent suppliers are the lowest. Incumbent

suppliers’ final bids fall somewhere in between. Any full account of suppliers’ final bids

must consider suppliers’ incumbent status, bidding strategies, and their interactions.

2.4.3 Impact of Incumbency and Bidding Strategies on Buyer’s Cost Sav-
ings

Restricting the investigation to winners, at the item level, we estimate the driving

forces behind buyer’s cost savings using equation (4) and summarize the findings

in Table 9. On average, incumbent suppliers provide less cost savings than non-

incumbent suppliers (-0.0592, p < 0.1, Model I), a result that is strengthened when

we add the bidding strategies dummies (-0.1182, Model II). On average, for each

contract, the cost savings from an incumbent supplier is lower than that from a non-

incumbent supplier by about 10% of the historical price. As for bidding strategies,

both Early-evaluator (-0.1315, p < 0.01) and Opportunist (-0.1045, p < 0.1) are

associated with lower cost savings than is Participator.25 Supplier fixed and random

effect models (Models III and VI) confirm these findings.

At the auction level, we estimate the impact of incumbent status and bidding

strategies on the buyer’s aggregated cost savings using equation (7). The results,

summarized in Table 10, are similar to those at the item level. Winners with more

incumbent items on average offer lower cost savings to the buyer. Furthermore, the

Adding-by-bidding strategy provides higher cost savings than the benchmark Non-

strategic bidding strategy.

25Among the winners for the 238 items, only 6 are Mid-evaluator bidders, and 17 are Non-strategic
bidders. Due to the small sample size of these two bidding strategies, we limit the item-level
bidding strategy space to Early-evaluator, Opportunist and Participator. Because the impacts of
Participators and Non-strategic bidders on the final bids are similar, we use Participator as the
benchmark for this analysis. Due to high correlation between supplier type (I) and the number of
additional items for which the supplier serves as the incumbent supplier (R), we drop the latter in
the regressions.
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Table 9: Impact of Incumbency and Bidding Strategy on Buyer’s Cost Savings: Item
Level
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Table 10: Impact of Incumbency and Bidding Strategies on Buyer’s Aggregated
Cost Savings: Auction Level

2.4.4 Impact of Incumbency and Bidding Strategies on Contract Award-
ing

We use logit models to analyze the relationship of incumbency and bidding strategies

on contract awarding using equation (5) at the item level and equation (8) at the auc-

tion level. In Table 11, we summarize the findings at the item level. All three variables

(I, R,E) are positive and significant, with incumbent status dominates. The findings

at the auction level are consistent, as shown in Table 12. Taken together, incum-

bent status is the key driver of contract awarding, compared with bidding strategies

and cost savings. We calculate the probability of winning a contract conditional on

supplier type on the basis of the coefficient of supplier type. At the item level, the

probability is 0.92 for incumbent suppliers and 0.27 for non-incumbent suppliers. At

the auction level, the probability for incumbent suppliers to win at least one contract

is 0.18 but only 0.07 for a non-incumbent supplier. We conclude, on average, that
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incumbent suppliers are approximately three times as likely to win a contract, ceteris

paribus.

Table 11: Logit Model of Contract Awarding at Item Level

Estimation of the logit model in equation (6) is summarized in Table 13. We omit

the coefficients of most control variables and only present the results relevant to the

independent variables. As shown in Column 2, both coefficients for incumbent status

and lowest bidder status are significantly positive. It is not surprising that these

two variables are key factors for the buyer when selecting winners. Interestingly, the

coefficient of incumbent status (β1 = 3.9562) is much larger than that of lowest bidder

status (β2 = 1.7936). Surprisingly, variable Markup is not significant. When we

remove LowestBidderDummy from the model, as shown in Column 3, the coefficient

of Markup is negative and significant. It seems that the effect of lowest bidder status
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Table 12: Logit Model of Contract Awarding at Auction Level
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is partially reflected by bidders’ markup.

Although these results show that the effect of incumbent status and lowest bidder

status are significantly different from zero, it does not give a sense of the economic

importance of these variables. The last column of Table 13 presents the marginal

impact of incumbent status vs. lowest bidder status. There are three main results

here. First, the marginal effects are not trivial. Second, the probability of winning

a contract is much higher to an incumbent than (71.4%) a lowest bidder (32.2%).

Third, together, incumbent status and lowest bidder status can almost fully justify

buyer’s contract awarding decision.

Table 13: Logit Model of Identifying Key Factors in Contract Awarding

2.5 Discussion

2.5.1 Bidding Strategies

In this study, we classify B2B bidding patterns and investigate the impact of such

bidding behavior on auction outcomes. At the item level, we uncover five strategic

bidding strategies, as well as four at the auction level. The findings are robust when

we substitute bidding strategy dummies for the original constructs.26 For example,

a supplier’s final bid is higher if the supplier enters the auction later but exits the

auction earlier; therefore, if a supplier stay active for a shorter period of time, its

26Due to space constraint, we report only the detailed statistics of the analysis on final bids. All
analyses are available upon request.
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final bids tend to be higher. If the supplier bids less frequently and targets a higher

rank, its final bids again are higher. We demonstrate in Table 14 that using bidding

strategies as dummy variables does not involve any loss of critical information but

rather enhances comprehensibility.

Table 14: Impact of Incumbency and Constructs of Bidding Strategies on Final Bid

At the auction level, B2B bidding strategies are much richer and more complex

than those in B2C auctions. For example, the combination of items and their bid

sequences are strategic choice variables in B2B but not in B2C auctions. At the

item level, though we find similar bidding patterns and use conventional names to

benchmark against consumer auctions, we create constructs that can capture the

details of industrial bidding. The study is exploratory in nature and the data set

is limited to a single industrial buyer. Every supplier in the data set always bids
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the full required quantity, which implies that the suppliers are constrained neither

by capacity nor budget (for example, Gallien and Wein 2005; Jofre-Bonet and Pe-

sendorfer 2003). Therefore, care must be taken in generalizing the findings to other

procurement auctions, such as those that entail constraints on supplier capacity.

2.5.2 Incumbent Status

The analyses provide novel evidence regarding the importance of non-price attributes

in e-sourcing. An alternative explanation of the difference in the final bids of in-

cumbent and non-incumbent suppliers, however, might refer to the so-called demand

reduction phenomena in B2B auctions (for example, Ausubel and Cramton 2002).

In multi-unit auctions, demand reduction exists when bidders that demand multiple

identical units have lower valuations for latter units. If the auction setting of the study

were static multi-unit auctions or if the auctions possessed a uniform price character

(for example, FCC auctions), demand reduction may offer an explanation. However,

as explained previously, each item in the auction is really an independent contract

(which usually has multiple units) and often has distinct values. Therefore, demand

reduction does not apply in the auctions we study, because they do not satisfy its

required conditions.

2.6 Concluding Remarks

We address a seeming puzzle in e-souring, that is, the ever-increasing adoption of

reverse auctions and related concerns about its potential damage to buyer-supplier

relationships. The findings suggest that e-sourcing does not necessarily damage buyer-

supplier relationships and offer important implications for auction modelers (building

new auction theory about facts), practitioners (put auction theory to work), and

software service providers (auction platform design).

For auction theorists, we provide novel evidence of firms’ bidding behavior and

its impact on auction outcomes. We uncover the bidding dynamics in B2B auctions,
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which previously had remained unknown. Cluster analysis reveals the heterogeneous

bidding behavior of the suppliers that compete for a single contract as well as through

the entire auction event. The study calls for new auction theories that consider

suppliers’ bidding strategies for auction design.

We also show empirically that incumbent status plays decisive roles in maintain-

ing buyer-supplier relationships. Incumbency affects the distributions of suppliers’

bidding strategies and, in conjunction with bidding strategies, significantly influence

auction outcomes, as measured by suppliers’ final bids, the buyer’s cost savings and

suppliers’ contract winning probabilities. First, incumbent status influences final

bids directly, as well as indirectly through the interactions between bidding strate-

gies and supplier type. Benchmarking against non-incumbent suppliers, at the item

level and controlling for bidding strategies, we find that the final bids of incumbent

suppliers are higher when they employ three of the five bidding strategies (that is,

Non-strategic, Opportunist and Participator) but lower when they use the other two

bidding strategies (that is, Early-evaluator and Mid-evaluator). Second, if we restrict

the investigation to winners, we find that buyer’s cost savings are less from incumbent

suppliers on average. Third, we find that incumbent status has a dominant positive

effect on contract awarding at both the item and the auction level. On average, in-

cumbent suppliers are three times as likely to win a contract. Furthermore, incumbent

status is more important than being the lowest bidder in winning a contract.

This study has some limitations. First, the data come from a single industrial

buyer, which uses the same set of rules for all its reverse auctions. Although this data

characteristic enables us to examine bidding behavior across auctions, it limits us

in examining the impact of various auction and information revelation mechanisms.

The latter represents a natural extension of the study that could provide important

insights to both practitioners and platform providers. Second, other than supplier
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type, non-price attributes that are not directly observable in the data might also in-

fluence the auction outcomes. This unobservability is a common challenge in studying

procurement auctions. However, including supplier experience and measurement of

relationship seems able to depict the key differences in non-price attributes among

suppliers reasonably well. Overall, we believe this study contributes to a new avenue

that aims to develop auction theory about facts, which in turn can be put to use to

define tomorrow’s best e-sourcing business practices.
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CHAPTER III

LEARNING IN REPEATED PROCUREMENT

AUCTIONS

3.1 Introduction

Repetition is a key aspect of online procurement auctions as they are often conducted

yearly, quarterly or even daily (Elmaghraby 2007). Repetition might alter both buy-

ers’ contract awarding decisions and suppliers’ bidding behavior, as Pinker, Seidmann

and Vakrat (2003) articulate:

An important element of B2B transactions is their repetition. Buyers

value quality and reliability as well as low prices. This means that there

might be a preference to send repeat business to suppliers who performed

well. Knowing this, suppliers in procurement auctions may bid low to get

first-time business with a buyer who will open the door to more lucrative

repeat business.

While we examine the impact of incumbent bias and therefore the effect of online

auctions on buyer–supplier relationship in the previous chapter, we turn our attention

to bidding behavior in repeated online procurement auctions and its determinants in

this chapter.

From the perspective of the buyers, auction literature has recognized that one of

the effects of repetition on procurement auctions: Buyers can learn about suppliers’

cost structures since a supplier’s bid reflects its own cost (Pinker, Seidmann, and

Vakrat 2003). For example, Beil and Wein (2003) propose a mechanism using inverse

optimization with which buyers can learn the suppliers’ cost functions by altering a bid
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scoring function in each round of an auction. From the perspective of the suppliers,

industry practice has noticed that online reverse auctions also help suppliers gain

market intelligence such as the number of competitors and market price depending

on the auction mechanisms (McCrea 2005). Buyers often times use such arguments

to encourage suppliers to participate in online procurement auctions.

While procurement auction theorists suggest that, by participating in sequential

auctions, suppliers may learn critical competitive information about their environ-

ment and react accordingly (for example Fevrier 2003; Jeitschko 1998), their predic-

tions are mixed, however. For example, Fevrier (2003) shows numerically that the

winner of the current auction should bid less aggressively than the losers in the sub-

sequent auction, contrary to the prediction of Luton and McAfee (1986). Luton and

McAfee (1986) propose an optimal sequential procurement auction design in which

the buyer discriminates against the winner of the first stage to induce more aggressive

bidding behavior of the winners. In a repeated auction setting, Arora et al. (2007)

characterize equilibrium mixed bidding strategies of bidders when facing an unknown

number of bidders. They find that, in equilibrium, if only the winner’s bid is revealed,

the winner of the first period auction bids less aggressively in the subsequent auction

due to underestimation of the number of competitors in the auction.

However, which of these predications can be supported empirically has not been

explored in depth. By analyzing auction data from an online B2B exchange market,

Mithas and Jones (2007) show that revealing bid rank during the auction increases

buyer surplus when incumbent supplers are present. Koppius and Van Heck (2003)

take an experimental approach to show that revelation of full information induces

competitive bidding behavior in the context of single shot auction games. It remains

unknown what the suppliers’ incentives are for repeatedly participating in reverse

auctions, especially for those non-winning suppliers (for example, Jap 2002). On

the other hand, although open reverse auctions are prevalent to business practice,
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auction theory has been silent about the bidding dynamics both within and between

auctions (Elmaghraby 2007). It is unclear whether suppliers learn how to bid or

they actually have a “short memory”.1 In sum, there is a pressing need of empirical

investigations of repeated online procurement auctions, both for theory building and

for practical applications.

To shed lights on these important questions, the objectives of this chapter are to

empirically investigate: (1) The impact of information learned - rank order and lowest

final bid - between successive auctions; (2) Whether suppliers bid adaptively between

two successive auctions; and (3) If suppliers alter their bidding strategies conditional

on the outcomes of early auctions, what the effect is for the buyer to reveal suppliers’

bid rank information.

Via a detailed institutional analysis of a unique set of real-world repeated pro-

curement auction data, we find that, first, lower-bid suppliers tend to reduce their

prices less aggressively compared to higher-bid suppliers in the subsequent auctions.

Second, the cost disadvantage of the higher-bid bidders cause their final bids to re-

main higher in the subsequent auctions. Third, suppliers bid adaptively between two

successive auctions. Finally, suppliers’ adaptive bidding behavior is conditional on

their bid ranks revealed after the early auctions.

3.2 Background and Hypotheses

3.2.1 Price Formation

There is a rich and growing theoretical literature on sequential auctions. Specifically,

there has been an increasing attention on the information transmission and learning

in recurring auctions (for example, Fehr and Riis 2003; Fevrier 2003; Jeitschko 1998).

The models studied in Von der Fehr and Riis (2003) and Fevrier (2003) are closer to

the sourcing and procurement process of this study. This process can be illustrated

1Source: Private communication with Norbert Ore, an industry expert in strategic sourcing.
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Figure 4: Sequential Procurement Auctions

in Figure 4. A buyer wants to procure Q units of a good in each of two periods. The

same set of N > 2 suppliers compete for the purchasing contract in both periods. Let

bi
t−1 and bi

t denote supplier i’s final bids in the two periods respectively. Assuming

there is no capacity or budget constraint in either period, we normalize Q = 1. At

the end of the first auction, suppliers know about their own rank orders ri
t−1

2 and the

lowest bid price bL
t−1.

Drawing from the aforementioned analytical analysis (Fevrier 2003; Fehr and Riis

2003), we make the following conjectures regarding suppliers’ final bids in the sequen-

tial auction setting:

Hypothesis 1 Compared to the lower-bid suppliers of the first period, the higher-bid

suppliers reduce their prices more aggressively in the second period.

However, theoretical work in procurement literature has suggested that incumbent

suppliers can achieve cost reduction through either strategic investment (for exam-

ple, Stole 1994; Farrel and Shapiro 1989; Riordan and Sappington 1989; Demski, Sap-

pington, and Spiller 1987; Rob 1986) or learning-by-doing (for example, Elmaghraby

and Oh 2006; Laffont and Tirole 1988; Anton and Yao 1987). Therefore incumbent

suppliers are more cost efficient and can afford to bid less aggressively. On the con-

trary, higher bidders of the first period miss out the chance of further reduce cost.

The bids of these suppliers should reflect this cost disadvantage. Our next hypothesis

summarize this conjecture:

2ri
t−1 = 1, 2, 3, 4, N with ri

t−1 = 1 represents the lowest bidder, that is, the highest rank.
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Hypothesis 2 Compared to the lower-bid suppliers in the first period, the higher-bid

suppliers’ final bids remain higher in the second period.

To test Hypotheses 1 and 2, we estimate the following econometric model:

log (bi
t/b

L
t−1) = α + β1r

i
t−1 + β2 log (bi

t−1/b
L
t−1) + β3Controls + εi. (9)

where log (
bi
t−1

bL
t−1

) is used to measure the difference between supplier i’s bid at auction

t−1 and the market price so as to overcome the issue that the purchasing contracts in

my data set are non-identical. If β1 < 0 is significant, we can conclude that supplier

i’s final bid bi
t in auction t decreases as ri

t−1 increases, therefore, Hypothesis 1 would

be supported. If β2 > 0 is significant, suggesting that supplier i’s final bid bi
t in

auction t increases as its bid bi
t−1 in auction t − 1 increases, Hypothesis 2 would be

supported.

3.2.2 Bidding Dynamics

To the best of our knowledge, there has not been any study on the changes in sup-

pliers’ bidding dynamics in repeated procurement auctions. However, a few studies

on B2C auctions have shown the difference in bidding behavior between experienced

and inexperienced bidders. Roth and Ockenfels (2006) attribute the discrepancy to

bidders’ learning of better bidding strategies that are associated with higher winning

probability and consumer surplus. Bapna et al. (2005, 2004) find that the distri-

bution of various bidding strategies observed at eBay auction site alters from 1999

data to 2000 data. Since the stake of B2B auctions is much higher than that of B2C

auctions, suppliers might have more incentives to learn about how to bid, and adapt

their behavior according to the enviornment. Therefore, we conjecture that:

Hypothesis 3 Suppliers bid adaptively between two successive auctions.

Hypothesis 4 Suppliers’ adaptive bidding behaviors are conditional on bid rank in-

formation (ri
t−1).
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We take a two-step approach to test these hypotheses. First, following the method

detailed in the previous chapter, we use four constructs to abstract bidding behavior

for the auctioning of a procurement contract: time of entry, time of exit, number of

bids and average rank order. We then apply LC cluster analysis to classify bidding

behavior.3 In the second step, we estimate a Latent Markov (LM) model to correct

measurement errors in the first step and more importantly, to estimate the transition

probabilities of bidding strategies in two successive auctions. The LM has the form

as shown in Figure 5. Let Bt−1 and Bt denote the vectors of the bidding strategies

in auctions t − 1 and t respectively. Let Rt−1 denote a dummy variable indicating

whether a supplier is among the top two bidders at the end of auction t − 1. The

joint distribution of the three variables πbtbt−1rt−1 can be decomposed into a set of

conditional probabilities:

πbtbt−1rt−1 = πbt−1πrt−1|bt−1πbt|bt−1rt−1 . (10)

Therefore πbtbt−1rt−1 can be estimated by specifying a set of logit models for the con-

ditional probabilities. Our focus is estimating the conditional probability πbt|bt−1rt−1 ,

which is the probability of bidding bt at auction t, given the supplier’s bidding strat-

egy bt−1 in the previous auction and the corresponding outcome rt−1. Using a logit

formulation, πbt|bt−1rt−1 can be expressed as:

log(
πbt|bt−1rt−1

1− πbt|bt−1rt−1

) = β1XBt + β2XBtBt−1 + β3XBtRt−1 + ε. (11)

where XBt is a vector of the bidding strategies in auction t; XIJ are vectors of the

combination of variable I and J . For example, XBtBt−1 is a vector of the combination

of bidding strategies at both auctions t−1 and t. With this a model, we can estimate

the changes in bidding behavior, and more importantly, the impact of the outcomes

of the first period on suppliers’ bidding behavior at the second period.

3The small sample size prevents us from using the strategic variables directly to form the dynamic
model, which is the main reason why we adopt a two-step method.
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Figure 5: Latent Markov Model with Rank Order Information

3.3 Data

The data set we used for this chapter is obtained from the same buyer in the high-

tech industry described in the previous chapter. These data record the procurement

activities of the buyer from year 2001 to 2004. There are 316 auctions in year 2001, 459

auctions in 2002, 487 auctions in 2003, and 189 auctions in 2004. The data set covers

the entire bidding history of each auction, including auction number, supplier number,

item number, supplier name, bidding time, unit price, total price and quantity for

each supply item, among others. From the data set, we select 227 purchasing contract

auctions with each one of them has been repeated for at least once. The average time

lag between two auctions is about 10 months, with a standard deviation of 7 months.

The longest time lag between two auctions is almost 3 years, while the shortest time

lag is a couple of days. Moreover, we remove the auctions that have less than 3

suppliers to fulfill the assumption of theoretical studies in the literature. In total,

69 suppliers bid repeatedly for a subset of these contracts. If a supplier bids in two

successive auctions, its bids from both auctions form one single data point. This

selection method results a sample of 693 data points for our empirical analyses.

3.4 Results

3.4.1 Rank Order and Lowest Bid

When testing Hypotheses 1 and 2, we control for the number of repeating suppliers

and other suppliers, as well as the year dummies. The results are presented in Table

15. Model I uses robust OLS estimator and excludes year dummy variables. The
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coefficients support both hypotheses 1 and 2. First, the negative coefficient for ri
t−1

(−0.0918, p < 0.01) indicates that when supplier i is one of the lower bidders, log
bi
t

bL
t−1

increases. In other words, supplier i’s price reduction in auction t is lower than

that of higher-bid suppliers. Furthermore, the positive coefficient for log (bi
t−1/b

L
t−1)

(0.0495, p < 0.1) implies that when supplier i is not cost efficient, that is, its bid is

much higher than the market price as signaled by bL
t−1, the bids of the supplier remain

to be higher in the subsequent auction t.

When we add year dummy variables (Model II), the coefficients of year 2002

and 2003 are significant but have opposite signs. At the same time, coefficient of

log (bi
t−1/b

L
t−1) is not significant anymore. It seems to suggest that the changes in

the industry have a stronger impact. Furthermore, the number of repeating suppliers

is not significant. On the other hand, an increase in the number of other suppliers

drives down suppliers’ bids. To test the robustness of the results of Model I and II,

we estimate the unconstrained version of the two models in Model III and IV. Results

of these models are consistent. In sum, the results support the two hypotheses on the

final bids in repeated auctions.

Table 15: Regression of Price Ratio on Rank Order and Lowest Bid
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3.4.2 Adaptive Bidding Behavior

The first step reveals five bidding strategies that are consistent with the findings in

the previous chapter, namely, Non-strategic bidding, Participator, Early-evaluator,

Mid-evaluator and Opportunist. The discovered strategies formed the set of bidding

patterns for Bt and Bt−1.
4

Utilizing the results from the first step, we next estimate the LM model following

the method in Vermunt et al. (1999). Figure 6 shows the estimated transition proba-

bilities without the effect of auction outcome Rt−1 from the LM analysis. Each arrow

in Figure 6 indicate the probability of suppliers switching from one bidding pattern

in auction t− 1 to another in auction t. The most interesting finding of this analysis

is the behavior of a Participator. The probability of a Participator in auction t − 1

to retain the same bidding behavior in auction t is approximately 44% (p < 0.05).

Compared to the probabilities to switch to other bidding patterns, a Participator

is most likely to retain the same bidding strategy in the second auction event. We

show in the previous chapter that a Participator is more likely to win a contract

compared to other bidding strategies. Therefore, the high probability transition we

obtained is reasonable given the high probability of earning the contracts. By the

same token, Early-evaluator, Mid-evaluator, and Opportunist bidders, when they are

the non-winning bidder of the current auction, tend to switch to be a Participator in

the next auction event, to increase the probability of winning the deal.

So far, the LM analysis reveals initial evidence of changes in bidding behavior

in sequential procurement auctions. However, it is silent in terms of whether the

adaptive bidding behavior is driven by the information suppliers learned from the

first auction. Next, we restrict our attention to this by including the coefficients of

XBtRt−1 . Specifically, we compute the transition probability conditional on the auction

4Due to their sparseness, Non-strategic bidding is dropped in the second step.
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Figure 6: LM Model Analyses Reveal Evidence of Adaptive Bidding Behavior

outcome Rt−1, as shown in Table 16. Each row represents the bidding strategy at

auction t − 1 and two possible outcomes: being a high ranked supplier (lowest two

bidders) vs. a low ranked supplier (higher-bid bidders). Each column represents a

bidding strategy at auction t. All the transition probabilities presented in Table 16 are

statistically significant, suggesting that whether being a high or low ranked supplier

after auction t− 1 drives suppliers’ adaptive bidding behavior between auctions.

Table 16: Transition Probability Mediated by Rank Order

We depict these transition probabilities graphically in Figure 7 and 8 respectively.

Figure 7 presents the transition probabilities when the suppliers are the lowest two
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bidders of an auction. Figure 7 demonstrates the probabilities of changing bidding

patterns when the suppliers are not the lowest two bidders. There are two main

results from these estimations. First, when suppliers are the lowest bidders of an

auction,5 they tend to become a Participator in the second period. For example, an

Early-Evaluator from the first period has a probability of 39% to be a Participator,

which is the highest transition probability for an Early-Evaluator. An Opportunist

from the first period has a probability of 49% to be a Participator. This is somewhat

surprising comparing to B2C auctions. Roth and Ockenfels (2006) show that more

experienced bidder at auction website such as eBay tends to bid at the last minute,

rather than increasing bids gradually throughout the duration of the auctions. Bapna

et al. (2004) provide additional support for this finding in their study. One of the

reasons that we observe different results in the B2B auctions could be the high stake

of procurement contracts. When the stake is high, winning the auction and secure a

long-term contract could be more important than short-term gains. Once a supplier

learns that its cost structure is competitive in the market place given the results of the

first period auction, he might have more confidence to compete and bid in subsequent

auctions.

The second result is that we do not observe a strong tendency to become Partici-

pators for non-winning suppliers. It could be that these suppliers are still searching

for their optimal bidding strategies. Taking together, we conclude that the LM model

provide evidence of suppliers’ adaptive bidding behavior in successive auctions. Over-

all, it seems that winning suppliers tend to become Participators.

5According to our interview with industry experts, the two lowest bidders have the highest
probability of winning a contract. Therefore, resulting in the lowest two ranks can be seen as a
proxy of winning a contract.
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Figure 7: Transition Probability of Lower Bidders

Figure 8: Transition Probability of High Bidders
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3.5 Discussion

An important feature of online reverse auction is that the buyers determine what

information suppliers can access before, during and after auctions (Elmaghraby 2007).

In other words, buyers control what information can be revealed to the suppliers.

The more information about the market a buyer reveals to the suppliers, the more

suppliers can learn about their competitive environment through participating in the

online reverse auctions. Although academic research has shown that full disclosure

of information encourages more competitive bidding behavior (Arora et al. 2007;

Koppius and Van Heck 2003), buyers are often times very hesitate to reveal crucial

information such as supplier identity or final bids of all suppliers in practice. The

hesitation might be driven by avoiding potential collusion behavior of the suppliers.

Instead, buyers usually reveal partial information such as the lowest bid and/or the

rank order of a supplier’s bid, during and after the auctions. Anticipating partially

revealed information, supplier should update their bidding strategy upon receiving

new information about the market in repeated procurement auctions (Arora et al.

2007; Pinker et al. 2003). Our purpose in this study is to empirically investigate

how partially revealed information affect price formation of the auctions, as well as

suppliers bidding behavior in repeated auctions.

With a unique set of repeated procurement auction data, this chapter verifies that

suppliers can learn market information by participating. Specifically, we find that

suppliers adjust their bids in subsequent auctions after the buyer reveals the lowest

bid and suppliers’ own bid ranks. Learning has two effects. First, upon knowing it

as a cost efficient supplier compared to the competitors, the supplier would reduce

its bid less aggressively in the successive auction. Second, higher-bid supplier are

unable to bid as competitively as the cost efficient suppliers in the second period. We

also contribute to the field by examining the adaptive bidding behavior of suppliers,

which has not been explored in depth in the literature. Our LM model provides
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evidence that suppliers modify their bidding dynamics conditional on their bid ranks.

In general, winners of the first period have a high probability to exert Participator

bidding behavior in the second period. We attribute this result to suppliers’ newly

gained confidence in their cost structure through the feedback of the market.

The study has unavoidable limitations. First, due to the small sample size, we

cannot include more information revealed by the buyer in the LM model to separate

and compare the driving factors of suppliers’ adaptive bidding behavior. Second, we

do not possess contract awarding data for all the auctions in the data set. To resolve

this issue, we use whether a supplier is one of the two lowest bidders to approximate

contract awarding. A more complete data set would allow us to examine directly

how suppliers respond upon winning a contract. At its current stage, the focus of

this study includes only suppliers who have participated in repeated auctions. We

do not know how the existence of short-term suppliers would influence learning. A

natural extension is to compare the behavior of short-term suppliers with return-

ing suppliers to investigate whether learning by participating yields any advantages

for, and how, if at all, the number of short-term suppliers influences the effects of

learning (Elmaghraby 2005).
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CHAPTER IV

PROCUREMENT OF COMPLEX BUSINESS SERVICES

4.1 Introduction

According to a recent CAPS research study (Beall et al. 2003), more than 35% of

firms with a spend of over $100 million now use online reverse auctions for their

procurement operations. Initially, online procurement auctions find most applica-

tions in purchasing manufacturing goods. Dynamic auctions have been reported to

provide double-digit savings totaling to more than $300 Million annually (Hannon

2004). Upon gaining experience and success, firms are seeking to apply online reverse

auctions to many other areas such as complex business services and capital goods.

For example, a survey conducted by A.T. Kearney (2006) shows that 16.1% of the

expense of large financial institutions falls into the indirect spend category. Cost of

professional services takes the greatest portion, 4.6%, within the indirect category.

Professional services is a vast category with many subcategories such as marketing

consulting, insurance, legal services and so on. Its unstructured cost function and

information put challenges to sourcing professional services through online auctions.

However, when conducted appropriately, firms can achieve an average annual savings

of 9.8% (A.T. Kearney 2006). Perhaps the best case of procuring professional services

through online reverse auctions is General Electric’s (GE) sourcing for legal services

practice.1 GE Commercial Finance (CF) division uses law firms for over $300 million

business annually. Initiated in 2003, the CF division started to focused on increasing

1We are extremely grateful to Charles Kirol from General Electric (GE) Commercial Finance, the
key originator behind GE’s Competitive Bidding Process. We are thankful for his time, enthusiasm,
and insightful discussion. This study would not have been possible without his support and generous
provision of the thoroughly documented data.
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the value of legal services by reducing service costs and strengthening its strategic

relationship with a smaller number of law firms through a “Competitive Bidding

Process”. According to GE,

“The Competitive Bidding Process is designed to facilitate selection

of pre-qualified legal service providers for specific types of legal services

ranging from litigation to transactional matters.”

GE’s bidding process is unique and innovative. First, GE’s internal lawyers who

represent all of the CF business units identified 34 areas of legal services that will

be included in the bidding process. A bidding event, identified as a “Competitive

Bidding Room”2 , is designed for each area of legal services. GE next proceeded to

invite qualified law firms to participate in each bidding room to compete in a dynamic

bidding event for a two-year period contract. The most eminent strategy of GE’s

bidding process is its winner selection procedure. Law firms are informed that the

selection will be based upon quality considerations such as specific personnel, relevant

experience, and availability, as well as economic considerations such as suppliers’ bid

price and capability to comply with GE’s transaction related policies.

Following the pioneering strategy of GE, many other large firms have started

to apply online bidding events to complex business services sourcing. For example,

SUN Microsystems used dynamic bidding events for sourcing for legal service, busi-

ness process outsourcing and so on, with an annual total contract value over $1.4

billion (Serrato 2006). Given the large contract value of business services and the

increasing trend of applying dynamic auctions for sourcing, it is crucial for firms to

understand the effect of the dynamic bidding process on both cost reduction and

supplier/service quality management.

2In this study, we use auctions and bidding rooms interchangeably to refer to one dynamic bidding
event.
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Another unique feature of procuring business services is the concern of incumbent

effect. In government procurement, there is strong evidence in the literature suggest-

ing buyer’s bias towards the incumbent suppliers (Silva, Dunne, and Kosmopoulou

2003; Greenstein 1993). Incumbents are awarded production contracts more often

and receive a premium compared to non-incumbent winners. However, incumbent

bias presented in online procurement auctions does not seems to be as strong as

documented in the traditional government procurement literature. On the contrary,

incumbent suppliers are found to be reluctant to participate in the auctions, citing a

fear of price pressures and sense of exploitation (Beall et al. 2003; Jap 2002). With

a data set of procurement auctions for manufacturing goods, Zhong and Wu (2006)

show that although incumbent firms are awarded production contract three times as

non-incumbent firms, the price premium incumbent firms receive is not as large as

in the government procurement. The source of the observed incumbent bias comes

mainly from the non-trivial switching cost incurred by the buyers when switching sup-

pliers (Zhong and Wu 2006; Silva, Dunne, and Kosmopoulou 2003; Greenstein 1995;

Greenstein 1993) and the cost advantage that incumbents can obtain from learning-

by-doing (Elmaghraby and Oh 2006). In manufacturing and product development,

switching cost can be affected by factors like system compatibility, relationship spe-

cific investment in technology, and buyer’s cost to evaluate new suppliers. In the

procurement of business services, however, many of these factors are absent. There-

fore, whether incumbent bias is still prevalent remains unclear. In this study, we

utilize the data from GE’s bidding events for legal services to address the issue of

incumbent bias and the value of online reverse auctions. Specifically, we probe the

impact of incumbent effect and provide a novel explanation. The value of online

auctions is evaluated through measuring achieved cost savings and supplier quality.

To summarize, in this chapter, we attempt to shed lights on the following research

questions:
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• Do reverse auctions drive firms’ cost savings in the category of business services?

• Can the cost savings be achieved without sacrificing quality?

• What is the impact of the incumbent status?

The rest of the chapter is organized as follows. Section 2 reviews relevant litera-

ture. Section 3 describes GE’s dynamic bidding process and data in detail. Section 4

develops hypotheses and methodology. Section 5 presents statistical results. Discus-

sion is offered in Section 6.

4.2 Literature Review

In recent years, an increasing body of research has been developed to provide bet-

ter understanding of procurement operations through online dynamic auctions. El-

maghraby (2007) offers an overview of current practices in industry. Rothkopf and

Whinston (2007) provides a summary of the current landscape and future research

opportunities on e-Auctions for procurement. In the following, we review related

studies in procurement auction literature that consider the sources of incumbent bias

and impact of such bias on procurement decisions and outcomes.

The vast amount of theoretical work in the procurement literature has suggested

that incumbent advantage can exist because of strategic investment or learning-by-

doing. Therefore, buyers incur non-trivial switching cost if they select the non-

incumbent suppliers. Essentially, switching cost is the main factor that buyers award

incumbents contracts more frequently and with higher contract prices. For example,

Riordan and Sappington (1989) show that second production source has limited value

when the incumbent investment improves the project value to the buyer in the fu-

ture. On the contrary, Demski et al. (1987) examine the potential gains from a second

supply source when the costs of the incumbent and the second source are correlated.

They find that it maybe optimal to select the second source if its cost disadvantage
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is not excessive. Explicitly considering switching cost, Cabral and Greenstein (1990)

and Li and Debo (2005) study the impact of switching cost on buyer’s supplier se-

lection decisions. Elmaghraby and Oh (2006) include the effect of learning-by-doing

in their two-stage model to compare the trade-off between staying with the incum-

bent and second sourcing. They show that the expectation of cost reduction through

learning as an incumbent induces suppliers to shade their bids in the first period,

while the opportunity to participate in the second period give suppliers the incentive

to inflate their bids. Literature in auction theory provides a framework of opti-

mal mechanism design and bidding in the presence of incumbent and non-incumbent

bidders.3 For example, Maskin and Riley (2000) characterize bidding strategies in

asymmetric auctions where some firms are systematically more efficient than others.

Luton and McAfee (1986) propose a two-stage sequential auction model with possible

learning between the two stages. The optimal auction design induces the buyer to

discriminate against the winner of the first auction in the latter stage. Therefore, the

winner of previous auctions have to bid more aggressively in order to win the sec-

ond auction. To incorporate quality consideration which is prevalent in procurement

auctions, Che (1993) proposes a multidimensional auction model where bidders are

evaluated by both submitted bid price and quality level.

Although theoretical work in incumbency has been prolific, empirical investiga-

tion of incumbent bias in depth has been very scarce. Exceptions include Green-

stein (1993), De Silva, Dunne and Kismopoulou (2003), and Bajari, Houghton and

Tadelis (2007). Utilizing the data from federal computer procurement, Greenstein (1993)

finds that incumbent is, not surprisingly, more likely to be selected as the winner of the

supply contract. However, this probability is affected by the compatibility of a buyer’s

3For a thorough review of the relevant theoretical literature, see Klemperer (2000, 1993), Milgrom
and Weber (1999, 1982), McAfee and McMillan (1987). For a review of structural empirical models
of auctions, see Athey and Haile (2006).
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installed base and the future system. De Silva, Dunne and Kismopoulou (2003) com-

pares the bidding behavior of incumbent and new entrant firms in government road

construction auctions. Following the framework of asymmetric model of auctions,

they find that new entrant firms bid more aggressively and win with lower bids. Ba-

jari, Houghton and Tadelis (2007) examine the bidding behavior of suppliers in pro-

curement auctions of highway construction contracts. They point out that adaptation

cost - the cost related to contract renegotiation, dispute resolution and disruption of

planned production - is significant in highway construction projects. In anticipating

adaptation costs, bidders raise their bids by $6.36 beyond each expected loss of $1.

Their work implies that adaption cost plays a key role in choosing between renego-

tiating with incumbent suppliers or using competitive bidding mechanisms. Most of

existing empirical study focus merely on price formation in procurement auctions,

ignoring the importance and existence of quality consideration in both theory4 and

industry practice (Elmaghraby 2007). Using an experimental approach, Jap (2003)

demonstrates the existence of incumbent bias in online auction markets. To our best

knowledge, Lalive and Schmulzler (2007) is the only empirical paper using field data

to explore the impact of procurement auctions on ex post quality. They find that,

comparing with traditional negotiation mechanisms, the frequency of service on pas-

senger railway lines in Germany is significantly improved when the service providers

are selected through competitive bidding.

In the Information Systems literature, a few studies address the issue of incumbent

bias. Snir and Hitt (2003) note significant portion of non-awarding auctions in an

exchange market. They suggest that many buyers might use auctions to gather price

information in order to negotiate with their incumbent suppliers. Utilizing real-world

procurement auction data and contract awarding record, Zhong and Wu (2006) find

4Asker and Cantillon (2006), Milgrom (2004), Che (1993), Dasgupta and Spulber (1990), and
Anton and Yao (1987) all propose auction models where both price and quality are considered in
winner selection and bidding

64



that incumbents are three time as likely to win a manufacturing contract as the non-

incumbent suppliers, while enjoying a small amount of price premium compared to

non-incumbents. These studies seem to suggest that, often times, incumbent is the

winner in online auctions (Elmaghraby 2007). In a repeated auction setting, Arora et

al. (2007) characterize mixed bidding strategies in equilibrum while bidders face an

uncertain number of competitors. They find that, in equilibrium, if the winner’s bid

is the only revealed bid, the winner of the first period auction bids less aggressively

in the subsequent auction due to underestimation of the number of competitors in

the market. In the spirit of Greenstein (1993), Chen and Forman (2006) identify and

measure buyer’s switching cost in procuring local area network equipment.

Several gaps in the existing literature are noticeable. First, in general, empirical

studies that quantify the incumbent advantage in the context of online procurement

auctions is scarce. Second, within the limited empirical work on procurement auc-

tions, government procurement and procurement of manufacturing goods are the main

focuses. With the increasing use of online auctions for procuring business services in

the private sector, how they are, if at all, different from previously studied environ-

ment and product categories is unclear. Finally, majority of the literature only focus

on price competition in the procurement operation. In practice, quality assessment

is believed to be a crucial dimension in online procurement auctions (Elmaghraby

2007). However, how switching suppliers will affect quality or how concerns of quality

will affect buyer’s supplier selection decision is rarely investigated. We complement

recent theoretical and experimental work on characterizing bidding behavior in online

procurement auctions where a buyer’s utility is determined by both price and supplier

quality (Engelbrecht-Wiggans et al. 2006; Kostamis et al. 2006; Chen-Ritzo et al.

2005). While bidders are treated as identical in the absence of incumbent status to

stylize the auction design, it is important to provide empirical evidence of incumbent

bias in order to build more realistic and generic models. From the point view of online
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procurement auctions for business services, in this chapter, we explore the existence

of incumbent bias and quantify the value of online reverse auctions in cost reduction

and quality management.

4.3 Dynamic Bidding for Legal Services

The buyer’s in this study has an aggressive goal to conduct competitive bidding for

legal services where appropriate. The ultimate goal is to create a “short list” of

approved law firms for various service categories and geographic regions that must be

considered for all service work for the contracted period of time.

GE has a unique e-Procurement process that can be described as follows. The

procurement team and the lead internal lawyers first specify the expertise levels for

each legal service category, for example real estate and bankruptcy. An auction is

organized for each category. Only pre-qualified suppliers are invited to the auctions

and are informed in advance that they will be evaluated based on both economic

and quality considerations. Therefore, being the lowest bidder does not ensure being

selected into the “short list”. The suppliers are also informed that multiple winners

will be selected, or to be on GE’s “short list” of suppliers. However, selected suppliers

do not know how many billable hours they will get for their services. The winners

do know that they have the probability to get actual contracts from GE at certain

future time during the contract years.

GE uses a dynamic reverse auction mechanism to induce competitive bidding for

their legal services. Suppliers are required to bid the hourly rate for the pre-defined

expertise levels. The total bid, or the “blended rate” as referred by GE, of a supplier

is the sum of the hourly rate for different expertise levels the supplier submits. The

final total bid is used to compare and rank suppliers’ prices. If a supplier is selected

and used, it will be paid the amount equal to its final bid. During an auction, GE

conceals suppliers’ identity, and only makes a supplier’s current bid rank and the
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lowest bid visible to the suppliers. Each auction starts with a short initial period of

about fifteen minutes with unlimited extension periods. This period is automatically

extended when there are new bids submitted in the last five minutes. The auctions

ends when there are no new bids arriving for any expertise level. The lowest bid of

the auction is revealed to all suppliers, though the identity of the lowest bidder is not.

Suppliers also know their final standing of the bidding process.

4.3.1 Scoring Rules and Stated Preference

The most distinct and innovative element of GE’s procurement strategy for legal

services is its consideration of both economic and quality factors. Economic con-

sideration reflects that each law firm will be assigned an economic score based on

financial considerations with respect to the relevant legal service category. Quality

considerations, on the other had, refer to the fact that GE also assigns a legal score

to each supplier assessing their non-economic performance. The economic score and

the legal score are weighted equally in obtaining a supplier’s final composite score.

In this section, we describe in detail, the component of these scores and how they are

used by GE to select winning suppliers.

The economic score has two components: bid rank and sourcing rate. Bid rank is

merely the rank of each supplier’s final bid. Sourcing rate is the scoring established

during the Request for Information (RFI) stage prior to an auction. The rating is

based on suppliers’ self-reported answers to a set of GE’s questions regarding payment

terms, pricing policy and invoice policy. It essentially captures various transaction

related issues. Lastly, the economic score is the weighted average of Bid Rank (95%)

and sourcing rate (5%).

The legal score also consists of two elements: Expertise, Efficiency and Capacity

(EEC) score and legal rating. EEC score captures the following quality measurements:

• Experience, market knowledge, expertise and efficiency of specific personnel
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• Law firm’s depth and support resources with respect to such personnel

• Law firm’s capacity to handle volume of work for the relevant business units

• Law firm’s ability to interface well with customers and GE

GE’s internal lawyers are responsible for assigning EEC score to the suppliers

based mainly on GE’s past experience with the law firm such as firm reputation,

historical performance, internal stakeholder recommendation and experience, trans-

action experience and firm resume. Legal rating captures considerations such as law

firm’s ability to represent GE without numerous potential conflict situations and their

full compliance with the GE Company Outside Counsel Policy. Although the score is

also assessed by GE’s internal lawyers, it is mainly based on law firms’ self-submitted

documentation and firm resume. Therefore, comparing to EEC score, legal rating is a

more subjective measure of quality. Similar to the computation of economic score, the

legal score is the weighted average of EEC score (85%) and legal rating (15%). The

final composite score is the sum of the economic score and the legal score. Table 17

summarizes the description of all four components of the composite score.

Table 17: Components of Composite Score
Name Description

Economic Score Bid Rank Suppliers’ final bid ranks.
Sourcing Rate A score established through RFI, captur-

ing transaction related policies such as
payment term, pricing and invoice policy.

Legal Score Expertise, Efficiency
and Capacity

GE internal lawyer’s efficiency assessment
established before auctions based on the
suppliers’ reputation, past performance,
transaction experience, and so on.

Legal Rating A score assigned by GE internal lawyer,
measuring legal aspect such as full com-
pliance with the GE Company Outside
Counsel Policy.

All four scores are designed in a way such that a lower score indicates a superior

supplier. For example, if there are two suppliers, A and B. Supplier A’s Bid Rank is

68



5, Sourcing Rate is 1, EEC score is 1 and Legal Rating is 10. Therefore, according to

the scoring function, supplier A’s economic score is 4.8 (5× 0.95 + 1× 0.05) and its

legal score is 2.35 (1 × 0.85 + 10 × 0.15). Unlike supplier A, supplier B’s Bid Rank

is 1, Sourcing Rate is 5, EEC score is 10 and Legal Rating is 1. Thus, supplier B’s

economic score is 1.2 (1×0.95+5×0.05) and its legal score is 8.65 (10×0.85+1×0.15).

We can conclude that based on GE’s assessment, supplier B’s final bid is lower than

supplier A’s. Supplier B’s overall economic consideration is also better than supplier

A. However, supplier A’s quality of service exceed supplier B given supplier A’s lower

legal score. Adding the economic score and legal score together, firm A’s composite

score is 7.15, which is lower than that of firm B, 9.85. According to GE’s scoring

rule, firm A is a better supplier comparing to firm B. When selecting winners, firm

A should be preferred over firm B.

The suppliers are fully aware of the design and the purpose of these scores. They

know that all the aforementioned factors will be considered by the buyer when select-

ing winners. However, they do not know their individual scores or the scores of their

competitors at any moment during the entire procurement process. Although sup-

pliers’ score is the main point of discussion during winner selection process, it is not

necessary that suppliers with lower composite scores are guaranteed to be awarded

the contract.

4.3.2 Data

We use online bidding data of 34 auction events for legal services conducted by GE

at the end of year 2003. The selected suppliers will collectively handle all of GE’s

legal work for a two-year period starting in January 2004. This contract term has

been further extended to 2007. In total, these contracts cover 95% of GE CF’s legal

services needs during the three year period.

Before the application of dynamic bidding process, suppliers offer hourly rates
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for each of their expertise levels. The hourly rate was applied to all legal services

categories defined by GE. The data set includes the before-auction rates and actual

billable hours each incumbent supplier received in year 2003. Since suppliers are

requested to submit bids for the required expertise levels in different auctions, their

hourly rates for the same expertise could vary for different auctions.5 The data set

includes the new hourly rates after the auctions. However, the actual billable hours

to the selected suppliers are unavailable. We also have the access to the detailed

scoring result of each invited supplier, including the individual value of their Bid

Rank, sourcing rate, EEC score, legal rate, as well as the economic score, legal score,

and the final composite score calculated given GE’s scoring rule. The data set also

includes the identity of the winners in each bidding room. Table 18 shows a brief

descriptive statistics of these auctions.

Table 18: Descriptive Statistics
Mean Std. Dev. Min. Max

Number of Suppliers 14.00 7.10 7 37
Number of Winners 4.17 1.34 1 7
Number of Bids 67.73 44.20 10 235
Duration (in minutes) 49.93 13.94 24 92
Final Bids (hourly rate) $316.33 $104.78 $120.00 $695.00

4.4 Hypotheses and Methodology

4.4.1 Hypotheses Development

Surveys based on industry practice has consistently reported firms’ cost reduction

from around 5% to 25% after applying dynamic bidding events to sourcing process (El-

maghraby 2007; Beall et al. 2003; Jap 2002). The estimation of existent empirical

investigation on online procurement auction markets concur with the outcomes of the

survey (Mithas and Jones 2007; Zhong and Wu 2006). Our first hypothesis extend

5If the discrepancy between the hourly rates is too significant, GE will discuss it with the suppliers
after the auctions.
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the existing findings to the context of procurement of business service.

Hypothesis 5 Legal service hourly rates, on average, are reduced after the dynamic
bidding process.

Empirical studies on government procurement shows that buyer often times bias

towards incumbent suppliers due to significant switching cost. When incumbents

are awarded procurement contracts, they also receive a price premium compared to

the non-incumbent winners (Silva, Dunne, and Kosmopoulou 2003; Greenstein 1993).

Although incumbent suppliers are cited to be very skeptical about participating in

online reverse auctions (Beall et al. 2003; Jap 2002), empirical study on procurement

auctions for manufacturing goods provides evidence of incumbent bias (Zhong and

Wu 2006). Our next hypothesis postulate that similar incumbent effect can be found

in procurement auctions for business services.

Hypothesis 6 Cost savings from non-incumbent winners are higher than that from
incumbent winners.

As we described in detail in Section 3, GE utilizes a sophisticated scoring function

to assess both the economic and quality performance of the suppliers. One main

purpose of designing a scoring rule is to have a standardized approach to compare

suppliers’ quality of service. Although limited empirical study shows that service

quality is higher when suppliers are selected through bidding process comparing with

traditional negotiation mechanisms (Lalive and Schmutzler 2007), according to an

industry survey (Beall et al. 2003), many firms suspect that cost savings through

online auctions can be achieved without sacrificing product or service quality. In this

study, we conjecture that:

Hypothesis 7 Quality of the supplier base decreases after the dynamic bidding pro-
cess.

Separating incumbent suppliers from non-incumbent suppliers, literature is not

clear about which type of suppliers have higher quality. On one hand, through work-

ing closely with a buyer, incumbent suppliers have the opportunity to improve their
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operational efficiency, and thus achieve better performance (Laffont and Tirole 1988;

Luton and McAfee 1986). On the other hand, new entrants may possess new tech-

nology or innovative business process that enable them to potentially outperform

incumbent suppliers. Which of the two predictions can be supported by empirical

data is unknown. Our next hypothesis postulates that:

Hypothesis 8 On average, the quality of incumbent winners is higher than the qual-
ity of non-incumbent winners.

A third dimension in evaluating the incumbent effect is buyer’s winner selection

decision. Our data show that among the 142 winners across the 34 auctions, 97

are incumbent firms (68.3%). Existing literature on procurement auctions provides

strong evidence that buyers award contracts more often to the incumbent due to

the so-called “lock-in” effect of incumbency (Elmaghraby and Oh 2006; Zhong and

Wu 2006; Greenstein 1995; Greenstein 1993). The phenomenon is mainly attributed

to non-trivial switching cost that the buyers might incur when contract with new

suppliers. However, many of the sources of switching cost in manufacturing and

product development, such as compatibility of the future system with the existing

establishment (Chen and Forman 2006; Greenstein 1993) and strategic investment

in capacity and technology of incumbent firms (Farrel and Shapiro 1989; Riordan

and Sappington 1989; Farrel and Gallini 1988), do not apply to the application of

procurement auctions for business services. Whether the incumbent effect that has

been studied previously can be extended to the current setting is unclear. To shed

light on this question, our last hypothesis aims to test incumbent effect on contract

awarding.

Hypothesis 9 The buyer is more likely to reverse its stated preference in order to
select incumbent firms as winners.

In other words, we conjecture that GE favors the incumbent suppliers by awarding

them contracts more often even if an incumbent’s composite score is higher than the

suppliers who are not selected.
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4.4.2 Methodology

A challenge imposed by the data set is the unavailability of the actual billable hours

after the bidding events. In absence of this information, we are not able to compute

the exact cost savings after the auctions. Instead, assuming the billable hours in year

2003 are acceptable approximations of the service hours billed to the winners after

auctions, we compare the hourly rate before and after the bidding events in order

to estimate the cost savings. We also assume that the hourly rates incur an annual

inflation rate of 5%.6 Lastly, the small sample size of the data set limits the possibility

of econometric analysis. Non-parametric estimation is used for our hypothesis testing

and statistical inference when the sample size is small (Wooldridge 2001).

4.4.2.1 Measuring Cost Savings

To test Hypothesis 5, we first calculate the average hourly rates across all expertise

levels before and after the auctions for each bidding room. We apply the assumed

5% inflation rate to the average hourly rate in order to obtain the three-year average

cost savings. Two sample t-test is applied to the three-year average hourly rate and

the auction rate to evaluate whether the difference between before and after auction

hourly rates is significant or not. If the difference is significant, we have evidence to

support Hypothesis 5. Next, in order to test Hypothesis 6, we separately calculated

the average hourly rates of the incumbent winners and the non-incumbent winners

and apply t-test to assess whether the two types of suppliers provide significantly

different cost savings.

4.4.2.2 Measuring Quality

We test Hypothesis 7 by comparing four measures before and after the auctions:

average sourcing rate, average economic score, average legal score and average overall

6The industry estimation of the inflation rate is usually between 6% to 14%. Our assumption is
therefore conservative.
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score. Bid Rank is excluded since it is not a measure of quality. The averaged scores

reflect the overall quality of the supplier base before and after the auctions instead

of the performance of any individual supplier. To test Hypothesis 8, we separately

calculate the average scores of the incumbent winners and the non-incumbent winners

in order to analyze whether the change in the quality of the suppliers is consistent

between the two types of suppliers.

4.4.2.3 Measuring Incumbent Effect

Our rational to test Hypothesis 9 can be described as follows. First, assuming that the

scores are objective assessments of suppliers’ performances, if the buyer does not favor

either incumbent suppliers or non-incumbent suppliers, it should strictly follow its

stated preference when selecting auction winners. In other words, we should observe

that given any pair of suppliers with only one of them being the winner, the winning

supplier should have a lower composite score (reflecting better overall performance).

It should not matter whether the pair of suppliers are both non-incumbents, both

incumbents, or a mixed pair of non-incumbent and incumbent. If the buyer does

not follow the stated preference strictly, we can derive its revealed preference (Varian

2006b; Samulson 1938) based on the final contract awarding choices. If the buyer

treats the incumbents and the non-incumbents equally, the buyer’s revealed preference

over economic score and legal score should be consistent given any pair of suppliers. If

the buyer’s winner selection decision deviates from the speculated behavior, we have

evidence to support Hypothesis 9.

Next, focusing only on the cases where the stated preference is not followed, we

evaluate whether the preference is reversed due to quality or due to price considera-

tion. And whether such consideration is affected by incumbent status.

We start our analysis by forming four groups of suppliers. Each group consists of

paired suppliers with only one of them being the winner. However the Bid Rank of
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the winner is higher than that of the other supplier. Putting it in other words, the

final bid of the winner is higher between the two suppliers. The four groups differ in

the types of suppliers included in each pair. We define group A as the group with

paired non-incumbent suppliers; group B with paired incumbent suppliers; group C

with one incumbent and one non-incumbent supplier in the pair when the incumbent

is the winner; group D with one incumbent and one non-incumbent supplier in the

pair when the non-incumbent is the winner. The grouping of suppliers is summarized

in Table 19. This step sets the foundation for us to examine the difference in buyer’s

revealed preference and winner selection decisions when facing non-incumbent versus

incumbent suppliers.

Table 19: Groups of Paired Suppliers
Group ID Types of Suppliers Included in Each Pair

A Non-incumbent only
B Incumbent only
C One non-incumbent, one incumbent (Incumbent is the winner)
D One non-incumbent, one incumbent (Non-incumbent is the winner)

Given the four groups, we examine the following questions to test Hypothesis 9.

1. Does buyer’s revealed preference match its stated preference as expressed in its

scoring rule?

2. If the revealed preference does not match the stated preference, how often are

the stated preference reversed? Does the frequency of preference reversal differ

significantly among the four groups of paired suppliers?

3. Do the revealed preferences imply an emphasis on quality or price?

4. Does the revealed preference differ significantly different among the four groups

of paired suppliers?
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4.5 Results

4.5.1 Price

For each auction, we calculate the average hourly rate across all suppliers and all

expertise levels specified for the auction. Before the auctions, we calculate the average

hourly rate of incumbent suppliers; after the auctions, we calculated the average

hourly rate of the newly selected suppliers. These two measures are listed in column

2 and 3 in Table 20. Column 4 of Table 20 is the percentage savings given the average

auction hourly rate before and after the auctions. T -test indicates that the difference

between the average hourly rate before and after auction is not significant (p = .1553).

Assuming a fixed 5% inflation rate for three years, the last column of Table 20

shows the three-year average savings in percentage. On average, legal service pro-

curement through auctions achieved 12% cost reduction per year. T -test shows that

the cost savings is significant (p = .0000). Therefore, Hypothesis 5 is supported.

There are auctions in our data set that only award incumbents, while the rest

award both incumbent and non-incumbent suppliers. On average, the three-year

average savings is 10.4% for auctions that award the incumbents only; and it is 13.3%

for auctions that award the both types of suppliers. However, the difference in the

savings is not significant (p = .5165). Next, we focus on the auctions that awarded to

both incumbent and non-incumbent suppliers. A comparison of the average auction

hourly rate from incumbent winners and non-incumbent winners shows no significant

difference, with a 11.3% cost savings from incumbents and 12.3% cost savings from

non-incumbents. These results do not support Hypothesis 6.

4.5.2 Quality

To test Hypothesis 7, we compare the average sourcing rate, average economic score,

average legal score and average composite score of the supplier base before and after

auctions. These scores, according to their definition, measure firms’ performance
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Table 20: Cost Savings after Auctions
Auctions Rate before Rate after Savings 3-year Average

Auctions Auctions Savings*
Aviation Equipment $390.11 $344.28 11.7% 19.9%
Bankruptcy Midwest $261.39 $239.44 8.4% 16.8%
Bankruptcy National $457.30 $437.43 4.3% 13.2%
Bankruptcy NE $278.42 $243.31 12.6% 20.7%
Bankruptcy SE $285.70 $237.87 16.7% 24.4%
Bankruptcy SW $284.27 $228.94 19.5% 26.9%
Core Loans - Central $287.45 $354.43 -23.3% -11.9%
Core Loans - East $358.03 $345.45 3.5% 12.4%
Core Loans - National $380.87 $407.45 -7.0% 2.9%
Core Loans - West $355.37 $421.28 -18.5% -7.6%
Energy M&A $463.36 $393.22 15.1% 23.0%
Energy Pro Fin $443.65 $328.79 25.9% 32.7%
Equipment Mid West $227.99 $224.46 1.5% 10.6%
Equipment National $341.81 $407.35 -19.2% -8.2%
Equipment NE $265.88 $264.09 0.7% 9.8%
Equipment SE $275.02 $246.59 10.3% 18.6%
Equipment SW $257.30 $227.14 11.7% 19.9%
Equipment West $268.30 $249.13 7.1% 15.7%
Industrial $404.53 $347.12 14.2% 22.1%
M&A Asset Stock Acq. $449.98 $379.91 15.6% 23.4%
M&A Portfolio Purchase $307.69 $339.05 -10.2% 0.0%
New Money DIP $393.08 $438.30 -11.5% -1.2%
Real Estate Mid West $296.78 $265.35 10.6% 18.8%
Real Estate NE $330.73 $270.47 18.2% 25.8%
Real Estate SE $312.58 $268.39 14.1% 22.1%
Real Estate SW $321.78 $266.56 17.2% 24.8%
Real Estate West $344.51 $321.00 6.8% 15.4%
Receivable Financing $289.23 $350.06 -21.0% -9.9%
SIL $373.50 $315.07 15.6% 23.4%
Sponsor Finance $354.46 $413.02 -16.5% -5.8%
Tax Credit Deals $322.43 $325.19 -0.9% 8.4%
Tax Exempt $280.91 $267.86 4.6% 13.4%
Telecom $302.01 $338.84 -12.2% -1.8%
Trade Receivable $308.14 $371.25 -20.5% -9.4%
Average $331.60 $319.94 3.1% 12.0%
p-value 0.1553 0.0000
* Assuming 5% Inflation Rate
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along the quality dimension.

As shown in Table 21, Column 2 is the average scores of the incumbent firms

before the auctions. Column 3 shows the average scores of the selected winners after

auctions. Comparing these scores before and after auctions, we find that all the

average scores decrease after auctions, suggesting improvement in supplier quality.

However, only the reduction in economic score (from 6.29 to 4.70), which largely

reflects the ranking of the final bids, is significant. Therefore, it is not surprising

that the decrease in composite score is also significant since it is merely the sum of

economic score and legal score. This finding further confirms Hypothesis 5, which

states that the prices are reduced after auctions.

Next, we separate non-incumbent winners from incumbent winners. Column 4

in Table 21 lists the average scores of incumbent winners, while Column 5 has the

average scores of non-incumbent winners. Comparing with the average scores before

auctions in Column 2, the changes in average sourcing rate in Column 4 and 5 are

not significant. Similar to the value in Column 3, the average economic score of

incumbent winners (in Column 4) and that of non-incumbent winners (in Column 5)

are significantly lower that the average economic score before auctions.

Interestingly, unlike pooling incumbent winners and non-incumbent winners to-

gether, the average legal score of incumbent winners is significantly lower than that

before auctions (2.83 compared to 3.32, p < .1). On the other hand, the average legal

score of non-incumbent winners is significantly higher than that before auctions (4.24

compared to 3.32, p < .1). Moreover, we find that incumbent winners’ composite

scores is significantly lower than the average composite scores before the auctions

(7.75 compared to 9.46, p < .01). However, there is no significant difference between

the average composite score of non-incumbent winners and that of before the auctions

(8.85 compared to 9.46). These results imply that the majority gain of procuring legal

services through auctions is from the incumbent firms. On one hand, the quality of
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selected incumbent firms is on average higher than the quality of the firms before auc-

tions. On the other hand, the prices of the incumbent winners are significantly lower

than the price before auctions. Including non-incumbent firms seem to have created

a competitive environment that induces incumbent firms to lower their prices. Al-

though the quality of non-incumbent winners is not as high as incumbent firms, their

low prices ensure that their overall performance measured by the composite score is

comparable to the incumbent firms before the auctions. Therefore, Hypothesis 8 is

supported.

Table 21: Quality Measures of the Supplier Base Before and After Auctions
Average Scores Before Auctions After Auctions Incumbent Non-Incumbent

Winners Winners
Sourcing Rate 3.78 3.68 3.84 3.52
Economic Score 6.29 4.70*** 4.92*** 4.61***
Legal Score 3.32 3.30 2.83* 4.24 *
Composite Score 9.46 8.01*** 7.75*** 8.85
N 34
Note: * p < .1 ** p < .05 *** p < .01

4.5.3 Winner Selection

We find 62 pairs of firms for group A, 32 pairs of firms for group B, 86 pairs of firms

for group C and 13 pairs of firms for group D. Figure 9 and 10 plots the composite

scores of the lower bidder (x-axis) vs. the composite score of the winner (y-axis) of the

paired suppliers for the four groups. On the plots, the dots marked by “*” indicate

the cases where the buyer follows its stated preference by awarding the contract to

the supplier with lower composite score. On the contrary, the dots marked by “+”

are the cases where the winner’s composite score is higher than the lower-bidder’s

composite score, indicating that the buyer’s revealed preference does not match its

stated preference.

Table 22 summarizes the percentage of cases where the buyer’s revealed prefer-

ence does not match its stated preference. We notice that group A has the lowest
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Figure 9: Comparison of Composite Scores of Paired Suppliers in Group A and
Group B. (“+” indicates stated preference is not followed; “*” indicates stated pref-
erence is followed.)
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Figure 10: Comparison of Composite Scores of Paired Suppliers in Group C and
Group D. (“+” indicates stated preference is not followed; “*” indicates stated pref-
erence is followed.)
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Table 22: Buyer’s Stated Preference vs. Revealed Preference
Group A: Group B: Group C: Group D:
Non-Incumbent Incumbent Mixed Pairs Mixed Pairs

(Incumbent (Non-incumbent
Wins) Wins)

Number of Pairs 62 32 86 13
Number of Violations 15 11 25 8
Percentage 24.2% 34.4% 29.1% 61.5%

percentage (24.2%), followed by group C (29.1%), group B (34.4%). Interestingly,

when a non-incumbent is selected over an incumbent supplier, the buyer ignores the

scoring rule even more frequently (with a high percentage of 61.5%).

Next, we conduct chi-square test for proportions to investigate whether the per-

centages presented in Table 22 are significantly different between any two groups. The

p-values of the test are listed in Table 23. Row 2 and row 3 of Table 23 suggests that

there is no significant difference between group A and B, group A and C, or group B

and C. In other words, we do not find the evidence that the buyer would violate the

scoring rule more often in order to select incumbent firms over non-incumbent firms.

Table 23: Chi-Square Test for Proportions
A: Non-Incumbent B: Incumbent C: Mixed Pairs

(Incumbent Wins)
B: Incumbent 0.2957
C: Mixed Pairs 0.3299 0.6096

(Incumbent Wins)
D: Mixed Pairs 0.0079 0.0945 0.0373

(Non-Incumbent Wins)

In order to further explain why the revealed preference does not follow the scoring

rule and, when it happens, whether the buyer evaluates incumbent firms and non-

incumbent firms differently, we concentrate only on the cases where the scoring rule

is not enforced. Specifically, we compare the economic score and legal score of the

paired suppliers to investigate which attribute is more important, price or quality.

Figure 11 plots the economic score (in x axis) and the legal score (in y axis) of the

paired suppliers for the non-incumbent only (group A) and the incumbent only (group
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B). Figure 12 plots the scores for the paired suppliers in group C and D. The two

ends of the curve indicate the paired suppliers, with the end marked by “+” as the

winner. The lines travel from upper left to bottom right indicate that the winner is

selected due to better quality, that is lower legal score but higher economic score. We

refer to these cases as “quality over price” choices. In contrast, the lines travel from

bottom left to upper right indicates that the winner is selected due to better price,

that is, lower economic score but higher legal score. We refer to these lines as “price

over quality” choices.

Figure 11: Revealed Preferences of Group A and Group B. (“+” indicates a winner.)

It is apparent that “quality over price” choices are dominant among all four groups.

We apply binomial test to the proportion of “quality over price” cases for group A,
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Figure 12: Revealed Preferences of Group C and Group D. (“+” indicates a winner.)

B and C.7 The results are shown in Table 24. Column 2 summarizes the observed

proportion of “quality over price” choices. Column 3 states the hypothesized propor-

tion. The last column shows the p-value of the test results. We cannot reject that the

proportion of “quality over price” cases is no less than 95% for group A and B, nor

the proportion is no less than 90% for group C. Therefore, we have strong confidence

to conclude that when the buyer selects a winner against the scoring rule, the buyer

is putting more emphasis on quality over price.

However, it is still yet to be tested whether incumbent status affect how the

buyer balances between quality and economic consideration. Restricting to only the

“quality over price” cases, we summarize the descriptive statistics of the slopes of the

7Group D is excluded due to insufficient sample size.
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indifference curves in group A, B and C8 in Table 25. There are a couple of main

findings. First, the mean slopes are all between (-1, 0) and significant, which further

confirms the conclusion that a winner is selected due to superior quality when the

buyer’s revealed preference does not match its stated preference. Second, we conduct

Mann-Whitney test and find no significant difference in the mean slope between any

two groups.9

To summarize, the series of analyses described in this section do not yield strong

evidence of incumbent effect in buyer’s winner selection process. Instead, we find that

quality consideration is crucial in selecting winners and incumbent status indicates

better quality compared to non-incumbents among the winners.

Table 24: Binomial Test for the Proportion of “Quality over Price” Choices
Observed Test

Group Proportion Proportion p-value
A 85% ≥ 95% .135
B 89% ≥ 95% .370
C 85% ≥ 90% .323

Table 25: Slopes of Revealed Preference Curves for the “Quality over Price” Choices
Mean Std. Dev. Min Max N

A: Non-Incumbents -0.64*** 0.27 -0.98 -0.25 11
B: Incumbents -0.66*** 0.20 -0.88 -0.26 8
C: Mixed Pair -0.71*** 0.19 -0.96 -0.28 17

(Incumbent Wins)
Note: * p < .10 ** p < .05 *** p < .01

4.6 Discussion

In this study, we attempt to shed lights on the value of online reverse auctions and in-

cumbent effect in the context of business services procurement. We specifically study

the impact of online procurement auctions on cost reduction and quality management

8Group D is excluded due to insufficient sample size
9All p-values are larger than .5, which gives us confidence to conclude that the test result is not

significant given the small sample sizes.
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from the buyer’s perspective. We explore in detail the existence and possible source

of incumbent bias. By comparing the hourly service rate before and after auctions,

we find that, on average, hourly rates across all legal service categories are reduced

by 12.1% after auctions, assuming a 5% inflation rate for three years. Separating

incumbent winners from non-incumbent winners, we find that cost savings are from

both incumbent and non-incumbent firms. Although, on average, the savings from

incumbents (11.3%) are lower that those from non-incumbents (12.3%), the difference

in the savings is not significant. Overall, auctions that award only incumbents achieve

less savings on average (10.4%) compared to the rooms award both incumbent and

non-incumbents (13.3%). Again, the difference in the savings is not significant.

To the best of our knowledge, this study is the first attempt to empirically quan-

tify the effect of online reverse auctions on suppliers’ quality management. Our

non-parametric analysis shows that, in general, various scores (sourcing rate, eco-

nomic score, legal score, and overall score) decrease after auctions. However, only

the decrease in economic score, which largely reflects the ranking of suppliers’ final

bids is significant. Separating incumbents from non-incumbents, we find that the

legal score of incumbent winners is significantly lower (p = .0699) than that of the

incumbents before auctions. The economic score and the overall score of the incum-

bents winners continue to be significantly lower that those of the incumbents before

auctions. Finally, the legal score of non-incumbent winners are significantly higher

(p = .0644) than that of the suppliers before auctions. While the economic score

of the non-incumbents winners continue to be significantly lower that that of the

suppliers before auctions, their composite score is not significantly different. The

findings imply that the value of online procurement auctions for legal services comes

from incumbent suppliers. Selected incumbents provide reduced price and increased

quality measurement. Non-incumbents are included in the auctions to induce price

competition. Although their quality is higher than incumbent suppliers, the overall
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performance of selected non-incumbents can match up the overall performance of the

suppliers before the auctions. Therefore, the cost savings are achieved through online

auctions without sacrificing quality.

We do not find incumbent bias in procuring of legal services, which suggests new

explanations of incumbent effect. First, we find that although the buyer uses well-

defined scoring rule to assess the performances of the suppliers, winner selection does

not always follow this rule. However, the buyer does not forego the rule more often

in favor of incumbent suppliers. Second, when the buyer selects a winner against

the scoring rule, the winning supplier is chosen due to superior quality as measured

by its legal score. There is no significant difference between incumbent and non-

incumbents in terms of buyer’s revealed preferences over price and quality. These

findings suggest that the previously supported incumbent effect in government pro-

curement (Silva, Dunne, and Kosmopoulou 2003; Greenstein 1995; Greenstein 1993)

and online procurement of manufacturing goods (Zhong and Wu 2006) that mostly

caused by non-trivial switching cost cannot be extended to online procurement of

business services. Alternatively, our results imply that the incumbent status, on one

hand, reflects higher quality. Incumbent bias disappears when adjusting for their

higher quality. Our results also imply that the buyer might possess important in-

formation about the incumbents, through past experiences, that cannot be easily

included in the buyer’s scoring function due to uncodifiability (Levi, Kleindorfer, and

Wu 2003).
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CHAPTER V

CONCLUSION

E-sourcing, whereby an industrial buyer procures its direct and indirect inputs through

reverse auctions from a small group of invited suppliers, has been pushing the bound-

aries of extant auction theories as well as the “best practice” of service providers and

traditional auction houses ever since their emergence. Careful econometric analyses

of valuable data sets of Internet-based procurement auctions provide a critical first

step towards building new auction “theory about facts” and for “putting auction the-

ory to work” as advocated by auction theorists. In this dissertation, several unique

data sets are collected that allow detailed institutional analysis of actual bidding be-

havior in real-life B2B auctions. Three related projects are conducted to empirically

investigate the impacts of incumbent status, learning, and information revelation.

The thesis begins with addressing the question of whether e-sourcing damages

long-term buyer-supplier relationships. The research question is explored by analyz-

ing the relationships among incumbency, bidding behavior and auction outcomes in

the context of a unique data set from a major high-tech buyer during 2002-2004.

The analyses reveal heterogeneous bidding behaviors whose distribution is affected

by incumbent status. More importantly, incumbency, in conjunction with bidding

strategies, has significant impacts on the auction outcomes as measured by suppliers’

final bids, buyer’s cost savings and suppliers’ contract winning probabilities. These

findings reveal that e-sourcing via reverse auctions does not necessarily damage ex-

isting buyer–supplier relations.

While auctions are treated as isolated events in the first study, the second study

focuses on recurring procurement auctions where learning is possible. It is shown that
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suppliers’ final bids at successive auctions are significantly affected by the prior infor-

mation learned (for example, suppliers’ rank orders and lowest bid price). Moreover,

suppliers bid adaptively across auctions, that is, a supplier’s bidding dynamics are

different in successive auctions. Such adaptive bidding behavior is influenced by sup-

pliers’ ordinal ranks acquired between auctions. The findings provide initial evidence

that by participating in online auctions, suppliers can learn important information

about the competitive market and the efficiency of their bidding strategies.

The novelty of the third study in the thesis are three-fold. First, to the best of our

knowledge, this is the first study exploring the business value of online procurement

auctions for complex business services. Second, it is the first study that examines the

impact of online auctions on both cost savings and quality management. We find that

prices are, on average, reduced after dynamic bidding events. Buyer’s cost savings

are from both incumbent and non-incumbent suppliers. We do not find, however,

that incumbents have price premium compared to non-incumbent suppliers. The

cost savings are achieved without the sacrifice of quality. Interestingly, incumbent

winners’ quality is higher, on average, than the quality of buyer’s supplier base before

the auctions, while non-incumbent winner’s quality is lower. Together, these findings

imply that the main value of online procurement auctions for business services comes

from incumbents in the form of reduced price and enhanced quality. Finally, we

offer new explanations of incumbent effect in procuring business services. Our results

show that incumbent status reflects higher quality. When adjusting for their higher

quality, incumbent bias disappears. Our results also imply that the buyer might

possess important information about the incumbents, through past experiences, that

cannot be easily included in the buyer’s scoring function due to uncodifiability (Levi,

Kleindorfer, and Wu 2003). Such information plays a key role in buyer’s winner

selection decision, and explains why the buyer sometime chooses one supplier over

another ignoring the scoring rule.
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The thesis contributes to the field of procurement and auction literature by en-

hancing the understanding of the effects of dynamics bidding events and incumbent

status, suggesting various important factors that need to be considered in the further

advancement of the literature. Taken together, the empirical evidence presented in

this dissertation provide stepping-stones for new procurement auction theory building

and practical design of electronic markets.
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