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SUMMARY 

Zinc oxide (ZnO) nanowires and nanorods are a new class of one-dimensional 

(1D) nanomaterials with a wide range of potential applications as catalysts, chemical and 

biomedical sensors, resonators, transparent conductors, and electronic and photonic 

interconnects in nano-electro-mechanical systems (NEMS). The motivation for this work 

stems from the lack of understanding and characterization of their mechanical and 

thermal behaviors which are essential for their incorporation in nanosystems. 

Furthermore, it is imperative to characterize the dimensional dependence of the 

thermomechanical responses observed due to the high surface-to-volume ratios at the 

nanoscale. 

The overall goal of this work is to develop a fundamental understanding of the 

mechanisms controlling the responses of these nanostructures. The specific focus of this 

research is threefold: (1) development of a molecular dynamics (MD) based 

computational framework for analyzing the thermomechanical behavior, (2) 

characterization of the thermal and mechanical behaviors and their coupling in ZnO 

nanowires and (3) development of models for the behavior with focus on pseudoelasticity 

and thermal conductivity. 

The thermal response analyses use an equilibrium Green-Kubo approach to 

quantify the thermal conductivity of 19-41 Å sized wires in the 500-1500 K temperature 

range. Values of thermal conductivity obtained are one order of magnitude lower than 

that for bulk ZnO single crystal and decrease for smaller sizes due to enhanced surface 

scattering of phonons. A modified equation for phonon radiative transport (EPRT) 

incorporating the effect of surface scattering is used to model the thermal conductivity as 

a function of size and temperature. 

Quasistatic tensile loading of wires in the same size range show that the elastic 

moduli values are 68.2-27.8% higher than the corresponding values for bulk ZnO. More 
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importantly, phase transformations from the initial wurtzite (WZ) structure to a 

previously unknown graphite-like phase (HX) and a body-centered-tetragonal phase 

(BCT-4) are discovered in [0110]- and [0001]-oriented nanowires, respectively, under 

uniaxial tensile loading. The discovery of these new polymorphs brings about a more 

complete understanding of the extent of polymorphism in ZnO and its dependence on 

load triaxiality. The reversibility of the WZ→HX transformation gives rise to a novel 

pseudoelastic behavior in [0110]-oriented nanowires with recoverable strains up to 16%. 

This previously unknown phenomenon is only observed in nanowires and does not occur 

in bulk ZnO. A micromechanical continuum model is developed to capture the major 

characteristics of the overall constitutive behavior (elastic deformations of the individual 

phases, transformations from WZ to HX during loading and from HX to WZ during 

unloading), accounting for both the size effect and temperature effect. 

The effect of the phase transformations on the mechanical (elastic moduli, yield 

and fracture strengths) and thermal properties (conductivity) are characterized. 

Specifically, a computational scheme involving Green-Kubo calculations at fixed values 

of strain is used to study the evolution of conductivity during loading. Results obtained 

show that the WZ→HX phase transformation causes a novel transition in thermal 

response with the conductivity of HX wires being 20.5-28.5% higher than that of the 

initial WZ-structured wires.  

The results obtained here can provide guidance and criteria for the design and 

fabrication of a range of new building blocks for nanometer-scale sensors, transducers, 

resonators and other devices that rely on thermomechanical response and 

thermomechanical coupling. 



 1 

CHAPTER 1 : INTRODUCTION 

  

 As nanotechnology progresses and complex nanosystems are being fabricated, a 

rising impetus is being given to the development of multi-functional and size-driven 

materials. The term size-driven refers to emergence of exciting properties from materials 

as we explore smaller i.e. micro and nano-size scales. Furthermore, recent advances in 

nanofabrication technology have promoted the growth of nanocomponents such as 

nanowires, nanotubes, nanobelts and associated development of complex 

nanoarchitectures through simple bottom-up approaches (Bae et al. 2002; Dai et al. 

2002). Most of these materials are made of semiconducting oxides and nitrides of Zn, Sn, 

In, Cd, and Ga [such as zinc oxide (ZnO), tin oxide (SnO) and gallium nitride (GaN)], 

with ZnO being the most versatile in both structure and properties (Wang et al. 2004). 

ZnO has been explored for applications in sensing, environmental monitoring, bio-

medical systems and communications technology. It has emerged as an important 

component for integration in nanoelectromechanical systems (NEMS) because (i) it is a 

semiconductor and (ii) it is piezoelectric (owing to its non-centrosymmetric structure) 

(Wang et al. 2004). Recently, ZnO nanostructures (nanobelts and nanowires) have been 

grown using vapor deposition techniques (Pan et al. 2001). As functional nano-building 

blocks, these nanostructures have found applications in ultra-sensitive chemical and 

biological species sensors, nanoresonators and nanocantilevers, field effect transistors 

(Comini et al. 2002b; Arnold et al. 2003; Bai et al. 2003; Hughes and Wang 2003).  

The integration of these nanostructures in any system entails detailed 

understanding of their inherent properties, functionalities and behavior. Since these 

nanostructures have only been synthesized recently, there is a lack of understanding and 

characterization of their mechanical and thermal behaviors. Response to stimuli such as 

applied mechanical stress, thermal gradients, size and temperature effects have to be 
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characterized. The mechanical and thermal behaviors of these nanocomponents are 

important in many of the applications since strength, stiffness, and thermal conductivity 

are among the key attributes involved. For example, the assembly of nanobelts between 

electrodes or substrates in a system requires a balance of rigidity and strength, while in 

applications such as nanocantilever sensors the mechanical resonance depends on the 

bending modulus. On the other hand, at the nanoscale, electric field density and heat flux 

are very high and are therefore of great concern. One example involves thermoelectric 

applications which require careful control of the thermal and electrical conductivities. A 

great challenge and perhaps also an opportunity in regulating such properties for device 

integration is their dependence on size at the nanoscale. The primary contributor to this 

size effect is the high surface-to-volume ratios in the 1D nanostructures. Unlike at the 

macroscale where the effect of surfaces on material response is negligible due to very low 

surface-to-volume ratios, surfaces play a dominant role in altering the behavior at the 

nanoscale. The size dependences of Young’s moduli and thermal conductivity are 

examples (Shi et al. 2004; Kulkarni et al. 2005). Characterization of mechanical and 

thermal property variations with nanostructure sizes is crucial to the incorporation of 

these structures in nanodevices.  

More importantly for ZnO nanowires, our results show that for specific conditions 

of nanowire orientation and loading triaxialities, mechanical loading induces previously 

unknown structural (or phase) transformations (Kulkarni et al. 2006). Specifically, 

previously unknown graphite-like phase (HX, P63/mmc space group) and body-centered-

tetragonal phase (BCT-4, P42/mnm space group) are observed in [0110]- and [0001]-

oriented nanowires, respectively under uniaxial tensile loading. The reversible phase 

transformation from the tetrahedrally coordinated wurtzite (WZ, P63mc space group) 

phase to the newly discovered HX phase results in a novel pseudoelastic behavior in 

[0110]-oriented ZnO nanowires  (Kulkarni et al. 2006). Since the parent and transformed 
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phases can have very different properties, such stress-induced phase transformations may 

significantly alter the response of the nanowires. Examples include the modulation of 

piezoelectric constant, Seebeck coefficient and thermal conductivity (Picu et al. 2003; 

Kulkarni and Zhou 2007). Such effects provide mechanisms for controlling or “tuning” 

the thermal response of a nanocomponent through the application of a mechanical input. 

Conversely, temperature variations can possibly induce structural changes and alter the 

mechanical strength and rigidity of nanocomponents. This thermomechanical coupling 

provides both opportunities for developing “tunable” functional nano-devices and 

challenges for ensuring thermomechanical reliability and functionality of nano-systems. 

Since these phase transformations and the novel pseudoelastic behavior have just been 

discovered in ZnO nanowires, a fundamental understanding of the overall constitutive 

behavior, the nature of the phase transformation and the characteristics of the transformed 

phase is needed in order to unleash the potential of these nanowires. 

The research focuses on the characterization of the thermomechanical behavior of 

ZnO nanowires and nanorods. Molecular dynamics (MD) simulations with Buckingham-

type interatomic potential with charge interactions are used to characterize the response 

of the nanowires. The first part of the research investigates the mechanical response of 

the nanowires under uniaxial loading along the wire axis. In particular, the elastic 

response of the parent structure (WZ), the phase transformation to HX/BCT-4 phase and 

the elastic stretching of the transformed phase (HX/BCT-4) are studied. Emphasis is on 

the crystallographic characterization of the new phase, the crystallographic and 

mechanistic description of the transformation and the quantification of the size and 

temperature effects on the overall stress-strain response. First principles calculations 

using the density functional theory (DFT) are carried out to establish the stability of the 

newly discovered phases under the applied loading conditions.  

The second part of the research focuses on characterizing the novel pseudoelastic 

behavior in the [0110]-oriented nanowires. The critical stress for transformation 
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initiation, maximum recoverable strains, and hysteretic dissipation values are determined 

for a range of wire sizes and temperatures. A micromechanics based model is developed 

to describe the constitutive relationship for the pseudoelastic response. Emphasis is on 

the phase evolution, transformation completion and the overall stress-strain relation as a 

function of wire size and temperature.  

The third part of the research involves extracting the thermal response of the 

nanowires using MD simulations coupled with a statistical mechanics based Green-Kubo 

approach. Specifically, the thermal conductivity of the nanowires is characterized for a 

range of sizes and temperatures. Size effect characterization is essential since at the 

nanoscale surface scattering of phonons dominates the thermal response and has the 

potential of reducing the thermal conductivity by as much as two orders of magnitude as 

compared to the bulk.  A new approach developed by Majumdar (1993) is used to model 

the thermal response. This approach involves treating phonon dominated thermal 

behavior as radiative heat transfer with modifications to account for surface scattering of 

phonons (Lu et al. 2002; Lu et al. 2003). Using this approach, an expression for the 

thermal conductivity of the nanowires accounting for the variations with size, surface 

atom density and temperature is developed.  

The final part of the research investigates the thermomechanical coupling in the 

nanowires’ responses. In particular, the effect of lattice strains, distortions and phase 

transformations on thermal conductivity is characterized. The findings and insights will 

prove to be effective tools for the design of future nanosystems. 

 The organization of this thesis is as follows. Chapter 2 briefly reviews relevant 

topics such as the surface dependence of mechanical and thermal behavior at the 

nanoscale, characteristics of phase transformations and pseudoelasticity, constitutive 

models for describing mechanical response of nanowires and models for nanoscale heat 

transfer. Chapter 3 describes the MD computational framework including interatomic 

potentials and their calibration, generation of nanowire structures, crystallographic 
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analysis techniques, schemes for characterizing thermal and mechanical response and 

first-principles framework for determining phase stability. Chapter 4 describes and 

characterizes the novel phase transformations observed in this research. Chapter 5 

characterizes the pseudoelastic behavior of the nanowires. Size and temperature 

dependence of transformation parameters is analyzed. The micromechanical continuum 

model developed to capture the overall pseudoelastic behavior is delineated. Chapter 6 

discusses the thermal responses of the nanowires under stress-free and strained 

conditions. Finally, the conclusions reached in this research and future research directions 

are presented in chapter 7. 
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CHAPTER 2 : BACKGROUND 

  

 This chapter briefly reviews the relevant topics such as the fabrication and 

structure of the ZnO nanowires, surface dependence of mechanical and thermal properties 

and their evaluation. Other topics reviewed include characterization and modeling of 

phase transformations and the modeling of thermal responses at the nanoscale. 

2.1 Material System  

ZnO nanowires and nanobelts are one class of nanostructures endowed with 

semiconductivity, piezoelectricity and coupled thermomechanical responses (Wang et al. 

2004). As functional nano-building blocks, these components have a wide variety of 

potential applications such as catalysts, chemical sensors, resonators, transparent 

conductors, biosensors, medical devices, nano-electronic components, and nano-photonic 

components (Comini et al. 2002b; Arnold et al. 2003; Bai et al. 2003; Hughes and Wang 

2003; Kong and Wang 2003; Wang 2004b, 2004a; Gao et al. 2005; Gao and Wang 2005; 

Wang 2005). Recently, ZnO nanostructures with rectangular cross-sections referred to as 

nanobelts/nanowires and hexagonal cross-sections termed as nanorods have been grown 

through vapor deposition (Pan et al. 2001; Wei et al. 2006) (see Figure 2.1). The 

synthesis is based on thermal evaporation of ZnO powders in a tube furnace and 

condensation of the vapors on an alumina plate. The as-synthesized nanowires and 

nanorods are single-crystalline and wurtzite-structured with lattice constants a = 3.249 Å 

and c = 5.206 Å. The most common growth directions for the nanobelts are along the 

[0001]  and [0110]  crystalline axes of the wurtzite structure. Growth along the [2110]  

orientation is resisted by the energy barrier due to surface polarization, but such 

structures have also been reported (Kong and Wang 2003). 
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(a) (b) (c)(a) (b) (c)

 

Figure 2.1 TEM images of ZnO nanostructure: (a) nanowires (Wang et al. 2004), (b) 
rectangular nanobelts (Wang et al. 2004) and (c) hexagonal nanorods (Wei et al. 2006). 
 

2.2 Mechanical Behavior at the Nanoscale  

2.2.1 Surface Dominated Mechanical Response 

The high surface-to-volume ratios in the ZnO nanowires enhance surface effects 

on the mechanical response giving rise to a size effect unique to the nanoscale. Such size 

dependence, while creating challenges to design, if characterized appropriately can result 

in the development of novel tunable devices in NEMS. Characterization of mechanical 

response of nanostructures is therefore vital. Elastic properties of ZnO nanostructures 

have been evaluated experimentally through scanning electron microscopy (Desai and 

Haque 2007; Hoffmann et al. 2007), high resolution transmission electron microscopy 

(Bai et al. 2003; Chen et al. 2006a, 2006b) and atomic force microscopy (Mao et al. 

2003; Song et al. 2005; Ni and Li 2006; Lucas et al. 2007a; Lucas et al. 2007b). All 

experimental evaluations involved either nanoindentation or bending of the nanowires. 

Results obtained from such experiments have failed to show general trends in the 

nanowires behaviors. While some of the experiments show that the moduli of the 

nanowires are higher than bulk values and show a distinct size dependence (Chen et al. 

2006a; Desai and Haque 2007), other experiments show that the moduli are similar to or 

lower than bulk values (Hoffmann et al. 2007; Lucas et al. 2007a). The apparent 

contradictions in the experimental results put to question the validity and the applicability 

of current experimental setups at such a small scale. However, it is possible that further 
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refinement in the experimental procedures could enhance the results and possibly explain 

the physical mechanisms behind such contradictions.  

Atomistic simulations, on the other hand, provide an alternate medium of 

analyzing the properties of materials in reasonably realistic conditions. Traditionally, 

three atomistic simulation methods have been proposed to study material behavior: First 

principles/quantum mechanical (QM), Molecular Dynamics (MD) and Molecular Statics 

(MS). QM simulations have few approximations associated in their evaluations and have 

been used to accurately characterize the elastic properties of nanostructures (Opitz et al. 

2002; Zheng et al. 2002; Jelínek et al. 2003). However, these calculations tend to be 

computationally intensive for large systems (as is the case for the nanostructures 

considered in this research) and therefore are limited to the study of small clusters of 

atoms. MS calculations can handle larger systems and can predict material properties by 

determining the energetically favorable configurations under applied external inputs. 

Recently, MS calculations have been employed to study the effect of free surfaces and 

edges on the structure and elastic properties of FCC metal nanowires by applying a 

uniform uniaxial strain incrementally to the relaxed nanowire configurations followed by 

energy minimization (Diao 2004). Strain meshing represents another family of MS 

techniques used to study the mechanical response of nanostructures where the elastic 

constants are obtained by numerical interpolation of the energy density meshing in the 

strain space (Liang et al. 2005a). However, such calculations assume zero temperature 

conditions and therefore cannot represent thermal influences which are important where 

phenomena such as phase transformations or shape memory exist. MD simulations, 

which use Newton’s second law to determine the positions and velocities of atoms at 

finite temperatures, are appropriate for determining material response at nano- and micro- 

scales. MD simulations allow for the study of comparatively large systems and have 

emerged as an effective tool for the characterization of the mechanical and thermal 

behaviors of nanostructures (Mehrez et al. 1997; Branicio and Rino 2000; Komanduri et 
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al. 2001, 2003; Liang and Zhou 2003; Diao et al. 2004a; Diao et al. 2004c; Gall et al. 

2004; Ju et al. 2004).  

Alternatively, various approaches have also been developed to extend continuum 

theories to nanostructured materials through the incorporation of surface attributes 

(Streitz et al. 1994; Miller and Shenoy 2000; Zhang et al. 2002; Sun and Zhang 2003).  

Specifically, several available thermodynamic models allow the size dependence of the 

response of nanostructures to be characterized through the inclusion of surface free 

energy or surface stresses (Dingreville et al. 2005a). While such approaches provide 

effective analytical tools they require prior knowledge of the material properties such as 

bulk and surface elastic constants. In summary, among the family of computational 

techniques, MD has the capacity to effectively predict the strain evolution of the elastic 

properties and more importantly predict phase transformation if it exists. Consequently, 

in the proposed research, MD simulations are considered to predict the thermomechanical 

responses of ZnO nanostructures.  

2.2.2 Phase Transformations and Polymorphism 

One-to-one binary compounds obeying the octet rule (i.e., I-VII, II-VI, III-V, or 

IV-IV materials) are generally semiconductors or insulators. Although these type AB 

compounds have the same chemical formula units, their crystal structures under ambient 

conditions show significant variations with bond ionicity (see Figure 2.2). While highly 

ionic compounds like CsCl (I-VII) prefer dense crystal structures with a coordination 

number of 8 (CN= 8), compounds like NaCl (also I-VII) with lower degrees of ionicity 

gravitate towards the rocksalt structure (RS, 3Fm m  space group) with CN= 6. As the 

degree of ionicity decreases (shifting toward covalent bonding states), compounds such 

as ZnO (II-VI), GaN (III-V) and SiC (IV-IV) stabilize in either wurtzite (WZ, 36P mc ) or 

zinc blende (ZB, 43F m ) structures with CN = 4. In such covalent compounds, the 

valence electron counting (two electrons in each bond) is satisfied through the formation 
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of four bonds for each atom. However, in compounds with higher degrees of ionicity 

such as CsCl and NaCl, the gain through cation-anion attractions leads to the formation 

of structures with higher C.N. Nevertheless, bond ionicity should not be considered as the 

only factor in determining crystalline structures in such compounds since the assumption 

of a particular structure also depends on intrinsic factors such as composition, band 

structure, valence electrons, bonding states and structural symmetries. A change in any of 

these factors may trigger a transformation to a different structure, giving rise to 

polymorphism  

CsCl

WZ

RS

ZB

CN = 8 CN = 8

CN = 4 CN = 4
(c)

(a) (b)

(d)

CsCl

WZ

RS

ZB

CN = 8 CN = 8

CN = 4 CN = 4
(c)

(a) (b)

(d)
 

Figure 2.2 Crystal structures of type AB compounds: (a) CsCl, (b) Rocksalt (RS), (c) 
Wurtzite (WZ) and (d) Zinc blende (ZB).  

 

Traditionally, external loading and temperature changes are used to effect 

polymorphic transitions in materials. Polymorphism through stress-induced phase 

transformations are widely observed in groups IV, III-V and II-VI materials including 
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ZnO (Mujica et al. 2003). There are three hitherto well known polymorphs of ZnO, 

including WZ, ZB and RS (Ozgur et al. 2005). WZ is the most stable and commonly 

observed phase under ambient pressure. ZB can be obtained only on cubic surfaces under 

specific growth conditions. RS is the result of a transformation from WZ at pressures 

between 8-10 GPa (Bates et al. 1962; Jaffe and Hess 1993; Karzel et al. 1996; 

Desgreniers 1998; Jaffe et al. 2000; Limpijumnong and Jungthawan 2004; Serrano et al. 

2004). This pressure-induced reversible transformation has received significant 

consideration primarily because hydrostatic compression is the most likely mode of 

loading for bulk ZnO. Recent work on GaN, MgO and ZnO thin films has revealed a 

previously unknown unbuckled layered structure (LY) resulting from extensive surface 

reconstructions to suppress surface polarity (Capaz et al. 1995; Goniakowski et al. 2004; 

Claeyssens et al. 2005; Freeman et al. 2006). So far, the existence of polymorphs other 

than WZ, ZB, and RS at various loading triaxialities has not been extensively studied. 

The recent fabrication of defect-free, single-crystalline nanowires, nanobelts and 

nanorings necessitates the analyses of responses to loading of various triaxialities, 

including bending and uniaxial tension since these materials have slender quasi one-

dimensional geometries and are capable of undergoing significant elongations (Diao et al. 

2004b; Kulkarni et al. 2005; Liang and Zhou 2006). Furthermore, novel shape memory 

effects (SME) and pseudoelasticity observed in nanowires as a consequence of 

polymorphic transitions also need to be characterized.  

2.2.3 Pseudoelasticity 

 Traditionally, pseudoelasticity and shape memory effect (SME) are associated 

with shape memory alloys and elastomers (Otsuka and Wayman 1998). The term 

pseudoelasticity originates from the fact that the material is elastic in the sense that it 

returns to the original state after one loading-unloading cycle but it is only pseudo-elastic 

as the stress-strain response runs through a hysteresis loop (Muller 1989). Pseudoelastic 
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behavior has been extensively studied in shape memory alloys (SMA) such as CuZnAl, 

CuAlNi, NiMnGa where the austenitic to martensitic transformations result in this unique 

behavior (Muller 1989; Otsuka and Wayman 1998; Hirsinger et al. 2004; Musolff and 

Sahota 2004; Muller and Bruhns 2006). This effect has also been observed in polymers 

(Liu et al. 2004; Yiping et al. 2006), single crystal NiTi and polymer nanocomposites 

(Gall et al. 2002a; Gall et al. 2002b). Recent investigations of tensile response of single 

crystalline metal nanowires have shown that SME and pseudoelasticity exist in the 

nanowires as a consequence of their nanoscale dimensionality (Liang and Zhou 2005; 

Liang et al. 2005b; Park et al. 2005; Liang and Zhou 2006). Furthermore, experiments 

have shown that pseudoelasticity can be observed at the nanoscale in carbon nanotubes 

with recoverable strain up to 15% (Yakobson et al. 1996) and also in gold nanowires 

(Landman et al. 1996). Although, the mechanisms for pseudoelasticity are well-

characterized at the macroscale, research on this phenomenon is quite underdeveloped for 

nanoscale structures. Furthermore, with the recent discovery of pseudoelastic behavior in 

normally brittle compounds such as ZnO, efforts have to be directed towards 

understanding the origin and nature of pseudoelasticity in such materials. 

2.2.4 Micromechanical Continuum Modeling 

 The discovery of SME and pseudoelasticity has spurred various investigations 

from a metallurgical perspective. Such analyses give insights into the fundamental 

mechanisms for austenite to martensitic transformation and twin boundary movement. 

From a thermodynamics perspective, constitutive modeling has received due attention. 

Various approaches including the development of macroscopic phenomenological, 

microscopic thermodynamics based and micromechanics based models have been 

proposed. Specifically, the macroscopic models are based on curve fitting of 

experimental data with inference from phase diagrams of the materials. Such simplistic 

models are suitable for engineering applications where only the average response based 
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on experimental data is required. Microscopic models consider material behavior at lower 

scales with emphasis on the treatment of issues such as nucleation of defects, barrier for 

nucleation, driving forces on interfaces and interface motion. While such models provide 

insights on the fundamental physical mechanisms, they are too complex to be practically 

applicable to modeling pseudoelastic behavior. Micromechanics based modeling offers a 

practical alternative to modeling SME and pseudoelasticity. In this approach, 

micromechanics principles coupled with thermodynamics are used to describe the 

transformation. While this approach is not as rigorous as the microscopic models, its 

inherent simplicity has resulted in its widespread application to the study of various 

SMA. 

 The micromechanics based model is based on the availability of a non-convex 

free energy function which implies the possibility of phase transformations (Huo and 

Muller 2003). Statistical mechanics methods have been previously utilized to develop of 

such functions (Muller and Xu 1991). Recently, first principles calculations and atomistic 

simulations such as MD have been used to develop energy landscapes for various 

materials. This framework has been applied to the study of martensitic transformations in 

SMA. Specifically, strain energy functions with multiple local minima are developed and 

the phase transformation is analyzed through the study of evolution of these minima with 

applied load (Abeyratne and Knowles 1993; Abeyratne and Kim 1994; Abeyratne and 

Bhattacharya 2001). However, kinetic laws that relate the driving force and interface 

motion are extremely difficult to obtain and may preclude the use of such models. 

Alternatively, the response can be modeled by decomposing the behavior into static 

equilibrium states and interface propagation. Liang et al. (2007) have successfully 

applied this approach to the modeling of pseudoelastic behavior in FCC metal nanowires. 

Since the lattice reorientation that leads to the pseudoelastic behavior in such nanowires 

occurs through the propagation of a single twin boundary, interfacial energy 

considerations are not required in their model. However, during phase transformations in 
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ZnO nanowires or in other SMA in general, the evolution of a homogeneous body into a 

heterogeneous body with multiple phases involves the formation of interfaces which vary 

with applied load. In such cases, interfacial energy has to be explicitly considered. There 

are two approaches for modeling interfacial properties (Huo and Muller 2003): 

(1) The interface is considered as a singular surface attributed with certain interface 

energy. Here, the free energy of the body is the sum of the energies of the phases 

involved and the interfacial energy; 

(2) The interface is considered smooth but steep such that both strain gradients and 

strains have to be considered as state variables. Here, the free energy is the 

volume integral over the free energy density. 

The first approach has been extensively used to model pseudoelasticity in SMA. Muller 

and Xu (1991) developed a 1D model to characterize the pseudoelasticity and the 

hysteretic dissipation in CuZnAl alloy. In this model, the interfacial energy contribution 

to the free energy is expected to be proportional to the interfacial area and a functional 

form has been derived using statistical arguments. This model has been successfully 

applied to the characterization of pseudoelastic behavior in CuAlNi alloy (Musolff and 

Sahota 2004). 3D models using an approach similar to that of Muller and coworkers have 

also been developed (Raniecki and Lexcellent 1994, 1998). Furthermore, a finite strain 

model using the same approach has also been developed and used to predict the stress-

strain response of NiTi specimens (Muller and Bruhns 2006). 

 In this research, a combination of approaches developed by Muller and Xu (1991) 

and Liang et al. (2007) is used to model the pseudoelastic behavior of the ZnO 

nanowires. The goal of this continuum model is to capture the overall constitutive 

behavior and also account for size and temperature effects observed in MD simulations. 
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2.3 Nanoscale Thermal Response 

2.3.1 Surface dominance of thermal transport 

Thermal transport in semiconducting materials is governed by crystal vibrations 

which travel through a solid in the form of waves. The energy of such a lattice wave is 

quantized and each quantum is termed a phonon (Majumdar 1993). The kinetic theory of 

fluids relates the thermal conductivity λ  to the phonon mean free path Λ  through 

 
1
3 vC vλ = Λ , (2.1) 

where Cv is specific heat and v is the velocity of heat carriers (for ZnO, the heat carriers 

are phonons and hence v represents the average phonon group velocity). At the 

macroscale, the heat transport through lattice waves can be modeled using Fourier’s law 

as 

 q Tλ= − ∇ , (2.2) 

where q  is the heat flux, λ  is the thermal conductivity and T∇  is the temperature 

gradient. However, Fourier’s law has been observed to break down at the nanoscale 

where the characteristic sizes approach mean free paths of the phonons. This has led to 

the development of various experimental, theoretical and computational approaches to 

estimate the thermal conductivity which account for the nanoscale surface effects. 

Theoretical approaches focus on developing solutions to the Boltzmann transport 

equation (BTE) for nanostructures (Walkauskas et al. 1999; Cahill et al. 2003). There is 

also a great interest to experimentally investigate electron and phonon transport and heat 

dissipation phenomena in these materials. Traditional thermal conductivity measurements 

can be performed by a variety of techniques including the modified angstrom’s method, 

photo thermal beam deflection, optical pump–probe, hot-stripe approach (Asnin et al. 

1999). However such measurement techniques cannot resolve thermal features below 100 

nm (Cahill et al. 2003). To address these issues, new techniques such as scanning thermal 
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microscopy (Asnin et al. 1999), 3ω techniques (Luo et al. 1999) and thermometry (Shi et 

al. 2003) have been used. Computational approaches to heat-transfer problems span the 

range from numerical solutions of Fourier’s law to calculations based on the Boltzmann 

transport equation to atomic-level simulations which require a fairly sophisticated 

understanding of the fundamental phonon processes. MD simulations, in contrast, do not 

require any a priori understanding of heat transport and are ideal for investigating the 

fundamental heat-transfer mechanisms. However, MD does have the significant 

limitation of being entirely classical, with each vibrational mode equally excited; thus it 

is only rigorously applicable to solids above the Debye temperature (Cahill et al. 2003). 

The two most commonly used approaches used in MD simulation based evaluation of the 

thermal conductivity are the Green–Kubo approach (Kubo et al. 1985) in which the 

equilibrium fluctuations in the heat current are analyzed, and the direct method (Schelling 

et al. 2002) which mimics experiment by imposing a temperature gradient on the system 

and determining the thermal conductivity from Fourier’s Law [Eq. (2.2)]. The direct 

method is easier to implement but involves significantly high temperature gradients (106 

K/m) due to the nanometer scale characteristic sizes. Such high temperature gradients can 

result in non-linear response and the application of Fourier’s law would be unrealistic. 

The Green-Kubo approach, on the other hand, is an equilibrium approach where the 

system is in the linear response regime and therefore can be reliably employed to 

determine the thermal conductivity of the nanostructures. Recently, the Green-Kubo 

approach using MD simulations has been successfully implemented for studying the 

thermal response of silicon nanowires (Volz and Chen 1999b, 1999a). Results obtained in 

these works show that the effect of surfaces is appropriately considered in the thermal 

conductivity calculation for a range of nanoscale sizes and temperatures justifying the 

applicability of this method for nanostructures. 
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2.3.2 Model for Nanoscale Heat Transfer 

 Heat transport in semiconducting and insulating materials has predominantly been 

modeled using the Boltzmann Transport Equation (BTE) with a Bose-Einstein 

distribution for phonons (Ziman 1960). Recently, BTE was modified for surface effects 

so as to predict the thermal conductivity of nanostructured components (Walkauskas et 

al. 1999; Zou and Balandin 2001). The solutions obtained from BTE have been under a 

linearized relaxation time approximation which has proven to overestimate conductivity 

at low length scales (Majumdar 1993). A new approach was developed by Majumdar 

(1993) by treating phonon dominated thermal behavior as radiative heat transfer. Using 

the analogy between photons and phonons as wave packets of energy, he developed an 

equation for phonon radiative transport (EPRT) similar to the BTE. The EPRT was 

further modified to account for phonon behavior in nanowires and nanorods through the 

specification of appropriate boundary conditions as well as the incorporation of a 

boundary scattering term in the expression for the relaxation time (Lu et al. 2002; Lu et 

al. 2003). In the present work, this EPRT model has been extended to fit the thermal 

conductivity data obtained for ZnO wires through MD simulations.  

2.3.3 Thermomechanical Coupling 

 Thermal conductivity of semiconductors is dominated by phonon scattering 

events. In other words, the lattice thermal conductivity contributes towards the 

conductivity of the material whereas the electronic contribution is minimal. 

Consequently, any alteration in the lattice structure will modify the thermal response of a 

semiconductor. It is well known that applied mechanical stress on a semiconductor can 

vary its energy band and lattice structure (Aflatooni and Nathan 1995). Such distortions 

in the lattice induce changes in the phonon frequency leading to the observed variations 

in its thermal transport characteristics (Fjeldly et al. 1973; Ramdane et al. 1983; Sood and 

Roy 1992). In particular, transitions in thermal conductivity and the coefficient of thermal 
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expansion have been reported for the quartz-coesite, olivine-γ-spinel, coesite-stishovite, 

B1-B2 and pyroxene-garnet transformations in minerals under pressure (Jeanloz and 

Roufosse 1982; Roufosse and Jeanloz 1983; Andersson 1985; Slack and Ross 1985). 

Although, the mechanisms of thermal transport are well understood at the macroscale, the 

effect of applied stress has not been studied extensively at the nanoscale. Recently, the 

effect of hydrostatic stresses on the thermal conductivity of nanostructures was also 

analyzed (Picu et al. 2003). However, since periodic images of the structure were 

considered in the simulation of the nanostructure, the effect of surfaces was neglected and 

hence the response is not reflective of nanoscale thermal characteristics which are 

significantly dominated by surface scattering irrespective of the applied loading. The 

characterization of the thermal response as a function of lattice strains is indispensable in 

nanowires since the operational conditions in devices may result in distortion of the 

lattice and in some cases result in phase transformations and therefore entirely change the 

thermal characteristics which the device design was based on. Alternatively, the 

thermomechanical coupling can be regarded as a mechanism for tuning the response of 

nanocomponents in a variety of NEMS through the application of mechanical input. 
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CHAPTER 3 : COMPUTATIONAL FRAMEWORK  

  

Experimental evaluations of material response at the nanoscale are challenging or 

even infeasible due to the practical difficulties involved in the manipulation and testing of 

nanostructures. Even with the recent cutting-edge high-resolution transmission electron 

microscopes (HRTEM) and atomic force microscopes (AFM), it is challenging to 

experimentally track deformations of nanostructures in real time and predict their 

mechanical responses. Furthermore, experimental evaluations of thermal response of the 

nanostructures are practically difficult and also suffer from the inherent drawback of 

contact resistance. Atomistic simulations provide an alternate medium of analyzing the 

properties of materials in reasonably realistic conditions. In MD simulations, the motion 

of individual atoms can be monitored such that even complex phenomena such as phase 

transformations in nanostructures are easily resolved. MD simulations also allow for the 

study large systems as compared to other atomistic simulations such as first-principles 

calculations and have therefore emerged as an effective tool for the characterization of 

the mechanical and thermal behaviors of nanostructures (Mehrez et al. 1997; Branicio 

and Rino 2000; Komanduri et al. 2001, 2003; Liang and Zhou 2003; Diao et al. 2004a; 

Diao et al. 2004c; Gall et al. 2004; Ju et al. 2004). Consequently, in this research, MD 

simulations are considered to predict the thermomechanical response of ZnO 

nanostructures. 

MD simulations are carried out using a general purpose parallel MD simulation 

package DL_POLY_2 developed at Daresbury Laboratory by W. Smith, T.R. Forester 

and I.T. Todorov. DL_POLY_2 is based on a replicated data parallelism designed for 

distributed memory parallel machines which offers excellent scalability from 

workstations to massively parallel supercomputers (Smith and Forester 1996). The 
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computations are carried out at the NAVO, ARL, AHPCRC and ASC major shared 

resource centers (MSRCs) 

 This chapter discusses some important aspects of the MD simulation framework 

including interatomic potentials, their calibration, generation of nanowire and nanorod 

structures and crystallographic analysis techniques. Mechanical and thermal response 

analysis techniques involving quasistatic loading schemes, density functional theory 

(DFT) calculations and the Green-Kubo framework are also discussed.  

3.1 Interatomic Potential 

 MD simulations use Newton’s second law ( = ��
i i i

mf r ) to determine the positions 

and velocities of atoms at finite temperatures. The forces on atoms are calculated from 

the gradient of the potential energy ( = −∂ ∂
i i

Uf r ) where the potential energy is 

expressed as ( )
1 1

N N

ij

i j
j i

U u r
= =

≠

=∑∑ . Here, ( )ij
u r  is the pair wise interaction energy determined 

from the Buckingham-type interatomic potential of the form 
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Here, 

ij
r  is the distance between two ions, 

i
q  is the charge on ion i and A , ρ  and C  are 

potential parameters (Binks and Grimes 1993; Binks 1994). The first term in Eq. (3.1) 

considers the long-range Coulomb interactions due to electric charges and the second and 

third terms model short-range interactions. The parameters A, ρ  and C  of the potential 

are fitted to the structure and properties of ZnO using classical and quantum mechanical 

methods (Binks 1994) and are listed in Table 3.1. Anion-anion interactions include both 

the long-range and short-range terms. Anion-cation interactions are modeled using the 

Born-Mayer form which neglects the last (attractive) term. Cation-cation interactions 

involve only the long-range charge effect. Calculations of the long-range Coulomb force 
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are carried out using Ewald summation technique which is computationally efficient and 

unconditionally convergent. The periodicity required for the Ewald sum is introduced 

using a supercell concept, in which the simulation box is defined considerably larger than 

the nanowires and nanobelts.  

 

Table 3.1 Short range interaction parameters for ZnO (Binks 1994) 

Species ( )A eV  o

A)ρ(  
o

( A)C eV  
2

O
−  2

O
−  9547.96 0.21916 32.0 

2
Zn

+  2
O

−  529.70 0.3581 0.0 
2

Zn
+  2

Zn
+  0.0 0.0 0.0 

 

 The Buckingham potential has been shown to accurately predict the equilibrium 

lattice energy, cell parameters, elastic and dielectric constants of the wurtzite structure 

(see Table 3.2 and Table 3.3). Figure 3.1 shows the lattice parameters a, c and u uc c=  

that uniquely define the WZ lattice. The corresponding values from first principles 

calculations and experiments are listed in Table 3.2. 
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Figure 3.1 Zn and O atomic positions in wurtzite lattice structure. The lattice parameters 
a, c and uc are indicated. 
 

Extensive perfect lattice, defect and monovalent ion incorporation simulations 

have been successfully carried out using this potential (Binks and Grimes 1993; Binks 
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1994; Grimes et al. 1995). The potential also effectively predict surface properties such 

as surface energies (Binks 1994). This is especially important in the simulations of 

nanowires whose high surface-to-volume ratios are known to significantly affect 

behavior. The interatomic potential also predicts values of lattice constants of other 

polymorphs of ZnO including zinc blende and rocksalt structures which are in excellent 

agreement with experimental observations (see Table 3.4).  

 

Table 3.2 Calculated and experimental wurtzite lattice parameter values for ZnO (Binks 
1994). 

Lattice Parameter Calculated Experimental % Error 
a (Å) 3.271 3.253 +0.6 
c (Å) 5.139 5.213 -1.4 

u 0.389 0.380 +2.4 
c/a 1.571 1.603 -2.0 

Volume (Å3) 47.618 47.773 -0.3 
 

Table 3.3 Calculated and experimental wurtzite elastic constant values (in GPa) for ZnO 
(Binks 1994) 

Elastic Constant Calculated Experimental % Error 
C11 232.5 209.7 +10.9 
C12 95.20 121.1 -21.4 
C13 85.60 105.1 -18.6 
C33 210.4 210.9 -0.20 
C44 74.60 42.50 +75.5 
C66 68.60 44.30 +54.9 

 

Table 3.4 Calculated and experimental zinc blende (ZB) and rocksalt (RS) lattice 
parameter values for ZnO (Binks 1994).  

Structure 
Lattice 

Parameter 
Calculated Experimental % Error 

a (Å) 4.320 4.280 +0.9 
RS 

Volume (Å3) 80.62 78.40 +2.7 
a (Å) 4.570 4.620 -1.1 

ZB 
Volume (Å3) 95.44 98.61 -3.3 
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3.2 Generation of Nanostructures 

The as-synthesized nanowires and nanorods are single-crystalline and wurtzite-

structured with lattice constants a = 3.249 Å and c = 5.206 Å. The calculations concern 

the quasi-static uniaxial tension of nanowires with the [0110]  growth orientation and 

nanorods with the [0001] growth orientation. The nanostructures considered in this work 

are perfect single crystals without any defects. While thermodynamic considerations 

dictate that point defects such as vacancies should exist in any structure for temperatures 

greater than 0 K, such point defects are neglected. This is because the number of defects 

in the nanowires is expected to be extremely small. Furthermore, analysis of mechanical 

response of FCC metal nanowires have shown that the presence of such defects do not 

alter their behavior which is dominated by surfaces and can be neglected (Gall 2007). 
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150.83 Å

Zn
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[0001]

[0110][2110]

[0001]
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18.95 Å
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Figure 3.2 Configuration of a [0110]  nanowire with lateral dimensions of 21.22×18.95 Å 
after geometric construction and before initial relaxation. 
 

The [0110]-oriented nanowires have rectangular cross-sections and { }2110 and 

{ }0001  lateral surfaces. Their thickness is between 5-20 nm with typical width-to-

thickness ratios of 1-10 (Pan et al. 2001). The wire structure can be obtained by repeating 

the unit wurtzite cell along the [0110]  crystallographic direction as shown in Figure 3.2. 
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The minimum cross-sectional size analyzed (21.22×18.95 Å) is chosen such that the short 

range cutoff distance is smaller than the smallest wire dimension and long-range 

interactions are properly considered. Periodic boundary conditions (PBCs) are specified 

in the axial direction to approximate the behavior of long wires. A small periodic length 

can significantly affect the calculated responses by introducing image effects since PBCs 

effectively truncate the phonon wavelength spectrum (Picu et al. 2003). Calculations 

show that any length above 100 Å is sufficient for avoiding such image effects. The 

simulation cell is therefore chosen as 150.83 Å in the axial direction and cross-sectional 

dimensions of 21.22×18.95, 31.02×29.42 and 40.81×39.89 Å are used to evaluate the size 

effect. 

The [0001]-oriented nanorods have hexagonal cross-sections with a six-fold 

symmetry around the [0001] axis and six 
_

{0110} lateral surfaces (Wei et al. 2006). The 

nanorod is generated by repeating a unit wurtzite cell along the [0001],
 

_

[0110]  and 

_ _

[2110]  directions (see Figure 3.3). Periodic boundary conditions are used along the axial 

direction with a computational cell length of 145.8 Å. To study the size effect, five lateral 

dimensions (d = 19.5, 26.0, 32.5, 39.0 and 45.5 Å) are considered. The analyses are 

carried out in the 100-1500 K temperature range to quantify the effect of temperature on 

the behavior.  
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Figure 3.3 Configuration of a [0001] nanorod with d = 32.5 Å after geometric 
construction and before initial relaxation. 
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3.3 Crystallographic Characterization 

 Changes in lattice structures with applied strain are characterized using average 

lattice constants, radial distribution functions [RDF, (Leeuwen et al. 1959)] and 

coordination number. The average lattice constants are calculated at each strain increment 

during loading and unloading of the nanostructures by averaging local lattice constants 

over the bulk volume of the wire. Surface layers are not included in this calculation and 

the local lattice parameters are computed from coordinates of atoms in the wire core (see 

Figure 3.4).  

N anow ire C oreSurface
 Layer

N anow ire C oreSurface
 Layer  

Figure 3.4 Decomposition of a nanowire into surface atoms and interior atoms using the 
coordination number (CN), the surface atoms have CNs below 4 and the core atoms have 
CNs equal to 4. 
 

3.3.1 Radial Distribution Function   

 The RDF describes how atoms in a system are radially packed around each other. 

It measures the density of atoms in a spherical shell of radius r and thickness dr 

surrounding an atom in the structure, i.e. 
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where ( )g r  is the RDF, ( ),n r r dr+  is the number of atoms in the spherical shell, 
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S

V r drπ=  is the volume of the spherical shell, N is the total number of atoms in the 

system and V is the volume of the structure (Figure 3.5). The RDFs are generated at the 

end of the equilibration stage of a relevant strain increment when a steady state has been 

achieved during loading and unloading of the nanowires. 

r

dr

r

dr

 

Figure 3.5 Calculation of the RDF. A ring centered on the center atom is drawn with 
radius r  and thickness dr , and the atoms positioned within this spherical shell are 
counted. 
 

3.3.2 Coordination Number 

 RDF is a good technique to characterize the overall average structure and also to 

evaluate the average lattice parameter values. However, it is not appropriate for 

identifying local structure changes or structural defects, which are very important to 

understand the mechanisms underlying the phase transformations. There are several 

techniques to identify defects such as techniques relying on electron density, potential 

energy, dislocation density tensor, atomic level stress tensor, centrosymmetry and 

coordination number. Here, we use the coordination number in order to identify local 

changes in structure such as the nucleation of a new phase in the nanowires. 
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Coordination number (CN) or ligancy is the number of atoms, ions, or molecules 

that a central atom or ion holds as its nearest neighbors in a crystal. CN is calculated 

through a distance based search routine, wherein all atoms lying inside a sphere with 

radius corresponding to the nearest neighbor distance are summed. For example, in the 

case of WZ-ZnO, the nearest neighbor distance is the Zn-O bond distance and the number 

of primary neighbors is 4 [see Figure 3.6(a)]. Consequently, WZ-ZnO is said to be 

tetrahedrally coordinated. On the other hand, for the HX structure in Figure 3.6(b), the 

number of neighbors is 5 and as a result, the CN for HX is 5. Similar to RDF 

calculations, the CN is also calculated at the end of the equilibration stage when a steady 

state has been achieved during loading and unloading. In particular, both the CN and the 

RDF for the parent structure after initial relaxation and for the transformed structure are 

studied to characterize the structural changes associated with the phase transformation. 

 

 

rZn O
d −

(b)(a)

WZ HX

rZn O
d −

(b)(a)

WZ HX

 
 

Figure 3.6 A schematic illustration of the coordination number calculation for an O atom 

surrounded by Zn atoms in its coordination sphere in (a) WZ and (b) HX structure. 

3.4 Pre-Loading Relaxation 

Since the crystallographically constructed nanowires may not be in equilibrium, 

pre-loading relaxations are carried out to obtain the wires’ free standing configurations. 

The relaxations occur at desired temperatures without external loading, until 
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thermodynamic quantities (such as energy, stress, and temperature) indicate that 

statistical steady states have been reached. A relaxation time of 3 ps is found to be 

adequate for achieving equilibrium states for the ranges of wire size and temperature 

considered. During the relaxations, minimization of the wires’ energy occurs through 

surface reconstruction and adjustment of the lattice spacing in the wire core. The surface 

reconstruction manifests in the forms of decreases in the interlayer spacing between outer 

surface layers and in-plane contractions of the surfaces (Kulkarni and Zhou 2006b). Such 

morphological changes on surfaces and in the wires’ cores are also monitored. This is 

especially important for nanostructures since their surface-to-volume ratios are high and 

extensive surface, and in some cases, core reconstructions may occur. For example, 

[100]-oriented FCC metal nanowires are known to reconstruct into [110] orientations as a 

consequence of surface energy minimization (Diao et al. 2003, 2004b; Liang and Zhou 

2005; Liang et al. 2005b).  

3.5 Mechanical Response Analysis 

3.5.1 Quasi-static Loading Scheme 

In a MD framework, deformations analyzed usually involve dynamic conditions 

with strain rates up to 109 s-1. Such high strain rates are often necessary to reach required 

strain levels with available computer resources. However, the higher strain rates cause 

rapid and high temperature increases and may also result in quantifications that are not 

physically interpretable. In the present work, MD simulations of deformation under 

quasi-static tensile loading are carried out. The results obtained can therefore be related to 

those obtained through experimental techniques.  

Approximate quasi-static tensile loading in each deformation increment is 

achieved though successive loading and equilibration steps using a combination of 

algorithms for NPT and NVE ensembles (Haile 1997). Specifically in each deformation 
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increment, stretching at a specified rate of 0.005 /ps is first carried out for 0.5 ps using a 

modified version of the NPT algorithm (Melchionna et al. 1993; Spearot et al. 2005). 

Subsequently, with the strain maintained constant, the nanowire is relaxed for 3 ps via an 

algorithm for NVE ensemble (Haile 1997) at the specified temperature. This equilibration 

duration is chosen such that a statistically steady state is reached and no further structural 

changes occur. It is possible that the magnitude of the strain increment in each step may 

affect the calculated stress-strain response. To minimize this error, calculations using 

series of strain increments between 0.35% and 0.1% were carried out. Based on the 

results, a strain increment of 0.25% and an equilibration period of 3 ps per loading step 

are found to minimize fluctuations in the calculated response and are used in the analysis 

reported. Since the loading proceeds in a series of equilibration steps, this process 

essentially simulates quasi-static loading of the specimen. Unloading is implemented in a 

similar manner with a reduction in strain for each unloading step. The virial formula is 

used to calculate the stress (Zhou 2003). 

3.5.2 Thermodynamic Favorability 

First principles calculations are carried out to evaluate the total energy of the 

material in its natural and deformed states. This research has been carried out in 

collaboration with physicists in Suranaree University of Technology, Thailand. The 

calculations are based on the density functional theory (DFT) as implemented in the 

VASP code (Kresse and Furthmüller 1996) with local density approximation (LDA) and 

ultrasoft pseudopotentials (Vanderbilt 1990).  Zinc 3d electrons are treated as valence 

electrons. Cutoff energies for the plane wave expansion is 400 eV. The k-point sampling 

set is based on a 7 7 7× ×  division of the reciprocal unit cell which gives approximately 

100 inequivalent k-points.   
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The stability of each crystal structure can be determined by analyzing enthalpy as 

a function of lattice parameter ratios c/a and b/a (Figure 3.1). The enthalpy per unit cell 

(2 cation-anion pairs) under uniaxial loading is 

 
1

( / , / ) ( , , , , ) ,
2 i i

H c a b a E c b a u v f q= −  (3.3) 

where E is the formation energy, fi is the uniaxial force per unit cell along the I direction, 

qi is the lattice parameter in the I direction, and fiqi (summation not implied) is external 

work. For tension along the[0110]  (or b) axis, i b= , ( )
b b

f acσ= ×  and 
b

q b= , with 
b

σ  

being the tensile stress. For tension along the [0001] (or c) axis, i c= , ( )
c c

f abσ= × , and 

c
q c= , with 

c
σ  being the tensile stress.  

For each pair of c/a and b/a, the equation of states (i.e. the energy as a function of 

cell volume) is determined so that, under applied tension loading, the cell volume (V) can 

be relaxed to minimize H. For each strained configuration (each c/a-b/a pair), the 

energies associated with at least four different unit cell volumes are calculated. An 

equation of state (energy-volume relation) is obtained by a 3rd-degree polynomial fit. 

Under loading, the volume that minimizes H is not the same as the volume that 

minimizes E. The equation of state allows the minimum enthalpy for each combination of 

c/a-b/a pair and loading condition to be obtained. A total of over 170 equations of states, 

each of which describes a specific strained configuration in the c/a – b/a space, are 

calculated.  

For each c/a and b/a pair, the internal parameters u and v and the unit cell volume 

V are allowed to relax so that the configuration that yields the minimum H is obtained. 

For a given load condition, the minima on the enthalpy surface with c/a and b/a as the 

independent variables identify the corresponding stable and metastable structures. For the 

analyses at hand, the parameter ranges considered are [1.00, 1.63] for c/a and [1.00, 1.73] 

for b/a, with the increments of 0.05 for c/a and 0.10 for b/a. This meshing of the 

structural space results in approximately 170 strained configurations. For tensile loading 
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along the b-direction, additional configurations with b/a up to 2.30 are also investigated, 

increasing the number of total configurations to 200. Out of these 170 or 200 

configurations, those around (c/a, b/a) ≈ (1.63, 1.73), (1.2, 1.73) and (1.00, 1.00) are 

more carefully analyzed since these three parameter sets define the neighborhoods of 

stable WZ, HX and BCT-4 structures, respectively, for the given load condition.  

3.6 Thermal Response Analysis 

The evaluation of the thermal conductivity uses the Green-Kubo approach which 

is based on the fluctuation-dissipation theorem (Kubo et al. 1985; Schelling et al. 2002). 

Specifically, the thermal conductivity is written as 
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where V is system volume, T is temperature, kB is Boltzmann constant, ( )J tµ  is the µ th 

( µ =1, 2, 3) component of the heat current J and ( ) (0)J t Jµ µ  is the auto-correlation 

function for ( )J tµ  with  denoting ensemble time average. The heat current is 

calculated as 
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∑ ∑J v r F v . (3.5) 

Here, ri, iv  and Ei are the position vector, velocity and total energy of atom I, 

respectively; ij j i= −r r r  and Fij is the force exerted on atom I by atom j. The first term in 

Eq. (3.5) represents the convection contribution to heat flow. This term is inconsequential 

in solids and is ignored in conductivity calculations. 

The upper limit for the integral in Eq. (3.4) extends to infinity since theoretically 

the time required for a system to attain thermal equilibrium tends to infinity. To calculate 

thermal conductivity in a realistic manner, however, the integral is truncated after a 

certain time period which is defined as the delay time mτ  and the system is assumed to 



 32 

have reached equilibrium at that time. The choice of the delay time depends on the 

material system analyzed since it is a measure for a system’s inherent thermal response. 

To calculate thermal conductivity for each delay time, the autocorrelation function values 

are averaged over a number of time origins within the simulation window. Hence, the 

average measure of thermal conductivity can be expressed as a function of delay time as 
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where ∆t is the simulation timestep, N∆t is the total simulation time and the delay time 

m M tτ = ∆ .  

The thermal analysis presented here is limited to temperatures near or above the 

Debye temperature Dθ  ( 420K=  for ZnO). Consequently, temperature can be calculated 

through mean kinetic energy and the theorem of equipartition of energy as 

 2
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3 1
2 2
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B i i
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Nk T m v
=

= ∑ , (3.7) 

with N being the number of atoms in the system and im  being the mass of atom i. 

Temperatures significantly below Dθ , for which quantum mechanical corrections may be 

needed, are not considered here. 

3.6 Coupled Thermomechanical Response 

The deformation of the nanowires is approximated as a quasi-static process with 

each strain increment followed by a relaxation stage until a statistically steady state is 

reached. Since the loading proceeds in a series of equilibration steps, an equilibrium 

approach such as the Green-Kubo method can be applied to determine the thermal 

response of the nanowires as a function of applied strain. Also, since the MD simulations 

carried out to determine heat flux do not require any a priori understanding of heat 

transport or the configurational characteristics, this approach is ideal for investigating the 

heat-transfer in materials undergoing straining or even phase transformations. Hence, the 
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Green-Kubo approach implemented in MD simulations is used to characterize the 

coupled thermomechanical response of the nanowires. 
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CHAPTER 4 : NOVEL PHASE TRANSFORMATIONS 

  

The assumption of crystal structures by a material reflects a complex interplay of 

intrinsic factors such as composition, band structure, valence electrons, bonding states, 

and structural symmetry and extrinsic factors such as temperature and loading. A change 

in any of the intrinsic factors through external stimuli such as mechanical loading and 

temperature changes may result in failure through bond breaking or trigger a 

transformation to a different structure, giving rise to polymorphism. At the macroscopic 

scale, failure is dominant since atomic mobility is relatively low and defects are more 

prevalent. At the nanoscale, however, high surface-to-volume ratios and nearly defect-

free structures lead to higher atomic motilities and more pronounced polymorphic 

transitions.  

Recent synthesis of quasi-1D nanostructures such as ZnO nanowires, nanobelts 

and nanorods necessitates understanding of the response of ZnO to uniaxial tensile 

loading (Mao et al. 2003; Wang 2004b; Chen et al. 2006b). Since these nanostructures 

are single-crystalline and nearly defect-free, they are endowed with high strengths and 

the ability to undergo large deformations without failure. Also, their high surface-to-

volume ratios enhance atomic mobility and promote phase transformations under loading 

along certain crystalline directions. Consequently, polymorphs previously unknown for 

bulk materials have been revealed. This research reports two novel phase transformations 

observed in ZnO nanowires: (1) Transformation from WZ to a graphitic phase (HX) 

within the 36P m mc  space group during uniaxial tensile loading of [0110]-oriented 

nanowires and (2) Transformation from WZ to a body-centered-tetragonal phase (BCT-4) 

within the P42/mnm space group during the tensile loading of [0001]-oriented nanorods. 

The results here show that the extent of polymorphism in ZnO is much more pronounced 

than previously known. With the discovery of these new phases, a more complete picture 
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has emerged for the polymorphism of ZnO under the influence of mechanical loading 

with all realistic triaxialities.  

This chapter focuses on characterizing the tensile response of the [0110]- and 

[0001]-oriented nanowires and nanorods leading to the observed phase transformations. 

Crystallographic analyses of the newly discovered HX and BCT-4 structures and 

corresponding transformation paths including atomic motions responsible for the 

transformations are carried out. First principle calculations involving density functional 

theory are carried out to determine the energetic favorability of the parent and 

transformed phases. Characterization of the responses of the relevant phases is crucial 

since the performance and functionalities of these slender quasi one-dimensional 

materials as components in ultra-sensitive chemical and biological sensors, 

nanoresonators, field effect transistors and nanogenerators (Comini et al. 2002a; Arnold 

et al. 2003; Bai et al. 2003; Wang and Song 2006) are either significantly affected by or 

utilize the phase transitions (Diao et al. 2004b; Kulkarni et al. 2005; Liang and Zhou 

2006). 

4.1 Wurtzite to Graphitic Phase Transformation 

4.1.1 Stability of { }0001  Surfaces  

The [0110]  nanowires are dynamically relaxed with traction free boundary 

conditions to obtain their free-standing states. During equilibration, minimization of 

energy occurs through surface reconstruction and adjustment of the lattice spacing in the 

wire core. The surface reconstruction manifests in the forms of decreases in the interlayer 

spacing between outer surface layers and in-plane contractions of the surfaces. As shown 

in Figure 4.1, the spacing between the two outermost layers of ( )0001  planes decreases 

by 73 % resulting in higher atomic densities in the surfaces compared to the wire core 

(Kulkarni et al. 2005).  
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Figure 4.1 Surface reconstruction of a 21.22×18.95 Å nanowire at 100 K relative to its 
configuration in bulk ZnO, the images correspond to the states of the wire after (a) 
geometric construction (before initial relaxation) and (b) after initial relaxation.  

 

The surface reconstruction seen here is a consequence of the reduced charge 

transfer and imbalance of ionic forces on the surfaces where atoms have fewer neighbors 

relative to those in the core. The reduced coordination of the surface atoms is also 

responsible for the in-plane relaxation of the surface atoms. As shown by Sander (Sander 

2003), the surface energy curve has a positive slope at zero surface strain, i.e., minimum 

surface energy occurs at a compressive surface strain. Consequently, in-plane contraction 

leads to a surface configuration considerably different from that in the bulk. Both effects 

become significant at small sizes since the surface-to-volume ratio increases with 

decreases in size. Specifically, as the size decreases from 50 to 10 Å, the fraction of 

surface atoms increases from 10 to 45% (see Figure 4.2), indicating that an increasingly 

larger portion of atoms reside on the surface rather than in the interior. As a result of this, 

surface energy constitutes a major portion of the total energy of the nanowires and plays 

a significant role in determining the configuration of the nanowires. Owing to their higher 

fractions, the behavior of surface atoms plays an increasingly dominant role in 

determining phase stability in the nanowires. 
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Figure 4.2 Fractions of surface atoms as a function of lateral dimensions of the 
nanowires.  
 

4.1.2 Tensile Response of [0110]-oriented Nanowires 

 Figure 4.3(a) shows the tensile stress-strain ( -σ ε ) response of a nanowire with a 

21.22×18.95 Å cross-section at 100 K. The region between A and B corresponds to 

elastic stretching of the WZ structure. Loading beyond B results in a stress drop from 

10.02 to 6.98 GPa (B→C) at ε =5.14%. This softening behavior corresponds to the 

nucleation of the HX phase. As the deformation progresses, the transformed region 

sweeps through the entire wire length (C→D) and the transformation completes at 

ε =9.71% ( σ =9.65 GPa). Figure 4.3(b) shows an intermediate stage during the 

transformation. Further deformation occurs through the elastic stretching of the 

transformed structure (HX) and ultimate fracture occurs at ε =16% ( σ =15.29 GPa, not 

shown) through cleavage along { }1210  planes. Unloading from any strain prior to the 

initiation of failure, e.g. point E with ε =14.5%, is first associated with the recovery of 

the elastic deformation within the HX structure (E→F). A reverse transformation from 

HX to WZ (F→G→H) initiates at ε =5.77% ( σ =4.59 GPa, point F) and completes at 

ε =0.6% ( σ =1.15 GPa, point H). Unloading beyond H occurs through elastic 

deformation within the WZ structure (H→A). Strains up to 14.5% can be recovered, 
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highlighting a very unusual aspect of the behavior of ZnO which normally is quite brittle. 

Obviously, the large recoverable strains observed here are associated with a unique 

structural transformation process which occurs only in [0110]  nanowires under uniaxial 

tensile loading. 
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Figure 4.3 (a) Tensile stress-strain response of a 21.22×18.95 Å nanowire at 100 K 
during loading-unloading and (b) Nanowire with HX and WZ phases [transformation in 
progress under tensile loading (point C in Fig. 2 with a strain of 5.9%)]. 
 

4.1.3 Crystallographic Characterization 

 Figure 4.4(a) shows three parameters (a, c, and u uc c= ) typically used to define 

hexagonal structures (WZ), with uc denoting the offset between the Zn and O basal 

planes. Additional parameters b and v , with vb being the offset between Zn and O atoms 
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along the [0110]  axis, are introduced to delineate the difference between the HX and RS 

structures (Limpijumnong and Lambrecht 2001a; Limpijumnong and Jungthawan 2004). 

a, b and c are the dimensions of the hexagonal unit cell along the [2110] , [0110]  and 

[0001]  directions, respectively. Additionally, two layers of atoms perpendicular to the 

[0110]  direction and two layers perpendicular to the [2110]  direction are shown in Figure 

4.4(b) and Figure 4.4(c), respectively, to delineate the atomic motions associated with the 

transformation.  
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Figure 4.4 Illustrations of the WZ and HX structures involved in the phase 
transformation, (a) lattice structures of the WZ and HX phases, (b) atomic arrangement 
on [0110]  plane, and (c) atomic arrangement on [2110]  planes. 
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Table 4.1 lists the lattice constants for WZ, HX and RS structures. Note that the 

parameters for relaxed wires deviate slightly from the values for ideal bulk WZ due to 

surface effects (Kulkarni et al. 2005; Kulkarni and Zhou 2006b). For HX, 4.35 Åc =  and 

0.50u =  are similar to those for RS; whereas 3.34 Åa =  and 0.32v =  are similar to 

those for WZ. Since v remains unchanged, HX has the same hexagonal symmetry around 

the c-axis as WZ. During the transformation, u changes from its initial value of 0.38 for 

WZ to a value of 0.5 for HX (Table 4.1), implying the flattening of the buckled wurtzite 

basal plane (Zn and O atoms becoming co-planar). Consequently, an additional Zn-O 

bond is formed along the [0001] axis [Figure 4.4(b) and Figure 4.4(c)]. As a result, Zn 

atoms are at equal distances from O atoms along the [0001]  axis and the structure 

acquires the additional symmetry of a mirror plane perpendicular to the [0001]  axis. This 

process occurs while the orientation of the basal plane remains invariant. The in-plane 

coordination of the HX structure is 3-fold and the full 3D coordination is 5-fold (as 

compared to the 4-fold in WZ). 

The formation of additional bonds (therefore the increase in coordination) along 

the [0001] axis can also be seen in the charge density distributions on ( )1120  planes in  

Figure 4.5. Obviously, an additional bond is formed between the O atom initially at the 

top left and the Zn atom initially at the bottom in the WZ structure. A similar unbuckled 

structure has been observed in GaN, MgO and ZnO thin films as a result of extensive 

surface reconstructions to suppress surface polarity (Capaz et al. 1995; Goniakowski et 

al. 2004; Claeyssens et al. 2005; Freeman et al. 2006). The newly discovered HX 

structure bears both resemblance to and distinction from the layered structure (LY) 

(Capaz et al. 1995; Goniakowski et al. 2004; Claeyssens et al. 2005; Freeman et al. 

2006). The resemblance is in crystallography and the distinction is in coordination. 
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Specifically, a strong bond along the [0001] axis is seen in HX which occurs throughout 

solid wires. In contrast, this inter-planar bond is absent in LY which extends only a few 

layers from the surface beneath which the structure is predominantly WZ. Therefore, 

despite the similar geometric symmetries, HX has a higher coordination number (5) than 

LY (3). A similar HX phase has been reported as the natural state of boron nitride (h-BN) 

(Wentzcovitch et al. 1988). It has also been predicted as a metastable state of GaN during 

the WZ→RS transformation at high pressures (Limpijumnong and Lambrecht 2001a) and 

as a stable phase of MgO under hydrostatic tensile loading (Limpijumnong and 

Lambrecht 2001b). 
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Figure 4.5 Charge density plots on the ( )1120  planes of WZ, HX and the layered 

structure (LY).  
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Table 4.1 Lattice parameters for WZ, HX and RS under different loading conditions, select values are highlighted in boldface for easy 
comparison across different structures. 
 

WZ HX RS 

Parameters 
DFT 

0 GPabσ =

 

AP§ 
0 GPabσ =

 

Exp§§ 
0 GPabσ =

 

DFT
10 GPabσ =

 

DFT
6 GPacσ = −

 

AP§ 
10 GPabσ =

 

DFT 
10 GPabσ =

 

DFT 
6 GPacσ = −

 

DFT 
8.22 GPap =

 

a (Å) 3.20 3.22 3.25 3.12 3.28 3.34 3.29 3.49 4.16 

b (Å) 5.54 5.66 5.63 5.93 5.68 6.24 6.42 6.03 4.16 

v 0.33 0.32 0.33 0.33 0.34 0.32 0.32 0.33 0.50 

c (Å) 5.15 5.30 5.21 5.00 4.92 4.35 4.18 4.18 4.16 

u 0.38 0.41 0.38 0.39 0.39 0.50 0.50 0.50 0.50 

b/a  1.73 1.76 1.73 1.90 1.73 1.87 1.95 1.73 1.00 

c/a 1.61 1.65 1.60 1.60 1.50 1.30 1.27 1.20 1.00 
§ Analytical Potential, §§ Experiment (Binks 1994) 
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Figure 4.6 Radial distribution function profiles for a 21.22×18.95 Å nanowire before 
loading [point A in Figure 5.1(a)] and upon completion of phase transformation [point D 
in Figure 5.1(a)]. 
 

 RDF profiles before loading is applied (point A, 0σ =  GPa) and upon completion 

of the WZ→HX transformation (point D, 8.58σ =  GPa) for the nanowire are shown in 

Figure 4.6. The profile for the initial wire (WZ structure) has its first peak at a radial 

distance of 1.93 Å, indicating a Zn-O bond distance consistent with the experimental 

value of 1.95 Å (Binks 1994). Upon completion of the WZ→HX transformation at point 

D, this peak has split into two peaks with the primary peak at 1.98 Å and the secondary 

peak at 2.20 Å. The primary peak corresponds to Zn-O bonds in the basal { }0001  plane 

of the HX structure, while the secondary peak is associated with the additional bonds 

formed along the [0001] axis (see Figure 4.4). Also seen in Figure 4.6 are peaks 

corresponding to lattice constants a, b and c. Initially in the WZ phase, the ‘a’ peak is at 

3.22 Å and the ‘c’ peak is at 5.30 Å. The transformation to HX results in the shift of the 

‘a’ peak to 3.34 Å and the shift of the ‘c’ peak to 4.35 Å. These shifts indicate that the 

transformation to the HX structure involves both an expansion of the basal planes 

(increase in ‘a’) to accommodate the flattening of the buckled plane and a contraction in 

‘c’ which results in the formation of the Zn-O bond along the [0001] axis. The 
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transformation is also associated with a shift of the ‘b’ peak from 5.66 Å for WZ to 6.24 

Å for HX, consistent with the nature of the applied tensile loading. Further load increases 

are accompanied by increases in b with the associated RDF peak shifting toward a higher 

value (not shown). 

4.1.4 Structural Stability 

To identify stable crystalline structures under uniaxial tensile loading along the 

[0110]  direction, their enthalpy as a function of c/a and b/a for specific values of stress 

using DFT calculations is calculated. Since the transformation proceeds with the Zn and 

O basal planes becoming coplanar and a corresponding reduction in c, the stability of the 

HX phase under compression along the [0001] axis is also explored. Figure 4.7 shows the 

enthalpy surfaces (eV/unit cell) for b-oriented stress
b

σ = 7, 10 and 13 GPa (with c-

oriented stress
c

σ = 0 GPa) and 
c

σ = -6 GPa (with 
b

σ = 0 GPa). Here, positive values of 

stress are considered tensile. In each case, there are two minima. For the tensile loading 

along [0110]  orientation, the first minimum ( WZ
min

b
H ) is in the vicinity of c/a ≈ 1.6 and b/a 

≈ 1.9; for the compressive loading along [0001], the first minimum ( WZ
min

c
H ) is in the 

vicinity of c/a ≈ 1.5 and b/a = 1.732; each corresponding to a WZ structure with lattice 

parameters slightly different from those at zero stress (Table 4.1). The second minimum 

in each of these plots corresponds to the HX phase. For tensile loading, the second 

minimum ( HX
min

b
H ) is in the vicinity of c/a ≈ 1.3 and b/a ≈ 1.9; for compressive loading, 

the second minimum ( HX
min

c
H ) is in the vicinity of c/a ≈ 1.2 and b/a = 1.732. The structure 

at HX
min

b
H  is that observed in the MD simulations discussed earlier. The difference in 

lattice parameters obtained from the two modes of loading stems from the fact that the 

ratio b/a is locked at 1.732 by structural symmetry under compression along the [0001] 

axis.  
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Figure 4.7 Enthalpy surface maps from DFT calculations for uniaxial tensile stress of (a) 
σb = 7 GPa, (b) σb =10 GPa and (c) σb =13 GPa along the b axis and uniaxial compressive 
stress of (d) σc = −6 GPa along the c axis. 
 

At a tensile stress of 7 GPa [Figure 4.7(a)], WZ
min

b
H  is much lower than HX

min
b
H  

( HX WZ
min min

b b b
H H H∆ = − = 0.12 eV), hence, no transformation takes place. As the stress is 

increased to 10 GPa, HX
min

b
H  and WZ

min
b
H  become comparable ( 0.03 eVb

H∆ = ) and 

consequently both WZ and HX are equally favored. At an applied stress of 13 GPa 

[Figure 4.7(c)], HX
min

b
H  is lower than WZ

min
b
H  ( 0.05 eVb

H∆ = − ), indicating that HX is more 

stable. The transformation barrier between the two phases of 0.06 eV is quite low, 

compared with the barrier of ~0.15 eV for the high pressure WZ→RS transformation 
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(Limpijumnong and Jungthawan 2004). A similar behavior is observed under uniaxial 

compression along the [0001]  direction. The WZ and HX enthalpy wells are comparable 

at 
c

σ =  −6 GPa [ 0.01eVc
H∆ = , Figure 4.7(d)]. At higher compressive stresses, HX

min
c
H  is 

lower than WZ
min

c
H , indicating the relative favorability of HX under such conditions. As the 

magnitude of either 
c

σ  or 
b

σ  is increased above the corresponding equilibrium transition 

value, HX becomes more stable and the transformation barrier becomes even lower, 

resulting in an even higher driving force for transformation. In summary, the distinct 

minima in the vicinities of the HX and WZ structures on the enthalpy maps obtained 

through DFT calculations confirm what is discovered in MD calculations by pointing out 

that (1) HX is energetically favored over WZ above a critical applied tensile stress value 

of 10
b

σ ≈  GPa along the [0110]  direction or a critical compressive stress value of 

6
c

σ ≈ −  GPa along the [0001]  direction and (2) the barrier for the transformation 

decreases as applied stress increases. 

4.2 Wurtzite to Body-Centered-Tetragonal Phase Transformation 

4.2.1 Tensile Response of [0001] Nanorods 

 Figure 4.8 shows the stress-strain response of a nanorod with lateral dimension d 

= 32.5 Å. Four distinct stages are observed. The first stage (A→B) corresponds to the 

elastic stretching of the WZ structure up to a strain of 7.5%. Further deformation results 

in a precipitous stress drop (B→C) associated with the WZ to BCT-4 phase 

transformation. The transformation completes at a strain of 8.5%. Continued loading 

causes elastic stretching of the BCT-4 structure (C→D) and culminates in the eventual 

failure at a strain of 16.9% (point E). To analyze the stability of the parent and 

transformed structures, unloading is performed from states prior to transformation 

initiation (first peak tensile stress, FPTS, point B) and failure initiation of the nanorod 
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(second peak tensile stress, SPTS, point D). The unloading path from B coincides with 

the loading path, confirming that the deformation from A to B is indeed the elastic 

response of the WZ-structured nanorod. Unloading from D also results in the elastic 

recovery of the BCT-4 structure and continued unloading beyond the transformation 

completion strain (point C) does not result in a reverse transformation. Instead, the 

nanorod retains the BCT-4 structure when the stress is reduced to zero (F in Figure 4.8). 
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Figure 4.8 Stress-strain curve of [0001] nanorod with d = 32.5 Å at 300 K during loading 
and unloading (Wang et al. 2007). 
 

4.2.2 Transformation Mechanism 

 The WZ to BCT-4 transformation occurs through a combination of (1) the 

breaking of every other Zn-O bonds along the [0001] direction [bond A in Figure 4.9(a)] 

and (2) the formation of an equal number of Zn-O bonds along the same direction [bond 

B in Figure 4.9(a)] next to the broken bonds. This process repeats on alternate planes 

along the [0110]  direction. The transformed structure retains the tetrahedral coordination 

with each Zn/O atom at the center and four O/Zn atoms are at the vertices of a 

tetrahedron. The geometry of the tetrahedron can be characterized through the O-Zn-O 

bond angles ( ,  1..6
i

iα = ), as shown in Figure 4.9(a). For WZ, all bond angles are 
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approximately equal ( 108
i

α ≈ � ). For BCT-4, the formation of 4-atom rings results in 

three distinct bond angles ( 1 90α ≈ � , 2 112.7α ≈ �  and 3 113.7α ≈ � ). 
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Figure 4.9 (a) Wurtzite (WZ) and newly discovered body-centered tetragonal with four 
atom rings (BCT-4) structures and (b) crystallographic transition through breaking and 
formation of bonds and differences in bond angles between the WZ and the BCT-4 
structures. 

 

As seen from Figure 4.9(b), the transformed phase consists of 4-atom (2 Zn and 2 

O) rings arranged in a BCT lattice. Note that, the 4-atom ring at the center is rotated by 

90º relative to the rings at the corners of the tetragonal lattice cell. Strictly speaking, the 

unit cell consists of two-ring clusters (one of each orientation, total of 8 atoms) 

positioned in a simple tetragonal primitive lattice. Figure 4.9(b) also shows the lattice 
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parameters a, b and c for the WZ and BCT-4 structures. Their respective values as 

obtained from MD and DFT calculations (in square brackets) at various stress levels are 

listed in Table 4.2 along with unit cell volumes. For WZ, the ratios c/a and b/a are 1.60 

and 1.73, respectively. Throughout the transformation, the b/a ratio remains at its initial 

value of 1.73 (±0.02), reflecting the symmetries of the loading and the lattice. On the 

other hand, upon transformation to BCT-4 at a stress above 7 GPa, the c/a ratio increases 

to 1.8. Phenomenologically, the predilection for the BCT-4 phase over the WZ phase 

under the tensile loading conditions considered here can be explicated by its elongated 

configuration in the [0001] direction (higher c/a ratio) relative to that of the WZ 

structure. Upon unloading, the residual strain at F in Figure 4.8 is 6.8% according to both 

MD and DFT. It reflects the dimensional difference between the unstressed WZ and 

BCT-4 structures in the [0001] direction in Figure 4.9(a). This unstressed BCT-4 

structure corresponds to the “ideal” BCT-4 structure predicted by the DFT calculations 

with b/a = c/a = 1.73. 

 

Table 4.2 Lattice constants for WZ and BCT-4 ZnO in tension along the c-axis obtained 
via MD and DFT [square brackets] calculations. 
 

WZ BCT-4 
Parameters 

0σ =  0σ =  4σ =  7σ =  10σ =  

a (Å) 
3.29  

[3.20] 
3.24 

[3.17] 
3.22 

[3.13] 
3.20 

[3.09] 
3.19 

[3.06] 

b (Å) 
5.67  

[5.55] 
5.58 

[5.48] 
5.54 

[5.42] 
5.51 

[5.35] 
5.48 

[5.32] 

c (Å) 
5.17  

[5.13] 
5.52 

[5.48] 
5.67 

[5.71] 
5.77 

[5.87] 
5.84 

[5.98] 

V=abc(Å3) 
96.4 

[91.1] 
99.8 

[95.2] 
101.2 
[96.9] 

101.7 
[97.0] 

102.1 
[97.3] 

∆V(Å3) 
0.0  

[0.0] 
3.4 

[4.1] 
4.8 

[5.8] 
5.3 

[5.9] 
5.7 

[6.2] 

c/a 
1.57  

[1.60] 
1.71 

[1.73] 
1.76 

[1.82] 
1.80 
[1.9] 

1.83 
[1.95] 

b/a 
1.72 

[1.73] 
1.72 

[1.73] 
1.72 

[1.73] 
1.72 

[1.73] 
1.71 

[1.73] 
 



 50 

The BCT-4 structure is analyzed using the radial distribution function (RDF). 

Figure 4.10 shows the RDF profiles for the WZ structured rod after initial relaxation 

(corresponding to point A in Figure 4.8) and the BCT-4 structured rod upon 

transformation completion (corresponding to point C in Figure 4.8). For both structures, 

the first peak occurs approximately at 1.98 Å which corresponds to the Zn-O bond 

distance. Similarly, the second peaks for the two structures (corresponding to lattice 

constant a) coincide, indicating that the two structures have the same lattice parameter 

along the initial [2 110]  orientation. Additionally, the ‘b’ peaks for the WZ and BCT-4 

structures also coincide, suggesting that the b/a ratio remains constant during the 

transformation. However, the profiles (and hence the structures) are different from the 

third peaks onward. The ‘c’ peak for WZ at 5.20 Å shifts to 5.63 Å for BCT-4, causing 

the c/a ratio to increase from 1.60 to 1.73. This change in c is consistent with the applied 

loading and the strain associated with the transformation into BCT-4. 

 

 

Figure 4.10 Radial distribution function (RDF) profiles for a 32.5 Å WZ-structured 
nanorod before loading (point A in Figure 4.8, dash line) and upon completion of 
structure transformation to BCT-4 (point C in Figure 4.8, solid line). 
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4.2.3 Energetic Favorability 

 The relative favorability of the two phases is studied by calculating the enthalpy 

(per 4 Zn-O pairs) using DFT calculations (Limpijumnong and Jungthawan 2004; 

Kulkarni et al. 2006). The complete enthalpy surfaces show that the BCT-4 structure has 

minimum enthalpy at b/a = 1.73 for all values of tensile stress considered. For clarity 

without loss of generality, the discussions here use Figure 4.11 which shows the enthalpy 

values (eV per 4 Zn-O pairs) for both structures for b/a = 1.73 at σ = 0, 4, 7 and 10 GPa.  
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Figure 4.11 Enthalpy (per 4 Zn-O pairs) as a function of c/a obtained from DFT 
calculations for b/a = 1.73 at tensile stresses of (a) σ = 0 GPa, (b) σ = 4 GPa, (c) σ = 7 
GPa and (d) σ = 10 GPa in the [0001] direction. 

 

At any stress level, each structure has its own enthalpy minimum. The first 

minimum is in the vicinity of c/a ≈ 1.6 which corresponds to WZ with lattice parameters 

slightly different from those at zero stress and the second minimum is in the vicinity of 
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c/a ≈ 1.7-1.9 which corresponds to BCT-4. At zero stress, WZ is the stable crystal 

structure and its enthalpy is lower than that of BCT-4 by 0.3 eV [Figure 4.11(a)]. As the 

stress is increased to 4 GPa [Figure 4.11(b)], the difference in enthalpies decreases and at 

a stress of 7 GPa [Figure 4.11(c)], the two minima become comparable indicating that 

WZ and BCT-4 are equally favored. This value of stress corresponds to the equilibrium 

transition stress for the two phases. Since an energy barrier (associated with intermediate 

transitional states) exists for the transformation, a stress level higher than the 7 GPa 

equilibrium stress is required to initiate the transformation. At a stress of 10 GPa [Figure 

4.11(d)], the enthalpy of BCT-4 is lower and this structure is clearly favored. Further 

increases in stress result in the eventual initiation of the phase transformation. The 

specific stress level at which the transformation initiates depends on the rod size and 

temperature. For the particular nanorod in Figure 4.8 at 300 K, the critical stress level is 

σ = 17.9 GPa. The gradual evolution of the local enthalpy minimum for the BCT-4 at 

0σ =  into a global minimum as stress increases confirms that the phase transformation 

observed in MD simulations is indeed energetically favored. 

4.2.5 Size and Temperature Effects 

The effect of lateral size on the response of the nanowires is also analyzed. Figure 

4.12(a) shows the stress-strain curves for nanorods of different sizes. The critical stress 

required for the nucleation of the transformation (FPTS) decreases by 25% from 21.90 to 

16.50 GPa as the size increases from 19.5 to 45.5 Å [Figure 4.12(b)]. The failure stress 

(SPTS) is also size-dependent, decreasing 33% from 27.02 to 18.05 GPa over the same 

range of wire size. Detailed results are listed in Table 4.3.  
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Figure 4.12 Size dependence of elastic responses, (a) Stress-strain relations, (b) critical 
stress for transformation nucleation (FPTS) and failure strength (SPTS) and (c) elastic 
moduli of WZ and BCT-4. 

 

The elastic moduli of the nanorods (both WZ structured and BCT-4 structured) 

are higher than the corresponding value of 140 GPa (Kong and Wang 2003; Chen et al. 

2006b) for bulk WZ and decrease as the size increases, as shown in Figure 4.12(c). The 
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modulus of WZ structured rods decreases by 24% from 299.49 to 227.51 GPa as the 

lateral dimension is increased from 19.5 to 45.5 Å. On the other hand, the modulus of the 

BCT-4 structured rods decreases by 38% from 269.29 to 166.86 GPa over the same size 

range. The size dependence observed here can be explained by considering the state of 

stress in the nanorods. The high surface-to-volume ratios of the nanorods and the tensile 

surface stress induce significant compressive stresses in the cores of rods. It has been 

shown that surface-stress-induced internal (compressive) stresses are inversely 

proportional to the lateral dimensions of nanostructures (Diao et al. 2003; Sander 2003; 

Gall et al. 2004; Liang and Zhou 2005; Kulkarni and Zhou 2006b), effectively causing 

the size effect observed here. When cross-sectional dimensions are sufficiently large, 

surface-stress-induced compressive stresses are small and the surface effects are 

inconsequential. As a result, the material behavior approaches that of its bulk counterpart. 

 

Table 4.3 Critical stress for nucleation (FPTS), maximum tensile strength (SPTS), 
critical strains and elastic moduli of the nanorods at 300 K. 
 

Size (Å) 19.5 26.0 32.5 39.0 45.5 
FPTS (GPa) 21.90 19.33 17.89 17.33 16.50 
Strain at FPTS (%) 7.24 7.50 7.40 7.78 7.61 

SPTS (GPa) 27.02 22.55 20.09 19.35 18.05 

Strain at SPTS (%) 16.44 17.88 16.90 19.99 19.50 

Elastic Modulus of WZ (GPa) 299.49 271.05 250.02 238.19 227.51 

Elastic modulus of BCT-4 (GPa) 269.29 219.50 207.14 183.43 166.86 

Residual strain (%) 6.06 6.30 6.67 6.56 6.65 

 

Temperature also has a significant effect on the critical stress required for 

transformation initiation and on the elastic responses of the WZ and BCT-4 structured 

rods. Figure 4.13(a) shows the stress-strain curves associated for a 32.5 Å nanorod at 300, 

600, 900, 1200 and 1500 K. The two linear elastic stages of deformation and the stress 

drop associated with the transformation are clear at all temperatures. A significant 
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dependence of FPTS on temperature is observed. Specifically, as the temperature 

increases from 300 to 1500 K, the FPTS decreases 87.8% from 17.89 to 2.19 GPa, as 

shown in Table 4.4 and Figure 4.13(b). This decrease in transformation initiation stress is 

due to the enhanced ability of the nanorod to overcome the energy barrier at higher 

temperatures. At temperatures above 600 K, a transitional stage of linear response is 

observed. This stage of deformation corresponds to the stretching of a composite 

WZ+BCT-4 structure. The primary reason for the intermediate stage is that, at higher 

temperatures, the FPTS is lower and the strain energy stored in the WZ structured rod is 

not sufficient to drive the WZ→BCT-4 transformation for the whole rod. Instead, further 

stretching is required for the transformation to complete. Note that the deformation 

analyzed here is strain-controlled. At temperatures above 900 K, the FPTS is low enough 

such that there simply is not enough elongation of the rod at the initiation of the phase 

transformation (e.g., 1.98% and 1.21% for 1200 and 1500 K, respectively) to 

accommodate the dimensional increase associated with the WZ→BCT-4 transformation 

(approximately 6.8% for a 32.5 Å rod, see point F of Figure 4.8). As a result, 

compressive stresses develop in the rods at such temperatures. 

The enhanced mobility of atoms at higher temperatures promotes the formation of 

defects and causes significant thermal softening. As a result, a significant temperature 

dependence of the responses of the WZ and BCT-4 structures is also observed. 

Specifically, for 32.5 Å rod the elastic moduli of the WZ and BCT-4 structures decrease 

18% and 16%, respectively, as temperature is increased from 300 to 1500 K [Figure 

4.13(c)]. Over the same temperature range, the SPTS and the maximum elongation 

decrease by 40% and 8.17%, respectively, as shown in Figure 4.13. 
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Figure 4.13 Temperature dependence of response, (a) Stress-strain relations, (b) critical 
stress for transformation nucleation (FPTS) and failure strength (SPTS) and (c) elastic 
moduli of WZ and BCT-4. 
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Table 4.4 Critical stress for nucleation (FPTS), maximum tensile strength (SPTS), 
critical strains and elastic moduli of a 32.5 Å nanorod at different temperatures. 
 

Temperature (K) 300 600 900 1200 1500 
FPTS (GPa) 17.89 14.20 9.79 3.96 2.19 
Strain at FPTS (%) 7.40 6.14 4.52 1.98 1.21 
SPTS (GPa) 20.09 17.97 16.20 12.94 12.00 

Strain at SPTS (%) 16.90 17.57 16.36 16.11 15.52 

Elastic Modulus of WZ (GPa)  250.02 230.84 217.98 198.95 204.09 

Elastic Modulus of BCT-4 (GPa) 207.14 190.79 170.11 167.34 174.33 

 

4.2.6 Transformation Assisted Property Variations 

The WZ-to-BCT-4 phase transformation observed here alters the electrical, 

thermal and mechanical responses of the nanorods. Recently, [0001]-oriented ZnO 

nanorods with a WZ structure have been used to successfully generate direct electric 

current through mechanical bending (Zhao et al. 2004). The transformation from the 

piezoelectric WZ structure to the non-piezoelectric BCT-4 structure establishes an upper 

bound for the maximum possible current generation and operational strain for this 

application. Specifically, the electric field output 3E  can be related to the longitudinal 

strain 3ε  through 3 3 33E dε=  where 33 20.5d ≈  pm/V is the piezoelectric coefficient for 

the ZnO nanorods. Since the strain at the initiation of transformation [B in Figure 4.8] is 

approximately 7.5% for all rod sizes, the maximum electric field output is therefore 3.7 

V/nm. The mechanical response of BCT-4 also differs significantly from that of WZ. In 

particular, the enthalpy curves for BCT-4 are flatter than those for WZ (Figure 4.11), 

indicating that the elastic stiffness of BCT-4 is lower than that for WZ. Indeed, in Figure 

4.8 the slope of curve AB (228 GPa which is [0001] elastic modulus of WZ) is higher 

than that of curve FD (167 GPa which is the corresponding modulus of BCT-4). The 

thermal response of semiconductors such as ZnO is dominated by phonons and the 

interactions between phonons and surfaces (Kulkarni and Zhou 2006a). The WZ to BCT-
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4 phase transformation changes the atomic arrangement and hence the phonon spectrum, 

resulting in potentially large changes in thermal conductivity. The electronic band 

structures of WZ and BCT-4 are shown in Figure 4.14. Note that the total number of 

bands for BCT-4 is twice that for WZ because the unit cell of BCT-4 has twice as many 

atoms as WZ. Both phases have direct band gaps at Γ . Although DFT calculations with 

local density approximations are known to underestimate band gaps and therefore are not 

normally used to predict absolute band gap values, they can provide valid relative 

comparisons between the two phases. The calculated band gap and average electron 

effective mass of BCT-4 are, respectively, 12% and 17% smaller than those of WZ, 

giving the nanorod a smaller bandgap and potentially higher electron mobility after the 

WZ-to-BCT-4 transformation. These mechanically induced electrical property shifts may 

have novel applications in devices that depend on coupling between responses. 

 

 

Figure 4.14 Band structures of (a) WZ ZnO and (b) BCT-4 ZnO obtained by DFT 
calculations. The energy is relative to the top of the valence bands. 
 

4.9 Chapter Summary and Insights 

 The discovery of two novel phase transformations observed in the tensile loading 

of nanowires and nanorods is reported. Each transformation results in a previously-
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unknown crystal structure for ZnO. Uniaxial loading of [0110]-oriented ZnO nanowires 

results in the transformation of the parent wurtzite (WZ) structure to a graphite-like phase 

(HX). Crystallographically, this newly discovered polymorph of ZnO has a five-fold 

coordination, in contrast to the four-fold coordination of the initial WZ structure, 

implying that the transformation proceeds towards higher ionicity. The transformation 

results in a pseudoelastic behavior with recoverable strains up to 16%. 

Wurtzite to a body-centered-tetragonal structure with four-atom rings (BCT-4) is 

observed in hexagonal ZnO nanorods with the [0001] growth direction. As a result of this 

transformation, the response of the nanorods to uniaxial tensile loading manifests in three 

stages, including (i) the elastic stretching of the WZ structure, (ii) a structural 

transformation from WZ to BCT-4 and (iii) the stretching of the BCT-4 structure. A 

significant dependence of deformation on rod size is observed. As the lateral dimension is 

increased from 19.5 to 45.5 Å, the elastic modulus values of the WZ and BCT-4 

structured rods decrease by 24% and 38%, respectively, and the critical stress for 

transformation initiation decreases by 25%. The behavior of the nanorods is also 

temperature-dependent, with the elastic moduli of the WZ and BCT-4 structures 

decreasing 18% and 16%, respectively, as temperature increases from 300 to 1500 K. The 

critical stress for transformation initiation shows the most pronounced temperature 

dependence, decreasing 87.8% over the same temperature range. 

Most importantly, the identification of the BCT-4 and HX structures leads to a 

more complete understanding of the nature and extent of polymorphism in ZnO and its 

dependence on load triaxiality. Joining Wurtzite (WZ), Zinc Blende (ZB), Rocksalt (RS), 

HX and BCT-4 constitute the fourth and fifth polymorphs of ZnO discovered so far. It is 

now possible to construct a structure-load triaxiality map for ZnO, as shown in Figure 

4.15. Among the previously well known phases, WZ is the most stable and naturally 

occurring phase and RS is observed under hydrostatic compressive conditions (Kulkarni 

et al. 2007b). Both BCT-4 and HX are stabilized under uniaxial loading, with HX 
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occurring under tension along the [0110]  and/or [2 110]  directions as well as 

compression along the [0001]  direction and BCT-4 occurring under tension along the 

[0001]  direction. It is worthwhile to note that ZB grows epitaxially on specific surfaces 

of cubic crystals and can not be obtained via a transformation from WZ under external 

loading, therefore, it is not included in this map. 
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Figure 4.15 Crystalline structure-load triaxiality map summarizing the nature and much 
wider extent of polymorphism in ZnO than previously known; WZ is the natural state at 
ambient conditions, RS occurs under hydrostatic or near hydrostatic compression, HX 
occurs under tension along the [2 110]  and [0110]  directions as well as compression 
along the [0001]  direction, and the newly identified BCT-4 occurs under tension along 
the [0001]  direction. The green and red allows indicate, respectively, possible and 
impossible transformation paths under relevant load direction reversals. ZB cannot be 
obtained via a transformation from WZ under external loading and is not included in this 
map. 
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CHAPTER 5 : PSEUDOELASTICITY 

  

Pseudoelasticity and shape memory effect (SME) are normally observed in shape 

memory alloys and elastomers (Otsuka and Wayman 1998). Such effects have recently 

been discovered in single crystalline metal nanowires (Liang and Zhou 2005; Liang et al. 

2005b; Park et al. 2005; Liang and Zhou 2006). In the previous chapter, we have seen 

that a novel pseudoelastic behavior is observed in [0110]-oriented ZnO nanowires which 

arises from a reversible phase transformation from WZ phase to the newly discovered 

HX phase (Kulkarni et al. 2006). This previously unknown five-fold coordinated 

polymorph of ZnO can result from either tensile loading along the [0110]  direction or 

compressive loading along the [0001] direction. For [0110]  nanowires in tension, 

recoverable strains, which comprise of the elastic stretching of the WZ and HX phases 

and a contribution from the transformation, can be up to 16%. While the ability to 

undergo a phase transformation is the primary reason for the unusual pseudoelastic 

behavior, the nearly defect-free nature of these nanowires and the large surface-to-

volume ratios, which enhance atomic mobility, also contribute to the wires’ ability to 

undergo deformation without fracture. The high strengths, large recoverable strains and 

property variations associated with transformation make these nanowires ideal candidates 

as nanocomponents in NEMS. However, a fundamental understanding of the constitutive 

behavior, the nature of the phase transformation and the characteristics of the transformed 

phase is needed in order to unleash the potential of these nanowires. 

 This chapter focuses on characterizing the pseudoelastic response of the [0110]  

ZnO nanowires with lateral dimensions of 21.22×18.95, 31.02×29.42 and 40.81×39.89 Å 

under quasi-static tensile loading. The characterization accounts for temperatures 

between 100 and 700 K. The analysis focuses on the formation of the new HX crystalline 

structure and the transformation path from WZ to HX under uniaxial tensile loading. In 
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particular, the atomic motions or lattice distortion resulting in the formation of the HX 

structure are quantified through the gradient of a continuum deformation map. The 

analysis lends itself to the quantification of the recoverable strains associated with the 

pseudoelastic behavior of the nanowires, including contributions from the elastic 

stretching of the WZ and the HX phases and lattice size change due to the phase 

transformation. The size- and temperature-dependence of important parameters including 

the critical stress for the initiation of phase transformation, maximum recoverable strain, 

and hysteretic dissipation are also quantified. 

Secondly, a micromechanical continuum model is developed to characterize the 

observed pseudoelastic behavior. The emphasis is on capturing the major characteristics 

of and accounting for the size and temperature effects embedded in the overall 

constitutive behavior. The model considers the elastic deformation of the pure phases and 

the WZ→HX transformation during loading and the HX→WZ transformation during 

unloading. The transformation is decomposed into a reversible process of structural 

transitions between WZ and HX through a sequence of phase equilibrium states (PES) 

and a dissipative process of interface propagation. The equilibrium transition process is 

modeled using the framework of strain energy functions with multiple local minima 

(Abeyratne and Knowles 1993; Abeyratne and Kim 1994; Abeyratne and Bhattacharya 

2001). The dissipative nature of the interface propagation process is related to the 

ruggedness of the energy landscape associated with (1) the elastic energy storage during 

the stretching of the heterogeneous nanowire structure and (2) the energy release 

associated with interface formation and motion.  

5.1 Pseudoelastic Response 

 Figure 5.1 (a) shows the tensile stress strain curve of a 40.81×39.89 Å wire during 

loading and unloading at 100 K. The configurations of this wire at four different stages 

(three of which are during loading) of deformation along the curve are shown in Figure 
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5.1(b), with the atoms colored by their coordination numbers. In the wurtzite structure 

[initial configuration, (i) in Figure 5.1(b)], each atom has a coordination number of 4, 

typical for tetrahedral structures. Atoms on surfaces and edges have coordination 

numbers of 3 or less. In the HX phase [(ii) and (iii) in Figure 5.1(b)], on the other hand, 

each atom has a coordination number of 5 due to the additional Zn-O bond along the 

[0001] axis as compared to the WZ phase. 
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Figure 5.1 Tensile behavior of a 40.81×39.89 Å nanowire, (a) stress-strain curve under 
loading and unloading; (b) deformed configurations at different stages of loading and 
unloading. 
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 The loading response [Figure 5.1(a)] consists of initial elastic stretching of the 

WZ wire (A→B), structural transformation from WZ to HX (B→D) and elastic 

stretching of the HX wire (D→E), culminating in the eventual failure at E. The stress-

strain relation in the elastic regime between A and B is essentially linear. Deformation 

beyond the elastic regime results in a stress drop from 11.31 to 10.45 GPa (B→C). This 

relaxation event indicates the initiation of a phase transformation (Olson and Cohen 

1982). The HX phase nucleates near the wire’s surface at a strain of 0.065 [Figure 

5.1(a)]. As the deformation progresses, the transformed region sweeps through the whole 

specimen [C→D and configuration (ii) in Figure 5.1(b)] and the transformation is 

completed at a strain of 0.108 and a stress of 10.58 GPa [point D in Figure 5.1(a)]. 

Continued loading beyond point D causes elastic stretching of the transformed structure 

[D→E in Figure 5.1(a) and configuration (iii) in Figure 5.1(b)] and the eventual failure at 

a strain of 0.162 and a stress of 12.28 GPa through cleavage along (1210)  type planes. 

 Unloading of a HX structured wire from any strain prior to wire fracture activates 

the novel pseudoelastic behavior. Take the wire in Figure 5.1 for example; unloading 

from a strain of 14.5% (point F) initially results in the recovery of the elastic straining of 

the HX and goes beyond the end point of the WZ→HX transformation during loading 

(point D). This elastic unloading within the HX structure continues until point G where a 

reverse transformation from HX to WZ initiates at a strain of 0.087 and a stress of 7.38 

GPa. Further unloading results in the complete reversal of the HX→WZ transformation 

at H (with a strain of 0.039 and a stress of 7.04 GPa). Unloading between H and A 

follows the elastic trend of the WZ phase and the hysteresis loop is completed.  
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 For the wire in Figure 5.1, the total recoverable strain is ~16% which is 

significant since ZnO is a ceramic. The hysteretic energy dissipation in one loading and 

unloading cycle is ~0.14 GJm-3. This dissipation level is significantly lower than that 

observed for wurtzite to rocksalt (WZ→RS) transformations in bulk ZnO (~1.38 GJm-3 

per cycle), therefore, limiting heat generation and heat-related damage and making the 

nanowires ideal for applications involving cyclic loading and unloading (Desgreniers 

1998). The low level of dissipation can be attributed to the fact that (1) the 

crystallographic transition between the WZ and HX structures, which does not require the 

formation of defects such as dislocations or twin boundaries, is smooth and (2) the energy 

barrier for the transformation between the WZ and the HX structures is relatively low 

(Kulkarni et al. 2006). 

5.2 Effects of Size and Temperature 

 Temperature and lateral dimensions have significant effects on the pseudoelastic 

behavior of the wires. Figure 5.2(a-c) show the loading part of the stress-strain curves 

over 100-700 K for the 21.22×18.95, 31.02×29.42 and 40.81×39.89 Å nanowires, 

respectively. The critical stress for the nucleation of the HX phase (
c

σ ) is marked by 

open circles in these figures. Figure 5.2(d) shows the variation of this critical stress as a 

function of size and temperature. Overall, the critical stress decreases as the wire size is 

reduced. The critical stress also decreases as temperature is increased. Over the 

temperature range analyzed, 
c

σ  for the 31.02×29.42 Å wire is up to 42 % higher than 

that for the 21.22×18.95 Å wire, while the values for the 40.81×39.89 Å wire are 

approximately 11-15% higher than those for the 31.02×29.42 Å wire.  
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Figure 5.2 Stress-strain curves of (a) a 21.22×18.95 Å wire, (b) a 31.02×29.42 Å wire, 
and (c) a 40.81×39.89 Å wire at different temperatures; and (d) the critical stress for the 
initiation of phase transform (

c
σ ) as a function of lateral dimensions and temperature. 

 

 In contrast to the well-established trend that the stiffness of nanowires increases 

as wire size is reduced (Kulkarni and Zhou 2006b), 
c

σ  decreases as the wire size is 

reduced. The higher surface-to-volume ratios at smaller wire sizes cause both effects. 

Note that, as the wire size is reduced from 50 Å to 10 Å, the surface-to-volume ratio 

increases by ~35%. In particular, for polar (0001) surfaces, the imbalance of charges 

results in extensive surface reconstruction. Figure 4.1 shows the positions of atoms on 

layers perpendicular to the [0001] direction before and after the initial relaxation. 

Obviously, relative to the ideal bulk structure, the surface layers contract and the Zn and 

O basal planes become essentially coplanar, resulting in a layered surface structure (LY) 

which is crystallographically similar to the HX structure. This phenomenon has been 
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predicted by first-principle calculations and observed in experiments on ZnO nanofilms 

(Claeyssens et al. 2005; Freeman et al. 2006). The reconstructed LY surfaces in the initial 

wire before loading play an important role because they can act as nucleation sites for 

and lower the energy barrier of the WZ→HX transformation due to the geometric 

similarities between the LY and HX structures. The smaller wire cores at smaller wire 

sizes facilitate the initiation of the phase transformation from the surfaces, resulting in the 

lower 
c

σ  values. 

 As temperature increases from 100 K to 700 K, a 25.2% decrease in 
c

σ  is 

observed for the 40.81×39.89 Å wire [Figure 5.2 (d)]. This effect is attributed to thermal 

softening and the ability of the nanowire to overcome the energy barrier for the 

transformation at higher temperatures. Note that over the same range of temperature, the 

elastic modulus of the nanowire decreases by 24% (Kulkarni and Zhou 2006b). 

Temperature changes also significantly affect hysteretic dissipation. To illustrate this 

effect, the stress-strain curves of the 40.81×39.89 Å wire at 100 K, 300 K, 500 K, and 

700 K are shown in Figure 5.3. The corresponding dissipation during the loading-

unloading cycle along with those for the 21.22×18.95, 31.02×29.42 wires at these 

temperatures is given in Figure 5.4. For the 40.81×39.89 Å wire, the dissipation 

decreases by 39.6% as temperature is increased from 100 K to 700 K. A similar trend is 

seen for the 21.22×18.95 and 31.02×29.42 Å wires which show decreases of 52.9% and 

56.6%, respectively over the same temperature range. 

 Table 5.1 lists the values of several key parameters quantifying the pseudoelastic 

behavior at various cross-sectional sizes and temperatures. In particular, note that the 

maximum recoverable strain decreases significantly as temperature is increased, while 

the strain at which the WZ→HX transformation completes is essentially temperature-

independent. The enhanced mobility of atoms at higher temperatures promotes the 

formation of defects and may be a factor contributing to the failure at lower strain levels. 
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Figure 5.3 Stress-strain responses of a 40.81×39.89 Å wire during one loading-unloading 
cycle at (a) 100 K, (b) 300 K, (c) 500 K and (d) 700K. 
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Figure 5.4 Hysteretic dissipation in one loading-unloading cycle as a function of lateral 
dimensions and temperature. 
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Table 5.1 Size and temperature dependence of the stress-strain response of the nanowires 

Cross-section 
Dimensions 

(Å2) 

Temperature 
(K) 

c
σ  

 (GPa) 
c

ε  
Strain at 

completion of 
transformation  

Maximum 
Recoverable 

Strain 

Ultimate 
tensile strength 

(GPa) 

Hysteretic 
Dissipation 

(GJm-3) 
100 10.02 0.051 0.100 0.165 15.56 0.155 
300 8.59 0.045 0.096 0.155 14.50 0.171 
500 6.29 0.033 0.097 0.148 13.56 0.088 

21.22×18.95 

700 4.15 0.027 0.091 0.127 12.34 0.073 
100 10.10 0.053 0.110 0.155 13.05 0.106 
300 9.59 0.053 0.110 0.154 12.50 0.086 
500 8.31 0.049 0.098 0.140 11.44 0.053 

31.02×29.42 

700 7.17 0.040 0.116 0.138 10.89 0.046 
100 11.32 0.065 0.108 0.159 12.30 0.139 
300 10.40 0.063 0.109 0.162 11.68 0.104 
500 9.31 0.060 0.114 0.143 10.60 0.089 

40.81×39.89 

700 8.47 0.051 0.086 0.108 9.21 0.084 
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5.3 Characterization of Deformation 

 The deformation can be quantified in a continuum sense through the deformation 

gradients 
i

F  ( 1,2, and 3i = ) associated with the three stages of deformation, with 1i =  

denoting the first stage [elastic stretching of WZ, A→B in Figure 5.1(a)], 2i =  denoting 

the second stage [transformation from WZ to HX, B→D in Figure 5.1(a)], and 3i =  

denoting the third stage [elastic stretching of HX, D→E in Figure 5.1(a)]. In such an 

analysis, the deformation of a representative volume of a b cΩ = × ×  (Figure 5.5) is used, 

with dimensions a , b  and c  being the average values of lattice constants a, b and c, 

respectively. Since the average values of the lattice parameters are used here, the 

deformed wire is regarded as a repetition of this representative volume.  
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Figure 5.5 Representative volume defined in a unit cell of the wurtzite lattice for the 
purpose of deformation analysis. 
 

 The deformation gradient for each stage can then be expressed as 
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F .                                          (5.1) 
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In the above expressions, 1 1 1, , and
i i i

a b c− − −  are the average lattice constants at the 

beginning of stage i and , , and
i i i

a b c  are the average lattice constants at the end of stage 

i. Note that 0 0 0, , anda b c  are the constants for the initial (undeformed, WZ) wire. The 

relative volume change associated with stage i is  

 ( )
1

deti
i

i−

Ω
=

Ω
F ,                                                        (5.2) 

where Ω  is the volume of the wire at the beginning and end of stage i, respectively.  

For a 40.81×39.89 Å wire at 100 K, the deformation gradient for the first stage 

[A→B in Figure 5.1(a)] is  

 1

0.991 0 0

0 0.960 0

0 0 1.065

 
 

=  
 
 

F .                                        (5.3) 

The associated volume increase is 1.27% and the longitudinal (elastic) strain 

33
33 1 1Fε = − =  0.065 consistent with that seen from the stress-strain curve in Figure 

5.1(a). 

During the second stage of deformation (phase transformation, [B→D in Figure 

5.1(a)]), a  increases and c  decreases. The corresponding deformation gradient is 

 2

1.047 0 0

0 0.876 0

0 0 1.043

 
 

=  
 
 

F .                                       (5.4) 

The volume ratio associated with the transformation is 2 1 0.957Ω Ω = , indicating a 

slight decrease in volume of 4.3%. This decrease in volume under tensile loading is 

counterintuitive. It is a direct consequence of the discrete lattice structure and the 

structural transformation. Specifically, the uniaxial tensile stress in the [0110]  or ‘b’ 

direction causes the interatomic distances in the [0001]  Zn and O basal planes (a) to 
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increase, causing the two types of basal planes to become coplanar and, therefore, the 

volume decrease.  

The deformation gradient for the elastic deformation of the HX phase in the third 

stage [D→E in Figure 5.1(a)] is  

 3

1.008 0 0

0 0.962 0

0 0 1.05

 
 

=  
 
 

F . (5.5) 

Although the ‘a’ and ‘b’ directions are perpendicular to each other, a increases slightly 

(with a corresponding strain of 11 0.008ε = ) under the tensile loading along the ‘b’ 

direction. This gives rise to a negative phenomenological Poisson’s ratio of 

 11
13

33

0.16
ε

ν
ε

= − = − . (5.6) 

The total elastic strain of the wire beyond the completion of the phase transformation and 

before fracture [between D and F in Figure 5.1(a)] is 33
33 3 1Fε = − = 0.05. Here, the 

reference state of this strain is the length of the wire at the completion of transformation 

(point D). The corresponding volume increase is 1.68%. 

Overall, the total strain of the wire between points A and E is 33 33 33
1 2 3 1F F Fε = −  

0.162= . Here, the reference length is the original length of the wire. 

 

5.4 Micromechanical Continuum Model 

As previously discussed, [0110]-oriented ZnO nanowires are found to undergo a 

reversible phase transformation from WZ to HX under tensile loading. This 

transformation leads to a pseudoelastic behavior. Figure 5.6 shows a schematic 

representation of this pseudoelastic response which can be decomposed into the 

following eight deformation stages: 
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1. (A→B): Elastic deformation of the WZ-structured wire; 

2. (B→C): Precipitous drop in stress associated with the nucleation of the WZ-to-

HX phase transformation; 

3. (C→D): Propagation of the phase boundary from HX regions into WZ regions, 

with point D corresponding to the completion of the transformation; 

4. D→E: Elastic deformation of the HX-structured wire; 

5. E→F: Elastic unloading of the HX-structured wire, note that the unloading 

response continues beyond the point of initial transformation completion (D). 

6. F→G: Nucleation of the reverse (HX-to-WZ) transformation with a 

corresponding stress increase; 

7. G→H: Reverse transformation involving the propagation of the phase boundary 

from WZ regions into HX regions, culminating at point G where the entire 

nanowire reverts back to the WZ structure; 

8. H→A: Elastic unloading of the WZ-structure wire. 
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Figure 5.6 Schematic illustration of the pseudoelastic response of a [0110]-oriented 
nanowire under quasistatic loading and unloading. 
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This section discusses the development of a micromechanical continuum model 

that captures major characteristics of the overall pseudoelastic behavior of the nanowires. 

In what follows next, thermodynamic considerations are put forth to discuss the interplay 

between internal energy, energy dissipation and external work during loading and 

unloading. An expression for the total energy of the nanowires, including contributions 

from internal energies of the pure phases and the interface between the phases is 

formulated, allowing the elastic deformation process of the wires in one of the two pure 

phases before transformation initiation or after transformation completion (A→B, D→E, 

E→F, and B→A) and the elastic part of the deformation during the transformation 

process (B→C→D and F→G→H) to be characterized. The internal energies for the WZ 

and HX states are calculated using MD simulations. The energy contribution from the 

interfaces is quantified phenomenologically as a function of the volume fractions of the 

phases. Within this framework, the total energy depends on three parameters: (a) the 

strain in the WZ phase relative to its equilibrium state, (b) the strain in HX relative to its 

own equilibrium state and (c) the volume fractions of transformed and parent phases. At 

any given level of macroscopic deformation of a wire, these microscopic independent 

parameters are determined via constrained energy minimization. As the interfacial 

contribution to the total energy, the dissipative part of the transformation process 

associated with interface propagation is also accounted for phenomenologically, through 

a functional form with the volume fractions of the phases as independent state variables. 

Overall, the first law of thermodynamics allows an expression for the macroscopic stress 

to be obtained as the sum of a conservative contribution from the internal energy and a 

dissipative contribution from the interface propagation. 

5.4.1 Thermodynamics of Loading and Unloading 

The total deformation during the transformation can be regarded as a combination 

of a process of elastic transition between the equilibrium WZ and HX states and a process 
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of interface propagation. The first process is reversible and the second process is 

irreversible. At the macroscopic level, the reversible part involves the continuous 

evolution of the volume fraction of the transformed phase with the overall macroscopic 

strain and a part of the mechanical work from the applied stress is converted into bulk 

and interfacial strain energy. The irreversible part accounts for the dissipation associated 

with overcoming the energy barrier between the WZ and HX states as the transformation 

progresses through the propagation of the interfaces between the WZ and the HX regions.  

The first law of thermodynamics relates the change in internal energy, work input and 

dissipation as  

 d d dW U Q= + . (5.7) 

where dW  is the work done by applied loading, dU  is the change in internal energy in 

the nanowire and dQ  is the energy dissipated in the form of heat exchange. During the 

loading and unloading of single phase nanowires (A→B, D→E, E→F, and H→A in 

Figure 5.6), there is no dissipation (i.e., d 0Q = ). Hence, 

 d dW U= . (5.8) 

However, when phase transformation occurs (B→C→D and F→G→H in Figure 5.6), 

d 0Q > .  

 

Table 5.2 Signs of mechanical work, internal energy and dissipation during loading and 
unloading. 

 dW dU dQ 

Loading (WZ→HX) + + + 
Unloading (HX→WZ) – – + 

 

Table 5.2 gives the signs of the three thermodynamic quantities. In this 

convention, work done on the system and heat dissipated (flowing out of the system) are 

considered positive and vice versa. During loading, external work dW  is positive and 
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part of it goes toward increasing the strain energy dU  and part of it is dissipated as heat 

dQ . The relation can be written as 

 d d dW U Q= + . (5.9) 

During unloading, the strain energy in the nanowire decreases. Part of the decrease is 

expended on providing work to the surroundings and part of it is dissipated as heat. The 

relation is 

 d d dW U Q= − . (5.10) 

5.4.1.1 Macroscopic Stress and Strain 

The total mechanical work is  

 0

0

 d ,W V

ε

σ ε= ∫  (5.11) 

where σ  and ε  are the macroscopic stress and strain, respectively, and 0
V  is the volume 

of the undeformed WZ wire. Here, the macroscopic strain ε  is the nominal engineering 

strain relative to the undeformed WZ wire and is calculated as 

 
0

,
L

L
ε

∆
=  (5.12) 

with  L∆  being the overall length change of the wire and 0L  being the length of the 

unstressed WZ wire. The total stress σ  in the wire is 

 
0

1 W

V
σ

ε

∂
=

∂
. (5.13) 

Thus, the stresses during loading and unloading are, respectively, 

 
0 0

0 0

1 d 1 d
,    during loading;

d d

1 d 1 d
,    during unloading.

d d

L c d

U c d

U Q

V V

U Q

V V

σ σ σ
ε ε

σ σ σ
ε ε

= + = +

= − = −

 (5.14) 
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5.4.2 Elastic Part of the Behavior 

5.4.2.1 Total Internal Energy 

The total energy of the system is calculated using the framework developed by Muller 

and Raniecki (Muller 1989; Muller and Xu 1991; Raniecki and Lexcellent 1994, 1998; 

Hirsinger et al. 2004). In the following discussions, subscripts 1 and 2 refer to the WZ 

and HX phases, respectively. The total internal energy of the phase mixture is expressed 

as the sum of the internal energy of WZ ( 1U ), the internal energy of HX ( 2U ) and the 

energy of the interface between the two phases ( intU ). Specifically, the total energy of the 

system is 

 1 2 intU U U U= + + . (5.15) 

The internal energy of the pure phases in the mixture can be written as 

 0 0
1 2 1 1 2 2pU U U u V u V= + = + � , (5.16) 

where 1u  is the energy density of the WZ phase reckoned over the “undeformed” volume 

( )0
1V  of the WZ phase at zero stress and 2u�  is the energy density of the HX phase 

reckoned over the hypothetical free volume of the HX phase ( )0
2V  at zero stress 

accounting for the volumetric change associated with the WZ→HX transformation. 

Specifically, 

 

1
1 0

1

2
2 0

2

= , and

= .

U
u

V

U
u

V
�

 (5.17) 

At a given level of macroscopic strain ε , the total current volume of the wire is V  and 

the current volumes of the WZ and HX regions are 1V  and 2V , respectively. For the 

purpose of formulating a consistent theory, it is illustrative to define the volumes 0
1V  and 
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0
2V  the WZ and HX regions of the wire would assume, respectively, if they were 

unloaded to zero stress with the current phase boundary held unchanged (i.e., unloading 

without phase transformation). For WZ, this imagined unloading is physically possible 

and simply involves the recovery of the elastic deformation. For HX, this imagined 

unloading is not possible since the HX structure does not exist at zero stress. Here, 0
2V  is 

defined through 

 ( )0 0
2 1= 1V V ξ+ . (5.18) 

where ξ  represents the volumetric strain associated with the WZ→HX phase 

transformation. This volumetric strain changes slightly with wire size and temperature 

and is 4.3%ξ = −  for a 40.81×39.89 Å wire at 100 K. For the wires size and temperature 

ranges analyzed, ξ  is found to be between 1.6−  to 4.3%− . Note that the definition in 

Eq. (5.18) is rather an instrument that facilitates the formulation of relevant quantities 

(energy densities, in particular) relative to fixed reference states. With the above 

definitions, the expression in Eq. (5.16) can be written as 

 
( )

0
0 2 2

1 1 2 2 0
1

;     = .
1p

V U
U u V u u

Vξ
= +

+
 (5.19) 

In the above relations, the energy densities of both phases are referred to the undeformed 

volume of WZ. It should be pointed out that the specific values of ξ  and its size- and 

temperature-dependencies are implicitly accounted for in the MD calculations that yield 

1u  and 2u  directly for each set of conditions. 

During the transformation, conservation of mass dictates that the sum of the 

masses of the two phases be equal to the total mass of the nanowire, i.e., 

 1 2 ,M M M+ =  (5.20) 

where 0
1 1 1M Vρ=  and 0

2 2 2M Vρ=  are the masses of the WZ and HX phases, respectively, 

0
1M Vρ=  is the mass and 0

V  is the volume of the unstressed WZ nanowire. 1ρ  and 2ρ  
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are the densities of WZ and HX, respectively. Since the mass of the HX phase can also be 

expressed as  

 
( )

0
2

2 1 ,
1
V

M ρ
ξ

=
+

 (5.21) 

Eq. (5.20) reduces to 

 
( )

0
0 02

1 .
1
V

V V
ξ

+ =
+

 (5.22) 

This states that the sum of the volumes of the untransformed WZ phase and the 

transformed HX phase referred to its equivalent volume in the WZ state are equal to the 

original undeformed volume of the wire. Equation (5.22) can also be written as 

 
( )

0 0
1 2
0 0

1,
1

V V

V V ξ
+ =

+
 (5.23) 

where the terms on the left hand side represent the volume fractions of the WZ and HX 

phases, respectively. Equations (5.19) and (5.23) combine to give the total strain energy 

density of the pure phases as 

 1 2(1 ) ,
p

u f u fu= − +  (5.24) 

where ( )0 0
2 1f V V ξ = +   is the volume fraction of the HX phase.  

5.4.2.2 Internal Energy of WZ and HX Phases 

The internal energy densities of the WZ- and HX-structured nanowires ( 1u  and 

2u ) are critical in the modeling of the phase transformation, since they determine the 

relative stability of the two phases and the evolution of the transformation. In nanowires, 

the internal energy depends not only on the bulk structure and deformation but also on 

surface orientations and surface energies. Due to the high surface-to-volume ratios, 

surface energy constitutes a major portion of the total configurational energy. The surface 

energy and the internal energy of a nanowire are functions of wire size. This phenomenon 
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is different from what is the case for bulk materials whose internal energy depends solely 

on strain. In addition, it is useful to note that the internal energy does not vanish at zero 

strain (or zero stress). Here, the strain defined relative to the equilibrium bulk state. As 

shown by Sander (Sander 2003), the surface energy curve has a positive slope at zero 

surface strain, indicating that the minimum surface energy occurs at a compressive 

surface strain. This is a consequence of the reduced charge transfer and imbalance of 

ionic forces on surfaces where atoms have fewer neighbors relative to those in the core. 

As a result, WZ-structured nanowires undergo relaxation through surface reconstruction 

and adjustment of interior lattice spacing, leading to lower overall configurational energy. 

In this paper, this relaxed state is taken as the reference state. The strain in the WZ 

structure ( 1ε ) defined with respect to this reference state is 

 
0

1 1
1 0

1

,
l l

l
ε

−
=  (5.25) 

where 1l  and 0
1l  are the current and reference lengths. For the HX phase, special 

considerations similar to those in the definition of 0
2V  are required. Since HX does not 

exist at zero stress, the strains in the HX phase are defined relative to the reference length 

of 

 ( )0 0
2 1 1 .l l η= +  (5.26) 

Here, η  is the longitudinal strain associated with the WX-to-HX transformation and, 

according to MD calculations, has values in the range of 2.3 – 4.3% for the wire sizes and 

temperatures analyzed. With the reference state, the strain in HX is defined as 

 
0

2 2
2 0

2

.
l l

l
ε

−
=  (5.27) 

The internal energy density of each phase is expressed as 

 ( )0 , ( 1,2).i i i iu u u i
ε ε= + =  (5.28) 
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Here, 0
i

u  is the energy of formation, ( )i iu
ε ε  is the strain energy density and 

i
ε  is the 

strain of the i
th phase. The formation energy depends on temperature and the elastic 

constants are functions of both temperature and strain. 

The one-dimensional nature of the wires and the uniaxial tensile loading permits 

the use of 1D internal energy functions. For each phase, the internal energy density at 

each wire size and each temperature is obtained through MD calculations. The internal 

energy functions thus developed account for the effects of temperature and size (through 

explicit inclusion of surfaces in the MD model), allowing the size- and temperature-

dependence of wire responses to be analyzed. Figure 5.7 shows the internal energy 

densities of WZ and HX structures for a 40.81×39.89 Å wire at 100 K. The formation 

energies of the two phases are indicated. Note that the formation energy of WZ is lower 

than that of HX, consistent with the fact that WZ is the natural state of the wires at 100 K 

without external loading. 
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Figure 5.7 Internal energy density functions of a 40.81×39.89 Å wire in WZ and HX 
phases. 
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5.4.2.3 Interfacial Energy 

Interfacial energy includes contributions from the formation energy of the 

interface, elastic misfit of the phases and elastic interactions of neighboring domains. Its 

accurate evaluation is somewhat complicated and various methods have been proposed in 

the literature (Gall et al. 2000; Muller and Bruhns 2006), primarily due to complex 

geometry and anisotropy. Here, the phenomenological approach developed by Muller and 

Xu (1991) is adopted. Specifically, the interfacial energy density is written as 

 int
int int0

4 (1 ) ,mU
u f f u

V
= = −  (5.29) 

where int
m

u  is the maximum value when the wire is evenly divided by the WZ and HX 

phases ( 0.5f = ). Obviously, ( ) int int int int4 1 m m
f f u u S S− = =  denotes both the normalized 

interfacial energy int int
m

u u  and the normalized interfacial area int int
m

S S  (Muller and Xu 

1991). Here, intS  is the interfacial area at a prescribed value of macroscopic strain ε  and 

int
m

S  is its corresponding maximum value at 0.5f = . Note that intu  vanishes at 0f =  and 

1. One underlying assumption of Eq. (5.29) is that the orientation dependence of 

interfacial energy is negligible and the interfacial energy is only a function of the 

interfacial area. Figure 5.8 provides a comparison of the model prediction and the MD 

result of int int
m

u u  as a function of strain for a 40.81×39.89 Å wire at 100 K. Very good 

agreement is seen between the mode prediction and the MD data. The part of the profile 

from the model between 0.04ε =  and 0.072  is not physical and not observed in MD 

since the model does not account for the energy barrier for the WZ-to-HX transformation. 

More discussion on this will be given in section 5.4.3. 
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Figure 5.8 Comparison of the model predictions and MD results for the normalized 
interfacial energy with applied strain obtained for a 40.81×39.89 Å wire at 100 K. 
 

5.4.2.4 Constrained Energy Minimization 

The total internal energy density resulting from Eq. (5.15) is 

 1 2 int(1 ) 4 (1 ) .m
u f u fu f f u= − + + −  (5.30) 

The macroscopic strain ε  includes contributions from the elastic strains in the phases ( 1ε  

and 2ε ) and the transformation strain (η ) can be obtained by invoking the rule of mixture 

as 

 1 2(1 ) .f f fε ε ε η= − + +  (5.31) 

Obviously in Eq. (5.30), the independent state variables are 1ε , 2ε  and f . At any given 

level of macroscopic strain ε , minimization of the total energy density in (5.30) under 

the constraint of Eq. (5.31) yields the equilibrium condition that defines the equilibrium 

state (specified by 1ε , 2ε  and f ) of the transforming nanowire. When carried over the 

whole range of ε , this constrained minimization process yields the full equilibrium path 

for both the forward WZ-to-HX and the reverse HX-to-WZ transformations. The 

equilibrium transformation path so obtained for the 40.81×39.89 Å wire at 100 K as 

measured by f  as a function of ε  is shown in Figure 5.9. Initially for 0.04ε < , 0f =  
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and the wire exists solely in the WZ phase. At ˆ 0.04
s

ε ε= = , the WZ-to-HX 

transformation initiates. Note, however, that ˆ
s

ε  is not equal to the actual transformation 

initiation strain observed in MD simulations ( L

s
ε  in Figure 5.6). This difference arises 

from the fact that the equilibrium analysis does not account for the energy barrier for the 

forward WZ-to-HX transformation. The actual transformation initiation occurs at L

s
ε  in 

Figure 5.6 and Figure 5.8. As the transformation progresses, the volume fractions of the 

two phases evolve smoothly. The transformation is complete at 0.11
c

ε ε= =  for the wire 

in Figure 5.8. Further deformation beyond 
c

ε  corresponds to the purely elastic stretch of 

the HX-structured wire with 1f = . 
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Figure 5.9 Evolution of WZ and HX volume fractions as predicted by the model for a 
40.81×39.89 Å wire at 100 K under tensile loading. 
 

5.4.2.5 Stress Associated with Equilibrium Transformation Process (
c

σ ) 

During the transformation, the equilibrium part of the stresses in the phases is 



 85 

 

1
1

1

2
2

2

and

.

u

u

σ
ε

σ
ε

∂
=

∂

∂
=

∂

 (5.32) 

The stress associated with the equilibrium transformation process is then [Eq. (5.14)] 
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 (5.33) 

Here, 1ε , 2ε , 1 /∂ ∂ε ε , 2 /∂ ∂ε ε  and f  as functions of ε  are determined from the 

constrained energy minimization process discussed in section 5.4.2.4. 

c
σ  describes the reversible part of the deformation process. Note that Eq. (5.33) 

is also applicable to the wire as it deforms fully elastically in the WZ state before the 

initiation of the transformation ( 0f = ) and in the HX state after the completion of the 

transformation ( 1f = ). For example, for the loading and unloading of a single phase WZ 

wire, 

 10,   =0  and  1.
f

f
ε

ε ε

∂∂
= =

∂ ∂
 (5.34) 

The stress reduces to that in the WZ phase, i.e., 

 1.σ σ= . (5.35) 
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Similarly, for the elastic loading and unloading of a single phase HX wire, 1,f =  

/ =0f∂ ∂ε , 2 / 1∂ ∂ =ε ε  and 2.=σ σ  

Note that 
c

σ  only captures equilibrium part of the transformation process, since 

the nanowire goes through a sequence of unstable and equilibrium states (more 

discussions in section 5.4.3). For example, the stress-strain response of the 40.81×39.89 

Å wire at 100 K is given in Figure 5.10. Both the MD data and the model prediction for 

c
σ  are shown. The MD profile shows alternate stages of stress increases (toward unstable 

states) and decreases (toward equilibrium states) during loading and alternate stages of 

stress decreases (toward unstable states) and increases (toward equilibrium states) during 

unloading. Obviously, 
c

σ  are close to the valleys in loading and the peaks in unloading 

since these valleys (loading) and peaks (unloading) correspond to more relaxed states of 

the nanowire. 
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Figure 5.10 Comparison of predicted values of 
c

σ  with the MD results for 40.81×39.89 
Å wire at 100 K under uniaxial loading-unloading. 
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5.4.3 Dissipative Process of Interface Propagation 

The irreversible part of the phase transformation involves contributions from 

barriers for both the initiation and propagation of the transformation through the 

nucleation and motion of interfaces. A schematic illustration of the energy and stress 

profiles associated with the process is given in Figure 5.11. The initiation of 

transformation occurs at the formation of the first nucleus of the HX phase (forward WZ-

to-HX transformation during loading) or the WZ phase (reverse HX-to-WZ 

transformation during unloading). The stress at which the WZ-to-HX transformation 

initiates (point B, Figure 5.6) can be obtained from the value of L

s
ε  and the constitutive 

behavior of the WZ phase (Figure 5.7). Similarly, the stress at which the WZ-to-HX 

transformation initiates (point F, Figure 5.6) can be obtained from the value of U

s
ε  and 

the constitutive behavior of the HX phase (Figure 5.7). Since the elastic behaviors for 

L

s
ε ε<  (A↔B, Figure 5.6) and U

s
ε ε>  (F↔E, Figure 5.6) are also fully described by the 

single phase responses of the WZ and HX wires, respectively, the discussion on the 

dissipative process of interfacial propagation concerns only the deformation stages of 

C→D (loading) and G→H (unloading).  

The propagation of phase boundaries after phase nucleation involves a sequence 

of unstable and stable states. This process is a consequence of the ruggedness of the 

energy profiles associated interface propagation. For example, during loading, the 

nanowire initially stores energy [C→P in Figure 5.11(a)] and is brought to an unstable 

high energy state [point P in Figure 5.11(a)]. At point P, the wire reaches instability and 

further nucleation of the HX phase takes place, resulting in the propagation of the phase 

boundary. This structural change is accompanied by an energy drop U∆  from its value at 

point P to the value at point V, bringing the wire closer to the more relaxed equilibrium 

state represented by the dotted line. The released energy ( P V
U U U∆ = − ) is dissipated as 

heat and constitutes part of the dissipation P VQ →∆  as defined in Eq. (5.7).  
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Figure 5.11 Schematic representation of the variations in (a) internal energy density and 
(b) stress, during transformation. 
 

During this period of “energy accumulation and release”, stress σ  first increases 

between A and B and decreases precipitously between B and C [Figure 5.11(b)]. The 

stress at C may approach 
c

σ  in Eq. (5.33). Figure 5.12 shows several configurations in 

the stage of 0.075 0.084ε< <  of the nanowire referred to in Figure 5.8 and Figure 5.10. 

These pictures show states of the wire immediately after the initiation of the WZ-to-HX 

transformation. Obviously over this stage (strain up to 0.08), the structure of the wire 

remains essentially unchanged without significant progression of transformation in either 

direction (therefore, without significant dissipation), while at the same time the 

mechanical work input is converted into strain energy and stored in the wire. As soon as 



 89 

the strain exceeds 0.08, the interface starts to propagate and clear progression of the WZ-

to-HX transformation occurs. This process is a direct reflection of the ruggedness of the 

energy landscape discussed earlier. 
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Figure 5.12 Nanowire configurations during loading of 40.81×39.89 Å wire at 100 K. 
Note that the volume fraction f is almost constant for 0.08ε ≤  and changes significantly 
for 0.08ε > . 
 

Just as the interfacial energy is proportional to the interfacial area, the energy 

required to move the WZ-HX phase boundaries naturally increases with the size of the 

interface, leading to a dependence of the dissipative stress (
d

σ ) on the size of the phase 

boundary which changes as the transformation progresses. To reflect this dependence, 

d
σ  is assumed to be proportional to the normalized interfacial area fraction int int

m
S S  and 

varies with f  according to 

 ( )4 1 .m

d df fσ σ= −  (5.36) 

Here, m

d
σ  is the maximum value of 

d
σ  which occurs at 0.5f = . The history of m

d d
σ σ  

is shown in Figure 5.13(a) and the history of energy dissipated per unit volume 
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0q Q V= normalized by its maximum value is shown in Figure 5.13(b). For comparison, 

the history of f  as a function of ε  for the nanowire referred to in Figure 5.8 and Figure 

5.10 is also shown. Note that 0
d

σ =  for 0f =  ( )ˆ
s≤ε ε  and 1f =  ( )cε ε≥ . 
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Figure 5.13 Evolution of (a) normalized stress associated with dissipation and (b) 
normalized energy dissipated, with strain during the transformation. 
 

5.4.4 Macroscopic Stress σ  

Equations (5.14), (5.33) and (5.36) combine to give the macroscopic stress as 

 
( ) ( ) ( )

0 0

1 2
1 2 2 1 int

1 1

  (1 ) 4 1 2 4 1 ,m m
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U Q

V V

f f
f f u u f u f f
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ε ε

ε ε
σ σ σ

ε ε ε ε
σσ
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= ±   

∂ ∂   
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= − + + − + − ± −    

∂ ∂ ∂ ∂     �������
���������������������������

(5.37) 
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where the positive and negative signs correspond to loading and unloading, respectively.  

5.4.5 Comparison with MD Results 

The stress-strain relation predicted by the model and that obtained from MD 

simulations for the 40.81×39.89 Å wire at 100 K are shown in Figure 5.14.  
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Figure 5.14 Comparison of MD results and predicted values of σ  for 40.81×39.89 Å 
wire under tensile loading-unloading at 100 K.  

 

In calculating the model results, the constitutive behaviors of the two phases are 

determined by fitting to MD calculations, as detailed in section 5.4.2.2. The elastic part of 

the stresses (
i

σ ) and the strain (
i

ε ) in each phase, the derivatives of the strains (
i

ε ε∂ ∂ ) 

and the volume fraction f  at each ε  are calculated through constrained energy 

minimization. The model developed here has two independent parameters ( int
m

u  and m

d
σ ).  

The maximum interfacial energy density ( int
m

u ) is related to the evolution of equilibrium 

states and is determined through fitting to MD results for each size and temperature. The 

value of int
m

u  and its variation with temperature and size determines the phase equilibrium 

stress during the evolution of the transformation for various wire sizes and temperatures. 
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On the other hand, the maximum value of dissipative stress ( m

d
σ ) is related to the 

dissipation associated with interface propagation and its value determines the size of the 

hysteresis loop in a loading-unloading cycle. The value of m

d
σ  is also determined by 

fitting to MD results for the wire sizes and temperatures considered. The individual 

contributions to the macroscopic stress for the WZ-to-HX forward transformation are 

compared in Figure 5.15. The primary contribution (~83%) comes from the gradient term 

( )2 1f u uε∂ ∂ −  which decreases slightly as ε  increases, reflecting the fact that most of 

the external work dW  is converted into the internal energy of the HX phase. The 

contributions of the other terms are relatively low. The term ( )1 1(1 )f ε ε σ− ∂ ∂  decreases 

as the volume fraction of the HX phase increases, while the term ( )2 2f ε ε σ∂ ∂  shows a 

gradual increase. The dissipative stress 
d

σ  first increases and then decreases. The 

contribution from the interfacial energy ( ) ( )int4 1 2 m
f u f− ∂ ∂ε  is also quite small (< 7% 

of the overall stress) throughout the transformation.  
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Figure 5.15 Decomposition of the total stress into individual contributions from 
associated stress quantities represented in Eq. (5.37). 
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The relative magnitudes of these terms affect the size and temperature 

dependence of the behavior of the wires. To quantify the effects, the micromechanics 

framework developed here is used to analyze the pseudoelastic behavior of wires with the 

lateral dimensions of 21.22×18.95, 31.02×29.42 and 40.81×39.89 Å over the temperature 

range of 100-500 K. The internal energy functions of the WZ and HX phases for these 

sizes and temperatures are calculated using MD simulations. The model predictions and 

MD results are shown in Figure 5.16. Excellent agreement is seen for all the cases 

analyzed. Obviously, the model captures the overall characteristics of the behaviors of the 

wires and correctly accounts for the size and temperature effects. 
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Figure 5.16 MD results and model predictions for the size and temperature effects on the pseudoelastic response of the nanowires. 
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5.4.5.1 Size and Temperature Effects 

To analyze the effects of size and temperature, the responses of three wire sizes 

(21.22×18.95, 31.02×29.42 and 40.81×39.89 Å) at 300 K and the response of a 

31.02×29.42 Å wire at three temperatures are considered. 
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Figure 5.17 Size-dependence of response. (a) Loading and (b) unloading response at 300 
K, (c) strain energy function for WZ structure and (d) strain energy functions for HX 
structure.  
 

 The effect of wire size on response is analyzed in Figure 5.17(a) (loading) and 

Figure 5.17(b) (unloading). The MD results shown are obtained for a temperature of 300 

K. The elastic moduli in the elastic stages of deformation increase with wire size, owing 

to the higher surface-to-volume ratios at smaller sizes. This stiffening effect can be 
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explained by the strain energy profiles for WZ [Figure 5.17(c)] and HX [Figure 5.17(d)]. 

The size-dependence is more pronounced for the HX structure, primarily because the 

energy densities of the surfaces for HX wires are higher than the energy densities of the 

surfaces of the WZ wires. The critical stresses for transformation initiation decrease as 

wires size decreases. Again, the effect of surfaces is at work and the mechanism has to do 

with the fact that the structure of reorganized (0001) side surfaces of WZ wires have 

atomic configurations similar to those of the surfaces of HX-structured wires, as 

previously observed by (Claeyssens et al. 2005; Freeman et al. 2006) in both experiments 

and first principles calculations. The similarity in surface behaviors between WZ- and 

HX-structured wires allows bulk behavior to dominate the transformation process. The 

higher surface-to-volume rations at smaller wire sizes reduce the effect of the wire core, 

causing the critical stresses to decrease with size, despite the fact that the formation 

energy difference between HX and WZ wires ( 0
u∆ ) is slightly higher at smaller wires 

sizes [Figure 5.18(a)]. This effect can be phenomenologically seen from the values of the 

maximum interfacial energy int
m

u  in Figure 5.18(b) and the values of ˆ
s

σ  [the stress 

corresponding to the strain of ˆ
s

ε ε=  (Figure 5.10) at which the two phases are equally 

favored under equilibrium conditions] in Figure 5.18(c). Finally, it is worthwhile to note 

that the dissipative process of interfacial propagation does not have an appreciable 

contribution to the size dependence of the overall wire response, as can be seen from 

Figure 5.18(d) which relates m

d
σ  to wire size. 
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Figure 5.18 Variation of (a) formation energy difference ( 0
u∆ ) between WZ and HX 

structures, (b) maximum interfacial energy, (c) stress ( ˆ
s

σ ) and maximum stress ( m

d
σ ) 

associated with energy dissipation, with nanowire size.  
 

The responses of a 31.02×29.42 Å wire at 100, 300 and 500 K are shown in 

Figure 5.19(a) (loading) and Figure 5.19(b) (unloading). There is a moderate decrease in 

stress at higher temperatures. This thermal softening arises from both changes in the 

constitutive response of the WZ and HX phases and changes in the difference between 

the energy barriers for the transformations and available thermal energy in the system. 

The first aspect can be quantified explicitly. Figure 5.19(c) and Figure 5.19(d) show, 

respectively, the strain energy profiles for WZ and HX at 100, 300 and 500 K. The 

dependence on temperature is a weak one and is more appreciable at large strains. The 

dependence of the formation energy densities ( 0
i

u ) of WZ and HX on temperature over 
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the range of 100 to 500 K is shown in Figure 5.20(a). While the actual values of 0
i

u  affect 

phase stability, the difference 0 0 0
2 1u u u∆ = −  influences the total stress during 

transformation. This can be clearly seen in the term ( )2 1u u f− ∂ ∂ε  (Figure 5.14) which 

depends on 0
u∆ . For the 31.02×29.42 Å wire, 0

u∆  is only weakly temperature-

dependent, suggesting that it is not the primary source of the temperature dependence of 

the transformation stress.  
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Figure 5.19 Temperature dependence of response. (a) Loading and (b) unloading 
response of 31.02×29.42 Å wire, (c) strain energy function for WZ structure and (d) 
strain energy functions for HX structure, at 100, 300 and 500 K. 

 

The dependence of the transformation stress on temperature arises primarily out 

of the dissipative part of the transformation process, as can be seen from the maximum 
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stress associated with dissipation ( m

d
σ ) which shows a clear dependence on temperature 

[Figure 5.20(b)]. Obviously, m

d
σ  decreases as higher thermal energy levels at higher 

temperatures reduce the mechanical work required to the barriers for interface 

propagation both during loading and unloading.  

Finally, it is worth noting that the maximum interfacial energy ( int
m

u ) is rather 

constant over the temperature range analyzed, suggesting that the interface does not 

contribute significantly to the temperature dependence of the pseudoelastic behavior of 

the wires and the temperature effect primarily comes from the bulk processes already 

discussed. 
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Figure 5.20 (a) Change in formation energy densities ( 0
i

u ) of WZ and HX structures and 

their difference ( 0
u∆ ), and (b) increase in maximum stress associated with dissipation 

( m

d
σ ), as the temperature is increased from 100 to 500 K. 
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5.5 Pseudoelasticity without Shape Memory 

 The pseudoelastic behavior quantified here is reminiscent of a very similar 

pseudoelastic behavior [which leads to a novel shape memory effect] in FCC metal 

nanowires discovered and analyzed by Liang and Zhou (2006). This similarity in the 

pseudoelastic behaviors between nanowires of the two classes of materials naturally 

raises the question of if a similar SME also exists in the ZnO nanowires analyzed here. 

To answer this question, we first note that the pseudoelasticity and the SME in the FCC 

metal nanowires are driven primarily by a surface-stress-induced lattice reorientation 

process which requires the formation of intermediate transitional structures involving 

partial dislocations. One attribute of that unique lattice reorientation process is that an 

energy barrier exists between the phases even at very low temperatures. Therefore, 

spontaneous relaxation occurs only at temperatures above a critical value. It is this 

temperature dependence that gives rise to the SME in the FCC metal wires.  
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Figure 5.21 Potential energy map of ZnO with highlights of the WZ, RS and HX lattice 
structures. 
  

 To ascertain if a SME exists in the ZnO nanowires analyzed here, partially and 

fully transformed wires were cooled to various final temperatures, the lowest being 10 K. 

Subsequently, unloading is carried out at the low temperatures to determine if the HX 
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phase can be retained without external stress. For all wire sizes considered and under all 

initial/final temperature combinations analyzed, the wires reverted fully back to the WZ 

structure. This result shows that there is no critical temperature below which either 

partially or fully HX-structured wires can exist without external loading. The absence of 

such a critical temperature and the lack of a HX structure at zero loading effectively rule 

out the possibility of a SME in the ZnO nanowires. This finding can be explained by the 

enthalpy surface for ZnO at 0 K and zero external loading. Figure 5.21 shows the 

potential energy profile of one ZnO unit cell at different structural configurations (when 

there is no external loading, the enthalpy is equal to the potential energy) obtained 

through first principle calculations. Lattice structures corresponding to WZ, RS and HX 

are labeled in this figure. Note that only two local minima (energy wells) exist, one at the 

WZ structure and the other at the RS structure. A well is not seen at the HX structure. 

Obviously, WZ is the stable phase and any sample with the HX structure would 

spontaneously transform into the WZ structure. On the other hand, the RS structure is a 

metastable phase which may exist if temperature and load histories are carefully 

controlled. In contrast, it is not possible for HX to exist without loading since no energy 

well is seen for it on the energy surface. Of course, the enthalpy surface can be modified 

by appropriate external loading to include a local minimum (well) at the HX structure. 

Tensile loading of sufficient magnitude along the b-direction is such an example and has 

been shown to cause the WZ→HX phase transformation (Kulkarni et al. 2006). 

 Crystallographically, the two-way WZ↔HX transformation occurs through 

smooth lattice structure evolution without the formation of defects or intermediate 

structures. In particular, the process can be illustrated by a look at the buckling and 

unbuckling of the [0001] Zn and O basal planes. Figure 5.22 shows the evolution of the 

3-D O-Zn-O bond angle (α ) at various stages of deformation. The strain values are 

associated with the loading process of the 40.81×39.89 Å wire. The evolution of α  

during unloading is very similar except that the corresponding wire strain values are 
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slightly different. For a perfect, undeformed WZ lattice, 108.2α ≈ �  [Figure 5.22(a)]. As 

deformation progresses, α  increases as loading is increased and the structure evolves 

[Figure 5.22(b) and Figure 5.22(c)]. Upon full WZ→HX transformation, the basal planes 

flatten out and α  becomes 120�  [Figure 5.22(d)], at the same time, a new bond is formed 

along the [0001] axis [Figure 4.4]. During unloading, the reverse process is seen, with α  

decreasing as the load is decreased. The lack of defect or intermediate structure formation 

in the process makes ZnO nanowires different from FCC metal nanowires such that the 

energy requirement for the nucleation of the WZ↔HX transformation is very low. 

Therefore, during the actual unloading of a HX wire, the barrier for the HX→WZ 

transformation is primarily due to the breaking of the additional [0001] bond formed 

during the forward transformation. This barrier is relatively small  and is easily overcome 

by the strain energy stored in the HX structure (Kulkarni et al. 2006). Consequently, 

spontaneous HZ→WZ transformation occurs at all temperatures and no SME is observed 

in the ZnO nanowires. 
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Figure 5.22 Increase in the O-Zn-O bond angle (α ) between Zn and O atoms on [0001]  

basal planes at various levels of strain during tensile loading along the [0110]  wire axis. 
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5.6 Chapter Summary and Insights 

 A novel pseudoelastic behavior discovered in [0110]-oriented ZnO nanowires 

over the temperature range of 100-700 K has been characterized. MD simulations of the 

uniaxial tensile loading and unloading of nanowires with lateral dimensions between 19 

and 41 Å show that this behavior results from the unique structural transformation from 

WZ to a previously unknown phase (HX). The transformation is fully reversible upon 

unloading with recoverable strains up to 16%. The hysteretic dissipation associated with 

a loading-unloading cycle is 0.05-0.14 GJm-3 and this value is significantly lower then 

the value for the reversible WZ-RS transformation in ZnO. Significant temperature- and 

size-dependence of the pseudoelastic response is observed. In particular, the critical stress 

for the nucleation of the HX phase and the maximum recoverable strain decreases as 

temperature increases. In addition, the critical stress is lower at smaller wire sizes. 

Extensive surface reconstructions that minimize surface charge polarity and surface 

energy contribute to these temperature- and size-effects. 

A continuum model is developed to capture this novel pseudoelastic behavior. 

Based on the first law of thermodynamics, the model splits the behavior into a reversible 

process of evolution of phase equilibrium states and an irreversible process of energy 

dissipation. Expressions are developed for the internal energy of the wires and the 

dissipation. Constrained energy minimization is carried out to determine the stress 

associated with the equilibrium process and a phenomenological model is proposed for 

the dissipative stress. The macroscopic stress during loading and unloading is expressed 

as a combination of the conservative and dissipative stress contributions established 

through thermodynamic considerations. Model predictions for three wire sizes 

(21.22×18.95, 31.02×29.42 and 40.81×39.89 Å) at 100, 300 and 500 K are seen to agree 

excellently with MD results. The size dependence of wire response is observed to 

originate from the surface-to-volume ratio dependence of the elastic behavior as seen 
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from the strain energy profiles of the two phases. Phenomenologically, the model 

captures the size effect through the variation in interfacial energy and phase equilibrium 

stress with nanowire size. Temperature effect on the pseudoelastic response is primarily 

due to variation in the dissipative stress. Specifically, the maximum dissipative stress 

decreases as the temperature is increased and consequently, the macroscopic stress and 

the hysteretic dissipation decrease at higher temperatures. 

Unlike the pseudoelasticity in FCC metal nanowires, which underlies a novel 

shape memory effect, the pseudoelasticity in the ZnO nanowires analyzed here does not 

lead to a SME. The primary reason for this lack of a SME is the absence of an energy 

barrier between the WZ and the HX lattice structures when no external loading is applied. 

The absence of an energy barrier between WZ and HX at zero stress can be regarded as a 

consequence of the smooth and continuous nature of the crystallographic transition which 

does not require the formation of defects such as dislocations and twin boundaries. The 

result is that stretched HX ZnO nanowires can spontaneously revert back to the WZ state 

at any temperature. 
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CHAPTER 6 : THERMAL RESPONSE  

 

 ZnO nanowires and nanorods show unique properties sometimes unattainable in 

bulk. Unlike at the macroscale where the effect of surfaces on material response is 

negligible due to very low surface-to-volume ratios, surfaces play a dominant role in 

altering the thermal behavior at the nanoscale. It has been observed that the thermal 

conductivity of nanostructures is up to two orders of magnitude lower than what it is in 

bulk primarily due to the surface scattering of phonons (Volz and Chen 1999b; Kim et al. 

2001; Li et al. 2003; Shi et al. 2004). Also, properties such as thermal conductivity, 

elastic moduli and fracture strains often regarded as constants at higher scales display 

dimensional dependence owing to the high surface-to-volume ratios at the nanoscale. A 

great challenge and perhaps also an opportunity in regulating such properties for device 

integration is this dependence on size at the nanoscale. Characterization of the thermal 

response and its variations with size is therefore important. Most thermal analyses at the 

nanoscale concern single-element systems whose heat transfer characteristics are 

primarily dominated by acoustic phonon interactions(Jund and Jullien 1999; Volz and 

Chen 1999b; Kim et al. 2001; Schelling et al. 2002; Li et al. 2003; Shi et al. 2004). 

However, in compounds like ZnO higher frequency acoustic and optical phonon 

interactions can play significant roles, especially at higher temperatures. So far, the 

effects of such phonon interactions have not been systematically characterized and little 

quantification is available, especially at the nanoscale.  

 Furthermore, in semiconductors such as ZnO, thermal conductivity is 

significantly affected by lattice structure and distortions. Transitions in thermal 

conductivity and the coefficient of thermal expansion under pressure have been reported 

for the quartz-coesite, olivine-γ-spinel, coesite-stishovite transformations in minerals 

(Jeanloz and Roufosse 1982; Roufosse and Jeanloz 1983; Andersson 1985; Slack and 
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Ross 1985). It has also been shown that the thermoelectric properties of bulk antimony 

bismuth telluride can be tuned and optimized through applied pressure (Polvani et al. 

2001). Although thermal transport at the macro- and nano-scales is well characterized, 

the effect of stress on the thermal response of nanostructures has not been extensively 

studied. In particular, for nanowires, this coupling between the mechanical and thermal 

responses provides a mechanism for tuning and increasing the thermal conductivity 

through the application of mechanical input. As a result, characterization of the variation 

in thermal conductivity with structural distortions is imperative for nanowires where the 

thermal conductivities are 1-2 orders of magnitude lower than corresponding bulk values, 

(Volz and Chen 1999b; Walkauskas et al. 1999; Lu et al. 2002; Cahill et al. 2003; Li et al. 

2003; Lu et al. 2003; Shi et al. 2004; Kulkarni and Zhou 2006b, 2006a). The 

characterization of the thermal response as a function of strain considered here is 

important since axial elongation is one of the most relevant modes of deformation for 

slender 1D nanomaterials. 

 This chapter focuses on characterizing the thermal response of the nanowires 

using the Green-Kubo formalism in a MD framework. Two aspects are studied: (1) effect 

of high surface-to-volume ratios of the nanowires on their thermal response and (2) 

evolution of thermal conductivity with applied strain. Specifically, the thermal 

conductivity of [0110]-oriented ZnO nanowires with lateral dimensions of 19-41 Å over 

the temperature range of 500-1500 K (melting temperature of ZnO: 2250 K) is quantified. 

A model based on the equation for phonon radiative transport theory (Majumdar 1993; 

Lu et al. 2002) is used to determine the contributions of different scattering mechanisms. 

Subsequently, the effect of novel reversible phase transformation from WZ to HX on the 

thermal conductivity of such nanowires is characterized. The analysis focuses on 

variations in thermal conductivity during the elastic stretching of the initial WZ-

structured wire, the phase transformation into the HX structure, and upon completion of 

phase transformation.  
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6.1 Variation in Thermal Conductivity with Size 

6.1.1 Effect of surface scattering of phonons 
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Figure 6.1 Thermal conductivity of a 31.02×29.42 Å wire as a function of delay time at 
temperatures between 300-1000 K. 

 

 In the Green-Kubo framework, calculation of thermal conductivity according to 

Eq. (3.4) theoretically allows for the infinite time required for a system to attain thermal 

equilibrium. However, to calculate thermal conductivity in a realistic manner, the 

calculation is truncated after a certain time period which is defined as the delay time mτ . 

The thermal conductivity of the nanowires is therefore calculated as a function of delay 

time. Figure 6.1 shows the variation of the calculated values for a 31.02×29.42 Å wire. In 

the responses shown, short delay times ( mτ  < 2 ps) correspond to only very small 

temperature changes associated with thermal conduction, thus limiting the accuracy of 

the calculation and allowing random heat fluctuations to significantly affect the 

evaluation. The increasing trend of calculated conductivity values for this regime of delay 

time in Figure 6.1 reflects this inaccuracy. On the other hand, long delay times ( mτ  > 5 

ps) reduce the number of time origins available for averaging since the simulation time 
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window is finite, causing statistical errors to increase. Because of the above factors, the 

intermediate delay time regime of 2 < mτ  < 5 ps is found to give a good balance between 

the different constraints. The profiles in Figure 6.1 show a plateau of relative constant 

calculation results in this regime. The average value over this regime is taken as the 

thermal conductivity of the nanowires for the conditions analyzed. 
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Figure 6.2 Thermal conductivity as a function of lateral size and temperature. 
 

 Figure 6.2 shows thermal conductivity as a function of temperature for the wires 

analyzed. The values (3-10 W/mK) are an order of magnitude lower than that for bulk 

ZnO (~100 W/mK) (Wolf and Martin 1973). Also, over 500-1500 K, the conductivity of 

the 21.22×18.95 Å wire is approximately 8-0.5% lower than that of the 31.02×29.42 Å 

wire and the conductivity of the 31.02×29.42 Å wire is approximately 6-5% lower than 

that of the 40.81×39.89 Å wire. This significant difference is primarily associated with 

the high surface-to-volume ratios of the nanowires. Specifically, the relatively large 

fractions of surface atoms enhance surface scattering of phonons and decrease the phonon 

mean free path, resulting in lower conductivity which is proportional to the mean free 
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path. The kinetic theory of fluids relates thermal conductivity k to the phonon mean free 

path Λ  through 

 
1
3 vk C v= Λ , (6.1) 

where Cv is specific heat and v is the velocity of heat carriers (for ZnO, the heat carriers 

are phonons and hence v represents the average phonon group velocity). Obviously, 

thermal conductivity is approximately proportional to the mean free path.  

Surface attributes also affect heat transfer. For the nanowires, the interlayer 

spacings between the two outermost layers of ( )0001  and ( )2110  planes decrease by 73% 

and 9%, respectively, relative to the values for bulk ZnO, resulting in higher atomic 

densities in the surfaces as shown in Figure 4.1. Such a deviation from perfect core 

atomic arrangement alters the surface scattering of phonons and lowers the conductivity. 

Boundary scattering is also influenced by surface specularity (probability of specular 

phonon reflection). Under conditions that phonon-phonon and phonon-defect interactions 

are negligible, the phonon mean free path can be expressed as (Zou and Balandin 2001) 

 
(1 )

d

p
Λ =

−
, (6.2) 

where p is the probability of specular scattering (which is a function of surface roughness 

and temperature) and d is the effective size of the nanowire. For a body with perfectly 

specular (atomistically smooth) surfaces, 1p = , consequently the mean free path and 

hence the thermal conductivity are not affected by boundary scattering. On the other 

hand, for a body with perfectly diffuse surfaces, 0p = , consequently the mean free path 

is equal to the size of the nanowire i.e., dΛ = . In the nanowires, the specularity value is 

between the limiting cases ( 0 1p< < ) and depends significantly on the surface attributes. 

Surface reconstructions discussed earlier modify surface atomic arrangement (Figure 

4.1), alter the surface scattering behavior of phonons, and reduce the specularity. Also, as 

shown by Berman et al. (Berman et al. 1955), surface specularity decreases as an inverse 
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power of temperature, especially at higher temperatures. Consequently, the nanowire 

surfaces are never perfectly specular and the mean free path is limited by the lateral 

dimensions of the wires. To state differently, the mean free path in the nanowires is much 

smaller than that in bulk materials, effectively causing the observed size effect in thermal 

conductivity. In bulk materials, the characteristic length is much larger and the effect of 

boundary scattering of phonons is negligible, resulting in larger mean free paths and 

much higher conductivity values. 

 Figure 6.2 also shows the decrease in thermal conductivity with temperature. 

Between 500 and 1500 K, decreases of about 52% are observed. This effect is attributed 

to thermal softening and higher frequency phonon interactions at higher temperatures. 

The lower elastic stiffness of lattices at higher temperatures (which results from the 

nonlinearity of interatomic interactions) correspond to lower average phonon group 

velocities and lower levels of heat flux (see Figure 6.3). Also at higher temperatures, 

higher frequency acoustic and optical phonon interactions become appreciable, leading to 

smaller mean free path and lower conductivity values (Joshi et al. 1970). The decrease in 

specularity is also partly responsible for decreases in thermal conductivity over the 

temperature range analyzed, as discussed earlier. 
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Figure 6.3 Average phonon group velocity and thermal conductivity of the 31.02×29.42 
wire as functionals of its Young’s modulus. 
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6.1.2 Equation for phonon radiative transport 

 Heat transport in semiconducting and insulating materials has predominantly been 

modeled using the Boltzmann Transport Equation (BTE) with a Bose-Einstein 

distribution for phonons (Ziman 1960). A new approach was developed by Majumdar 

(Majumdar 1993) by treating phonon dominated thermal behavior as radiative heat 

transfer. This approach has been further extended to the study of nanowires by Lu et al. 

(2002) to account for phonon behavior in nanostructures. The modifications include the 

boundary conditions in the solution of EPRT as well as the incorporation of a boundary 

scattering term in the expression for the relaxation time. In the present work, this EPRT 

model has been extended to fit the thermal conductivity data obtained for ZnO wires 

through MD simulations. 

The size and temperature effects observed in the thermal conductivity of the 

nanowires can therefore be quantitatively delineated the EPRT model for thermal 

conductivity expressed as  

 

( )

3 / 4

2 2
0

( , ) ( , ) ( ) 
2 1

D T x
B B

x

k k T x e
T d T x G dx

v e

θ

κ τ η
π

 
=  

  −
∫

�
 (6.3) 

where Bx h k Tω= , ω  is phonon frequency, v is phonon group velocity, �  is Planck’s 

constant, ( )d xη = Λ , d is the lateral dimension of the nanowire, Λ  is phonon mean free 

path and τ  is relaxation time. ( )G η  accounts for the effect of surfaces which gives rise 

to the size dependence discussed here. This term tends to unity as the lateral size 

approaches infinity and Eq. (6.3) reduces to that for bulk materials. The relaxation time 

τ  is calculated using Matthiessien’s rule, accounting for contributions from boundary, 

three-phonon (Normal and Umklapp), and four-phonon scattering as  

 
 

1 1 1 1 1

Umklapp Normal Boundary Four phononτ τ τ τ τ
= + + +  (6.4) 

where the individual components are expressed as: 
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1 (1 )

Boundary

p v

dτ

−
=  (6.5) 

 1
1 D

aT

Umklapp

B e T

θ

ω
τ

 −  2 =  (6.6) 

 2
1

Normal

B Tω
τ

2=  (6.7) 

 2 2

 

1

Four Phonon

ET ω
τ

=  (6.8) 

where p is the probability of specular scattering, B1, B2 and E are constants fitted to bulk 

properties. The boundary term [Eq. (6.5)] accounts for phonon-surface scattering events 

while the three phonon [Eqs. (6.6) and (6.7)] and four phonon [Eq. (6.8)] terms account 

for phonon-phonon interactions. The parameters in the model (specularity and four-

phonon relaxation time) are determined by fitting Eq. (6.3) to the results from MD 

simulations. Constants related to three-phonon relaxation time are determined from 

experimental data for bulk ZnO in Wolf and Martin (1973). The boundary scattering 

length in bulk is taken as the Casimir limit in bulk crystal for which the conductivity was 

experimentally measured (Wolf and Martin 1973).  
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Figure 6.4 EPRT predictions for bulk and nanowire structures. 
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Figure 6.4 shows the model predictions for bulk and nanowires structures. It can 

be seen from the figure that for lower temperature, the conductivity of nanowires is an 

order of magnitude lower than bulk. At very high temperatures, however, the three- and 

four-phonon processes dominate and the conductivity of the bulk decreases rapidly. 

However, the conductivity of the nanowire is always lower than bulk due to the influence 

of boundary scattering.  
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Figure 6.5 Effects of different scattering mechanisms on the thermal conductivity of the 
31.02×29.42 Å nanowire as predicted by EPRT. 

 

Figure 6.5 shows the results for the 31.02×29.42 Å wire for cases that account for 

boundary scattering (B), boundary and three-phonon (Normal and Umklapp) scattering 

(B+N+U), and boundary, three- and four-phonon scattering (B+N+U+F) processes. Over 

500-1500 K, boundary scattering is the most dominant process responsible for ~80-47% 

decrease in conductivity from the bulk value. A further decrease of ~3-11% is attributed 

to three-phonon interactions and another decrease of ~3-15% is due to four-phonon 

interactions. At lower temperatures boundary scattering dominates, while above 600 K 

the three-phonon and four-phonon terms have to be included. The primary reason is that 

at higher temperatures, the vibration amplitude of atoms becomes sufficiently large so 
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that the effect of three- and four-phonon processes emerges as a significant factor. Figure 

6.6 shows EPRT predictions for the three nanowires sizes in the 500-1500 K temperature 

range. The model developed accounts for size and temperature effects through the 

boundary scattering mechanism and thermal softening and therefore is able to predict the 

size and temperature dependence of thermal conductivity very well. 
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Figure 6.6 EPRT predictions of the thermal conductivity as a function of lateral size and 
temperature. 

6.2 Variation in Thermal Conductivity with Applied Loading 

The variation in the conductivity values with applied strain is analyzed using the 

Green-Kubo framework. In the computational scheme, the conductivity calculations are 

carried out at the end of the equilibration stage of a relevant strain increment when a 

steady state has been achieved during loading of the nanowires. 

6.2.1 Effect of elastic nonlinearity and phase transformation 

 Figure 6.7 shows stress and thermal conductivity as functions of strain for a 

31.02×29.42 Å wire at 500 K. Three distinct stages of deformation can be identified from 

the stress-strain response: (1) elastic stretching of the defect-free WZ-structured wire (A-

B), (2) transformation from WZ to HX (B-C) and (3) elastic stretching of the defect-free 
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HX-structured wire (C-D) after completion of transformation (Kulkarni et al. 2006; 

Kulkarni et al. 2007a). 
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Figure 6.7 Stress and thermal conductivity as functions of applied strain for a 
31.02×29.42 Å under tensile loading at 500 K. 

6.2.1.1 WZ-structured wire prior to initiation of phase transformation 

The thermal conductivity (κ ) of a unstressed 31.02×29.42 Å nanowire at 500 K 

is 8.52 W/mK, an order of magnitude lower than that for bulk ZnO. As previously 

discussed, this significant difference is primarily associated with the high surface-to-

volume ratios of the nanowires. Specifically, decrease in the phonon mean free path due 

to boundary scattering results in lower conductivity values (Kulkarni and Zhou 2006b, 

2006a).  

As deformation progresses, κ  decreases from its initial value of 8.52 W/mK by 

19.6% as strain increases to 0.049. During this stage, the nanowire is fully within the WZ 

structure and the decrease in κ  is primarily due to the nonlinear elastic behavior of WZ 

along the [0110]  orientation, although the increase in lattice anharmonicity at finite values 

of strain also has a contribution (Picu et al. 2003). The nonlinear elastic response can be 

quantified through the rate of change of the uniaxial modulus  
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2 3

2 3

1
' ,

d d U
E

d V d

σ

ε ε
= =  (6.9) 

where V is the initial volume of the wire, U is the strain energy, σ  and ε  are, 

respectively, the stress and strain along the wire. For the [0110]  nanowire analyzed, 

'E = −1428.7 GPa and the modulus E decreases by 35% up to the strain at transformation 

initiation (ε =0.049). The elastic stretching also causes the volume of the wire to increase 

and the mass density ρ  to decrease. Both changes combine to cause the stress wave 

speed v  ( = /E ρ ) to decrease by 18.9%. Additionally, the decrease in density along 

with the lattice distortion increases lattice anharmonicity and, consequently, causes the 

mean free path ( Λ ) of the phonons to decrease. At temperatures above the Debye 

temperature, the kinetic theory of fluids relates thermal conductivity to phonon mean free 

path through Eq. (6.1). Obviously, the conductivity decreases as the WZ-structured 

nanowire is stretched. 

6.2.1.2 WZ/HX-structured wire during phase transformation 

Upon the initiation of phase transformation at =0.049ε  , the stress drops 

precipitously, reflecting a relaxation of the wire structure. Figure 6.8 shows the 

configurations of the wire at =0.065, 0.083, and 0.105ε  . Three zones, corresponding to 

WZ, HX and a transitional interface between the two phases, are seen. The nucleation of 

HX is at the surfaces. The atomic structure on the (2110)  plane in the interfacial region is 

shown in Figure 6.9. Obviously, the interface is coherent and the orientation relationships 

are maintained in both phases across the interface. The fractions of atoms in the HX, WZ 

and interfacial regions are shown in Figure 6.9 as functions of strain.  
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Figure 6.8 WZ, HX and interface regions in a 31.02×29.42 Å wire at (a) 6.5%ε = , (b) 
8.3%ε =  and (c) 10.5%ε = . 
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Figure 6.9 Arrangement of atoms on a (2110)  plane across an interfacial region. 
 

Initially ( 0.049 0.072ε< < , strain range from transformation initiation to the 

formation of largest interface fraction), the fraction of the HX phase is lower than that of 

the WZ phase and the thermal response is dominated by the conductivity of the WZ 

phase and the thermal resistance of the interface. In this stage, κ  decreases by 18.7% 

from 6.86 to 5.58 W/mK as the strain increases from 0.049 to 0.072. This decrease is due 

to the low thermal transmission coefficient of the interface and enhanced phonon 

scattering due to (1) discontinuities in lattice across the interface and (2) lattice distortion 
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associated with the elastic strain field near the interface (Klemens 1954, 1994). Note that 

over this strain interval the fraction of interfacial atoms increases from 0.12 to a 

maximum of 0.19. Since the interfacial thermal resistance is proportional to the area of 

interfaces (quantified here through the fraction of interfacial atoms), κ  decreases as 

strain increases. Continuation of loading beyond 0.072=ε  causes the fraction of HX to 

exceed that of WZ [Figure 6.8 and Figure 6.10], resulting in the overall thermal response 

of the wire to be dominated by the HX phase. At the completion of the WZ→HX 

transformation ( 0.113ε = ), the conductivity of the HX-structured wire is 9.4 W/mK or 

68.3% higher than the lowest value of 5.58 W/mK at ε =  0.072. This increase in κ  is 

due to several factors, including (1) the higher thermal conductivity of the HX phase 

(details later), (2) significant decrease (43.3%) in the fraction of interface atoms as the 

strain increases from 0.072 to 0.113 and (3) the alignment of the interfaces along the 

direction of heat flow (wire axis) as deformation progresses (Figure 6.8). Arising 

primarily from bonding state non-uniformity and lattice strains, interfacial thermal 

resistance is expected to be much lower for directions parallel to an interface than that for 

the direction perpendicular to it. 
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Figure 6.10 Fractions of atoms in WZ, HX and interface regions as functions of strain for 
a 31.02×29.42 Å wire. 
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6.2.1.2 HX-structured wire after transformation 

The WZ→HX transformation completes at a strain of 0.113ε = . At this stage, 

some point defects exist due to local variations in the lattices. Further loading causes the 

defects to disappear, leading to a defect-free HX structure at 0.125ε = . The value of 

thermal conductivity obtained for this defect-free structure is reported as the 

characteristic thermal property of the HX wires. Further loading causes the conductivity 

to decrease, reflecting the nonlinear elastic behavior of the HX-structured wires (not 

shown). The thermal conductivity of the HX-structured wire in this state is 10.7 W/mK 

which is 25.6% higher than that of the unstressed WZ wire. Such a significant increase in 

κ  can be qualitatively explained using a simplified model for thermal conductivity 

(Roufosse and Klemens 1973; Roufosse and Jeanloz 1983). At temperatures above the 

Debye temperature, the lattice thermal conductivity is limited by anharmonic coupling of 

phonons and can be expressed as [cf. (Roufosse and Klemens 1973; Roufosse and 

Jeanloz 1983)] 

 
3

23
rv

A
T

κ ρ
γ

≈ ， (6.10) 

where r is the average interatomic spacing such that the unit cell volume 3
cell

V r= , v  is 

the average wave speed, ρ  is mass density, γ  is the thermal Gruneisen parameter, T is 

temperature and A is a constant representing the contributions of changes in crystal 

structure (coordination, bond length, etc.) to thermal conductivity. During the WZ→HX 

transformation, the number of atoms per unit cell remains the same and the average bond 

length increases only by ~6%. Hence, the change in A is negligible and, at a given 

temperature, the effect of the phase transformation on thermal conductivity can be 

expressed through the change in density, anharmonicity of the lattice and the wave speed 

as  
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WZ WZ WZ HX

v

v

κ κ γρ

κ ρ γ

    −
≈ −    

    
 (6.11) 

The wave speed v , calculated from the elastic moduli and densities of each of the 

two phases, is lower for HX than for WZ. Therefore, the change in wave speed tends to 

lower thermal conductivity; but this effect is only secondary. Dominant effects that cause 

the thermal conductivity to increase come from the higher density and higher Gruneisen 

parameter of HX. During the transformation, the lattice parameter along the [0001] 

direction (c) decreases considerably, causing the cell volume to decrease by 11.98% and 

the density of the structure to increase by 13.5%. The efficient packing of the HX 

structure and its higher density lead to a lower anharmonicity (lower thermal Gruneisen 

parameter) and, ultimately, the higher thermal conductivity (Jeanloz and Roufosse 1982). 

For the 31.02×29.42 Å wire, the 25.6% increase in κ  implies a 27.5% decrease in γ  

relative to the value of 0.69 for WZ at 500 K (Gadzhiev 2003). This decrease is 

consistent with the increase in packing efficiency of the HX structure over the parent WZ 

structure. A quantitative prediction of γ  is not feasible here since the model is strictly 

valid for bulk materials where the effect of surface scattering of phonons is negligible. 

Nevertheless, this model provides a qualitative explanation for the increase in 

conductivity observed here. 

The difference in surface configurations between WZ- and HX-structured 

nanowires also contributes to the observed increase in thermal conductivity. To illustrate 

this issue, Figure 6.11(a) and Figure 6.11(b) show the positions of atoms on layers 

perpendicular to the [0001] direction for bulk WZ and a WZ-structured wire, 

respectively, and Figure 6.11(c) shows the configuration of a HX-structured nanowire.  
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Figure 6.11 Arrangement of atoms in the interior and on the surfaces of a 31.02×29.42 Å 
wire, the images correspond to (a) bulk WZ, (b) WZ-structured wire with LY-structured 
surfaces after initial relaxation and (c) HX-structured wire after completion of the 
WZ→HX transformation. 

 

For WZ wires, the imbalance of ionic forces on the surfaces due to reduced 

number of neighbors and surface polarity cause extensive surface reconstruction relative 

to bulk WZ. Obviously, this reconstruction entails the contraction of surface layers and 

merging of Zn and O basal planes [Figure 6.11(a, b)], resulting in a layered surface 

structure (LY) which is crystallographically similar to the HX structure (Claeyssens et al. 

2005; Freeman et al. 2006). Such reconstructions modify atomic arrangement on surfaces 

relative to the core of the nanowire and alter the surface scattering behavior of phonons, 

causing the surface specularity and, hence, the thermal conductivity for WZ-structured 

nanowire to be much lower than that for bulk WZ. In the HX-structured wire in Figure 

6.11(c), the atomic arrangement on surfaces is similar to that in the core and hence the 

surface disorder is significantly lower than that of the WZ wire in Figure 6.11(b). As a 

result, the surface specularity for HX wires is much higher than that of WZ-structured 

nanowires. The effect of surface specularity on conductivity can be characterized through 

Eqs. (6.1) and (6.2). Consequently, for nanowires with the same characteristic sizes, the 

phonon mean free path and therefore the conductivity of the HX wires is higher than that 

of the WZ wires.  
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6.2.2 Size dependence of thermal conductivity of WZ and HX phases  

The bulk and surface effects discussed above combine to give rise to significant 

dependence of behavior on wire size. Figure 6.12 shows the conductivity values of 

unstressed WZ and transformed HX wires of three different sizes. For WZ wires, the 

thermal conductivity is in the range of 8.3-8.6 W/mK which is an order of magnitude 

lower than that for bulk ZnO and decreases by 3% as the lateral size decreases from 

40.81×39.89 to 21.22×18.95 Å. This trend results directly from the higher surface-to-

volume ratios and smaller mean free path at the smaller sizes. A clear dependence of 

conductivity on size is also seen for the HX-structured wires. The WZ-to-HX 

transformation causes the conductivity to increase to 10.1, 10.7 and 11.1 W/mK for the 

21.22×18.95, 31.02×29.42 and 40.81×39.89 Å nanowires, respectively. The 20-28% 

increase over the values for WZ wires is associated with the lower anharmonicity due to 

and the higher surface specularity of the HX wires. 
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Figure 6.12 Thermal conductivity of unstressed WZ and transformed HX wires of three 
different sizes. 
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6.3 Chapter Summary and Insights 

 MD simulations have allowed the quantification of the effects of size and 

temperature on the thermal conductivity of ZnO nanowires with lateral dimensions 

between 21.22×18.95 and 40.81×39.89 Å. The size effects are due to the 1D structures 

and the high surface-to-volume ratios of the nanowires at the size scale analyzed. The 

mechanism giving rise to the size effect on thermal conduction is due to enhanced surface 

scattering of phonons which reduces the mean free paths and is affected by surface 

specularity. The thermal conductivity is also found to be significantly temperature-

dependent over the temperature range of 500-1500 K. This dependence is due to the 

change of equilibrium lattice spacing with temperature and the nonlinearity of 

interatomic interactions. A correlation is obtained between the Young’s modulus, phonon 

group velocity, and the thermal conductivity over the temperature range analyzed. The 

following characterizations have resulted from the analysis described here. 

1) The thermal conductivity values for the nanowires (3-15 W/mK) are one order of 

magnitude lower than the corresponding value for bulk ZnO single crystal (~100 

W/mK);  

2) Over 500-1500 K, the conductivity of the 21.22×18.95 Å wire is approximately 31-

18% lower than that of the 40.81×39.89 Å wire; 

3) For the lateral sizes studied, an average decrease on the order of 52% in thermal 

conductivity is observed when temperature changes from 500 to 1500 K. 

 The thermomechanical response of [0110]-oriented ZnO nanowires under tensile 

loading is also quantified. Three distinct stages in the thermal and mechanical responses 

are observed. The mechanical response consists of (1) elastic stretching of WZ, (2) phase 

transformation from WZ to HX and (3) elastic stretching of HX. The thermal 

conductivity of the nanowires is a function of applied strain in each of the three stages. 

Over the size range of 18.95-40.81 Å, the elastic stretching in the WZ structure is 



 124 

accompanied by 19-27% decrease in the thermal conductivity. The nonlinearity of the 

elastic response of the wires with lower stiffness (hence lower wave speeds) at higher 

strains is the origin of this effect. The formation of interfaces during the WZ-to-HX phase 

transformation causes the thermal conductivity to decrease by another 15-19% as the 

transformation progresses. Upon completion of the transformation, the thermal 

conductivity for the HX-structured wires are 20.5-28.5% higher than those of the 

corresponding WZ-structured wires. This increase in conductivity is due to the higher 

atomic packing density, lower anharmonic coupling of phonons and higher surface 

specularity of the HX wires. 

 Finally, the significant size-and strain-dependence of thermal conductivity 

analyzed here echoes a similar trend in mechanical response. Such variations in 

properties at the nanoscale offer potential for novel applications in NEMS that rely on 

thermomechanical responses.  
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CHAPTER 7 : CONCLUSIONS 

 

 This research focuses on the characterization of the thermal and mechanical 

behaviors of single crystalline ZnO nanowires. An atomistic framework for MD 

simulations has been developed to extract the thermomechanical responses. The 

characterizations involve quasi-static uniaxial loading and unloading of [0110]- and 

[0001]-oriented nanowires to evaluate mechanical properties and a Green-Kubo based 

framework to quantify the thermal response of nanowires.  

 Novel phase transformations to previously-unknown crystal structures for ZnO 

are discovered. Specifically, a graphite-like phase (HX) and a body-centered tetragonal 

phase (BCT-4) are observed in the [0110]  and [0001] wires, respectively, under uniaxial 

tensile loading using MD simulations. First-principles calculations carried out show that 

both phases are energetically favorable under the loading conditions prescribed. 

Crystallographic analysis reveals atomic arrangements and transformation paths for the 

two structures. HX phase is formed by the flattening of the buckled wurtzite basal plane 

(Zn and O atoms becoming co-planar). An additional Zn-O bond is formed along the 

[0001] axis and the Zn atoms are at equal distances from the O atoms along the [0001]  

axis. Consequently, the structure acquires the additional symmetry of a mirror plane 

perpendicular to the [0001]  axis. The in-plane coordination of the HX structure is 3-fold 

and the full 3D coordination is 5-fold, compared to the 4-fold coordination in WZ. The 

BCT-4 structure, on the other hand, results from breaking of every other Zn-O bonds 

along the [0001] direction and the formation of an equal number of Zn-O bonds along the 

same direction next to the broken bonds. This process repeats on alternate planes along 

the [0110]  direction resulting in the formation of 4-atom (2 Zn and 2 O) rings arranged 

in a BCT lattice. The transformed structure retains the tetrahedral coordination with each 

Zn/O atom at the center and four O/Zn atoms are at the vertices of a tetrahedron. 
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 The novelty of these phase lies not only in their discovery but also in the fact that 

such transformations have not been observed in bulk ZnO. The primary reason for the 

difference in bulk vs. nanowire behavior is the high surface-to-volume ratios in 

nanowires. Specifically, while bulk WZ-ZnO can undergo phase transformation to RS 

with volumetric strains up to 17% under high pressure, it is brittle in nature with 

maximum failure strains on the order of 0.1-0.3% under tensile loading. However, since 

these nanostructures are single-crystalline and nearly defect-free, they have the ability to 

undergo large deformations without failure under tension. Also, their high surface-to-

volume ratios imply higher atomic mobility and therefore promote phase transformations 

under loading along certain crystalline directions. The discovery of these phases also puts 

into perspective the extent of polymorphism in materials such as ZnO. HX and BCT-4 

constitute the fourth and fifth polymorphs of ZnO discovered so far. The identification of 

the BCT-4 and HX structures now leads to a more complete understanding of the nature 

and extent of polymorphism in ZnO and its dependence on load triaxiality 

 More importantly, the WZ↔HX reversible transformation results in a novel 

pseudoelastic behavior in the wires. Recoverable strains up to 16% are observed. This is 

quite extraordinary since compound semiconductors such as ZnO, GaN, InN and BN are 

known to be brittle under tensile loading. The recoverable strains observed consist of 

elastic stretching of the WZ and HX wires along with a contribution from the 

transformation. The energy dissipation associated with a loading-unloading cycle is 0.05-

0.14 GJ/m3, much lower than that for the WZ↔RS transformation in bulk (~1.38 GJ/m3 

with a maximum recoverable volumetric strain of 17% in compression). Significant size 

and temperature dependence of the critical stress for transformation nucleation, hysteretic 

dissipation and the recoverable strains are also observed. The variation in surface-to-

volume ratio with size, thermal softening and temperature dependence of energy barrier 

for transformation are determined to be the origins of the size and temperature effects. 
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 A micromechanical continuum model is developed to model this pseudoelastic 

behavior. The emphasis is on modeling the elastic deformations of the individual phases 

and the transformation response during loading and unloading. The model considers the 

transformation as a combination of a reversible component associated with the smooth 

evolutions of the phase fractions and an irreversible component due to the energy 

dissipation. Energy minimization with kinematic constraints specified by rule of mixture 

for strains determines the equilibrium values of stresses and strains in each phase and also 

their volume fractions. Dissipation during the transformation is due to the ruggedness of 

the energy landscape associated with the propagation of phase boundaries involving a 

sequence of unstable and stable states. The difference in energy between each of the 

unstable and stable states is dissipated to maintain constant temperature. The energy 

required to take propagate the phase boundaries increases with the size of the interface, 

leading to a dependence of the dissipative stress on the size of the phase boundary which 

changes as the transformation progresses. Thermodynamic considerations are used to 

determine the total macroscopic stress from the stress associated with the phase 

equilibrium and the dissipative stress. Comparison of model predictions and MD results 

for three wire sizes in the 100-500 K temperature range show that the model captures the 

pseudoelastic behavior well and is also able to account for size and temperature effects on 

the behavior. 

The stress-induced phase transformations have important implications for the 

electronic, piezoelectric, mechanical and thermal responses. In semiconducting materials 

such as ZnO where the thermal response of semiconductors is dominated by lattice 

vibrations, any variation in structure, such as due to the phase transformations observed 

here, can significantly alter their heat transfer characteristics. This is especially important 

in nanowires, where the conductivity is calculated to be one order of magnitude lower 

than bulk values. The low values observed are primarily due to the boundary scattering of 

phonons and also due to the changes in phonon spectrum in the nanostructures. Modeling 
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of the thermal response of the nanowires using the framework of phonon radiative 

transport indicates that boundary scattering is responsible for ~80-47% decrease in 

conductivity from the bulk value. Three- and four- phonon processes also lead to 

decreases in conductivity at higher temperatures. However, these contributions are much 

lower than the effect of surfaces. 

In addition to the variation of conductivity with nanowire size, applied loading 

also affects the thermal response. Specifically, in the three regimes of the pseudoelastic 

response of [0110]  wires: (1) elastic stretching of WZ, (2) transformation of WZ to HX 

and (3) elastic stretching of HX, the thermal conductivity shows large variations with 

applied strain. Elastic deformation of WZ results in decrease in the conductivity 

associated with the nonlinearity of the stress-strain response. Upon initiation of 

transformation, the conductivity drops further due to the resistance of the interfaces 

formed between WZ and HX. However, as the transformation progresses, increase in the 

conductivity is observed due to the higher conductivity of HX. The nanowire has ~20% 

higher conductivity in HX phase than its corresponding value in WZ. The enhancement is 

primarily due to an increase in atomic packing density, lower anharmonic coupling of 

phonons and higher surface specularities of the HX-structured wires.  

The current research focused on the development of a computational framework 

including MD simulations of and continuum modeling of the thermomechanical behavior 

of ZnO nanowires. Novel phase transformations have been discovered and the 

crystallographic aspects of the newly discovered phases and mechanistic descriptions of 

their corresponding transformation paths have been characterized. Thermal response 

under stress-free and strained conditions has been quantified and tunability in the thermal 

response has been demonstrated. Since these nanowires have been recently fabricated and 

also these transformations have been newly discovered, future research efforts can be 

directed at the following aspects 
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(1) Although, this research focused on the phase transformations to HX and BCT-4 

structures for ZnO which is a group II-VI material, it is possible that these 

polymorphs can exist for other groups IV, III-V and II-VI materials such as GaN, 

InN and CdSe, all of which are WZ-structured under ambient conditions. A 

combination of MD simulations and first-principles calculations can be carried 

out to establish the stability of HX and BCT-4 in these materials. Such 

characterizations will translate to a complete understanding of the effect of load 

triaxiality on polymorphic transitions for all materials considered. Based on 

stability of each phase, factors such as bonding states, bond ionicities and 

structural symmetries fundamental to the phase transformations can be identified.  

(2) The framework of analysis in this work is primarily computational and, in future, 

can be complemented with experimental characterization. With the current 

advances in experimental techniques including nanoindentation with AFM 

probes, the possibility of observing the WZ-to-HX transformation is quite high. 

Recent investigations on indentations along the [0001] orientation of WZ-ZnO 

have shown an anomalous decrease in the uniaxial modulus (Lucas et al. 2007a; 

Lucas et al. 2007b). Such effects could be related to either surface reconstructions 

to a layered structure (LY) or could involve transformation to the HX structure. 

Similarly, recent experimental testing on the uniaxial tensile response of [0001]-

oriented nanorods has shown fracture strains up to 15%. However 

crystallographic characterization through techniques such as X-ray diffraction was 

not carried out. Transformation to BCT-4 structure such as that reported in this 

work could possibly explain the high values of fracture strains observed. 

Development of facilities which incorporate crystallographic analysis during 

mechanical testing would facilitate experimental characterization of phase 

transformations at the nanoscale. Furthermore, analysis of thermal response with 

applied strain has been extensively studied at the macroscale. However, currently, 
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the experimental characterization of thermal response of nanostructures is limited 

to analyzing stress-free nanowires and nanotubes. The evolution of thermal 

response under stress and also during phase transformations has not been 

experimentally studied so far. Limitations imposed by the nanoscale nature of the 

structures render such analyses extremely difficult and therefore novel testing 

setups need to be developed. 

(3) The constitutive behaviors of WZ and HX phases employed in the continuum 

model developed here are determined from MD simulations. While this is 

required since the elastic constants vary with size of the wires, improvements to 

the model can be made by developing analytical solutions to describe such 

constitutive behaviors. One approach involves describing the nanowire as a 

heterogeneous structure consisting of core and surface structures and deriving 

analytical expressions for their effective moduli (Dingreville et al. 2005b). Such 

an approach incorporates surface energy and surface stress in the definition of the 

elastic constants and has been successfully used to model size effects in FCC 

metal nanowires. Incorporation of this approach in the model for pseudoelastic 

response necessitates the characterization of surface energies and surface stresses 

for surface orientations involved. MD simulations or first-principles calculations 

can be employed for this purpose.  

(4) Modeling of thermal response in this research considers the equation for phonon 

radiative transport. In this model, the variation in thermal conductivity is 

primarily attributed to boundary scattering of phonons. Recently, it has been 

proposed that significant changes can occur in the phonon density spectrum in the 

nanowires due to their nanoscale sizes (Balandin and Wang 1998; Balandin et al. 

2004). Various models have also been developed to account for this effect. Future 

research directions can be directed at characterizing the changes in phonon 

density spectrum for ZnO nanowires and also including these results in the 
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modeling of thermal response. Furthermore, novel transitions in the thermal 

responses of the nanowires have been observed under loading. Specifically, after 

the transformation from WZ to HX, the thermal conductivity of the nanowires 

increases significantly. While, phenomenologically, this is attributed to the 

increase in atomic packing density, lower anharmonic coupling of phonons and 

higher surface specularities, explicit models need to be developed to characterize 

this phenomenon and understand the underlying physical mechanisms. Models 

developed could include the variations in phonon spectrum, phonon group 

velocities, surface profiles with applied strain. 
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