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 SUMMARY 

 

Stable single-unit recordings from the nervous system using microelectrode arrays 

can have significant implications for the treatment of a wide variety of sensory and 

movement disorders. However, the long-term performance of the implanted neural 

electrodes is compromised by the formation of glial scar around these devices, which is a 

typical consequence of the inflammatory tissue reaction to implantation-induced injury in 

the CNS.  The glial scar is inhibitory to neurons and forms a barrier between the 

electrode and neurons in the surrounding brain tissue. Therefore, to maintain long-term 

recording stability, reactive gliosis and other inflammatory processes around the 

electrode need to be minimized.   

This work has succeeded in the development of neural electrode coatings that are 

capable of sustained release of anti-inflammatory agents while not adversely affecting the 

electrical performance of the electrodes. The effects of coating methods, initial drug 

loadings on release kinetics were investigated to optimize the coatings. The physical 

properties of the coatings and the bioactivity of released anti-inflammatory agents were 

characterized.  The effect of the coatings on the electrical property of the electrodes was 

tested. Two candidate anti-inflammatory agents were screened by evaluating their anti-

inflammatory potency in vitro. Finally, neural electrodes coated with the anti-

inflammatory coatings were implanted into rat brains to assess the anti-inflammatory 

potential of the coatings in vivo. This work represents a promising approach to attenuate 

astroglial scar around the implanted silicon neural electrodes, and may provide a 



 xii

promising strategy to improve the long-term recording stability of silicon neural 

electrodes. 
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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

   

Introduction 

Stable single-unit recordings from the nervous system using microelectrode arrays 

can have significant implications for the treatment of a wide variety of sensory and 

movement disorders. However, the long-term performance of the implanted neural 

electrodes is compromised by the formation of glial scar around these devices, which is a 

typical consequence of the inflammatory tissue reaction to implantation-induced injury in 

the CNS.  The glial scar is inhibitory to neurons and forms a barrier between the 

electrode and neurons in the surrounding brain tissue (Cui et al., 2003; Schwartz, 2004; 

Turner et al.; 1999).  Therefore, to maintain long-term recording stability, reactive gliosis 

and other inflammatory processes around the electrode need to be minimized.   

The overall goal of this research was to develop and characterize coatings capable 

of local release of anti-inflammatory agents to reduce the reactive cellular and molecular 

brain responses, while not adversely affecting the electrical performance of the 

electrodes.  This strategy may help stabilize the electrode-brain interface and potentially 

facilitate long-term recording from neural electrodes in vivo. The first objective of this 

research was the development of coatings for sustained release of anti-inflammatory 

drugs. Nitrocellulose is a biocompatible polymer with high binding capacity for proteins 

and nucleic acids. The capacity of nitrocellulose as the polymer matrix for incorporation 

of anti-inflammatory agents was explored. The anti-inflammatory neuropeptide α-
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melanocyte stimulating hormone (α-MSH) was used to investigate the effects of coating 

methods, initial drug loadings on release kinetics. The physical properties of the coatings 

and the bioactivity of released α-MSH were characterized.  The effect of the coatings on 

the electrical properties of the electrodes was tested (Chapter II).  Dexamethasone (DEX) 

is a potent anti-inflammatory agent that has been used clinically to treat many 

inflammatory responses. The capacity of nitrocellulose coatings to be used for sustained 

delivery of DEX was explored in Chapter III.   The next step towards the overall 

objective was selection of an effective anti-inflammatory agent to be used in the electrode 

coatings for in vivo evaluation.  The anti-inflammatory potency of α-MSH and DEX was 

evaluated in vitro, and DEX was shown to be a more powerful anti-inflammatory agent 

than α-MSH. The anti-inflammatory effects and neurotoxicity of DEX at various dosages 

were further investigated in vitro (Chapter IV).  Neural electrodes coated with 

nitrocellulose-DEX coatings were then implanted into rat brains, and the anti-

inflammatory potential of the coatings was evaluated using histological analysis (Chapter 

V). This work represents a promising approach to attenuate astroglial scar around the 

implanted silicon neural electrodes, and may provide a promising strategy to improve the 

long-term recording stability of silicon neural electrodes.  

 

Application of Cortical Neural Prosthetics in Pathological Disorders  

Cortical neural prosthetics (CNPs) are a subset of neural prosthetics, a larger 

category that includes stimulating, as well as recording, electrodes. Stimulation-based 

devices have now been used extensively in applications to restore hearing functions and 

alleviate the symptoms of Parkinson’s disease by activating neurons in different parts of 



 3

Neural Signal

Processor

Physical  
Device

neural spikes

movement 
command

Neural Signal

Processor

Physical  
Device

neural spikes

movement 
command

Figure 1.1: The organization of a brain-computer interface (BCI).  In the 
output BCI, the implanted microelectrode detects the neural-coded intent, which is 
processed and decoded into a movement command. The command drives a physical device 
such as a computer or an artificial limb so that the intent becomes action. 

the CNS (Schwartz, 2004; Pesaran et al., 2006). Recording-based devices are called 

brain-computer interfaces (BCIs).  The BCI is an interface in which a brain accepts and 

controls a mechanical device as a natural part of its representation of the body. By 

reading signals from an array of neurons and using computer chips and programs to 

translate the signals into action, these devices provide possibility for paralyzed patients to 

control a motorized wheelchair or a prosthetic limb through thought (Donoghue, 2002; 

Schwartz, 2004, Pesaran et al., 2006). An example is the implantable microelectrodes 

embedded chronically in the cerebral cortex that can link the brain to the external world 

by processing the recoded neural signals to extract the subject’s command to control an 

external device as shown in Figure 1.1.   

 

This technology holds great promise for patients with impaired movement 

functions, which can be caused by stroke, cervical spine injuries, and neurodegenerative 

diseases such as multiple sclerosis and amyotrophic lateral sclerosis (ALS). However, 
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despite the clinical success of the stimulation-based CNPs, the recording-based CNPs are 

still in research stage due to the problem of long term recording stability (Schwartz, 2004; 

Ludwig et al., 20006; Donoghue, 2002; Santhanam et al., 2006).  When these devices are 

implanted into brain tissue for long-term recording, they lose the ability to record neural 

activity a few days to weeks after implantation (Cui et al., 2003; Schwartz, 2004). The 

major cause of this problem is the formation of glial scar around the Si-microelectrodes, 

which is a typical consequence of the inflammatory tissue reaction caused by the injuries 

and implants in the CNS.  The glial scar forms an inhibitory barrier for axon re-growth 

and functions as a diffusive barrier that is thought to reduce the ability of implanted 

devices to communicate with neurons by insulating the device from the surrounding brain 

tissue (Properzi et al., 2003; Cui et al., 2003; Schwartz, 2004; Turner et al., 1999, Biran et 

al., 2005). 

 

Multiple Recording Electrode Types 

 Investigators are currently working on developing multi-channel recording 

microelectrode arrays for long-term cortical neuronal recordings (Kipke et al., 2003; 

Polikov et al., 2005, Schwartz, 2004).  Numerous types of microelectrode arrays have 

been developed, including microwires (Williams et al., 1999; Kralik et al., 2001; 

Nicolelis et al., 1999), silicon micromachined microprobes (Hetke and Anderson, 2002; 

Jones et al., 1992, Ludwig et al., 2006, Drake et al., 1988; Campbell et al., 1991), and 

polymer-substrate probes (Rousche et al., 2001, Stieglitz et al., 2000).  Among the 

different electrode types, microwire electrode arrays and silicon micromachined 
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microprobes are the two main types of electrode arrays currently being explored (Polikov 

et al., 2005, Schwartz, 2004) because they are easy to process and fabricate.  

 The first chronic recording electrodes were microwires (Figure 1.2A). Microwire 

electrodes consist of fine wires 20 to 50 microns in diameter (Schwartz, 2004).  The 

wires are generally made of conductive medals including platinum, gold, tungsten, 

iridium, and stainless steel, that are insulated with teflon or polyimide (Polikov et al., 

2005, Schwartz, 2004). The tips of the wires are not insulated and are used for recording 

neuronal signals (Polikov et al., 2005). The wires can be arranged as arrays by soldering 

them to a small connector to acquire more accessibility to neurons necessary for 

neuroprosthetic control (Williams et al., 1999; Nicolelis et al., 1999; Polikov et al., 2005, 

Schwartz, 2004).  

Compared with silicon micromachined microprobes, microwire electrodes have 

the advantages of ease in fabrication as well as low electrode impedance. Impedance is 

proportional to both thermal noise and signal loss, and consequently, low impedance 

improves signal transport across the neural interface and helps to increase the detection 

sensitivity to neural activity (Ludwig et al., 2006; Cui et al., 2001; Robinson et al., 1968).  

One of the causes of the failure of microelectrode arrays in long-term recording is the 

increase of electrode impedance over time due to tissue reaction (Liu et al., 1999; 

Schwartz, 2004, Cui et al., 2003). It has been shown that electrode impedance was well 

correlated with tissue reactivity around the implanted electrodes (Williams, 2001). 

Therefore the low impedance of microwire electrodes potentially leads to chronic 

recording stability. However, there have been studies showing that the number of 

functional electrodes declines with time for microwire electrode arrays (Nicolelis et al., 
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2003), indicating that long term recording stability is also an issue for microwire 

electrodes.  The recording sites for microwire electrodes are the tips of the wires, and the 

arrays are glued to the skull, so the depth of the electrode tip relative to the skull is fixed. 

If the cortical surface moves after the surgery, the relative position of the electrode tip to 

the brain tissue will change. This may cause it to move to a different cortical layer or 

white matter, and fail to record neural signals of interest (Schwartz, 2004; Polikov et al., 

2005).  As a result, the same individual neurons can not be “tracked” longer than about 

six weeks (Rousche et al., 2001; Williams et al., 1999; Nicolelis et al., 1997) 

Silicon micromachined microprobes are the next generation of electrode arrays.  

Silicon photolithographic processing allows for unsurpassed control over electrode size, 

shape, texture, and spacing; allowing multiple recording sites to be placed on a single 

electrode shank (Polikov et al., 2005). A number of silicon-based microelectrode arrays 

have been developed; nevertheless, two particular designs have attained prominence in 

the field (Schwartz, 2004; Polikov et al., 2005, vetter et al., 2004). The first is planar 

electrode arrays developed by the University of Michigan Center for Neural 

Communication Technology (Figure 1.2C). The Michigan probes have several important 

advantages over microwires including batch fabrication, high reproducibility of 

geometrical and electrical characteristics, precise and repeatable relative electrode 

locations; high density recording sites; and the ability to integrate circuits directly on the 

probes (Vetter et al., 2004; Kewley et al., 1997; Polikov et al., 2005). The shanks of the 

Michigan probes are 15 microns thick and 100 to 500 microns wide, with the length 

ranging from 3 mm to 1 cm.  Compared with microwire arrays, the Michigan probes have 

more accessibility to neurons of interest because the multiple recordings sites are placed 
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along the probe, at least some of the sites will be situated at cortical depths desirable for 

good extracellular recordings (Schwartz et al., 2004).  

The other prominent silicon electrode design comes from University of Utah, 

which is now commercially available through Cyberkinetics (Figure 1.2B).  The Utah 

Electrode Array (UEA) is fabricated from a single block of silicon which, through 

etching, doping, and heat treatment, results in a three-dimensional, 5 x 5 or 10 x 10 arrays 

of needles on a 4 x4 mm squire. The array has a recording site at the tip of each shank. 

The shank length ranges from 1.0 to 1.5 mm, the diameter ranges from 100 micron at its 

base to less than 1 micron at the tip (Schwartz, 2004; Polikov et al., 2005). This design 

has the advantage of placing a relatively large number of recording sites in a compact 

volume of cortex. However, with a single recording site at a fixed cortical depth, the 

UEAs suffer from the same positioning problem as microwires that lead to the failure of 

recording the same group of neurons over time (Schwartz, 2004). 

This common drawback of the microwire electrodes and UEAs reduces the 

attractiveness of these two types of electrodes for long-term chronic implant.  The 

Michigan probes have unique advantages over the other two types of electrode arrays in 

that it has more accessibility to neurons and flexible designs. However, the scar tissue 

encapsulation, which raises the electrode impedance, is a more severe problem for the 

Michigan probes because of their high electrode impedance. The Michigan probes are 

usually capable of recording good action potentials for the first one to three weeks after 

implantation, after which time the signal degrades (Schwartz, 2004). Therefore the 

research of this dissertation was focused on reducing the tissue reaction to the Michigan 
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probes.  The methods developed in this research, however, is also applicable to other 

types of electrodes.  

Bond pads 
(for connection to external word) 

Shank (insert into brain) 

Recording Electrode 
Sites 

C 

A B 

Figure 1.2: Various designs of electrode types.  (A) An example of a 
microwire electrode array formed by Teflon coated stainless microwires. (from Nicolelis 
et al, 2003).  (B) Utah Electrode Array formed from a single block of silicon. (from 
Rousche and Normann, 1998).  (C) A 16 channel, single shank Michigan recording 
probe.  The probe part in the box is magnified in to show the 16 recording electrode 
sites.   
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Factors Affecting Tissue Reaction to the Implanted Neural Electrodes 

 Factors that affect the brain tissue reaction to the implanted neural electrodes 

include the mechanical trauma during insertion, foreign body reaction, electrode insertion 

and implantation methods, and physical properties of the electrodes (size, shape, as well 

as surface characteristics). 

 When a neural probe is inserted into the brain, neurons and glial cells are killed or 

injured during insertion, blood vessels are disrupted and the blood-brain barrier (BBB) is 

damaged. This mechanical trauma and the presence of neural probe as foreign material 

initiates the cellular and molecular cascades of the central nervous system (CNS) wound 

healing response. The tissue injury and breakdown of BBB cause release of cytokines and 

neurotoxic free radicals, as well as invasion of blood-borne macrophages (Fitch and 

Silver, 1997; Schwartz, 2004).  Insertion induced accumulation of fluid and necrotic 

nervous tissue cause edema, further adding the pressure surrounding the probe. The main 

cell types involved in the inflammatory and wound healing response to the brain injury 

and materials implanted in the CNS are microglia/blood-borne macrophages, 

oligodendrocyte precursors (OPCs), and astrocytes (Fawcett and Asher, 1999; Norton, 

1999; Hampton et al, 2004, Polikov et al., 2005).  Microglia/macrophages and OPCs 

respond very rapidly to brain injuries (Fawcett and Asher, 1999; Hampton et al, 2004, 

Kato and Walz, 2000). Following injury to the adult CNS, a large number of 

microglia/macrophages and OPCs were recruited to the injury site. The 

microglia/macrophages are activated upon adherence to the material surface (Anderson, 

2001). The activated microglia/blood-borne macrophages release neurotoxic molecules 

such as free radicals, nitric oxide (NO), as well as proinflammatory cytokines including 

interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) 
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(Kyrkanides et al, 2001; Hays, 1999; Bruccoleri et al, 1998; Takeuchi et al, 2001), which 

subsequently activate the astrocytes (Merrill and Benveniste, 1996; John et al, 2005).  

The activation of astrocytes is also mediated by blood-borne factors including growth 

factors and hormone, albumin, thrombin, angiotensin II and cAMP (Logan and Berry, 

2002) The reactive astrocytes undergo hypertrophy, proliferation, and upregulate trophic 

factors, cytokines, as well as extracellular matrix (Fawcett and Asher, 1999; Polikov et 

al., 2005 ).  

 Chondroitin sulfate proteoglycans (CSPGs) are important inhibitory molecules in 

glial scar (Properzi and Fawcett, 2004; Fawcett and Asher, 1999).  Astrocytes produce 

neurocan, phosphacan, and brevican; microglia/macrophages produce NG2; and OPCs 

produce neurocan, NG2, and versican (Properzi and Fawcett, 2004; Fawcett and Asher, 

1999; Tang et al., 2003; Tatsumi et al, 2005; Hampton et al, 2004).  It has recently been 

suggested that part of NG2 positive cells proliferating in the injury site differentiate into 

the glial scar astrocytes (Alonso et al, 2005; Tatsumi et al 2005).  The CSPGs and other 

glial scar associated inhibitory molecules create an inhibitory environment that blocks the 

regrowth of neural processes and may potentially cause the exclusion of neural cells by 

their presence.   

 Several research groups have been investigating the effects of insertion speed and 

implantation method on tissue reaction to implanted neural probes. One study using 

microwire electrode arrays shows that slow insertion rate (100 μm/s) may contribute to 

the unusually large number of single units recorded in this study (Nicolelis et al., 2003). 

In contrast, the silicon-based UEAs require a minimum insertion rate of 8.3 m/s for a 

complete, safe insertion of all 100 electrodes in the array to a depth of 1.5 mm into the 
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cortex (Rousche and Normann, 1991). Other groups use insertion rates in between these 

two extremes on the planar silicon electrode arrays (i.e. the Michigan probes and probes 

with similar design) (Turner et al., 1999; Szarowski et al., 2003).  However, the effects of 

different insertion rates on tissue reaction to the planar silicon electrode arrays remain 

unknown.  

 There are two insertion methods that are currently in use.  Some groups insert the 

electrodes by hand (Kipke et al., 2003; Szarowski et al., 2003; Liu et al., 1999; Biran et 

al., 2005), while other groups use microdrives with controlled speed and positioning that 

either custom-built or commercially available (Spataro et al., 2005; Turner et al., 1999; 

Szarowski et al., 2003; Nicolelis et al., 2003). UEAs can not be inserted by hand because 

of the high insertion rate required for a complete and safe insertion.  The other two types 

of electrodes can be inserted either by hand or a microdrive.  There is no experimental 

evidence showing which implantation method is optimal for the microwire electrode 

arrays and planar silicon electrode arrays.  A study on planar silicon electrode arrays 

using both implantation methods suggests that the implantation method does not 

influence the long-term tissue reaction (Szarowski et al., 2003). 

 The physical properties of the microelectrode arrays (size, shape, as well as 

surface characteristics) are other factors that may contribute to the tissue reaction to 

implanted microelectrodes. It has been suggested that the prosthesis with small size, 

smooth surfaces and round corners are likely to create less tissue damage at the time of 

insertion (Edell et al., 1992).  However, a recently study compared the tissue response to 

the planar silicon electrode arrays of different sizes, shapes, and surface characteristics 

through GFAP, vimentin, and ED-1 staining. The histological evidence indicated that 
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although these factors made a difference in the tissue reaction around the implanted 

devices in the first one week after implantation, responses observed after four weeks were 

similar for all devices (Szarowski et al., 2003).  

 

Strategies to Minimize Tissue Reaction to the Implanted Neural Electrodes 

 A number of Research groups are working on different approaches to reduce the 

inflammatory tissue response around the implanted neural electrodes.  These approaches 

can be divided into two categories: the materials science strategies and the bioactive 

molecule strategies (Polikov et al., 2005). The materials science strategies include 

modifying the size and shape of the electrodes (Edell et al., 1992; Szarowski et al., 2003), 

or using alternative materials such as polymers (Rousche et al., 2001, Stieglitz et al., 

2000) or ceramics (Moxon et al., 2004; Singh et al., 2003). However, none of these 

efforts showed any significant reduction of the inflammatory tissue reaction.  

The bioactive molecules strategies have focused on administration of anti-

inflammatory agents through electrode coatings (Kim and Martin, 2006), direct injection 

through microchannels fabricated into the electrodes (Retterer et al., 2004), or systemic 

injection (Spataro et al., 2005). Systemic injections or local release of anti-inflammatory 

agents from non-functional polymers has been shown to reduce the reactive tissue 

reaction to the neural implants (Spatara et al., 2005; Shain et al., 2003). Systemic 

injection, though effective and easy to operate, is not a viable option because of the sides 

effects associated with peripheral metabolism and chronic use, and the difficulty for the 

drugs to cross the blood-brain barrier (Kim and Martin, 2006; Retterer et al., 2004).   
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Several research groups are seeking to integrate the microfluidic drug delivery 

systems into the functioning electrical devices in device fabrication (Chen et al., 1997; 

Rathnasingham et al., 2004; Retterer et al., 2004). Microfluidic channels capable of 

releasing biomolecules have been successfully integrated into silicon neural prosthetics. 

The diffusion of test biomolecules from the microfluidic channels was investigated both 

in vitro and in vivo (Retterer et al., 2004). In some designs, the drug releasing rate can be 

controlled by pumps and valves (Papargeorgiou et al., 2001). These studies represent 

preliminary steps toward developing a viable clinical intervention strategy to improve the 

biocompatibility and chronic stability of silicon-based multielectrode arrays (Retterer et 

al., 2004).  

An alternative strategy for local drug delivery is through electrode coatings. To 

date three types of anti-inflammatory bioactive coatings for neuroprosthetics have been 

reported, poly(ethylene-co-vinyl) acetate (EVAc) coatings capable of releasing anti-

inflammatory agent monocycline (Bjornsson et al., 2003), alginate hydrogel matrices 

embedded with dexamethasone (DEX) loaded PLGA nanoparticles (Kim and Martin, 

2006), and conducting polymer polypyrrole coatings using dexamethasone phosphate as 

the negative dopant (Wadhwa et al., 2006). 

EVAc as a drug releasing polymer has been well studied. It has been successfully 

used for slow release of proteins as well as small molecule drugs (Saltzman et al., 1999; 

Cypes  et al., 2003). However, In vivo study showed that EVAc-monocycline coated 

neural prosthetic devices generated more severe tissue reaction than uncoated devices 

(Bjornsson et al., 2003).  It remains unclear that the failure of this coating is due to EVAc 

polymer matrix or the drug monocycline.  
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Conducting polymer polypyrrole was electrochemically deposited onto the 

electrode sites of the Michigan neural probes using dexamethasone phosphate as the 

negatively charged dopant (Wadhwa et al., 2006).  The drug release can be controlled by 

electrical stimulation.  In vitro studies showed that the released drug remained bioactive.  

However, the efficacy of the coatings was not tested in vivo yet.  As the total area of the 

electrode sites is less than 0.5% of the total neural probe area, and the conducting 

polymer can only be deposited on the electrode sites, less than 0.5% probe surface is 

coated. Therefore the potency of the anti-inflammatory effects of the coating is in 

question. 

DEX loaded PLGA nanoparticles embedded in alginate hydrogel were coated on 

the Michigan probes by dip coating (Kim and Martin, 2006).  Sustained release has been 

observed for up to 3 weeks in vitro. In vivo study showed that the impedance amplitude 

for the DEX coated electrodes did not change while that of the control electrodes 

increased 3 times about 2 weeks after implantation. However, the authors didn’t perform 

a histological study to correlate the improved impedance with tissue reaction.  

In summary, local administration of anti-inflammatory drugs from microfluidic 

channels or bioactive coatings of the neural prosthetics has the capacity to manage the 

cellular and tissue responses around the implanted devices, and therefore holds great 

promise to solve the long-term stability problem of chronically implanted neural 

electrodes.  Thus the research of this dissertation will be focused on the bioactive 

coatings strategy.  

Nitrocellulose is a biocompatible polymer which has high binding capacity for 

proteins and nucleic acids.  Although the mechanism of binding is not yet completely 
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understood, it appears to depend mainly on hydrophobic and electrostatic interactions that 

are caused by the nitrate dipole (Tijssen, 1993; Harlow and Lane, 1988; Wallis et al., 

1979; Handman and Jarvis, 1988).  Since nitrocellulose is a convenient substrate for rapid 

non-covalent attachment of proteins (Lagenaur and Lemmon, 1987), it is commonly used 

to attach extracellular matrix proteins to investigate cell adhesion and growth in vitro 

(Lagenaur and Lemmon, 1987; Snow et al., 1990; Vielmetter et al., 1990).  NGF or 

laminin treated nitrocellulose has also been used in vivo to induce extensive axon growth 

after spinal cord injury in both adult and neonatal rats (Schreyer and Jones, 1987; Houle 

and Ziegler , 1994; Houle and Johnson, 1989).  Although the high protein binding 

capacity of nitrocellulose has enabled its extensive use both in vitro and in vivo for cell 

adhesion, growth and tissue regeneration, its potential for drug release has yet to be 

explored.  In this study, we proposed to use nitrocellulose as the polymer coating matrix 

for local release of anti-inflammatory agents.  

 

Candidates of Anti-inflammatory Agents 

 Nuclear Factor Kappa B (NF-κB) is a crucial transcription factor that is essential 

to the expression of a large number of genes involved in cellular inflammation including 

MHC-1, IL-1, IL-6, IL-8, TNF-α, granulocyte colony-stimulating factor, chemokines, 

cylco-oxygenase, lipoxygenase, and  nitric oxide synthase (Ichiyama et al., 1999; Manna 

and Aggarwal, 1998). Most types of inflammation require activation of NF-κB (Manna 

and Aggarwal, 1998).  It has been shown in a number of model systems that NF-κB 

levels increase as a consequence of brain injury (Salminen et al., 1995; Yang et al., 1995). 

According to these models, it is possible that injury leads to an increase in production of 
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IL-1 or TNF, which then activate NF-κB, leading to induction of the expression of a 

range of pro-inflammatory genes (O’Neill and Kaltschmidt, 1997).  Therefore, suppression 

of NF-κB action downregulates the expression of genes that are involved in 

inflammation. The advantage of targeting inflammation at the nuclear factor level is that 

the activation passways of many known (IL-1, TNF) and unknown inflammatory agents 

converge at this level, intervention at this level enables suppressing inflammation that 

may be caused by a variety of cytokines in response to neural injury.  

A number of studies suggest that the neuropeptide α-melanocyte stimulating 

hormone (α-MSH) inhibits the production of proinflammatory cytokines and mediators 

via the modulation of NF-κB activation (Ichiyama et al., 1999; Manna and Aggarwal, 

1998; Starowicz and Przewlcka, 2003).  α-MSH is a tridecapeptide derived from a lager 

precursor molecule pro-opiomelanocortin (POMC) and found in pituitary, brain, skin, 

and circulation (Lipton and Catania, 1997; Oktar and Alican, 2002). The amino acid 

sequence of α-MSH is N-Acetyl-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-

Val-NH2. It has been shown that α-MSH inhibits the production and activity 

proinflammatory cytokines such as of IL-1β, IL-6, IFN-γ, and TNFα; downregulates the 

expression of co-stimulatory molecule such as CD86 and CD40, modulates the 

expression of nitric oxide synthase, and induces the production of suppressor factors such 

as the cytokine synthesis inhibitory factor IL-10 (Starowicz and Przewlcka, 2003; Luger 

et al., 1999, Oktar and Alican, 2002; Lipton et al., 2000; Star et al., 1995). The 

suppression of NF-κB by α-MSH was not cell type specific and was mediated through 

generation of cAMP and activation of PKA (Manna and Aggarwal, 1998). α-MSH has no 

known pharmacologic toxicity and is able to suppress NF-κB by various stimuli. 
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Therefore it is an excellent candidate as a powerful anti-inflammatory agent in the CNS, 

due to its pleiotropic effects on inflammation (Starowicz and Przewlcka, 2003).   

Another anti-inflammatory drug candidate is dexamethasone (DEX). DEX is a 

synthetic glucocorticoid hormone that is used clinically to treat many inflammatory 

responses.  Glucocorticoids in turn exert anti-inflammatory effects on many cell types 

including T cells, macrophages, eosinophils, neutrophils, mast cells, endothelial and 

epithelial cells, thereby creating a classical endocrine feedback loop (Smoak and 

Cidlowski, 2004). Most potent anti-inflammatory effects of glucocorticoids result from 

protein-protein interactions between glucocorticoid receptor (GR) and transcription 

factors, particularly NF-κB and activator protein-1 (AP-1) (Smoak and Cidlowski, 2004; 

Yamazaki et al., 2005).  In CNS, systematic injection of DEX was shown to reduce tissue 

reaction around neural implants (Shain et al., 2003; Spataro et al., 2005).  Addition of 

DEX to activated microglia-neuron cocultures protects neurons by down-regulating nitric 

oxide (NO) production (Golde et al., 2003). Its anti-inflammatory effects have usually 

been attributed to its effects on microglia/macrophages, which knowingly express high 

levels of glucocorticoid receptors (Tanaka et al., 1997).  DEX has been show to inhibit 

proliferation, iNOS synthesis, and cytokine expression of microglia (Golde et al., 2003; 

Chao et al, 1992; Tanaka et al, 1997).  A recently study showed that DEX inhibited 

proliferation of NG2 positive cells, which may differentiate into astrocytes in injured 

brain (Alonso, 2005). As these NG2 positive cells do not express the glucocorticoid 

receptors, the authors suggested that DEX may have indirect effects on these cells via 

modification of glutamate release and/or interaction with microglia.  DEX also directly 

inhibits astrocyte proliferation (Crossin et al, 1997).  It’s very possible that DEX exerts 
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its anti-inflammatory effects on the glial cells through direct interactions with cells as 

well as the interactions among different types of cells.  As DEX modulates the 

inflammatory responses of multiple types of glial cells, it is a promising drug candidate 

for controlling the reactive tissue response to the implanted neural electrodes.  
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CHAPTER II 

 

DEVELOPMENT AND CHARACTERIZATION OF COATINGS 

CAPABLE OF RELEASING ALPHA-MSH FOR SILICON  

NEURAL PROBES1 

 

Abstract  

Si-multi-electrode arrays implanted into brain tissue for long-term recording lose 

electrical connectivity due to the post-implantation inflammatory reaction.  This 

inflammatory reaction creates a physical and electrical gap between the electrode site and 

the surrounding neurons.  In this study, novel nitrocellulose-based coatings were 

developed for the sustained delivery of the anti-inflammatory neuropeptide α-melanocyte 

stimulating hormone (α-MSH).  α-MSH was incorporated in micron-scale nitrocellulose 

coatings and slow, sustained release over 21 days was attained in vitro.  The α-MSH 

released on day 21 was still bioactive, and successfully inhibited nitric oxide (NO) 

production by lipopolysacchride (LPS) stimulated microglia.  The amount of initial drug 

loading directly affected the release rate, with higher initial loading increasing the mass 

released but not the percent of drug released.  The surface morphology and thickness of 

the coatings was examined by scanning electron microscopy (SEM) and profilometry.  In 

                                                 

 
 
1  Zhong Y., Bellamkonda R.V., 2005. Controlled release of anti-inflammatory agent 
alpha-MSH from neural implants. J Control Release. 106(3), 309-318. 
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addition, impedance measurement showed that the α-MSH loaded nitrocellulose coatings 

reduced the magnitude of electrode impedance at the biologically relevant frequency of 1 

kHz.  In conclusion, nitrocellulose-based, bioactive coatings that release anti-

inflammatory agents and do not increase the impedance of the electrode were 

successfully fabricated.  These coatings have the potential to reduce inflammation at the 

electrode-brain interface in vivo, and facilitate long-term recordings from Si-multi-

electrode arrays.   

 

Introduction 

Stable single-unit recordings from the nervous system using Si-microelectrode 

arrays can have significant implications for the treatment of a wide variety of sensory and 

movement disorders.  However, when these devices are implanted into neural tissue for 

long-term recording, they quickly (a few days to weeks) lose the ability to record from 

neurons.  Histological evidence shows that a cellular sheath surrounds the insertion site of 

Si-microelectrodes, which is a typical consequence of inflammatory reaction resulting 

from physical injury to the CNS.  In the CNS, this process of sheath formation is termed 

‘reactive gliosis’ or astroglial scarring.  This astroglial scar is inhibitory to neurons and 

forms a barrier between the electrode and neurons in the surrounding brain tissue.  This 

problem is particularly apparent for the Michigan probes, which has relatively small 

recording sites and hence bigger impedance compared to the so-called Utah arrays and 

microwires (Cui et al., 2003; Schwartz, 2004; Turner et al., 1999).  

To maintain long-term recording stability, reactive gliosis and other inflammatory 

processes around the electrode need to be minimized. The neuropeptide α-melanocyte 
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stimulating hormone (α-MSH) exerts powerful anti-inflammatory effects through 

inhibition of proinflammatory cytokine production and related mediators of inflammation 

(Ichiyama et al., 1999).  A number of studies suggest that α-MSH inhibits the production 

of proinflammatory cytokines via the modulation of nuclear transcription factor-κB (NF-

κB) activation, and the inhibition of NF-κB is a focal point in the mediation of the effects 

of melanocortins on cells of the immune system.  α-MSH is an excellent candidate as a 

powerful anti-inflammatory agent in the CNS, due to its pleiotropic effects on 

inflammation and energy homeostasis (Starowicz and Przewlocka, 2003).  In this study, 

the fabrication of nitrocellulose-based coatings on oxidized Si substrates for the sustained 

release of α-MSH is reported. 

Conventional drug delivery systems such as microspheres are not ideal, as the 

limited surface area (about 1 mm2) of the microelectrodes does not allow for sufficient 

loading of drug carriers to facilitate sustained release.   Nitrocellulose is a biocompatible 

polymer which has high binding capacity for proteins and nucleic acids.  Although the 

mechanism of binding is not yet completely understood, it appears to depend mainly on 

hydrophobic and electrostatic interactions that are caused by the nitrate dipole (Tijssen, 

1993; Harlow and Lane, 1988; Wallis et al., 1979; Handman and Jarvis, 1988).  Since 

nitrocellulose is a convenient substrate for rapid non-covalent attachment of proteins 

(Lagenaur and Lemmon, 1987), it is commonly used to attach extracellular matrix 

proteins to investigate cell adhesion and growth in vitro (Lagenaur and Lemmon, 1987; 

Snow et al., 1990; Vielmetter et al., 1990).  NGF or laminin treated nitrocellulose has 

also been used in vivo to induce extensive axon growth after spinal cord injury in both 

adult and neonatal rats (Schreyer and Jones, 1987; Houle and Ziegler , 1994; Houle and 
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Johnson, 1989).  Although the high protein binding capacity of nitrocellulose has enabled 

its extensive use both in vitro and in vivo for cell adhesion, growth and tissue 

regeneration, its potential for drug release has yet to be explored.  In this study, α-MSH 

was incorporated into nitrocellulose coatings and sustained release of α-MSH over three 

weeks in vitro was achieved.   

Polymer-based controlled release systems are normally classified as either 

reservoir (membrane) delivery systems or matrix (monolithic) delivery systems.  In the 

former type release is controlled by a polymeric membrane that surrounds a drug 

containing reservoir, whereas in matrix devices the drug is either dissolved in or 

dispersed homogeneously throughout a polymer matrix (Richards, 1985; Saltzman, 2001; 

Polishchuk and Zaikov, 1997).  Both delivery methods were investigated in this study 

using nitrocellulose as the polymer.  The anti-inflammatory activity of α-MSH released 

from this nitrocellulose-based delivery system was tested through nitrite production by 

primary microglial cells, and impedance measurement was used to characterize the 

contribution of the coatings to electrode impedance.   

 

Materials and Methods 

Fabrication of α-MSH Loaded Nitrocellulose Coatings 

Polished Si wafers of 1 cm2 with a 10,000 Å oxide layer (University Wafer, MA) 

were cleaned by ultrasonification in deionized water and ethanol, and stored in 70% 

ethanol for sterilization.  The wafers were dried under nitrogen and adhered to the spindle 

of a microcentrifuge (IEC) by a double-sided adhesive tape.  33.3 mg (5 cm2) 

nitrocellulose (Schleicher & Schuell BioScience) was dissolved in 12 ml methanol; the 
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solution (20 µl) was then added to the surface of a wafer, followed by spinning at 2000 

rpm for 30 s to enable spin coating.   

Matrix delivery method. 100 or 400 μg α-MSH (Sigma) powder was mixed 

thoroughly with 20 µl nitrocellulose (NC) and evaporated on 1 cm2 Si wafers. This α-

MSH-NC layer was subsequently coated with 6 additional layers of pure nitrocellulose 

generated in the following manner- 3 layers of evaporation and 3 layers of spin coating 

(2000 rpm, 30 s).  The α-MSH containing layer was termed as Matrix 100 and Matrix 400 

based on the amount of α-MSH added to the nitrocellulose layer. 

Reservoir delivery method. 100 or 400 µg α-MSH in water solution was 

evaporated on 1 cm2 Si wafers.  This α-MSH layer was subsequently coated with 6 

additional layers of pure nitrocellulose as previously mentioned in the matrix delivery 

method, as Reservoir 100 and Reservoir 400.   

In Vitro α-MSH Release Assay 

Si wafers coated with α-MSH and nitrocellulose were incubated at 37°C either in 

PBS for quantification of α-MSH release, or in microglial cell culture medium (DMEM-

F12 media supplemented with 10% fetal bovine serum) for bioactivity analysis with 

microglia cultures. The release medium (PBS or microglial cell culture medium) was 

changed every 24 h. The amount of α-MSH released every 24 h from triplicate samples 

(n = 3) was determined by the subtraction of the UV adsorption at 215 and 225 nm with a 

microplate reader (Bio-Tek instruments, VT).  The α-MSH containing microglial cell 

culture medium collected every 24 h was stored at -20°C until bioactivity was performed. 
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Isolation of Cortical Microglia  

All procedures involving animals were approved by the Institutional Animal Care 

and Use Committee (IACUC) of the Georgia Institute of Technology. Postnatal (day 0-1) 

Sprague-Dawley rats (Harlan) were anesthetized using isoflurane and rapidly decapitated. 

The cerebral cortices were isolated, separated from meninges, and minced in calcium- 

and magnesium-free Hanks’ balanced salt solution (HBSS) (Invitrogen, Carlsbad, CA). 

The tissue was dissociated in 0.25% trypsin and 1mM EDTA (Invitrogen) for 20 min at 

37°C. The trypsinization was stopped by adding Dulbecco’s modified Eagle’s medium 

with Ham’s F12 (1:1) (DMEM/F12, Invitrogen) supplemented with 10% heat inactivated 

fetal bovine serum (FBS) (Invitrogen), and the tissue was triturated through a fire 

polished glass pipette.  The dissociated cells were centrifuged at 1000 rpm for 3 minutes, 

and the supernatant was removed. The cells were resuspended in DMEM/F12 medium 

supplemented with 10% FBS, 2 mM L-glutamine, and 1% penicillin/streptomycin, and 

plated in 75 cm2 poly-L-lysine (0.1 mg/ml, Sigma) coated tissue culture flasks (Fisher) at 

a density of one brain per flask. Three days later, the culture medium was changed with 

DMEM/F12 medium supplemented with 20% FBS, 2 mM L-glutamine, and 1% 

penicillin/streptomycin to enrich for microglial cells. After 14 d, flasks were lightly 

shaken to release microglial cells into the media supernatant, and these floating microglia 

were subsequently centrifuged into a pellet, and resuspended in DMEM-F12 medium 

supplemented with 10% FBS. The cells were seeded in 96-well culture plates at a density 

of 3 × 104 cells per well.  Twenty-four hours after seeding, microglial cells were treated 

with 100 pg/ml lipopolysaccaride (LPS, Sigma) and incubated in the microglial cell 

culture medium containing α-MSH released every 24 h for 48 h.  
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The purity of the microglial culture was assessed by standard 

immunocytochemistry. Briefly, cells were fixed in HistochoiceTMMB (Electron 

Microscopy Sciences, PA) for 20 min, rinsed with PBS and blocked with 4% normal goat 

serum for 1h at room temperature. Primary antibody Iba-1 (Wako Chemicals, 1:500) was 

added at 4°C overnight. After rinsing, goat anti-rabbit IgG Alexa 488 (Molecular Probes) 

was added for 1 h at room temperature. Cell nuclei were counterstained with 10 4'-6-

Diamidino-2-phenylindole (DAPI). The purity of microglia culture was 98.2 ± 1.3% as 

assessed by quantifying the number of Iba-1+ cells versus the total number of cells (n = 

6).  

Determination of Nitric Oxide Production 

Nitric oxide (NO) production by the microglial cultures was determined by 

measuring the accumulated levels of nitrite in the supernatant with Griess reagent 

(Promega).  Briefly, after incubation with LPS and the release medium collected from α-

MSH containing nitrocellulose coatings every 24 h for 48 h, 50 μl cell culture supernatant 

was incubated with 50 μl sulphanilamide and 50 μl N-1-napthylethylenediamine 

dihydrochloride (NED) for 10 min each at room temperature.  The optical density was 

measured at 540 nm using a microplate reader (Bio-Tek instruments, VT).  NO 

production with and without α-MSH containing culture medium collected from triplicate 

nitrocellulose coating samples was determined (n = 3).  
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Surface Analysis by Scanning Electron Microscopy (SEM) and Profilometry 

The surface morphology of the nitrocellulose coatings were investigated by SEM.  

Si wafers were coated with α-MSH loaded nitrocellulose coatings and mounted onto 

metal stubs using double sided adhesive tape, vacuum-coated with a gold film, and 

analyzed under a LEO 1530 thermally-assisted FEG scanning electron microscope.  

Coating thickness before and after drug was released was measured using a DEKTAK3 

profilometer (Veeco Instruments Inc.).  The thickness was determined by measuring 3 

random areas on each sample for triplicate samples (n = 3).  

Impedance Measurement 

Micromachined silicon probes (single shank, 16 recording sites) were provided by 

the University of Michigan Center for Neural Communication Technology.  The 

impedance magnitude of the 14 recording sites was measured before and after Matrix 400 

coating (n = 14).  A custom built impedance spectroscopy device was used for this study 

(Ross  et al., 2004).  A Tektronix TDS 3014B oscilloscope and a HP function generator 

were also included.  The system was operated under computer control using a MATLAB 

program.  A solution of Hank’s balanced saline solution (HBSS) was used as the 

electrolyte.  An AC sinusoid with 5 mV of amplitude was used as the input signal with 

the DC potential set to 0 V.  The value of the impedance was determined at the 

biologically relevant frequency 1 kHz.  

Data Analysis 

Data are represented as the average value ± the standard error of the mean 

(S.E.M).  A general linear ANOVA model was used to compare mean values of the 

different conditions. Pairwise comparisons were conducted using Tukey 95% 
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simultaneous confidence intervals, and P < 0.05 was used to indicate statistical 

significance. 

 

Results 

Effect of Coating Methods on Release Kinetics 

Nitrocellulose coatings containing α-MSH were prepared using two delivery 

methods: (1) evaporated α-MSH-nitrocellulose layer coated with nitrocellulose as 

reservoir method and (2) α-MSH-nitrocellulose mixture coated with nitrocellulose as 

matrix method (Figure 2.1.1).  Active α-MSH was released from nitrocellulose coatings 

in both delivery methods at different rates (Figure 2.1.2).  For a given initial peptide 

loading concentration, the matrix method had a slower release rate compared to the 

reservoir method.  As shown in Fig. 2 and 3, α-MSH was depleted at day 11 and 13 for 

Reservoir 100 and Reservoir 400 respectively. However, α-MSH was continuously 

released from both Matrix 100 and Matrix 400 coatings for over 18 days.  α-MSH release 

from both types of coatings follows a similar release profile - an initial burst followed by 

a slow, steady release. For each type of coating, the 100 μg initial loading demonstrated a 

slower release rate than 400 μg initial loading.  
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 Figure 2.1.2: Effect of coating types on the cumulative release profile.  
Data shown are the average ± S.E.M. (n = 3).   
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 Figure 2.1.1: Two nitrocellulose-based drug delivery methods were studied 
as shown in (A) reservoir delivery method and (B) matrix delivery method.  
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 Figure 2.2: Effect of initial peptide loading on mass released daily.  Data 
shown are the average ± S.E.M. (n = 3).  The mass released from Matrix 400 was 
statistically significant (P < 0.05) with respect to release from the other three coatings 
starting from day 4 (the initial burst release on days 1 and 2 is not shown).  
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Effects of Initial α-MSH Loading on Mass Release 

α-MSH released daily from nitrocellulose loaded with 100 μg or 400 μg peptide 

was calculated as mass released (Figure 2.2).  For the reservoir coating method, the mass 

released was not statistically significant different between 100 μg and 400 μg of peptide 

loading conditions.  However, for the matrix coatings, the mass released increased with 

the increase in initial loading, and the release from 100 μg and 400 μg loading was 

significantly different (P < 0.05) after day 3.  In fact, the mass release from Matrix 400 

was always significantly higher (P < 0.05) than all the other three groups starting from 

day 3.  In contrast, on days 1-2 there was significantly less (P < 0.05) mass release from 

the matrix coatings, compared to the reservoir coatings when the initial loadings are the 

same, indicating slower release rate from the matrix coatings.   
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 Figure 2.3: Effect of initial peptide loading concentration on percent of 
protein released daily.  Data shown are the average ± S.E.M. (n = 3). 

Effects of Initial α-MSH Loading on Percent Release 

α-MSH released daily from nitrocellulose loaded with 100 μg or 400 μg peptide 

was calculated as the percent of initially loaded peptide released (Figure 2.3).  For both 

the reservoir coatings and matrix coatings, the percent release from 400 μg initial loading 

was statistically higher than release from 100 μg on days 1 and 2.  In contrast, starting 

from day3, the percent release from 400 μg was statistically lower than release from 100 

μg till day 18.  This data suggests that the initial peptide loading affects the release rate; 

with the lower initial loading generating a slower release rate.  The percent release for 

Matrix 100 was always significantly higher (P < 0.05) than the other three groups after 

day 3. 
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 Figure 2.4: Effect of α-MSH released from nitrocellulose coatings on LPS-
induced production of nitrite production.  Data shown are the average ± S.E.M. (n 
= 3).  Microglia were treated with LPS, or LPS and α-MSH released on day7, 10, 13, 
16, 19 and 21 for 48 h, cells without LPS treatment served as control.  *P < 0.05 
compared with LPS-treated cultures. 

Bioactivity of Released α-MSH  

Primary microglial cells were treated with LPS and α-MSH released into 

microglial culture medium from nitrocellulose coatings (Matrix 400).  As shown in 

Figure 2.4, after 21 days of release, α-MSH is still bioactive, and the level of NO was 

reduced by 35 to 41% when incubated with the release medium collected every 24 h till 

day 21.  
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Physical Characterization by SEM and Profilometry 

The surface morphology of α-MSH-nitrocellulose (Figure 2.5A and B), α-MSH-

nitrocellulose coated with pure nitrocellulose (Figure 2.5C and D) before and after drug 

release, and plain Si wafer were investigated by SEM.  As shown in Figure 2.5, before α-

MSH was released, both α-MSH-nitrocellulose and nitrocellulose have porous structure, 

with α-MSH-nitrocellulose being less porous than pure nitrocellulose.  After α-MSH was 

released, the morphology of α-MSH-nitrocellulose coating was very similar to pure 

nitrocellulose coatings, and the surface roughness was greatly reduced for both types of 

coatings.   

The thickness of Matrix 400 coatings before and after α-MSH was released was 

characterized.  The coating thickness before drug release is 2236 ± 499 nm, and the 

thickness after drug depletion is 1166 ± 143 nm.  
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 Figure 2.5: Surface morphology of (A) 400 µg α-MSH-nitrocellulose (α-
MSH-NC) before drug release, and (B) after drug release; (C) 400 µg α-MSH-
nitrocellulose coated with nitrocellulose (α-MSH-NC+NC) before drug release and 
(D) after drug release; (E) Uncoated oxidized Si surface as analyzed by SEM.  Scale 
bar = 1 μm. 
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Electronic Properties 

To determine the effects of the coatings on the electrical property of the electrodes, 

the electrical impedance of the 16 recording sites on the Michigan single shank acute 

probes was measured.  Due to the instrument design for impedance measurement, only 14 

out of the 16 recording sites could be measured.  The magnitude of impedance was 

measured before and after coating at the biologically relevant frequency 1 kHz.  As 

shown in Figure 2.6A, the impedance magnitude of the recordings sites was significantly 

reduced after being coated with nitrocellulose-DEX coatings compared to uncoated 

recording sites at 1 kHz.  
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 Figure 2.6: Impedance measurement. (A) Average impedance magnitude for 
the 14 recording sites before and after coating at 1 kHz.  The magnitude of impedance 
for Matrix 400 was statistically significantly lower (*P < 0.05) compared to the 
impedance of uncoated electrode sites (n = 14).  (B) Impedance magnitude for the 14 
recording sites before coating ( ) and after coating ( ). 
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Discussion 

α-melanocyte stimulating hormone (α-MSH) inhibits inflammation by acting on 

peripheral inflammatory cells, glial inflammatory cells that activate descending anti-

inflammatory neural passways (Lipton et al., 1999; Lipton and Catania et al., 1997).  

Therefore it is a promising agent for the treatment of the inflammatory response resulting 

from the implantation wound and micromotion induced scarring by chronically implanted 

electrodes.  In this study, α-MSH was successfully incorporated in a nitrocellulose 

matrix, sustained release was achieved, and the bioactivity of α-MSH was retained after 

release.   

When a matrix type loading method was used, the initial peptide loading directly 

affected both the mass of peptide released daily and the release rate.  Higher initial 

loading caused a higher mass of peptide to be released every day.  However, for the 

reservoir delivery method, higher initial loadings only caused a significantly higher mass 

release in the first three days, and then there was no significant difference of the mass 

released between initial loading amount of 400 μg and 100 µg in the following days of 

release.  Increasing the initial loading caused a higher release rate for both coating 

methods. 

Initial bursts of release for Reservoir 400, Reservoir 100, and Matrix 400 were 

observed.  For the reservoir delivery method, the only barrier to slow drug release was 

the limiting nitrocellulose layers on top of the drug, and as shown in Figure 2.6C, and the 

nitrocellulose layers are porous, which allow for water penetration.  For the matrix 

delivery method, the drug was dispersed in the nitrocellulose matrix, making this layer 

less porous (Figure 2.6A).  Therefore it is not surprising that the reservoir samples have a 
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higher initial burst compared with matrix samples when the initial loadings are the same.  

Also, the drug/nitrocellulose ratio is higher for the reservoir method compared to the 

matrix method, and this could contribute to the higher initial burst for the reservoir 

samples.   

Given a coating method (reservoir and matrix method), higher initial drug loading 

caused higher initial release.  This is most likely due to the fact that the higher drug 

loading increased the drug/nitrocellulose ratio, potentially increasing the relative water 

permeability into the coating.  In addition, higher initial loading also provided a higher 

concentration gradient between coatings and the release medium, which increased the 

driving force for drug release.  

The data also demonstrates that α-MSH released from the nitrocellulose-based 

drug delivery system remains biologically active.  Any implant inserted into the brain 

causes tissue injury and an inflammatory response (Schwartz, 2004; Fournier et al., 

2003).  The initial response to CNS injury is mediated by microglia.  Microglia produce 

inflammatory molecules such as nitric oxide (NO), various cytokines, and prostaglandins, 

which induce neuronal cell death and trigger the activation of astrocytes, which finally 

result in the formation of an astroglial scar (Fawcett and Asher, 1999; Liberto et al., 

2004; , McGraw et al., 2001; Kim et al., 2003).   NO produced by expression of inducible 

nitric oxide synthase (iNOS) is an important mediator of inflammation and neuronal cell 

death (Kim et al., 2003; Golde et al., 2003).  α-MSH has been shown to inhibit pro-

inflammatory cytokines and NO production (Delgado et al., 1999; Galimberti et al., 

1999).  This study demonstrates that α-MSH can be successfully released for over 21 
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days, and remains bioactive and inhibits NO production by LPS-stimulated primary 

microglia (Figure 2.5). 

To investigate the effects of these micron-scale coatings on the electrical 

properties of the electrodes, impedance measurement was conducted on Michigan single-

shank neural recording probes. The Michigan probes are silicon-based electrodes with 

16-channel recording electrode arrays made from gold.  The impedance magnitude of the 

electrode sites before and after being coated with Matrix 400 was measured at the 

biologically relevant frequency of 1 kHz.  There was a significant reduction of impedance 

for the coated electrode sites, and consequently, improved the signal transport across the 

neural interface and helped to increase the detection sensitivity to neural activity (Cui et 

al., 2001; Cui et al., 2003; Robinson, 1968).  It is interesting that nitrocellulose coatings 

can reduce the impedance of the gold electrodes, because nitrocellulose is a non-

conductive material with the dielectric constant at 6.2-7.5.  This may be related to the 

porous structure of the nitrocellulose coatings, which provide a high interfacial area for 

charge transport, helping to lower the impedance. 

Several parameters of these nitrocellulose-based coatings can be altered to 

customize release profiles to the application of interest. The results have shown that a 

higher nitrocellulose-drug ratio produced a slower release profile.  As the nitrocellulose 

coatings have porous structure, there are two strategies to further slow drug release.  

First, the thickness of the nitrocellulose coatings could be increased to increase the 

diffusion barrier. Second, the parameters of nitrocellulose deposition such as 

concentration, solvent and rate of evaporation can be changed to vary the average pore 

size of nitrocellulose coatings to change the release rate.   



 39

Conclusions 

This work developed and characterized nitrocellulose-based coatings for Si-

substrates/electrodes. Anti-inflammatory neuropeptide α-MSH was incorporated in this 

system and slow, sustained release over 21 days was achieved. The α-MSH released on 

day 21 was still bioactive and successfully inhibited NO production.  Compared with 

conventional polymer-matrix delivery systems, this novel delivery system is simple, 

inexpensive, and does not affect the electrical property of the substrate.  In conclusion, 

these novel biocompatible coatings that release anti-inflammatory agents may help 

stabilize the electrode-brain interface to facilitate long-term recording and stimulation 

from Si-multi-electrode arrays in vivo. 
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CHAPTER III 

 

DEVELOPMENT AND CHARACTERIZATION OF COATINGS 

CAPABLE OF RELEASING DEXAMETHASONE FOR SILICON  

NEURAL PROBES 

 

Abstract  

The long-term stability of implanted micromachined neural probes is 

compromised due to the glial scar formation at the insertion site. In this study, we 

developed a novel nitrocellulose-based coating for the sustained local delivery of the anti-

inflammatory drug dexamethasone (DEX), a synthetic glucocorticoid that effectively 

reduces inflammation in the CNS.  In vitro DEX release was observed over 16 days, with 

a high initial burst in the first three days and relatively slow, stable release thereafter.   

The released DEX remained bioactive. Impedance spectroscopy showed that the 

dexamethasone-loaded nitrocellulose coatings significantly reduce the magnitude of 

electrode impedance at the biologically relevant frequency of 1 kHz through an increase 

of capacitance.  Coating stability test demonstrated that the coatings remained intact 

during the insertion procedure. 

In conclusion, a nitrocellulose-based coating capable of sustained release of anti-

inflammatory agent DEX was fabricated and characterized.  This coating has the 

potential to reduce the inflammatory responses to the implanted neural probes without 

adversely affecting the electrical performance of the electrodes. 
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Introduction 

As discussed in Chapter I, both α-melanocyte stimulating hormone (α-MSH) and 

dexamethasone (DEX) are powerful anti-inflammatory agents that are promising 

candidates for modulating the tissue reaction around the implanted neural electrodes. To 

maintain long-term recording stability, reactive gliosis and other inflammatory processes 

around the electrode need to be minimized.  The fundamental solution to this problem 

lies in better integration between the implanted electrode and the host nervous tissue.  

DEX has unique advantage over α-MSH in that it has been widely used clinically to treat 

various inflammatory responses. In CNS, DEX was shown to reduce tissue reaction 

around neural implants, and protect neurons by down-regulating nitric oxide (NO) 

production (Shain et al., 2003; Golde et al., 2003).   However, systemic administration of 

DEX may cause serious side effects including myopathy and diabetes (Kaal and Vecht, 

2004; Koehler, 1995; Twycross, 1994). Therefore local delivery of DEX is highly 

desired.  In this study, we propose to design a nitrocellulose-based coating for neural 

probes that is capable of sustained local release of DEX.  

We have demonstrated in Chapter II that nitrocellulose as a polymer matrix is 

capable of sustained release of neuropeptide α-MSH, which might be attributed to its 

high protein binding capacity and hydrophobic nature.  The goal of this study was to 

fabricate and evaluate nitrocellulose-based coatings capable of sustained release of DEX.  

Studies have shown that in some drug delivery systems the molecular weight of loaded 

drug affects the rate of drug release, with drugs of higher molecular weight having a 

slower release rate (Meilander et al., 2001). The molecular weight of α-MSH and DEX 

are 1665 and 392 Da respectively, therefore the capacity of nitrocellulose as the polymer 
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matrix for sustained release of DEX need to be investigated. α-MSH release study has 

demonstrated that Matrix 100 has the most steady release rate (see Chapter II and Zhong 

and Bellamkonda, 2005), therefore we fabricated nitrocellulose coatings loaded with 

DEX based on this method. The release profile of the nitrocellulose-DEX coatings were 

investigated in this study.  The anti-inflammatory activity of DEX released from this 

nitrocellulose-based delivery system was tested through its ability to inhibit 

lipopolysaccharide (LPS) – stimulated nitric oxide (NO) production in primary microglia 

culture. The surface morphology was characterized by scanning electron microscopy 

(SEM). The effect of the anti-inflammatory coatings on the electrical performance of the 

electrodes was evaluated by impedance measurement. 

 

Materials and Methods 

Fabrication of DEX Loaded Nitrocellulose Coatings 

Polished Si wafers of 1 cm2 with a 10,000 Å oxide layer (University Wafer, MA) 

were cleaned by ultrasonification in deionized water and ethanol, and stored in 70% 

ethanol for sterilization.  33.3 mg (5 cm2) nitrocellulose (Schleicher & Schuell 

BioScience) was dissolved in 12 ml methanol. 100 μg dexathasone (Sigma) powder was 

dissolved in 20 µl nitrocellulose (NC) solution and evaporated on 1 cm2 Si wafers. This 

DEX-nitrocellulose layer was subsequently coated with 3 additional layers of pure 

nitrocellulose by evaporation.   
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Bond pads 
(for connection to external word) 

A - Shank (insert into brain)  

Recording Electrode 
Sites 

C 

BD

Figure 3.1: A 16 channel, single shank Michigan recording probe.  The probe 
part in the box is magnified in to show the 16 recording electrode sites.   

Table 3.1: Size parameters of a 16 channel, single shank Michigan recording 
probe.   

Micromachined silicon neural recording probes (single shank, 16 recording sites, 

5mm) were provided by Center for Neural Communication Technology (CNCT) at the 

university of Michigan (Figure 3.1).  The size parameters of the probe are listed in Table 

3.1. The neural probes were mounted on polished Si wafers of 1 cm2 and coated with 

dexmathasone and nitrocellulose as described above.  

 

 

 

NUMBER 
OF SITES 

SHANK 
LENGTH 

(A) 

SHANK 
WIDTH 
(B → C) 

SITE 
SPACING  

(D) 

SITE  
AREA 

16 5 mm 33 – 200 μm 100 μm 177 μm2 
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In Vitro DEX Release Assay 

Nitrocellulose-DEX coated Si wafers were incubated at 37°C in PBS for 

quantification of DEX release.  Every 24 h, the PBS was removed and replaced with 

fresh PBS. The amount of DEX released every 24 h from triplicate samples (n = 3) was 

determined by the UV adsorption at 242 nm with a microplate reader (Bio-Tek 

instruments, VT).  The DEX containing PBS was then stored at 4°C until bioactivity 

assay was performed. 

In Vitro Diffusion Study 

The evaporation method used in this study only allows for coating one side of the 

Si neural probe. To test the diffusibility of DEX to the other side (uncoated side) of the 

neural probe, we developed a diffusion chamber using 0.6% agarose gel as an in vitro 

surrogate for the brain tissue. Agarose gel at a 0.6% concentration closely resembles in 

vivo brain tissue with respect to several critical physical characteristics (Chen et al., 

2004) and is commonly used to mimic the brain during drug trials. As shown in Figure 

3.2, Si wafer with one side coated with DEX was inserted into a 3 mm thick block of 

agarose gel. The width of the Si wafer is 2 mm, which is 10 times the width of a Si neural 

probe. Therefore the 3 mm thick agarose is corresponding to 300 μm brain tissue in vivo. 

DEX released into agarose on both sides of the Si wafer diffused into the two PBS 

chambers and quantified at 1, 2 and 15 h time points (n = 3).  
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Si wafer DEX 

Agarose gel 

PBS in 
chamber 2 

PBS in 
chamber 1 

 Figure 3.2: Schematic of an in vitro DEX diffusion chamber. A Si wafer 
with one side coated with nitrocellulose-DEX (indicated by yellow color) was inserted 
into the agarose gel. DEX released into the agarose gel on both sides of the Si wafer 
was measured in the two PBS chambers.

 

 

 

 

 

 

 

 

 

 

Isolation of Cortical Microglia  

All procedures involving animals were approved by the Institutional Animal Care 

and Use Committee (IACUC) of the Georgia Institute of Technology. Postnatal (day 0-1) 

Sprague-Dawley rats (Harlan) were anesthetized using isoflurane and rapidly decapitated. 

The cerebral cortices were isolated, separated from meninges, and minced in calcium- 

and magnesium-free Hanks’ balanced salt solution (HBSS) (Invitrogen, Carlsbad, CA). 

The tissue was dissociated in 0.25% trypsin and 1mM EDTA (Invitrogen) for 20 min at 

37°C.  The trypsinization was stopped by adding Dulbecco’s modified Eagle’s medium 

with Ham’s F12 (1:1) (DMEM/F12, Invitrogen) supplemented with 10% heat inactivated 

fetal bovine serum (FBS) (Invitrogen), and the tissue was triturated through a fire 

polished glass pipette.  The dissociated cells were centrifuged at 1000 rpm for 3 minutes, 

and the supernatant was removed. The cells were resuspended in DMEM/F12 medium 

supplemented with 10% FBS, 2 mM L-glutamine, and 1% penicillin/streptomycin, and 
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plated in 75 cm2 poly-L-lysine (0.1 mg/ml, Sigma) coated tissue culture flasks (Fisher) at 

a density of one brain per flask. Three days later, the culture medium was changed with 

DMEM/F12 medium supplemented with 20% FBS, 2 mM L-glutamine, and 1% 

penicillin/streptomycin to enrich for microglial cells. After 14 d, flasks were lightly 

shaken to release microglial cells into the media supernatant, and these floating microglia 

were subsequently used in bioactivity assay.  The purity of microglia culture was 98.2 ± 

1.3% as assessed by quantifying the number of Iba-1+ cells versus the total number of 

cells (n=6).  

Bioactivity Assay 

The bioactivity of released DEX was tested by its ability to inhibit LPS-stimulated 

NO production in microglia. Primary rat cortical microglial cells were suspended in  

DMEM/F12 medium supplemented with 10% FBS, 2 mM L-glutamine, and 1% 

penicillin/streptomycin, and seeded in 96-well culture plates at a density of 3 × 104 cells 

per well.  Twenty-four hours after seeding, LPS (1 ng/ml) and DEX released from day 1 

to day 5 was added to the cell culture medium at a final concentration of 0.5 µg/ml (n = 

3).  After 48 h, NO production was determined by measuring the accumulated levels of 

nitrite in the cell culture medium with Griess reagent (Promega).  Cells without LPS 

treatment served as a negative control (n = 3), cells treated with LPS (n = 3) and 0.5 

µg/ml DEX served as a positive control (n = 3). 

Surface Analysis by Scanning Electron Microscopy (SEM) and Profilometry 

The surface morphology of the nitrocellulose coatings were investigated by SEM.  

Si wafers were coated with DEX loaded nitrocellulose coatings and mounted onto metal 

stubs using double sided adhesive tape, vacuum-coated with a gold film, and analyzed 
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under a LEO 1530 thermally-assisted FEG scanning electron microscope.  Coating 

thickness before and after drug was released was measured using a DEKTAK3 

profilometer (Veeco Instruments Inc.).  The thickness was determined by measuring 3 

random areas on each sample for triplicate samples (n = 3).  

Coating Stability Test 

 A Sprague Dawley rat between 275-299 g was anesthetized with ketamine (1 

mL/kg), xylazine (0.17 mL/kg), and acepromazine (0.37 mL/kg). Then the rat was 

perfused transcardially with 0.1 M PBS (pH7.4).  The brain was removed carefully for 

the neural probe coating stability test. The purpose of PBS perfusion was to remove the 

blood so that the coating surface morphology was not affected by the blood components.  

To test the effect of insertion step on coating stability, nitrocellulose-DEX coated probes 

were inserted into the rat brain and immediately pulled out. The integrity of the coatings 

was subsequently examined with SEM, and compared with coated probes without 

insertion step.   

Impedance Spectroscopy 

Micromachined silicon probes (single shank, 16 recording sites) were provided by 

the University of Michigan Center for Neural Communication Technology.  The 

impedance magnitude of the recording sites was measured before and after Matrix 400 

coating (n = 8).  A custom built impedance spectroscopy device was used for this study 

(Ross  et al., 2004).  A Tektronix TDS 3014B oscilloscope and a HP function generator 

were also included.  The system was operated under computer control using a MATLAB 

program.  A solution of Hank’s balanced saline solution (HBSS) was used as the 

electrolyte.  An AC sinusoid with 5 mV of amplitude was used as the input signal with 
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the DC potential set to 0 V.  The value of the impedance was determined over the range 

of 10-105 Hz. 

Data Analysis 

Data are represented as the average value ± the standard error of the mean 

(S.E.M).  A general linear ANOVA model was used to compare mean values of the 

different conditions. Pairwise comparisons were conducted using Tukey 95% 

simultaneous confidence intervals, and P < 0.05 was used to indicate statistical 

significance. 

 

Results 

In Vitro DEX Release  

  DEX released from nitrocellulose coatings was quantified via UV-absorbance at 

242 nm and plotted as the cumulative percent of DEX released.  The cumulative release 

profile showed an initial burst in the first three days followed by a relatively slow, steady 

release over 16 days (Figure 3.3.1). The mass release profile showed that the amount of 

DEX released daily decreased over time from 36 µg on day 1 to 0.2 µg on day 16 (Figure 

3.3.2). The suggested normal dosage for DEX in cell culture is 1 µM (0.5 µg/ml).  

However, studies have shown that the inhibitory effect of DEX on astrocyte proliferation 

is similar over the range from 10 nM to 10 μM (Crossin et al., 1997), and DEX at 20 nM 

effectively inhibited microglia proliferation (Tanaka et al., 1997). Therefore 0.2 µg of 

DEX should still be therapeutically effective. 
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 Figure 3.3.1: Cumulative release profile of DEX from nitrocellulose 
coatings. The cumulative release of DEX was plotted as the percent of initially loaded 
DEX.  Data shown are the average ± S.E.M. (n = 3). 
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Figure 3.3.2: Mass of DEX released daily. (A) DEX release from day 1 to 
day 7. (B) DEX release from day 6 to day16.  Data shown are the average ± S.E.M. (n 
= 3). 
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In Vitro Diffusion Study 

 The quantity of DEX released from the coated side of the Si wafers into the 

agarose gel on both sides of the Si wafers was assessed by measuring the quantity of 

DEX in the two PBS chambers at 1, 2, and 15 h.  As shown in Figure 3.4, although only  

one side of the Si wafer was coated, there was no significant difference between the 

quantity of DEX released into the PBS chamber on both sides of the Si wafers (n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.4: Quantity of DEX released into the PBS chambers on both sides 
of the Si wafer.  There was no significant difference between the quantities of DEX 
released into both chambers.  Data shown are the average ± S.E.M. (n = 3). 
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 Figure 3.5: Effect of DEX released from nitrocellulose coatings on LPS-
induced NO production. Microglia were treated with LPS, LPS and 0.5 μg/ml fresh 
DEX, or LPS and DEX released on day1, 2, 3, 4, and 5 for 48 h, cells without LPS 
treatment served as negative control.  *P < 0.05 compared with control culture (con). 
Data shown are the average ± S.E.M. (n = 3). 

Bioactivity of Released DEX 

Primary microglia culture was activated by LPS (1 ng/ml), DEX released on day 

1,2,3,4 and 5 were added to the culture medium at a final concentration of 0.5 μg/ml (1 

μM).  As shown in Figure 3.5, LPS treatment significantly increased NO production in 

microglia, and NO level was reduced to normal level when incubated with DEX released 

every 24 h, indicating that the released DEX is still biologically active.  There was no 

significant difference between the activity of released DEX and fresh DEX. 

 

 

  



 53

Coating Stability Test  

Since neural probes are eventually going to be inserted into brain tissue, the probe 

coatings are required to be able to resist the shear force during insertion. Neural probes 

coated with nitrocellulose-DEX coatings were inserted into a PBS perfused rat brain and 

immediately pulled out. The surface morphology of the coatings before (Figure 3.6A) and 

after insertion (Figure 3.6B) were characterized by SEM.  The coatings remained intact 

after probe insertion. The surface morphology of nitrocellulose-DEX coatings deposited 

on Si wafer (Figure 3.6C) was similar to those on Si neural probes (Figure 3.6A), 

indicating that Si wafers can be used as an alternative in coating characterizations when 

larger sample area is required.  Compared with the relatively smooth Si surface (Figure 

3.6D), the coatings have porous structure.  
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 Figure 3.6: Surface morphology of (A) Si neural probe coated with 100 µg 
DEX-nitrocellulose before insertion, and (B) after insertion; (C) Si wafer coated with 
100 µg DEX-nitrocellulose before insertion; (D) Uncoated oxidized Si surface as 
analyzed by SEM.  Scale bar = 1 μm. 
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Coating Thickness 

The thickness of Matrix 400 coatings before and after α-MSH was released was 

characterized.  The coating thickness before drug release is 1.715 ± 0.158 µm, and the 

thickness after drug depletion is 1.434 ± 0.085 µm. 

Impedance Measurement  

To determine the effects of the coatings on the electrical properties of the electrodes, 

the electrical impedance of the 8 recording sites on the Michigan single shank acute 

probes was measured before and after coating at the biologically relevant frequency 1 

kHz.  There were 16 recording sites on the neural probe, every other recording site was 

selected for impedance measurement. As shown in Figure 3.7, the impedance magnitude 

of the recordings sites was significantly reduced after being coated with nitrocellulose-

DEX at 1 kHz. 
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 Figure 3.7: (A) Average impedance magnitude for the 8 recording sites 
before and after coating at 1 kHZ.  The magnitude of impedance for coated 
electrode sites was statistically significantly lower (*P < 0.05) compared to the 
impedance of uncoated electrode sites (n = 8).  (B) Impedance magnitude for the 8 
recording sites before coating ( ) and after coating ( ). 
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Impedance Spectroscopy 

Impedance spectroscopy measures electrical impedance over a wide range of 

frequencies (10-105 Hz).  As shown in Figure 3.8, for both uncoated and coated electrode 

sites, the electrical impedance magnitude decreased with the increase of frequency, 

indicating that the impedance of the electrode sites is mostly capacitive. Nitrocellulose-

DEX coatings reduced the impedance magnitude of the recording sites at relatively low 

frequency range (< 4 kHz), and increased the impedance magnitude at high frequency 

range. Impedance spectroscopy further proved that at the biologically relevant frequency 

1 kHz, the impedance magnitude for coated electrode sites were reduced.  
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Figure 3.8: Impedance magnitude as a function of frequency for recording 
sites.  Impedance spectroscopy proved the impedance drop at 1 kHz for coated 
electrode sites. 
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Discussion 

Dexamethasone is known as a potent anti-inflammatory drug, and it has 

previously been shown to be capable of reducing inflammatory responses in the CNS 

(Holmin and Mathiesen, 1996; Spataro et al., 2005; Hermens and Verhaagen, 1998).    

DEX inhibits proliferation, iNOS synthesis and cytokine expression of microglia (Golde 

et al., 2003; Chao et al., 1992; Tanaka et al., 1997). DEX also directly inhibits astrocyte 

proliferation (Crossin et al., 1997). Administration of DEX to activated microglia-neuron 

cocultures protected neurons by down-regulating nitric oxide (NO) production (Golde et 

al., 2003).  Therefore the development of neural probe coatings capable of sustained 

release of DEX holds promise for the long-term success of chronic neural probes.   

In this study, we fabricated nitrocellulose coatings loaded with DEX.  In vitro 

release study revealed sustained release over 16 days. It is not known how long the drug 

release is needed to obtain long-term stable neural recording. Ideally, continuous local 

drug release is expected to last over the time course of implantation, which may be many 

years. This is technically difficult to achieve. A number of studies on drug-eluting stents 

demonstrated that release of anti-inflammatory agents in the early stage of implantation 

inhibits the long-term tissue reaction (Huang et al., 2002; De Scheerder et al., 1996).  

Following brain injury, the first cells to respond and arrive are macrophages from the 

bloodstream and microglia migrating from the surrounding tissue (Fawcett and Asher, 

1999, Kreutzberg, 1996). The activated microglia secrete proinflammatory cytokines 

such as IL-1β, TNFα, and IL-6, which subsequently activate adjacent microglia or other 

cell types, including astrocytes, via autocrine and paracrine passways, resulting in 

propagation and enhancement of the inflammatory response (Kyrkanides et al., 2001; 
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Hays, 1999; Bruccoleri et al., 1998; Takeuchi et al., 2001). Consequently, astrocytes 

express additional inflammatory mediators that further contribute to the inflammatory 

response and eventually lead to glial scar formation (Kyrkanides et al., 2001; Merrill and 

Benveniste, 1996; John et al., 2005; Hanisch, 2002).  Both activated microglia and 

astrocytes are capable of releasing neurotoxic molecules such as radicals and NO (Lee et 

al., 1995; Kreutzberg, 1996). Therefore administration of anti-inflammatory agents in 

early stage of brain injury might be able to inhibit the expression of proinflammatory 

molecules that leads to progression of astroglosis, and reduce the production of 

neurotoxic molecules.  

The evaporation method used in this study only allows for coating one side of the 

Si neural probe. A diffusion study was performed to assess the ability of DEX to diffuse 

to the uncoated side of the neural probes. In this in vitro diffusion model, Si wafers and 

0.6% agarose gel were used as the substitutes for Si neural probes and brain tissue 

respectively. The results demonstrated that 1 h after release, the concentration of DEX in 

the PBS chamber on the uncoated side of the Si wafers was not significantly different 

from that in on the coated side, indicating that DEX can diffuse freely to the uncoated 

side of the Si wafers/neural probes. This is not surprising considering the small molecular 

weight of DEX. However, although 0.6% agarose gel closely resembles in vivo brain 

tissue with respect to several critical physical characteristics (Chen et al., 2004) and is 

commonly used to mimic the brain during drug trials, we have to be aware that there are 

no cell components in the agarose gel, therefore the drug diffusion rate in agarose gel 

may not really reflect that in vivo. 
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The bioactivity of released DEX was demonstrated by its ability to inhibit LPS-

stimulated NO production in microglia. NO levels in cells treated with released DEX 

were not significantly different from that in cells treated with fresh DEX, indicating that 

the activity of released DEX was not reduced compared with fresh DEX.   

To investigate the effects of these micron-scale coatings on the electrical 

propertiy of the electrodes, impedance measurement was conducted on Michigan single-

shank neural recording probes. The Michigan probes are silicon-based electrodes with 

16-channel recording electrode arrays made from gold.  The impedance magnitude of the 

electrode sites before and after coating was measured at the biologically relevant 

frequency of 1 kHz.  There was a significant reduction of impedance for the coated 

electrode sites, and consequently, improved the signal transport across the neural 

interface and helped to increase the detection sensitivity to neural activity (Cui et al., 

2001; Cui et al., 2003; Robinson, 1968). Impedance spectroscopy showed decrease of 

impedance at relatively low frequency (< 4 kHz) range, and increase of impedance at 

higher frequency, suggesting that both resistance and capacitance of the coated electrodes 

were increased. At relatively low frequency, the increase of capacitor was the decisive 

factor, causing the decrease of impedance; while at higher frequency, the increase of 

resistance became the decisive factor, causing the increase of impedance. The increase of 

capacitance was related to the high dielectric constant of nitrocellulose.  

 

Conclusions 

In this study, a nitrocellulose-DEX coating for Si neural probe was fabricated. 

Anti-inflammatory agent dexamethasone can be released for over 16 days at 37°C. The 
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released dexamethasone was still bioactive.  The nitrocellulose-DEX coated electrodes 

showed significant reduction of impedance compared with uncoated electrodes, 

indicating that the coating did not compromise the electrical performance of the 

electrodes and could be used for neuroprosthetic applications.  



 63

CHAPTER IV 

 

IN VITRO EVALUATION OF ANTI-INFLAMMATORY EFFECTS 

AND CYTOTOXICITY OF Α-MELANOCYTE STIMULATING 

HORMONE AND DEXAMETHASONE ON CORTICAL CELLS 

 

Abstract  

Dexamethasone (DEX) and α-melanocyte stimulating hormone (α-MSH) are 

potent anti-inflammatory agents that are promising to be used for controlling the tissue 

reaction to the implanted neural probes. The first objective of this study was to compare 

the anti-inflammatory potency of these two drugs in vitro based on their effects on glial 

cells including microglia and astrocytes. 1 μM DEX and α-MSH inhibited LPS-

stimulated NO production in microglia by 91% and 30% respectively. DEX treatment 

significantly inhibited microglial and astrocyte proliferation, while α-MSH showed no 

effects on glial cell proliferation. These results suggest that DEX is a more potent anti-

inflammatory agent than α-MSH.  

While the release rate of DEX from polymer coatings can be measured in vitro, 

the precise dosage in vivo is hard to estimate.  Therefore the second objective of this 

study was to further evaluate the anti-inflammatory effects and neurotoxicity of DEX at 

various dosages on cortical cells including microglia, astrocytes and neurons. 1, 10 and 

100 μM DEX inhibited LPS-stimulated NO production in microglia by 91%, 98% and 

90% respectively.  In addition, DEX treatment at all three concentrations significantly 

reduced LPS-stimulated microglia proliferation. Quantitative real-time PCR analysis 
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demonstrated that 1 and 100 μM DEX significantly inhibited the expression of 

proinflammatory cytokines TNFα and IL-1β by microglia.  When astrocytes were treated 

with 1, 10 or 100 μM DEX, the cell number was significantly reduced compared with 

control group. 1 and 10 μM DEX treatment significantly inhibited TGFβ1 and neurocan 

expression. When rat cortical neurons were incubated with 1, 10 or 100 μM DEX, DEX 

at all three concentrations did not significantly alter cell viability compared with control 

group, indicating that DEX was not neurotoxic. In all the experiments conducted in this 

study, the performance of DEX at different concentrations was not significantly different 

from one another.  Collectively, these results suggest that the anti-inflammatory effects 

and safety of DEX are not affected even at 100 times more than its normal effective 

dosage.   

 

Introduction 

Long-term performance of chronically implanted neural microelectrodes is 

compromised by glial scar formation around the Si-microelectrodes and subsequent 

fibrotic encapsulation of the electrode.  Glial scar is a consequence of inflammatory 

reaction to the implant associated injury to the CNS.  One strategy to enhance the 

performance of implanted electrodes is to develop biocompatible electrode coatings that 

locally release anti-inflammatory drugs.  Dexamethasone (DEX) and α-melanocyte 

stimulating hormone (α-MSH) are promising drug candidates to be incorporated into the 

electrode coatings for controlling the reactive tissue response to the implanted neural 

electrodes (see Chapter I). The first objective of this study was to evaluate the anti-

inflammatory potency of these two drugs in vitro based on their effects on glial cells 
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including microglia and astrocytes. The initial response to CNS injury is mediated by 

microglia (Fawcett and Asher, 1999, Kreutzberg, 1996). The activated microglia 

proliferate and migrate to the injury site, release neurotoxic molecules such as free 

radicals and nitric oxide (NO).  NO produced by the expression of inducible nitric oxide 

synthase (iNOS) is an important mediator of inflammation and neuronal cell death (Golde 

et al., 2003).  Reactive microglia also produce proinflammatory cytokines including 

interleukin-1 (IL1), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) (Kyrkanides 

et al., 2001; Hays, 1999; Fawcett and Asher, 1999; Bruccoleri et al., 1998; Takeuchi et 

al., 2001), which subsequently activate the astrocytes (Merrill and Benveniste, 1996; 

John et al., 2005).  The reactive astrocytes undergo hypertrophy, proliferation, and 

upregulate trophic factors, cytokines, as well as extracellular matrix including chondroitin 

sulfate proteoglycans (CSPGs), important inhibitory molecules in glial scar (Fawcett and 

Asher, 1999; Polikov et al., 2005). The final structure of the glial scar is predominately 

astrocytic (Fawcett and Asher, 1999). The capacity of DEX and α-MSH to inhibit NO 

production in lipopolysaccharide (LPS)-stimulated microglia, and glial cell (microglia 

and astrocytes) proliferation was evaluated.  The experiment results demonstrated that 

NO level in DEX treated microglial culture was significantly lower than α-MSH treated 

culture. DEX effectively inhibited microglia and astrocyte proliferation, while α-MSH 

showed no effect on microglia and astrocyte proliferation. These results suggested that 

DEX is a more powerful anti-inflammatory agent than α-MSH.  Therefore DEX was 

selected as the anti-inflammatory agent for the following studies in this project.  

While the release rate of DEX from polymer coatings can be measured in vitro, 

the precise dosage in vivo is hard to estimate.  The initial drug release is usually higher 
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than normal target dosage due to the initial burst effect. Therefore second objective of 

this study was to further evaluate the anti-inflammatory effects and neurotoxicity of DEX 

at dosages higher than normal effective dosage on cortical cells including microglia, 

astrocytes and neurons. The anti-inflammatory effects of DEX on glial cells were widely 

studied. However, most studies use dosages equal or less than 1 μM. It has been 

previously reported that DEX effectively reduces the inflammatory tissue reaction around 

neural implants at a local concentration of 0.2 - 0.7 μM in vivo (Shain et al., 2003).  In 

vitro studies have shown that DEX at 1 μM causes a significant decrease level of TGF-β1 

mRNA in glial cells (Batuman et al., 1995), pronouncedly inhibits NO production and 

provides effective neuroprotection (Golde et al., 2003); DEX at 20 nM inhibits 

proliferation of microglial cells (Tanaka et al., 1997); DEX at 0.01 – 1 μM inhibits 

astrocyte proliferation.  In this study, we explored the effects of DEX on cortical cells at 

1, 10 and 100 μM.  NO production, cell proliferation and expression of proinflammatory 

cytokines (TNFα and IL-1β) in microglial culture in the presence of DEX at different 

concentrations were examined. Astrocyte is a major cell component in glial scar.  TGFβ1 

is prominently detected in astrocytes following lesion in vivo (John et al., 2003; Unsicker 

and Strelau, 2000).  It has been shown to be essential for wound healing and glial scar 

formation by enhancing the production of extracellular matrix components (Logan et al., 

1994; John et al., 2003; Moon and Fawcett, 2001).  CSPGs are important inhibitory 

extracellular matrix molecules in glial scar.  Neurocan and phosphacan are two specific 

inhibitory CSPG molecules that are expressed by reactive astrocytes in the chronic glial 

scar (McKeon et al., 1999). Neurocan is expressed in vitro mostly by astrocytes, 

however, phosphacan is not made by astrocyte in vitro (Fawcett and Asher, 1999; 
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McKeon et al., 1999).  Thus the effects of 1, 10 and 100 μM DEX on the expression of 

TGFβ1 and neurocan by astrocytes in primary cell mature were investigated. The ability 

of DEX at various dosages to inhibit astrocyte proliferation was examined as wells.  To 

evaluate the neurotoxicity of variations in DEX dosing, rat cortical neurons were 

incubated with 1, 10 and 100 μM DEX and the cell viability was measured with a cell 

counting kit.  Our results demonstrate that high dosages of DEX exhibited similar anti-

inflammatory effects as DEX at normal dosage and didn’t show neurotoxicity.  

.   

Materials and Methods 

 

Isolation of Primary Cortical Microglia  

All procedures involving animals were approved by the Institutional Animal Care 

and Use Committee (IACUC) of the Georgia Institute of Technology. Postnatal (day 0-1) 

Sprague-Dawley rats (Harlan) were anesthetized using isoflurane and rapidly decapitated. 

The cerebral cortices were isolated, separated from meninges, and minced in calcium- 

and magnesium-free Hanks’ balanced salt solution (HBSS) (Invitrogen, Carlsbad, CA). 

The tissue was dissociated in 0.25% trypsin and 1mM EDTA (Invitrogen) for 20 min at 

37°C.  The trypsinization was stopped by adding Dulbecco’s modified Eagle’s medium 

with Ham’s F12 (1:1) (DMEM/F12, Invitrogen) supplemented with 10% heat inactivated 

fetal bovine serum (FBS) (Invitrogen), and the tissue was triturated through a fire 

polished glass pipette.  The dissociated cells were centrifuged at 1000 rpm for 3 minutes, 

and the supernatant was removed. The cells were resuspended in DMEM/F12 medium 

supplemented with 10% FBS, 2 mM L-glutamine, and 1% penicillin/streptomycin, and 
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plated in 75 cm2 poly-L-lysine (0.1 mg/ml, Sigma) coated tissue culture flasks (Fisher) at 

a density of one brain per flask. Three days later, the culture medium was changed with 

DMEM/F12 medium supplemented with 20% FBS, 2 mM L-glutamine, and 1% 

penicillin/streptomycin to enrich for microglial cells. After 14 d, flasks were lightly 

shaken to release microglial cells into the media supernatant, and these floating microglia 

were subsequently used in the following study.  The purity of microglia culture was 98 ± 

1.3% as assessed by quantifying the number of Iba-1+ cells versus the total number of 

cells (n = 6).  

Isolation of Primary Cortical Astrocytes 

Mixed cortical cells dissociated from postnatal (day 0-1) Sprague-Dawley rat 

cerebral hemispheres were obtained as described above.  The cells were plated in tissue 

culture flasks (Fisher) at a density of one brain per flask in culture medium consisting of 

DMEM-F12 medium supplemented with 2 mM L-glutamine, 1% penicillin/streptomycin, 

and 10% heat inactivated FBS. Cultures were purified for astrocytes by vigorously 

shaking the flasks to remove nonadherent cells. Astrocytes were used between passages 

4-12 to permit phenotypic maturation. 

The purity of the astrocytic culture was assessed though glial fibrillary acidic 

protein (GFAP) immunostaining in conjunction with cell nuclei staining. Briefly, cells 

were fixed in HistochoiceTMMB (Electron Microscopy Sciences, PA) for 20 min, rinsed 

with PBS and blocked with 4% normal goat serum for 1h at room temperature. Primary 

antibody GFAP (Dako, 1:1000) was added at 4°C overnight. After rinsing, goat anti-

mouse IgG1 Alexa 488 (Molecular Probes) was added for 1 h at room temperature. Cell 

nuclei were counterstained with 10 4'-6-Diamidino-2-phenylindole (DAPI). The purity of 
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astrocyte culture was 95.2 ± 2.6% as assessed by quantifying the number of Iba-1+ cells 

versus the total number of cells (n = 6).  

Isolation of Primary Cortical Neurons 

A time-pregnant Spague-Dawley rat (embryonic day 17) was anesthetized using 

halothane (Halocarbon, NJ) and decapitated. The uterus was removed and placed in 

HBSS solution. Each fetus was removed from the amniotic sac and quickly decapitated. 

The brains was removed and placed in HBSS. The cerebral cortices were isolated, 

separated from meninges, and minced in calcium- and magnesium-free HBSS.  The tissue 

was dissociated in 0.25% trypsin and 1mM EDTA for 10 min at 37°C. Then the 

trypsin/EDTA was removed and 0.15 mg/mL DNase in HBSS was added. The tissue was 

triturated through a fire polished glass pipette.  The dissociated cells were centrifuged at 

1000 rpm for 3 minutes, and the supernatant was removed. The cells were resuspended in 

Neurobasal medium (Invitrogen) supplemented with 2% B27 Supplement (Invitrogen), 

0.5 mM L-glutamine, and 1% penicillin/streptomycin. 

The purity of the neuronal culture was assessed though NeuN immunostaining in 

conjunction with cell nuclei staining. Briefly, cells were fixed in HistochoiceTMMB 

(Electron Microscopy Sciences, PA) for 20 min, rinsed with PBS and blocked with 4% 

normal goat serum for 1h at room temperature. Primary antibody NeuN (Chemicon, 

1:500) was added at 4°C overnight. After rinsing, goat anti-mouse IgG1 Alexa 488 

(Molecular Probes) was added for 1 h at room temperature. Cell nuclei were 

counterstained with 10 4'-6-Diamidino-2-phenylindole (DAPI). The purity of astrocyte 

culture was 97.1 ± 0.6% as assessed by quantifying the number of Iba-1+ cells versus the 

total number of cells (n = 6).  
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DEX treatment 

 Primary rat cortical microglia were suspended in DMEM/F12 medium 

supplemented with 10% FBS, 2 mM L-glutamine, and 1% penicillin/streptomycin. For 

NO production (n = 3) and cell proliferation assays (n = 3), the cells were seeded in poly-

L-lysine coated 96-well plates. For real-time PCR quantification of cytokine expression 

(n = 3), the cells were seeded in poly-L-lysine coated 6-well plates. The seeding density 

was 150,000 cells/cm2.  Twenty-four hours after seeding, DEX was added to the culture 

medium at a final concentration of 1, 10, or 100 μM for 48 h.  

 Primary rat cortical astrocytes were suspended in DMEM/F12 medium 

supplemented with 10% FBS, 2 mM L-glutamine, and 1% penicillin/streptomycin. For 

cell proliferation assay (n = 6), the cells were seeded in 24-well plates. For real-time PCR 

quantification of gene expression (n = 3), the cells were seeded in 6-well plates. After the 

cells approached confluency, they were treated with DEX at a final concentration of 1, 

10, or 100 μM for 48 h.  

Primary rat cortical neurons were seeded in poly-L-lysine coated 24-well plates at 

a density of 100,000 cells/cm2 in Neurobasal medium supplemented with 2% B27 

Supplement, 0.5 mM L-glutamine, and 1% penicillin/streptomycin. Twenty-four hours 

after seeding, the culture medium was changed with Neurobasal medium supplemented 

with 2% B27 Supplement Minus AO, 0.5 mM L-glutamine, and 1% 

penicillin/streptomycin. After 7 days in culture, DEX was added to the culture medium at 

a final concentration of 1, 10, or 100 μM for 48 h (n = 6). 

Nitrite Assay 
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NO production in the microglial cultures was determined by measuring the 

accumulated levels of nitrite in the supernatant with Griess reagent (Promega).  Briefly, 

50 μl cell culture supernatant was incubated with 50 μl sulphanilamide and 50 μl N-1-

napthylethylenediamine dihydrochloride (NED) for 10 min each at room temperature.  

The optical density was measured at 540 nm using a microplate reader (Bio-Tek 

instruments, VT).   

Cell Viability  

 Cell viability was assessed using cell counting kit-8 (CCK-8, Dojindo).  This 

colorimetric assay employs 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-

disulfophenyl)-2H-tetrazolium (WST-8), which is reduced by dehydrogenases in 

metabolically active cells and the amount of the resulting colored formazan product is 

directly proportional to the number of living cells. Thus the number of viable cells can be 

estimated by spectrometry. 50 µl of the CCK-8 solution was added to the culture medium 

(500 µl) of each cell containing well.  Culture plates were incubated in the humidified 

incubator at 37°C and in 5% CO2 for 1 h.  The absorbance was measured at 450 nm using 

a microplate reader.   

Cell Survival 

Cell survival was assessed using live/dead assay. Cells cultures were incubated 

with 2 μM calcein AM (Sigma) and 4 μM ethidium homodimer-1 (EthD-1) in 0.1M 

Dulbecco’s phosphate-buffered saline (DPBS, Invitrogen) at 37°C for 30 min, followed 

by rinsing with DPBS three times. Cell survival was defined as the percentage of viable 

cells.  Live cells were stained green by intracellularly converting Calcein AM to green 

fluorescent calcein with esterase activity. Dead cells were stained red by EthD-1, a red 
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DNA stain only permeable to cells with compromised cell membranes.  The number of 

live and dead cells was counted to calculate the percentage of viable cells. 

Real-Time Reverse Transcription Polymerase Chain Reaction (Real-Time RT-PCR) 

 Levels of TNFα, IL-1β, TGFβ1, and neurocan mRNA expression were analyzed 

via real-time RT-PCR using the iCycler system (Bio-Rad, Hercules, CA). Total cellular 

RNA was isolated from microglia or astrocytes using Trizol reagent (Invitrogen), 

according to the manufacturer’s instructions. RNA was quantified by spectrophotometer 

at 206 nm, and 1 μg of total cellular RNA was used for first strand cDNA synthesis by 

iScrpit cDNA Synthesis Kit according to the manufacturer’s protocol. Real-time PCR 

was performed on an iCycler thermal cycler (Bio-Rad) equipped with MyiQ Real Time 

PCR detection system.  Each PCR reaction contained 1 μl of cDNA, 0.2 μM primers, and 

12.5 μl iQTM SYBER Green Supermix reagent (Bio-Rad). Thermal cycling was initiated 

with a first denaturation step of 3 min at 95°C, followed by 35 cycles of 95°C for 30 sec 

(denaturing), 55°C  or 57.9°C  for 30 sec (annealing), and 72°C for 1 min (extension). 

The amplification fluorescence was read at the end of each extension period. 

Amplification specificity was checked using melting curve analysis. Standard curves for 

all primer amplifications were generated by plotting average cycle threshold (Ct) values 

against the logarithm starting quantity of target template molecules (series dilution of 

cDNA template), followed by a sum of least squares regression analysis. The gene 

expression in each sample was calculated as 2^(35-Ct). All mRNA expression levels 

were normalized to the content of house-keeping gene glyseraldehyde-3-phosphate 

dehydrogenase (GAPDH) as an internal standard for each treatment condition. The 

sequences of the primers used in this study are listed in Table 4.1. Primers for TNFα, 
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Table 4.1: Primer sequence for real-time PCR. 

TGFβ1, and neurocan were designed via the Beacon Designer 2.1 software (Bio-Rad), 

primers for IL-1β (Wisse et al, 2004) and GAPDH (Raghavendra et al., 2003) were 

previously described. 

 

GENE FORWARD PRIMER REVERSE PRIMER 

TNFα TGCCTCAGCCTCTTCTCATT CGATCACCCCGAAGTTCAGT 

IL-1β TACAAGGAGAGACAAGCAACG
ACA 

GATCCACACTCTCCAGCTGCA 

TGFβ1 AGTGGCTGAACCAAGGAGAC CATTATCTTTGCTGTCACAAGA
GC 

neurocan TGTCCCCAATCCCACTCTCC CTCGGGGTCTTCTGCTCCAA 

GAPDH CCCCCAATGTATCCGTTGTG TAGCCCAGGATGCCCTTTAGT 

 

Data Analysis 

Data are represented as the average value ± the standard error of the mean 

(S.E.M).  A general linear ANOVA model was used to compare mean values of the 

different conditions. Pairwise comparisons were conducted using Tukey 95% 

simultaneous confidence intervals, and P < 0.05 was used to indicate statistical 

significance. 
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 Figure 4.1.1: Effect of DEX and α-MSH on LPS-induced NO production 
in microglial culture.  Microglia were treated with LPS, LPS + 1 μM DEX, or LPS + 
1 μM α-MSH for 48 h, cells without LPS treatment served as negative control (con).  
*P < 0.05 compared with LPS-treated cultures (n = 3). 
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Results 

 

Effects of DEX and α-MSH on Microglia 

  Primary microglial culture was stimulated by LPS (1 ng/ml), DEX and α-MSH 

were added to the culture medium at a final concentration of 1 μM.  As shown in Figure 

4.1.1, LPS significantly increased NO production in microglia, 1μM DEX or α-MSH 

inhibited NO production by 91% and 30% respectively.  The NO level in LPS + DEX 

treated microglial culture was not significantly different from control culture, however, 

the NO level in LPS + α-MSH treated culture was still significantly higher than control 

culture and DEX treated culture.  This result suggested that DEX had a more potent 

inhibitory effect on NO production in LPS stimulated microglia.  
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 Figure 4.1.2: Effect of DEX and α-MSH on LPS-induced microglia 
proliferation.  Microglia were treated with LPS, LPS + 1 μM DEX, or LPS + 1 μM α-
MSH for 48 h, cells without LPS treatment served as negative control (con).  *P < 
0.05 compared with LPS-treated cultures (n = 3).
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Microglia proliferation was assessed using cell counting kit-8. LPS treatment 

significantly stimulated microglia proliferation. 1μM DEX inhibited LPS-stimulated 

microglia proliferation to control level, while 1μM α-MSH had no effect on microglia 

proliferation.   
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Effects of DEX and α-MSH on Astrocyte Proliferation 

Astrocyte proliferation was assessed using cell counting kit-8.  DEX and α-MSH 

were added to the culture medium at a final concentration of 1 μM for 48 h.  DEX 

treatment significantly reduced the number of living cells, while α-MSH didn’t show any 

effects on the number of living cells compared to control culture (Figure 4.2). There were 

two possible causes for the decrease of viable cells in DEX treated cultures. One was that 

DEX inhibited astrocyte proliferation, the other was that DEX killed astrocytes. To 

elucidate the cause of decrease of viable cells in DEX treated culture, live/dead cell assay 

was performed to measure cell survival.  The percentages of viable cells for control 

culture and DEX treated culture were 99.15% and 98.95% respectively, indicating that 

DEX was not toxic to astrocytes, and the decrease of viable cell number in DEX treated 

culture was caused by inhibition of cell proliferation. 

  

  

   

 

 

 

 

 

 

 

 

 Figure 4.2: Effect of DEX and α-MSH on astrocyte viability.  Astrocytes 
were treated with 1 μM DEX or α-MSH for 48 h, cells without any treatment served as 
control (con).   *P < 0.05 compared with control cultures (n = 6). 
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Response of Microglia to DEX at Various Dosages 

To evaluate the anti-inflammatory effects of high dosages of DEX, DEX was 

added to LPS-stimulated microglial culture at final concentrations of 1, 10 or 100 μM 

DEX. As shown in Figure 4.3.1, DEX at all three concentrations significantly inhibited 

LPS-stimulated NO production in microglial culture. NO levels in 1, 10 or 100 μM DEX 

treated microglial cultures were not significantly different from control culture (without 

LPS treatment). Figure 4.3.2 showed that 1, 10 or 100 μM DEX significantly inhibited 

LPS-induced microglia proliferation. The cell numbers in DEX treated cultures were not 

significantly different from control culture.  
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 Figure 4.3.1: Effect of DEX dosages on LPS-induced NO production in 
microglial culture.  Microglia were treated with 1, 10 or 100 μM DEX for 48 h, cells 
without LPS treatment served as negative control (con).  *P < 0.05 compared with 
control culture (n = 3). 
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 Figure 4.3.2: Effect of DEX dosages on LPS-induced microglia 
proliferation.  Microglia were treated with 1, 10 or 100 μM DEX for 48 h, cells 
without LPS treatment served as negative control (con).  *P < 0.05 compared with 
control culture (n = 3). 
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 Resting microglial cells show a highly ramified structure in the normal adult 

brain.  In response to brain injury, microglia are activated and develop a round, amoeboid 

morphology (Stence et al., 2001; Jones et al., 1998, Bohatschek et al., 2001). In vitro 

purified primary microglia in culture have morphological and antigenic features 

resembling that of adult activated microglia (Slepko and Levi, 1996). Thus the purified 

primary microglial culture was used as a model of activated microglia to investigate the 

capacity of DEX at normal (1 μM) or high dosage (100 μM) to inhibit proinflammatory 

cytokines TNFα and IL-1β production using real-time RT-PCR. As demonstrated in 

Figure 4.3.3, 1 or 100 μM DEX treatment significantly reduced the mRNA levels of 

TNFα and IL-1β in microglial culture compared to control culture. For both TNFα and 

IL-1β, the mRNA levels in 1 and 100 μM DEX treated cultures were not significantly 

different.  
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Figure 4.3.3: Effect of DEX dosages on gene expression of 
proinflammatory cytokines in microglial culture.  (A) TNFα expression, and (B) 
IL-1β expression. Microglia were treated with 1 or 100 μM DEX for 48 h, cells 
without DEX treatment served as negative control.  The level of gene expression was 
calculated after normalizing against GADPH in each group and is presented as 
relative mRNA expression units.  *P < 0.05 compared with control culture (n = 3).  
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Response of Astrocytes to DEX at Various Dosages 

Purified primary astrocytes culture is more reactive than normal mature astrocytes 

as evidenced by high basal level of reactive gliosis related products and cell proliferation 

(McMillian et al., 1994; Wu and Schwartz, 1998).  Thus the purified primary astrocyte 

culture was used as a model of reactive astrocytes to investigate the capacity of DEX at 

various dosages to inhibit astrocyte proliferation as well as the gene expression of TGFβ1 

and neurocan. As demonstrated in Figure 4.4.1, 1, 10 or 100 μM DEX treatment 

significantly reduced the number of viable cells compared to control culture, while the 

cell number in DEX treated cultures were not significantly different. Live/dead cell assay 

showed that the percentages of viable cells for control culture, 1, 10, and 100 μM DEX 

treated cultures were 98.96%, 98.99%, 99.48%, and 99.15 respectively, indicating that all 

DEX at all three concentrations was not toxic to astrocytes, and the ability of DEX to 

inhibit astrocyte proliferation was not affected at high dosages. 
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Figure 4.4.1: Effect of DEX dosages on astrocyte viability.  Astrocytes were 
treated with 1, 10 or 100 μM DEX for 48 h, cells without DEX treatment served as 
control.  *P < 0.05 compared with control culture (n = 6). 
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The capacity of DEX at normal (1 μM) or high dosage (100 μM) to inhibit TGFβ1 

and neurocan expression was assessed using real-time RT-PCR. As demonstrated in 

Figure 4.4.2, 1 or 100 μM DEX treatment significantly reduced the mRNA levels of 

TGFβ1 and neurocan in DEX treated astrocyte culture compared to control culture. For 

both TGFβ1 and neurocan, the mRNA levels in 1 and 100 μM DEX treated cultures were 

not significantly different.  
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Figure 4.4.2: Effect of DEX dosages on gene expression of glial scar 
associated molecules in astrocyte culture.  (A) TGFβ1 expression, (B) neurocan 
expression. Astrocytes were treated with 1 or 100 μM DEX for 48 h, cells without 
DEX treatment served as negative control.  The level of gene expression was 
calculated after normalizing against GADPH in each group and is presented as relative 
mRNA expression units.  *P < 0.05 compared with control culture (n = 3). 
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Response of Neurons to DEX at Various Dosages 

The neurotoxicity of DEX at various dosages was evaluated using cell counting 

kit-8 to assess the number of viable cells. Purified rat cortical neurons were incubated  

with 1, 10 or 100 μM DEX for 48 h. Figure 4.5 demonstrated that DEX at all three 

concentrations did not significantly change the number of viable neurons, indicating that 

DEX is not neurotoxic even at 100 times of its normal effective dosage.   
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Figure 4.5: Effect of DEX dosages on neuron cell viability.  Cortical 
neurocans were treated with 1, 10 or 100 μM DEX for 48 h, cells without DEX 
treatment served as control.  *P < 0.05 compared with control culture (n = 6). 
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Discussion 

The first objective of this study was to compare the anti-inflammatory potency of 

α-MSH and DEX based on NO production in microglia and glial cell proliferation.  

Purified primary microglial culture originated from neonatal brains shows a round, 

amoeboid morphology resembling adult activated microglia (Stence et al., 2001; Jones et 

al., 1998, Bohatschek et al., 2001) and phagocytic activity. Thus they were suggested to 

be activated microglia (Slepko and Levi, 1996).  However, unlike activated microglia in 

vivo, NO production in primary microglia culture is low and the cells are not in active 

proliferation. The bacterial endotoxin LPS has been widely used to establish an 

experimental model of glial activation in vitro (Sola et al., 2002; Golde et al., 2003; 

Mizuno et al., 2005). Thus in this study LPS was used to stimulate microglial culture to 

upregulate NO production and proliferate. It has been well documented that α-MSH 

inhibits the production of proinflammatory cytokines and NO by activated microglia via 

the modulation of NF-κB activation (Ichiyama et al., 1999; Manna and Aggarwal, 1998; 

Starowicz and Przewlcka, 2003, Lipton et al., 2000).  However, to our knowledge, the 

effect of α-MSH on microglia proliferation hasn’t been reported.  This study showed that 

α-MSH does not impact LPS-stimulated microglia proliferation which, in contrast, was 

completely inhibited by DEX treatment. This is consistent with previous studies showing 

that DEX inhibits microglia proliferation (Tanaka et al., 1997; Ganter et al., 1994).  

Both α-MSH and DEX were reported to have inhibitory effects on NO production 

(Galimberti et al., 1999; Lipton et al.; 1997, Lipton et al., 2000; Golde et al., 2003; Cui et 

al., 1994).  It was suggested that DEX reduced NO production through regulation of 

iNOS expression by accelerating proteasome-dependent degradation (Golde et al., 2003).  
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This study showed that both α-MSH and DEX significantly inhibited LPS-stimulated NO 

production in microglia culture. However, NO level in α-MSH treated culture was still 

significantly higher than control culture, while DEX treatment completely abolished 

LPS-stimulated NO upregulation. 

Purified primary astrocyte cultures derived from neonatal brains are highly 

reactive compared with astrocytes in normal adult brains even when the culture is 

matured for 4 weeks before use. The cells have high basal level of reactive gliosis related 

products and are highly proliferative (McMillian et al., 1994; Wu and Schwartz, 1998).  

Thus it was used as a model of reactive astrocytes to investigate the anti-inflammatory 

effects of α-MSH and DEX on astrocytes in this study.  The results show that α-MSH 

does not impact astrocyte proliferation, while DEX significantly reduced astrocyte 

proliferation. It was previously reported that DEX inhibits astrocyte proliferation in 

primary culture through glucocorticoid receptor pathways (Crossin et al., 1997). 

Collectively, these results suggest that the anti-inflammatory effects of DEX is more 

powerful than α-MSH in that it has stronger inhibitory effects on LPS-stimulated NO 

production by microglia and it inhibits the cell proliferation of microglia and astrocytes.  

 The second objective of this study was to further evaluate the anti-inflammatory 

effects and neurotoxicity of DEX at dosages higher than normal effective dosage to 

assess the safe and effective dosage range. Previous studies suggest DEX at dosages 

dosages equal or less than 1 μM effectively exerts anti-inflammatory effects on glial 

cells, therefore the anti-inflammatory effects and cytoxicity of DEX at 1, 10 and 100 μM 

on cortical cells including microglia, astrocytes and neurons were evaluated. The results 

from microglial culture showed that the ability of DEX at all three concentrations to 
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inhibit LPS-stimulated NO production and cell proliferation in microglia was similar. In 

addition, 1 and 100 μM DEX significantly reduced the gene expression of 

proinflammatory cytokines TNFα and IL-1β in microglia, and the inhibitory effects of 

DEX at both concentrations were not significantly different. These results demonstrated 

that the anti-inflammatory effects of DEX on microglia were not affected at the 

concentration more than 100 times higher than normal effective dosage.  

 DEX at all three concentrations exhibited similar effects on inhibiting astrocyte 

proliferation. Cell survival study demonstrated that DEX at all three concentrations were 

not cytotoxic to astrocytes. A previous study showed that the inhibitory effects of DEX 

on astrocyte proliferation were dose dependent over the range of 0.1 to 10 nM, and then 

reached plateau over the range of 10 nM to 10 μM (Crossin et al., 1997), however, this 

study didn’t investigate the effects of DEX at concentrations higher than 10 μM. Our 

results demonstrated that inhibitory effects of DEX on astrocyte proliferation DEX at 100 

μM remained unchanged.  

Astrocytes produce TGFβ1 as well as responding to it in response to CNS insult 

(John et al., 2003). Upregulation of TGFβ1 after brain injury was shown to be involved in 

the deposition of extracellular matrices that forms the glial-fibrotic scarring observed at 

the wound site (Smith and Strunz, 2005; Logan et al., 1994). Inhibition of TGFβ1 activity 

has been shown to prevent reactive astrocytes from organizing into a limiting glial 

membrane around the injury site, and reduced the deposition of laminin, fibronetin, and 

CSPGs in the glial scar (John et al., 2003; Logan and Berry, 1993; Griffith and McKeon, 

1999). CSPGs are important inhibitory molecules in glial scar (Properzi and Fawcett, 

2004; Fawcett and Asher, 1999). A number of studies have shown that TGFβ1 increased 
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neurocan production in primary astrocyte culture (Smith and Strunz, 2005; Asher et al., 

2000).  Neurocan is an important inhibitory CSPG that is produced mostly by astrocytes, 

and oligodendrocyte precursors.  This study demonstrated that DEX significantly reduced 

the gene expression of TGFβ1 and neurocan in primary astrocyte culture. The 

experimental result of TGFβ1 gene expression is in accordance with previous studies 

showing that DEX caused a significant decrease in the basal and PMA-induced levels of 

TGFβ1 mRNA in glial cells (Batuman et al., 1995). It is noteworthy that DEX also 

reduced neurocan expression in astrocytes. Although the anti-inflammatory effects of 

glucocorticoid were widely studied in the CNS, these studies have been focused on the 

inhibitory effects of glucocorticoids on the production of proinflammatory molecules and 

glial cell proliferation. The effects of glucocorticoids on CSPG production in the CNS 

hasn’t been addressed yet. Studies outside the nervous system have shown that 

glucocorticoids suppress proteoglycan production by human tenocytes and equine 

articular cartilage explants (Wong et al., 2005; Doyle et al., 2005). However, the 

mechanism was not discussed in these studies. The effects of DEX on CSPG production 

in astrocytes are unclear. The effects may be indirect via inhibition of TGFβ1 expression, 

as TGFβ1 knowingly promotes neurocan expression. It is also possible that DEX directly 

affects neurocan production through glucocorticoid receptor pathways. The inhibitory 

effects of DEX at 100 µM on TGFβ1 and neurocan expression were similar to its effects 

at 1 µM, suggesting that the anti-inflammatory effects of DEX on astrocytes were not 

affected at 100 µM.   
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 The neurotoxicity study showed that DEX at all three concentrations were not 

cytotoxic to neurons. Collectively, these results demonstrate that DEX is safe and exerts 

effective anti-inflammatory effects over the range of 1 to 100 µM.   

  

Conclusions 

In this study, both DEX and α-MSH were shown to be able to inhibit NO 

production by activated microglia and were not neurotoxic, therefore both drugs have the 

potential to be used to as the anti-inflammatory agent to mitigate the inflammatory tissue 

response at the electrode-brain interface in vivo.  However, DEX was shown to be a more 

potent anti-inflammatory agent than α-MSH, as it not only reduced NO production more 

effectively, but also inhibited microglia and astrocyte proliferation. In addition, this study 

demonstrates that DEX is safe and exerts effective anti-inflammatory effects over the 

range of 1 to 100 µM, suggesting that DEX is suitable to be used in drug delivery 

systems with initial burst release. This study suggests that local delivery of DEX may 

have the potential to reduce the inflammation at the electrode-brain interface and 

facilitate long-term recording from cortical neural prosthetics in vivo.   
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CHAPTER V 

 

IN VIVO EVALUATION OF ANTI-INFLAMMATORY POTENTIAL 

OF DEXAMETHASONE-NITROCELLULOSE COATING IN A 

RODENT MODEL 

 

Abstract  

Glial scar formation around implanted silicon neural probes compromises their 

ability to facilitate long-term recordings.  One approach to modulate the tissue reaction 

around implanted probes in the brain is to develop probe coatings which locally release 

anti-inflammatory drugs.  In this study, we developed a nitrocellulose-based coating for 

the local delivery of the anti-inflammatory drug dexamethasone (DEX).  Silicon neural 

probes with and without nitrocellulose-DEX coatings were implanted into rat brains, and 

inflammatory response was evaluated 1 week and 4 weeks post implantation.  DEX 

coatings significantly reduced the reactivity of microglia and macrophages one week post 

implantation as evidenced by ED1 immunostaining.  CS56 staining demonstrated that 

DEX treatment significantly reduced chondroitin sulfate proteoglycan (CSPG) expression 

one week post implantation. Both at one week and at four week time points, Glial 

fibrillary acidic protein (GFAP) staining for reactive astrocytes and neurofilament (NF) 

staining revealed that local DEX treatment significantly attenuated astroglial response 

and decreased neuronal reduction in the vicinity of the probes. Weak ED1, neurocan and 

NG2 positive signal was detected four weeks post implantation for both coated and 

uncoated probes, suggesting a stabilization of the inflammatory response over time in this 
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implant model.  In conclusion, this study demonstrates that the nitrocellulose-DEX 

coating can effectively attenuate the inflammatory response to the implanted neural 

probes, and decrease neuronal reduction in the vicinity of the coated probes.  Thus anti-

inflammatory probe coatings may represent a promising approach to attenuate astroglial 

scar and decrease neural reduction around implanted neural probes.  

 

Introduction 

Functional recording from the nervous system using silicon micromachined 

neural probes potentially aids patients with movement disorders by enabling the 

processing and decoding of recorded neural signals into movement commands 

(Donoghue, 2002; Otto et al., 2003; Sanchez et al., 2004).  However, the long-term 

performance of the implanted neural probes is compromised by the formation of glial 

scar around the Si-microelectrodes, which is a typical consequence of the inflammatory 

tissue reaction to implantation-induced injury in the CNS.  The glial scar is inhibitory to 

neurons and forms a barrier between the electrode and neurons in the surrounding brain 

tissue (Schwartz, 2004; Shain et al., 2003; Edell et al., 1992).   

When a neural probe is inserted into the brain, neurons and glial cells are killed or 

injured during insertion, blood vessels are disrupted and the blood-brain barrier (BBB) is 

damaged. The tissue injury and breakdown of BBB cause release of cytokines and 

neurotoxic free radicals, invasion of blood-borne macrophages, and edema (Fitch and 

Silver, 1997; Schwartz, 2004).  The main cell types involved in tissue reaction to the 

brain injury are astrocytes, microglia/blood-borne macrophages, and oligodendricyte 

precursors (OPCs) (Fawcett and Asher, 1999; Norton, 1999; Hampton et al., 2004).  
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These cells express chondroitin sulfate proteoglycans (CSPGs), important inhibitory 

molecules in glial scar (Properzi and Fawcett, 2004; Fawcett and Asher, 1999).  

Astrocytes produce neurocan, phosphacan, and brevican; microglia/macrophages produce 

NG2; and OPCs produce neurocan, NG2, and versican (Properzi and Fawcett, 2004; 

Fawcett and Asher, 1999; Tang et al., 2003; Tatsumi et al., 2005; Hampton et al., 2004).  

It has recently been suggested that part of NG2 positive cells proliferating in the injury 

site differentiate into the glial scar astrocytes (Alonso et al., 2005; Tatsumi et al. 2005).  

The CSPGs and other glial scar associated inhibitory molecules create an inhibitory 

environment that blocks the regrowth of neural processes and may potentially cause the 

exclusion of neural cells by their presence.  Although CSPG expression has been 

extensively studied in CNS injuries, its role in the tissue reactions to implanted neural 

electrodes has not been addressed.   

The failure of the implanted neural probes over time can be attributed to the 

neuronal loss around the probe including both neuron cell body loss and neural process 

loss (Liu et al., 1999; Spataro et al., 2005; Schwartz, 2004).  Therefore, to maintain long-

term recording stability, reactive gliosis and other inflammatory processes around the 

electrode need to be minimized.  One approach to modulating the inflammatory response 

around neural probes is to develop coatings to modify the neural probe surfaces to 

achieve better integration of the neural probes with brain tissue. Dexamethasone (DEX) 

is a synthetic glucocorticoid hormone that is used to treat many inflammatory responses.  

In CNS, systematic injection of DEX was shown to reduce tissue reaction around neural 

implants (Shain et al., 2003; Spataro et al., 2005).  Addition of DEX to activated 

microglia-neuron cocultures protect neurons by down-regulating nitric oxide (NO) 
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production (Golde et al., 2003).  However, systemic administration of DEX may cause 

serious side effects including myopathy and diabetes (Kaal and Vecht, 2004; Koehler, 

1995; Twycross, 1994). Therefore local delivery of DEX is a promising strategy to 

minimize the side effects.  In this study, a nitrocellulose-based coating that is capable of 

sustained local release of DEX from implanted neural probes was designed.  

Scar/inflammation related cellular and molecular responses to neural probes with and 

without DEX coatings were characterized.   

 

Materials and Methods 

 

In vivo implantation of DEX coated probes 

All procedures involving animals were approved by the Institutional Animal Care 

and Use Committee (IACUC) of the Georgia Institute of Technology. Adult male 

Sprague Dawley rats weighing between 275-299 g were used in this study.  The rat was 

pre-anesthetized with a mixture of 5% isoflurane and 1 L/min oxygen in a chamber, and 

maintained in anesthesia with 2-3% isoflurane and 0.3 L/min by a nose mask during 

surgery.  The rat was immobilized in a stereotaxic frame by mounting the stereotaxic ear 

bars into the rat auditory meatus.  The surgical area was shaved and disinfected with 

isopropyl alcohol and chlorohexaderm using a slight scrubbing motion before making the 

incision. Ophthalmic ointment will be applied to the eyes to prevent drying during 

surgery. Following a midline incision, the periosteum connective tissue adhering to the 

bone was scraped and removed till the cranial sutures were exposed.  Two 3 mm holes 

were created +0.2 mm anterior, and 3 mm lateral to the bregma using a 3-mm trephine 
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attached to a dental drill. Physiological saline was applied to the skull to reduce the heat 

caused by drilling.  The bone plug was removed carefully, and the dura was gently 

pierced and retracted with fine microforceps. Two neural probes were inserted into each 

brain manually, with one DEX-coated probe in one side of the brain and one uncoated 

probe in the other side of the brain.  The two holes were covered with 1% agarose gel and 

dental acrylic, the skin was closed with suture, and then the animal was allowed to 

recover.  

Tissue preparation and immunohistochemistry 

At two distinct time points, one week and four weeks post surgery, the rats were 

anesthetized with ketamine (1 mL/kg), xylazine (0.17 mL/kg), and acepromazine (0.37 

mL/kg), and perfused transcardially with  0.1 M PBS (pH7.4) followed by 4% 

paraformaldehyde in PBS.  The brains were removed carefully so that the implanted 

neural probes remained intact.  After post-fixation of the brains in 4% paraformaldehyde 

for 24 h, the neural probes were retrieved; the brains were cryoprotected in 30% sucrose 

in PBS solution until the brains sunk.  The brains were frozen in Tissue Tek OCT 

embedding compound.  Cryostat sections 30 µm in thickness were cut in the horizontal 

plane.  

The floating sections were blocked with 4% normal goat serum for 1h at room 

temperature with 0.5% Triton X-100 (Sigma) and incubated overnight at 4°C with 

primary antibodies.  Secondary antibody incubations were performed at room 

temperature for 1 h.  All the sections were counterstained with the nuclear dye 4’,6-

diamidino-2-phenylindole (DAPI, Molecular Probes).  Tissue sections were mounted on 
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glass microscope slides with Fluoromount-G (Southern Biotechnology Associates, Inc. 

Birmingham AL). 

The following primary antibodies were used: rabbit polyclonal anti-glial fibrillary 

acidic protein (GFAP, Dako, 1:1000) to identify astrocytes, mouse monoclonal ED1 

(Serotec, 1:1000) to identify reactive microglia and macrophages, rabbit polyclonal anti-

Iba-1 to identify microglia/macrophages (Wako Chemicals, 1:500), mouse monoclonal 

anti-neurofilament 160 (NF160, Sigma, 1:500) to identify neuron cell body and 

processes, mouse monoclonal anti-NeuN (Chemicon, 1:500) to identify neuronal nuclei, 

monoclonal anti-chondroitin sulfate (CS56, Sigma, 1:100) to identify CSPGs, mouse 

monoclonal anti-neurocan (Chemicon, 1:1000) to identify neurocan, rabbit polyclonal 

anti-NG2 (Chemicon, 1:500) to identify NG2, rabbit polyclonal anti-fibrinogen (Dako, 

1:500) to evaluate BBB leakage, and mouse monoclonal anti-RECA-1 to identify 

endothelial cells (Serotec, 1:500).  The secondary antibodies were diluted 1: 200 in 

blocking medium.  In general, goat anti-rabbit IgG Alexa 488 (Molecular Probes) was 

used for polyclonal primary antibodies, and goat anti-mouse IgG1 Alexa 594 (Molecular 

Probes) was used for monoclonal primary antibodies.  The secondary antibody for CS56 

was goat anti-mouse IgM Alexa 594 (Molecular Probes).  Sections treated without 

primary antibodies were used to distinguish specific staining from nonspecific antibody 

binding.  

Hematoxylin and eosin (H&E) staining was performed to evaluate the fibrous 

encapsulation around implanted neural probes. Slides of frozen sections were rinsed in 

water and hematoxyline for 2 min and then washed well in tap water. After rinsing the 

slides in 95% alcohol, the slides were stained with eosin for 10 sec and rinsed with tap 
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water, then dehydrated with alcohol, cleared with xylene, and mounted with polymount 

mounting media.  

Quantitative image analysis 

Fluorescent images were captured from a Zeiss fluorescence upright light 

microscope (Wetzlar, Germany) equipped with an Olympus digital camera.  The 

fluorescent staining intensity was quantified using a custom-built Matlab-based image 

analysis program based on a method previously reported (Kim et al., 2004).  This 

program generates 30 line intensity profiles starting from the probe-brain interface. The 

30 line profiles were averaged while keeping track of distance from the probe to obtain 

the fluorescent intensity plots as a function of distance from the implanted probe surface 

(Figure 5.1.1).  The staining intensity at both sides of the electrode will be quantified in 

the same way and averaged to get the intensity - distance profile for each image. To 

account for variations in staining intensity due to immunohistochemical methods, for 

each brain section, the fluorescent intensity in non-injured regions was defined as 

background intensity, and was normalized to 1.  The fluorescent intensity along the line 

profiles was then quantified and plotted relative to the background intensity.  
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Figure 5.1.1:  Method for quantitative analysis of immunostained brain 
sections. (A) 30 lines starting from the electrode-brain interface are generated.  (B) 
The 20 fluorescent intensity – distance profiles obtained from each line in (A) are 
averaged to get the averaged intensity – distance profile.  

 

  

 

 

 

For quantification of ED1 staining, the total area under the intensity-distance 

curve subtracted by the background area (the shaded area in Figure 5.1.2A) within a 100 

μm radius from the surface of the inserted probe was used to calculate the total 

fluorescent intensity.  The 100 µm radius was chosen because it was previously shown 

that there was a strong inverse correlation between ED1 and neurofilament 

immunoreactivity within100 µm of the neural probe interface at both 2 and 4 weeks 

(Biran et al., 2005).  

For quantification of GFAP and CS56 staining, the total area under the intensity-

distance curve subtracted by the background area (the shaded area in Figure 5.1.2A) 

within 250 μm from the interface was used to calculate the total fluorescent intensity. The 

250 µm radius was chosen because it was reported that significant reductions in 

neurofilament immunoreactivity extended up to 230 µm from the interface (Biran et al., 

2005). Reactive astrocytes produce inhibitory molecules such as CSPGs that are 
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inhibitory to neurons, and elevated GFAP expression extended over a distance greater 

than 400 µm from the interface. Thus the neurofilament loss over 100 µm may be 

correlated to reactive astrocytes and CSPGs produced by both reactive astrocytes and 

microglia. 

Neurofilament (NF 160kDa) staining was used to assess neuronal reduction, the 

NF reduction was defined as the percentage of the NF reduction area (the shaded area in 

Fig. 7B) relative to the sum of NF reduction area and the remaining NF area within a 50 

µm radius from the surface of the inserted probe.  The 50 µm radius was chosen because 

neurons more than 50 µm away from the recording sites are difficult to discriminate for 

single unit isolation (Henze et al., 2000).  At least 12 images from 4 rats along the probes 

were used to quantify each marker analyzed. 
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 For quantification of the number of astrocytes and neurons, fluorescent images of 

GFAP staining and NeuN staining were used to identify astrocytes and Neurons 

respectively. A custom-built Matlab-based image analysis program was used to 

automatically count the cell distribution as a function of distance at 50 µm intervals.  As 

illustrated in Figure 5.1.3, each white dot represents an astrocyte.  Due to the complexity 

of astrocyte structure, the program can not accurately identify all the astrocytes. 

Figure 5.1.2:  Diagram for quantification of (A) GFAP, ED1, and CS56 
staining, the total area under the intensity-distance curve subtracted by the background 
(the shaded area) is defined as the total intensity, and (B) neurofilament staining, the 
percentage of the NF reduction area relative to the sum of the NF reduction area and 
the remaining NF area is defined as % of NF reduction.  
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Therefore the cells that the program failed to count were added manually (indicated by 

red dots). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animal number and Data Analysis 

Four animals were used for each time point (n = 4). For 1 week time point, 6 brain 

sections at equal depth interval were selected for each staining spanning approximately 

Figure 5.1.3:  Sample fluorescent image GFAP immunostaining for 
quantification of astrocyte number.  All the astrocytes within 200 µm distance from 
the probe-brain interface were counted by a custom-built Matlab-based image analysis 
program. Each white dot represents an astrocyte identified by the program, each red 
dot represents an astrocyte that the program failed to identify and added manually.  
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Table 5.1: Summary of section number for each staining 
 

1.5 mm of the cerebral cortex. The number of brain sections for each staining is listed in 

Table 5.2.  For 4 week time point, 3 brain sections were selected for each staining.  

Data are represented as the average value ± the standard error of the mean 

(S.E.M). A general linear ANOVA model was used to compare mean values of the 

different conditions. Pairwise comparisons were conducted using Tukey 95% 

simultaneous confidence intervals, and P < 0.05 was used to indicate statistical 

significance. 

 

 

 

Results 

 

Assessing reactive microglia and macrophages around the probes 

Immunostaining for ED1 around the probe site reveals reactive 

microglia/macrophages.  One week post implantation, for both uncoated and DEX coated 

probes, the ED1 staining was concentrated around the probe-brain interface (Figure 5.2A 

Staining Section Number 

CS56/NeuN 4 12 20 28 36 44 

GFAP/NF 5 13 21 29 37 45 

GFAP/ED1 6 14 22 30 38 46 

H&E 7 15 23 31 39 47 
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and B).  The ED1 positive cells were small, and amoeboid in appearance.  Both peak 

intensity and the reactive area for coated probes were reduced compared with uncoated 

probes at 1 week (Figure 5.2E). The total ED1 intensity for coated probes was 

significantly lower than uncoated probes (Figure 5.2F).    

At the end of 4 weeks, the ED1 staining was significantly reduced compared with 

1 week for uncoated probes (Figure 5.2A, C, and F).  The difference of the total intensity 

between the uncoated probes and DEX coated probes at 4 weeks was not statistically 

significant (Figure 5.2A, D and F).   
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Figure 5.2:  Quantitative fluorescent intensity analysis of ED1 staining.  (A)-(D) 
Representative images of ED1 staining for reactive microglia/macrophages in the 
horizontal brain sections 1 week and 4 weeks post implantation for both uncoated and DEX 
coated probes. Scale bar = 100 μm. (E) ED1 fluorescent intensity profiles as a function of 
distance 1 week and 4 weeks post implantation. (F) Quantification of total ED1 fluorescent 
intensity 1 week and 4 weeks post implantation (n = 4).  Statistical differences between 
uncoated and coated probes at the same time point are indicated by * (P < 0.05 compared 
with uncoated probes). Statistical difference of uncoated probes between 1 week and 4 
weeks is indicated by + (P < 0.05 compared with uncoated probes at 1 week).  
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Characterizing reactive astrocytes in vicinity of implanted probes 

GFAP staining was used to identify reactive astrocytes.  One week post 

implantation, extensive GFAP elevation extending over a 400 µm radius around the 

uncoated probes could be observed.  The GFAP intensity was relatively weak in the 

region within 40 μm from the probe-brain interface (Figure 5.3.1A and E), as there were 

few GFAP-positive cells/processes in this region.  It is noteworthy that this region is 

correlated with intensive ED1 staining (Figure 5.2A and E).  GFAP intensity started to 

increase from about 40 μm, peaked between 60 to 110 μm, and decreased rapidly after 

200 μm (Figure 5.3.1E).  Most astrocytes in the GFAP intensive area (40-200 μm) 

appeared hypertrophic (Figure 5.3.1A, inset), the processes of astrocyte were interwoven 

to form a dense meshwork.  In contrast, GFAP positive astrocytes located further away 

were more stellate in appearance and the processes were less densely distributed.   

The intensity distribution as a function of distance for coated probes showed 

similar pattern as the uncoated probe: weak GFAP staining around the probe-brain 

interface (40 µm), followed by an intensive region (40-165 µm), and a drop of GFAP 

intensity after 165 µm (Figure 5.3.1B and E).  DEX treatment significantly reduced the 

total GFAP intensity (Figure 5.3.1F).  Compared with uncoated probes, the astrocytes 

subjected to DEX treatment in the GFAP intensive area still remained stellate 

morphology, although they were hypertrophied compared to astrocytes in non-injured 

area (Figure 5.3.1B, inset). The astrocyte processes were less dense in this region 

compared to the same region for the uncoated probes (Figure 5.3.1A and B). 

Four weeks post implantation, there was still a region of less intensive GFAP 

staining around the probe-brain interface (Figure 5.3.1C).  GFAP intensity peaked 
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between 40 to 60 μm (compared with 60 to 110 μm at 1 week), and decreased rapidly 

after 120 μm (Figure 5.3.1E).  The GFAP intensive region (20-120 μm) became more 

compact and closer to the probe-brain interface compared with 1 week (40-200 μm).  

Most astrocytes in the GFAP intensive area were hypertrophied compared with normal 

astrocytes (Figure 5.3.1C, inset); the astrocyte processes were interwoven to form a dense 

meshwork.  Compared with uncoated probes, astrocytes in the same region around DEX 

coated probes were less hypertrophied and the processes were less densely distributed 

(Figure 5.3.1D, inset). The total GFAP intensity was significantly higher for uncoated 

probes compared with DEX coated probes (Figure 5.3.1F).   
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Figure 5.3.1:  Quantitative fluorescent intensity analysis of GFAP staining.  
(A)-(D) Representative images of GFAP staining for reactive microglia/macrophages in the 
horizontal brain sections 1 week and 4 weeks post implantation for both uncoated and DEX 
coated probes. Scale bar = 100 μm. (E) GFAP fluorescent intensity profiles as a function of 
distance 1 week and 4 weeks post implantation. (F) Quantification of total GFAP 
fluorescent intensity 1 week and 4 weeks post implantation (n = 4).  Statistical differences 
between uncoated and coated probes at the same time point are indicated by * (P < 0.05 
compared with uncoated probes).  
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 The histogram of astrocyte cell density distribution (Figure 5.3.2) showed that 1 

week post implantation, the number of astrocytes for both uncoated and coated probes 

was reduced within a 50 µm radius from the interface compared with uninjured area.  

This is consistent with the intensity distribution profile (Figure 5.3.1E).  The number of 

astrocytes was mildly increased between 50 to 250 µm, and started to approach normal 

cell distribution beyond 250 µm. There was not significant difference between the 

uncoated groups and coated groups. 

 

 

Presence of chondroitin sulfate proteoglycans 

CS56 staining was used to identify the presence of chondroitin sulfate 

proteoglycans around the probe.  Similar to ED1 localization, the intensive CS56 staining 

was concentrated around the probe-brain interface 1 week post implantation (Figure 5.4A 

Figure 5.3.2:  Histogram of astrocyte distribution around implanted 
neural probes.  Values were normalized to the average number of NeuN+ neurons of 
the uninjured area. (n = 4) 
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and B).  For uncoated probes, the intensive staining area extended about 44 μm from the 

electrode-brain interface, followed by a extensive but much less intensive area (44-135 

μm), beyond which the CS56 intensity started to approach background intensity (Figure 

5.4E).  It is noteworthy that the CS56 intensive region is correlated with the weakly 

GFAP stained region, and ED1 intensive region (Figure 5.2A and E, and Figure 5.3.1A 

and E).  In the less intensive CS56 staining region, individual cells with a hypertrophied 

stellate morphology can be identified (Figure 5.4A), double staining with GFAP showed 

that these cells are hypertrophic reactive astrocytes (data not shown).    

In comparison with uncoated probes, CS56 staining was significantly reduced for 

DEX coated probes.  The total intensity for coated probes was significantly lower than 

uncoated probes (Figure 5.4F).  Regardless of the great reduction of CS56 staining for the 

coated probes, the pattern of CS56 distribution was similar to that of the uncoated probes: 

intensive CS56 staining in the vicinity of the electrode-brain interface (27 μm), followed 

by a less intensive region with cells positive for both CS56 and GFAP staining (Figure 

5.4E).  

Four weeks post implantation, the CS56 staining was significantly reduced for 

uncoated probes compared with one week (Figure 5.4A and C).  The intensity around the 

probe-brain interface was only slightly higher than background intensity (Figure 5.4E).  

There was no significant difference in the total CS56 intensity between the uncoated and 

coated probes (Figure 5.4F).   
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1 week (uncoated) A 1 week (coated) B 

4 weeks (uncoated)C 4 weeks (coated) D 

Figure 5.4:  Quantitative fluorescent intensity analysis of CS56 staining.  (A)-
(D) Representative images of CS56 staining for reactive microglia/macrophages in the 
horizontal brain sections 1 week and 4 weeks post implantation for both uncoated and DEX 
coated probes. Scale bar = 100 μm. (E) CS56 fluorescent intensity profiles as a function of 
distance 1 week and 4 weeks post implantation. (F) Quantification of total CS56 
fluorescent intensity 1 week and 4 weeks post implantation (n = 4).  Statistical differences 
between uncoated and coated probes at the same time point are indicated by * (P < 0.05 
compared with uncoated probes). Statistical difference of uncoated probes between 1 week 
and 4 weeks is indicated by + (P < 0.05 compared with uncoated probes at 1 week).  

0

20

40

60

80

100

120

1 week 4 weeks

Uncoated at 1 week
Coated at 1 week
Uncoated at 4 weeks
Coated at 4 weeks

Uncoated at 1 week
Coated at 1 week
Uncoated at 4 weeks
Coated at 4 weeks

Uncoated at 1 week
Coated at 1 week
Uncoated at 4 weeks
Coated at 4 weeks

Uncoated at 1 week
Coated at 1 week
Uncoated at 4 weeks
Coated at 4 weeks

C
S

56
 to

ta
l f

lu
or

es
ce

nt
 in

te
ns

ity
 

F 

+ * 

distance from interface (μm)

C
S

56
 fl

uo
re

sc
en

t i
nt

en
si

ty
 

E 

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400

uncoated at 1 week
coated at 1 week
uncoated at 4 weeks
coated at 4 weeks



 110

Examining the presence of specific CSPGs Neurocan and NG2  

Immunostaining for neurocan and NG2 was carried out to investigate the specific 

nature of proteoglycan expression level with time.  At the end of 1 week, elevated 

neurocan staining was observed around the probe-brain interface (Figure 5.5A).  Double 

staining with NG2 antibody (marker for OPCs) showed upregulation of NG2 intensity 

around the probe-brain interface as well (Figure 5.5C).  Neurocan and NG2 staining 

distribution partly overlapped. While positive neurocan staining was only observed 

around the probe-brain interface, NG2 staining was distributed all over the whole brain 

sections in the form of NG2 positive cells except around the probe-brain interface where 

no individual cells could be identified (Figure 5.5A and C).  Four weeks post 

implantation, both neurocan and NG2 staining were considerably reduced compared with 

1 week (Figure 5.5B and D).  
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D NG2 at 4 weeks 

A Neurocan at 1 week 

C NG2 at 1 week 

B Neurocan at 4 weeks 

Figure 5.5:  Representative fluorescent images of horizontal brain sections 
immunostained for Neurocan and NG2 1 week and 4 weeks post implantation.  Scale 
bar = 100 μm. 
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D 

1 week (uncoated) A 1 week (coated) B 

4 weeks (uncoated)C 4 weeks (coated) 

Figure 5.6:  Light micrograph of horizontal brain sections stained with H&E 
for evaluation of fibrous encapsulation around the implanted neural probes at 1 week 
(A-B) and 4 weeks (C-D) for uncoated (A, C) and coated probes (B, D).  Scale bar = 50 
μm. 

Evaluating Fibrous Encapsulation around the Probes  

  H&E staining was used to investigate the fibrous encapsulation around the 

implanted neural probes. Figure 5.6 showed that there was no seemingly fibrous 

encapsulation around the implanted neural probes at all conditions.  However, a thin rim 

of tissue (about 20 µm in thickness) at the probe-brain interface showed structural change 

as indicated by nuclei aggregation and alignment along the implanted probes.  
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Characterizing Neuronal Presence around the Probes 

Neurofilament staining stains for neuron cell body and neural processes.  NF 

staining showed a region with reduced NF intensity around the probe-brain interface 1 

week post implantation (Figure 5.7.1A). NF reduction for uncoated probes was 

significantly higher than coated probes (Figure 5.7.1E and F).  At the end of 4 weeks, NF 

reduction around the uncoated probes did not significantly increase compared with 1 

week (Figure 5.7.1C, D, and E).  The NF reduction for uncoated probes was significantly 

higher than coated probes at 4 weeks (Figure 5.7.1F).  It is noteworthy that the NF 

reduction region overlapped the ED1, CS56 positive area with weak GFAP staining, and 

extended to the GFAP intensive area. 

The numbers of neurons within a 50 μm radius of the neural probes were reduced 

65% and 50% respectively for uncoated and coated probes (Figure 5.7.2). However, there 

was no significant difference between the neuronal reduction around uncoated and coated 

probes.  
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1 week (uncoated) A 1 week (coated) B 

4 weeks (coated) D 4 weeks (uncoated) C 

Figure 5.7.1:  Quantitative fluorescent intensity analysis of NF staining.  (A)-
(D) Representative images of NF staining for neurons in the horizontal brain sections 1 
week and 4 weeks post implantation for both uncoated and DEX coated probes. Scale bar = 
100 μm. (E) NF fluorescent intensity profiles as a function of distance 1 week and 4 weeks 
post implantation. (F) Quantification of % of NF reduction 1 week and 4 weeks post 
implantation (n = 4).  Statistical differences between uncoated and coated probes at the 
same time point are indicated by * (P < 0.05 compared with uncoated probes).  
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1 week (uncoated) A 1 week (coated) B 

Figure 5.7.2:  Neuronal cell body density around implanted neural probes.  
(A)-(B) Representative images of NeuN staining for neurons in the horizontal brain 
sections 1 week post implantation for uncoated and DEX coated probes. Scale bar = 100 
μm. (C) Number of neurons within 50 μm from the probe interface (n = 4).  Values were 
normalized to the average number of NeuN+ neurons of the uninjured area. 
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Characterizing Tissue Response along the Depth in the Cerebral Cortex 

 Tissue response along the depth of the cerebral cortex was evaluated by 

quantification of ED1, GFAP, CS56 and NF staining. The selection of brain sections for 

each staining was listed in Table 5.2. Briefly, 6 sections at the level of cerebral cortex at 

equal depth interval (240 μm) from top to bottom were selected for each staining 

spanning approximately 1.5 mm of the cortex. As shown in Figure 5.8, normalized tissue 

immunoreactivity to all four antibodies did not change along the depth of cerebral cortex, 

suggesting that glial and neuronal response to the implanted neural probes was not depth-

dependent. 
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Figure 5.8:  Quantitative fluorescent intensity analysis of tissue response along 
the depth of cerebral cortex.  (A)-(C) Quantification of total ED1, GFAP and CS56 
fluorescent intensity 1 week post implantation from brain sections of increasing depth (n = 
4).  (F) Quantification of % of NF reduction 1 week post implantation from brain sections 
of increasing depth (n = 4).  Section 1 to 6 at the level of cerebral cortex at equal depth 
interval (240 μm) from top to bottom were selected for each staining spanning 
approximately 1.5 mm of the cerebral cortex.
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Assessing Blood-brain Barrier Breakdown and Repair 

BBB leakage was assessed by immunostaining of the plasma protein fibrinogen 

(Fb). The brain sections were double stained with RECA-1 antibody for endothelial cells 

to identify blood vessels.  As shown in Figure 5.9.1, there was severe BBB leakage 1 day 

post implantation as indicated by strong Fb staining (Figure 5.9.1B), and the vasculature 

lost the normal morphology as indicated by RECA-1 staining (Figure 5.9.1A).  3 days 

post implantation, the vasculature almost restored the normal morphology (Figure 

5.9.1D), there was still Fb leakage, however, the area of positive Fb staining was 

considerabely reduced (Figure 5.9.1E).  Overlapping RECA-1 and Fb staining for both 

day 1 (Figure 5.9.1C) and day 3 (Figure 5.9.1F) showed that Fb staining overlapped 

RECA-1 staining at both time points, indicating that Fb protein was co-localized with 

leaked blood vessels.   

One week post implantation, Fb staining was further reduced for both uncoated 

and DEX coated probes (Figure 5.9.2A and B).  There was very little overlapping of Fb 

staining and RECA-1 staining for both uncoated and coated probes, indicating that the 

BBB leakage is almost restored.  There was some scattered Fb staining that distributed all 

over the brain sections for both uncoated and coated probes in a random pattern, and was 

not co-localized with RECA-1 staining.  The scattered Fb staining seemed to be 

background staining.  It could also be Fb released from blood vessels before BBB was 

restored since it was not co-localized with RECA-1 staining, and therefore can not be 

used to indicate leaked blood vessels.  Four weeks after implantation, there was no 

overlapping of Fb staining and RECA-1 staining for both uncoated and coated probes 

(Figure 5.9.2C and D), indicating that the BBB breakdown was restored.   
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Figure 5.9.1:  Representative fluorescent images of horizontal brain sections 
double stained with RECA-1 and Fibrinogen.  (A, D) RECA-1 staining, (B, E) Fb 
staining, (C, F) Overlays of RECA-1and Fb staining (A-C) 1 day and (D-F) 3 days post 
implantation. Scale bar = 200 μm.
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Figure 5.9.2:  Representative fluorescent images of horizontal brain sections 
double stained with RECA-1 and Fibrinogen for (A, C) uncoated and (B, D) coated 
probes at (A, B) 1 week and (C, D) weeks.  Scale bar = 200 μm.

1 week (uncoated) 1 week (coated) 

4 weeks (uncoated) 4 weeks (coated) 

A 

C 

B 

D



 122

Discussion 

To maintain long term functional recording from the silicon neural probes, the 

neural elements of recording interest need to be preserved in the vicinity of the implanted 

electrodes.  This study demonstrates that local release of DEX from neural probe coatings 

can attenuate the cellular inflammatory responses to implanted neural probes, suppress 

the expression of inhibitory molecules (CSPGs), and significantly decrease neuronal 

reduction around the neural probes.  

In this study, the cellular and molecular responses to the implanted silicon neural 

probes was investigated to give us an insight into the cellular and molecular environment 

local DEX delivery helps create around the probe-brain interface.  The glial cell types 

involved in glial scar formation include astrocytes, microglia/blood-borne macrophages, 

and OPCs.  Microglia/macrophages and OPCs respond very rapidly to brain injuries 

(Fawcett and Asher, 1999; Hampton et al., 2004, Kato and Walz, 2000).  Following 

injury to the adult CNS, a large number of microglia/macrophages and OPCs were 

recruited to the injury site.  The activated microglia become more macrophage-like with 

an amoeboid morphology, and they proliferate and migrate to injury sites (Fawcett and 

Asher, 1999).  The activated microglia/blood-borne macrophages release neurotoxic 

molecules such as free radicals, nitric oxide (NO), as well as proinflammatory cytokines 

including interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) 

(Kyrkanides et al., 2001; Hays, 1999; Bruccoleri et al., 1998; Takeuchi et al., 2001), 

which subsequently activate the astrocytes (Merrill and Benveniste, 1996; John et al., 

2005).  The activation of astrocytes is also mediated by blood-borne factors including 

growth factors and hormone, albumin, thrombin, angiotensin II and cAMP (Logan and 
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Berry, 2002) The reactive astrocytes undergo hypertrophy, proliferation, and upregulate 

trophic factors, cytokines, as well as extracellular matrix (Fawcett and Asher, 1999; 

Polikov et al., 2005 ).  

Chondroitin sulfate proteoglycans are important inhibitory molecules in the glial 

scar (Fawcett and Asher, 1999).  Upregulated CSPGs have differential sulfation patterns 

(Properzi et al., 2003; Properzi and Fawcett, 2005) and differential sulfation patterns 

affect neurite outgrowth (Gilbert et al., 2005).  Following chondroitinase treatment, 

glycosaminoglycan removal enhanced neurite outgrowth, suggesting an inhibitory role 

for CSPGs (Bradbury et al., 2002).  Neurocan and NG2 are identified as two important 

proteoglycans that inhibit neurons (Alonso, 2005; Tang et al., 2003, Jones et al., 2002, 

Asher et al., 2000).  Immunostaining for neurocan and NG2 1 week and 4 weeks post 

implantation was carried out to investigate the individual proteoglycan expression level 

with time.  One week post implantation, the immunostainings for glial cells (astrocytes, 

microglia, and OPCs) as well as inhibitory molecules (CSPGs including neurocan and 

NG2) reached peak.  It is noteworthy that for all the inhibitory molecules the intensive 

staining was concentrated around the probe-brain interface, and appeared to be inversely 

correlated with NF staining intensity. Interestingly, GFAP staining was weak in this 

region.  Similar observation has been previously reported (Fitch and Silver, 1997), and 

the authors suggested that the CSPGs in the area lacking GFAP-positive cells may be 

produced by astrocytes that subsequently died, migrated away from the injury site, or lost 

their GFAP immunoreactivity.  The authors also suggested that microglia/macrophages 

may be another possible source of inhibitory CSPGs. Since neurocan staining was 
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correlated with NG2 staining, it is possible that OPCs also contributed to neurocan 

upregulation.  

In the intensive NG2 staining area, it is difficult to identify individual NG2 

positive cells.  In the normal tissue of CNS, NG2 is found almost exclusively on the 

surfaces of OPCs (Ughrin, 2003; Levine, 2001).  Therefore the intensive NG2 staining 

might be a marker of the proliferated and aggregated OPCs.  However, since NG2 can be 

shed from the cell surface and secreted into extracellular matrix, there is the possibility 

that the intensive NG2 staining was not only a cell marker, but also the marker for NG2 

proteoglycan in extracellular matrix secreted by OPCs as well as other types of cells.  

Double staining with ED1 antibody showed that the intensity distribution of NG2 staining 

was also correlated to ED1 staining (data not shown), therefore reactive 

microglia/macrophages might be another cell source for upregulation of NG2.  

 Four weeks post implantation, the intensity of ED1 staining was reduced 

compared with 1 week.  CS56, neurocan and NG2 staining intensity was almost back to 

normal levels. Several studies have shown that CSPGs decreased with time. Levine 

reported that in a rat brain injury model NG2 immunoreactivity dramatically increased 

beginning at 4-5 days post lesion (dpl), and continued to increase over the next 3 days so 

that by 7 dpl, there was a dense plague of immunoreactivity surrounding the lesion site. 

Between 10-15 dpl, NG2 immunoreactivity began to decline, the intensity of NG2 

immunoreactivity continued to decline over the next 2-5 weeks. At 30 dpl, the plaque of 

anti-NG2 immunoreactivity had disappeared.  Camand et al reported that in a mouse 

spinal cord injury model, CS56 immunoreactivity reached peak 8 days postinjury.  One 

month post lesion, this CS56 immunolabelling was practically abolished. Morel et al 
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reported in a mouse cerebellum injury model that CS56 immunostaining was rapidly and 

strongly upregulated 8 days after the lesion. It remained for at least one month, although 

the thickness of the labeled band was smaller than 8 days. By 6 month after the lesion, 

CS56 immunoreactivity had disappeared. Taken together, the time course of CSPGs 

change depends on the injury model, and in all three studies CSPGs eventually 

disappeared. We speculate that the time course of CSPG expression and depletion is 

dependent on the degree of injury. In our study, the tissue injury is relatively small, 

considering the small size of the neural probe (33 to 200 µm in width, and 15 µm in 

thickness), which might explain why the upregulation of CSPG immunostaining almost 

disappeared at the end of 4 weeks. This result is also consistent with the observation that 

ED1 immunoreactivity was significantly reduced at 4 weeks, as reactive 

microglia/macrophages also contribute to CSPG expression. The significant reduction of 

reactive microglia/macrophages and CSPGs at 4 weeks suggests that the inflammatory 

responses may start to stabilize at 4 weeks in our injury model.   

Local release of DEX significantly attenuated the inflammatory responses at 1 

week, and reduced neural loss both at 1 week and 4 weeks as evidenced by NF staining.  

NeuN staining showed that the number of neurons within 50 µm radius from the coated 

probes was higher than uncoated probes, however, the difference is not statistically 

significant. It might be that the sample size is not big enough. The NF and NeuN staining 

results suggest that DEX is more protective for neurite loss rather than cell body loss. 

Thus DEX alone may not be sufficient to keep enough neurons close to the electrode 

sites. If this is the case, we need deliver neurotrophic factors together with DEX to 

further improve neuronal survival and attract neurons to migrate to the electrode sites.  
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 DEX is known as a potent anti-inflammatory drug, and it has previously been 

shown to be capable of reducing inflammatory responses in the CNS (Holmins and 

Mathiesen, 1996; Spataro et al., 2005; Hermens and Verhaagen, 1998).  Its anti-

inflammatory effects have usually been attributed to its effects on 

microglia/macrophages, which knowingly express high levels of glucocorticoid receptors 

(Tanaka et al., 1997).  DEX has been show to inhibit iNOS synthesis and cytokine 

production by microglia, as well as microglia proliferation (Golde et al., 2003; Chao et 

al., 1992; Tanaka et al., 1997).  A recently study showed that DEX inhibited proliferation 

of NG2 positive cells, which may differentiate into astrocytes in injured brain (Alonso, 

2005). As these NG2 positive cells do not express the glucocorticoid receptors, the 

authors suggested that DEX may have indirect effects on these cells via modification of 

glutamate release and/or interaction with microglia.   

Astrocyte activation is featured by upregulation of GFAP expression and glosis-

associated molecules, hypertrophy, and some astrocytes undergo cell division (Fawcett 

and Asher, 1999; Chen and Swanson, 2003, Polikov et al., 2005). This study 

demonstrated that DEX reduced the astrocytic reaction to the implanted neural probes as 

evidenced by reduction of GFAP staining intensity and less hypertrophied cell 

morphology. We have demonstrated (in Chapter IV) that DEX significantly inhibited 

astrocyte proliferation in vitro. However, local release of DEX did not significantly 

reduce the density of astrocyte around the implanted neural probe. One possible 

explanation is that the reactive astrocytes in our injury model were not in active 

proliferation. This assumption is consistent with the observation that the number of 

astrocytes in the reactive zone was only mildly increased compared with that in uninjured 
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region. The origins of the reactive astrocytes in injured brain have been unclear. The 

possible sources could be resident astrocytes, astrocytes migrating from undamaged 

parenchyma, and glial precursors (Alonso, 2005; McGraw et al., 2001; Ridet et al., 1997; 

Norton, 1999).  A number of studies showed that regardless of the high concentration of 

astrocytes along the glial scar, the proliferation of astrocytes in the injured area was 

always found to be modest and hardly match the high concentration of astrocytes in this 

area (Alonso, 2005; Norton, 1999, Janeczko, 1993).  Therefore it was suggested astrocyte 

proliferation only partly contributes to the increase of astrocytes in the injured brain. In 

addition, our in vitro study showed that the inhibition of DEX on astrocyte proliferation 

was mild. This might explain why the astrocyte density around the DEX coated probes 

was not significantly reduced compared with uncoated probes. The histogram of astrocyte 

density distribution as a function of 50 μm distance bins from 0 to 400 μm from the 

probe-brain interface showed a reduction of astrocyte density in the first 50 µm distance 

bin at 1 week, which is consistent with the GFAP intensity profile. The loss of astrocytes 

at the interface could be attributed to the mechanical trauma caused by implantation.  It is 

interesting that beyond 50 µm, while the cell densities was only mildly increased for 

uncoated probes, the intensity distribution profile showed a drastic increase of  intensity. 

This inconsistency between cell density and GFAP staining intensity suggests that the 

upregulation of GFAP intensity was more from upregulation of GFAP expression as well 

as cell hypertrophy than from increase of cell number. Indeed, we observed that reactive 

astrocytes around uncoated probes showed more hypertrophied morphology and denser 

processes, indicating upregulation of GFAP expression.  
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This study demonstrated that DEX coatings on Si probes not only reduced the 

cellular inflammatory response, but also reduced the expression of chondroitin sulfate 

proteoglycans, the important inhibitory molecules in glial scar.  There was no significant 

difference between the uncoated probes and DEX coated probes for ED1 and CS56 

staining at 4 weeks, this could be either due to drug depletion, or due to the stabilization 

of the inflammatory response.  However, DEX treatment significantly reduced neuronal 

reduction both at 1 week and 4 weeks after implantation, which suggests that reducing 

inflammation immediately after implantation may have long term beneficial 

consequences.  Reactive glial cells may contribute to neuronal reduction through the 

secretion of neurotoxic molecules including glutamate, pro-inflammatory cytokines, 

prostaglandins, NO and free radical species; as well as inhibitory molecules such as 

CSPGs.  Therefore inhibition of glial cell activation may reduce the expression of these 

molecules, which result in less neuronal damage.  

Insertion of neural probes into the brain inevitably ruptures blood vessels, which 

leads to an infiltration of pro-inflammatory cells and molecules into the brain 

parenchyma, and initiates a cascade of inflammatory responses to the implanted probes 

(Schwartz, 2004; Polikov et al., 2005; Spataro et al., 2005). Several studies suggested that 

astrocytes are involved in the BBB formation and repair by inducing endothelial cells to 

form specialized junctional complexes (Brightman, 1991; Neuhaus et al., 1991, Bush et 

al., 1999). In a transgenic mouse model which selectively ablates dividing, reactive, 

transgene-expressing astrocytes, BBB was found to fail to re-form (Bush et al., 1999; 

Faulkner et al., 2004). Since DEX was shown to reduce the reactivity of astrocytes, the 

effects of DEX on BBB repair was investigated in this study. Fibrinogen immunostaining 
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revealed severe BBB leakage 1 day post implantation, which was markedly reduced at 3 

days. By 7 days, the leaked BBB was almost restored for both uncoated and coated 

probes. Complete sealing of BBB for both uncoated and coated probes was observed at 

the end of 4 weeks. The time course of BBB breakdown and repair in our study is in 

agreement with other BBB breakdown studies in brain or spinal cord injuries (Spataro et 

al., 2005; Jaeger and Blight, 1997; Prior et al., 2004; Faulkner et al., 2004). As discussed 

earlier, local release of DEX didn’t change the astrocyte density in the vicinity of the 

neural probes in our study, thus the interaction between astrocytes and endothelial cells 

may not be compromised in our injury model.  

In this study, we evaluated tissue response along the depth of the implanted neural 

probes. We found that glial and neuronal response to the implanted neural probes was not 

depth-dependent. This result is consistent with the observation from other research group 

(Leung et al., 2006). We also found that the reduction of tissue reaction and decrease of 

neural loss by DEX treatment did not change along the implantation tract, which is not 

surprising since tissue reactivity was not depth-dependent. Therefore we expect small 

variability of recording capability for each electrode site along the probe shank. 

This tissue response in this study was mostly analyzed by fluorescent staining. 

The advantages of this technique include 1) specific tissue, cell type and molecules can 

be identified; 2) it can provide the information of spatial distribution of reactive glial cell, 

glial scar associated molecules, and neurons; 3) it is sensitive compared with traditional 

staining; 4) it is more practical and less time-consuming compared with alternative 

methods such as real-time PCR or protein purification; and 5) this technique is widely 

used in evaluation of glial scar and neuronal loss following tissue injury or implantation 
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in the CNS, therefore this technique allows us to compare our results with related studies 

in this field. To reduce the variance of staining intensity caused by cell density, the 

intensity for each staining was normalized to background intensity for each section. In 

addition, both uncoated and coated conditions were in the same sections, if one section 

had higher/lower background staining intensity, intensity on both sides of the section 

would be relatively higher/lower accordingly, so it won’t change the result that which 

side had higher intensity due to tissue reaction. We also performed cell counting as a 

supplement to intensity quantification analysis. The disadvantages of this technique are 1) 

fluorescent intensity is affected by many factors, including staining procedure, exposure 

time when taking the pictures, and cell density; 2) fluorescent intensity may not be 

proportional to the degree of activation. For example, if the GFAP intensity is reduced 

50%, it doesn’t mean that the GFAP expression was reduced 50%. We can not tell how 

much GFAP expression is reduced exactly. If GFAP fluorescent intensity is significantly 

reduced, we can tell that GFAP expression is significantly reduced, but we can not tell 

the degree of GFAP reduction. To reduce the effects of these factors on fluorescent 

intensity, for each type of staining, the sections were stained simultaneously, and the 

same exposure time was used for all sections. Then the fluorescent intensity was 

normalized to background intensity to reduce the effect of cell density.  

 

Conclusions 

This study demonstrates that local delivery of DEX can reduce the cellulular and 

molecular inflammatory responses to the implanted neural probes, as well as significantly 

decrease neural reduction in the immediate vicinity of the probes in a 4 week period 
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study. This might be a promising strategy to improve the long-term recording stability of 

silicon neural probes. The levels of reactive microgla/macrophages and CSPGs around 

uncoated probes were significantly reduced at 4 weeks compared with 1 week, suggesting 

that they may not play an important role in chronic inflammatory response.  In contrast, 

astrocyte reactivity did not decrease with time. Therefore the role of astrocyte in chronic 

inflammatory response and glial scar development needs to be investigated in the future. 

If future study shows that astrocytes do not contribute to further neuronal loss and 

increase of electrode impedance in the long term (months to years), then local delivery of 

DEX in early stage may be sufficient for mitigating the inflammatory tissue reaction. 

Otherwise it is important to investigate if early DEX treatment is sufficient to reduce 

astrocyte reactivity in the long term. If not, then alternative strategy needs to be explored 

to enable continuous drug delivery throughout the course of electrode implantation.  
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CHAPTER VI 

 

CLOSING 

   

Summary 

 Stable single-unit recordings from the nervous system using microelectrode arrays 

can have significant implications for the treatment of a wide variety of sensory and 

movement disorders. However, the long-term performance of the implanted neural 

electrodes is compromised by the formation of glial scar around these devices, which is a 

typical consequence of the inflammatory tissue reaction to implantation-induced injury in 

the CNS.  The glial scar is inhibitory to neurons and forms a barrier between the 

electrode and neurons in the surrounding brain tissue (Cui et al, 2003; Schwartz, 2004; 

Turner et al; 1999).  Therefore, to maintain long-term recording stability, reactive gliosis 

and other inflammatory processes around the electrode need to be minimized.   

This work has succeeded in the development of neural electrode coatings that are 

capable of sustained release of anti-inflammatory agents while not adversely affecting the 

electrical performance of the electrodes. The effects of coating methods, initial drug 

loadings on release kinetics were investigated to optimize the coatings. The physical 

properties of the coatings and the bioactivity of released anti-inflammatory agents were 

characterized.  The effect of the coatings on the electrical property of the electrodes was 

tested. Two anti-inflammatory agents were screened by evaluating their anti-

inflammatory potency in vitro. Finally, neural electrodes coated with the anti-

inflammatory coatings were implanted into rat brains to assess the anti-inflammatory 
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potential of the coatings in vivo. This work represents a promising approach to attenuate 

astroglial scar around the implanted silicon neural electrodes, and may provide a 

promising strategy to improve the long-term recording stability of silicon neural 

electrodes.  

 

Conclusions 

 

Development and characterization of coatings capable of releasing α-MSH  

This work developed and characterized nitrocellulose-based coatings for Si-

substrates/electrodes. Anti-inflammatory neuropeptide α-MSH was incorporated in this 

system and slow, sustained release over 21 days was achieved in vitro. α-MSH released 

on day 21 was still bioactive and successfully inhibited NO production.  Both coating 

methods and initial drug loading directly affected the release rate. Matrix loading method 

showed a lower initial burst compared with reservoir delivery method, suggesting that 

Matrix method has a more stable release rate.  Higher initial loading increased the release 

rate as well as the mass released. Therefore high initial loading enables fast, high dosage 

release, while low initial loading allows for slow, low dosage release. In addition, 

impedance measurement showed that the α-MSH loaded nitrocellulose coatings reduced 

the magnitude of electrode impedance at the biologically relevant frequency of 1 kHz, 

and consequently, improved the signal transport across the neural interface and helped to 

increase the detection sensitivity to neural activity.  
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Development and characterization of coatings capable of releasing dexamethasone 

This work developed and characterized a nitrocellulose-based coating for the 

sustained local delivery of the anti-inflammatory drug dexamethasone (DEX), a synthetic 

glucocorticoid that effectively reduces inflammation in the CNS.  In vitro DEX release 

was observed over 16 days, with a relatively high release in the first three days and a 

slow, stable release thereafter. The released DEX remained bioactive. Impedance 

spectroscopy showed that the dexamethasone-loaded nitrocellulose coatings significantly 

reduced the magnitude of electrode impedance at the biologically relevant frequency of 1 

kHz through an increase of capacitance.  Coating stability test demonstrated that the 

coatings remained intact during the insertion procedure. 

In vitro evaluation of the anti-inflammatory agents 

This work examined the anti-inflammatory potency of DEX and α-MSH. Both 

anti-inflammatory agents were shown to be able to inhibit NO production by activated 

microglia and were not neurotoxic. However, DEX was shown to be more powerful than 

α-MSH, as it not only reduced NO production more effectively, but also inhibited 

microglia and astrocyte proliferation. This work further evaluated the anti-inflammatory 

effects and neurotoxicity of DEX at various dosages on cortical cells including microglia, 

astrocytes and neurons. 1, 10 and 100 μM DEX showed similar inhibitory effects on 

LPS-stimulated NO production and proliferation in microglia culture. In addition, DEX at 

all three concentrations inhibited astrocyte proliferation and didn’t show neurotoxicity. 1 

and 100 μM DEX significantly inhibited the cytokine production by microglia and 

astrocytes. These results suggest that the anti-inflammatory effects and safety of DEX are 

not affected even at 100 times of its normal treatment dosage.   
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In vivo evaluation of nitrocellulose-DEX coatings 

This work assessed the anti-inflammatory potent of nitrocellulose-DEX coatings 

in vivo. Silicon neural probes with and without nitrocellulose-DEX coatings were 

implanted into rat brains, and inflammatory response was evaluated 1 week and 4 weeks 

post implantation.  DEX coatings significantly reduced the reactivity of microglia and 

macrophages one week post implantation as evidenced by ED1 immunostaining.  CS56 

staining demonstrated that DEX treatment significantly reduced chondroitin sulfate 

proteoglycan (CSPG) expression one week post implantation.  Both at one week and at 

four week time points, Glial fibrillary acidic protein (GFAP) staining for reactive 

astrocytes and neurofilament (NF) staining revealed that local DEX treatment 

significantly attenuated astroglial response and reduced neural reduction in the vicinity of 

the probes. Weak ED1, neurocan and NG2 positive signal was detected four weeks post 

implantation for both coated and uncoated probes, suggesting that they may not play an 

important role in chronic inflammatory response.  In contrast, astrocyte reactivity did not 

decrease with time. Therefore the role of astrocyte in chronic inflammatory response and 

glial scar development needs to be investigated in the future. If future study shows that 

astrocytes do not contribute to further neuronal loss and increase of electrode impedance 

in the long term (months to years), then local delivery of DEX in early stage may be 

sufficient for mitigating the inflammatory tissue reaction. Otherwise it is important to 

investigate if early DEX treatment is sufficient to reduce astrocyte reactivity in the long 

term. If not, then alternative strategy needs to be explored to enable continuous drug 

delivery throughout the course of electrode implantation. Collectively, this study 

demonstrated that the nitrocellulose-DEX coating can effectively attenuate the 
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inflammatory tissue response to the implanted neural probes, and reduce neural reduction 

in the vicinity of the coated probes in a 4 week period. This may represent a promising 

approach to attenuate astroglial scar and reduce neural reduction around implanted neural 

probes.  

 

Directions for Future Work 

 

Quantification of DEX Release in Vivo  

 This research studied the release profile of DEX in vitro, however, the duration 

and spatial distribution of DEX released in vivo is difficult to estimate. This may be 

accomplished by using radiolabel DEX such as [3H]-DEX for quantification of DEX 

release in vivo. In detail, neural probes coated with nitrocellulose-[3H]-DEX will be 

implanted into rat brains as described in Chapter V, the spatial distribution of DEX will 

be assessed at different time points ( 1 day, 3 days, 1 week and 4 weeks) by measuring 

the radioactivity using a scintillation counter and autoradiography. At each time point, the 

rats will be decapitated and the brains are frozen immediately. For quantification of [3H]-

DEX radioactivity, sagittal sections parallel to the probe shaft will be cut and 

homogenized, the tissue radioactivity will be determined by a scintillation counter. For 

visualization of DEX distribution, horizontal sections perpendicular to the probe shaft 

will be cut and used for autoradiography.  A mathematical model will be developed to 

predict the time and spatial distribution of DEX released in vivo. By comparing the drug 

release profile in vivo with the results from histological analysis and chronic recording, 

this mathematical model will help optimize initial drug loading and release duration. 
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Chronic Neural Recording 

 The ultimate goal of this research is to achieve long-term recording stability of 

silicon neural probes. This research has demonstrated significant decrease of 

inflammatory responses and neural reduction around the nitrocellulose-DEX coated 

neural probes, it would be valuable to correlate this improvement in tissue response with 

the long-term recording performance of the silicon neural probes.  The failure of chronic 

recording can be attributed to two factors: the isolation of neurons from the electrode 

sites and increase of electrode impedance.  Both factors are caused by the glial scar 

formation around the implanted neural probes.  Neuron isolation form the electrodes may 

cause poor recording quality such as low signal-to-noise ratio (SNR) or unresolvable 

action potentials (noise). The change of following parameters over time will be used to 

evaluate the functional recording stability of the neural probes. 

1) Number of active electrodes: An electrode is considered to be active if it could 

record resolvable action potentials (Rousche and Normann, 1998). The total number of 

active electrode sites as a function of time will be assessed. 

2) Single unit stability: Recording sites containing single units will be used to 

calculate the ratio “# of units/recording sites” over time.  

3) Stability index: To evaluate the stability of the electrode-tissue interface for the 

implanted neural probes. A template for each neural unit is obtained by averaging all of 

the neural spikes in that unit. If there is no significant change in template amplitude and 

shape, this indicates that there is no significant change of the interface between the neural 

electrode and the neural tissue (Liu et al, 1999). 
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4) Signal-to-noise ratio: SNR will be calculated by dividing the peak-to-peak 

amplitude of template waveform (VPP) by twice the standard deviation (Stdev) of raw 

data from which template was generated (Nordhausen et al., 1996).  

SNR=Vpp / 2 x Stdev                                                 [1] 

 5) Recording longevity: The recording longevity of a neural electrode is defined 

as the largest number of consecutive days during which resolvable action potentials can 

be recorded by the electrode (Liu et al, 1999).  

6) Electrode impedance 

 These parameters will be correlated with histological analysis to investigate the 

relationship between tissue reaction and functional electrode performance.  

Delivery of Neurotrophic Factors 

 This research demonstrated that local delivery of DEX decreased neural reduction 

around the neural probes. However, it remains unknown if this improvement is sufficient 

for obtaining stable neural recordings. A chronic recording study demonstrated that many 

electrode sites with low impedance stopped detecting neural activity over time (Cui et al, 

2003). The authors suggested that this was caused by migration of neurons away from the 

electrode sites. If we observe the same phenomena in our chronic recording study, then 

DEX alone may not be sufficient to keep neurons close to the electrode sites. If this is the 

case, we will deliver neurotrophic factors together with DEX to further improve neuronal 

survival and attract neurons to migrate to the electrode sites.  

 Brain derived neurotrophic factor (BDNF) is a potent neurotrophic agent 

promoting survival of CNS neurons. Neurotrophic factors play an important role in 

developing and adult nervous system (Davies, 1996; Lindsay, 1996). The chemotactic 



 139

guidance of various migrating neurons is potentially mediated by the neurotrophin 

BDNF.  BDNF has been shown to be upregulated in response to injuries to the spinal 

cord (Friedman et al, 1994; Dougherty et al, 2000), retinal neurons (Caleo et al, 2000), 

and in cortical neurons in Alzheimer’s patients (Durany et al, 2000). Furthermore, local 

delivery BDNF has been demonstrated to stimulate neurite growth and permit functional 

recovery after spinal cord injury (Jain et al, 2006; Tobias et al, 2005). In addition to its 

neurotrophic effects, recently studies have shown that BDNF have anti-inflammatory and 

anti-oxidant effects (Joosten and Houweling, 2004; Jain et al, 2006). Therefore BDNF is 

an excellent candidate to promote neuronal survival and migration at the site of implant, 

and attenuate inflammatory tissue responses.  

Alternative Animal Models 

 The results of this research were all done in rats. Rodent model is well 

characterized and widely used for preliminary variable screening and optimization. This 

research has demonstrated that local delivery of DEX had anti-inflammatory and 

neuroprotective effects in rat model.  The efficacy of the anti-inflammatory coatings 

needs to be further evaluated in higher animals that are genetically more close to human 

beings such as primates.  Functional recording studies showed that it is easier to obtain 

consistent high-yield recordings in the rodent than higher animals such as cats and 

monkeys (Witte et al, 1999; Rousche et al, 1998, Maynard et al, 1996). This may be 

related to the differences in the reaction to implantation or to the differences in cortical 

folding between the rodent (lissencephalic) and primate (gyrencephalic) (Schwartz, 

2004).  If our functional recording study in rat model shows stable chronic recording for 
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uncoated control silicon neural probes, we will switch the animal model to cats or 

primates.  

New Electrode Designs 

 This research demonstrates that local delivery of DEX from electrode coatings is 

capable of mitigating the inflammatory tissue response, as well as reducing neural loss 

around the implanted neural electrodes in a 4-week period study. However, the 

disadvantage of this strategy is the problem of drug depletion. While we can modify the 

coating design to slow the process of drug depletion, the drug will eventually be depleted. 

It remains unknown if the inflammatory response will come back after the drug is 

depleted. If future long term study demonstrates that continuous drug treatment is 

necessary for suppressing the inflammatory response throughout the course of electrode 

implantation, then coating strategy will not be applicable. In this case, new electrode 

designs need to be developed.  

 One promising strategy is the microfluidic drug delivery system as discussed in 

Chapter I. In current designs microfluidic channels are not connected to outer devices, 

thus drug can not be refilled into the channels after drug depletion. In the future, new 

designs can be developed so that the microfluidic channels can be connected to an outer 

drug reservoir for drug refilling. Another potential problem for this delivery system is 

that the outlet ports where the drug is released from the microchannels could be clogged 

by tissue infiltration. However, we may turn this disadvantage into advantage by 

releasing neurotrophic factors to induce neuronal ingrowth to the electrodes.   
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APPENDIX A 

 

A SIMPLE ULTRAVIOLET SPECTROSCOPY METHOD  

FOR THE DETERMINIATION OF ΑLPHA-MELANOCYTE 

STIMULATING HORMONE CONCENTRATION 

   

Introduction 

 Alpha-melanocyte stimulating hormone (α-MSH) is a powerful drug candidate 

due to its pleiotropic effects on inflammation and energy homeostatis, and has potential 

therapeutic applications for the treatment of inflammatory diseases (Etemad-Moghadam 

et al., 2002; Starowicz and Przewlocka, 2003). Thus a fast and reliable method of 

measuring α-MSH concentration is highly desirable to support the development of local 

delivery systems for α-MSH. The standard method for determination of α-MSH 

concentration is high-performance liquid chromatography (HPLC). The aim of this study 

was to develop an alternative analytical method to the more time consuming HPLC 

method.  

 α-MSH is a peptide with a molecular weight of 1,665 daltons. As there is no 

common method for peptide quantification, we first explored the possibility of using 

protein quantification methods. One of the most common methods of measuring protein 

concentrations involves determination of the absorption of protein solution between 260 

to 280 nm (Murphy and Kies, 1960, Wolf, 1983). However, this method is insensitive to 

protein concentrations less than 50 µg/ml (Wolf, 1983). The normal therapeutic level for 

α-MSH is less than 2 µg/ml, thus it is highly desirable that the sensitivity of the 
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quantification method is less than 2 µg/ml. Bradford assay is a sensitive colormetric 

technique that is commonly used for determination of protein concentration in solution 

(Bradford, 1976; Sapan et al, 1999). However, the detection limit of protein molecular 

weight for this method is 3,000 to 5,000 daltons, which is higher than that of α-MSH.  

Waddell’s method uses the difference between 215 and 225 nm (Waddell, 1956). The 

sensitivity of this method was reported to be dependent on the protein tested, and the near 

linear range did not generally extend beyond the range of 1.5 – 45 µg/ml (Wolf, 1983).  

In this study, we explored the possibility of using the Waddell’s method to quantify α-

MSH concentration. 

 

Materials and Methods 

Preparation of an α-MSH Standard Curve 

 A stock solution containing 1 mg/ml of α-MSH (Sigma) was prepared by 

dissolving 1 mg of α-MSH in 1 ml 0.1 M Dulbecco’s phosphate-buffered saline (DPBS, 

Invitrogen). The stock solution was diluted in 0.1 M DPBS to a concentration of 512 

µg/ml.  15 serial 2-fold dilution was performed with 0.1 M DPBS to generate the α-MSH 

standard curve (512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 

0.01563 µg/ml).  

Ultraviolet Spectrophotometric Measurement 

 100 µl α-MSH at each concentration was added into the wells of a 96-well UV 

plate (Greiner Bio-one) in triplicate. The absorbance was measured at 215 and 225 µm 

with a microplate reader (Bio-Tek instruments, VT).  The absorbance at 225 µm was 
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subtracted from that at 215 µm. The subtracted absorbance was plotted against the 

concentrations to generate the α-MSH standard curve. 

 

Results and Discussions 

 215 and 225 nm absorbances of α-MSH were measured over the concentration 

range of 0.01563 to 512 μg/ml.  Linear relationship of the subtracted absorbance relative 

to concentration was observed over the concentration range of 0.25 to 128 μg/ml (Figure 

A.1).  However, when we fit the subtracted absorbance back to the standard curve to 

calculate the measured α-MSH concentration, the percentage differences between the 

measured concentrations and actual concentrations were less than 10% only at 

concentrations of 1, 32, 64 and 128 μg/ml (Table A.1a).  
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Figure A.1: α-MSH standard curve over a concentration range of 0.25 
to 128 μg/ml.   Absorbance Δ, is the difference between the absorbance at 215 and 
225 nm (subtracted absorbance). 
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To solve this problem, we generated a standard curves over a lower concentration 

range from 0.25 to 4 μg/ml (Figure A.2), as shown in Table A.1b, for the five 

concentration points in this range, the percentage differences between the calculated 

concentrations and actual concentrations were all less than 10%.  In addition, four of 

them showed 3% or less differences between the measured concentrations and the actual 

concentrations. For our drug delivery application, 10% estimation error for concentration 

is reasonably accurate. Thus we generated a standard curve with acceptable accuracy 

over the range from 0.25 to 4 μg/ml.  The detection limit was as low as 0.25 μg/ml.  For 

α-MSH solution at a concentration higher than this range, we can use the full range (0.25 

to 128 μg/ml) standard curve to estimate the concentration first, and then dilute the 

solution to a concentration within the this range to be measured. Next, we explored the 

α-MSH 
concentration 

(µg/ml) 

225 nm-215 nm 
reading  

a measured 
concentration 

(0.25-128µg/ml) 

b  measured  
concentration 
(0.25-4 µg/ml) 

c  measured  
concentration 

(16-128 µg/ml) 
0.25 0.10833 0.021 d(92%) 0.242 (3%)  
0.5 0.109 0.438 (12.5%) 0.545 (9%)  
1 0.11 1.063 (6.3%) 1 (0%)  
2 0.11233 2.521 (26%) 2.061 (3%)  
4 0.11667 5.229 (30.7%) 4.03 (0.8%)  
8 0.12267 8.979 (12.2%)   
16 0.13033 13.771 (13.9%)  15.771 (1.4%) 
32 0.15567 29.6 (7.5%)  31.604 (1.2%) 
64 0.21 63.563 (0.7%)  65.563 (2.4%) 
128 0.31 126.063 (1.5%)  128.063 (0.05%) 

Table A.1: 215 nm-225 nm readings and measured α-MSH concentration 
calculated from the generated standard curves.   

a α-MSH calculated based on the standard curve generated over the range of 0.25-128µg/ml. 
b α-MSH calculated based on the standard curve generated over the range of 0.25-4 µg/ml. 
c α-MSH calculated based on the standard curve generated over the range of 16-128µg/ml. 
d Percentage difference between actual concentration and measured concentration. 
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feasibility of generating a standard curve over a higher concentration range to reduce the 

need for dilution.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3 showed a standard curve generated over the range from 16 to 128 

μg/ml. as shown in Table A.1c, for all the concentration points in this range, the 

differences between the calculated concentrations and actual concentrations were less 

than 3%.   

Collectively, we generated two standard curves over the ranges from 0.25 to 4 

μg/ml, and 16 to 128 μg/ml respectively with Wadell’s method for quantification of α-

MSH. This method is simple, reasonably accurate, and highly sensitive.  To our 

knowledge, this is the first report of using Wadell’s method for peptide quantification. 
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Figure A.2: α-MSH standard curve over a concentration range of 0.25 
to 4 μg/ml.   Absorbance Δ, is the difference between the absorbance at 215 and 
225 nm (subtracted absorbance).  
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Figure A.3: α-MSH standard curve over a concentration range of 16 to 
128 μg/ml.   Absorbance Δ, is the difference between the absorbance at 215 and 
225 nm (subtracted absorbance).  
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APPENDIX B 

 

DETAILED GENERAL PROCEDURES 

   

Real-Time RT-PCR Methodology 

Outline: 

I. Total RNA isolation 

II. First strand cDNA synthesis 

III. Amplification of target Sequence 

IV. Generation of standard curves 

V. Melting curve analysis 

VI. Real-time PCR 

 

Detailed Procedures 

I. Total RNA isolation 

A. Materials 

TRIZOL Reagent (Invitrogen) 

Chloroform 

Isopropyl Alcohol 

75% Ethanol (in DEPC-treated RNase/DNase Free Water) 

DEPC-treated RNase/DNase Free Water 

RNase/DNase Free Microcentifuge Tubes  
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B. Procedure 

1. Add 1 ml of TRIZOL Reagent to 6-well plate well. 

2. Pass through the pipet a few times to ensure lysis. 

3. Place the lysate in a 1.5 ml conical tube and incubate for 5 

min at room temperature. 

4. Add 200 μl of chloroform to each sample, cap, and shake for 

15 sec. 

5. Incubate at room temperature for 3 min. 

6. Centrifuge samples at 10K for 15 min at room temperature. 

7. Remove colorless phase, and place into new tubes. 

8. Add 0.5 ml of isopropanol to the colorless phase and mix 

well. 

9. Incubate at room temperature for 10 min. 

10. Centrifuge at 10K for 10 min at room temperature. 

11. Remove supernatant and discard. Wash with 1 ml 75% 

ethanol, mix and centrifuge at 10K for 5 min. 

12. Remove ethanol, brief dry the RNA pellet and dissolve the 

RNA in 11 μl RNase/DNase free water and incubate for 10 

min at 55°C.  

II. First strand cDNA synthesis 

Reverse transcription of the first strand cDNA is carried out with the 

iScriptTM cDNA synthesis kit (Bio-Rad). The following procedure is based on 

the manufacturer’s protocol. 
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1. Prepare the following reaction mixture in each tube: 

Components    Volume per reaction 

5x iScript reaction mix    4 μl 

iScript reverse transcriptase   1 μl 

Nuclease-free water    x μl 

RNA template (1 μg total RNA)  x μl 

_________________________________________________

 Total volume     20 μl 

2. Reaction protocol 

Incubate the reaction mixture: 

 5 min at 25°C 

 30 min at 42°C 

 5 min at 85°C 

 Hold at 4°C (optional) 

III. Amplification of target Sequence 

This step is necessary to produce the standard curve to determine the 

starting quantity of unkown RNA. The reaction is carried out with the Taq 

recombinant DNA polymerase (Invitrogen). The following procedure is 

modified from the manufacturer’s protocol. 

1. Add the following components to a nuclease-free 0.5 ml microcentrifuge 

tube sitting on ice: 
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Components    Volume Final concentraton 

10x PCR buffer minus Mg  5 μl  1x 

10 mM dNTP mixture  1 μl  0.2 mM each 

50 mM MgCl2   1.5 μl  1.5 mM 

Forward primer (10 μM)  0.5 μl  0.1 μM 

Reverse primer (10 μM)  0.5 μl  0.1 μM 

Template DNA   1 μl  n/a 

Taq DNA polymerase (5U/μl) 0.1 μl  0.5 U 

Nuclease-free water   40.4 μl  n/a 

________________________________________________________ 

Total volume    50 μl 

2. Incubate the tubes in a thermal cycler at 95°C for 3 min to completely 

denature the template. 

3. Perform 35 cycles of PCR amplification as follows: 

Denature 95°C for 30 s 

Anneal  55°C for 30 s 

Extend  72°C for 1 min 

4. Incubate an additional 7 min at 72°C and maintain the reaction at 4°C. 

IV. Generation of standard curves 

1. Collect the amplified product from step III and determine its 

concentration by UV spectroscopic reading at 260 nm (A260). 

2. Dilute the amplified cDNA in nuclease-free water to a final 

concentration of 50 nM. 
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3. Make a series of serial dilutions ranging from 0.1 nM to 0.0001 pM to 

generate the standard curve. 

V. Melting curve analysis 

This step is a necessary step to determine the optimal annealing 

temperatures for the primers of genes of interest. The reaction is carried out 

with the iQTM SYBR Green Supermix (Bio-Rad). The following procedure is 

modified from the manufacturer’s protocol. 

1. Prepare eight identical real-time PCR reactions for each gene. 

Components    Volume Final concentraton 

iQ SYBR Green Supermix  12.5 μl  1x 

Forward primer (100 μM)  0.05 μl  0.2 μM 

Reverse primer (100 μM)  0.05 μl  0.2 μM 

Template DNA   1 μl  n/a 

Nuclease-free water   11.4 μl  n/a 

__________________________________________________________ 

Total volume    25 μl  

2. Perform a Two Step Amp + Melt Curve Analysis using the Bio-Rad 

MyiQ Cycler program. The annealing temperatures for the 8 reactions 

are 55°C, 56.1°C, 57.9°C, 60.5°C, 64.3°C, 67.1°C, 68.9°C and 70°C 

respectively.  

a. Incubate the tubes in a thermal cycler at 95°C for 3 min to 

completely denature the template. 

b. Perform 35 cycles of PCR amplification as follows: 
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Denature  95°C for 15 s 

Anneal  55°C/ +15°C for 30 s 

Extend  72°C for 30 s 

c. Melting curve analysis was performed immediately after the 

amplification step under the following conditions: 

Denature  95°C for 1 min 

Anneal  55°C for 1 min 

100 cycles of 0.4°C increments from 55°C to 95°C (10 s 

each)  

3. Visualize Melt Curve to determine the primer binding efficiency and the 

optimum annealing temperature. 

VI. Real-time PCR 

1. Prepare real-time PCR reactions for unknown RNA in triplicate and 

standard RNA in replicate for each gene.  

Components    Volume Final concentraton 

iQ SYBR Green Supermix  12.5 μl  1x 

Forward primer (100 μM)  0.05 μl  0.2 μM 

Reverse primer (100 μM)  0.05 μl  0.2 μM 

Template DNA   1 μl  n/a 

Nuclease-free water   11.4 μl  n/a 

__________________________________________________________ 

Total volume    25 μl  
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2. Perform a Two Step Amp + Melt Curve Analysis using the Bio-Rad 

MyiQ Cycler program.  

a. Incubate the tubes in a thermal cycler at 95°C for 3 min to 

completely denature the template. 

b. Perform 35 cycles of PCR amplification as follows: 

Denature  95°C for 30 s 

Anneal  optimal annealing temperature for each gene 

for 30 s 

Extend  72°C for 1 min 

c. Melting curve analysis is performed immediately to confirm 

that there were no primer dimmers in the PCR reaction under 

the following conditions: 

73°C for 3 min 

55°C for 1 min 

100 cycles of 0.4°C increments from 55°C to 95°C (10 s 

each)  

3. The starting quantity of unknown RNA was decided with MyiQTM 

Single-Color Real-Time PCR detection system.  
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Immunohistochemistry – Fluorescent Microscopy 

Materials: 

 1x phosphate buffered saline (PBS, Roche) 

 Triton X-100 (Sigma) 

 Normal goat serum (Invitrogen) 

Procedure: 

1. Prepare washing solution: 0.5% triton in 1 x PBS: 

1 L of 1 x PBS + 5 ml of Triton X-100 

2. Prepare blocking solution (blocking solution will minimize non-specific 

binding of antibodies): 

Blocking solution = 4% goat serum in washing solution 

3. Prepare primary antibody: 

Primary antibodies are mixed with blocking solution to dilute. 

4. Prepare secondary antibody: 

The secondary antibodies used in this research are goat anti-mouse 

IgG1 Alexa 594 (red), and goat anti-Rabbit IgG (H+L) Alexa 488 (green). 

The secondary antibodies are diluted in blocking solution (1:200). 

5. Prepare nuclear dye 4’,6-diamidino-2-phenylindole (DAPI, Molecular 

Probes) solution (cell nuclei marker): 

10 μM DAPI in 1 x PBS 

6. Transfer floating tissue sections into the blocking solution for 1 h at room 

temperature.  



 155

7. Remove the blocking solution and add primary antibody without washing 

procedure. Incubate at 4°C overnight. 

8. Wash the tissue sections with washing solution 3 times (10 min each time) 

on a orbital shaker. 

9. Incubated the tissue sections with secondary antibody for 1 h at room 

temperature in dark. 

10. Repeat step 9. 

11. Incubate the tissue sections with DAPI solution for 10 – 15 min at room 

temperature in dark. 

12. Wash with 1 x PBS twice. 

13. The tissue sections are carefully mounted on glass microscope slides with 

Fluoromount-G (Southern Biotechnology Associates, Inc. Birmingham AL). 
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Hemotoxyline and Eosin (H&E) Staining 

 

Reagents for H&E staining: 

 Xylene  

 Xylene substitute 

 Acid Ethanol (1 ml HCl in 200 ml 70% ethanol) 

 Scott’s Solution (2% Magnesium Sulphate, 0.2% Sodium Bicarbonate in water) 

 Hematoxylin (Poly Scientific) 

 Eosin (Poly Scientific) 

 Cytoseal 60 Mounting Medium (Richard-Allan Scientific) 

Procedure: 

1. Place slides containing frozen sections in a slide holder. 

2. Wash slides with water for 2 min 

3. Hematoxylin staining: 

Hematoxylin  10 sec 

Water   1 min 

Acid alcohol   1 sec 

Water   1 min 

95% alcohol  1 min 

4. Eosin staining and dehydration: 

Eosin   30 sec 

95% alcohol  1 min 

100% alcohol  1 min 
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100% alcohol  2 min 

100% alcohol  2 min 

Xylene substitute 2 min 

Xylene substitute 2 min 

Xylene   

5. Coverslip slides using Cytoseal 60 Mounting Medium.  
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