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SUMMARY 

 

Epoxy-cast Al+Fe2O3 thermite composites are an example of a structural 

energetic material that can simultaneously release chemical energy while providing 

structural strength.  The structural/mechanical response and chemical reaction behavior 

are closely interlinked through characteristics of deformation and intermixing of 

reactants.  In this work, the structural and energetic response of composites made from 

stoichiometric mixtures of nano- and micro-scale aluminum and hematite (Fe2O3) 

powders dispersed in 47 to 78 vol.% epoxy was investigated by characterizing the 

mechanical behavior under high-strain rate and shock loading conditions. 

The main focus of the work was to understand the influence of microstructure on 

mechanical behavior in epoxy-cast Al+Fe2O3 materials when exposed to high stress, large 

strain, and high rate loading conditions.  The material’s Hugoniot at pressures up to 

approximately 20 GPa for an Al+Fe2O3+78 vol.% epoxy composite and up to 

approximately 8 GPa for Al+Fe2O3+60 vol.% epoxy composite has been determined.  

The results reveal an inert pressure-relative volume (P-V) and shock-particle velocity   

(US -UP) response in the range of the shock-conditions explored, with the      

Al+Fe2O3+60 vol.% epoxy composite showing a greater shock stiffness.  The addition of 

solid particle inclusions alters the Hugoniot response as compared to pure epoxy 

behavior.  This is attributed to possible induced bulk damage that changes the 
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composite’s response as impact stress increases.  While the 78 vol.% epoxy composition 

shows a transition from “undamaged” to “damaged” behavior that approaches pure epoxy 

response, the 60 vol.% epoxy composition exhibits a gradual toughening behavior.  

Impact experiments have also been conducted for characterizing the high-strain rate 

deformation and fracture response obtained from instrumented reverse Taylor tests using 

high-speed camera and velocity interferometry.  The results show that these composite 

materials exhibit viscoelastic-viscoplastic deformation and brittle fracture behaviors.  

Significant elastic and plastic deformation during both loading and unloading stages is 

observed, with approximately 50% elastic recovery of total axial strain occurring rapidly 

(tens of microseconds) after impact.  Coupling high-speed camera images and velocity 

interferometry measurements shows that the elastic recovery coincides with peak axial 

strain and the elastic and plastic wave interaction.  The incorporation of nano-scale 

aluminum particles enhances the dynamic stress-strain response and significantly 

improves the composites’ resilience to impact as compared to pure epoxy, and with the 

use of micron-scale aluminum particles. 

Post-mortem analysis of recovered Taylor impacted specimens indicates evidence 

of early stages of strain-induced reactions occurring at select stress, strain, and strain 

rates.  The observed reaction products correlate with results of thermal analysis, which 

include DTA and in situ high temperature x-ray diffraction (HTXRD). 

Central to this study was the interaction of metal-oxide powder mixtures with the 

epoxy matrix and how their chemical and mechanical properties balance to form a 

structural energetic material system.  The study focuses on describing the underlying 

principles governing the deformation and fracture behavior, processing characteristics of 
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epoxy-cast Al+Fe2O3 powder mixtures, mechanochemical sensitivity, and reaction 

response.  In order to accomplish this, the effects of size, morphology, and distribution of 

particles were evaluated based on mechanical and chemical response to high pressures 

and combined stress-strain states using time-resolved measurements. 
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CHAPTER I 
 

INTRODUCTION 

 

Materials that integrate both relatively high-strength and enhanced chemical 

reactivity attributes are investigated in this work.  The candidate material system studied 

is based on a classic oxidation-reduction reaction with a metal and metal-oxide [1].  

Specifically, aluminum constituting the fuel (or reduction agent) and hematite (Fe2O3) 

forming the oxidizer, are cast with epoxy to develop a material that has a combination of 

structural strength and chemical reactivity when subjected to a range of elevated 

pressures (or stresses), large strains, and high-strain rates.  The study examines the 

pressure-volume compressibility and the high-strain rate dynamic response of epoxy-cast 

mixtures subjected to extreme mechanical loading achieved from high-velocity impacts.  

The measured compressibility and dynamic mechanical properties are correlated with 

microstructural characterization of the constituent’s morphology.  High-pressure states 

ranging from approximately 2 GPa to slightly over 20 GPa, generating a range of 

conditions from uniaxial stress to uniaxial strain and, in some cases, a combination of 

both states, are examined.  This study is specifically aimed at verifying the supposition 

that a complex stress state coinciding with highly strained material is necessary for 

reaction initiation to occur in this material system. 
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1.1 Research Motivation 

 

Conventional warhead designs typically constitute a high explosive encompassed 

in a steel casing.  Under the pressure of the rapidly expanding gases generated from the 

explosive detonation, the casing expands and breaks into fragments, with approximately 

30 % of the explosive energy released [2] being dissipated in fragmenting the case. A 

structural energetic material has the potential to allow improved efficiency with the 

coupling of chemical and kinetic energies. 

An epoxy-cast Al+Fe2O3 mixture is a potential candidate material that has been 

considered for modeling the application of structural energetic materials.  The 

fundamental understanding of the mechanical properties, energy states, probable reaction 

pathways, and criteria for initiation and propagation of the chemical species need to be 

addressed before such materials and concepts can be fully considered.  It is also essential 

to develop an understanding of the effect epoxy has on chemical reactivity and structural 

strength, in order to develop a composition that has improved mechanical strength while 

maintaining chemical reactivity. 

Early studies performed in the mid 1930’s by Bridgman [3-6] showed that it was 

possible to initiate reactions for a wide variety of materials, including thermite mixtures 

and explosives, under the combined conditions of very high static and shear pressures.  

Bridgman made qualitative observations for thermite mixtures such as Mg+SiO2, 

Al+K2C2O4, and Si+MgO detonating under the static pressure application of 

approximately 5 GPa.  Similarly, a thermite mixture composed of Al+Fe2O3 experienced 

a detonation, though more violent, under a lower static pressure ranging from 2 to 3 GPa.  
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However, shock recovery experiments performed later by Graham [7] on the Al+Fe2O3 

mixture revealed evidence for a chemical reaction threshold above 15 GPa.  It should be 

noted that this threshold was revealed under uniaxial strain loading conditions suggesting 

the chemical reactivity difference between these studies is highly influenced by 

experimental loading conditions.  It is possible that initiation of chemical reactions 

subjected to these extreme loading conditions may be caused by a mechanism that is 

more easily facilitated by a combined stress-strain state and is also significantly 

influenced by microstructural morphology.  To confirm this notion, a detailed 

investigation of the reaction behavior correlated with microstructural characterization of 

the affects of morphology under a variety of controlled loading conditions, is necessary.  

The role of strain rate accompanying the different loading conditions and its influence on 

chemical reactivity and mechanical properties also needs to be established. 

Qualitative results obtained at the Air Force Research Laboratory 

(AFRL/MNME) have demonstrated epoxy-cast powder mixtures react violently when 

subjected to high velocity impacts [8].  However, questions remain about the reaction 

mechanisms involved, influence and nature of complex stress states and strain rates 

occurring during these experiments, and the effect epoxy has on both reactivity and 

structural strength when subjected to these extreme conditions. 

 

1.2 Overview of Thesis 

 

The present investigation concentrates on understanding the equation of state, 

high-strain rate mechanical properties, and mechanochemical reactivity, based both on 

 3



micron-scale and nano-scale morphologies of reactants in the epoxy-cast Al+Fe2O3 

mixture.  Nanoenergetic materials have been shown to reveal additional benefits of 

increased performance (e.g. energy density, rate of energy release, etc.), long-term 

storage stability, and sensitivity to unintended initiation when compared to micron-scale 

materials of the same composition.  The reactive properties of energetic materials are 

strongly affected by their microscopic and mesoscopic morphologies whereby the 

alteration, for example, of the reactants’ particle size or other microstructural attributes 

may enhance or inhibit specific energetic and structural characteristics.  The challenge is 

to understand the synergistic behavior of structural and energetic properties and the effect 

their manipulation may have on overall material behavior.  Materials at the nanometric-

scale also pose an additional strengthening benefit by altering the mesoscale (grain or 

particle scale) behavior and, consequently, the deformation and fracture mechanisms due 

to increased grain boundary area.  Developing nanostructured materials can enhance 

many desired properties, however, these relationships are currently not completely 

understood and require systematic study to ascertain the influence of microstructure or 

morphology on mechanical properties and chemical reactivity. 

The investigation in the general area of the dynamic response of epoxy-cast 

metal-oxide-type material has been motivated by the need to understand the fundamental 

behavior of such materials subjected to rapidly applied loads.  Applied stress, strain, and 

strain rates likely to be experienced particularly during high-speed impacts and 

penetrations need to be systematically studied in conjunction with chemical reactivity 

attributed to a mechanical stimulus in the form of a transient deformation wave.  In 

addition, the fundamental understanding of dynamic material response allows the 
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development of material models used to predict behavior when subjected to dynamic 

loading conditions. 

The overall objective of this work is to develop an understanding of the influence 

of reactants microstructure on mechanical behavior and chemical reactivity of an    

epoxy-cast aluminum and iron-oxide powder mixture composite.  Additionally, it is also 

desirable to establish the required stress and strain state or combination essential for 

initiating a chemical reaction in this material system.  Prior work describing dynamic 

deformation, fracture response, and microstructural influence for materials subjected to 

high-strain rate experiments will be reviewed first in relevance to the present work.  Next, 

the selection of materials, and methods used for specimen fabrication will be discussed.  

Following that, the methodology for the experimental investigation will be outlined, and 

results from quasistatic and dynamic impact experiments will be presented and discussed.  

Finally, an analysis of the key issues will be presented followed by concluding remarks 

including a summary of results and suggestions for future work. 
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CHAPTER II 
 

LITERATURE REVIEW 

 

The interaction of a projectile impacting a target introduces extreme loading 

conditions that produce complex stress states comprised of uniaxial stress and strain or a 

combination of both.  Depending on the impact velocity, geometry, and materials 

involved, elastic-plastic waves or shock waves propagate through the material causing 

dynamic deformation and/or fracture.  The use of epoxy-cast metal-oxide material 

systems requires knowledge of their deformation behavior up to and beyond failure when 

subjected to high-strain rates as a result of high velocity impacts. 

Exposing material systems to the combination of high pressure, shear, and 

assorted strain rates can lead to mechanochemical reactions over a wide time interval 

ranging from the duration of the peak pressure state to the time scale of thermal 

equilibrium.  To evaluate their performance, typically, materials are forced into a state of 

extreme stress and strain by subjecting them to high pressure mechanical waves resulting 

from a high velocity impact or an explosive detonation.  In extreme cases, the time to 

achieve peak pressure may be less than one nanosecond.  However, more often, less 

intense pressure or stress waves are encountered and times to achieve peak pressure may 

be on the order of hundreds of nanoseconds or more.  The rapid application of a high 

pressure and high stress state is controlled by the inertial response of the materials
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themselves as they are plastically deformed introducing a high concentration of defects.  

Assessment of the material response to these loading conditions contains detailed 

information describing the mechanical and chemical properties and processes 

encountered over this short interval. 

The identification of shock-induced reactivity in powder mixtures has been 

traditionally studied using post-mortem material analysis from confined sample recovery 

experiments [7,9].  However, more recent developments using time-resolved 

measurement techniques has resulted in greater confidence and higher sensitivity in stress 

[10-12] and velocity [11,13] measurements as a way to infer the occurrence of chemical 

activity.  Furthermore, these measurements are performed over time intervals relative to 

the shock front propagation, thereby providing information on reaction kinetics in 

addition to providing a means for obtaining shock Hugoniot material property data. 

The following section will give a brief description of structural energetic 

materials, followed by a discussion of dynamic material response as relevant to plastic 

deformation and shock wave loading conditions.  The physics and mechanics of shock 

waves will first be examined to establish the mathematical treatment for describing the 

material state behind and ahead of the shock front.  Next, mechanochemically initiated 

reactions will be discussed followed by the dynamic behavior of reactive metal–oxides.  

Additionally, the effect of an organic binder on reactivity will be presented.  The 

constitutive response of polymeric materials will next be presented and the use of 

nanometric energetic materials will be discussed as they pertain to enhancing chemical 

reactivity by the alteration of reactant particle sizes. Finally, recent experimental studies 

pertaining to the strengthening of epoxy-cast composites will be reviewed. 
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2.1 Structural Energetic Materials 

 

Structural energetic materials are comprised of components with dual-

functionality: an energetic component and a structural load-bearing capability.  They are 

a class of multifunctional materials that incorporate characteristics of high energy density 

and rapid energy release along with enhanced mechanical strength.  Reactive foils used 

for micro-welding [14] and structural propellants [15] are a few examples of such 

materials.  The challenge is to preserve the energetic characteristics of these materials 

when introducing reinforcement and coupling strength and reactivity features within the 

material system. 

To realize advancements in energetics that can reduce weight and enhance 

performance, there is a need to design novel energetic materials and structures that are 

capable of multifunctional performance.  Thermite powder mixtures undergoing 

oxidation-reduction type reactions provide an opportunity of multi-functionality if these 

can also be processed as structural materials.  The design of such materials requires 

characterization of energetic and mechanical properties under dynamic loading 

conditions. 

 

2.2 Material Behavior Under Shock-Compression and Loading 

 

Determination of Hugoniot states over a range of shock conditions is a 

fundamental method for characterizing material response to high-strain rate loading.  

Hugoniot curves identify thermodynamic states that can be achieved in a material through 
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adiabatic compression with the application of a steady shock wave.  Mass, momentum, 

and energy conservation across the shock front relate thermodynamic variables to the 

shock and particle velocities associated with the wave motion.  If the material response to 

loading causes an unsteady shock motion, methods that utilize transmitted-wave 

measurements are not suitable for determining Hugoniot states.  However, a relatively 

accurate technique for determining arbitrary material behavior at high-strain rates is 

achieved through parallel-plate impact experiments.  For these experiments, the material 

of interest is subjected to high velocity impact whereby a flyer plate is accelerated to 

impact the target material in a planar, normal, parallel orientation.  Planar shock waves 

are generated in both the target material and flyer plate, where the axial stress and/or the 

particle velocity are identical across the impact boundary of the two materials as shown 

in Figure 2.1(a-c).  Measurement of either the axial stress or particle velocity of the 

interface provide a stress-velocity Hugoniot state of the test material and permits other 

 
Figure 2.1 Schematic illustration obtained from Meyers [16] from a planar, normal, 
parallel, impact of a projectile (material ‘1’) moving at a velocity, V, at a time a) prior to 
and b) at the moment of impact with material ‘2’.  c) Shows the position after impact, 
while the disturbance wave is propagating within the materials. 
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thermodynamic variables to be also determined.  The following sections will give insight 

into the behavior of materials subjected to shock-compression through high velocity 

impact experiments as described above or by some other means, such as explosive 

loading, forming a steady shock wave within the target specimen.  A general overview of 

shock wave analysis in terms of the Rankine-Hugoniot conservation equations will be 

discussed first and the mathematical foundation necessary to evaluate material behavior 

when subjected to high-strain rates will be established.  This is followed by a discussion 

regarding stress initiated reaction behavior and illustrated with examples of material 

systems which exhibit this behavior.  The section concludes with a discussion about 

reactive behavior of metal-oxide powders or thermite mixtures subjected to dynamic 

loading, highlighting experimental studies concentrating mainly on the Al+Fe2O3 system. 

 

2.2.1 Analysis of Shock Waves 

 

In the hydrodynamic or shock regime, where pressures are orders of magnitude 

beyond the material yield strength, the localized material behavior dominates the strength 

response and the dynamic material behavior is generally described by hydrodynamic 

shock wave theory.  A shock wave is a mechanical disturbance that produces a 

discontinuity in the state variables (temperature, pressure, and density or volume) behind 

and ahead of the shock front.  The shock loaded material is characterized as a region of 

uniaxial strain incapable of lateral material flow, due to the increasing hydrostatic stress 

component exceeds the dynamic flow strength of the material.  The well known  

Rankine-Hugoniot conservation equations [17] of mass, momentum, and energy have 
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therefore, been established as jump conditions defining the material state on either side of 

this disturbance or discontinuity. 

)( PS UU0 SU −= ρρ      (2.1) 

PSUUPP 00 ρ=−      (2.2) 
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2
1

000 VVPPEE −−=−     (2.3) 

uming no phase transformations 

take place, the EOS for many materials is expressed as: 

,     (2.4) 

 

 addition to shock speed and particle velocity (US – UP), as well as other relationships. 

In the above equations, P, indicates the pressure, ρ, the density, US, the shock 

velocity, UP, the particle velocity, E, the energy, and V, the volume, where the zero 

subscript represents the initial state.  A fourth equation necessary to fully define the 

system, known as the equation of state (EOS) for the material, is based on an empirical 

relationship between shock and particle velocities.  Ass

PbS SUCU +=

where Cb is the bulk sound velocity in the material at atmospheric pressure and S is a 

constant, which is a characteristic of the material.  Consequently, by the application of 

these equations it is possible to determine all the shock wave parameters once any two 

variables are known.  Typically, dynamic experiments are designed to measure the shock 

velocity, particle velocity, and pressure.  Often the shock parameters are plotted in the 

form of pressure and particle velocity (P – UP), pressure and specific volume (P – V/V0),

in
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Figure 2.2 Shock Hugoniot plots for aluminum and hematite showing a) P-U , b) P-V, 
and c) US-UP parameter relationships, respectively [18]. 

P
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Examples of these plots, also known as Hugoniot plots, are shown in Figure 2.2(a-c) 

separately for each of the constitutive materials used in this present study; aluminum, 

hematite, and epoxy [18].  These shock parameters are useful for determining shock 

response of materials and connecting shock-induced chemical, mechanical, or physical 

changes that manifest as discontinuities or kinks in the Hugoniot plots. 

 

2.2.2 Stress Initiated Reaction Behavior 

 

Mechanical material response and reaction behavior are closely interlinked 

through deformation characteristics of reactive constituents.  Fundamental mechanisms 

controlling chemical reactions in powder mixtures occur during the stress-pulse rise time 

and microsecond duration of peak pressure.  Critical processes that occur involve plastic 

powders, particularly within and around voids by plastic flow.  All of these processes 

enhance solid-state reactivity of powder materials and are accompanied by moderate 

temperature increases under 

sure equilibrium time of microsecond duration. 

deformation causing particle configuration changes that promote mixing of the reactant 

high-pressure shock loading. 

These reactions take place as a result of a shock wave moving through the 

material and manifest as “shock-assisted” or “shock-induced” chemical reactions.  

Chemical processes which occur following the unloading of the material to ambient 

pressure are known as shock-assisted reactions.  These reactions occur during the time 

interval of thermal equilibrium (several microseconds to milliseconds) once the shock 

wave has passed through the material.  In contrast, shock-induced chemical reactions 

occur within the pres
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Figure 2.3 Example of a shock-induced structural phase transformation for graphite-to-
diamond [19].  The transition takes place at approximately 20 GPa. 

Examples of shock-induced structural phase transformations such as martensitic 

transformations in iron [20,21] and graphite-to-diamond transitions [19,22,23] can 

manifest as shifts or discontinuities in shock adiabats and disclose evidence of 

microstructural changes in recovered materials.  This transition is illustrated in Figure 2.3 

for graphite-to-diamond occurring at approximately 20 GPa.  However, microstructural 

observations in recovered shock compressed materials do not typically provide 

information on whether the observed structural or chemical changes are shock-induced or 

shock-assisted. 

The most revealing evidence of shock-induced mechanochemical reactions has 

been based on time-resolved Hugoniot measurements showing deviation in the shock 

adiabats.  Pressure-volume plots shown in Figure 2.4(a,b) demonstrate compressibility 

changes and increases in shock-wave velocity, which are both associated with  
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Figure 2.4 Time-resolved Hugoniot measurements showing a) pressure-volume plot 
displaying compressibility change for Sn+Te [24] and b) increased shock wave velocity 
for CuI and CuCl [25,26]. 

reaction initiation and the formation of intermetallic compounds.  Furthermore,                

Batsanov, et al. [24,27,28] have used manganin stress gauges to detect chemical reactions 

in Sn+S, Sn+Te, and Al+S powder mixtures and phase transformations in CuI [25] and 

CuCl [26]. 

The effect of particle size on shock-induced reactions has been experimentally 

studied [29] for powder mixtures of Ti and Si.  From microstructural observations and 

time-resolved experiments, the shock initiation of chemical reactions was attributed to a 

solid-state mechanochemical process with particle size and morphology directly 

influencing the occurrence of reaction.  Mixtures of medium size Si and Ti powders    

(10-40 µm) were observed to react under shock compression at pressures of 1.5 to        

3.0 GPa, while no reaction was observed in the fine (Ti = 1-3 µm, Si < 10 µm) and coarse                        
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(Ti = 105-149 µm, Si = 45-149 µm) powder mixtures under identical loading conditions. 

Shock-induced reaction behavior is closely linked with the material’s mechanical 

response when subjected to high-pressure loading.  The tendency for a material to deform 

by plastic flow or localized shear banding can influence the strength and ability for 

reactants to undergo shock-initiated reactions.  Thus, it is important to identify the 

conditions necessary to promote these reactions and extend the understanding of 

mechanical property influence on reaction initiation. 

 

2.2.3 Dynamic Behavior of Reactive Metal-Oxide Mixtures 

 

The assistance of shock waves to activate self-sustaining chemical reactions in 

thermite powder mixtures has been explored in many studies for the purpose of 

synthesizing a number of materials with unique microstructures [30-33].  The mechanical 

and reaction behavior of energetic materials is strongly associated through deformation 

characteristics occurring from plastic deformation of constituent materials or by localized 

shear banding [34].  Additionally, the reactive properties of energetic materials are 

strongly affected by their microscopic and mesoscopic morphologies [35,36]. 

Mechanisms controlling “stress-initiated” chemical reactions in metal–oxide 

powder mixtures are dominated by processes occurring during the microsecond duration 

of the peak pressure state [9].  The initial configuration of the constituent powders, a 

function of their initial packing density and particle morphology, strongly influences the 

overall process by setting up the conditions necessary for enhanced mass mixing and 

fluid-like flow of particles at the shock front.  As the shock wave propagates through 
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porous or distended solids, energy is dissipated in the form of plastic deformation due to 

crushing the solid and filling the voids.  Additionally, the shock wave introduces a large 

concentration of defects. 

Reaction initiation mechanism(s) during shock loading of epoxy-cast thermite 

materials may exhibit characteristics unique to both shock densification behavior of 

powders and solids.  Epoxy-cast metal-oxide materials exhibit morphologies which may 

“passivate” their reactive nature by surrounding reactive agglomerates with epoxy, 

processing.  The metal-oxide constituent particles are in intimate contact within these 

local regions, but may be separated by an epoxy “barrier” that can discourage reaction 

initiatio

forming intimately mixed local regions of reactants as a result of mixing during 

n.  The presence of epoxy may also limit the propagation of deformation into the 

metallic and oxide constituents.  The propagation of a shock wave through this material 

may have local effects throughout the agglomerated regions that are characteristic of 

powder densification, however, the overall response may more resemble that of typical 

low impedance solid. 

Several studies have explored shock compression of aluminum and hematite 

(thermite) powder mixtures.  These studies have addressed the influence of starting 

material characterization on their response to shock loading, with highly exothermic 

reactions in some cases.  Important material properties investigated in these studies are 

effects of powder particle size, morphology, and initial packing density [37], effect of 

shock pressure [7,37-39], volumetric powder mixture distributions [37,39], and the 

intrinsic differences in constituent material properties of various thermite systems. 
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2 3

subjected to shock loading showing a) extended rise times, rounding to the peak pressure 

The application of a shock wave through a stoichiometric powder mixture of 

aluminum and iron-oxide has shown unique dispersive wave behavior as illustrated in 

Figure 2.5(a,b).  Pressure-volume plots display two different crush-up slopes with a 

steeper slope occurring at higher pressures (0.67 to 3.2 GPa) and consequently a smaller 

compression toward solid density.  The dissimilarity in slopes may be attributed to the 

differences in the individual crush-up strengths of aluminum and iron-oxide, or due to the 

voids in the powder being filled as a result of particle size differences between the two 

constituent powders.  Experiments performed to examine the shock compression 

response of Al and Fe2O3 powders [39] mixed in different volumetric ratios equivalent to 

50:50, 40:50, and 25:75 (Al:Fe2O3) have shown propagated wave dispersion varying with 

the volumetric ratio at peak input pressures of 2 GPa.  The equivolumetric mixture also 

revealed crush-up of the powders to solid density (or crush strength) occurring at 

significantly lower pressures, indicating that a more dominant crush-up effect may be 

Figure 2.5 Dispersive wave behavior for stoichiometric powder mixtures of Al+Fe O  

state, and b) from a pressure-volume plot, two different crush-up slopes [38,39]. 

attributed to the lower strength aluminum than iron-oxide.  The observed differences in 
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crush strength may be expected to influence the shock-induced reaction initiation 

behavior, requiring a greater pressure for reaction initiation for materials showing 

increas

owed evidence that it 

occurre

   

ing crush strength. 

Shock recovery studies [7] also examining this metal-oxide system have exhibited 

a reaction initiation threshold above 15 GPa.  Experiments showed evidence that strong 

exothermic reactions are acutely dependent on shock loading conditions.  For example, 

identical experimental conditions where a peak loading pressure of 17 GPa was attained 

using two different explosives for shock loading caused the mixtures to exhibit different 

reaction behaviors.  The first explosive produced a lower pressure early in the detonation 

and gave no evidence of reaction in the specimen.  However, an explosive having a 

higher pressure early in the detonation showed evidence of a fully reacted specimen.  

This indicates first that the material’s intrinsic properties, such as heat of reaction, may 

not play a significant role in the reaction initiation.  Furthermore, examination of the 

recovered specimen, which underwent a chemical reaction, sh

d during the shock event along the outer edge of the specimen and this reaction 

caused a subsequent thermally activated reaction to occur in the bulk of the specimen.  

Thermal analysis (DTA) of the shock-modified powder which did not undergo reaction 

showed a preignition exotherm indicating the presence of shock-produced Hercynite 

(spinel phase FeAl2O4), giving direct evidence for the influence of mechanical activation 

and shock-induced mixing as processing influences the solid-state reaction chemistry.  

Additional experimental studies have indicated similar results showing that both highly 

exothermic reactions such as Al+Fe2O3 (285 kJ/mol of reactants) and weakly exothermic 

reactions such as solid organic acids and their esters reacting with solid alkalis         
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(40-60 kJ/mole) are not associated with thermal activation resulting from bulk or local 

heating of the system [40]. 

Shock-initiated reactions are also influenced by initial powder packing density.  

Subramanian and Thadhani [37] examined the reaction behavior by shock compression of 

equivolumetric powder mixtures of Al+Fe2O3 and Al+Fe3O4 consisting of both fine and 

coarse particle morphologies.  In this study, variations in initial packing densities  

(53 % and 70 % 

       

TMD) and several shock peak pressure conditions (5, 16, and 22 GPa) 

were e

 

      

    

xplored.  The recovered specimens showed evidence of chemical reaction as a 

function of initial packing density and shock loading conditions.  Specimens with an 

initial packing density of 53 % TMD demonstrated that the reaction took place above   

16 GPa whereas an initial packing density of 70 % TMD required a higher shock pressure  

(22 GPa) for reaction to occur.  No reactions occurred at the 5 GPa pressure level for both 

packing densities examined and particle morphology did not appear to have a significant 

detectable role on the chemical reactivity under these conditions. 

Boslough [41] performed planar impact experiments on porous stoichiometric 

mixtures of aluminum and hematite hot pressed with approximately 50 % porosity.  In 

this study, shock temperatures were measured using time-resolved radiation pyrometry.  

Experimentally measured temperatures were compared to calculated values obtained 

from a simple thermochemical model indicating shock temperatures should be 

approximately 1000 and 4000 °K for the reactants and product Hugoniots, respectively.  

He observed an initial temperature spike upon impact and attributed it to the collapsing of 

pores in the mixture.  This work demonstrated that the metal-oxide specimen undergoes a 

partial reaction immediately behind the shock front when shocked to pressures above   
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4 GPa.  The measured temperature range from 2700 to 3400 °K fell below the 

theoretically calculated temperature for full reaction, but did indicate occurrence of a 

partial reaction.  Furthermore, this illustrates dynamic mixing occurring within the shock 

front controls the rate of chemical reaction.  The observation of reaction not going to 

completion after the passage of the shock wave suggests that reaction propagation 

kinetics were inhibited, which was attributed by Boslough to inadequate levels of local 

reactant mixing. 

The dynamic mechanical behavior of thermite mixtures has also been studied by 

Walley

ting impact sensitivity under 

oth uniaxial compression and shear strain states introduced by an inclined anvil      

(angle of 30°).  In ge

pact than the loose powders.  A comparison of pressed disk 

specime

disks where more energy is consumed during the deformation event than in loose 

reactions taking place at initiation sites along the outer edges of the specimen.  

, et al. [42], initially using drop-weight impact experiments to evaluate the 

reaction sensitivity of five different thermite materials, and then performing subsequent 

gas gun shock loading experiments on the material to be determined most reactive.  The 

drop-weight impact experiments were performed on loose powders, cylindrically pressed 

disks, and pre-sheared pressed disk-shaped specimens evalua

b

neral, they found that the pressed disks of thermite powders were 

more sensitive to im

ns also showed that the pre-sheared disk qualitatively reacted (deflagrated) more 

violently.  The authors suggested that the mechanism of reaction during drop-weight 

experiments was due to “hot-spot” formation being more likely in higher strength pressed 

powders.  High-speed camera records gave evidence of this showing very rapid thermite 

Additionally, “jetting” of the material was also observed on these outer edges giving 
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some direct evidence that the stress state of the thermite material induces the chemical 

reaction in regions where the specimen is highly deformed and plastically flowing.  

Having been established as the most reactive thermite composition from the drop-weight 

impact studies, several equation of state experiments were conducted for a thermite 

powder mixture comprised of 40 % aluminum and 60 % potassium perchlorate.  These 

experiments provided the material Hugoniot up to approximately 17 GPa, which however 

showed no chemical reaction initiation in these uniaxial strain shock-loading 

experiments. 

Clearly, these studies indicate there are several key parameters that must 

ollaborate to induce mechanochemical reaction initiation in reactive metal-oxide powder 

ch as particle size and morphology are important for the 

fficient mixing of reactants.  Likewise, the complex stress states, strain rates, and their 

duratio

                       

 

Studies discussed in the previous section have mostly examined the reactivity of 

thermite powder systems with no addition of a binder.  One effect important to this 

current study, which lacks comprehension, is the threshold conditions necessary for 

initiating chemical reaction for polymer matrix composites (epoxy-cast thermite 

materials) when an epoxy binder is used to provide mechanical integrity and improved 

strength.  For reaction initiation to occur, it is first necessary to have intimate contact 

between the metal and metal-oxide constituents which comprise the thermite mixture.  

c

mixtures.  Material parameters su

e

n are also important aspects that must be considered. 

 

2.3 Mechanical and Chemical Response of                                      

Shock-Compressed Polymer-Matrix Composites 
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This has been established through prior work clarifying reaction mechanisms of 

aluminum iron-oxide thermite powder mixtures at normal ambient conditions [43].  

Comparing specimens made from consolidated thermite powders (without binder) and 

epoxy-cast thermite powders, it is conceivable that chemical reactions would be easier to 

induce and become self-sustaining in the consolidated material because of intimacy 

between mixed reactants.  Epoxy, therefore, may inhibit the reaction initiation.  However, 

once initiated, epoxy may have the added benefit of contributing to the overall reaction in 

the form of a gas generator.  Therefore, it is necessary to identify the mechanical stimulus 

necessary to initiate reactions in these epoxy-thermite systems. 

 

2.3.1 Effect of Organic Binder 

 

It is thought that the conditions necessary for mechanochemical initiation of 

reactions in epoxy-cast metal-oxide materials requires a state of high shear deformation.  

Indeed, this has been the observation for many studies examining thermite-type mixtures 

and explosives.  Ames [44] has studied energetic materials manufactured with metal 

powder

    

, et al. [46] conducted high velocity impact ignition studies 

s dispersed within a fluoropolymer binder.  A mixture consisting of aluminum 

(26.5 wt.%) and polytetrafluoroethylene (PTFE) was used to investigate impact-initiation 

through Taylor [45] impact experiments.  This study provided insight into the importance 

of shear stress as a component necessary for the ignition process and related the reaction 

to impact properties such as impact speed or impact stress.  The study was conducted by 

gradually increasing the impact velocity until reaction is observed visually using   

high-speed photography.  Lee
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of soli

m subsequently formed fragments 

impact

d spheres and rods also comprised of PTFE, however, with a slightly lower 

concentration of aluminum (24 wt.%).  In this work, the authors used time-resolved light 

spectroscopy techniques to identify reaction species from high velocity impacts of this 

energetic material in conjunction with observing the impact event with high-speed 

photography.  Their experiments applied three different impact conditions consisting of  

i) direct impact where a spherically shaped specimen was accelerated into a hardened 

steel anvil, ii) indirect impact where a rod shaped specimen was sandwiched between two 

steel anvils in both compression and compression-shear arrangements, and iii) two-step 

impact configuration where a spherical projectile was launched at two parallel-spaced 

steel plates 1.5 and 25.4 mm thick, respectively.  Direct and indirect configurations 

showed similar behaviors whereby heating and some reaction occurred at the moment of 

first impact with the anvil.  However, majority of the reaction occurred following the 

material breaking up and its subsequent impact onto a secondary surface.  In contrast, for 

the two-step impact configuration, reaction initiation was not observed at the moment of 

first impact with the thin plate (1.5 mm), but rather fro

ing the thicker (25.4 mm) stationary anvil plate. 

Under quasistatic or static loads, these materials have an inert behavior and are 

safe to handle.  However, early work performed by Bridgman showed it was possible to 

initiate reactions for a wide variety of materials, including explosives and thermite 

mixtures, under static conditions, whereby the combination of very high static and 

shearing pressures induce a powerful detonation [4-6].  The introduction of the material 

to high pressure and temperature states combined with shear stress is essential to 

stimulate reaction initiation. 
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Davis and coworkers [47] have looked at the possibility of metals and metal-

oxides mixed with a fluorinated polymer detonating when subjected to shock impacts.  A 

series of experiments were performed on Ti+20 % Teflon and Al+Fe2O3+10 % Teflon 

(by weight) mixtures using a gas gun flyer impact configuration.  The Ti+20  % Teflon 

mixture (92.5 % TMD) showed chemical reactions being initiated between shock 

pressures of 1.95 and 3.48 GPa, however a higher pressure ranging from 4.93 to   

13.35 GPa gave no evidence of reaction initiation.  Similarly, the Fe2O3+Al+10 % Teflon 

mixture (80 % TMD) was subjected to shock pressures ranging from 1.71 to 10.29 GPa 

and reaction initiation was limited to a pressure of 1.71 GPa.  In both material systems 

thermal decomposi

    

tion of the Teflon liberates the very reactive fluorine compound.  The 

authors

iots using hypothesized shock-induced reactions.  Results based on the 

reaction models were compared with the experimental data obtained from polyvinylidene 

 suggest the decomposition of Teflon is likely a precursor to the reaction 

initiation, but the metals are believed to react with the Teflon products within the shock 

front.  Additionally, the materials prepared for this study had initial porosity                

(Ti-Teflon 92.5 % and Al+Fe2O3+Teflon 80 % TMD) which was necessary to facilitate 

shear stresses in the material and initiate the reactions. 

The analysis of shock-induced chemical reactions for a powder mixture of 

aluminum and hematite with Teflon was also conducted [48].  Two main chemical 

reactions are thought to take place in this powder mixture consisting of the Al and Fe2O3 

reaction in addition to the Teflon decomposing and reacting with aluminum to produce a 

gaseous product.  The study also suggested that the gas produced may differ depending 

upon the loading condition.  Several different chemical reaction models were evaluated to 

describe Hugon
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di-fluor

r. 

The addition of certain polymers to explosives can also affect their sensitivity for 

to impacts.  Swallowe and Field [50] studied the 

pact behavior of polymers and explosives during deformation using a modified drop-

weight 

ide (PVDF) stress gauges used to monitor shock pressure profiles in the powder 

mixture.  Based on the hypothesized reaction models, shock wave profiles were 

calculated by VRR+DYNA hydrodynamic code and compared to experimental data.  The 

Teflon+Al reaction produces aluminum fluoride according to AlFj, where the number j is 

thought to be influenced by the shock pressure.  The greater the shock pressure, the more 

hematite reacts with aluminum, and the lower value of j results.  Other studies have 

observed similar results.  Lee, et al. [49] have conducted thermal reaction studies for 

many metal/polymer compounds, specifically Al/PTFE and Ti/PTFE.  Their results 

indicate that the reactions became more exothermic as the bond strength between Al-F 

becomes stronge

reaction initiation when subjected 

im

test with a transparent glass anvil combined with high-speed photography.  

Polymers such as polycarbonate (PC) and polysulphone (PS) were observed to sensitize 

pentaerythritoltetranitrate (PETN) explosive while polypropylene (PP) does not, and in 

fact has the opposite effect of de-sensitizing the explosive.  Their conclusion was that the 

sensitizing effect is due to the mechanical behavior of the polymer particles.  Ignition of 

the explosive occurs after or during the catastrophic failure, cracking, and fast flow of the 

polymer, and the initiation site was in close proximity to the polymer region.  This 

sensitizing effect was observed for only the polymers that undergo catastrophic failure 

during impact. 
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A comparison between traditional explosives and thermite mixtures illustrates the 

involvement of different reaction mechanisms.  Explosives undergo reaction initiation by 

the decomposition of a single molecule comprised of the fuel and oxidant.  This differs 

from thermite powder mixtures where one particle is the fuel and another particle is the 

oxidant, and the interaction between the two constituents is required for reaction to occur.  

This suggests that the particle-particle interaction between the metal and metal-oxide is 

required for the reaction to take place, unlike explosives where the fuel and oxidant 

decompose and are contained in the same molecule.  However, it has been shown that 

pyrotechnic or thermite materials also have the ability to detonate as violently as an 

explosive [47]. 

 

2.3.2 Polymeric Binder Materials 

 

The previous discussion has alluded to the importance of a polymeric binder for 

structural reinforcement for many energetic material systems including traditional 

explosives and new generation reactive thermite mixtures.  The polymer binder or matrix 

material holds the reinforcement phase in an arranged pattern and helps transfer the load 

among the reinforcement particles or fibers that makeup the composite.  Composite 

materials composed of a polymeric binder phase result in a lightweight material with 

relative

orinated 

ly high structural strength.  The development of many composite materials has 

used a variety of polymers for the matrix phase.  Two polymers in particular have been 

discussed in previous sections for use in energetic materials such as 

polytetrafluoroethylene (PTFE) or Teflon and epoxy.  PTFE is a completely flu
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polymer formed by the free-radical chain polymerization of tetrafluoroethylene gas to 

and thermal performance unmatched by any other commercially available material.  It is 

a very inert material that has an extremely low coefficient of friction and high melting 

point (327 °C).  It is a crystalline polymer that also has outstanding electrical insulating 

properties.  Its mechanical properties are low compared to other engineering polymers, 

in at useful levels over a great temperature range (-240 to 260 °C).  

Its impact strength is high, but its tensile st

 

3

infrared decoy flares and igniters for solid fuel rocket propellants [51].  The chemical 

structure of Teflon is shown in Figure 2.6. 

Epoxy resins are regarded as thermosetting polymers and have found various 

commercial applications after crosslinking with adequate curing agents.  These resins are 

polymer-forming systems containing two principal components that interact to produce 

highly crosslinked products with exceptional toughness.  The curing reaction or 

produce liner chains of – CF2 – units.  PTFE has a combination of chemical, electrical, 

but its properties rema

rength, wear, and creep resistance is low when 

compared with other polymers.  The small size of the fluorinated carbon chain polymer

results in a highly dense crystalline polymeric material.  The density of PTFE is high for 

polymeric materials ranging from 2.13 to 2.19 g/cm .  Large amounts of thermal energy 

are required to break down the material since it is composed of strong carbon-carbon and 

carbon-fluorine bonds.  However, decomposition of PTFE can lead to its constituents 

undergoing chemical reactions with other components.  PTFE in powder form is used in 

pyrotechnic compositions as an oxidizer together with powdered metals such as 

aluminum (Al), magnesium (Mg), titanium (Ti), and hafnium (Hf).  Upon ignition these 

mixtures form metal fluoride and release large amounts of heat.  They are used as 
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Figure 2.6 Chemical structure of polytetrafluoroethylene (PTFE) formed from the 
reaction with tetrafluoroethylene. 

crosslinking occurs without the formation of any by-product, and consequently the 

polymer has low cure shrinkage.  They also have good adhesion to other materials, good 

chemical and environmental resistance, good mechanical properties, and good electrical 

insulating properties. 

Epoxy resins are characterized by having two or more epoxy groups per molecule.  

The key participant in the polymerization is epoxy functionality; a strained, three-

membered ring consisting of one oxygen and two carbon atoms.  The chemical structure 

of an epoxide group is shown in Figure 2.7(a).  The most widely used epoxy resin is a 

low molecular weight polymer with epoxy groups at its ends; the diglycidyl ether of 

bisphenol-A (DGEBA) also shown in Figure 2.7(b).  The DGEBA is composed of linear 

molecules with different molecular weights according to the variation of the repeated 

number (n) in the structural formula.  To form a solid thermosetting material, epoxy 

resins must be cured by using crosslinking agents and/or catalysts to develop desired 

properties.  The epoxy and hydroxyl groups (– OH) are the reaction sites for crosslinking. 
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Figure 2.7 Chemical structure for epoxy showing a) the epoxide group and b) the low 
molecular weight resin polymer diglycidyl ether of bisphenol-A (DGEBA) with epoxy 
groups at its ends. 

The low molecular weight of uncured epoxide resins in the liquid state gives them 

high molecular mobility during processing.  This property allows the liquid resin to 

quickly

             

material can absorb before breaking and therefore is related to impact strength.  

 and thoroughly wet surfaces.  This wetting action is important for epoxy utilized 

for reinforced materials and adhesives.  Also, the ability to be poured into a final form is 

important for electrical potting, encapsulating, and for the processing of   

particle-reinforced matrix materials.  The high reactivity of the epoxide group with curing 

agents such as amines provides a high degree of crosslinking and produces good 

hardness, strength, and chemical resistance. 

 

2.3.3 Strength of Epoxy-Cast Composites 

 

Particle-reinforced polymer composites have many favorable properties including 

increased strength and toughness.  Toughness is an indication of the energy that a 
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Typically, strengthening and improved toughness for particle-reinforced polymers are 

provided by plastic deformation and/or pull-out of particles dispersed within the polymer 

matrix.  Additionally, toughening may also be provided by dispersed particles causing 

cracks to deflect around the reinforcement throughout the matrix phase when a sufficient 

stress is applied. 

There are many reasons for using composite materials rather than less 

complicated homogeneous polymers.  Some of these reasons include increased stiffness, 

strength, dimensional stability, and as mentioned previously, toughness or impact 

strength.  However, not all of these desirable features are found in any single composite.  

The advantages that a particular composite may offer for a specific application must be 

balanced against their undesirable properties, which may include difficult fabrication 

techniques as well as a reduction in some physical and mechanical properties. 

The properties of composite materials are dictated by the shape of the filler 

particles, the morphology of the system’s microstructure, or the nature of the interfaces 

between the different phases.  The adhesion between reinforcement particles and the 

polymer matrix tend to have a profound effect on the overall strength of the composite.  

Most studies on the modification of polymers with the addition of rigid particles report a 

significant loss of toughness compared to the neat polymer.  Generally, the addition of 

particles will have an embrittling effect and decrease the impact energy significantly 

particularly when poor adhesion between reinforcement particles and the polymer matrix 

are present [52].  However, some studies have demonstrated an increase in toughness 

with the addition of rigid particles in certain polymer systems such as filled 

polypropylene [53] and filled polyethylene [54-56].  Most studies have shown that the 
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toughness is determined mainly by morphological factors, including particle size, particle 

volume fraction, particle size distribution and spatial distribution.  All of these 

morphological factors have been described by a single parameter, namely the matrix 

ligament thickness (surface-to-surface interparticle distance) [57].  A material that 

exhibits relatively high toughness will have an interparticle matrix ligament thickness 

that is smaller than a certain critical value which is essentially unique for a given matrix 

polymer.  In general, a composite with the addition of rigid particles that are dispersed 

without agglomeration is tougher.  Studies have focused on the addition of many different 

types of reinforcement particles including rubbers [58], glass spheres [52], ceramics such 

as calcium carbonate [53-55], calcium silicate [59], and alumina [59], in addition to 

metallic particles [60,61] all with various particle sizes, shapes, and volume fraction 

additions with the main focus to increase overall strength of the composite material. 

The addition of metal particles to polymer matrices produces composites of 

greater density, while improving mechanical strength and increased stiffness.  The 

dynamic moduli of metal-filled polymers depend on the stress-strain fields developed 

around the individual particles during the application of dynamic loads.  Particularly, the 

size, shape, and distribution of particles in the matrix highly influence the developing 

stress-strain fields and alter the mechanical response of the material.  The nature of the 

interfacial bond between the matrix and filler particles is of equal importance, however, 

imperfect adhesion in addition to cracks, voids, and flaws are often present which can 

extensively distort the stress-strain fields arising in the composite [61,62]. 

The behavior of thermoplastic polymers and polymeric composites subjected to 

large deformations is in general viscoelastic, where the stress (or strain) varies over time.  
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Simply stated, viscoelastic materials exhibit both elastic and viscous flow characteristics.  

One interesting feature is that a given polymer can display all the intermediate range of 

properties between an elastic solid and a viscous liquid depending on temperature and 

timesca

the effect of temperature and applied loading 

historie

n the attractive 

le for dynamic mechanical measurements.  The effects of temperature on 

viscoelastic properties typically show very large changes [62].  As the temperature is 

raised, the frequency of molecular rearrangements increases, thus a glassy polymer will 

become rubber-like at a sufficiently high temperature.  Similarly, this same effect is 

observed when the time-scale is increased for an experiment that subjects the specimen to 

an alternating strain while simultaneously measuring stress.  The inverse effect is also 

true in both cases, that is for earlier times or temperatures below the glass transition Tg, 

polymers behave like glassy solids.  Thus, 

s from dynamic mechanical analysis (DMA) studies are useful for obtaining a 

molecular interpretation of viscoelastic material behavior.  They permit studying of glass 

transitions and yield information about the morphology of polymers. 

The influence of molecular entanglements such as the addition of rigid foreign 

additives with very large surface areas or the incorporation of crystallites, as in 

semicrystalline polymers, may enhance mechanical properties and alter the glass 

transition temperature relative to the same polymer absent of these modifications.  

Aharoni [63] suggests the glass transition temperature of a polymer increases when a 

combination of conditions are encountered with regard to the introduction of   

nanometric-scale inclusions.  In particular, the nanometric inclusions should provide very 

large contact surface areas additionally having a strong interaction between the surfaces 

of the additive inclusion and the polymer comprising the composite.  Whe
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interact

 of             

1–2 vo

      

ions between the polymer and inclusions are negligible, the overall modulus of 

the system may still be altered by their addition, however, leaving the Tg either 

marginally elevated or with no effect at all. 

Van Melick, et al. [64] have found that strain hardening in polymers is 

proportional to network density for an amorphous polymer that is altered by blending 

with polyphenylene oxide and by crosslinking.  The authors conclude strain hardening is 

proportional to network density irrespective of the nature of the entangled polymer 

network through physical entanglements or chemical crosslinks.  Wetzel, et al. [59], 

showed the addition of alumina nanoparticles into epoxy with concentrations

l.% improved stiffness, impact energy, and failure strain by impeding chain 

mobility thus hindering molecular motion. 

Recent studies of structural energetic materials at Georgia Institute of Technology 

have involved work on polymer-based composites with nickel and aluminum powder 

mixtures.  Rod-shaped specimens, prepared by a cast-cure method using cylindrical 

shaped molds, were evaluated using quasistatic compression test and dynamic impact 

experiments [65,66].  Micron-scale Ni powder and nano- and micron-scale Al powders 

were premixed and dispersed in 20 and 30 wt.% (47 and 60 vol.%) epoxy.  Stress-strain 

histories obtained from static compression tests showed samples containing the   

nano-scale aluminum powder exhibited strain hardening in addition to increased elastic 

modulus.  Observed failure in these epoxy-cast materials is typically by means of 

nanometric aluminum particles pulling-out of the epoxy matrix.  Additionally, both Ni 

and Al particles did not appear to experience any plastic deformation, however, increased 

toughness was also attributed to cracks deflecting around the Ni particles. 
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Quasistatic compression tests presented only slight improvements in mechanical 

epoxy exhibiting the highest yield strength (≈ 157 % increase), followed by        

Ni+nano-Al+30 wt.% epoxy composition (≈ 130 % increase).  Additionally, the 

Ni+nano-Al+20 wt.% epoxy composition also had the highest elastic modulus.  

Specimens containing nano-Al particles also showed significant strain hardening when 

compared to micron-scale Al particle additions.  This illustrates the improvement to 

mechanical properties that nano-scale particles have on the strengthening of epoxies. 

Reverse Taylor anvil impact experiments were also conducted on the various 

particle-filled composites (with impact velocities of 61 to 100 m/s), in addition to pure 

epoxy specimens (85 and 152 m/s).  However, experiments conducted at the lowest 

impact velocities (61 and 85 m/s) were insufficient to cause permanent deformation in the 

specimens.  Following impact, sample fragments were recovered and high-speed digital 

photography was taken to capture transient deformation profiles of the specimens which 

were used to compare the dynamic response of the various compositions.  Since the 

specimens fractured during these experiments, dynamic yield strength determined by 

length or area change could not be applied.  However, captured images showing the 

transient deformation profiles of each specimen were used to analyze dynamic behavior 

by calculating incremental strains (both axial and areal) before fracturing occurred.  

Incremental strains were normalized by ρU  to eliminate any variability caused by 

specimen density, ρ and impact velocity, U.  Plotting normalized strain as a function of 

time after impact (see Figure 2.8(a,b)) shows the Ni+nano-Al+epoxy composites 

properties with the addition of Ni+micron-Al powders to epoxy.  In contrast, the addition 

of nano-Al showed a significant increase in yield strength with Ni+nano-Al+20 wt.% 

2
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Figure 2.8 Normalized a) areal strain and b) axial strain histories from reverse Taylor 
impact experiments conducted on pure epoxy and Ni+Al+20 wt.% epoxy composites 
using both micron- and nano-scale Al powders.  Incremental strain measurements are 
taken from high-speed digital camera images and error bars correspond to a three-pixel 
uncertainty for detecting the edge of the specimen [66]. 

experience less strain than both pure epoxy and composites containing micron-scale Al 

particles.  These results are used to infer the strength of these materials with the  

Ni+nano-Al+20 wt.% epoxy again showing the best mechanical properties compared to 

all the specimens tested. 

The addition of Ni+Al powders to epoxy showed a slight improvement of 

mechanical properties for both static and dynamic experiments and even more 

pronounced improvements for compositions with nano-Al additions.  The enhanced 

strengthening for nano-scale aluminum compositions is attributed to the nano-particles 

altering the molecular structure of the epoxy causing physical entanglements and loss in 

polymer chain mobility.  Additionally, nano-particles have very large surface areas which 

can improve the cohesive strength between the epoxy and particulate reinforcements.  

Dynamic mechanical analysis (DMA) was used to further investigate this effect and 

validate the mechanism altering of mechanical response of these composites. 
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Data from DMA measurements verified that the crosslink density for nano-scale 

Al particle additions to epoxy increase substantially (by a factor of two) thus explaining 

the increase strengthening observed for these materials.  Calculations show an increase in 

crosslink density resulting from the reduction in aluminum particle size from micron- to 

nano-sc       

       

ale for Ni and micron- or nano-scale Al powder reinforced composites.  

Figure 2.9 shows the storage modulus measured as a function of temperature for Ni+Al 

composites contrasting the behavior for nano-scale and micron-scale additions of 

aluminum particles.  In addition to the increased strength from nano-scale particles 

(approximately double as compared to the micron-scale particle strengthened composite), 

there is a noticeable effect on glass transition temperature Tg, increasing for the  

nano- scale Al dispersed composite.  The increase of Tg suggests there is an attractive 

interaction between the polymer altering the chemistry of the epoxy and chain mobility, 

 
Figure 2.9 Results from dynamic mechanical analysis (DMA) experiments for selected 
epoxy-cast Ni+Al composites contrasting nano- and micron-scale Al particle effects [66]. 
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possibly attributed mostly to the very high surface area provided by the addition of 

nanometric particles.  An unexpected reduction in Tg is observed when comparing these 

compositions with pure epoxy.  Misra, et al. [67] demonstrated that the distribution of 

crosslink density can also have an effect particularly lowering Tg for polymers with 

narrow crosslink distributions.  The interactions of nano- and micron-scale particles with 

epoxy altering the composites’ chemistry is apparent, however, the exact mechanism of 

this co

te mixtures dispersed in an epoxy matrix has been investigated at 

interme

     

itioned into a nonlinear 

tress-strain region, followed by an apparent yield point that resulted in a slight work 

mplex interaction resulting from their addition is not obvious from this limited 

study.  Possibly the principal information ascertained from these types of experiments are 

the extent to which the nanometric aluminum particles are distributed throughout the 

epoxy. 

In a separate study conducted by Patel [68], the dynamic compressive behavior of 

Al+Fe2O3 thermi

diate strain-rates on the order of 103 1/s.  Dynamic compression experiments 

using a split-Hopkinson pressure bar (SHPB) were conducted on cylindrical specimens   

6.35 mm in length and diameter.  Test specimens were prepared from mixtures of 

micron-scale aluminum and sub-micron scale hematite powders dispersed in epoxy with 

concentrations ranging from approximately 20 to 50 wt.% (47 to 78 vol.%).  Experiments 

were also conducted for pure epoxy specimens manufactured from a 12:1 ratio of Epon® 

826 resin and diethanolamine (DEA) as the curing agent. 

The experimental study showed evidence that the deformation behavior was 

mostly dominated by the epoxy phase of these composites.  The stress-strain response 

typically showed an initial linear elastic response which trans

s
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softening in the material.  This was followed by either continued work softening or work 

ardening regions depending on the specimen composition. 

ere used to develop constitutive 

equatio

h

The addition of Al and Fe2O3 particles to the epoxy slightly improved mechanical 

properties observable from the stress-strain behavior exhibiting a work hardening 

response as the volume fraction of particles increased.  In contrast, pure epoxy as well as 

a composition that contained Al+Fe2O3 particles dispersed in 50 wt.% epoxy showed a 

strain softening behavior.  Moreover, the addition of dispersed particles caused the linear 

elastic response of the material to increase as volume fraction of the epoxy matrix 

decreased.  The ability for these materials to absorb energy generated from dynamic 

impacts was also examined in this study.  Evaluation was carried out by the integration of 

stress-strain curves and calculating the stress work at select levels of strain.  As expected, 

the stress work increases with decreasing epoxy binder content. 

The experimental results discussed previously w

ns that described the material behavior when subjected to dynamic impacts.  Once 

more, the response of the composite materials was predominantly determined by the 

behavior of the binder phase.  The Hasan-Boyce [69] constitutive equation gave good 

correlation with experimental results despite being developed specifically for unfilled 

glassy polymers. 

Furthermore, high-strain rate experiments for particle-reinforced composites have 

a very complex behavior when subjected to shock loading conditions and have been 

performed on alumina-filled (identified as ALOX for recent studies by Sandia National 

Laboratories) and unfilled epoxies to observe transmitted waveforms under 

corresponding shock loading conditions.  The alumina-filled epoxy specimens showed 
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typical dispersive material characteristics, whereby extended rise times and rounding to 

the peak pressure state are typically observed.  In contrast, unfilled epoxy specimens 

showed unaltered shock waveforms propagating through the material.  High-strain rate 

studies focused on various neat polymers, including epoxy and filled epoxies such as 

Sandia’s ALOX material, will be discussed next in more detail. 

 

2.3.4 Shock-Compression Behavior of Filled and Unfilled Polymers 

 

The high-strain rate behavior of various polymers has been studied 

comprehensively for over 30 years.  Some polymers have been studied more extensively 

than others because of their use throughout the shock physics community.  For example, 

a great deal of information is available spanning relatively high pressure ranges and large 

strain rates for epoxy because of its importance for use in target assemblies.  Studies have 

examined the dynamic impact behavior spanning the lower pressure range from 1 to  

2 GPa up to pressures in excess of 30 GPa, and under strain rates typically achieved for 

split Hopkinson pressure bar (103 to 104 1/s) as well as parallel-plate impact experiments 

(105 to 106 1/s).  Considerable shock-wave data has also been collected for polymers su

      

ch 

as polyethylene (PE) [70] and polymethylmethacrylate (PMMA) [71], and this subject 

continues to be the focus of many experimental studies. 

The most comprehensive dynamic analysis for polymers, including both 

thermosetting and thermoplastic types, has been conducted by Carter and Marsh [72] 

cameras were used to record wave arrival tim s and obtain a measure of shock velocity 

through shock waves generated from high explosives.  Traces obtained from streak 

e
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through the specimen.  Impedance-matching (see Meyers [16] pp. 188-200 for details) 

was then used to determine the associated particle velocity to construct US-UP Hugoniot 

   

erimental intercept.  The authors suggest this behavior 

may be

curves for each polymer.  Table 2.1 list all the polymers examined by Carter and  

Marsh [72] and shows their idealized monomer structures.  Two particularly interesting 

features common to all of the polymers examined have been detailed through this study.  

The first such feature shows that the US-UP behavior of all the polymers exhibits 

considerable curvature in the lower pressure regime and extrapolation from higher 

pressure data to the ambient pressure axis demonstrates higher bulk sound velocities than 

ultrasonically measured values.  For example, bulk sound velocity measured 

ultrasonically for epoxy has a value of 2.26 mm/µs as compared to extrapolated US-UP 

experimental data intercept with a value of 2.69 mm/µs for the lower pressure region  

(1.4 to 22.5 GPa) and 2.88 mm/µs for the higher pressure region (32.6 to 60.5 GPa) 

above a transformation pressure beginning at 23.1 GPa.  Actually each intercept has a 

value very close to the ultrasonically measured longitudinal wave speed, falling either 

slightly above or below the exp

 attributed to the “two-dimensional” nature of polymer compression, which rules 

out the possibility of a low-pressure phase change examined through static compression 

experiments. Similarly, early dynamic experiments conducted on PMMA have also 

exhibited considerable curvature at the low-pressure end of the US-UP curve [73].  This 

effect is common to other polymers as well and considerable theoretical work has been 

conducted by Pastine [74,75] for understanding this two-dimensional response for 

polyethylene.  Dominant covalently bonded carbon atoms along the backbone of a 

polymer chain have bonds that are an order of magnitude greater than adjacent chains 
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Table 2.1 Representative idealized monomer structures examined in high-strain rate 
impact experiments conducted by Carter and Marsh [72]. 
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held together by van der Waals type bonds.  Hence, the hydrostatic compression causes a 

length decrease in weak adjacent chains while the backbone remains relatively 

unaffected.  The initial microscopic response to compression will be of a                   

polymer.  This idea has been experimentally verified for polyethylene and is presented in 

the low-pressure Hugoniot shown in Figure 2.10.  Two densities of polyethylene                        

(ρ  = 0.999 g/cm3 and ρ  = 0.886 g/cm3) used to represent degrees of crystallinity of 

approximately 90 % and 55 % have been studied and are shown in the figure along with 

static data obtained from Warfield [76] for highly crystalline material and      

Bridgeman’s [77] data are also shown.  The agreements between experimental and 

theoretical results are excellent. 

The second feature observed for polymers studied in this work is a relatively high 

pressure phase transform

of slope in the U -U  Hugoniot space.  As mentioned earlier, epoxy has a phase 

transformation that begins at 23.1 GPa and continues up to 32.6 GPa. These 

transformations are believed to be associated with pressure-induced cross bonding and 

are explained by the extension of the ideas already encountered at low pressures.  Unlike 

polymorphic transformations in the traditional sense where the material exists in more 

than one crystal structure and thereby different physical and chemical properties, these 

transformations occur in completely amorphous materials such as polystyrene.  

Additionally, these transformations are not associated with melting or vaporization 

“two-dimensional” nature involving the weakly bonded adjacent chains rather than a 

“three-dimensional” nature involving both the adjacent chains and the backbone of the 

0 0

theoretical Hugoniots derived based on the calculations by Pastine [74,75].  Additionally, 

ation occurring in the range of 20-30 GPa identified by a change 

S P
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Figure 2.10 Low pressure Hugoniot data for polyethylene.  Solid and dashed lines are 

dynamic data or static data transformed to the US-UP plane through conservation relat
theoretical calculations based on the work of Pastine [74,75], while the symbols are either 

ions 
[72]. 

because they occur in both ing and thermoplastic polym ost likely 

explanation for the high-pressure transformations is due to a three-dimensional type 

compr  beha f the inated by the backbone chain response.  

At the transforma  m g ume 

change observed experimen er a sh [ dering would 

be such that the distance between chains ha

inte shown that the transformation behavior is 

more pronounced in polymers that exhibit an “open” structure containing covalent-

bonded carbon atoms in benzene rings.  This effect is shown in Figure 2.11 where  

thermosett ers.  The m

essive vior o  polymer chains dom

tion a ajor molecular reorderin  is evident from the large vol

tally.  Cart nd Mar 72] suggested this reor

s been reduced by pressure to a point where 

rchain interaction is possible.  They have 
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S P

[72].  It is seen from Table 2.1 that, in general, those materials having more open units 

transition. 

polymers such as polysulfone and polymide that have extremely open structures are 

characterized by large volume changes.  Reference is 

Figure 2.11 Hugoniot U -U  data for several polymers studied by Carter and Marsh 

such as benzene rings in their monomer structure also display a more pronounced 

also made to Table 2.1 which 

shows the idealized monomer structure for many polymers.  The effect is minimized for 

linear hydrocarbons such as high density polyethylene which shows a slight change in 

slope and exhibits a small volume change at the transition pressure range.  The 

compression of polymers is two-dimensional in nature until the pressure reaches a critical 

value where the interaction of the chains becomes appreciable and the material 
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compresses in a manner more typical of a three-dimension solid. 

Epoxy based materials are of significant interest both because of their use as 

adhesives during the assembly of targets for shock loading experiments and as binder 

phases in composite materials.  In addition to the work performed by Carter and    

Marsh [72], other studies have examined the response of epoxy to shock loading.  

Munson and May [78] investigated epoxies made from three different curing agents and 

showed that, within experimental error, the Hugoniot of all three materials were identical.  

They used different hardeners to produce variations in polymer crosslinking that were 

measured by variations in glass transition temperature.  However, changes in crosslinking 

and structural variations did not appear to impose significant shock response deviations.  

Ultrasonic measurements show a noticeable decrease in wave speed with decreasing glass 

transition temperature and, thus, differences in the initial slope of compressibility curves 

as a function of polymer structure.  This caused a slight stress offset which became 

uniform at relatively high stresses. 

The response of epoxy subjected to planar shock waves generated from plate 

impact experiments has also been conducted by Millett, et al. [79]. Hugoniot 

measurements were made by embedded manganin stress gauges located 10 mm apart in a 

longitudinal orientation for two plate-shaped specimens.  Lateral stress was also 

measured by sectioning a single epoxy plate in half and placing another mangan

  

in stress 

gauge 4 mm from the impact face.  Very close agreements were shown for the 

Hugoniotdata in this study and in that of Carter and Marsh [72] discussed previously.  

Table 2.2 lists Hugoniot data obtained from various studies for epoxy materials.  Lateral 

stress measurements in conjunction with longitudinal stress measurements indicate a 
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Table 2.2 Equation of state properties determined from shock-compression studies for 
®

indicated by superscript character. 

Cb S UP range ρ0 
3 Author [Reference] 

several cured epoxies.  Select epoxies use Epon  828-Shell resin unless otherwise 

[mm/µs] [mm/µs] [g/cm ] 

2.69 1.52 0.4 - 2.8 1.192 Carter & Marsh [72] 

3.05 1.31 3.4 – 5.2 1.192 *Carter & Marsh [72] 

2.58 1.47 0.2 - 0.74 1.14 ± 0.01 Millet, Bourne & Barnes [79] 

2.55 1.68 0.05 - 2.4 1.202 Munson & May [78] 

2.68 1.52 0.4 – 5.1 1.198 McQueen, et al., [80] 

+

2.64 1.66 0.07 - 2.3 1.194 Munson & May [78] 

*Particle velocity range after phase transformation. 
+Study used an epoxy resin mixture; see reference [79] for more details. 

decrease in lateral stress behind the shock front as impact stress increases.  This implies 

an increase in shear strength as the shock wave is passing through the material.  Similar 

results have been obtained for other polymers such as PMMA [71,81], where it has been 

suggested that this effect is due to the viscoelastic/viscoplastic nature of polymers.  The 

authors also suggest that even though a Hugoniot elastic limit (HEL) for epoxy was not 

directly observed in the manganin gauge records, it is estimated to be approximately     

0.6 GPa from the deviation of shear strength obtained from calculated elastic material 

behavior. 

In addition to the shock response of neat polymers, particle-reinforced polymer 

composites exhibiting relatively significant volume fractions of epoxy have also been 

investigated.  The discussion will be focused mainly on the extensive work carried out by 

Sandia National Laboratories on an aluminum oxide (ALOX) filled epoxy.  ALOX is 

used as a dielectric encapsulant for ferroelectric ceramic pulsed power devices.  In this 

 47



case, the encapsulant behavior during shock wave loading and release strongly influences 

the stress experienced by the ferroelectric element of the device.  Alumina-filled epoxies 

have been the focus of study for over 30 years, beginning with the work by Munson and 

Schuler [82].  However, the most comprehensive experimental study conducted on this 

ositions of 

Al2O3 powders dispersed in epoxy ro E  resin and Z curing 

agent.  Specimens used s study volum ction 20, 34, and 42 % of 

alumina.  Particle sizes O3 fil rial r d bet  and 30 µm with the 

average particle size o s of transmitted stress experiments were 

performed to produce either sustained shocks followed by release or recompression 

waves, or “thin-pulse”

compression wave.  Particle velocity time histories were obtained using laser 

e front as it 

approa

material was carried out by Munson, et al. [83] in 1978. 

Plate impact experiments were performed on three different comp

prepared f m ll  She p ®on  828

 for thi  had e fra s with 

 for Al2 ler mate ange ween 2

f 8 µm.  Three type

 conditions where a release wave has overtaken a leading 

interferometry from gas-gun impact experiments.  The shock profiles showed 

characteristic features of a dispersed wave with a highly rounded leading wav

ches peak velocity.  Intercepts of Hugoniots with zero particle velocity axis agree 

well with longitudinal ultrasonic velocity values similar to neat polymers response to 

dynamic loading discussed earlier.  However, the particulate-filled material does not 

appear to exhibit the same US-UP Hugoniot curvature as showcased by the neat polymers.  

This difference may be attributed to a slightly lower particle velocity range examined in 

this study.  The geometry of these experiments also permitted the identification of the 

release wave arrival, which allowed calculating release velocity within the specimen.  

Interestingly, the release velocity was significantly greater than the measured shock 
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velocities, which were a slowly varying function of particle velocity.  In contrast, the 

release wave velocity was a strong function of particle velocity.  The authors remark that 

this phenomenon typically has only been found in porous materials.  Additionally, this 

effect b

limited use in conjunction 

with V

    

ecomes more pronounced as the volume fraction of Al2O3 increases suggesting 

that there are large micromechanical differences between the compression and release 

processes due to the constituents having highly dissimilar mechanical properties. 

Following the initial experimental work by Munson and Schuler [82] and 

Munson, et al. [83], Anderson, et al. [84-87] have continued to study the shock and 

release behavior for alumina-filled epoxies using planar impact gas gun experiments.  

Setchell and Anderson [88] give an excellent review of previous work and details on their 

current study of alumina-filled epoxy composite materials.  In this series of work, several 

material features have been analyzed including morphological effects by altering Al2O3 

particle size and volume fraction additions, direct comparison of filled and unfilled epoxy 

materials, and temperature effects with variation from -50 to +70 °C.  These studies have 

mainly used velocity interferometry, Velocity Interferometer System for Any Reflector 

(VISAR) diagnostics for measuring transmitted compressive wave and the subsequent 

release wave profiles.  Imbedded PVDF gauges have also had 

ISAR diagnostics permitting the direct comparison of the two methods, which 

indicates the piezoelectric gauge may have a rate-dependent response to shock   

loading [84]. 

Similar to previous studies, transmitted waveforms showed extended rise times 

and characteristic dispersive material behavior such as a pronounced rounding of the 

leading wave profile to peak velocity.  For studying compositional effects [87], ALOX 
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specimens were prepared with several different morphologies while keeping sample 

dimensions and impact velocity constant.  This permits the evaluation of each 

composition at identical shock-compression states with common peak particle velocities.  

Table 2.3 gives a summary of ALOX compositions studied and the corresponding 

densitie

Table 2.3 Summary of Sandia’s aluminum oxide-epoxy (ALOX) compositions used 
for shock compression studies comprised of T64 tabular alumina and spherical alumina 
AA5 and AA18 with nominal diameters of 5 and 18 micron respectively [87]. 

Epoxy Alumina Volume 
[%] 

Density 
[g/cm3] 

s measured for each specimen.  The first material was identical to that prepared in 

previous studies conducted by Munson, et al. [83] and contained 43 % T64 tabular 

aluminum, however, in this study the powder consisted of particles varying in size from  

5 to 50 µm.  Samples used different spherical alumina powders with nominal diameters 

of 18 and 5 µm and still contain the same 43 % volume fraction of powders.  The next 

sample used 43 % T64 tabular aluminum in a different epoxy consisting of Epon® 826 

resin and a non-commercial curing agent.  The remaining materials had volume fractions 

828/Z T64 43 2.377 

828/Z AA18 43 2.389 

828/Z AA5 43 2.391 

828/custom T64 43 2.339 

828/Z T64 38 2.233 

828/Z T64 34 2.121 

828/Z T64 20 1.750 

828/Z T64 0 1.200 
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of T64 tabular aluminum ranging from 38 % to 0 %.  All of the materials tested in this 

study used Epon® 828 resin and Z hardener except where noted for one case. 

Transmitted wave profiles measured by VISAR show only minor observable 

differences as the alumina particle morphology was changed from tabular T64 to smaller 

spherical powders.  Peak stress, shock velocity, and release velocity are all generally 

similar for each composition, while wave rise times were also generally similar with one 

exception.  The specimen containing 5 µm spherical alumina particles exhibited a short 

rise time measured at the half peak particle velocity as compared to the two other 

compositions.  Similarly, results from varying the epoxy matrix composition showed only 

slightly smaller peak stress and shock velocity values for the second epoxy (Epon® 826 

 density (1.14 g/cm ) as compared to the 828/Z epoxy        

(1.20 g/cm3). 

eriments where the sample 

dimensions perm

resin and non-commercial hardener).  These differences are attributed by the authors to 

the second epoxy having a lower 3

More noticeable differences are seen for varying the fraction of alumina particles 

added to the 828/Z epoxy matrix.  As the volume fraction decreases, the peak axial stress, 

average shock wave velocity, shock rise-time, and release-wave velocity all decrease.  

This is not an unexpected trend and some significant aspects of the alumina loading 

fraction can be identified by examining these wave propagation results in more detail.  

The addition of alumina particles to an epoxy matrix changes its dynamic loading 

response from an initial elastic shock for the pure epoxy specimen to a more viscoelastic 

behavior with no signature of an elastic precursor for filled material.  However, more 

significant effects were observed for “thin-pulse” exp

it the release wave to overtake and attenuate the shock wave.  In this 
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case, the impact stress decreased significantl  as the alumina content decreased and the 

shock velocity as the alumina volume fraction decreases, thus 

permitting the transmitted wave to experience less attenuation. 

aracteristics change with the addition of alumina particle filler. 

ith decreasing temperature.  The transition of the initial 

ock front to an equilibrium velocity also decreased with decreasing temperature.  The 

waveforms also decreases. 

y

peak particle velocity gradually increased.  This effect is a consequence of the decreasing 

ratio of release velocity to 

Next, the shock and release behavior of alumina-filled and unfilled epoxies were 

examined [84].  The direct comparison of filled and unfilled epoxy materials showed 

expected differences based on previous studies in the observed waveforms.  Figure 2.12 

shows the normalized relaxation behavior of filled (1.68 GPa peak) and unfilled epoxies 

(1.52 GPa peak) from a reverse-impact experiment configuration where the epoxy sample 

impacts a stationary fused silica target.  Similarly, observable differences in the loading 

and release behavior for transmitted wave experiments are shown in Figure 2.13 where 

the filled-epoxy specimen has an extended rise time and a more pronounced dispersive 

rounding when compared to unfilled-epoxy specimens.  These two figures show how 

wave propagation ch

The shock and release behaviors of both filled and unfilled epoxies have also been 

examined over an initial temperature range of -50 to +70 °C [85].  Transmitted wave 

experiments were first conducted on unfilled epoxy samples for -30, 20, and 70 °C and a 

nominal impact velocity of 547 m/s.  The epoxy used in these experiments consisted of 

Epon® 828 resin mixed with diethanolamine (DEA) hardener in a 100:12 weight ratio, 

and cured at 90 °C for 16 hours.  The effect of initial temperature showed a significant 

reduction in release wave speed w

sh

 exhibit a more pronounced rounding effect as temperature 
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Figure 2.12 Compariso  epoxy (ALOX) 
and unfilled-epoxy specimens subjected to high-strain rates from a reverse impact 
experimental configuration [84]. 

Additionally, transmitted wave experiments were conducted for alumina-filled epoxy 

® 6 resin and an amine hardener mixture.  The nominal impact 

velocity for this series of experiments was 357 m/s and initial temperatures examined 

were -50, 20, and 70 °C s, release wave 

speeds were observed to decrease with decreasing temperature.  However, a more 

t for t

sults show that the shock response of both filled and unfilled epoxies has 

increasingly inelastic behavior as temperature is reduced. 

Further studies pe hock wave  

n of normalized stress profiles for alumina-filled

specimens with 42 % volume fraction of Al2O3 particles.  In this case, the epoxy matrix 

was made from Epon  82

.  As in the case for unfilled epoxy specimen

dispersive behavior was apparen he filled specimens as the temperature decreases.  

These re

rformed by Mock and Holt [89] determined the s
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Figure 2.13 Comparison of transmitted wave experiments for alumina-filled epoxy 
(ALOX) and unfilled-epoxy specimens.  Wave profiles show the charasteristic properties 
of a dispersive wave [84]. 

alumina-

 over a stress range of 0.4 to          

3.7 GPa.  The alumina-filled composite for this study consisted of 37 % volume fraction 

of Al2O3 particles and lume fraction           

Al2O3-epoxy composition.  Equation of state results indicates that the US-UP Hugoniot 

overall 

composite material. 

equation of state for a commercially available filled epoxy composite and 

compared these results to a higher density composite

 was compared to a higher density and vo

curve falls between the higher density composite and that of pure epoxy.  Close 

examination of these curves suggests the addition of Al2O3 particles to epoxy shifts the 

US-UP curve upward with a negligible slope change.  This behavior indicates the large 

concentration of epoxy in these specimens controls the US-UP dependence for the 
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Similar results ha e the equations 

of state for two different volume fractions of alumina dispersed in epoxy have been 

composite examined in this work showed close 

agreement with other studies, and both the shock velocity and the shock stress increased 

with increasing alumina loading. 

 

2.4 P

 

The response of material to dynamic loading and stress propagation is determined 

ns.  The 

propagation of a disturbance wave within a cylindrical bar takes on a two wave structure 

(elastic and alue 

(material’s  disturbance, in which the magnitude falls 

below the material’s elastic limit, the equation of motion for an elastic wave is derived 

from Newton’s second law, 

ve also been obtained by Millet, et al. [90] wher

evaluated in terms of shock velocity and particle velocity.  For this particular study, 

manganin stress gauges were embedded between 10 mm thick plates made from the 

alumina-epoxy composite.  The 

lastic Waves and Uniaxial Stress Waves in Solids 

from equilibrium equations of motion and the material’s constitutive relatio

 plastic) when the velocity of impact is above a certain critical v

 elastic limit).  For a propagating

maF =Σ .  A rod segment of original length dx is c

ectio

onsidered 

with initial cross s nal area, A0, and initial density, ρ0, as shown in Figure 2.14.  

Summing the forces across the material element results in [16]: 

2t
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Hooke’s law, ( εσ E= ) is invoked since the deformation is purely elastic and substitution 

into equation (2.7) gives: 

2
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0 t
u

x
uE

x ∂
∂

=⎟
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⎞

⎜
⎝
⎛

∂
∂

∂
∂ ρ ,     (2.8) 

where ε is the strain defined as xu ∂∂ and the displacement equation of motion is given 

by [16]: 

2

2u

0
2

2

x
E

t
u

∂
∂

=
∂
∂

ρ
.     (2.9) 

The analysis of plastic wave propagation requires a mathematical description of the 

material behavior as a functio  theory 

was developed independently by von Karman and Duwez (1942) in the United States, 

Taylor (1942) in England, and Rakhmatulin (1945) in Russia [91].  The analysis 

 Duwez’s [92] will be presented here. 

The presumed material behavior may be described by a single-value relationship 

between the stress and strain, (

n of strain.  Inelastic or plastic wave propagation

conducted by von Karman and

)(εσσ = ).  The theory is completely uniaxial in nature 

and neglects any three-dimensional effects.  Again, the equation of motion is derived 

from Newton’s second law, as described previously, for an elastic wave in a  
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Figure 2.14 Schematic diagram illustrating material response to dynamic loading 

 a cylindrical rod 

cylindrical bar.  However, since there is a state of plastic deformation and the relationship 

between stress is a direct function of strain, (

determined from a compressive elastic stress wave propagating in
produced by an impact at velocity V. 

)(εσσ = ), the material behavior is         

rate-independent; thus, equation (2.7) can be written as: 

2

2

2

2

0 x
uT

t
u

∂
∂

=
∂
∂ρ ,     (2.10) 

where εσ ddT =  is the elastic (below the yield strength) or plastic (above the yield  

strength) modulus of deformation or the stress-strain slope at a given stress.  The 

application of boundary conditions (shown in equation 2.11) for an impact at the end of a 

semi-infinite bar allows the determination of the wave profile within the material. 

⎩

⎧
−∞=

=
=

xat
xatv

u
0

01 ,     (2.11) ⎨
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where v1 is the particle velocity for a bar originally occupying the region -∞ to 0.  Three 

d in different regions (see reference [92] for a 

gorous proof of these solutions): 

solutions to equation 2.10 are found vali

ri

constant
C
v

x
u

C
x

∂
∂

⎟
⎠

⎞
⎜
⎝

⎛

11
1 ortvu ===⎟⎜ += 1ε , (2.12) 

2

2

t
xE

ρ

0=

= ,      (2.13) 

ε .       (2.14) 

The three solutions are pieced together to give the complete solution as follows: 

a) For tCx 1< , C  is the velocity of the plastic wave front and the 

strain is constant and equal to ε1; 

1

) For b tCxtC 01 << , C0 is the velocity of the elastic wave front, 

where ( ) 2

; 
1

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
εT

t
x

c) For tCx 0> , 01 =ε . 

Figure 2.15 graphically shows the variation of strain as a function of tx=ξ , where both 

elastic and plastic wave fronts are traveling at different velocities.  The plastic wave 

velocity, C1 and the maximum strain, ε1 as a function of impact velocity, v1 must be  
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strain varies as a function of 
Figure 2.15 Schematic representation of elastic and plastic wave profiles showing how 

tx=ξ  [92]. 

( )ξε f=determined to completely solve the problem.  Assuming ; the displacement, u 

has the form [92]: 

( ) ( ) ξξξ dftdxfdx ∫∫
∞−∞−

== .  (2.15) 
x
uu

x x

∫
∞− ∂
∂

=
0

The displacement at the end of the rod as a function of time is given by: 

( ) ( ) ξξ df
t

tuv ∫
∞−

==
0

1
,0 ,    (2.16) 

and by changing variables, 

0
1 εξ dv .      (2.17) ∫=

1ε
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Next, substituting for ξ from 

( ) 21
⎞⎛ εTx

0
⎟⎟
⎠

⎜⎜
⎝

==
ρ

ξ
t

     (2.18) 

results in: 
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ε

ε
ρ

dv .    
⎞⎛ εT  (2.19) 

Equation (2.19) determines ε1 as a function of v1.  If the deformation remains in the 

elastic limit, ( ) constantET ==ε  and 011 cv ε= .  Therefore [92], 

2
1

0
11 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ρ
εv .     (2.20) 

From equation 2.19, the stress is given by [92]: 

1

E

CvE 0101 ρεσ = .     (2.21) =

Notice that equation 2.20 is used for calculating the stress produced by an elastic body 

subjected to an impact velocity v1.  However, equation 2.19 replaces equation 2.20 when 

the impact velocity is sufficient to cause deformation beyond the elastic limit of the 

material. 

 60



The next section begins with a review of the Taylor anvil impact experiment 

developed to determine the dynamic yield strength of materials.  Over the years, 

hundreds of papers have been published on this topic, including many variations from the 

original test configuration [93].  Taylor impact experiments have commonly been 

performed on metallic systems, although some work has been carried out on brittle 

materials and polymers and is highlighted in the next section.  This is followed by a 

general discussion about constitutive response of polymeric materials in both quasistatic 

and higher strain rate experiments. 

 

The Taylor test [45] was developed to determine material properties at high-strain 

rates.  It was focused on estimating the average dynamic yield strength of materials based 

on the overall deformation imparted to the test specimen from a high velocity impact.  

The experiment is conducted by striking a cylindrical shaped specimen against a rigid 

anvil and making post-impact measurements of the deformed shape.  The theory assumes 

an ideally rigid-plastic material model exhibiting rate-independent behavior and simple 

one-dimensional wave propagation concepts that neglect radial inertia.  According to 

Taylor’s simplified approach, a cylindrical projectile of length, L impacts a target at a 

velocity, U.  The sequence of deformed specimen geometry is schematically depicted in 

Figure 2.16.  Upon impact, an elastic compression wave propagates through the rod 

d equal to the yield  

2.4.1 Taylor Anvil Impact Experiment 

 

followed by a much slower plastic wave.  The deformed region propagates away from the 

anvil face and the stress in this region is assumed to be constant an
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Figure 2.16 Schematic illustration obtained from Meyers [16] for the deformation 
sequence that occurs from a Taylor anvil impact experiment [45] where a cylindrical 
projectile impacts a rigid surface. 
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stress of the material (dynamic yield stress, σyd) at a unique (constant) strain rate.  The 

elastic wave continues to propagate the length of the specimen until it is reflected from 

the back surface and returns towards the propagating plastic wave as a release wave.  

Upon r

umed that the projectile 

decelerates as a rigid body and plastic deformation occurs at the impact face.  This 

suggests that the ch stantaneous 

velocity U and is given by [94]: 

eflection, the elastic wave interacts with the plastic wave and reduces the stress 

within the region to zero, thus bringing the deformation process to a conclusion. 

Based on computer simulations for the Taylor test, Wilkins and Guinan [94] 

obtained a correlation between final cylinder length and yield strength parameters for 

several metallic projectiles with the application of elastic-plastic theory.  They first 

verified that the ratio of the cylinder final length to original length (Lf /L0) was constant 

for a given impact velocity, and thus considered the dynamic response of the material to 

be independent of this ratio.  For their analysis, it was ass

ange in specimen length over time is equal to the in

U
dt
dL

−= .      (2.22) 

Deceleration of the specimen exerts a force which is equal to the product of dynamic 

yield stress σyd and the cross-sectional area.  Applying Newton’s second law yields: 

dt
dU

yd 0 LAA ρσ −= ,     (2.23) 

 63



given by the mass of the specimen ρ0LA and its deceleration dtdU .  Combining 

equations (2.22) and (2.23) results in: 

dU
Uρ0

L
dL

ydσ
= .     (2.24) 

terms gives [94]: Integration of equation (2.24) and rearranging 

( )02 LLln f

) 

The dynamic yield stress can thus be estimated through measurements of density, impact 

velocity, and the initial and final lengths of the specimen. 

conjunction with velocity interferometry (VISAR) to measure material response during 

dynamic loading [95].  For these experiments, a reverse Taylor impact configuration is 

utilized where the specimen of interest is held stationary and a rigid anvil, accelerated 

using a gas gun, impacts the target specimen.  This configuration permits a velocity-time 

signal to be obtained from the back surface of the specimen.  With this type of 

diagnostics, the detection of the elastic wave arrival at the back surface of the specimen is 

possible.  Furthermore, combining this analysis with post impact sample geometry makes 

it possible to validate numerical simulations and the constitutive response of the material 

at high-strain rates. 

2
0U

yd
ρ

σ −= .     (2.25

Modified versions of Taylor impact experiments have been conducted in 
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For these particular experiments, the modified Taylor impact tests with VISAR, 

have been used to investigate the dynamic behavior of high strength steel 

(35NiCrMoV109) cylindrical specimens at impact velocities between 256 and 361 m/s.  

Dynamic yield stress, strain, and strain rate data are then used in numerical simulations to 

reproduce the experimentally obtained VISAR traces.  Figure 2.17 shows a schematic 

representation of elastic and plastic wave propagation and interaction in a thin rod after 

impact.  Upon impact, an elastic wave travels through the specimen and reflects off of the 

back free surface causing a velocity increase detected by VISAR.  The elastic wave is 

totally reflected because of the large impedance difference between steel and air.  The 

stepwise increase in free surface velocity as shown schematically in Figure 2.17.  This is  

back end of the specimen is accelerated from elastic wave reflections and causes a 

 
Figure 2.17 Schematic representation of elastic and plastic wave propagation and 
interac
left while the stepwise free surface velocity history is shown to the right after multiple 

tion in a thin rod after impact.  Wave propagation within the rod is shown to the 

reflections of the elastic wave at the back surface of the specimen [95]. 
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followed by a nonlinear plastic wave which deforms the material and interacts with the 

reflected elastic wave traveling back towards the impact end of the specimen.  Successive 

reflections occur within the material bounded by the free surface and the propagating 

plastic wave until the elastic wave motion is completely dissipated.  The dynamic 

material data is determined directly from measuring the free surface velocity and 

applying it to the equilibrium equation determined by the conservation of momentum 

given below: 

fsY uC ∆= ρσ 0
1 ,     (2.26) 
2

where  (Figure 2.17) is the free surface velocity at the back surface of 

the specimen measured with VISAR.  Strain at the yield point is then given by: 

21 fsfsfs uuu −=∆

002 CC
==ε ,     (2.27) 

uu pfs

and the strain rate at yield point is given by: 

tdt
d

=
∆
εε .      (2.28) 

The post impact distortion of the specimen from both the experiment and 

simulations are compared to verify the accuracy of the material model and experimentally 

determined input parameters.  Figure 2.18 illustrates a comparison of the VISAR free 
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Figure 2.18 Comparison of experiment and simulation results for reverse Taylor impact 
tests conducted on high strength steel (35 NiCrMoV109) [95]. 

determining dynamic material properties. 

Illustrating another variation for the test, House, et al. [96] developed a method 

, as shown in 

Figure 

surface velocity signal with numerical calculations, showing excellent agreement.  The 

modified Taylor test in combination with numerical simulations is a useful tool for 

for capturing the transient deformation during Taylor impact experiments using high-

speed photography measurements.  The deformation profile, photographed at different 

times during the experiment, was used to estimate the strain rate and the stress-strain 

response of a rod-shaped OFE copper specimen.  The specimen radius was measured 

incrementally along its axial length for specific times during the impact

2.19(a).  This provided a measure of the specimen’s length for specific time 

instances; enabling the calculation of back end speed given by: 
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12

21

tt
llu

−
−

= ,      (2.29) 

where l1 and l2 are the specimen lengths at corresponding times t1 and t2.  Areal strains 

were calculated using Taylor’s definition [45]: 

A
A

e 01−= ,      (2.30) 

where A0 is the cross-sectional area prior to impact and A is the incremental area for a 

formed into areal strain profiles as shown in Figure 2.19(b).  A series of 

plastic wave speeds are next calculated by selecting two axial positions h1 and h2 for 

specific location along the axial length of the specimen.  The measured axial length 

profiles are trans

obtaining corresponding strains, e1 and e2 from Figure 2.19(b).  The average Eulerian 

wave speed, ν, for a strain level, e1, is given over the time interval, t1 to t2, by: 

12

12

tt
hh

−
−

=ν .      (2.31) 

The approximated strain rate is also obtained from Figure 2.19(b) by observing the 

change of strain over the time interval t  to t . 

Taylor’s [45] original approach was used to determine the stress over the time 

interval examined.  The stress, σ , associated with strain, e , is given by: 

( )

1 2

1 1

ννρσ += u ,     (2.32) 1
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Figure 2.19 Plot of measured a) specimen radius and b) calculated areal strains along 
the specimen's axial length obtained from high-speed camera images [96]. 

 
Figure 2.20 Stress and strain-rate data obtained from OFE co
function of strain [96].  The solid points are from strain profiles taken at tim

pper Taylor tests as a 
es 33.3 and 

63.3 µs, while the open points are from strain profiles taken at times 63.3 and 79.9 µs. 
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where 

negligible compared to plastic strains; and the rigid-plastic material behavior assumed by 

Taylor for metallic materials, which inherently neglects elastic strains, cannot be applied.  

pact yielding of high density polyethylene 

 unloading, consequently having the same modulus. 

ρ is the mass density.  Stress-strain pairs are then constructed by selecting multiple 

strain locations along the specimen’s axial length and calculating the corresponding 

stress.  The results are demonstrated by the stress and strain rate versus strain plots 

obtained for OFE copper as shown in Figure 2.20.  The figure shows the strain rate 

approaches 104 1/s for the deformed region of the rod shaped specimen selected for this 

analysis and corresponding to strain profiles measured at times of 33.3 and 63.3 µs after 

impact. 

 

2.4.2 Dynamic Properties of Polymers Determined from the Taylor Test 

 

For the case of impacts with polymeric materials, elastic strains in general are not 

Briscoe and Hutchings [97] studied the im

using Taylor’s analysis and found uncharacteristically high values of flow stress.  Large 

elastic strains are not accounted for in the theory, which results in an over estimate of the 

flow stress. 

Hutchings [98] later used a one-dimensional elastic-plastic wave propagation 

analysis to determine the dynamic yield strength of polycarbonate.  For this analysis, the 

mechanical properties of polycarbonate subjected to dynamic impacts are assumed to be 

represented by an ideal elastic perfectly-plastic material model, which is strain rate 

independent.  Additionally, the material is assumed to behave in the same manner during 

both elastic loading and
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For this analysis, the classic Taylor anvil impact experiments were conducted on 

ameter and 38 mm long, using a 

ompressed-gas gun.  Specimen initial length, L0 and final length, L were measured 

before 

 

utchings [98] recognized that any theory considered for predicting the behavior 

of polymeric materials using the Taylor test would have to consider substantial elastic 

strains which polymers can experience before yielding plastically.  Consequently, 

Hutchings modified the rigid-perfectly plastic theory to allow for elastic strains which 

polymers undergo before yielding.  With knowledge of the polycarbonate projectile 

length after impact and critical velocity below which no plastic deformation occurs, the 

dynamic yield strength was determined.  Figure 2.22 makes comparison of calculated 

dynamic yield stress values using Taylor’s original analysis and the modified elastic- 

polycarbonate cylindrical specimens, 16 mm in di

c

and after high velocity impacts, respectively.  The undeformed section of the 

specimen, X was additionally measured after impact. 

Theories for metallic materials that assume a rigid-plastic behavior and neglect 

elastic strains would predict some plastic deformation in the specimen at any finite,   

non-zero impact velocity.  Nevertheless, this is not the case for polymeric materials.  

Polycarbonate specimens did not show any change in length for impact velocities below 

approximately 100 m/s.  However, above this critical velocity, the change in specimen 

length increased linearly as a function of impact velocity.  Figure 2.21 shows the 

fractional change in overall specimen length as a function of impact velocity, which 

intercepts the velocity axis at 104 m/s [98].  The figure also shows the fraction of initial 

length which remains undeformed after impact and decreases without variation with 

increasing impact velocity. 

H
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Figure 2.21 Experimental data obtained for polycarbonate from Taylor impact tests.  
Upper points show the fraction of initial length which remains undeformed while the 
lower points show the fractional change in overall length and the critical impact velocity 
above which plastic deformation begins [98]. 

High-speed photography was used to observe the transient deformation during impact  

plastic wave method developed by Hutchings for polycarbonate [98].  The yield stress 

calculated by Taylor’s analysis varies rapidly with impact velocity and is not applicable 

to estimate yield stress for polymeric materials.  The elastic-plastic wave propagation 

method, however, gives results which are almost independent of velocity and are in good 

agreement with values estimated from Taylor’s analysis at high velocities. 

Taylor anvil impact experiments have also been conducted on thermoplastic 

polyether ether ketone (PEEK) cylinders with impact velocities from 152 to 408 m/s [99].  
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Figure 2.22 Comparison of calculated yield stress values obtained from experimental 

gs

 air being trapped between the 

anvil and

data using Taylor's analysis (open circles) and the elastic-plastic wave method from 
Hutchin  [98]. 

and samples were recovered for post impact analysis.  Several interesting features were 

observed for this material system and became more evident as impact velocity was 

increased.  The deformation of the specimens showed a characteristic “mushroom” shape 

up to impact velocities of 303 m/s, before fracturing was observed at the impact face.  

Fracturing appears to be ductile in nature and no evidence of brittle failure was observed.  

Examination of axially sectioned cylinders after impact shows a discolored region 

immediately behind the impact face of the specimen.  The authors suggest that these 

darker regions may be associated with heating in the area and attribute these to either 

shock and strain-heating, or an oxidation process from

 sample, and its adiabatic heating during impact.  However, heating was not 

extensive enough to show any melting or alteration of the material’s chemistry [99]. 
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The impact end of each recovered specimen had a concave shape and it 

experienced considerable relaxation after the load was removed.  This corresponds to 

features observed from high-speed photography.  Similar concave shaped impact faces 

have been observed for high density polyethylene [97].  Stresses were calculated at the 

moment of impact, assuming one-dimensional strain conditions and based on impedance 

matching techniques with the assumption that the steel anvil behaved purely elastic.  

Maximum radial strain measurements obtained from high-speed images were 

approximately 13 % greater than those measured from recovered specimens. 

This work was extended by Rae and Brown on commercially available extruded 

PEEK (grade 450G) [100].  Taylor anvil impact experiments were conducted at impact 

velocities between 150 and 360 m/s and at temperatures of 23 and 100 °C.  No evident 

differences in the material response were observed for the two temperatures besides the 

typical decrease of yield strength at elevated temperatures.  Normal deformation patterns 

were observed for specimens subjected to low impact velocity (150 - 250 m/s) conditions.  

More extensive deformation was observed at medium impact velocities (250 - 315 m/s) 

in addition to the formation of small radial cracks.  The specimen formed a concave 

shape, similar to that observed by Millett, et al. [99], on the face of the impact end of the 

specimen for this velocity range.  At the highest velocity range, (315 - 360 m/s), tearing 

within the “pullback” zone was evident and radial cracking was no longer observed.  As 

previously observed by Millett, et al. [99], darkening of the rod was observed in highly 

deformed regions.  Examination of photographed virgin material and three cross-sections 

of PEEK that experienced large strain deformation gave evidence that the color change is 

associated with the large strain state experienced by the material. 
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Other interesting features for polymeric materials have also been observed 

through Taylor anvil impact experiments.  PTFE is typically a ductile polymer, but it 

undergoes an abrupt ductile-brittle transition at moderate impact velocities.  It is a 

complex material that exhibits at least four known phase changes depending on 

temperature and pressure [101].  This pressure-induced phase transformation has also 

been observed in Taylor impact experiments conducted to examine PTFE material 

response to dynamic loading [102,103].  A critical fracture threshold exists, whereby the 

specimens fracture above impact velocities of 134 ± 1 m/s at room temperature.  Results 

of these experiments are shown in Figure 2.23.  The mechanical response of PTFE is 

highly affected by temperature such that yield strength increases as temperature is 

lowered yet fracture toughness decreases.  The Taylor experiments present evidence for a 

 
Figure 2.23 Fracture velocity threshold map for PTFE determined from Taylor impact 
experiments at room temperature.  Material has a critical impact velocity of 134 ± 1 m/s 
where a ductile-brittle transition behavior is observed [102,103]. 
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pressure-induced phase transformation being responsible for the ductile-brittle transition 

found in PTFE because the critical velocity increases for decreasing temperature, even 

though the material fracture toughness decreases.  Evidence of this is given by Taylor 

impact

 

 experiments conducted for specimens at temperatures of 1 and 40 °C which have 

transition velocities of 139 ± 2 and 131 ± 1 m/s, respectively.  The phase transition occurs 

at approximately 0.65 GPa at 21 °C.  Finite element calculations modeling Taylor impact 

experiment of PTFE at 135 m/s indicate that the stress magnitude coincides with the 

phase transition stress. 

 

2.4.3 Constitutive Response of Polymer Materials 

 

The response of viscoelastic materials to applied loads consists of a creep phase 

followed by a relaxation phase.  As illustrated in Figure 2.24, initially the material is 

loaded at a constant rate, resulting in constant strain rate deformation.  At point ‘1’, the 

loading is held constant, however, the material continues to strain in response to this 

loading until the load is removed at point ‘2’.  Upon unloading, the material relaxes at a 

specific decay rate and deformation is completely recovered only after a long time.  The 

schematic in Figure 2.25 contrasts the stress-strain response of a perfectly elastic solid 

with that of viscoelastic solid.  As illustrated, a perfectly elastic material retraces the 

same stress-strain path upon unloading as it followed during loading, regardless of strain 

rate.  Furthermore, upon reloading, the stress-strain relationship is not altered.  In 

contrast, a viscoelastic material relaxes along a different path from which it was loaded.  

Upon reloading, a viscoelastic material will exhibit a different stress-strain response 
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Figure 2.24 Schematic plot showing strain versus time for a viscoelastic material 
loaded at a constant rate, followed by a constant load and then removed. 

 

of a viscoelastic solid. 
Figure 2.25 Idealized material behaviors contrasting a perfectly elastic solid with that 

 77



throughout its entire loading history.  Additionally, the stress-strain response of a 

viscoelastic material may be a function of strain rate.  Approaches to modeling this 

behavior often involve simulating the material response with networks of massless 

Hookean springs to represent the elastic strain components and Newtonian dashpots to 

represent viscous, time dependent flow [62].  The number of elements included in the 

viscoelastic model depends on the complexity of the mechanical material behavior. 

The classical linear theory of viscoelasticity quantitatively describes the 

characteristic behavior of polymers such as creep and relaxation, however, it is generally 

limited to very narrow loading-rates and temperature regimes.  The linear spring 

constitutive equation is of the form: 

SS Eεσ = ,      (2.33) 

where Sσ   and Sε  are the stress and strain of the spring, respectively.  Similarly, the 

linear dashpot constitutive equation is of the form: 

dD εησ &= ,      (2.34) 

where Dσ  and dε&  are the stress and strain rate of the dashpot, re ely 

constant viscosity and implies a Newtonian viscosity effect.  Howe ost rs do 

not exhibit constant viscosity and show that it decreases with incr  stra   The 

stress-strain response in the spring is instantaneous while the pot se is       

time-dependent.  Additionally, polym s are known to exhibit totally different responses 

spectiv and η is the 

ver, m polyme

easing in rate.

 dash respon

er
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under vario erature conditions.  At low temp atures th ave rittle 

elastic manner and at high temp ratures, above the glass transition temp , the 

behavior is more “rubbery” in nature.  Moreover, existence of

iscontinuities in the material can enhance the nonlinear viscoelastic behavior.  Linear 

theory of viscoelasticity is unable to closely model these observed responses and thus 

there is a need for a non-linear theory of viscoelasticity. 

divided into viscoplastic and 

iscoelastic parts.  The viscoplastic component is described by a non-linear thermal 

ctivation dashpot which modifies the standard linear solid so that the movement of the 

ashpot is governed by an activation process using an Eyring type model [62].  In this 

ally activated rate process involving the 

otion of segment of chain molecules over potential barriers.  In this way, the model 

parame

us temp er ey beh  in a b

e erature

 imperfections and 

d

Most nonlinear theories of viscoelasticity follow a similar pattern and are based 

on the notion that the stress in a viscoelastic material depends on the entire deformation 

history; or alternatively, the strain in a viscoelastic material depends on the entire stress 

history.  Modeling approaches that have been applied with some success have used linear 

viscoelasticity equations comprised of linear spring and dashpot models and adapted 

them to nonlinear conditions [62].  Zerilli and Armstrong [104,105] describe a 

constitutive model for polymers where the total strain is 

v

a

d

model, the deformation of a polymer is a therm

m

ters now include activation energy and activation volume that may give an 

indication of the underlying molecular mechanisms of the polymer.  The viscoelastic 

component is described in terms of a Maxwell-Weichert linear viscoelastic model [62], 

which is a parallel arrangement of multiple elements comprised of a spring and dashpot 

placed in series.  Zerilli and Armstrong’s model [104,105] describes the response of  
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Figure 2.26 Comparison of viscoelastic/viscoplastic model with stress-strain histories 
for PTFE loaded at various strain rates reported by Walley and Field [106]. 

polytet

n data for various hydrostatic pressures.  Figure 2.26 

illustrates this from split Hopkinson data reported by Walley and Field [106]. 

Quasistatic and dynamic uniaxial compressive experiments carried out by Chen 

and Zhou [107] show that the stress strain response of epoxy (Epon® 828/T-403) is 

charact

good agreement only at small strain levels.  Lu, et al., [108] later use a model developed 

rafluoroethylene (PTFE) reasonably well for split Hopkinson pressure bar data 

reported by several investigators for a number of strain, strain rates, and temperatures, 

and by using tensile stress-strai

erized by (i) linear elasticity, followed by (ii) nonlinear elasticity, (iii) yield-like 

behavior, (iv) strain softening, and (v) nearly perfect plastic flow.  They also found that 

an increase in strain rate caused the measured peak strength to increase.  Modeling of the 

stress-strain behavior using a modified empirical model based on Johnson-Cook showed 

 80



by Hasan and Boyce [69] to better describe the viscoelastic and viscoplastic behavior of 

Epon® 828/T-403 over several strain rates and describe the large deformation behavior 

reasonably well up to true strains of approximately 35 %. 

d a defect is created thus resulting in the lowering of local 

activati

The model proposed by Hasan and Boyce [69] was developed for predicting the 

large strain, time-dependent, and temperature-dependent response of glassy polymers.  In 

the Hasan-Boyce framework, the total deformation gradient is decomposed into elastic 

and plastic components.  Deformation of glassy polymers is dominated by local 

rearrangements of molecules which are thermally activated and formulated in terms of 

activation free energy, thermal energy, and attempt frequency within the model.  The 

model uses a distribution of activation energies to characterize energy barriers to 

localized shear transformations.  The activation energy is modified by applied external 

and internal stresses.  In a glassy polymer, there is a greater possibility that a local shear 

transformation event will occur at relatively lower activation barrier sites.  The sites with 

low activation barrier energy during the initial stage of deformation can transform and the 

stress-strain behavior begins to deviate from linearity.  As the stress is increased, regions 

of relatively higher activation energy become available for shear transformation and the 

mechanical behavior becomes increasingly nonlinear.  As the number of transformed 

sites increases, the surrounding material is no longer capable of storing the corresponding 

transformation energy an

on energy, and strain softening of the material is observed.  As the material is 

significantly deformed further, work hardening begins by the reorientation of the 

polymeric chains.  The development of constitutive models that describe the behavior of 

thermoplastic polymers and polymeric composites require detailed quantitative 
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Figure 2.27 Stress-strain history calculated using Hasan-Boyce model for Al+Fe2O3+50 
wt.% epoxy composite obtained experiments [68]. 

knowledge of the effects that temperature and strain rate have on their mechanical 

0 wt.% (47 to 78 vol.%) and compared to 

the Hasan-Boyce model with data obtained from split Hopkinson bar experiments [68].  

Figure 2.27 compares the m poxy-cast mixture 

containing 50 wt.% epoxy.  Good agreement between the model and experimental data 

are shown, for the case where the strain rate was essentially constant (on the order of   

103 1/s).  However, as the epoxy concentration decrease to 20 wt.%, the ability of the 

Hasan-Boyce model to fit the experimental data was observed to diminish.  Hence, the 

correlation seems to be best under conditions where the dynamic deformation response of 

the composite is completely dominated by the epoxy. 

 from split Hopkinson pressure bar 

response. 

Recent experimental work has been conducted on Al+Fe2O3+epoxy composites 

with epoxy concentrations ranging from 20 to 5

easured room-temperature response of an e
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2.5 Chemical Reactivity of Thermite Mixtures 

 

The behavior and reaction mech studied 

extensively.  Once initiated, these materials are self-propagating and attain temperatures 

ticle morphology 

or esse

s of 

reaction for several thermite mixtures, interm pounds, and explosives. 

Small particle, high-surface area metals are a potential new class of energetic 

materials that can be tailored for specific energetic requirements.  The overall approach 

has been directed to the development of a fundamental understanding of nanometric 

anisms of thermite materials have been 

up to 4000 °C at heating rates up to a million degrees centigrade per second.  However, 

combustion waves generated from thermite mixtures typically propagate relatively slow 

in comparison to an explosive detonation.  Traditional explosives exhibit entirely 

different reaction mechanisms since the interaction of the fuel and oxidizer is contained 

within the explosive molecule itself.  The understanding of chemical reaction 

mechanisms in thermite mixtures sets importance on the influence of par

ntially how interaction between the fuel and oxidizer influences the kinetics of the 

reaction.  These types of reactions are diffusion controlled and can be altered mainly by 

changing the particle size or intimacy of the reactants.  This has been a very active area of 

research and many authors have looked at thermite mixtures that utilize nanoscale 

aluminum as the fuel or reduction agent.  There are several elements that can be utilized 

to very rapidly release high chemical energy if the morphology is correct.  In addition, 

these thermite mixtures can be highly tailored for specific applications. Table 2.4 

provides details about many energetic material systems and lists theoretical heat

etallic com
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Table 2.4 Comparison of energetic material systems including thermite mixtures [109], 
intermetallic compounds [109], and explosives [110] based on theoretical heats of 
reaction. 

Oxidizer + Fuel Reaction 
∆HR 

[kJ/mol] 
∆HR 

[kJ/g] 

3232 22 OAlFeAlOFe +→+  -285 -4.01 

322 2343 OAlMnAlMnO +→+  -256 -6.35 

5232 31065 OTaFeTaOFe +→+  -185 -1.08 

522 2545 OTaMnTaMnO +→+  -165 -1.28 

(TNT) CNOHCOONHC 5.35.15.25.3 226357 +++→  -942 -4.15 

(RDX) 226663 333 NOHCOONHC ++→  -1119 -5.04 

(HMX) 228884 444 NOHCOONHC ++→  -1457 -4.92 

-107  -1.54 22 TiBBTi →+  

TiSiSiTi →+  -65 -0.86 

NiAlAlNi →+  -59 -0.69 
 

energetic compounds and the associated benefits of their use in weapons as well as rocket 

motors and other systems.  The optimization and tailorability of energy release rates of 

these materials is an important feature and have been the focus through extensive 

experimental and theoretical studies.  The following sections give information regarding 

the thermite reaction of Al+Fe2O3 and thermites in general.  This is followed by a section 

that highlights the advantages of nanoenergetic materials and altering the particle 

morphology of energetic mixtures to the nanometric scale. 
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2.5.1 A

        

to the synthesis of refractory compounds.  SHS thermite-type reactions are     

elf-sustaining and require a relatively small heating source to initiate.  Once initiated, the 

ecursor powders until they are consumed.  

The potential advantages of this reaction are that the process requires little energy and 

very fa

luminum-Hematite Thermite System 

 

Thermite reactions are usually described as a class of reactions which involve a 

metal reacting with a metallic or non-metallic oxide forming a more stable oxide and the 

corresponding metal or non-metal of the reduced oxide.  For example, the Al+Fe2O3 

thermite mixture forms stable aluminum oxide and molten iron products.  Traditionally 

thermite reactions of this type have been used to fabricate refractory ceramics and 

composite materials [111].  The term combustion-synthesis or self-propagating  

high-temperature synthesis (SHS) refers to an exothermic chemical reaction process that 

utilizes the heat generated by the reaction to ignite and sustain the propagating 

combustion wave through the reactants to produce desired products [112].  Frequently 

these reactions, also known as gasless combustion are identified as SHS reactions when 

applied 

s

reaction front propagates rapidly through the pr

st compositional formation is achieved in seconds.  The reaction can reach 

temperatures ranging from 1500 to 4000 °C at heating rates up to a million degrees 

centigrade per second [113].  Additionally, formation of metastable phases is also 

possible because the reactions are very quick causing the molecules to solidify as 

structures that would be unstable under normal processing conditions. 

The classic thermite mixture for aluminum and iron-oxide shown in equation 2.35 

can attain temperatures higher than 3000 °C, which is above the melting points for both 
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iron and aluminum oxide [111]. 

molkJHFeOAlOFeAl R /28522 3232 −=∆⇒+→+  (2.35) 

Thermite reactions have been utilized to synthesize refractory ceramics and 

composite materials.  For example, highly reactive metal particles ignite in contact with 

boron, carbon, nitrogen, and silica to form ceramics such as borides, carbides, nitrides, 

and silicides, for a wide variety of engineering applications.  A comprehensive list of 

these materials and their energetic properties are given by Fischer and Grubelich [114].  

Wang, et al. [111] provide a thorough review of thermite reactions and discuss additional 

applications for thermite synthesized materials. 

The understanding of what happens along the combustion front of the reaction 

wave is a subject of significant research [112,113].  The combustion front is a region      

of sm                    

material.  Periodic cracking just ahead of the reaction front has also been observed which 

all thickness (0.05 to 0.5 mm thick) where the final material forms.  

Varma, et al. [115] have used high-speed video recording to conduct in situ observations 

of processes occurring at the microscopic level during reaction of several binary systems.  

SHS reaction waves are classified into two general types: quasi-homogeneous and 

scintillating.  A quasi-homogeneous wave moves at a steady rate with little temperature 

variation along the combustion front.  This is the ideal situation for making material with 

uniform structure and sustaining the combustion wave.  The scintillating wave, in 

contrast, has extreme temperature variations.  This wave pattern occurs when one 

material melts during the reaction.  The particles start to melt just ahead of the 

combustion front causing hot spots to form resulting in synthesis of a non-uniform 
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induces oscillations in the propagation velocity thus promoting the scintillating wave 

behavior.  Despite extensive studies, the mechanism(s) of reaction wave propagation are 

still not well understood. 

The reaction mechanism between the aluminum and iron-oxide thermite system 

has been studied by Mei, et al. [116].  This study concentrated on the reaction process 

between Fe2O3 (average particle size of 5 µm) and liquid aluminum by intentionally 

slowing down the reaction by either reducing the contact area between aluminum and 

iron-oxide or by controlling the heat treatment of the mixture.  Thermal analysis (DTA) 

was used to study the reaction sequence occurring during the thermite processes while 

electron microscopy and x-ray diffraction techniques were used to identify phases and 

composition of reaction products.  Mei, et al. [116] deduced that there are two transition 

stages for reaction initiation, the first occurring at 960 °C producing Fe3O4 and Al2O3 

while the next reaction occurs at 1060 °C forming Fe, FeAl2O4 and Al2O3.  The reaction 

sequence first forming the product Fe3O4 and Al2O3 is shown below followed by the 

subsequent reaction forming Al2O3 and Fe. 

324332 629 OAlOFeAlOFe +→+    (2.36) 

FeOAlAlOFe 22 3232 +→+     (2.37) 

Another study by Korchagin and Podergin [117] also detected traces of Fe3O4 and 

proposed that the decomposition of Fe2O3 (according to equation 2.38) precedes the 

interaction between iron-oxide and aluminum: 
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FeOOFeOFe →→ 4332 .    (2.38) 

The presence of FeO leads to the formation of FeAl2O4 according to: 

24332 2
123 OOFeOFe +→ ,    (2.39) 

3243 3
3

3
OAlFeOAlOFe +→+ ,   (2.40) 

No complete phase diagram has been reporte

12

.    (2.41) 

d for the Al-Fe-O system, however certain 

reactions of m

2 3 2 3 2 3 2 3

       

2 3

etastable intermolecular 

composites (MICs) [122-124]; and 

4232 OFeAlOAlFeO →+

ainly industrial importance have been investigated, especially the          

sub-solidus reaction in the partial systems FeO-Al O -Fe O  and Al-Al O -Fe O -Fe.  

The binary phase diagrams Al-O [118] (Figure 2.28(a)), Al-Fe [119] (Figure 2.28(b)), 

and  Fe-O [119] (Figure 2.28(c)) have been used, as well as the pseudobinary system 

FeO-Al O  [120] (Figure 2.29) to infer features of the Al-Fe-O system. 

Reaction in mixtures of reactive powders depend on diffusion and thermal 

conduction as the primary processes responsible for reactant mixing and chemical 

activation in the solid phase.  Recent studies have focused on improving the reaction 

kinetics for thermite mixtures by improving the interparticle contact between reactants by 

means of i) foils composed of alternating layers of fuel and oxidizer [14,121];                

ii) composites of nanoparticles prepared by ultrasonic mixing, m

iii) composites prepared using sol-gel           

processing [125-127].  Although each technique offers advantages and does improve 
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Figure 2.28 Binary phase diagrams for a) Al-O [118], b) Al-Fe [119], and c) Fe-O 
[119]. 
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Figure 2.29 Pseudobinary phase diagram for the FeO-Al2O3 system [120]. 

interparticle contact between the reactants, they also suffer from some disadvantages.  

For example, foil layering offers very good processing control so that the amount and 

diffusion distance between reactants can be tailored, however, the procedure is very time 

process does not offer the exceptional structure control as exemplified by the foil layering 

technique.  The final approach combines the fuel and oxidizer using sol-gel chemistry 

and provides a means of controlling microstructural properties such as particle size and 

morphology, and chemical composition of the composite.  This method uniformly 

disperses solid fuel within a nanoscale oxidizer matrix.  The reactivity of each of these 

systems have been evaluated on the bases of flame propagation studies. 

consuming and expensive.  Mechanical or ultrasonic mixing of reactant particles is 

relatively inexpensive and large batches of material can be made quickly, however this 
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Platier, et al. [128] has conducted flame propagation studies for assessing 

combustion wave speeds of nanoscale aluminum powders mixed with sol-gel synthesized 

iron-oxide (xerogel and aerogel) thus effectively altering diffusing distances for the 

Al+Fe2O3 thermite system for evaluation.  The study found that combustion wave speeds 

are highly affected by the oxidizer synthesis technique (xerogel versus aerogel) and 

showed that the aerogel had the greatest combustion wave speed, over 900 m/s compared 

to 300 m/s for the xerogel.  Combustion wave speed differences were attributed to 

morphological dissimilarities between the two compositions with the aerogel benefiting 

from having a more open structure that permits open channel burning and an increased 

surface area for the reaction to take place, therefore, enhancing convection mechanisms 

important to flame propagation.  The authors indicate that the intimate mixing between 

the nanoscale reactants was an important factor for obtaining steady combustion wave 

fronts. 

ale Energetic Materials 

 

l C, H, N, and O based organic chemistries of explosives, while also 

showin

 

2.5.2 Nanometric Sc

Nanoscale energetic materials are capable of storing greater amounts of energy 

than conventiona

g increased performance in areas such as sensitivity, stability, energy release, and 

mechanical properties, in addition to having the ability to tailor energy release in efficient 

ways [129].  These attributes have directed the way for extensive studies aimed at 

exploiting the unique properties of nanomaterials that have the potential to be used in 

energetic formulations.  Two requirements for energetic materials such as propellants and 
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thermites or explosives are to have the ability to store large amounts of energy and to 

efficiently release this energy when desired.  For explosives, this class of energetic 

material is exemplified by trinitrotoluene (TNT) which has both the fuel (carbon) and the 

oxidizer (O2) contained in the same molecule.  TNT is normally metastable at ambient 

conditions and upon fragmentation produces highly stable products and releases large 

amounts of energy.  However, TNT is not the most efficient when releasing chemical 

energy, thus resulting in incomplete oxidation of the carbon fuel.  In contrast, energetic 

materials such as propellants and thermite mixtures are capable of yielding large amounts 

of ener

r energetic materials, namely capability of storage and efficient 

release

y making them dangerous to 

produce and handle [130].  Additionally, nanoscale aluminum particles interact with an 

gy through an exothermic reaction produced from mixtures containing individual 

oxidizer and fuel particles.  Reactants and reaction products are stable when held 

separately, or no extra energy is provided for the reaction to proceed.  In this class of 

materials, the reaction products are more stable than the reactants, and energy is released 

mostly in the form of heat. 

The novel chemistry brought about by nanoscale materials, which possess a large 

surface-to-volume ratio, permits the design and synthesis of materials that optimize the 

two requirements fo

 of energy.  For example, nanoscale aluminum is very reactive and can interact 

with CO2 and water, releasing energy in the form of heat.  Reactions with CO and H2 

with bulk aluminum yield -821 kJ/mol and -946 kJ/mol of energy respectively.  However, 

the drawbacks for use of nanoscale aluminum are the concerns derived from safe 

handling and storage because of its high reactivity.  Many nanoscale metals have not 

been extensively developed because of their high reactivit
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oxidize

ganic 

explosives such as HMX and RDX has been a main topic of study.  Thermite mixtures 

comprised of fuel and oxidizer particles such as Al+Fe2O3 and Ni+Al are particularly of 

interest.  The energy release rate in microscopic systems is limited by the mass transfer 

 varying the size of the components and 

effectiv

r forming a dense aluminum oxide layer that blocks diffusion of oxygen, 

preventing further oxidation of the inner aluminum core and resulting in incomplete 

combustion.  Manufacturers are producing nano-aluminum particles with various 

aluminum oxide thicknesses ranging from 1 to 5 nm thick [130].  Controlling variations 

in particle size and oxide thickness determines the aluminum content of the particles.  For 

example, a 20 nm particle with a 5 nm aluminum oxide coating contains approximately 

10 wt.% of pure aluminum.  In contrast, that same 20 nm particle with a 1 nm aluminum 

oxide coating contains approximately 60 wt.% aluminum.  However, energetic metastable 

thermite mixtures are possible because aluminum particles form an aluminum oxide shell 

encapsulating a core of aluminum, and remain isolated from the oxidizer until external 

energy applied to the composite causes the oxide shell to fail resulting in initiation of a 

self-propagating reaction. 

Fairly recently, the use of energetic materials to replace traditional or

process which requires the reactants to be physically mixed thus promoting self-

sustaining chemical processes.  Recent work has focused on minimizing the mass transfer 

effect by utilizing nanometric scale fuel and oxidizers [125,131].  This also permits the 

possibility of tailoring energy release rates by

ely altering the reaction pathway.  With this in mind, increased performance may 

be realized by enhanced mixing of energetic ingredients produced at the nanometric 

scale. 
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It is well known that the size distribution and the degree of intermixing between 

the metal-oxide reactants increase the propensity of reaction initiation and significantly 

affect burn rate.  For instance, powder mixtures of nanometric size Al and MoO3 have 

burn rates approximately 1000 times higher than conventional micron-scale   

constituents [132,133].  Nanoscale particles enhance chemical reactivity by significantly 

altering the surface area to volume ratio of particles as their size is reduced, promoting

 

 

more fuel to be in contact with the oxidizer.  Armstrong, et al. [134] suggest that there is 

a burn rate behavior dependence on the inverse square of particle diameter attributed to 

the energy release rate being determined by increasing available particle surface area per 

unit volume as the particle size decreases. 

Nanostructured energetic materials represent a new paradigm for improved 

energetic material research and development utilizing many elements from the periodic 

table.  Nanoscale energetic materials have increased performance including better 

sensitivity, stability, energy release, and mechanical properties.  Early studies have found 

that nanoenergetic materials can store more energy than conventional energetic materials 

and can be tailored to release energy with the maximum benefits [42,131], namely more 

efficient coupling with targets and increased lethality.  Reactant particle size, 

morphology, and the distribution of these affect chemical reactivity, enhance energy 

content and the rate of energy release, as well as reduce sensitivity to unintentional 

reaction.  Furthermore, improved dynamic mechanical properties are also realized by the 

particle size reduction of reactants in these material systems. 

Interest in nanostructures is driven by the potential for finding novel properties 

and technologically useful characteristics of material structures that have small physical 
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dimensions.  Nanoscale aluminum has found its way into applications such as additives 

for propellants, munitions, and other energetic applications because of its ability to 

enhance their chemical reactivity.  Ignition behaviors of several thermite mixtures 

containing nanoscale aluminum show a dramatic decrease in ignition   

temperatures [123,124]

          

.  Nanoscale aluminum particles are becoming more readily 

vailable and provide an opportunity to enhance the reactivity of thermite mixtures by 

increasing the combustion velocity. 

 

2.6 High-Strain Rate Simulations for Energetic Materials 

 

The unique environments that reactive materials experience during shock 

compression, which can promote chemical reactivity, are influenced by particle-level 

behavior.  Time-resolved experimental methods characterize the bulk material response 

to dynamic loading.  However, numerical methods are needed to give full spatial 

resolution of the materials response.  Numerical simulations of shock waves propagating 

through aluminum iron-oxide thermite powder mixtures dispersed in a polymer binder 

have been examined to provide insight into thermomechanical and chemical response at 

the particle level and develop Hugoniot data [135,136].  For the simulation, the        

stress-strain response of the constituent phases has been modeled explicitly at high-strain 

rates for thermite mixtures containing 20 and 50 wt.% (47 and 78 vol.%) epoxy. 

Microstructures were reconstructed by algorithms that synthetically generate 

particle locations based on prescribed mixture parameters to resemble physically acquired 

microstructures for this material system.  Figure 2.30 shows an example of a 

a
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reconstructed microstructure for Al+Fe2O3+20 wt.% epoxy composition.  Finite element 

simulations for this study were performed using a 2D multi-material Eulerian hydrocode 

called Raven, developed by Benson [137].  Thermal and mechanical responses of the 

material system were studied through particle level material deformation, and spatial 

distributions of temperature ver, chemical reactivity of 

the thermite mixture was not considered in this study. 

 and pressure were probed.  Howe

The same microstructure for an Al+Fe2O3+20 wt.% epoxy mixture was 

considered for two different loading conditions.  Figure 2.31 shows post-shock 

microstructure morphologies for two simulations that are subjected to a high-velocity  

(UP = 1.0 km/s) and low-velocity (UP = 0.5 km/s) loading conditions.  The first 

observation is that the higher velocity case exhibits substantially higher plastic 

deformation than that at the lower velocity.  Plastic deformation of the aluminum phase is 

particularly severe with the iron-oxide phase showing a relatively stiffer response. 

 
Figure 2.30 Example of a reconstruction microstructure with 20 wt.% epoxy 
compostion.  Markers indicate a) iron-oxide agglomerates and b) aluminum particles with 
voids as the remaining white areas [135,136]. 
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Figure 2.31 Post-shock microstructure morphologies for a) U  = 500 m/s, and b) U  = 
1000 m/s [135,136]. 

For the high velocity case, aluminum particles appear to flow around and between iron-

oxide particles.   

This is a significant result since microstructures can be designed to optimize this 

behavior for enhanced material strength or promote shock-induced chemical reactions.  In 

addition, the temperature and pressure profiles along specific locations within the 

microstructure were also obtained through simulations.  The profiles showed that the 

decomposition of the epoxy phase closely follows the shock front as it propagates acro

P P

ss 
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the ma ron-oxide particles experience limited amount of melting at the particle 

surfaces and the aluminum particles experience no melting at all.  An insignificant 

amount of melting for the iron-oxide phase is expected due to its high melting 

temperature.  However, the fact that aluminum particles do not melt suggests that the 

 too short for the effects of heat conduction to take place.  The 

Hugoniot for the 50 wt.% ition was aracteriz P and   

US-UP relations calculated in the finite element models, and correlated with experimental 

data. 

], ic m mic ( ns for 

analyzin anical d nano al and 

anocrystalline Al+Fe2O3 composites.  The research focused on the development of 

interatomic potentials for describing the behavior of fcc-Al, α-Fe2O3, and Al+Fe2O3 

nanocomposites.  The MD framework was applied to analyze the nanoscale mechanical 

for chemic g in reaction pro  the defor  

and i

uctures enerated r the hanical deformatio analys ded 

nanocrystalline Al and Fe2O3 l+F noco tes wi  diffe rage 

grain s (7.2  fo  type e Al  nan sites          

were composed o dif volu ction fcc  % and                  

0 % fcc-Al+60 % α-Fe2O3.  Grain morphology and orientation in nanocrystalline 

structures have a significant effect in determining strength. 

terial.  I

time scales involved are

epoxy compos  also ch ed by the P-U

Tomar [138,139  has performed class olecular-dyna M oD) simulati

g the mech eformation in crystalline materi s (Al and Fe2O3), 

n

behavior for both quasistatic and dynamic loading conditions, in addition to accounting 

al reactivity resultin duct formation from mation of Al

 Fe O m2 3 xtures. 

Str g fo mec n is inclu

, and A e2O3 na mposi th three rent ave

size , 4.7, and 3.9 nm r each ).  Th +Fe2O3 ocompo

 of tw ferent me fra s; 60 % -Al+40 α-Fe O  2 3

4
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The quasistatic deformation mechanisms for nanocrystalline Al observed in the 

MD simulations were comprised of three main categories:  i) uncorrelated atom shuffling 

resulting in grain boundary sliding (intergranular), ii) partial dislocations and twinning 

(intragranular), and iii) microshear banding.  A softening trend in strength was observed 

as the average grain size decreased, as illustrated for nanocrystalline Al in Figure 2.32(a).  

It was observed that after significant deformation, the flow was mainly governed by grain 

bounda

      

 Fe2O3 

phase is present, the deformation mechanism was also affected by electrostatic forces, 

enhancing grain boundary sliding.  Consequently, the volume fraction of Fe2O3 phase 

strongly influenced the strength-grain size relations as depicted in Figure 2.33(a,b), 

ry sliding, and the 3.9 nm structure had lower flow strength at the later 

deformation stages.  The so-called “reverse” Hall-Petch relationship was observed  

(as illustrated in Figure 2.32(b)) for the dependence of flow strength with square root of 

the average grain size, showing a deviation from linearity.  In structures where the

 
Figure 2.32 Molecular-dynamics calculations obtained for nanocrystalline aluminum a) 
comparing tensile stress-strain cu
flow strength on average grain siz

rves with different grain sizes and b) the dependence of 
e [138,139]. 
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which 

tained for Fe2O3 and the US-UP relationship showed 

good ag

shows that structures with higher volume fractions of Fe2O3 have steeper slopes.  

The reverse Hall-Petch relationship for the composite structure ranged between those for 

Al and Fe2O3 as is evident in Figure 2.33(a,b). 

Shock wave analysis for different crystallographic orientations of Al and Fe2O3 

was also performed to determine the dynamic mechanical behavior for particle velocities 

ranging from 0.5 to 4.0 km/s.  The study presented MD analysis of shock wave 

propagation in <100>, <110>, and <111> oriented single crystal Al, in <0001> oriented 

single crystalline Fe2O3, and through an interface between {100} surfaces of Al and 

{0001} surfaces of Fe2O3.  Results showed that the US-UP relationship for single crystal 

material was dependent upon crystallographic orientation.  However, the US-UP 

relationship did not deviate severely from experimentally determined polycrystalline 

behavior.  Similar results were ob

reement with experimental values.  Analysis of shock wave propagation through 

 

strength on grain size in nanocrystalline Al and Fe2O3 structures and nanocomposites 
calculated from molecular-dynamics simulations [138,139]. 

Figure 2.33 The reverse Hall-Petch dependence of a) elastic moduli and b) flow 
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Al and Fe2O3 interfaces showed that the crystalline structure for the two phases was not 

maintained during the passage of the wave, and the crystalline material underwent an 

amorphous phase transformation.  The transformation occurs partly due to increased 

atomic mixing in the interfacial area and a reduction in mass transport.  The extent of 

mixing

 

 is dependent on impact velocity and it increases with increasing impact velocity. 

Calculations for an impact velocity of 2.0 km/s showed that the transformation 

was accompanied with a temperature rise of approximately 900 K which was close to the 

melting temperature of Al and suggests the possibility of shock-induced chemical 

reactions or simple phase mixing occurring within the mixture.  The investigation of 

nanocrystalline material systems establishes an important computational approach for 

understanding the complex mechanical behavior of nanostructured materials at atomic 

length and time scales. 

 101



CHAPTER III 

d within an epoxy matrix of varying 

concen

-

strain rate impact experiments.  Shock-compression testing included instrumented 

equation of state (EOS) experiments using a parallel-plate impact configuration and the 

high-strain rate constitutive response experiments were performed using both “direct” 

 

EXPERIMENTAL APPROACH 

 

The objective of this study was to describe the underlying principles governing 

the deformation and fracture behavior, mechanochemical sensitivity and reaction 

response, and processing characteristics of epoxy-cast Al+Fe2O3 powder mixtures.  The 

approach involved processing a class of materials that was composed of an energetic 

thermite-based powder mixture (Al+Fe2O3) disperse

trations.  Specimens were subjected to mechanical testing ranging from quasistatic 

compression to high-strain rate dynamic impacts.  Material characteristics such as 

chemical reactivity and microstructure morphology were also examined in this study. 

In this chapter, the experimental approach for processing epoxy-cast specimens is 

detailed along with the techniques used for characterizing the microstructure, mechanical 

properties, and chemical reactivity.  This chapter will also present details for the 

preparation and techniques utilized to conduct shock-compression and dynamic high

and “reverse” Taylor anvil impact configurations. 
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3.1 Processing of Aluminum-Hematite Epoxy-Cast Composites 

 

The synthesis of epoxy-cast Al+Fe2O3 powder mixtures was divided into several 

processing steps that included the mixing of stoichiometric quantities of nano- and 

micron-scale aluminum with submicron hematite (Fe2O3) powders and their dispersion in 

epoxy.  The candidate material system for this study was based on a classic oxidation-

reduction reaction with a metal and metal-oxide.  Specifically, aluminum constituting the 

fuel (or reduction agent) and Fe2O3) fo idiz t w  

to develop a material that has combined structural strength and nc

aterial factured by combining stoichiometric quantities 

of aluminum and hematite powders (25.26 wt.% Al and 74.74 wt.% Fe2O3) with Epon® 

826 resin (Miller-Stephenson; Danbury, CT) a ine (DEA

curing agent (Sigma-Aldrich; St. Louis, MO).  Table 3.1 gives details about the             

u xy e materials in this study.  

In  batches ared, c mpositions with 3 

powder mixtures combined with epoxy volume fractions ranging from 47 to 78 % 

acc  3.2 itio ble 3. e po

the addition of nanoscale particles caused the viscosity of the mixture to increase 

significantly and introduced processing difficulties that could not be overcome using a 

cas urthe easurements of cured specim

composite materials made from 2O3+47 ibited significant porosity 

(in the range of 4 to 5 %).  Therefore, compositions com of Al+Fe2O3+60 vol.%  

 hematite ( rming the ox e s

 enha

r, were ca ith epoxy

ed chemical 

reactivity. 

Composite m s were manu

nd diethanolam ) anionic catalytic 

as-received powders sed to produce epo

 were prep

-cast composit

dividual 250 cm3 onsisting of co  Al+Fe2O

ording to Table .  Not all the compos ns listed in Ta 2 wer ssi ce ble sin

t-cure process.  F rmore, density m ens suggested that 

 Al+Fe  vol.% epoxy exh

prised 
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Table 3.1 ristics and metal-oxide powders used for processing 
poxy-cast composites. 

Manufacturer 

 

 
 Characte of metal 

e

Material Particle Size Purity 

Aluminum 3.2 µm (avg.) 99.7 wt.% Al Stockton, CA 
Valimet, Inc; 

Nano-Aluminum 56.3 nm (avg.) 
2.1 nm oxide layer 72.7 wt.% Al Technanogy; 

Irvine, CA 

Hematite 0.1 - 0.3 µm  99.9 wt.% Fe2O3 
Fisher Scientific; 

Fairlawn, NJ 
 

Table 3.2 Epoxy-cast Al+Fe O  mixture ratios based on weight and volume fractions.  
Theore

Weight Fraction Volume Fraction 

2 3
tical densities were also calculated for each based on the individual constituents 

properties. 

Epoxy Aluminum Hematite Epoxy Aluminum Hematite Density 
3[wt.%] [wt.%] [wt.%] [vol.%] [vol.%] [vol.%] 

Theoretical 

[g/cm ] 

100 0 0 100 0 0 1.1967 
50 12.63 37.37 77.97 8.71 13.32 1.8661 
40 15.16 44.84 70.23 11.77 17.99 2.1012 
30 17.68 52.32 60.27 15.71 24.02 2.4040 
20 20.21 59.79 46.94 20.98 32.07 2.8089 
0 25.26 74.74 0 39.55 60.45 4.2353 
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epoxy using micron-scale aluminum were found to have the best mechanical properties.  

These were also the composites that contained the least amount of epoxy possible while 

typically exhibiting 1 % or less porosity; hence, were used mainly for experimental 

characterization.  For s ions that used 

nanoscale aluminum powder contained 70 vol.% epoxy and exhibited less than 1 % 

many o

imilar reasons, Al+Fe2O3 composite composit

porosity. 

The epoxy resin used in this study was very similar to the Epon® 828 resin used in 

ther shock studies available in the literature.  Differences between the two epoxies 

arise through their viscosities, where a slight increase in temperature will result in a 

marked decrease in viscosity as shown in Figure 3.1.  Epon® 826 resin has a lower 

 
Figure 3.1 Viscosity and temperature profiles for EPON® resins, including lower 
viscosity Epon 826 (red trace) compared to Epon 828 (blue trace) resin [140]. 
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viscosity (0.8 poise at 75 °C) and was more suited for accepting particulate fillers capable 

of impregnating small, confined areas [140].  Epon® 828 (> 1.0 poise at 75 °C) is a 

general-purpose epoxy resin that is widely used in high-strain rate experiments [140].  

The resin and hardener were prepared with a 12:1 mixing ratio, respectively.  The resin 

was preheated to approximately 80 °C, which reduced its viscosity and improved wetting 

properties for solid p fically examined the 

temperature dependent viscosities of Epon® 828 resin, as well as its combination with 

several

s in a Nalgene container.  Earlier 

sample

article additions.  Adolf, et al. [141], speci

 curing agents, including diethanolamine (DEA).  Such characterization was 

applied to optimize the mixing procedure used for processing epoxy-cast Al+Fe2O3 

composites in this current study. 

Two different mixing procedures have been utilized to manufacture epoxy-cast 

specimens.  In most cases, specimens were prepared using premixed stoichiometric 

quantities of aluminum and hematite powders obtained from the turning action of a 

tumble mixer, specifically a twin shell dry v-blender (The Patterson Kelly Company, 

Inc.; East Stroudsburg, PA) and mixed for 48 hour

 preparation consisted of adding small individual quantities of aluminum and 

hematite powder directly to the warm resin and mixing after each addition.  However, 

premixing of the powders was thought to improve the contact between fuel and oxidizer 

components of the thermite mixture and enhance the chances of chemical reactivity.  

Regardless of the powder state before addition to the resin (premixed in the v-blender or 

the individual additions of aluminum and hematite to the resin), the following processing 

steps were identical in both cases. 
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Small fractions of the powders were added to the preheated resin in several steps.  

Between each addition, the powder-resin was carefully combined using a mixing blade 

attached to a drill and then placed into an oven set at 120 °C.  This process was repeated 

until all of the powder additions were combined with the resin.  To ensure low viscosity 

of the mixture, aluminum and hematite powders were also preheated to 80 °C before 

being added to the epoxy resin in an effort to prevent cooling, thus keeping the viscosity 

of the mixture low.  Mixing also causes the Al+Fe2O3+epoxy mixture to cool and 

therefore, it was placed in the oven to reheat after each addition of the powder to the 

resin.  Once all of the powder was added to the mixture and the viscosity was low enough 

to pour, the DEA curing agent was combined thoroughly and the mixture was again 

placed in the oven for approximately fifteen minutes.  After the mixture was at 

temperature, a vacuum degassing step in a desiccator for approximately five minutes was 

used to remove trapped air bubbles introduced during mixing.  The degassed mixture was 

then placed in the oven again for another fifteen minutes to reduce viscosity and permit 

easy pouring of the mixture into molds. 

Aluminum two-piece molds were manufactured into several simple cylindrical 

geometries capable of casting specimens with nominal diameters of 8
5 ”, 8

7 ”, and 2”, as 

shown in Figure 3.2.  Molds were first prepared by coating the inside surfaces with 

vacuum grease (Dow Corning Corporation; Midland, MI) and sealing the seams with 

aluminum foil adhesive tape.  Molds were placed in the oven and preheated to 120 °C.  

Specimens were prepared by slowly pouring the mixture into the heated molds, being 

careful to avoid the formation of additional air bubbles.  It was found unnecessary to 

repeat the degassing step after the mixture was poured into the molds.  The molds were 

 107



 

different cylindrical geometries used throughout this study are shown. 

placed back in the oven and the temperature was reduced after 30 minutes to 80 °C.  The 

mixture was allowed to cure in the oven for 48 hours.  After the mixture cured, castings 

were removed from the molds and kept in a ventilated hood for at least a week.  The 

curing schedule for specimens used in this study was not thoroughly examined, however 

no measurable physical changes such as dimensional shrinkage or density variation was 

observed from measurements taken several weeks or several months after curing.  

Physical properties of epoxy resins cured with DEA hardener have been studied 

previously by Lundberg [142] and suggest that a full cure is obtained in eight days at  

24 °C, three days at 40 °C, and eighteen hours at 75 °C.  These results give a good 

indication that the specimens prepared in the curren

Figure 3.2 Aluminum split-molds used for manufacturing epoxy-cast specimens with 

   

t study were processed using 

sufficient conditions to achieve full polymerization. 

Final preparati xperiments began by 

rst turning the cast rods on the lathe to desired diameters and then sectioning to form 

on of specimens for quasistatic and dynamic e

fi
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desired

    

 geometries (cylinders, disks, etc.).  Figure 3.3 shows examples of the geometries 

used for quasistatic compression tests, continuous spherical ball indentations, Taylor 

anvil impact experiments, and parallel plate impacts.  Once sectioned, the flat surfaces of 

the specimens were lapped in two stages first using 45 µm diamond slurry and then   

15 µm as a finishing step.  Specimens were checked for flatness and planarity, typically  

 
Figure 3.3 Finished specimen used for a) quasistatic compression, b) continuous 
indentation, c) parallel-plate impacts, and d) Taylor impact experiments. 

parallel to within 0.0051 mm or better.  Lapping polymeric material was more 

challenging than metallic materials which tend to have better dimension stability.  The 

addition of aluminum and hematite particles helps with this aspect, however the high 

volume fraction of epoxy tends to dominate the material’s dimensional instability 

particularly as the specimen aspect ratio between length and diameter becomes very large  

 109



Table 3.3 Specimen dimensions and tolerances used for quasistatic and dynamic 

pure epoxy. 

Testing Method Measured Specimen 
Dimensions 

[in.] 

Nominal 
Strain Rate 

[1/s] 

ASTM 
Standard 

and/or [Ref]

mechanical property experiments performed on epoxy-cast Al+Fe2O3 composites and 

Property 

Continuous Spherical 
Ball Indentation 

Compressive Strength, 
Compressive Modulus, 

E, σ, ε, σy, εy 

D = 0.85 ± 0.05 10-4 
Ferranti, 

et al. 
[143] 

Stress-Strain Response t = 0.35 ± 0.05 

Three-Point Bend 

Flexural Strength, 

Flexural Stress-Strain 
Response 

±
w = 0.50 ± 0.01 

t = 0.125 ± 0.001 
10-4 [144] 

Flexural Modulus, 

E, σ, ε, MOR 

l = 5.00  0.01 D 790-03 

Dynam
Analysis 

Storage Modulus, Loss 

Glass Transition 
ic Mechanical 

(tensile loading) 

Modulus, Phase Angle, 

Temperature 
E ′ , E ′′ , tan δ, T  

l = 0.750 ± 0.001 

t = 0.015 ± 0.00

D 5026-06 
[145] 

g

w = 0.150 ± 0.001 
1 

n/a D 4092-01 
[146] 

Compression 
Compressive Strength, 
Compressive Modulus, 
S

E, σ, ε, σy, εy 

D = 0.50 ± 0.01 D 695-02a 
tress-Strain Response l = 1.00 ± 0.05 10-2 [147] 

Charpy Impact* 
Breaking energy, 
impact resistance 

A = 0.400 ± 0.002 

min
max

C =  

E ±

103 D 6110-02 
.40.2
.50.2 max

B =  

ES, IS .90.4 min
D = 0.010R ± 0.002 

 = 0.500  0.006 
F = 0.500 ± 0.006 

[148] 
.00.5

Taylor Impact  
ynamic Strength, 

ic Modulus, Stress-
Strain Response 
Y, E, σ, ε,σy, εy 

D = 0.300 ± 0.002 
l = 50.80 ± 0.05 103 to 104 

Taylor 
[45] 

Hutchings 
[98] 

☺
D

Dynam

Parallel-Plate 
Impact 

Compressive S
Shock Velocity,

Velocity 
P, US, UP,  

t = 0.125 ± 0.005 
eyers 
[16] 

tress, 
 Particle D = 50.50 ± 0.05 105 to 106 M

*Refer to Figure 3.5 for dimension descriptions. 
☺Taylor impact experiments experience a range of strain-rates (up to 106 1/s at the first moment of impact) 

along the axial length of the specimen depending on impact velocity. 
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as in the Taylor test specimens ( 5.6≈DL ).  Table 3.3 lists typical specimen dimensions 

and tolerances used for machining the various specimen geometries utilized in quasistatic 

and dynamic experiments.  Specimen tolerances are typically specified by ASTM testing 

standards when available and also identified in Table 3.3. 

 

3.2 Specimen Characterization  

portant indicator of structural/mechanical 

property performance since introduction of a small percentage of porosity was 

detrimental to mechanical properties.  Observations of microstructures using optical 

microscopy and SEM techniques were performed to obtain qualitative and quantitative 

information about particle size and distributions within each composition. 

Density was measured using Archimedes’ method for each specimen cut from 

epoxy-cast rod geometries.  Pieces were submerged in distilled water with 3 drops of a 

dispersing agent.  Dry mass, md and wet mass or buoyancy, B of the sample was 

measured using a digital scale capable of 0.1 mg accuracy.  Temperature of the distilled 

water at the time of each measurement was also recorded.  Density was calculated for 

each specimen according to equation (3.1). 

 

Physical features of cast-cure specimens were characterized by density 

measurements and examined using optical and scanning electron microscopy (SEM) after 

processing.  Density evaluation was an im

( )T
B

md
0ρρ

−
= ,     (3.1) 
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where ρ0(T) is the specific density of distilled water at temperature, T °C.  Typically, ρ0 

as a value of 0.9980 g/cm3, which correspond to the density at a temperature of 21.0 °C. 

Microstructural features were observed on individual cut sections after       

nsion (Buehler;                

Lake Bluff, IL) sta  with a 15 µ p to make th polished face and back fac  the 

specimen coplanar.  Polishing continued with the 9 and 3 µm steps until surfaces had a 

high quality finish that permitted examination of microstructures using an optical 

microscope.  All polishing steps were carried out using a Texmet® 1000 pad (Buehler; 

Lake Bluff, IL). 

icrostructures was performed on a Leica DM IRM optical 

microscope (Leica; Bannockburn, IL).  Digital images were obtained using a CoolSnap 

CCD video camera (Media Cybernetics; Silver Springs, MD), capable of capturing high-

resolution digital images (1390 x 1040 pixels, 4.65 micron pixels).  Images were 

imported into Image-Pro Plus analytical imaging software (Media Cybernetics; Silver 

Springs, MD) where a number of features such as phase volume fraction, average phase 

size, etc. was measured. 

icroscopy was performe using a LEO 153  and LEO 550 

(JOEL USA, Inc.; Peabody, MA) scanning electron microscopes (SEM).  SEM analysis 

was mainly utilized for qualitative estimates of particle size and phase distribution in 

each composition formulated, in addition to observing as-rec d powders from 

anufacturers.  Recovered specimens and fragments were also examined after dynamic 

pact experiments and included EDS chemical analysis. 

 

h

lapping and polishing.  Samples were polished using diamond suspe

rting m ste e e of

Characterization of m

Scanning electron m d 0  1

eive

m

im
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3.3 Reaction Energetics Characterization  

 

hich was then 

covered

Differential Thermal Analysis (DTA) was used to examine physical properties of 

cast specimens, while being subjected to a controlled rate heating/cooling cycle.  DTA 

involves the heating or cooling of a test specimen and an inert reference (usually 

alumina) under identical conditions.  Temperature differences between the sample and 

reference material were plotted against time or temperature (furnace temperature 

following heating or cooling program).  Changes in the specimen which lead to the 

absorption (endothermic reaction or melting) or evolution (exothermic reaction) of heat 

were detected relative to the inert reference material. 

The DTA study was performed using a Perkin Elmer DTA 7 (Perkin Elmer; 

Boston, MA) on representative samples of each epoxy-cast composition and pure epoxy 

material.  All of the starting constituent materials were additionally analyzed including 

nano- and micron-scale aluminum, and nano- and micron-scale Al+Fe2O3 stoichiometric 

powder mixtures.  Care was necessary in preparing these specimens since the packing 

state of the powder sample becomes important and can lead to large variations between 

apparently identical samples.  Hence, pressed pellets were used to have a “consistent” 

packing arrangement for each powder and powder composition. 

Specimens used for DTA measurements weighed approximately 10 mg and were 

typically comprised of a single uniform piece of material.  Specimens were placed in an 

alumina crucible on approximately 2 mg of an alumina powder bed, w

 with approximately 30 mg of alumina powder.  The reference crucible contained 

alumina powder with an approximately identical quantity used in the crucible containing 
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the specimen.  Prior to the experiment, the furnace temperature was set to 50 °C under the 

flow of argon gas.  The system was allowed to come to thermal equilibrium before the 

heating program was initiated, typically taking approximately 30 minutes.  The 

experiments were typically conducted up to a temperature of 1200 °C at a heating rate of   

10 °C/min.  Temperature data obtained from these measurements was analyzed using a 

Pyris software package (Perkin Elmer; Boston, MA).  The software permitted the 

determination of onset temperatures for

          

 endothermic and exothermic reaction events and 

e calculation of enthalpy changes measured from the area under the exothermic or 

suring the melting temperature and 

tent heat of transformation of aluminum and gold reference standards (Perkin Elmer; 

Boston

th

endothermic peaks.  The DTA was calibrated by mea

la

, MA), thus, giving two points of reference that were obtained for temperatures of 

660 and 1063 °C for aluminum and gold, respectively.  The peak area values and onset 

temperatures determined by the calibration test run were input into the Pyris software and 

automatically corrected all future data collected by the instrument. 

High-temperature in situ x-ray diffraction (HTXRD) experiments were also 

conducted for identifying chemical species evolving during controlled heating.  

Experiments were used to complement the DTA study of these materials and correlate the 

exothermic and endothermic peak events with the presence of specific chemical species.  

These experiments were performed on an X’Pert PRO MPD (PANalytical; Natick, MA) 

multi-purpose x-ray diffraction system equipped with a molybdenum x-ray source, 

diverging incident beam optics, and a solid state X'Celerator detector (PANalytical; 

Natick, MA).  The instrument was equipped with HTK 2000 platinum strip furnace 
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(Anton-Paar; Graz, Austria) capable of reaching a maximum temperature of 1400 °C and 

operated under a helium gas atmosphere. 

The HTXRD study used specimens with disk shape geometry (approximately    

16 mm

ert 

High Score (PANalytical; Natick, MA) and then exported to Jade 7.0 (Materials Data 

Inc.; Livermore, CA) XRD analytical software analysis package.  Chemical species and 

phases were identified by comparing traces with XRD standards obtained through the 

 of polymers and polymeric composites were generally very sensitive to the 

te of deformation (strain rate).  Experiments were conducted to ascertain material 

 diameter and 3 mm thickness) sectioned from the same epoxy-cast rod used for 

the DTA study and high-strain rate impact experiments.  The specimen was placed on a 

thin alumina sheet in direct contact with the furnace heating element, which prevented 

damaging the platinum strip during heating.  The furnace chamber was first evacuated 

and then purged several times with helium gas to attain an oxygen-free atmosphere.  

Scans were performed for a 2θ range of 10 – 40 °, while helium gas flowed throughout 

the experiment.  The sample was heated from room temperature to 1300 °C with a 

heating rate of 25 °C/min.  Approximately one-minute x-ray scans were performed at 

every 25 °C starting at 100 °C.  The x-ray data for each scan was collected using X’P

International Center for Diffraction Data (ICDD) [149]. 

 

3.4 Mechanical Property Characterization 

 

Mechanical properties were evaluated for epoxy-cast Al+Fe2O3 and pure epoxy 

specimens using several different mechanical test configurations.  The mechanical 

characteristics

ra
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properties such as elastic modulus, yield strength, modulus of rupture, etc.  Details for 

ach type of quasistatic and low strain rate experiment will be discussed followed by 

propert

 were conducted according to ASTM standard E 494-95 [150].  Sound 

pulses 

since these types of waves were more difficult to transmit through the specimen due to 

e

ies obtained from dynamic mechanical analysis (DMA).  Mechanical property 

evaluation using ultrasonic nondestructive testing techniques were also used and will be 

discussed next. 

 

3.4.1 Ultrasonic Material Analysis 

 

Ultrasonic material analysis is based on a simple principle that the motion of any 

wave will be affected by the medium through which it travels.  Thus, changes in the 

measurable transit time associated with the passage of a high frequency sound wave 

through a material is correlated with changes in physical properties such as elastic 

modulus, shear modulus, compressibility or bulk modulus, etc.  Ultrasonic sound velocity 

measurements

are generated and received by piezoelectric transducers that have been acoustically 

coupled to the test material.  For dilatational (or longitudinal) sound velocity 

measurements, a single transducer with a frequency of 4.5 MHz was coupled to one side 

of the specimen using glycerin (Fisher Chemical; Fair Lawn, NJ) and served as both the 

transmitter and receiver (pulse/echo mode) of the signal.  However, distortional (or 

transverse or shear) sound velocity measurements used separate transmitting and 

receiving transducers with a frequency of 1.9 MHz located on opposite sides of the 

specimen (pulse transmission mode).  Pulse transmission measurements were necessary 
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attenuation or scattering of the signal.  The sound waves travel through the test material, 

either reflecting off the far side to return to its point of origin (pulse/echo), or received by 

another transducer at that point (pulse transmission).  The received signals were then 

amplified and analyzed s:     

Boalsburg, PA). 

Ultrasonically measured longitudinal, C  and transverse, C  wave speeds are 

related to bulk mechanical properties [16] according to: 

using a NCA 1000 analyzer (SecondWave System

L T

ρ
µ

=2
TC ,      (3.2) 

ρ
µλ 22 +

=LC ,      (3.3) 

where L T

sound velocities are combined to calculate the bulk sound velocity, 0 for an isotropic 

λ is Lamé’s constant and ρ is density.  Both longitudinal, C  and transverse, C  

C

solid through the relation: 

⎟
⎠
⎞

⎜
⎝
⎛−= 22

0 3
4

TL CCC .     (3.4) 

he shear modulus, µ was calculated directly from the transverse wave speed and density 

measur

T

ements according to equation (3.2).  The elastic modulus, E, is then calculated 

from elastic theory according to: 
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µ

λ
µµ ⎟

⎠
⎞

⎜
⎝
⎛ +

=
23

E .     (3.5) 
+1

Similarly, other material properties such as bulk modulus, K, and Poisson’s ratio, ν, were 

calculated from identities listed in Table 3.4 (shown on the following page) inter-relating 

the foregoing material parameters.  Lastly, the longitudinal wave impedance, Z was 

obtained from the relation: 

ρLCZ = .      (3.6) 
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Table 3.4 Relation among the elastic constants for isotropic materials. 

Elastic 
Constants E,ν E,G K,ν K,G λ,µ 
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3.4.2 Quasistatic Compression Tests 

 

Quasistatic compression experiments were performed according to ASTM 

standard D 695-02a for determining compressive properties of rigid plastics [147].  

Cylindrical shaped specimens with a length to diameter ratio of 2:1 were prepared from 

epoxy-cast rods.  Epoxy-cast rods were first machined using a lathe to a diameter of   

0.5 ± 0.01”.  The specimen length was cut slightly greater than 1” to allow for surface 

finishing steps that included lapping with 45 µm and then 15 µm diamond suspensions.  

Final specimen lengths were 1.0 ± 0.05” with a fine surface fi

  

nish and parallel to within 

.0005”.  Ten compression specimens were prepared for each composition. 

Compre lic load-frame 

nstron Corporation; Canton, MA) with a 55,000 lbf (245 kN) load cell capacity.  The 

load ce

n 

fractured.  Load and displacement data was collected at a 10 ms interval. 

Universal testing instrument drive systems always exhibit a certain level of 

0

ssion tests were performed on an Instron 1332 hydrau

(I

ll was zeroed before each test and brought in close proximity to the face of the test 

specimen.  Care was taken to make sure the specimen was perfectly aligned and centered 

on the platens.  The specimen’s contact surfaces with the anvil were lubricated to reduce 

friction and prevent severe barreling (complex stress state within the material) of the 

specimen during compression.  Specimens were tested using a continuous displacement 

mode with a ramp rate of 0.585 in/min, which corresponded to a strain rate of 

approximately 1.0 x 10-2 1/s.  The platen ramping program was started and diagnostic 

equipment triggered once loading began.  Loading was stopped once the specime

compliance as a function of load frame stiffness, drive system wind-up, load cell 
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compliance, and fixture compliance.  To accurately measure the test material response, 

the compliance was measured and empirically subtracted from the test data.  The 

compliance of the load frame was determined by bringing the platens together and 

ents of well-defined material properties, but only supply relative information 

about a

presents an absolute measure of 

applying the same loading program as used for the test specimens.  The resulting 

compliance curve was plotted and fit with a polynomial curve.  The experimental results 

were adjusted by subtracting the load frame compliance from overall measurements and 

the stress-strain history was calculated. 

 

3.4.3 Continuous Spherical Ball Indentation Tests 

 

Continuous ball indentation hardness measurements [143] were also used for 

quasistatic mechanical property evaluation of epoxy-cast specimens.  The values 

generated by conventional fixed hardness test (i.e. Rockwell, Brinell, etc.) do not provide 

measurem

 material’s resistance to indentation or penetration.  Additionally, conventional 

hardness determination relies on microscopic examination to resolve the elastically 

recovered indent.  Elastic material that surrounds the plastic zone of the indentation acts 

to hinder plastic flow.  Exploring the combined elastic and plastic deformation behavior 

during hardness testing allows for the deduction of the elastic contribution to the final 

plastic indentation.  Thus, useful information can be resolved from hardness testing if 

load and penetration depth are continuously monitored during indentation.  Using this 

technique provided a means for making hardness measurements, which do not introduce 

any strain-hardening effects.  Accordingly, this technique 
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hardne

 x 10-4 mm/s.  A fixture was designed to couple a standard Rockwell 

spheric

ss and elastic modulus.  The advantage of using a relatively large spherical 

indentation tip permits the measurement of bulk elastic modulus for a multiphase material 

including porosity as an additional phase. 

Continuous indentation tests were performed using a modified tensile testing 

Instron 5500R screw driven load frame with a 100 N load cell capacity (Instron 

Corporation; Canton, MA) and operated in the compression mode.  The applied load, P, 

versus the crosshead displacement or depth of indentation, h, was continuously recorded 

throughout the experiment.  The machine crosshead was screw driven at a constant 

velocity of 1.0

al indenter (steel ball with a diameter of 1.5875 mm) directly to a load cell located 

in the crosshead of the load frame and is shown in Figure 3.4.  A maximum load of 50 N 

was applied to each specimen.  Each test was typically repeated five times at different 

 

Figure 3.4 Continuous indentation test apparatus used to measure load and 
displacement of the indenter tip throughout the experiment [143].  A standard Rockwell 
spherical indenter tip is coupled to a load cell using a custom mounting fixture. 
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locatio

 

Flexural (three-point bend) tests were performed according to ASTM standard    

D 790-03 for determining flexural properties of plastics and reinforced plastics [144].  A 

bar shaped specimen of rectangular geometry rests on two supports and was loaded with 

a constant load midway between the supports.  The loading nose and supports for the 

flexural test fixture had a cylindrical surface with a radius of 5 mm.  The span between 

the two loading supports was set to 50.8 mm.  To ensure the alignment and proper 

positioning of the loading nose, a spacing jig was used to set the span and locate the 

loading nose in the center of the fixture.  The load frame and fixture compliance was 

measured by placing a smooth steel bar across the support span.  The steel bar had a 

significantly greater flexural stiffness than the test specimens.  The compliance curve was 

plotted and experimental results were adjusted from the empirically established 

relationship. 

Three-point bend tests were performed on the same Instron 5500R screw driven 

ns on the surface of the specimen.  The machine deflection or compliance for this 

configuration was measured by indenting a Rockwell hardness reference standard     

(HRC 31.7) through the entire load range that the epoxy-cast specimens were examined.  

Experimental load-displacement results were adjusted by subtracting the measured load 

frame compliance using a similar approach described previous for compression 

experiments. 

 

3.4.4 Flexural (Three-Point Bend) Tests 

load frame described previously for continuous indentation experiments along with the 
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100 N capacity load cell.  Before each test, the specimen width and thickness were 

measured in close proximity to the center of the specimen where the loading nose would 

be located.  The load cell was zeroed before each test and positioned close to the center of 

the specimen with a minimal preload (less than 1 N).  The rate of the crosshead motion 

for the load frame was set at a constant 0.05 in/min and corresponded to a strain rate of 

approximately 2.0 x 10-4 1/s.  Termination of the test occurred upon the specimen 

breaking.  The flexural stress, σf was calculated for any point on the load-deflection curve 

using the following equation [144]: 

22
3
bd
PL

f =σ ,      (3.7) 

where P is the load, L is the support span distance, b is the width of the beam, and d is the 

depth of the beam.  Similarly, flexural strain, ε was calculated according to [144]: f 

2

6
L
Dd

=ε ,      (3.8) 

e as the previous equation. 

Test specimens were prepared by casting material into a Nalgene mold forming a 

rectangular casting with nom

f

where D is the maximum deflection of the center of the beam or displacement, d and L 

are the sam

inal dimensions of 856 − ” by 433 − ” and approximately 

1/2” thick.  Ten flexural specimens were machined from a single casting in the shape of a 
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flat bar with a width, b, of 0.05 ± 0.01”, thickness, d, of 0.125 ± 0.001”, and a length of 

5.0 ± 0.01”. 

 

3.4.5 Charpy Impact Toughness Experiments 

 

Charpy impact toughness tests were also performed on specimens made in the 

rectangular shaped Nalgene mold and five specimens were machined from a single 

casting.  The specimens were a simple beam with an angled notch having dimensions 

according to Figure 3.5.  Charpy impact experiments were conducted following ASTM 

standard D 6110-02 for determining impact resistance of notched plastics [148].  These 

experiments were conducted on a model 92T plastic impact testing machine (Tinius 

Olsen Testing Machine Co., Inc.; Horsham, PA) at room temperature.   

 

Figure 3.5 Charpy impact specimen dimensions according to ASTM standard D 6110-
02 [148]. 
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Specimen width and notch depth were measured for each specimen prior to testing.  The 

notch machined into the specimen creates a stress concentration zone which promotes 

brittle, 

s.  

The pendulum strikes the specimen midway between the supports and directly opposite 

of the notch.  The net break energy, ES was directly determined from the testing machine.  

The test was good if the net breaking energy was less than 85 % the nominal pendulum 

energy.  The impact resistance, IS was determined by dividing the net break energy by the 

measured individual width of each specimen. 

 

3.4.6 Dynamic Mechanical Analysis (DMA) 

Dynamic mechanical analysis (DMA) is a technique used to study and 

           

e modulus, E'), viscous modulus (or loss 

odulus, E''), and damping coefficient (tan δ) as a function of temperature, frequency or 

 and the loss modulus to damping and 

rather than ductile, fracture.  The notched specimen was supported on either end 

horizontally and broken with a single swing of the pendulum from the testing apparatu

 

characterize materials, particularly for observing the viscoelastic nature of polymers.  An 

oscillating stress is applied to a sample and the resultant strain is measured as functions 

of both oscillatory frequency and temperature.  From this, a comprehensive knowledge of 

the relationships between the various viscoelastic parameters may be obtained,  

e.g. storage and loss moduli, mechanical damping parameter (tan δ), and dynamic 

viscosity.  The transitions of polymeric materials from the glassy state to the rubbery 

state reveal important material properties.  The DMA identifies these transition regions 

and determines elastic modulus (or storag

m

time.  The storage modulus is related to stiffness,
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energy dissipation. Glassy, viscoe

by DMA, and som

127

lastic, elastic, and liquid polymers can be differentiated

the variation of epoxy content for Al+Fe2O3 epoxy-cast composites.  The influence of 

particle size was also examined by using both micron- and nano-scale aluminum particles 

in Al+Fe2O3 powder mixtures disperse in epoxy.  Experiments were conducted using a 

TA Instruments Q800 DMA (TA Instruments; New Castle, DE) apparatus operated in 

tension with a constant oscillation frequency of 1 Hz.  The specimens were initially 

equilibrated at 25 °C and then heated at a rate of 5 °C/min to a maximum temperature of 

170 °C.  DMA experiments provide valuable data for characterizing the properties of 

materials, particularly polymers and polymer composites.  The experimental results were 

used to estimate the crosslink density of the epoxy-cast materials and the influence epoxy 

volume fraction and powder particle size has on this measure. 

 

3.5 Time-Resolved Instrumented Impact Experiments 

 

Instrumented impact experiments were conducted using a single-stage light gas 

gun (Figure 3.6), which uses expanding helium gas to drive a projectile along the length 

of a barrel.  The gas gun is comprised of an 80 mm diameter barrel that is approximately 

9 m in length and can attain impact velocities in excess of 1000 m/s depending on the 

e details of polymer structure can be inferred from the results. DMA is 

particularly useful for evaluating viscoelastic polymers that have mechanical properties, 

which exhibit time, frequency, and/or temperature effects. 

In the present work, DMA was used to measure the physical influence that solid 

particles dispersed in a polymer matrix have on overall bulk mechanical properties with 

 



projectile mass.  The barrel is keyed along its entire length ich prevents projectile 

rotation or yaw during firing.  The downrange end of the barrel has a 14.5” nominal 

diameter muzzle face with several attachment points for securing targets and 

instrumentation shown in Figure 3.6(b  T u  i ci  d normal to the 

, wh

,c). he m zzle s pre sely place

 
Figure 3.6 High-strain rate a) the down range view of the 80 mm 
compressed-gas gun, e blast tank and catch tank assembly, e) experiment chamber, 
and f) high-pressure chamber and wrap-around breech sections.  The experiment chamber 
contains the b)  a i h rg s n in c) for a 
PVDF/VISAR equation of state (EOS e n

barrel offering e p l of tilt or li ent of the impact surfaces 

(typically 2.5 mr r ).  T i) experiment chamber 

(Figure 3.6(e)) fo nt th as d is oc d  n jectile 

impact experimen ii) the blast tank (Figure 3.6(d)) designed to provide open volume 

for the driver gas xp d n  t tc nk em , ) the catch tank 

facility showing 
d) th
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assembly (Figure 3.6(d)) used for “soft-recovery” of the projectile and target.  The soft 

covery containment vessel is stuffed with rags and provides sufficient length for the 

ebris moving at high velocity to come to rest.  A shock absorber is attached to the 

s typically 50 to         

80 m

Proje act velocity was meas in ies o metallic pins, the 

spacing between which is precisely measured typically with an accuracy of ± 0.01 mm.  

The projectile touches each of the pins prio e t, causing a short circuit and 

the discharge of a capacitor bank.  The volta e ch pin was measured using a 

series of electronic counters (Hewlett Packard HP 53131A; Palo Alto, CA) giving the 

time difference between each pin.  A redundant easurement of pin discharge was also 

con  us ig (T nix  784A; Richardson, TX) with 

gig req respon parate ci ents were ma r to 

impact and w cally  % of other

ig e de  for precisely measuring the distance 

bet ch veloc metall  w to se  the vel lock 

and position the depth mi ove th s ad f a multi was 

atta  th d of t in and oth ttach  the me ig in 

contact with the depth m e dep icr measures down to the tip of 

eac rom mmon height and com s t nuity the cir th a 

easurable resistance.  This provides a precise way for determining when the micrometer 

re

d

downrange end of the catch assembly, which also helps absorb the impulse of the impact 

experiment.  Experiments are performed under vacuum with level

torr. 

ctile imp ured us g a ser f five 

r rgto ta t cimpa

g ke spi fr aom e

 m

ducted ing a d itizing oscilloscope ektro TDS

ahertz f uency se.  Four se  velo ty measurem de prio

ere typi within 1 to 2 each . 

A h hly rep atable method was vised

ween ea  of the ity pins.  A ic jig as used cure ocity b

crometer ab e pin .   leOne rom -meter 

ched to e groun he velocity p  the er s a wa ed to tallic j

icrometer.  Th th m om r ete

h pin f  a co plete he nti co  of cuit wi
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was in contact with the crush pin and gave excellent reproducibility in measuring velocity 

pin distances. 

Obtaining a material’s Hugoniot equation of state requires measurements of two 

parameters in shock wave experiments.  Normally, these are the shock velocity and either 

the stress or particle velocity behind the shock front.  Time-resolved instrumented impact 

experiments were conducted in which the loading conditions were measured using 

piezoelectric polyvinyl di-floride (PVDF) stress gauges (Ktech Corp; Albuquerque, NM) 

and velocity interferometry with a commercial VISAR (Velocity Interferometry System 

for Any Reflector) from Valyn International (Albuquerque, NM).  PVDF gauges provide 

a direct measure of the arrival of the stress wave (shock velocity) and magnitude, and 

further permit the calculation of particle velocity.  The velocity interferometry system 

was used to directly measure particle velocity at a window/specimen interface (used for 

EOS experiments discussed in section 4.5) or a free surface (used for reverse Taylor 

impact experiments discussed in section 4.4) depending on the type of experimental 

being c

   

lected  

onducted. 

VISAR is a widely used diagnostic technique that makes use of coherent single-

frequency light from a laser source to measure the motion of a diffuse, reflective  

surface  [151,152].  The system measures the Doppler shift in the wavelength of light 

reflecting from a moving surface and hence, used to track object motion.  The features of 

a conventional push-pull VISAR [153] system are shown schematically in Figure 3.7.  A 

fiber optic probe is used to bring and collect the laser light at a focused spot 

(approximately 600 µm in diameter) on the reflective surface of the target.  The optical 

signal is split into two distinct paths and later recombined.  A small part of the ref
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Figure 3.7 Schematic diagram for a push-pull VISAR system [153].  

light is separated to an intensity monitor (known as the beam intensity monitor or BIM), 

and the remainder is routed through the main beamsplitter of the interferometer.  Half of 

this signal is sent through a reference path whose medium is air.  The remaining half is 

sent through a path that delays the signal using fused silica optical lenses (etalons).  The 

beam is delayed by a time, τ caused by the difference in the index of refraction for the 

fused silica and air.  The beam is recombined at the main beamsplitter, where interference 

fringes are produced and are proportional to the velocity change.  The target motion 

produces a Doppler shift of the scattered light that in turn causes the interference fringes 

to shift.  The determination of the fringe shift yields a velocity history of the target 
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material.  The basic equation relating the surface velocity u(t), to the VISAR fringe 

count, F(t) is given by [151]: 

( )δ
ν

ντ

λτ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
+

=⎟
⎠
⎞

⎜
⎝
⎛ −

112

)(
2

0

tFtu ,   (3.9) 

where t is time, τ is the interferometer delay time, λ is the wavelength of the laser light 

(514.5 nm), and δ is a function of the index of refraction for the etalon material and the 

laser wavelength.  The factor ( )01 νν∆+  corrects for the effect of changes in refractive 

e moving target surface at any time, t is equal to the 

total number of fringes recorded, F(t), times a velocity-per-fringe constant, VPF, given 

index, which is equal to zero unless a window material is placed on the specimen’s 

reflective surface.  The velocity of th

by [154]: 

λ

( )δ
ν

ντ +⎟⎟⎜⎜
∆

+ 112

The VPF constant is selected by the user according to the expected velocity range and the 

use of well characterized window materials such as PMMA, fused silica, sapphire, and 

LiF [154-156].  Light passing through a window material travels more slowly than it 

would in a vacuum, thus altering the optical transit time which leads to a substantial 

velocity correction.  The VISAR system obtains surface (particle) velocity measurements 

with better than 1 % accuracy and a time resolution of approximately 2 ns [154]. 

⎠

⎞

⎝

⎛

0

0) =VPF .    (3.1
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The push-pull VISAR [153] produces four fringe signals in two pairs that are 

data from four to two fringe signals.  

These two signals have the same fringe information with a known phase difference of 

tion rate [157].  The three PM signals are captured using a digitizing 

oscillos

 

inum 

onto the surfaces of the film.   The polled region of the film is highly controlled within 

The gauges have highly reproducible shock response characteristics and 

sensitivity to loading.  The dependence of charge output on stress has been determined  

180° out-of-phase.  The two 180° out-of-phase signals from each pair are subtracted 

using differential amplifiers, thereby reducing the 

approximately 90°.  The light signals are converted to an electrical voltage from quick 

response photomultipliers (PM) with 1 ns resolution.  A third photomultiplier output 

monitors the intensity of the light beam or BIM entering the interferometer.  The loss of 

fringe contrast has been observed when the reflecting surface has a nonuniform velocity 

and provides valuable information regarding the specimen’s particle velocity distribution 

and equilibra

cope (Tektronix TDS 784A; Richardson, TX ) with GHz frequency response. 

Piezoelectric polyvinyl di-floride (PVDF) stress gauges were used to measure the 

impact and propagated stress histories that the target material experiences during high 

velocity impact experiments.  PVDF is a tough, flexible polymer readily available in the 

form of a thin film which can be made piezoelectric.  The gauges are manufactured using 

biaxially stretch 25 µm (± 5 %) thick PVDF film material that has been characterized and 

poled using the Bauer process [158,159] to a remnant polarization of 9.2 µC/cm2.   

Figure 3.8 shows the orientation of the square poled sensor area relative to the PVDF ‘1’ 

and ‘2’ stretching axes.  Metal electrodes are prepared by sputtering gold over plat

the active sensor area (shown in Figure 3.8) located between the crossed electrodes. 
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 Dimension
[mm] 

A 1x1 

B 10 

C 0.05 

D 30 

E 50 

F 60 

1
2

 Dimension
[mm] 

A 1x1 

B 10 

C 0.05 

D 30 

E 50 

F 60 

1
2

1
2

 

Figure 3.8 Schematic diagram of a PVDF stress gauge dimensions. 

from a series of uniaxial plate impact experiments and calibrated using a “negative-

current orientation” from 0.01 to 10 GPa [10,160].  This orientation was observed to have 

significantly higher output currents as compared to the “positive-current” orientation at 

generated during an impact experiment is deduced from the recorded voltage drop.  The 

recorded signal is proportional to the differential of the stress wave profile.  The signal is 

integrated to obtain the stress wave profile. 

 

3.5.1 Equation of State Hugoniot Experiments 

 

Equation of state (EOS) experiments were conducted on two different epoxy-cast 

compositions consisting of 60 and 78 vol.% epoxy combined with stoichiometric 

quantities of Al+Fe2O3 powder mixture.  Impact stresses ranged from 2.7 to 8.5 GPa for 

the 60 vol.% epoxy composition and 2.1 to 4.7 GPa for the 78 vol.% epoxy composition 

using the 80 mm compressed-gas gun.  Details for the 60 and 78 vol.% epoxy  

high pressures [160].  Operated in the current mode, a precision current viewing resister 

(CVR) is connected across the electrodes of the gauge and a measure of the current 
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Table 3
equation of state experiments conducted for Al+Fe2O3+78 vol.% epoxy.  Shot numbers 

Number 3 Method Material Material [GPa] 

.6 Data summary for gas gun and plane wave lens (PWL) explosively driven 

with “JJH” prefix were performed by J. Jordan and R. Dick [161,162]. 

Shot Specimen 
Density 
[g/cm ] 

Test Flyer Driver Impact 
Velocity 

[m/s] 

PI 

0303 1.7900 Gas Gun OFHC 
Cu

OFHC 
Cu 523.3 ± 26.5 2.11 ± 0.02

0308 1.8645 Gas Gun 556.0 ± 21.7 2.28 ± 0.03

0311 1.8503 Gas Gun 716.0 ± 89.5 3.10 ± 0.05

0403 1.8581 Gas Gun 943.7 ± 3.8 4.66 ± 0.31

JJH8 1.850 PWL/TNT n/a Al n/a 16.40 

6061-T6

6061-T6

JJH 6061-T6

6061-T6

OFHC 
Cu 

OFHC 
Cu 

OFHC 
Cu 

OFHC 
Cu 

OFHC 
Cu 

OFHC 
Cu 

JJH9 1.850 PWL/TNT/PMMA n/a Al n/a 10.82 

JJH10 1.850 PWL/TNT n/a PMMA n/a 14.45 

JJH11 1.850 PWL/Octol n/a Al n/a 17.29 

12 1.850 PWL/Octol/PMMA n/a Al n/a 19.00 

JJH13 1.850 PWL/Octol n/a PMMA n/a 23.09 

JJP22/23 1.850 PWL/TNT n/a Al n/a 19.21 

JJH24 1.850 PWL/TNT n/a OFHC 
Cu n/a 7.22 

JJH25 1.850 PWL/Baratol n/a OFHC 
Cu n/a 3.94 

JJH26 1.850 PWL/Octol n/a OFHC 
Cu n/a 14.77 
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composition experiments are listed in Table 3.5 and Table 3.6, respectively.  Several 

higher pressure experiments not attainable using the compressed-gas gun, but performed 

using explosive loading are also detailed in Table 3.6 for the 78 vol.% epoxy 

composition.  These high-pressure experiments were conducted at the Air Force Research 

Laboratory (AFRL) by Jordan, et al., [161,162].  In these high pressure Hugoniot 

measurement experiments, data for the 78 vol.% epoxy composition was obtained using 

explosive plane wave lenses (PWL) in conjunction with TNT, Octol, or Baratol booster 

pads.  A donor material with known shock parameters and an optional PMMA attenuator 

plate was placed on the explosive pad.  The sample was placed in contact with the donor 

material and the shock wave within the donor and the specimen was measured using 

piezoelectric pins located at different thicknesses.  This permits the determination of 

shock velocity through the donor plate and specimen of interest.  Using the measured 

shock velocities in the donor material and the specimen, the remaining Hugoniot 

properties for the specimen were determined using impedance matching. 

Experiments conducted for the 60 vol.% epoxy composition were carried out 

using only parallel-plate impact experiments on Georgia Tech’s compressed-gas gun.  It 

was challenging to obtain a large range of impact pressures using this technique with a 

low impedance polymer composite.  However, several impact pressures were obtained 

using different combinations of tungsten and copper flyer and driver materials.  Two 

different experimental configurations were utilized; i) low pressure symmetric parallel 

plate impacts using similar epoxy-cast material for the flyer and target, and ii) higher 

pressure configurations utilizing high density flyer and driver material combinations to 

“drive up” the pressure experienced by the target specimen.  Figure 3.9 shows a  
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Figure
VISAR.  Flyer plate materials used for this study consisted of tungsten, copper, and 

configuration.  However, the driver material is not utilized when conducting a symmetric 

hen the release wave entered the target material.  The target thickness was 

al wave propagation through the material was 

troduced from radial waves reflecting from 

en’s edge.  The projectile assembly consisted of a flyer mounted on an 

aluminum

 3.9 Schematic diagram of EOS experiments using PVDF stress gauges and 

epoxy-cast Al+Fe2O3 for symmetric impacts.  The figure illustrates a flyer-driver 

impact experiment where the flyer and target materials are the same composition. 

schematic of the parallel-plate impact experiment configuration used with the gas gun to 

measure the composite material’s EOS.  All of the experiments were shock and release 

type impacts, where the target was loaded to a compressive high-pressure state and then 

unloaded w

carefully selected to ensure the norm

measured before a complex stress state was in

the specim

 sabot, which was backed by an air gap with a small step for attaching the flyer.  

The sabot face was machined to remove material with a slightly smaller diameter than the 

flyer.  A step was machined with a depth approximately half the thickness of the flyer  
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Figure 3.10 Schematic diagram of a high-speed aluminum projectile and final assembly 
used for EOS experiments. 

(see Figure 3.10).  The flyer was attached to the sabot along its circumference using 

Hystal thin film epoxy.  Typical dimensions used for the sabot and flyer assembly are 

shown in Figure 3.10, along with a photograph of a finished assembly. 

Polyvinyl di-floride (PVDF) stress gauges were used to measure the arrival and 

magnitude of the shock wave at two locations; as it entered and exited the target 

specimen.  Additionally, velocity interferometry (VISAR) was used to directly measure 

the particle velocity at the back surface of the specimen and window interface.  High 

purity fused silica (Corning 7980 HPFS Standard Grade; Corning, NY) was used as the 

window material attached to the back surface of the target.  VISAR measurements were 

corrected for the impedance difference between fused silica and the target material to 

give a redundant measure of specimen particle velocity.  Figure 3.11(a,c) gives a detailed  
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Figure 3.11 Target assembly shown from a) above and c) the side, PVDF gauges 
located on either side of the Al+Fe2O3+epoxy composite and backed by a fused silica 
window.  b) Schematic diagram showing the orientation of PVDF gauge and VISAR on 
back surface of target (propagated gauge location). 

view of the target assembly which consists of the PVDF gauge package located on eithe

 

also a metallic driver material attached to the front of the target specimen.  The gauge 

package consists of alternating layers of PTFE insulation which were attached with thin 

film epoxy on both sides of the PVDF stress gauge and shown schematically in       

Figure 3.12. 

Preparation of the target began with lapped, disk shaped specimens with a 

nominal diameter of 50.8 mm and typically 1.5 to 3 mm thick.  Physical dimensions and 

density were measured prior to the assembly process.  During the target assembly, PVDF 

gauges were placed on the impact and back face of the specimen to measure stress and 

arrival times of the shock wave.  The sharp edges of the specimen circumference, where 

the gauge leads cross, were removed to extend the life of the gauge during the  

experiment [163].  A radial bevel, shown in Figure 3.13(c,d), was filed along the outer 

sharp edge in the proximity of the gauge lead location.  The fused silica windows used on 

the back surface of the target already had a

r 

side of the target material, backed with a fused silica window.  In some cases there was

8
1 ” radial bevel machined for this same  
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Figure 3.12 Schematic diagram illustrating the different layers that comprise the target 
assembly with use of PVDF stress gauges. 

 

Figure 3.13 Images showing the radial bevel on the a,b) fused silica window and c ) 
Al+Fe2O3+epoxy target designed to extend PVDF gauge life.  Images b) and d) show a 
close-up view of the bevel before PTFE insulation and the PVDF gauge are attached to 

,d

the surface. 

 141



purpose also shown in Figure 3.13(a,b).  Figure 3.11(c) shows the gap formed from the 

bevel in the location where the PVDF gauge leads extend from the target’s surface, which 

helps extend the lifetime of the gauge during an experiment.  In most EOS experimen s, 

both PVDF gauges and VISAR diagnostics were used to capture a redundant measure of 

particle velocity.  A location close to the center of the specimen’s back surface was 

polished with 1 µm diamond paste to give a mirror-like finish and then purposely 

scratched using an abrasive pad to create an ideal diffused surface for the VISAR laser 

measurement.  The gauge placement and the location of VISAR measurement are shown 

schematically in Figure 3.11(b).  The delay time or velocity per fringe (VPF) constant 

(using a fused silica window) was selected for each experiment based on expected 

particle velocity. 

The overall experimental design was adopted from an arrangement used originally 

at Sandia National Laboritories, in Albuquerque, NM [10,12,160,163] and subsequently 

implemented with the Georgia Tech. gas gun.  The target assembly consists of several 

gluing steps using Hystol (RE 2038 and HD 3475) thin film epoxy (Henkel Corporation; 

Olean, NY).  The assembly begins with attaching a 0.0254 mm (0.001”) thick PTFE 

insulating film to the impact face of the target and the window surfaces.  Once cured, 

piezoelectric stress gauges were placed separately at the approximate center of the target 

and fused silica window.  Then supplied metallic shims (having identical thicknesses as 

the gauge) were placed on the impact face to maintain planarity over the face of the target 

and window mater

t

ials.  Several drops of thin film epoxy were placed under the gauge and 

shim locations.  The PVDF stress gauges were less than 25 µm thick and had an active 

area of 9 mm2 where the stress measurement was taken.  Several drops of thin film epoxy 

 142



were placed evenly on the gauge surface and another 0.0254 mm (0.001”) thick layer of 

PTFE film was placed over the gauges.  A small metallic cylinder was used to roll out the 

thin film epoxy evenly across the gauge assembly surface and remove trapped air 

bubbles.  Once all of the air bubbles were removed, the gauge assembly was weighted to 

remove remaining trapped air bubbles and compress the gauge package assembly.  Glue 

layers between the insulation, gauge, and mating surfaces comprising the target assembly 

were typically 1 to 2 µm thick.  Finally, the target with the gauge package on its impact 

face and the fused window with the propagated gauge package on its face were glued 

together.  A small amount of thin film epoxy was added to the back face of the target and 

the front face of the gauge package on the fused silica window, and the two were placed 

together making sure the impact and propagated gauges were perpendicular to each other 

 and are inherently 

good pickup devices for electrical noise [163].  Locating the impact and propagated 

gauges 90° apart from each other helped to reduce the coupling of electrical noise that 

comes from the “cross-talking” of the two gauges [163].  Again, weight was placed on 

the target assembly to remove any excess trapped air.  During each step of the assembly 

process, measurements were taken to obtain the thickness of each layer of the gauge 

package.  Typical gauge package thicknesses were approximately 80 µm thick or less.  

Some experiments used a metallic driver and this was glued to the target assembly as the

ference 

and shown in Figure 3.11(a,c). 

PVDF stress gauges are high-impedance electrical sources

 

final step in assembling the target package.  The target and window material have a 

beveled radius in the location where the gauge electrodes overlap the sharp circum
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edge.  Removing the sharp edge on the specimen and window material significantly 

extends the life of the stress gauge by several microseconds [163]. 

With the target assembly completed, it was mounted in an acrylic ring that was 

attached to the muzzle face located at the downrange end of the compressed-gas gun 

barrel and an example of this is shown in Figure 3.6(c).  The entire assembly was lapped 

prior to mounting on the gas gun muzzle face to ensure a planar impact.  After lapping, 

two shorting crush pins (Dynasen Inc.; Goleta, CA) were placed on the target ring 

extending ahead of the impact plane by a few millimeters to trigger electronic diagnostics 

(PVDF and VISAR oscilloscopes) prior to impact. 

The PVDF gauges were operated in a current viewing mode which had the 

advantage of low susceptibility to electrical noise [160,164].  In the current mode, the 

gauge was connected to a current-viewing resistor or CVR (T & M Research Products; 

Albuquerque, NM) across the electrodes of the gauge.  The gauge leads were 

mechanically attached to the CVR using low-temperature indium-bismuth solder (Ktech 

Corporation; Albuquerque, NM).  The gauge was operated in a “negative-current” 

orientation where the positive gauge lead (marked with a “+”) was facing the impact 

direction.  The negative lead of the gauge was attached to the center conductor of the 

CVR and the positive lead was attached to the sheathing.  The CVR was connected in 

series with a 50 Ω high frequency, low-loss coaxial transmission cable, 12.8 meters in 

length (Andrew LDF4-50A; Westchester, IL).  A disposable RG-233/U jumper cable   

0.6 meters in length was used to connect the CVR inside the experiment chamber through 

a ground isolated BNC bulkhead connector and then to the Andrews cable which carried 

the signal to a digitizing oscilloscope located in the control room.  The voltage signal 
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across the CVR was split using a 50 Ω power-T (Team Specialty Products Corporation 

(TSP); Albuquerque, NM), permitting the measurement at two complimentary 

sensitivities (typically 10:1 ratio).  A primary channel captured the very high-stress rates 

(shock-jump conditions) and another channel monitored very low-stress rates.  The 

waveforms were later combined providing high-resolution voltage-time profiles using 

PlotData software [165].  After combining, the voltage data was converted to current and 

integrated with respect to time.  The current trace was divided by the gauge active area to 

give the charge as a function of time and the stress was obtained for the experimentally 

determined charge and stress relationship for PVDF gauges [160,164].  Experiment 

design factors for a given impact stress, such as selecting the proper CVR resistance, 

were determined using the empirical relationship [164]: 

102
97.4−

= Iλ
σ ,     (3.11) 

I
2

I

where σ  is the initial stress with units of GPa and λI is the current density [A/cm ].  

Current densities were observed to have rise times less than the transit time of the shock 

wave through the gauge [12].  Therefore, the gauge was regarded as “thick” relative to 

the rise time of the loading pulse. 

The cables were checked prior to each experiment using a pulse generator 

(Stanford Research, Inc. Digital Delay Pulse Generator Model DG535; Sunnyvale, CA) 

that sends a square wave with a 1 ns rise time and 10 ns wide pulse duration through a 

spare transmission cable to the target chamber and returns to an electronic digitizing 

oscilloscope (Tektronix TDS784A; Beaverton, OR) used during the experiment.  This 
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method

 

Taylor anvil constitutive 

response of epoxy-cast Al+Fe2O3 composites.  Experiments were conducted using 

ell as imag

 of “pulsing” the cables identified faulty or damaged cables and connectors, as 

well as verifying the proper cable connections from the target to the oscilloscope were 

used. 

 

3.5.2 Taylor Anvil Impact Experiments 

 impact experiments were used to characterize the 

“direct” and “reverse” impact configurations.  All of the experiments used high-speed 

photography to capture transient deformation profiles of the specimens.  The next section 

gives details about the experimental configuration and the data captured during these 

experiments.  Target assembly and alignment procedures are discussed as w e 

analysis techniques used for these experiments. 

 

3.5.2.1 Reverse Taylor Anvil Impacts 

 

Taylor anvil impact experiments were used to characterize the constitutive 

response of epoxy-cast Al+Fe2O3 composites.  In the traditional Taylor test configuration, 

dynamic material data is normally obtained from post impact measurements of the 

deformed specimen.  However, reverse Taylor anvil impact experiments were conducted 

for use in a compressed-gas gun ility of 

measuring dynamic material data continuously throughout the experiment.  For this 

configuration, the rod-shaped specimen was held stationary and its deformation was  

, which provides a major advantage with the capab
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Figure 3.14 Schematic diagram for reverse Taylor impact experiments. 

caused by the impact of a rigid anvil mounted on the face of an aluminum sabot.  

Figure 3.14 shows a schematic diagram for reverse Taylor impact experiment

   

s.  The anvil 

was made from AISI 4140 heat treated steel (HRC 52-56) and had disk geometry with a 

nominal diameter of 76.2 mm and 9.525 mm thick.  There were three radial spaced 

countersunk holes for accepting screws used to secure the anvil to the aluminum sabot.  

All of the experiments rely on high-speed photography to capture transient specimen 

deformation profiles.  Additionally, the experimental configuration permits the use of 

VISAR for measuring the specimen’s free surface velocity as a function of time.  High-

speed photographs were time synchronized with free surface velocity measurement to 

give a complete description of the deformation process experienced by the specimen. 
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Experiment preparation began by carefully measuring density, and the specimen’s 

length and diameter at several locations.  Both ends of the specimen were polished using 

15 and then 3 µm diamond pastes.  For experiments using VISAR to measure free surface 

velocity, the back end of the specimen was polished using 1 µm diamond paste.  A 

 0.635 mm 

ap  d center n for calibrating high-speed  

fiducial marker, shown in Figure 3.15, was made from concentric arcs placed

art and was mounte  on the  axis of the specime

 

F
ecimen shown) with nomin

igure 3.15 Reverse Taylor impact specimen (nano-Al+Fe2O3+70 vol.% epoxy 
al dimensions indicated.  Image also shows the fiducial 
mages and align camera with specimen. 

images acquired during the experiment.  The fiducial marker was precisely placed on the 

center axis of the specimen using shims to position the marker exactly half the diameter 

of the specimen.  The specimen and shims were placed on a granite measuring stone and 

the fiducial marker was attached to the specimen using epoxy.  The marker was 

permanently secured to the specimen with a single drop of epoxy in a notch located at its 

base.  The marker also has an additional benefit by providing a means for precisely 

sp
arker to calibrate high-speed im
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placing the camera perpendicular to the specimen (both in-plane and out-of-plane 

The specimen was mounted in an acrylic ring that was used to position the target 

in fron

locations). 

t of the gas gun barrel.  A 8
1 ” thick acrylic target ring was machined with a 2

1 ” 

diameter hole in the center for locating the Taylor specimen and two adjacent locations 

for self-shorting crush pins used for triggering diagnostic equipment prior to impact.  The 

specimen was mounted in the target ring using quick-setting epoxy (V.O. Baker 

Company; Mentor, Ohio) in such a way that its back surface extended approximately 4
1 ” 

beyond the acrylic ring.  The epoxy holding the specimen in the target ring was designed 

to break away once the specimen began to move, offering little resistance to this 

movement.  The specimen was carefully positioned such that the fiducial marker and the 

two crush pin locations were perfectly aligned and coincided along the specimen’s center 

axis.  This ensured the crush pins did not interfere with camera images taken of the 

specimen deformation and also helped camera alignment with the specimen.  With the 

specimen mounted in the target ring, two self-shorting crush pins were located on either 

specimen’s impact face down on a granite measuring stone, where a glass slide was 

located between the impact face of the specimen and the granite, to provide a small offset 

plane and o

setting epoxy.  After the epoxy was completely cured, the offset distance was measured 

side of the specimen.  The procedure for mounting these pins involved placing the 

distance for the crush pins to extend beyond the impact face of the specimen.  The crush 

pins were carefully positioned in the target ring making sure they were parallel (both in-

ut-of-plane) to the target specimen and secured to the target ring using quick-

between each of the crush pins and target impact face using a similar “continuity circuit” 
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technique as described previously for measuring velocity pin distances.  The completed 

target assembly consisting of the Taylor specimen and two triggering pins are shown in 

igure 3.16(a,b). 

The target assembly was now ready to be placed in the experiment chamber of the 

gas gun and aligned perpendicular to the barrel ensuring a perfectly parallel impact.  A 

three-axis mounting fixture (Figure 3.17(a)) was placed on the muzzle face of the gas gun 

and the target ring assembly is secured.  A laser was placed on another three-axis position 

fixture located at the uprange end of the barrel and shining its beam towards the 

downrange direction.  The laser was first aligned parallel within the barrel ensuring that 

the beam coincides closely with the center axis of the barrel.  This was accomplished by 

placing an aluminum plug with a precisely machined center hole in the barrel, in front of 

the laser beam and placing a piece of card stock at the downrange end.  The beam was 

positioned until the two center points coincided and the beam projected a spot on the 

center of the card stock.  The card stock has a small pin hole precisely placed in the 

F

 
Figure 3.16 Completed target assembly for a reverse Taylor impact experiment 
showing a) impact face and b) back face views of specimen.  
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Figure 3.17 Three-axis mounting fixture used for aligning the impact face of Taylor 
specimens with the projectile face showing images of a) front and b) side views. 

center that coincides with the axial center of the barrel.  A small general purpose, 

dielectric mirror (Newport Corporation; Irvine, CA) is placed at the end of the impact 

face of the specimen for reflecting the laser.  The mirror had dimensions of 50.8 mm 

diameter and 0.236 mm thickness with a λ/10 surface flatness and a reflectance, R > 99 % 

for 0-45° angle of incidence.  A small spot with the diameter of the pin hole was 

projected on the card stock and the sample was positioned so the spot overlaps the pin 

hole.  The three-axis fixture was securely fastened at the outside ring axis points and the 

pin hole card stock was removed.  The aluminum plug was removed from the uprange 

end of the barrel and replaced with another piece of card stock that has a 4 ” diameter 

hole located in the center.  This permits the laser from being unobstructed from the card 

stock reaching the mirror on the sample face and reflecting a spot back to the card stock.  

The center ring of the three-axis fixture was finely positioned using brass setscrews for 

1
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adjusting the tilt of the specimen impact face.  Because the laser light travels a long 

distance from the uprange end of the barrel to the downrange end and back, the spot has a 

diameter of approximately 8
5 ”.  The sample was aligned when the spot was located at the 

approx

te measurements of specimen profiles during 

eformation.  Alignment was accomplished by viewing the specimen in real time 

(came hese 

cluded raising and lowering the camera, changing tilt and translating in the axial plane 

of the 

pecimen.  Once the camer

imate center of the card stock and all point on the three-axis mounting fixture was 

secured.  Using this technique, a maximum deviation from planarity at the most extreme 

case when the spot was located away from the center of the barrel was 2.6 mrad.  

However, the return spot was located at the center of the barrel for each experiment 

conducted in this study, resulting in the planarity of the impact estimated to be 1.4 mrad. 

High-speed cameral images of the specimen’s axial profile were taken using a 

back lighting condition.  The compressed-gas gun experiment chamber uses two viewing 

ports with translucent lexan windows located on opposite sides of the target specimen.  

The camera was placed perpendicular to the specimen and opposite of a halogen light 

source (Power Light 2500DR, Photogenic; Boardman, OH).  Camera alignment to the 

specimen was crucial for obtaining accura

d

ra’s focus mode) while making minor adjustments to the camera’s position.  T

in

specimen.  The fiducial marker was instrumental in making the alignment 

procedure simple and easily reproducible.  Observing concentric arcs in the camera’s 

field of view insured that it was perpendicular to the specimen.  The fiducial marker was 

also important for focusing the camera’s lens along the axial length of the specimen.  

Since the specimen has a cylindrical in shape, it was difficult to focus using the top a 

bottom rounded profile edges of the s a was positioned 
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correctly, a series of images was taken to verify physical sample dimensions from camera 

images.  The fiducial marker was used to calibrate the axial length and radial pixel 

dimensions.  The difference between image and physically measured specimen 

dimensions was typically 0.1 to 0.2 %. 

The camera’s field of view was designed to give the best resolution of the 

specimen possible, while providing sufficient room behind the specimen to capture its 

final d

 

eformed length before moving out of the field of view.  Typically, there was 

approximately 5 mm before the impact face and 20 mm behind the back surface of the 

specimen.  Captured images had an average resolution of 18.65 ± 1.40 pixel/mm, which 

varied according to the sample length and hence field of view. 

An Imacon-200 high-speed digital camera (DRS Technologies, Inc.;   

Parsippany, NJ) was used to capture images of the specimen deformation.  The camera 

can record 16 still frames with 1200 x 980 pixel resolution with frame speeds from 100 

fps to 200 million fps and 5 ns exposure times.  To arrest the deformation motion in the 

photograph, the maximum exposure time, T was calculated based on [166]: 

v
LT = ,      (3.12) 

where L is the largest dimension of the subject to be captured and v is the subject velocity 

in the same units as L per second.  Since the plastic deformation wave velocity was 

unknown and one of the desired parameters being experimentally measured, the wave 

velocity was estimated to be a fraction of the material’s elastic wave speed (

500

041 CCP = ).  

Typical exposure times used for reverse Taylor impact experiments ranged from 175 to 
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200 ns.  Camera frame times were selected to capture the experiment at three different 

e the back surface of the specimen 

moved out of the cameras filed of view.  The remaining 12 frames captured the time 

arting with impact and an interval divided evenly over 

critical time intervals.  One image was captured just prior to impact and three frames 

were captured towards the end of the experiment befor

st 4
1  the specimen’s length given 

by: 

( )framesu
L

t
#

0= ,     (3.13) 

where t is the time per frame in units of [µs], L0 is the specimen length prior to impact, 

and u is the velocity of the specimen approximated using the impact velocity.  The

pical transient image is shown in Figure 3.18(b). 

Captured images were imported into Adobe® Photoshop® software (Adobe;      

San Jose, CA) for measuring incremental length and diameter changes during the 

experiment.  Static images were first analyzed to accurately measure the specimen length 

e Taylor test images that show a significant contrast difference between the 

ark sample and white background.  Specimen edges were located for each frame and the 

 

camera used a 105 mm Nikon® lens (Nikon, Inc.; USA) with the aperture set at f/5.6.  A 

ty

and diameter prior to impact.  A filtering routine was applied to each of the images using 

the “find edges” command in Photoshop®.  The find edges filter identifies the areas of the 

image with significant contrast transitions and emphasizes the edges.  This was ideally 

ited for thsu

d

length and diameter were measured for several locations.  The same routine was applied 

to images captured during the experiment showing the specimen deforming. 
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For some select experiments, a special containment fixture was designed to 

capture the specimen in an effort to preserve deformation caused purely from the impact 

nd prevent any further deformation occurring during the recovery stage.  Post-impact 

ed good correlation with “final” 

ecimen length and diameter measurements obtained from high-speed camera images 

taken a

[mm] [mm] 

a

dimension measurements of recovered specimens show

sp

t sufficient times after impact and are compared in Table 3.7.  This provides 

verification that dimensional measurements using high-speed camera images are 

adequate and essential for experiments where the specimen was not recovered intact. 

Laser interferometry was used to measure the free surface velocity of Taylor 

specimen.  The VISAR system uses glass etalons to set the fringe spacing for measuring  

Table 3.7 Comparison of initial and final specimen lengths measured using digital and 
physical techniques from both reverse and direct Taylor impact experiments. 

Initial Length, L0 Final Length, L Shot 
Number 

Specimen 
ID 

Epoxy 

(wt.%) Physical Image Physical Image 
RM-23 085D-1 46.94 (20) 50.77 50.80 ± 0.04 49.61 ± 0.01 n/a 

vol.% 

D 

R  

D RM-22 079C-2 

0621 119A-1 60.27 (30) 51.69 ± 0.01 51.54 ± 0.08 50.79 ± 0.01 50.61 ± 0.19

60.27 (30) 50.76 50.79 ± 0.05 49.16 ± 0.01 48.99 ± 0.04
D RM-

R 0637 138B-1 100 (100) 53.15 ± 0.01 53.10 ± 0.04 53.17 ± 0.01 53.12 ± 0.03

21 101D-1 70.23 (40) 50.80 50.85 ± 0.05 49.79 ± 0.01 n/a 
R 0601 091D-1 100 (100) 49.79 ± 0.02 49.72 ± 0.08 49.76 ± 0.02 49.80 ± 0.06

R 0638 139A-2 100 (100) 50.41 ± 0.01 50.24 ± 0.08 50.43 ± 0.03 50.29 ± 0.03
R,n 0648 135A-2 70.23 (40) 52.30 ± 0.03 52.32 ± 0.03 52.11 ± 0.03 51.99 ± 0.11
R,n 0649 134C-1 70.23 (40) 52.37 ± 0.01 52.35 ± 0.06 51.41 ± 0.03 50.96 ± 0.16

D

n Nano-Al+Fe2O3+70 vol.% epoxy composition. 

 Direct Taylor impact experiment. 
R Reverse Taylor impact experiment. 
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the velocity of the reflecting surface that is moving.  The fringe spacing was selected 

based on the estimated free surface velocity resulting for an impact with the anvil and 

epoxy-cast composite.  The free surface velocity was calculated based on the equality of 

the particle velocities between the two materials with knowledge of their respective 

equation of state.  Most of the reverse Taylor experiments conducted in this work had 

impact velocities that produced free surface velocities of 200 m/s or less.  

Correspondingly, the VPF constant was selected to be 99.4 m/s/Fr and typically gave two 

or three fringes used for calculating free surface velocity. 

 

3.5.2.2 Direct Taylor Anvil Impacts 

 

Direct Taylor impact experiments were conducted at the Air Force Research 

Laboratory test range.  Specimens were launched from a 30 caliber powder gun into a 

massive steel anvil.  The anvil was made from high-strength 4340 steel heat-treated to 

HRC 50 hardness.  The anvil face had a mirror finish and located 76.2 mm from the end 

of the barrel.  After each experiment, the anvil was rotated so the next experiment would 

impact a “new” region of the anvil surface.  A Cordin 330A high-speed film framing 

camera was used to image transient deformation profiles, typically with a 3 µs framing 

interval and a total of 82 images.  Backlighting was used to enhance the contrast and 

clearly trace specimen edges.  Figure 3.18(a) shows a typical image captured during the 

experiment, with the anvil located on the left side of the image.  A marker placed in the 

proximity above the impact location was used to spatially calibrate the images and  
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Figure 3.18 Representative images captured from a) direct and b) reverse Taylor 
impact experiments. 

precisely determine the anvil face in the image.  The fiducial marker had a cylindrical 

shape with a thin gap machined on the face where it attached to the anvil magnetically. 

Velocity was measured using a two-beam laser interrupt system located just prior 

to the anvil’s impact face.  A redundant system was also used by measuring the arrival of 

a pressure pulse at two pressure transducers located a fixed distance from each other at 

the end of the barrel.  Typical impact velocities for these experiments ranged between   

85 and 200 m/s. 
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CHAPTER IV 

c

pplied loads.  Applied stress, strain, and 

strain rates likely to be experienced particularly during high-speed impacts and 

penetrations are systematically studied in conjunction with chemical reactivity attributed 

to a mechanical stimulus in the form of a transient deformation wave.  The experimental 

approach involved conducting time-resolved instrumented shock-loading tests under a

 

RESULTS AND DISCUSSION 

 

The present investigation focuses on understanding the Hugoniot equation of state 

(EOS), high-strain rate mechanical properties, and mechanochemical reactivity for a 

structural energetic material system comprised of micron-scale and/or nano-scale 

reactants dispersed in an epoxy matrix.  The reactive properties of energetic materials are 

strongly affected by their microscopic and mesos opic morphologies whereby the 

alteration, for example, of the reactants’ particle size or other microstructural features 

may enhance or inhibit specific energetic and structural characteristics.  The mechanical 

response of the reactive constituents and the matrix also influences the reaction response.  

Hence, the challenge is to understand the synergistic behavior of structural and energetic 

properties and the effect their manipulation may have on overall material behavior. 

The investigation addresses the general area of dynamic response of an epoxy-

cast metal-oxide-type material system motivated by the need to understand their 

fundamental behavior when subjected to rapidly a
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range of loading condit vestigated and 

characterized using microstructural analysis both prior to impact and from post-mortem 

ned 

from mechanical characterization at several different strain rates.  These include 

relatively low-strain rate experiments such as quasistatic compression, three

tests, and Charpy impacts.  Additionally, high-strain rate parallel-plate impact 

experiments for determining the composite material’s EOS and Taylor impacts tests for 

obtaining the constitutive response will be discussed.  Special attention was also given to 

characterizing the composite materials’ energetic/reactive response through post-mortem 

differential thermal analysis (DTA), performed on the recovered impacted samples.  DTA 

and in situ high-temp acterize the 

energetics of thermally initiated reactions. 

 

2O3) 

corresponding to the thermite reaction 

ions.  The material system was also fully in

recovered material. 

In this chapter, the processing and characterization of epoxy-cast thermite 

composites will first be presented.  This is followed by experimental results obtai

-point bend 

erature x-ray diffraction (HTXRD) was also used to char

4.1 Processing and Characterization of Aluminum-Hematite Composites 

 

Structural energetic materials consisting of Al+Fe2O3 thermite powder mixtures 

dispersed in epoxy were processed using a cast-cure technique and formed into specific 

geometries useful for mechanochemical characterization experiments conducted in this 

study.  Commercial nano- and micron-scale aluminum and submicron hematite powders 

were measured into stoichiometric quantities (25.26 wt.% Al and 74.74 wt.% Fe

3232 OAlFe2OFeAl2 +→+ , and mixed in a       
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v-blender.  The combined powders were dispersed in epoxy with 47 to 78 vol.% 

concentrations.  Transmission electron microscopy (TEM) was used to image and 

characterize the starting constituent powders, while scanning electron microscopy (SEM) 

was used to image and characterize the combined powder mixtures, as well as processed 

epoxy-cast materials.  Optical microscopy was also utilized for quantitative 

microstructural characterization of the epoxy-cast composites. 

The particle morphologies for each of the constituents and their mixtures are 

shown in Figure 4.1(a-c) and Figure 4.2(a,b), respectively.  Figure 4.1(a,b) shows TEM 

images of the precursor aluminum powders, with both nano-scale (55.3 nm average 

herical morphologies.  The particle 

sizes observed through the TEM images revealed that the nano-scale aluminum particles 

ad an average diameter range between 50 and 100 nm, and the micron-scale aluminum 

had particle diameters from approximately 0.5 to 3 µm.  Figure 4.1(c) shows a TEM 

concentration of hematite.  Conversely, micron-scale aluminum was significantly 

larger (in most cases) than the hematite particles, which have been observed to coat the  

particle size according to manufacturer) and micron-scale (3.2 µm average particle size 

according to manufacturer) particles exhibiting sp

h

image of the as-received hematite powder, which was comprised of particles with a 

hexagonal platelet structure and a high aspect ratio (in the range 5:3 to 4:1).  The long 

axis of the hematite particles were approximately 100 to 300 nm and have a thickness of 

40 to 50 nm.  Figure 4.2(a,b) show SEM images of the combined Al+Fe2O3 powders 

using a) nano-scale and b) micron-scale aluminum powders after mixing in a v-blender 

for 48 hours.  Images of the powder mixture show the nano-scale aluminum particles are 

on the order of the hematite particle sizes and appear to combine uniformly within the 

higher 
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Figure 4.1 TEM images of a) nano-scale and b) micron-scale aluminum particles 
showing spherical morphologies.  Image c) is an image of hematite particles which have 
a hexagonal platelet structure with a high aspect ratio. 

 

 
Figure 4.2 SEM images of mixed Al+Fe2O3 powders in a v-blender with a) nano-scale 
and b) micron-scale aluminum particles sizes. 
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Figure 4.3 Typical microstructures evolving for epoxy-cast Al+Fe2O3 composites.  
SEM images show representative microstructure features obtained for composites 
containing a) 78, b) 70, c) 60, and d) 47 vol.% epoxy.  Light contrast circular areas are 
aluminum particle in a) through c).  However, d) uses the backscatter detector for 
obtaining images of the microstructure and dark contrast circular areas are the aluminum 
particles. 
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large-scale aluminum particles.  SEM images also show that hematite particles form 

agglomerates during the mixing process.  This observation was more apparent when 

examining polished cross-sections of the epoxy-cast specimens from both optical 

microscope and SEM images, as shown in Figure 4.3(a-d). 

 

4.1.1 Quantitative Microstructural Characterization 

 

 degree 

of agglomeration appears to increase in size as the epoxy concentrations decrease for a 

given composition. 

Quantitative microstructural characterization was performed to obtain size and 

distribution of aluminum particles, hematite agglomerates, and pores observed through 

digitally captured (1390 x 1040 pixels) optical microscope images.  Several random 

locations from a polished plane were selected and individual features were measured.  

The mixing of precursor powders and their dispersion within an epoxy matrix 

influence the overall microstructural features and the composite’s bulk mechanical and 

chemical properties.  To investigate these effects, the evolving microstructures of each 

composition were examined using stereological techniques.  Specimens were processed 

using a cast-cure method described in section 3.1 by adding premixed Al+Fe2O3 powders 

to various concentrations of epoxy.  Typical SEM images obtained for each composition 

using micron-scale aluminum are shown in Figure 4.3(a-d) according to their nominal 

epoxy concentrations ranging from 78 to 47 vol.%, respectively.  While the aluminum 

particles qualitatively appear to be uniformly dispersed throughout the composite, the 

hematite particles show a tendency to agglomerate over several size ranges.  The
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Aluminum particle sizes were obtained using a 50x objective lens magnification and 

digital images were captured with a corresponding pixel resolution of 0.0925 µm/pix.  

The optical microscope at this magnification can resolve features to 0.5 µm or 

approximately 5 x 5 pixel array. 

Likewise, hematite agglomerates were observed using a 2.5x magnification 

objective lens, since these features were much larger in size.  Typically, hematite 

agglomerate section sizes (diameters measured from a two-dimensional plane) range 

between 10 and 50 µm depending on the amount of epoxy in the composite.  However, 

small fractions of hematite agglomerate sections were found to be of larger size and 

closer to 70 to 90 µm, again depending on epoxy concentration.  The optical microscope 

s also chosen to quantify the hematite agglomerates because they were defined 

by alu

        

at this magnification has a pixel resolution of 1.8657 µm/pix and can resolve 

approximately 9 µm features (again using a 5 x 5 pixel array).  This low magnification 

(2.5x) wa

minum particles surrounding their boundary.  This made their precise size 

measurement challenging and required sacrificing some resolution to minimize the 

distance between aluminum particles that defined the edge of the agglomerates.  

Furthermore, a threshold routine was utilized to “flatten” the image background  

(low contrast) and reveal the hematite agglomerate as dark contrast regions.  Individual 

hematite particles (sizes between 100 and 300 nm) were not resolvable using an optical 

microscope, but were qualitatively evaluated using SEM images and appear to be 

uniformly dispersed within the epoxy matrix.  Qualitative observations obtained for each 

composition will be discussed later in this section. 
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Inherent pores produced during the casting process were evaluated using the same 

images captured for the hematite agglomerates.  Because of the complexity of these 

microstructures, it was challenging to resolve individual pores on a background of 

hematite particles dispersed in epoxy.  The pores were typically observed in the 

hematite/epoxy matrix as a result of being trapped during processing despite a degassing 

step of the mixture.  The epoxy was also translucent, which added to the difficulty of 

resolving pores along a polished plane.  However, a threshold method was employed to 

resolve inherent porosity within a hematite/epoxy background. 

Figure 4.4(a) shows a typical optical microstructure image captured for measuring 

hematite agglomerates and porosity.  Two separate threshold routines were applied to this  

 
Figure 4.4 a) Typical optical micrograph obtained for measuring feature sizes from an 
image threshold routine, resolving b) pores and c) hematite agglomerates.  d) The pore 
features were subtracted and hematite agglomerates are shown superimposed over the 
original image shown in a). 
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image to resolve hematite agglomerates shown in Figure 4.4(c) and pores shown in 

Figure 4.4(b).  Since the agglomerates and pores have the same dark contrast in the 

thresho

in a three-dimensional volume.  The method essentially employs dividing the section 

diameters, di, into discrete size groups or class intervals.  Ten class intervals were used in 

calculating each of the observed features for the epoxy-cast composites.  The particles 

within each interval are considered to have the same diameter and the probability, p, of a 

plane intersecting a sphere of diameter, Dj, yielding a section diameter, di, and the 

number of section diameters per unit area, NA.  Under these conditions, the number of 

particles in a unit volume, NV , is given by [167]: 

ld images, it was necessary to track each feature, respectively, and subtract the 

pores from the hematite agglomerate threshold image.  Figure 4.4(d) shows the combined 

original image with only the hematite agglomerates superimposed with each color 

representing a specific agglomerate size class. 

Quantitative characterization of each microstructure was carried out by observing 

the internal structure of the composite from a two-dimensional image.  This ultimately 

leads to a loss of information, which confuses the interpretation of three-dimensional 

spatial organization and content.  However, by randomizing slice position and orientation 

(for an anisotropic microstructure), the three-dimensional properties of the 

microstructural features can be estimated.  The distribution of spherical particles of 

various sizes intersected by a random plane can be deduced from the number and 

measured sizes of the feature sections on the plane.  The Schwartz-Saltykov           

method [167] was used to relate particle section distributions to particle size distributions 
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where the index j designates the group of particles which form the given section 

diameters from a polished plane ( j  = 1 to k) and the index i refers to the size group of 

those sections (i = 1 to k).  This leads to the general relation for calculating NV ( j ) as: 

V
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where α ( i), α ( i+1) are coefficients calculated by Salty

kNkiNiiNiiNi )()()2()2()1()1()()( αααα −−++−++− L

kov [167] and k is the total 

number of measured section diameter classes (k = 10 for this analysis).  Once Nv is 

calculated, the three-dimensional diameter can be evaluated using [167]: 
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jN
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V
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Individual results obtained for the Al+Fe2O3+60 vol.% epoxy composition from 

quantitatively measured aluminum particle, hematite agglomerate, and pore sizes and 

their distributions are shown in Figure 4.5(a-c), respectively.  These results indicate that a 

relatively broad size distribution is observed for each of the features that comprise the 

composite’s microstructure.  The results for each of the four evaluated com

D j .      (4.3) 

positions are 

summarized

  

However, the average pore sizes show a slight dependency on epoxy concentration,  

 in Figure 4.6 and show that the average aluminum particle sizes               

(1.84 ± 0.07 µm) are relatively constant (with a fixed distribution) for each composition.
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Figure 4.5 Size distributions for a) aluminum particles, b) hematite agglomerates, and 
c) pores for Al+Fe2O3+60 vol.% epoxy composite. 

 

 
Figure 4.6 Mean diameter measurements for each phase of epoxy-cast Al+Fe2O3 
composites as a function of epoxy volume fraction. 
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increasing as epoxy concentration decreases, and reaching a steady value of                

12.21 ± 0.15 µm for the 47 and 60 vol.% epoxy compositions.  Furthermore, the average 

pore size distributions show a rather significant range, ± 4 to 5 µm.  Hematite average 

agglomerate sizes similarly show a dependency on epoxy concentration and increase in 

size as the epoxy concentration decreases.  Hematite agglomerates had an average 

particle size ranging from 15 to 20 µm with a significant size distribution range of ± 6 to 

9 µm. 

shows that it may be more appropriate to compare the distribution mode size for each of 

the features because of their significance in the overall microstructure description.  This 

Examination of Figure 4.5(a-c) for the Al+Fe2O3+60 vol.% epoxy composition 

was a typical characteristic for all of the compositions examined, and Figure 4.7 

 
Figure 4.7 Mean diameter measurements based on distribution mode values for each 
phase of epoxy-cast Al+Fe2O3 composites as a function of epoxy volume fraction. 
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compares the distribution mode values obtained for each.  These results show that the 

void size dependency on epoxy concentration is similar to that shown in Figure 4.6, 

however exhibiting a significantly smaller size range (1.77 to 3.46 µm) as epoxy 

concentration increases, respectively.  Aluminum particle sizes show a relatively stable 

and slightly smaller particle size for each of the compositions (approximately 1 µm) 

except for the 60 vol.% epoxy composite.  The 60 vol.% composite has an almost 

identical average particle size (1.95 µm) as shown in Figure 4.6, but is slightly higher 

when c

 

ompared to the distribution mode sizes obtained for the other compositions.  The 

hematite agglomerate particle sizes show a similar dependence on epoxy concentration as 

stated previously, increasing in size as the volume fraction of epoxy decreases.  However, 

as observed for the aluminum particle mode sizes, the Al+Fe2O3+60 vol.% epoxy 

composition deviates from this trend and shows a slightly higher hematite agglomerate 

size (11.04 µm). 

With knowledge of the number of particles per unit volume, NV for a given phase,

it is possible to calculate the average distance, Vλ , between the nearest neighboring 

particle centers in a volume.  This is given by Underwood [167] according to: 

( ) 3/1544.0 −= VNVλ .     (4

These results are presented in Figure 4.8 according to the d ode values for 

eac ositi he ne eighbo cle d te e a um 

pa  fair uniformly dispersed  clos  e er the 

com s (ap ximately 4 µm fo , how ecr t ce  

.4) 

istribution m

h comp on.  T arest n r parti istances indica  that th lumin

rt areicles ly and in e proximity to ach oth in all 

position pro 1.5 r each) ever, a slight d ease in dis an
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Figure 4.8 Average distance between the nearest neighboring particle centers in a 
volume
volume fraction. 

µ

between the hematite agglomerates also appears to show a uniform nearest neighbor 

µ

 

s also very close to their overall particle size (1.77 µm). 

 for each phase of epoxy-cast Al+Fe2O3 composites as a function of epoxy 

was observed for the Al+Fe2O3+47 vol.% epoxy composition (1.13 m).  The distance 

distance for each composition (1.16 m for each), except for the 60 vol.% epoxy 

composition, which shows a larger distance or separation between each agglomerate 

(2.62 µm).  This effect was also apparent for pore distances, which show a significantly 

larger distance for the 60 vol.% epoxy composition (5.83 µm) as compared to a relatively 

closer distance for the 47 and 70 vol.% epoxy compositions (both approximately 3 µm).  

The Al+Fe2O3+78 vol.% epoxy composition has the closest distance between pores  

(1.83 µm), which i
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The concentration of each feature can also be evaluated using NV.  This is 

depicted in Figure 4.9, which shows the number per unit volume of each feature as a 

function of epoxy concentration.  Again, using the values calculated from the distribution 

mode, the number of features was significantly larger for each of the compositions when 

compared to the Al+Fe2O3+60 vol.% epoxy composite.  Cracks and other stress 

concentrators play an important role in the overall strength of a composite material.  

Spherical inclusions, such as aluminum particles or hematite agglomerates, and voids act 

as stress concentrators.  Effectively, the microstructural characterization results indicate 

that the 60 vol.% epoxy composition has a fairly uniform size distribution of aluminum 

particles, hematite agglomerates, and pores that are spread out from each other within the 

material volume.  In contrast, the other compositions have average sized hematite 

 
Figure 4.9 Number per unit volume, NV, of each feature (such as aluminum particles, 
hematite agglomerates, and pores) as a function of epoxy concentration. 
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agglomerates and pores that are in relatively close proximity to each other, thus all 

contributing to increased effective stress concentration regions throughout the material 

volume. 

The crostructures for an epoxy-cast composite prepared with nano-scale 

aluminum were also characterized using the same technique as just described.  The 

o p f   a

m ru at yp a a r l 7  epoxy 

composition are shown in Figure 4.10(a c).  The additio lum  

p ed m c

a u l n m . 4 e

low magn n of ic ra os e F .1

shows h n  of the a u

re . t l  a

s ale alu  p  s ey were aller tha sm

resolvable f e lim posed by the optic croscope.  H ver, the re

umber of nano-aluminum particles within the concentrated nano-agglomerate regions 

as compared to regions with uniformly dispersed nano-aluminum.  Figure 4.11(a,b) 

ows an image of a a) nano-agglomerate region and that same region b) after applying a 

reshold routine to flatten the background and enhance the nano-aluminum particles 

 mi

ptical microsco e was ound to be the best way to observe these p rticular 

icrost cture fe ures.  T ical im ges obt ined fo nano-A +Fe2O3+ 0 vol.%

- n of nano-scale a inum

roduc  unique icrostru tures that exhibit regions containing high concentrations of 

nano-sc l ne alumi m partic es (or na o-agglo erates)  Figure .10(a) shows a r latively 

ificatio image the typ al ove ll micr tructur , while igure 4 0(b,c) 

igher magnificatio  images concentr ted nano-agglomerate al minum 

gions  Quantita ive microstructura  analysis was not performed on the individu l nano-

c minum articles ince th significantly sm n the allest 

eatur it im al mi owe lative 

n

w

sh

th

contrast.  The number of nano-aluminum particles was counted from threshold images 

captured at several locations separately containing nano-agglomerate and uniformly 

dispersed nano-aluminum particle regions.  The counts within both of these regions 

showed that over 70 % of the nano-aluminum particles were located within the nano- 
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Figure 4.10 Optical micrographs of nano-Al+Fe2O3+70 vol.% epoxy composite 
showing formation of highly concentrated nano-alum m particle regions (light 
contrast).  Higher magnification ima ith their corresponding locations outlined 
are shown in b) and c). 

inu
ges of a) w

 
Figure 4.11 Optical micrographs obtained from nano-Al+Fe2O3+70 vol.% epoxy 
composition showing highly concentrated nano-aluminum regions a) before and b) after 
image threshold. 
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agglomerate region.  Qualitatively, these regions varied in size and ranged between       

50 and over 200 µm in diameter. 

The nano-scale composite microstructures also exhibited similar features that 

were observed for the micron-scale composites.  They specifically showed the tendency 

for hematite particles to agglomerate, and their sizes were evaluated similarly using the 

Schwartz-Saltykov method [167] described previously.  These results are shown in 

Figure 4.6 along side the micron-scale composite values.  The average pore size appears 

to be smaller when compared to the micron-scale composite with the same 70 vol.% 

epoxy concentration.  It has an average value of 7.71 µm, which compares more closely 

with the average pore size measured for the 78 vol.% epoxy composition (6.84 µm).  

agglomerate size is significantly smaller and has a value of 11.24 µm as compared to 

17.07 µm.  As mentioned previously, based on the broad measured particle size 

distributions, it was more appropriate to compare particle sizes based on the distribution 

of mode values.  Figure 4.7 shows that the hematite agglomerates (6.15 µm) are 

significantly smaller when compared to the micron-scale composite (8.93 µm) and the 

pore sizes follow similarly with 1.81 and 2.78 µm for the nano-scale and micron-scale 

composites, respectively.  S

icron-scale composite measurements.  The 

hematit

Comparison between the two composite materials also shows the average hematite 

hown in Figure 4.8 are the nearest neighbor distance values 

which also show deviation from the m

e agglomerates have a 2.03 µm distance between neighboring particle centers 

compared to 1.02 µm for the micron-scale composite.  The distance between pores was 

0.81 µm as compared to 3.06 µm for the micron-scale composite. 
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Qualitative observations obtained from SEM images show details of the hematite 

particle and agglomerate distributions.  Figure 4.3(a-d) shows select SEM images 

obtained for each composition and reveal a typical trend for hematite particles and 

agglomeration sizes, showing three different size ranges.  In general, each microstructure 

had uniformly dispersed hematite particles within the epoxy matrix regardless of the 

volume fraction of epoxy.  There was also a tendency for relatively large hematite 

agglomerates to form in the range of 10 to 15 µm and 20 to 50 µm in size.  Since this was 

an observable feature for each composition regardless of different epoxy concentrations, 

 suggests the agglomeration of hematite particles occurs during the dry mixing process 

poxy resin. 

Some hematite agglomerates are typically broken up during the mixing process 

after th

e

     

 of 

individual hematite particles encapsulated in the epoxy matrix and do not appear to have  

it

of precursor powders before their addition to e

eir addition to the epoxy resin.  The epoxy volume fraction influences the ease of 

mixing by essentially reducing the mixture’s viscosity.  This promotes the breakup of 

agglomerates as the volume fraction increases.  However, there is an optimal volume 

fraction where agglomerate break occurs and high concentrations of epoxy resin possibly 

allow the agglomerates to move freely throughout the mixture without breaking up.  

Figure 4.12(a,b) shows SEM images of hematite agglomeration achiev d purposely by 

under-mixing during processing for micron-Al+Fe2O3+60 vol.% epoxy composite.  

Notice that the agglomerate shown in Figure 4.12(a,b) was extremely large 

(approximately 150 µm), similar to that observed for composites fabricated with  

nano- aluminum powders shown in Figure 4.10(a-c) and Figure 4.11(a,b). 

Closer observation of hematite agglomerates shows they actually consist
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Figure 4.12 Purposely under mixed 
showing the a) formation of highly co

micron-Al+Fe2O3+60 vol.% epoxy composite 
ncentrated hematite regions (agglomerates).  b) 

igher magnification location outlined in a), shows individual hematite particles within 
e agglomerated region and micron-scale aluminum particles that tend to cluster 

any op

   

H
th
together. 

en porosity.  This was apparent in Figure 4.13(a) showing a close-up view of 

agglomerated hematite that has an overall size of approximately 30 µm.  Figure 4.13(b) 

shows the boundary of the same agglomerate that clearly indicates a tighter arrangement 

of hematite particles within the agglomerated region (left side of image).  Hematite 

particles also tend to “coat” micron-scale aluminum particles, possibly during the dry 

mixing of the constituent powders.  This is evident in Figure 4.14(a,b) showing a  

cross-sectional view of an aluminum particle surrounded by hematite particles that 

remained during the casting process.  Again, it appears that there is no obvious open 

porosity within this hematite region or in close proximity to the aluminum particle.  

These qualitative results indicate that both the aluminum and hematite features 

(individual particles and agglomerates) are infiltrated completely by the epoxy matrix. 
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Figure 4.13 a) SEM micrographs of Al+Fe2O3+60 vol.% epoxy composite showing a 
relatively large hematite agglomerate.  b) Higher magnification of location outlined in a), 
shows agglomerated and dispersed hematite particles interface (indicated by arrows). 

 
Figure 4.14 Cross sectional view of an a) aluminum particle coated by hematite 
particles and b) hematite agglomerates for an Al+Fe2O3+78 vol.% epoxy composite. 
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4.1.2 Intrinsic Property Characterization 

 

In addition to measuring intrinsic physical properties for each specimen used 

throughout this study, a detailed analysis of processing was conducted to optimize each 

cast-cured material composition.  As the fraction of solid filler particles increases and/ or 

relative particle size decreases (therefore surface area increases for a given volume 

fraction of material), it becomes increasingly challenging to cast due to the increase of 

the overall mixture viscosity.  Specific samples were prepared for obtaining details about 

the casting process, such as maximum castable solid particle fill fraction and resulting 

porosity.  Cast rod shaped specimens were prepared and sectioned in multiple locations 

these polished sections (ten specimens in all).  A representative specimen was selected 

for detailed quantitative optical microscopy measurements (discussed previously in 

section 4.1.1); however, there was no discernable difference between each sample for a 

given composition.  Hence, the microstructures appeared to be uniform throughout the 

entire length of the cast rod specimens. 

In addition to microstructural characterization, each section’s density was 

measured using Archimedes’ method (outlined in section 3.2).  The measured densities of 

this multiphase composite material were compared to weight averaged (on the basis of 

volume fraction) properties of the individual constituents, and thus permitting the 

calculation of theoretical densities according to the Voigt rule of mixtures.  Table 4.1 

compares the measured values to the theoretically calculated densities obtained for each 

composition.  Notice that the standard deviation for each was very low, suggesting there  

along the axial length.  Qualitative microstructural observations were obtained for each of 
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Table 4.1 Theoretically calculated densities using mixture theory for epoxy-cast 

of estimating retained porosity. 

Epoxy* Aluminum☺ Hematite☺
Theoretical 

Density 
[g/cm ] 

Measured 
Density 
[g/cm ] 

TMD Estimated
Porosity 

[%] 

compositions and pure epoxy.  Measured and theoretical values are compared as a means 

[vol.%] [vol.%] [vol.%] 3 3 [%] 

46.94 20.98 32.07 2.809 2.682 ± 0.005 95.48 4.52 
60.27 15.71 24.02 2.404 2.366 ± 0.002 98.32 1.58 
70.23 11.77 17.99 2.101 2.047 ± 0.003 97.43 2.57 

nano 11.77 17.99 2.101 2.082 ± 0.003 99.10 0.90 

100 0 0 1.197 1.195 ± 0.002 99.82 0.18 

100 0 0 1.197 1.200 ± 0.002 100 0 

70.23 

77.97 8.71 13.32 1.866 1.836 ± 0.002 98.39 1.61 

(batch A) 

(batch B) 
*Theoretical densitity for epoxy was calculated from 1.17 and 1.097 g/cm3 obtained for EPON® 826 resin 

☺
Reference densities for aluminum and hematite are 2.705 and 5.237 g/cm3, respectively [109]. 

[140] and diethanolamine hardener [168], respectively. 

as little or no density variation within the cast rod specimens.  The amount of porosity 

retical density as a reference       

nd was found that the specimens typically contained a few percent or less                        

(2.57 %

d 

w

(also listed in Table 4.1) was estimated using the theo

a

 maximum) porosity.  However, the 47 vol.% epoxy composition exhibited a 

higher concentration of porosity (4.52 %), which was attributed to reaching a maximum 

solid particle fill fraction that caused the mixture to have a relatively high viscosity and 

made the casting of a low porosity composite challenging. 

Ultrasonic wave speed measurements, including elastic and transverse waves, 

were also measured for each of the sectioned samples.  The bulk mechanical (elastic) 

properties were estimated from the ultrasonic wave speed data and density measurements 

using equations (3.2) through (3.4).  These equations relate the ultrasonic wave spee
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measurements to Lamé’s elastic material constants (µ and λ), thus allowing the 

ated from the elastic 

identities listed in Table 3.4 for isotropic materials.  Table 4.2 lists a summary of the 

  

shear wave shows an increase for the micron-scale composite 

and con

calculation of shear (transverse) and elastic moduli.  With knowledge of Lamé’s 

constants, the remaining bulk mechanical properties were evalu

ultrasonic wave speed measurements and calculated bulk mechanical properties for each 

composition.  Two different epoxy batches (labeled A and B) were listed separately since 

they had significantly different bulk mechanical properties despite being fabricated in an 

identical manner. 

It is apparent from Table 4.2 that, in general, as epoxy concentration decreases, 

bulk mechanical properties such as elastic and shear moduli increase.  However, it 

appears that the particle morphology may influence this relationship, showing the   

nano-scale 70 vol.% epoxy composition has calculated elastic properties that significantly 

deviate from that of the micron-scale 70 vol.% epoxy composition.  Both compositions 

appear to have comparable longitudinal wave speeds with values of 2.619 ± 0.039 and 

2.776 ± 0.032 mm/µs for the micron- and nano-scale composites, respectively.  However, 

the measured ultrasonic 

tributes to the deviation in the calculated bulk mechanical properties between the 

two compositions.  Thus, comparison shows that the bulk modulus and Poisson’s ratio 

decrease while the elastic modulus and shear modulus increase.  This deviation may be 

attributed to the increased probability for elastic wave scattering due to the different 

particle morphologies and their distribution throughout the material volume.  Wave 

attenuation is also due to absorption in the matrix [169].  When the wave impedance 

increases, signal scattering occurs and is caused by the traveling wave impinging on an  
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able 4.2 Summary of ultrasonic wave speed measurements (longitudinal, transverse, 

properties, such as 

 

 
T
and bulk wave speeds, CL, CT, and C0, respectively) for each composition.  Material 

the Lamé constant, Poisson’s ration, elastic, plastic, shear, and bulk 
modui, λ, ν, E, µ, and K, respectively, are calculated from wave speed and density, ρ, 
measur

[vol.%] [mm/µs] [mm/µs] [mm/µs] [GPa] [GPa] [GPa] [GPa] [g/cm ]

ements. 

Epoxy CL CT C0 λ E µ K ν ρ 
3

46.94 
± 0.016 ± 0.016 ± 0.018 ± 0.242 ± 0.280 ± 0.129 ± 0.209 ± 0.006 ± 0.005
2.711 1.471 2.113 8.109 14.985 5.802 11.977 0.291 2.682 

60.27 2.936 
± 0.013 

1.335 
± 0.013 

2.499 
± 0.017

11.962
± 0.239

11.550
± 0.203

4.217 
± 0.084

14.773 
± 0.206 

0.370 
± 0.004

2.366 
± 0.002

70.23 2.619 1.310 2.138 7.018 9.364 
± ± ± ± ±

3.513 
±

9.360 
±

0.333 
±

2.047 
±

70.23 2.776 1.067 2.487 11.299 6.705 2.372 12.881 0.413 2.082 

± 0.009 ± 0.007 ± 0.011 ± 0.112 ± 0.073 ± 0.028 ± 0.103 ± 0.002 ± 0.002

A100 3.222 1.375 2.803 7.887 6.275 2.260 9.393 0.388 1.195 

 0.039  0.018  0.051  0.468  0.218  0.097  0.441  0.009  0.003

nano ± 0.032 ± 0.005 ± 0.033 ± 0.341 ± 0.076 ± 0.025 ± 0.356 ± 0.002 ± 0.003

77.97 2.630 1.044 2.337 8.696 5.630 2.002 10.030 0.406 1.836 

 ± 0.064 ± 0.009 ± 0.072 ± 0.482 ± 0.086 ± 0.029 ± 0.487 ± 0.005 ± 0.001

B100 
2.587 

± 0.007 
0.996 

± 0.006 
2.318 

± 0.008
5.640 

± 0.044
3.354 

± 0.039
1.187 

± 0.015
6.431 

± 0.042 
0.413 

± 0.001
1.197 

± 0.001

A,B Correspond to batch A and B epoxy, respectively. 
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impeda

particle fill 

concentration also increases.  However, comparison between the micron- and nano-scale 

composites shows that scattering in the measured longitudinal wave speed has a 

significant jump in impedance for the nano-scale composite.  Since the only difference 

between the two compositions is their particle morphologies, the impedance increase is 

attributed to the increased probability for elastic wave scattering.  Now considering the 

shear (or transverse) wave impedance, ZT, Table 4.3 indicates that the micron-scale 

composite has a significant increase when compared to the nano-scale composite.  Using 

the same logic, the shear wave appears to have a higher probability for elastic (shear) 

wave scattering.  Figure 4.15 shows measured ultrasonic longitudinal and shear wave 

impedances plotted as a function of epoxy concentration.  Both the longitudinal and shear  

 

[vol.%] 6 6

nce discontinuity that will partially reflect and transmit the wave at that interface.  

Using pure epoxy as an impedance baseline, it can be seen from Table 4.3 that the 

longitudinal wave impedance, ZL, increases as the composition’s solid 

Table 4.3 Longitudinal and shear wave impedance values measured for each Al+Fe2O3
epoxy-cast composite and pure epoxy (batch A and B). 

Epoxy ZL 
[kg/m2s] 

x 10  

ZT 
[kg/m2s] 

x 10  
46.94 7.272 ± 0.048 3.945 ± 0.046 
60.27 6.947 ± 0.031 3.159 ± 0.013 

*70.23 5.779 ± 0.072 2.222 ± 0.013 
70.23 5.361 ± 0.078 2.681 ± 0.037 

77.97 4.829 ± 0.019 1.917 ± 0.013 
A100 3.849 ± 0.077 1.643 ± 0.011 
B100 3.097 ± 0.009 1.192 ± 0.007 

A,B Correspond to batch A and B epoxy, respectively. 
* Epoxy-cast composite containing nano-aluminum. 
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Figure 4.15 Longitudinal and shear impedance values obtained for each epoxy-cast 
composite composition. 

wave im

O

composition.  As described previously, an impedance increase is associated with elastic 

wave scattering and may possibly be attributed to particle morphology effects. 

 

4.2 Characterization of Thermochemical Reaction Energetics 

 

Thermal analysis was conducted on the epoxy-cast Al+Fe O  structural energetic 

composites to characterize the energetics of thermally initiated reactions and 

transformations such as crystallization or melting.  The examinations of these composites 

include differential thermal analysis (DTA) for identifying temperatures where 

pedances increase linearly with decreasing epoxy concentration.  However, there 

appears to be a slight jump in longitudinal impedance for the Al+Fe2 3+60 vol.% epoxy 

2 3
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exothermic and endothermic events occur.  High temperature in situ x-ray diffraction 

(HTXRD) experiments were also utilized for identifying chemical species evolving 

during thermal heating.  These two techniques provide a detailed characterization of 

thermochemical events that effectively probe thermal histories for each specimen 

composition and identify the occurrence of structural changes as a function of epoxy 

volume fraction, and particle size or morphology effects.  These analyses provide insight 

into observed chemical reactivity and a foundation for correlating thermochemical 

transfo

 

Differential thermal analysis (DTA) primarily measures thermal properties and 

e

properties of the sample using DTA, 

ough the temperatures at which transitions occur can be identified fairly accurately. 

rmations that arise from effects of high-strain rate deformation. 

 

4.2.1 Differential Thermal Analysis (DTA) 

allows the estimation of enthalpy (∆H) changes that occur when chemical reactions or 

phase transformations, such as m lting, take place.  When the sample passes through a 

transition state, its temperature (Ts) departs from that of its surroundings (the program 

furnace temperature) and the differential temperature (∆T = Ts – Tr), obtained from 

comparison of the inert reference sample temperature (Tr), is either positive     

(exothermic reaction) or negative (endothermic reaction).  The magnitude of ∆T depends 

on the thermal properties of the equipment, particularly the thermal capacity, as well as 

the mass of the sample and thermal conductivity.  For this reason, it is challenging to 

extract quantitative measurements of the thermal 

th
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Thermal characterization was conducted on the precursor powders, pure cured 

epoxy, and fabricated epoxy-cast composite materials.  The signature of thermally 

initiated events was determined by DTA measurements, which were conducted for a 

steady heating rate (10 °C/min) over a temperature range of 50 to 1200 °C for most 

experiments.  Some experiments continued to a higher maximum temperature of 1500 °C 

and all runs were made in an inert argon atmosphere.  The effect of changing aluminum 

particle size and epoxy volume fraction for each composite was examined, in addition to 

the behavior of individual constituents. 

 

4.2.1.1 DTA of Initial Powder Reactants 

 

re 

pressed to form relatively low density pellets (0.25 g of powder) that were randomly 

 

700 °C) where the transformation takes place.  Both particle sizes exhibit endothermic 

peaks close to the handbook melting temperature value for aluminum (658.55 °C) [109].  

However, the nano aluminum (trace a) shows a slightly lower melting onset of          

650.2 ± 1.9 °C compared to 654.1 ± 1.1 °C for micron-scale aluminum (trace b).  The 

measured enthalpy calculated from the peak areas were -262.9 ± 19.4 J/g and  

Figure 4.16 shows results of DTA measurements performed on the individual 

aluminum powders (nano- and micron-scale particle sizes) used in fabricating composite 

materials.  The scans were repeated three times for each powder material using the same 

experimental conditions and identical sample preparation techniques.  The powders we

sectioned to obtain a sample size (≈ 10 mg) used in the DTA.  The figure plots heat flow 

as a function of temperature, showing only a very narrow temperature range (600 to   
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Figure 4.16 DTA traces obtained for nano- and micron-scale aluminum pressed powder 
pellets.  The nano-aluminum powder (trace a) shows a slightly lower melting onset 
temperature (650.2 ± 1.9 °C) as compared to micron-aluminum (trace b, 654.1 ± 1.1 °C). 

-334.1 ± 51.1 J/g, respectively for nano- and micron-scale aluminum.  The handbook 

value for aluminum is -398.8 J/g and is in good agreement with the measured value for 

micron-scale aluminum, however, it is slightly low for the nano-scale aluminum.  This 

discrepancy may be attributed to the possible oxide coating present on the nano-scale 

aluminum particles. 

The thermal response of submicron hematite powders examined by DTA is shown 

in Figure 4.17.  Pressed powder pellets were also used for these experiments, however, 

only one scan was performed to characterize the reduction behavior of hematite with 

heating to a maximum temperature of 1500 °C.  The DTA trace was compared to the 

known behavior of hematite from literature [117,170] and the Fe-O (Figure 2.28) binary 

phase diagram [119]. 
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associated with the characteristic reduction stages of hematite to iron. 

The first exothermic peak occurred at approximately 600 °C and corresponded to 

the reduction of hematite (Fe2O3) to magnetite (Fe3O4).  The onset of this reaction 

appears to begin immediately upon heating, however, even pure oxides such as hematite 

usually contain some structural –OH [170] contributing to the relatively low temperature 

reaction onset.  Additionally, the associated loss of absorbed H2O [170] may also be 

present and contribution to the exothermic rise to approximately 300 °C.  Considering 

these effects, the estimated onset

Figure 4.17 DTA trace obtained for hematite pressed powder pellet showing the peaks 

 for magnetite formation occurred at approximately    

500 °C.  This corresponds to a measured enthalpy of 604.5 J/g, which was in good 

agreement with the reference value of 632.9 J/g [109].  The next exothermic reaction had 

an onset temperature of 850 °C and a double peak in the vicinity of 1050 and 1100 °C.  

The first peak (1050 °C) may correspond to the formation of wüstite (Fe1-xO, where 1-x 
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ranges between 0.83 to 0.95 [170]), while the second peak (1100 °C) was related to the 

formation of iron (γ-Fe).  The formation of wüstite had a measured enthalpy of 798.3 J/g, 

which corresponds well with the handbook value of 751.7 J/g [109].  The measured 

enthalpy for γ-Fe was 51.1 J/g and greater than the handbook value (11.2 J/g) [109].  This 

is followed by a significant endothermic peak which was possibly associated with 

eutectic melting from trace impurities present in hematite and may also contribute to the 

relatively low enthalpy value measured for the γ-Fe formation.  The next endothermic 

feature occured at approximately 1395°C (onset 1320 °C) and was in good agreement 

with the melting temperature of wüstite taking place at 1370 °C according to the Fe-O 

phase diagram [119].  The final exothermic peak, just beginning to appear at 1400 °C, 

was possibly associated with the formation of δ-Fe and agreed well with the Fe-O phase 

diagram [119]. 

 

4.2.1.2 DTA of Mixed Reactant Powders 

 

The processing of epoxy-cast thermite composites first entailed the stoichiometric 

dry mixing of aluminum and hematite powders prior to their combination with epoxy 

resin and hardener.  Thermal analysis was also conducted for these powder mixtures to 

characterize the classic alumino-thermic reaction [1] of aluminum with hematite and to 

compar av and m inum powders.  The DTA traces 

obtained f both part ize mixtures and pure hematite for reference (discussed in 

section 4.2.1.1) are shown in Figure 4.18.  differe

between the Al+Fe2O3 powder mixtures containing nano- and micron-scale aluminum  

e the beh ior no- of na icron-scale alum

or icle s

Strikingly nt responses are apparent 
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Figure 4.18 DTA traces obtained for stoichiometric mixtures of aluminum and hematite 
pressed powder pellets using nano- (trace a) and micron-scale (trace b) aluminum.  These 
traces are compared to pure hematite from Figure 4.17 (trace c). 

(traces a and b, respectively).  The transformation of hematite to magnetite occurs at a 

significantly lower temperature for the nano-aluminum mixture, evident from the 

exothermic peak with an onset temperature of 499.7 ± 14.2 °C.  This is compared to the 

powder mixture containing micron-scale aluminum, resulting in a greater onset 

temperature of 570.2 ± 3.8 °C.  These contrasting behaviors are attributed to greater 

packing density of the nano-scale particle

properties of the compact.  The formation of magnetite obtained from the hematite 

powder (trace c) corresponds well with the micron-scale aluminum mixture.  The DTA 

traces for Al+Fe O  powder mixtures both had similar aluminum melting temperatures 

compared to values obtained for the individual particle sizes (discussed in               

s which alter the overall bulk diffusion 

2 3
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section 4.2.1.1); resulting in 651.8 ± 2.3 and 654.7 ± 3.2 °C for nano- and micron-scale 

aluminum, respectively. 

Following the melting endotherm for micron-scale aluminum, the formation of 

wüstite (Fe1-xO) began at 805.1 ± 53.1 °C.  It is possible that aluminum oxide (Al2O3) 

also forms close to this temperature.  This is followed by another exotherm with an onset 

2 4 2 3

tribute to the observed higher temperature reactions.  It is also possible that 

aluminu com e and  this tem he final 

exothermi eak, begin  at appr  corresponds t the formation of  

δ-Fe.  Notice that there is a small endotherm °

melting of wüstite. 

In contrast for nano-aluminum, th ation of wüstite (Fe1-xO) began at      

708.7 ± 30 °C, appro tely 100 °C lower than micron-scale alu , immediately 

following the melting endotherm for nano-scale aluminum.  This is followed by the 

formation of γ-Fe, Al2O3, and possibly FeAl2O4 at approximately 1025 °C (relatively 

small exotherm).  There is an identical ex r the formation of e beginning at a 

slightly greater temperature of approximately 1250 °C. 

The addition of aluminum (micron- and nano-scale particle sizes) to hematite 

powder causes the formation of aluminum-hematite compounds and enhances the 

temperature of 944.4 ± 10.0 °C that corresponds to the formation of γ-Fe, Al2O3, and 

possibly FeAl2O4.  This two stage reaction has also been observed by J. Mei, et al., [116] 

for a slightly higher temperatures of 960 °C producing Fe3O4 and Al2O3, while the next 

reaction occurred at 1060 °C forming Fe, FeAl O , and Al O .  However, this study had 

significantly larger aluminum and hematite particle sizes (20 and 5 µm, respectively) that 

possibly con

m-iron pounds (AlF  AlFe3) form in perature range.  T

c p ning oximately 1200 °C, o 

ic peak at 1300 C which corresponds to the 

e form

.6 xima minum

otherm fo δ-F
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reduction process for hematite, resulting in initiating these reactions at lower 

temperatures.  The addition of nano-scale aluminum also decreases the temperature 

where the reduction of hematite begins by approximately 50 to 100 °C.  All of these 

effects are attributed to the nano-scale aluminum particles altering the bulk diffusion 

properties of the powder compacts. 

 

4.2.1.3 DTA of Epoxy and Epoxy-Cast Composites 

 

Thermal analysis was also carried out for Al+Fe2O3 epoxy-cast composites with 

47 to 78 vol.% epoxy and cured epoxy specimens.  Figure 4.19 shows representative 

DTA traces for each particle-filled composite composition and pure epoxy.   

 
Figure 4.19 DTA traces for epoxy-cast Al+Fe2O3 composites with a) 47, b) 60, c) 70, 
d) 78 vol.% epoxy, e) pure epoxy, and f) nano-Al+Fe2O3+70 vol.% epoxy compositions. 
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These experiments were repeated several times with excellent reproducibility and 

typically, included a total of 3 to 5 runs.  The DTA results obtained for each composition 

appear to show similar exothermic and endothermic reaction peaks as expected for the 

Al+Fe2O3 thermite system.  The addition of epoxy typically lowers the temperatures 

where the intermediate and main reactions take place and also contributes to the overall 

strength of the reaction. 

Each composition shows an initial exothermic peak at 383.1 ± 6.1 °C due to 

crystallization.  This is known as cold crystallization and occurs upon heating polymers 

that are amorphous or have very low crystallinity [171].  The 78 vol.% epoxy 

composition appears to experience a longer exothermic reaction, with an initial peak of 

334.3 °C followed by a second peak at 371.1 °C, closer to the average crystallization 

between 397 and 410 °C, corresponding to the decomposition of epoxy.  Pure epoxy has 

   

             

temperature observed for all of the composites and pure epoxy. 

The crystallization peaks were followed immediately by an endoderm that ranged 

a decomposition temperature of 410.2 ± 0.7 °C, which is in fairly good agreement with 

many studies conducted for epoxy resin cured with numerous hardeners [172-174].  The 

thermal stability in cured-epoxy resin systems will depend, in part, on the chemical 

structure and bonds, as well as on the functionality and crosslinking density of the  

resin [171].  The volatile products evolving from the decomposition of epoxy typically 

include water, carbon dioxide, and carbon monoxide [172], however, the specific makeup 

is primarily dictated by the resin and hardener composition. 

The addition of solid particles appears to slightly influence the decomposition 

temperature.  The epoxy-cast composites using micron-scale aluminum (47 to   
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78 vol.% epoxy) had an average decomposition temperature of 403.5 ± 4.4 °C, while the 

nano-aluminum composites decomposed at 423.6 ± 2.1 °C. 

The next exothermic peak corr

 

esponds to the reduction of hematite to magnetite 

and oc

°C 

and possibly corresponds to the melting of aluminum at a significantly low temperature.  

The melting of aluminum triggered other exothermic events, with a slight peak at 

approximately 630 °C followed by the main exhothermic reaction occurring at 

nano-Al+Fe2O3 thermite powder mixtures without an epoxy binder. 

Following the formation of magnetite, the 78 vol.% epoxy composition shows an 

immediate endotherm (approximately 660 °C) corresponding to the melting of aluminum, 

followed by a small exothermic peak at approximately 670 °C.  The second peak possibly 

corresponds to the formation of intermediate phases such as FeO and/or FeAl2O4.  The 

possible intermediate phase formations were immediately followed by a significant 

exotherm corresponding to the main thermite reaction between aluminum and hematite, 

possibly forming Fe and Al2O3 if the reaction goes to completion.  The other 

compositions also showed evidence of the characteristic aluminum melting endotherm 

curs at a similar temperature as observed for the thermite Al+Fe2O3 powder 

mixtures discussed in section 4.2.1.2.  The dispersion of the thermite powder mixture 

within epoxy does not appear to alter this reaction.  The nano-aluminum containing 

epoxy composite similarly experiences this reduction process at a lower temperature, 

following the result obtained for the thermite powder mixture reaction also discussed in 

section 4.4.1.2.  This was followed by an immediate endotherm at approximately 600 

approximately 700 °C.  These reactions occur at significantly lower temperatures as 

compared to the intermediate (708.7 °C) and main reactions (1025 °C) observed for the 
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occurring at approximately 660 °C.  In contrast to the 78 vol% epoxy composite 

behavior, the melting of aluminum was followed by a distinct delay before the main 

reaction between aluminum and hematite took place.  The main exothermic reaction 

initiation temperatures for each composition follow in order with the decreasing volume 

action of epoxy.  It also follows that the size of the associated endothermic peak 

decreases as the co

4.2.2 H

 

r                      

rval.  The transformation sequence of hematite to 

agnetite begins at about 475 °C and is completed by 600 °C.  Other complex phases 

efore the presence of iron beginning at  

fr

ncentration of epoxy increases. 

 

igh-Temperature X-Ray Diffraction Characterization (HTXRD)  

 

The high-temperature x-ray diffraction (HTXRD) characterization of select 

epoxy-cast composites describe the sequence of transformations and reactions occurring 

during the oxidation of hematite and the exothermic reaction of aluminum and hematite.  

The Al+Fe2O3 epoxy-cast composites were heated in the temperature range of 25 to  

1300 °C in an inert helium atmosphere and investigated by in situ, real time x-ray 

diffraction.  This analysis combined with the DTA experiments discussed in section 4.2.1 

correlate exothermic and endothermic events with the products obtained from each 

eaction.  The HTXRD experiments were conducted for Al+Fe2O3+60 vol.% epoxy,   

nano-Al+Fe2O3+70 vol.% epoxy, and an Al+87 vol.% epoxy composite. 

Figure 4.20 shows a three-dimensional rendering overlaying x-ray diffraction 

patterns obtained for the Al+Fe2O3+60 vol.% epoxy composite, with measurements 

obtained at 25 °C temperature inte

m

form over the next 200 °C including alumina, b
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Figure
Al+Fe2O3

approximately 800 °C.  The detailed analysis of the diffraction patterns obtained at each 

Figure 4.21 shows the x-ray diffraction patterns obtained for select temperatures 

used to identify particular phases present during the transformation and reactions of the 

epoxy-cast composite.  The color coded reference phase lines are shown overlaying each 

diffraction pattern presented.  The initial pattern is taken at room temperature (25 °C) 

prior to heating and shows an excellent agreement with reference (ICDD) values for 

hematite (01-089-0597) and aluminum (00-004-0787).  Upon heating, the peaks begin to 

gradually shift left (a maximum of approximately 0.2° 2θ) at 450 °C, possibly due to the 

decomposition of epoxy.  Magnetite (00-019-0629) begins to form at 475 °C at the  

 4.20 High-temperature x-ray diffraction (HTXRD) patterns obtained for 
+60 vol.% epoxy composition heated from 25 to 1300 °C at 25 °C/min.  Image 

shows a three-dimensional rendering overlaying x-ray diffraction patterns measured at 
temperature intervals of 25 °C. 

temperature increment identifies the phases present during the heating of the composites. 
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Figure 4.21 X-ray diffraction patterns obtained at select temperatures for Al+Fe2O3+60 
vol.% epoxy composite heated from room temperature to 1300 °C. 
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expense of hematite.  The hematite to magnetite transformation appears to be direct, 

without the formation of any metastable intermediate phases.  No more hematite phase is 

detected and the transformation is complete by 600 °C.  This is followed by the reduction 

of mag

d as Fe1-xO 

(where x ranges between 0.83 to 0.95) [170].  This temperature also shows evidence for 

the formation of an alum -7408).  These 

findings follow well with the observations of Korchagin and Podergin [117], proposing 

3 4

2 4

formation of α-Fe (01-089-4186) and aluminum-iron compounds, AlFe (00-033-0020) 

and/or AlFe3 (00-050-0955), were first detected.  These are followed by the consumption 

of magnetite at 900 °C and the disappearance of Fe1-xO, Al, Al2.667O4, and FeAl2O4 at      

950 °C.  At approximately 975 °C, γ-Fe peaks begin to form at the expense of the α-Fe 

phase, where the peak intensities begin to drop and are completely gone by 1275 °C.  

Other phases also form during the α-Fe to γ-Fe transformation and possibly include the 

formation of iron carbides, namely Fe2C (00-037-0999) and/or Fe3C (01-089-2005), and 

netite to FeO (00-046-1312), initiating at approximately 650 °C and also the trace 

formation of non-stoichiometric alumina, Al2.667O4 (01-080-1385).  These reactions 

initiate over the temperature range where aluminum begins to melt.  Aluminum had an 

onset melting temperature of 654.1 °C and a peak melting endotherm at 665.1 °C 

determined from DTA measurements in section 4.2.1.1.  The FeO begins its reduction 

process at approximately 725 °C, possibly forming Fe0.98O (00-039-1088) and/or Fe0.95O 

(00-039-1088).  Stoichiometric FeO is very unstable and typically is observe

inum iron-oxide compound, FeAl2O4 (01-089

that the decomposition of Fe O  to FeO precedes the interaction of iron-oxide and 

aluminum and the formation of FeAl O .  As the temperature rises to 800 °C, the 
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aluminum-iron carbide AlFe3C (01-089-3193) with the unlimited availability of carbon 

from the decomposition of epoxy. 

The HTXRD analysis for the Al+Fe2O3+60 vol.% epoxy is correlated with the 

DTA study (discussed in section 4.2.1.3) conducted on the same composition.         

Figure 4.22 shows the corresponding phases identified by x-ray diffraction with 

exothermic and endothermic events observed by the DTA (trace a), in addition to the 

DTA traces obtained for pure hematite pressed powder pellets (trace b) and Al+Fe2O3 

mixed powders (trace c).  The green data points correspond to the temperature at which  

 

correlating HTXRD phase identifications for specific temperatures.  Green circles 

next to each transformation correspond to events and specific phases listed in Table 4.4.  

Figure 4.22 DTA curve obtained for Al+Fe2O3+60 vol.% epoxy composite (trace a) 

indicate phases forming, while red circles indicate phases consumed.  The numbers listed 

The blue diamond points identify temperatures for the x-ray diffraction patterns shown in 
Figure 4.21.  The DTA traces for hematite powder (trace b) and Al+Fe2O3 mixed powder 
(trace c) are also shown for reference. 
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Table 4.4 Correlation of HTXRD and DTA measurements for Al+Fe2O3+60 vol.% 

specific temperatures, which are indicated on the 
epoxy composites.  Event numbers correspond to phases forming or being consumed at 

DTA trace shown in Figure 4.22. 

Number [°C] 
Event Temperature Phase Forming Phase Consumed 

1 475 Fe3O4 (Magnetite)  
2 600  Fe2O3 (Hematite) 

Fe0.98O, Fe0.95O, and 
2 4

5 800 α-Fe, AlFe, and AlFe   
6 900  Fe3O4 

7 950  
Al2.667O4, Al, FeO, 

Fe0.98O, Fe0.95O, and 
FeAl2O4 

9 1150 Fe2C, Fe3C, and AlFe3C  
10  1275  α-Fe, AlFe, and AlFe3 

3 650 Al2.667O4 and FeO  

4 725 FeAl O   

3

8 975 γ-Fe  

☺

☺

were only c
Point does not correspond to a specific location on the DTA curve since these measurements 

onducted up to 1200 °C. 

respective phases identified from HTXRD analysis. 

phase(s) are beginning to form, while the red data points indicate the end temperature for 

the consumption of a particular phase(s) that is no longer observed.  The corresponding 

number (1 through 10) associated with each event is correlated with the respective phases 

observed at that particular temperature from HTXRD scans and listed in Table 4.4.  

Figure 4.22 also graphically indicates (blue diamond data points) the corresponding 

temperature where the phases for select x-ray diffraction patterns are identified and 

shown in Figure 4.21.  Examination of Figure 4.22 and Table 4.4 shows good correlation 

between the exothermic and endothermic events obtained from the DTA trace and the 
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An identical analysis, correlating DTA and HTXRD scans, was also conducted 

for the nano-Al+Fe2O3+70 vol.% epoxy composition.  Figure 4.23 shows the DTA trace 

and corresponding reaction events that are listed in Table 4.5, and the respective phases 

related to those events.  Figure 4.24 shows the corresponding HTXRD patterns obtained 

for the nano-aluminum epoxy-cast composite at select temperatures.  Additional 

temperatures are shown for assisting the direct comparison of diffraction patterns 

obtained for the micron-scale aluminum composite (Figure 4.21) at identical 

temperatures.  In general, similar phases were formed for the nano-aluminum composites  

 
Figure 4.23 DTA curve obtained for the nano-Al+Fe2O3+70 vol.% epoxy composite 
(trace a) correlating HTXRD phase identifications for specific tem eratures.  Green 
circles indicate phases forming, while red circles indicate phases consumed.  The 

nd points identify temperatures for the x-ray 
diffraction patterns shown in Figure 4.24.  The DTA trace of nano-Al+Fe2O3 mixed 
powder (trace b) is also shown for reference. 

p

numbers listed next to each transformation correspond to events and specific phases 
listed in Table 4.5.  The blue diamo
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Table 4.5 Correlation of HTXRD and DTA measurements for nano-Al+Fe2O3+70 

consumed at specific temperatures, which are indicated on the DTA trace shown in 

Number [°C] Phase Forming Phase Consumed 

vol.% epoxy composites.  Event numbers correspond to phases forming or being 

Figure 4.23 

Event Temperature 

1 525 Fe O  (Magnetite)  3 4

2 650  Fe2O3 (Hematite) 
3 675 FeO  

6 950  Fe O  

Al O , Al, FeO, and 

8 1100  

4 725 Al2.667O4, FeAl2O4, AlFe, 
and AlFe3 

 

5 850 α-Fe  
3 4

7 1050  2.667 4
FeAl2O4 

γ-Fe, Fe2C, Fe3C, and 
AlFe3C 

 

as were identified for the micron-aluminum composite.  However, there were some slight 

differences that will be highlighted next. 

r the micron-scale Al+Fe2O3+60 vol.% 

epox ositi h  How the tr n as 

observ y th e c r °C, 

essenti  th tu rv i m  

Thi n o h a   °C 

and n ng d  the n ca 25  this 

into consideration, it appears that the two compositions have essentially the same onset  

The reduction of hematite to magnetite initiated at a relatively higher temperature 

(approximately 525 °C) than was observed fo

y comp on throug the HTXRD analysis. ever, ansformatio

ed b e onset of th exothermic DTA peak o curred at app oximately 500 

ally e same tempera re obse ed for the m cron-scale alu inum composite. 

s discrepa cy may be ass ciated wit  the actual re ction initiating just above 500

ot bei etected until  followi g XRD scan rried out at 5  °C.  Taking
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Figure 4.24 (continued on next page) 
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Figure 4.24 X-ray diffraction patterns obtained at select temperatures for nano-

f aluminum at a significantly 

lower t

 

m 

Al+Fe2O3+70 vol.% epoxy composite heated from room temperature to 1300 °C. 

temperature for this hematite reduction reaction, however, the nano-aluminum composite 

has a significantly narrower and relatively lower exothermic peak.  Furthermore, the 

reduction of hematite is directly followed by the melting o

emperature (approximately 600 °C) which causes the reduction process to possibly 

be interrupted.  This interruption may alter the remaining reactions and extend the  

transformation and reaction initiation temperatures.  In most cases, the nano-aluminum 

composite reactions take place at temperatures 50 to 75 °C higher.  However, there are 

exceptions to this, for example, the transformation of α-Fe to γ-Fe occurred at 1100 °C, 

which is approximately 125 °C higher than that observed for the micron-aluminu
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composite.  Conversely, the lower melting temperature of aluminum for the              

approximately 75 °C lower at 725 °C. 

The nano-Al+Fe O +70 vol.% epoxy composition also experiences peak shifting 

in the XRD pattern at approximately 425 °C, similar to that occurring for the         

nano-composite showed the possible formation of AlFe and/or AlFe3 occuring 

2 3

micron-scale aluminum composite.  The peaks shifted the same amount to the left with a 

maximum of approximately 0.2° 2θ.  However, in this case the peak shift was abrupt, 

possibly due to the higher epoxy concentration used for this composite.  Peak shifting in 

these composites and the effect of epoxy concentration was evaluated by examining a  

 
Figure 4.25 X-ray diffraction patterns obtained for Al+87 vol.% epoxy composite 
heated from room temperature to 1300 °C.  The decomposition of epoxy is evident by the 
severe shift in peaks corresponding to aluminum between 500 and 525 °C.  The figure 
only shows select diffraction patterns obtained up to 525 °C due to the decomposition of 
epoxy and the significant peak shifting that occurred for higher temperatures. 
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micron-Al+87 vol.% epoxy composite composition under identical experimental 

conditions.  The HTXRD pattern shown in Figure 4.25, indicates a rather abrupt shift in 

the aluminum peaks between 500 and 525 °C, corresponding to the decomposition of the 

epoxy.  Although less apparent, the peaks actually begin to shift slightly at a lower 

temperature of 475 °C.  The differences in the compositon may also affect the 

decomp

Mechanical properties of epoxy-cast Al+Fe2O3 structural energetic composites 

were characterized using several different experimental techniques.  Each technique is 

utilized for obtaining specific material data to describe the composites’ behavior 

attributed to mechanical loading at specific stresses, strain, and strain rates.  Since the 

epoxy-cast composites have a large volume fraction of a crosslinked polymer that 

exhibits viscoelastic and viscoplastic behaviors, the measured mechanical values would 

therefore be expected to have strain rate dependence.  The main mechanical 

measurements conducted for these composites are used to calculate material parameters 

such as elastic modulus, E, yield stress and strain, σy and εy, failure stress and strain,      

osition temperature as observed in the DTA results discussed in section 4.2.1.3 

between nano- and micron-scale aluminum composites.  Since there is no potential for 

other reactions to take place in this aluminum and epoxy mixture, the peak shifting is 

attributed to the decomposition of epoxy.  In fact, the Al+Fe2O3 epoxy-cast composite 

samples were recovered after the HTXRD experiments.  However, the epoxy completely 

decomposed and only aluminum remained for the aluminum-epoxy composite. 

 

4.3 Static Mechanical Property Characterization 
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σf and εf, together with the critical stress intensity factor, KIC, and fracture energy, GIC.  

The following section describes the experimental results obtained from mechanical tests 

conducted on each of the epoxy-cast Al+Fe2O3 composites.  These results are compared 

to theoretical values calculated using various rule of mixture models derived for   

particle-filled polymer composites. 

 

4.3.1 Dynamic Mechanical Analysis (DMA) 

 

Polymers exhibit a range of elastic properties that depend on their structure, as 

essentially measuring the viscoelastic response to an applied oscillating force over a      

25 to 175 °C temperature range.  Fortunately, viscoelastic polymer behavior is especially 

roperties of polymers and 

modified filled polymer composites.  These include the strong dependence of properties 

on temperature and time as a result of the viscoelastic nature of polymers. 

Experiments were conducted for particle-filled Al+Fe2O3 epoxy-cast composite 

compositions, as well as pure epoxy, to understand the influence of structural 

modifications (such as particle morphology and filler volume fraction) on altering the 

overall bulk mechanical response.  The experimental results are first discussed in detail 

for the pure epoxy system since they provide a baseline for comparison with the   

particle-filled compositions.  Figure 4.26 shows a typical DMA result obtained for pure  

well as the subjected test conditions.  Dynamic mechanical analysis (DMA) was used to 

characterize the bulk mechanical behavior directly affecting material performance by 

sensitive to transitions, morphological changes, and structural changes.  Thus, DMA 

readily conveys detailed structural characteristics or intrinsic p
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Figure 4.26 Typical storage modulus, E’, loss modulus, E’’, and tan δ DMA curves 
obtained for pure epoxy. 

epoxy, where the complex response of the material is resolved into the elastic or storage  

modulus ( E ′ ) and the viscous or loss modulus ( E ′′ ).  Between approximately 55 and    

75 °C, the storage modulus drops by over two orders of magnitude, indicating that the 

epoxy-cast composite has lost most of its usefulness as a structural material.  This abrupt 

change is associated with the onset of short-range molecular motions initiating at the 

glass transition temperature, Tg.  Notice that the loss modulus rises to a maximum as the 

storage modulus is in its most rapid rate of descent.  A rise in the loss modulus indicates 

an increase in the structural mobility of the polymer.  This is a relaxation process that 

permits motion along larger portions of individual polymer chains.  The peak of the loss 

modulus is conventionally known as the glass transition temperature and identified as a 

softening point for amorphous polymers.  Pure epoxy was observed to have an average 
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glass transition temperature (obtained from five experiments) of 57.92 ± 0.78 °C.  Studies 

conducted by Adolf [175] measured a glass transition value of 68.96 °C for a very similar 

epoxy system fabricated with EPON 828 resin and the same DEA curing agent. 

The storage modulus exhibits three distinct response regions over the increasing 

temperature interval examined.  Initially, the response is that of a glassy polymer and 

compares well with room temperature elastic modulus values.  As temperature increases, 

the response enters the glass transition region leading to a rubbery material response.  

The storage modulus within the rubbery region is related to the crosslink density 

according to the kinetic theory of rubber elasticity and permits the calculation of 

crosslink density from the equilibrium shear modulus, G, according to [176]: 

RT
M
RTG

c

νρ
== ,     (4.5) 

where ρ is the density of the polymer, Mc is molecular weight between crosslinks, R is 

een crosslinks, ν, gives the number of moles of network 

chains per unit volume of polymer or the crosslink density.  These experiments measured 

the storage modulus in pure ated with the shear 

modulus for estimating the crosslink density according to equation (4.5).  The shear 

modulus is related to E’ by assuming 3G = E’ and upon substitution into equation (4.5), 

the gas constant (8.314 J/mol K ), and T is temperature in Kelvin.  The ratio of density 

and molecular weight betw

 tension and therefore need to be associ

results in: 
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RT
E

3
′

=ν .      (4.6) 

For this assumption to be valid, the sample volume must not vary during the experiment 

and the value of the loss modulus must be negligible compared to the storage      

modulus, E’ [177].  The resulting equation was evaluated in the rubbery plateau region 

(at 150 °C) of the storage modulus and had an average crosslink density of                 

1054 ± 132 mol/m  for pure epoxy.  This value is in good agreement with 957 mol/m3 

reported for the identical 

The applied stress and resulting strain obtained from DMA experiments are 

g the time lag associated with a 

viscoel

3

cured epoxy system [66]. 

typically out of phase with each other, reflectin

astic response or elastic recovery, by the phase angle or damping term (tan δ).  

Part of the energy used in producing the deformation is recoverable, while the rest is 

dissipated as heat during viscous flow.  The tan δ curve follows the loss modulus curve 

very closely and provides a successive count of the ratio of the elastic and viscous phases 

( EE ′′′=δtan ) within the polymer.  This quantity effectively gives a measure of 

viscoelasticity and provides a convenient means for comparing polymers where the 

storage and loss modulus values change because of alterations in composition, geometry, 

and/or processing conditions.  At low temperatures leading up to the glass transition,   

tan δ is typically below 0.1.  The rapid rise in the tan δ curve for pure epoxy above 

approximately 50 °C coincides with the equally rapid decline in the storage modulus.  In 

general, a relatively small peak phase angle (< 1.0) indicates high elasticity while a 

relatively large phase angle (> 1.0) is associated with highly viscous response [178].  
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Above approximately 65 °C, the loss modulus (Figure 4.26) for pure epoxy is equal to or 

greater than that of the storage modulus, thus indicating a predominant viscous 

component contribution to the overall response.  This signifies that the polymer has 

undergone irreversible deformation and has reached a soft and pliable material state. 

Crosslinked epoxy systems have distinct temperature-dependent behaviors that 

make them easily distinguishable from other networked polymer systems.  The patterns 

present

to pre-glass 

transition levels for crosslinked systems.  Additionally, relatively low tan δ values  

(below 1.0) are typically observ 1.0 are 

associated with an amorphous system [178].  However, the magnitude of the loss 

modulus and tan δ peaks also vary with the severity of the decline in the storage modulus.  

Therefore, care must be taken in interpreting the structural details obtained from DMA 

measurements. 

As observed for the pure epoxy system in Figure 4.26, the tan δ values peak 

during impact experiments with a minimal amount of bulk heating.  There is also 

evidence for the onset of solid-state crystallization as the storage modulus begins to 

slowly 

ed in Figure 4.26 for pure epoxy is typically observed for crosslinked amorphous 

polymers [178].  The DMA measurements provide several key indicators about structural 

properties.  For example, tan δ values above the glass transition return 

ed for crystalline materials and values above 

above 1.0 and lose 99 %+ of its storage modulus as it passes through the glass transition 

temperature.  This indicates a greater tendency for viscous flow close to the glass 

transition temperature and therefore a possible increase in the overall bulk toughness 

increase above the glass transition temperature.  This is indeed the case for the 

cured epoxy system used in this study, and crystallization has been observed at a 

 211



significantly higher temperature (approximately 400 °C) than the range examined for the 

DMA experiments.  Solid-state crystallization has been verified by differential thermal 

analysis (DTA) measurements discussed in section 4.2.1.3. 

It is well known that adding filler or a reinforcement phase to a polymer increases 

the overall room temperature modulus of the system.  However, DMA scans of unfilled 

materials and their filled counterparts show that the increase in room temperature 

properties is only a small part of their overall improvements.  Figure 4.27 shows the 

storage modulus plots for unfilled epoxy and four similar systems that contain different 

amounts of filler reinforcement (epoxy volume fractions of 47, 60, 70, and 78 %).  

Relatively steady improvements were observed with solid particle filler additions to the 

epoxy matrix.  The storage modulus typically increased in both the glassy and rubbery  

 

Figure 4.27 Comparison of measured storage modulus curves for each composition 
over a 25 to 175 °C temperature range. 
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regions with the addition of solid particles.  It follows since the filler materials are purely 

elastic systems with extremely high thermal resistances, while the polymer and 

filler/polymer interface have a viscoelastic response.  However, the 60 vol.% epoxy 

composition appears ssessing a 

significantly high modulus in the glassy region and relatively low modulus in the rubbery 

for the unfilled epoxy and filled 

epoxy g

E' 

[MPa] 

E' 

[MPa] 

Temperature

[°C] 

 to show some irregularity in this general trend, po

region. 

The elastic contribution to the overall system response is observed as a reduced 

effect that the glass transition has on decreasing the elastic modulus.  Table 4.6 gives 

some key properties obtained from DMA experiments 

composite materials.  The T  does not change significantly with filler content 

except for the 60 vol.% and 78 vol.% epoxy compositions obtained from the loss modulus 

peaks in Figure 4.28.  The 60 vol.% epoxy composition had an average glass transition 

value of 63.42 ± 4.80 °C, while the 78 vol.% epoxy composition had an even higher 

average value of 68.42 ± 3.96 °C.  These were approximately 7 to 11 °C higher than the  

Table 4.6 Measured DMA properties obtained for epoxy-cast Al+Fe2O3 composite 
compositions and pure epoxy (batch B). 

Epoxy 
[vol.%] at 40 °C at 150 °C at tan δ peak Tg 

[°C] 
νe 

[mol/m3] 

47 8222 ± 618 321 ± 32 69.81 ± 2.96 58.31 ± 5.64 30383 ± 2996
60 26620 ± 14557 77 ± 8 79.75 ± 5.02 63.42 ± 4.80 7317 ± 789 

nano-70 9
70 8235 ± 1708 97 ± 3 70.85 ± 2.14 56.09 ± 3.04 9220 ± 271 

707 ± 2984 123 ± 13 91.11 ± 3.45 81.50 ± 2.79 11675 ± 1253
78 4342 ± 430 61 ± 4 75.57 ± 1.87 68.42 ± 3.96 5757 ± 383 
100 2628 ± 700 11 ± 1 68.39 ± 0.91 57.92 ± 0.78 1054 ± 132 
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Figure 4.28 Comparison of measured loss m
composition.  Corresponding peak locations indicate the glass transition temperature, Tg. 

lculated crosslink density of 7317 ± 789 mol/m3 for  

60 vol.% epoxy composition was relatively low when compared to the other composites  

odulus curves obtained for each 

remaining compositions including pure epoxy (average Tg was 57.44 ± 1.19 °C).  

Crosslinking tends to reduce the specific volume of the polymer which means the free 

volume is reduced and the Tg is raised because molecular motion is more difficult.  The 

temperature observed for the tan δ peak is also very sensitive to crosslink density, in 

addition to filler content and molecular weight [178].  However, the tan δ curve mainly 

indicates the load-bearing capability of the composites and the elastic contribution of the 

filler, thus increasing as the peak height decreases and broadens.  Figure 4.29 shows the 

tan δ relationship between each of the compositions.  The shift of the tan δ peak or the 

loss modulus for the 60 vol.% and 78 vol.% epoxy compositions suggests an increase in 

crosslink density.  However, the ca
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Figure 4.29 Comparison of measured tan δ curves obtained for epoxy-cast Al+Fe2O3 
compositions and pure epoxy. 

crosslin           

        

 

(listed in Table 4.6), which suggests that the relatively higher glass transition temperature 

and shifting of the tan δ peak to a higher temperature may not be directly related to 

k density.  The 78 vol.% epoxy composition had a crosslink density of  

5757 ± 383 mol/m3, which appears to be a reasonable value that falls between the  

70 vol.% epoxy composition and pure epoxy (Figure 4.30). 

Effective crosslinking, which is due to trapped entanglements, and chemical 

crosslinking both contribute to improving the storage modulus.  However, the observed 

plateau in the rubbery region (temperatures above the Tg) of the storage modulus reaches 

a level that reflects the immobility of only chemical crosslinks.  Therefore, solid  

micron-scale aluminum particles possibly inhibit the epoxy crosslinking during 

polymerization for the 60 and 78 vol.% epoxy compositions.  These relatively large  
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Figure 4.30 Summary of measured molar crosslink density values, ν, obtained for each 
epoxy-cast Al+Fe O  composition and pure epoxy. 2 3

inclusion features dominate the deformation response in the glassy region by transferring 

the load from the matrix to the inclusions.  This would explain the significantly high 

modulus exhibited by the 60 vol.% epoxy composition in the glassy region below the 

relatively large inclusion features.  This results in a relatively low storage modulus in the 

glass transition temperature.  However, as the temperature is increased above the Tg, the 

composite response is dominated by molecular chain motions that are not inhibited by the 

rubbery region.  Uniformly dispersed submicron hematite particles and hematite 

agglomerates possibly assist in retaining the load capability of the composite above the 

glass transition by inhibiting molecular chain motions since they are on the same 

geometrical size order and promote entanglements.  However, the composite cannot 

overcome the significantly large inclusion features, which act as “open voids” and permit 
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the unaltered molecular chain motions, thus, reducing the storage modulus in the rubbery 

region. 

The hematite agglomerates may be improving the local mechanical properties of 

the composite, since the individual hematite particles are still uniformly dispersed, only 

now in closer proximity to each other.  However, the significantly large spherical 

large 

agglomera an t ve r stru ural a ysis usse secti . .1) shows 

that both the alu a m e am ar e r for the            

60 vol.% epoxy c i in  u umber of 

hematite agglomer h v i l  the other 

composition llu r w e d matite 

agglomerate e tr ntr g t ov echanical e omposite 

and their reduction in number consequently lowers the bulk mechanical behavior. 

Filled poly s i s l c  iller are 

directly comparable and emphasize the effect filler particle size has on the overall 

composite response.  It is suggested that the dispersion of nanoscale particles throughout 

te.  Equation (4.6) was  

aluminum particles are much greater than the polymer chains and serve to reduce the 

overall crosslink density, particulary if they cluster and form significantly 

tes.  Qu tita i mic o ct nal (disc d in on 4 1

minum nd he atite m an di eters e relativ ly large

omposit on, as dicated in Fig re 4.7.  Additionaly, the n

ates wit in the olume was sign ficantly ow as compared to

s, i strated in Figu e 4.9.  This ould b  expecte  if the he

s ar uly co ibutin o the erall m  properti s of the c

mer sy tems w th the ame vo ume fra tion and type of f

a polymer matrix provide physical entanglements and lead to a loss in mobility of 

polymer chain segments [59].  Figure 4.31 shows the tan δ curves for two     

Al+Fe2O3+70 vol.% epoxy compositions reinforced with micron and nano-scale 

aluminum particles.  Notice the composition with nano-scale aluminum particles has a 

significantly higher temperature for the tan δ peak and indicates a higher crosslink 

density when compared to the micron-scale aluminum composi
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Figure 4.31 Comparison of tan δ curves obtained for epoxy-cast Al+Fe2O3 composites 
with 70 vol.% epoxy cont y tan δ 
curve is also shown as a b

aining nano- and micron-scale aluminum.  The pure epox
aseline reference. 

 
Figure 4.32 Comparison of storage modulus curves obtained for epoxy-cast Al+Fe2O3 
composites with 70 vol.% epoxy containing nano- and micron-scale aluminum.  The pure 
epoxy storage modulus curve is shown as a baseline reference. 

 218



 

used to estimate the crosslink ately 80 % percent 

increase in the cr density for a composite containing nanoscale aluminum 

particles.  Crosslink densities were 9220 ± 5 53 mol/m3 for the    

micron- and nano-sca l+  e es ectively.  Table 4.6 

lists complete details  co ties obtained from DMA experiments.  The 

use of 

ing density and represents approxim

osslink 

 271 and 1167  ± 12

Fe O +7  vol.%2 3 0 poxy composit , resple A

and mposite proper

nano-scale aluminum particles in the composite was also apparent in raising the 

glass transition temperature and improving the load capability in the rubbery modulus 

region, as shown in Figure 4.32. 

 

4.3.2 Continuous Spherical Ball Indentation Tests 

 

The local mechanical behavior of epoxy-cast Al+Fe2O3 composites was probed 

using instrumented continuous indentation experiments, where the penetration depth of a 

spherical tipped indenter was measured as a function of an applied load.  Using this 

approach, the localized elastic and plastic behavior of a material may be investigated, as 

well as the onset of ductility or yielding.  Upon indentation, the contact area is 

continuously computed from the known indenter geometry and the measured depth of the 

impression.  However, the contact area of a particular indenter depends on both the shape 

of the indenter, as well as the elastic-plastic material response of the specimen. 

A spherical tipped indenter was used for evaluating the epoxy-cast composites 

since it is more suitable than sharp tip shapes that are invariably rounded.  At small 

applied loads leading to small stresses, the resulting strains in the sample and, hence, the 
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contact between indenter and sample are purely elastic.  When the load is increased 

beyond a certain value, the stresses induced by the indenter will exceed the critical shear 

stress of the specimen and a part of the strain is relieved by plastic deformation.  The 

materia

thus, 

the load on the indenter must be increased.  In doing so, the plastically deformed zone 

grows, as the indenter is completely in contact with plastically deformed material.  The 

transition from a purely elastic to a fully plastic contact and, hence, the hardness obtained 

from the projected contact area at maximum load characterizes the local resistance of the 

investigated material against combined elastic and plastic deformation.  However, the use 

of a spherical tipped indenter allows the separation of the elastic and plastic components 

of the deformation.  This is particularly useful for characterizing the viscoelastic-

viscoplastic behavior typically observed for polymeric materials. 

The analysis of continuous indentation tests is based on the elastic contact 

solution for a spherical ball elastically deforming in a spherically shaped indent  

(Hertzian contact problem [179]).  Oliver and Pharr [180] focused on an elastic analysis 

of the unloading behavior for a plastic indentation and derived the Hertzian-based 

relationship for the load dependence of penetration depth, dP/dh, and the contact area, A, 

given by: 

l is in an elastic-plastic state where plastic flow is constrained, i.e. the plastically 

deformed zone is surrounded by elastic material.  To further expand the plastic boundary 

into the elastically deformed material, the applied stress needs to be maintained and, 

π
rEA

dh
dP 2

= .     (4.7) 

 220



The reduced modulus, Er, accounts for deformation of both the indenter and the sample 

given by the relation [179]: 

122 11
−

⎥
⎦

⎤
⎢
⎣

⎡ −
+

−
=

s

s

i

i
r EE

E
νν

,    (4.8) 

where Ei and Es are elastic moduli and νi and νs are Poisson’s ratios for the indenter and 

the specimen, respectively.  For many materials, the unloading curve can be fit by a 

power law expression of the form [180]: 

,      (4.9) 

where α is a constant dependent on indenter geometry, elastic modulus and Poisson’s 

ratio for both the sample and indenter, and h is the contact depth or displacment.  The 

power law exponent, m, is related to the indenter geometry and has a value of 1.5 for the 

Hertz description of a spherical geometry.  The contact area is computed from h 

according to the following expression for a rigid ball [180]: 

mhP α=

( )hDhA −= π ,     (4.10) 

where D is the diameter of the spherical identer tip. 

The important feature of spherical tipped indenters is that the initial response of a 

material during indentation is elastic and then, at a critical load, the initiation of plasticity 

occurs.  Conversely, for ideally pointed indenters, plastic deformation starts immediately 
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after contact.  Since the displacement during the initial loading is purely elastic for 

spherical tipped indenters, the relationship between the loading curve and the elastic 

modulus of the material are easily described by Hertzian elastic contact theory [179].  

The stress field generated by a spherical tipped indenter is well known, which does not 

measurement of lo l r and the determination of stress-strain 

properties. 

An example o oad  A O3+60 vol.% epoxy 

composite is shown Fig c mation response is 

demonstrated here by g t e e [179]: 

exhibit the stress singularities inherent in perfectly sharp pointed indenters.  The stress 

field scales with the mean contact pressure and the contact diameter.  Spherical tipped 

indenters provide the resolution necessary for measuring relatively small loads and 

displacements, as well as the capability of resolving the elastic-plastic transition during 

indentation.  The measurement of the elastic contribution in the initial loading behavior 

of a material before complication of added plastic deformation seems to be an advantage.  

Accurately measuring the initial generally small loading region of elastic loading 

behavior is admittedly a challenging endeavor, particularly for relatively “hard” 

materials.  However, the relatively “soft” response of particle-filled epoxy-cast 

composites and the precision of a micromechanical indentation probe enable the 

ad-disp acment behavio

f a l -displacment curve obtained for l+Fe2

in ure 4.33(a).  The initial elasti defor

fittin he loading curv with the Hertz r lation 

2/38
3
1 hEDP r= .     (4.11) 
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Figure 4.33 Example of an undamaged response from continuous indentation test data 
obtained for Al+Fe2O3+60 vol.% epoxy composite showing a) load-displacement and b) 
a zoomed view of the purely elastic loading-displacement region, c) load to the 2/3 power 
displacement dependence, and d) the stress-strain response.  The stress-strain response 
typically showed viscoelastic and viscoplastic (indicated by arrow) yield points.  Each 
figure includes the theoretically calculated elastic response obtained from Hertzian 
contact theory [179]. 
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Figure 4.33(b) shows the elastically loaded region in expanded form with the best 

fit power law expression having an exponential value equivalent to that derived for a 

spherical indenter (m = 1.5).  Notice that the data shows excellent correlation with the 

response predicted by the Hertz theory [179] up to the elastic-plastic transition point at a 

load of 2.5 N and the corresponding displacement of 3.5 µm.  However, the initial contact 

behavior for displacements less than 1.75 µm are extremely sensitive and eventually 

approach the theoretical elastic response once “good” contact is made between the 

specimen and indenter tip. 

The elastic contact model used for evaluating the load-displacement curves is 

based on the assumption of a single contact between the indenter tip and a homogeneous, 

specimen were lapped and polished to a 3 µm finish, multiple area contacts between the 

indenter tip and asperities of the surface are formed instead of a single contact, causing 

 

   

te to this effect if the indent makes contact in 

aluminum

as a function of, 

perfectly elastic material having a smooth surface [179].  Although the surfaces of each 

the stress in this area to become relatively large.  The asperity deforms plastically at a 

very early stage of the indentation experiment and causes the load-displacement curve to 

exhibit larger displacements than in the case of a sample with a perfectly smooth surface. 

This effect becomes more prevalent for “hard” materials, which generally have a 

significantly larger elastic compliance.  The dissimilar phases that make up the  

particle-filled composites may also contribu

 or hematite rich areas of the microstructure. 

According to equation (4.11), the elastic loading response is linear when plotted 

3/2P , as illustrated in Figure 4.33(c).  This permits the identification of 

the initial contact point by extrapolating the linear curve to zero load and adjusting the 
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displacement for initial imperfect contact between the indenter tip and the specimen.  The 

composite’s elastic modulus is determined from combining equations (4.9) and (4.11), 

given by: 

rED81
=α ,      (4.12) 

and solving for the reduced modulus, E , given by equation (4.8).  With knowledge of the 

the elastic modulus and Poission’s ratio for the steel indenter, and Poisson’s ratio 

obtained from ultrasonic measurements for the composite (described in section 4.1.2), the 

elastic modulus for the specimen, E , is easily obtained. 

An instrumented indentation hardness test provides the ability to measure the 

indenter penetration, h, under the applied load, P, throughout the testing cycle and is, 

therefore, capable of measuring both the elastic and plastic deformation of the m

3

r

s

aterial.  

Hardness has conventionally been defined as th

M

e resistance of a material to permanent 

penetration by another harder material, with the measurement being made after the 

applied force has been removed.  The mean pressure between the surface of the indenter 

and the indentation is equal to the load divided by the projected area of the indentation, 

known as the Meyer hardness, H .  Following Tabor [181], the hardness strain is defined 

as the ratio of contact and ball diameters, d/D, respectively.  The hardness pressure or 

stress is computed for increasing strains, as the indenter is pressed into the test material, 

which provides a continuous measure of stress and strain.  Figure 4.33(d) shows the 

measured stress-strain response, which initially follows the Hertzian elastic contact stress 

given by [179]: 
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⎟
⎠

⎜
⎝ DrH π3

⎞⎛=
dEσ 4 .     (4.13) 

The hardness stress is obtained from the experimental data according to: 

2

4
d
Pσ = ,      (4.14) 

π

where the contact diameter, d, is computed from the penetration depth, h, using the hard 

sphere relationship given by: 

( )hDhd −= 2 .     (4.15) 

The stress-strain response shown in Figure 4.33(d) identifies the elastic-plastic transition 

or viscoelastic yield point, where the response departs from the purely elastic Hertzian 

ibiting 

a much greater yield stre rrow.  The vis lastic behavior 

is also apparent in the ing curv h makes the separation iscoelastic 

recovery of  inde  ra g f Oliver 

and Pharr [ ], the lu d b ta he peak 

(plastic) lo he d in t nd loading 

ependence of P and h.  This study illustrates the importance of evaluating the initial 

loading behavior prior to the complication of added viscoplastic (time-dependent) 

deformation. 

relationship [179].  The figure also identifies a second viscoplastic yield point exh

ss, indicated by an a coelastic-viscop

 unload e, whic of the v

 the nt much more challenging.  T ditionally, usin  the method o

180  elastic modu s is determine y experimen lly measuring t

ad, t epth of the dentation tip a peak load, a  the initial un

d
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Figure 4.34 Representative load-displacement curves obtained from continuous 
indentation experiments for each Al+Fe2O3 epoxy-cast composite composition. 

 
Figure 4.35 Representative load to the 2/3 power displacement dependence curves 
obtained from continuous indentation experiments for each Al+Fe2O3 epoxy-cast 
composite composition.  The arrow identifies the elastic-plastic transition point for the 47 
and 60 vol.% epoxy composite. 
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The continuous indentation analysis, previously discussed in more detail for the 

Al+Fe2O3+60 vol.% epoxy composite, has been conducted for each epoxy-cast composite 

composition.  Figure 4.34 shows the load-displacement data obtained from a 

representative sampling of each composition.  The behavior illustrates the influence of 

epoxy concentration on the relative response, with the 60 vol.% epoxy composite being 

most resistant to penetration as indicated by the shallowest indentation depth at the peak 

loading point.  The other compositions’ resistance to penetration follow in decreasing 

order for 47, 70, and 78 vol.% epoxy, followed by pure epoxy.  Figure 4.35 shows tha

     

47 vol.% epoxy composite has a significantly greater penetration depth beyond the 

elastic/plastic transition point, as identified by the arrow in Figure 4.35.  Also notice that 

observable strain hardening effect as exhibited by the 60 vol.% epoxy composite.  The 

laceme

composite has the greatest toughness and resistance to penetration or hardness.  The other  

t 

the 60 and 47 vol.% epoxy composites have very similar elastic responses as observed 

from the load dependence to the 2/3 power with depth of the indent.  However, the   

the slope of the initial linear response in the purely elastic loading region decreases as the 

epoxy concentration increases for the remaining composites.  The stress-strain response 

for each composition is shown in Figure 4.36, with the 60 and 47 vol.% epoxy again 

illustrating very similar elastic responses, as well as similar viscoplastic yield points.  

However, the 47 vol.% epoxy has a more defined yielding response with less of an 

experimental data obtained from continuous indentation experiments is available in 

Appendix A, which shows the load-displacement, load to the 2/3 power disp nt 

dependence, and the stress-strain responses for each composition studied. 

The relative comparison of each composition shows that the 60 vol.% epoxy 
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Figure 4.36 Representative stress-strain curves obtained from continuous indentation 
experiments for each Al+Fe2O3 epoxy-cast composite composition.  Arrows indicate the 
approximate viscoplastic yield point locations for each composition. 

s

compositions and pure epoxy show relatively low viscoelastic and viscoplastic yield 

points as the epoxy concentration increases.  Table 4.7 lists the experimentally measured 

parameters obtained for each composition.  The elastic moduli of the specimen, E , are 

observed to increase in order as the epoxy concentration decreases.  These values 

compare fairly well with those obtained from quasistatic compression experiments 

presented next in section 4.3.3.  While the elastic moduli measured from the continuous 

indentation tests and compression tests compared fairly well, the measured yield stresses 

were typically significantly greater for the indentation experiments of all the 

compositions except for pure epoxy.  This is associated with the significantly small 

volume sampled during the indentation experiment, which captures the response of the  
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Table 4.7 Measured data obtained from continuous ball indentation experiments for 
Al+Fe2O3 epoxy-cast composites and pure epoxy (batch B).  The elastic/plastic limit of 
each composite is identified by load and displacement values, P and h, respectively. 

Epoxy 
[vol.%] 

Er 
[GPa] 

Es 
[GPa] 

h 
[µm] 

P 
[N] 

σy(ve) 
[MPa] 

σy(vp) 
[MPa] 

HM 
[MPa] 

47 11.22 
± 0.72 

10.84 
± 0.73

3.91 
± 1.05

3.24 
± 1.20

76.90 
± 11.44

194.81 
± 10.04 

250.15 
± 13.16 

60 10.40 
± 0.69 

9.43 
± 0.66

4.70 
± 1.09

3.95 
± 1.27

81.17 
± 34.41

196.64 
± 14.21 

276.69 
± 12.89 

70 8.59 
± 0.19 

7.95 
± 0.18

3.38 
± 1.60

2.08 
± 1.46

40.36 
± 0.38 

153.70 
± 13.27 

230.32 
± 10.13 

78 5.87 
± 0.45 

5.04 
± 0.40

6.65 
± 2.92

3.83 
± 2.31

47.83 
± 20.40

143.93 
± 18.36 

198.87 
± 6.73 

100 4.22 
± 0.58 

3.57 
± 0.50

10.02 
± 7.20

6.01 
± 6.49

29.35 
± 9.15 

128.51 
± 13.63 

183.63 
± 13.76 

 

individual constituents (microscopic response) and their interaction, better than the bulk 

Table 4.7 also lists the measured viscoelastic and viscoplastic yield stress values, 

σy(ve) and σy(vp), respectively, the elastic/plastic transition points identified by the load, P, 

ent, h, and the calculated Meyer hardness values.  The 60 vol.% epoxy 

composite exhibits the greatest Meyer hardness of 276.69 ± 12.89 MPa, followed by 

decreasing hardness values, in order, for the other compositions containing 47, 70, and  

material response observed from compression experiments (macroscopic response).  

Continuous indentation tests give a local measure of the composites mechanical 

properties by probing individual features of the microstructure.  However, the pure epoxy 

specimens are not significantly influenced by the testing technique since the mechanical 

behavior is relatively continuous throughout the sample space. 

and displacem
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78 vol.% epoxy.  Pure epoxy had the lowest hardness of 183.63 ± 13.76 MPa.  Each of 

the hardness values were evaluated at the peak load and displacement points for the 

compositions. 

Tabor [181] related the indentation hardness, H, to yield stress, σy, according to: 

yCH σ=       (4.16) 

where C, the constraint factor, depends on the ratio of E/σy of the material.  For most 

metals, for which E/σy ≥ 100, the constraint factor has a value of C ≈ 3 [181].  For small 

E/σy, e.g. for polymers (E/σy ≥ 10), the constraint imposed by the surrounding elastic 

material is relatively small and the indentation hardness is only slightly greater than the 

material’s yield stress, therefore, C ≤ 1.5 [181].  Table 4.8 compares the yield stress 

values obtained for each composition from equation (4.16) using a value of 1.5 for C and 

the viscoplastic yield point identified from the stress-strain behaviors shown in        

Figure 4.36 and the data available for each indentation test shown in Appendix A. 

Table 4.8 Comparison of yield stress values measured from stress-strain curves and 

Measured from
σ-ε Curves 

Tabor [181] 
5.1/My H

those calculated from equation (4.16) according to measured Meyer hardness values. 

=σEpoxy 
[vol.%] 

y y 

% diff. 
σ [MPa] σ [MPa] 

47 194.81 ± 10.04 166.78 ± 8.78 7.75 
60 196.64 ± 14.21 184.46 ± 8.60 3.20 
70 153.70 ± 13.27 153.55 ± 6.75 0.05 
78 143.93 ± 18.36 132.58 ± 4.48 4.10 
100 128.51 ± 13.63 122.42 ± 9.17 2.43 
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The experimental values listed in Table 4.7 for the continuous indentation 

experim nts were obtained from indents considered to be of “high quality”.  Each indent 

was later examined using an optical microscope to identify the uncharacteristic responses 

ificantly large elastic modulus values or yield 

resses.  In contrast, some indents experienced damage that caused the modulus and 

ield stress to be significantly low.  Figure 4.37(a-d) shows the measured response for an 

l+Fe2O3+60 vol.% epoxy composite with evidence of voids in the contact area of the 

the indent initally has 

extrem

ibiting the significantly low viscoelastic yield 

point. 

e

observed for some experiments that are not included in the tabulated values.  Typically 

these indents were influenced by the microstructural features such as aluminum and 

ematite rich areas, which gave signh

st

y

A

indent.  Figure 4.37(a) shows the load-displacement curve, while Figure 4.37(b) shows a 

zoomed view of the elastic loading region.  This figure illustrates 

ely good contact with the specimen at relatively low applied load, in contrast to 

the behavior observed in Figure 4.33(b) for the same composition.  This particular indent 

has a lower elastic modulus of 6.97 GPa as compared to 9.43 GPa measured from indents 

that were considered uninfluenced by microstructural features.  Additionally, the 

viscoelastic and viscoplastic yield stresses were significantly lower, having values of 

42.76 and 141.89 MPa, respectively.  This is compared to the more typical values of 

81.17 and 196.64 MPa, respectively.  Figure 4.37(d) shows the stress-strain response 

observed for this particular indent exh

The optical micrographs obtained for the two indents discussed previously are 

shown in Figure 4.38(a-d).  Figure 4.38(a) illustrates a view of the remaining indent on 

the specimen’s surface for the case where damage is observed in the contact area.     
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Figure 4.37 Example of a damaged response observed for continuous indentation test 
data obtained for Al+Fe2O3+60 vol.% epoxy composite showing a) load-displacement 
and b) a zoomed view of the purely elastic loading-displacement region, c) load to the 2/3 
power displacement dependence, and d) the stress-strain response.  The stress-strain 
response typically showed viscoelastic and viscoplastic (indicated by arrow) yield points.  
Each figure includes the theoretically calculated elastic response obtained from Hertzian 
contact theory [179]. 
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Figure 4.38 Optical micrographs obtained from continuous indentation experiments for 

2 3
obtained from Figure 4.37 and c,d) undamaged behavior corresponding to data obtained 

damage is shown by the arrows.  Similarly, the indent contact region indicated in c) is 

Al+Fe O +60 vol.% epoxy composites showing a,b) damage corresponding to data 

from Figure 4.33.  The indent contact region indicated in a) is enlarged in b) where the 

enlarged in d) and observed to have no obvious damage. 

igure 4.38(b) shows a zoomed view of the contact area where damage or voids were 

imilar views obtained for the indent which does not 

xhibit damage or microstructural features that influence the indentation results, are 

shown 

       

F

observed, indicated by the arrows.  S

e

in Figure 4.38(c,d).  The quality of each indent was evaluated using optical 

microscopy, as well as precisely measuring the remaining contact diameter.  Table 4.9 

compares the optically measured diameters to those computed from equation (4.15) and 

the experimentally measured displacement, h.  The spherical indentations typically had 

contact diameters of a few hundred microns and penetration depths resolvable at  

sub-micrometer dimensions.  The optically measured indent diameters were 4.5 to 7.0 %  
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Table 4.9 Comparison of indent diameters computed from the projected area 

Projected Area
Measurement 

Optical 
Measurement 

measurment and those physically measured using an optical image of the indent. 

Epoxy 

dproj. [µm] dopt.. [µm] 
[vol.%] % diff. 

47 500.78 ± 12.88 457.78 ± 13.69 4.49 
60 475.40 ± 11.23 434.22 ± 4.76 4.53 
70 521.43 ± 10.59 458.48 ± 17.70 6.42 
78 561.01 ± 9.67 486.76 ± 2.45 7.09 
100 584.47 ± 20.77 525.51 ± 10.62 5.31 

 

smaller than those computed.  This illustrates the elastic recovery that occurs once the 

indenter tip is removed from the specimen.  The benefit of this type of analysis provides 

insight into the response and interaction of each constituent that comprise the composite.  

Furthermore, the indentation tests probe areas large enough to obtain the local response 

and influence of the microstructural features. 

 

4.3.3 Quasistatic Compression and Flexural (Three-Point Bend) Tests 

 

In the present work, epoxy reinforced with energetic particle mixtures are used to 

toughen and improve the bulk mechanical properties of the composite in addition to 

providing enhanced energetic attributes.  Quasistatic compression and flexural bend tests 

were performed on each epoxy-cast Al+Fe2O3 composition, as well as pure epoxy 

specimens.  The true stress-true strain curves obtained from quasistatic compression tests, 

shown in Figure 4.39, illustrate the effect solid particle fillers have on bulk mechanical 

properties.  These experiments were conducted on five separate specimens (for each  
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Figure 4.39 Comparison of true stress-strain curves obtained from compression tests for 
epoxy-cast Al+Fe2O3 composites and pure epoxy (batch B). 

composition) and the contact surfaces (both for the platens and specimen) were lubricated 

with grease according to ASTM Standard D 695-02a for compression tests of rigid 

plastics [147].  The specimens did experience some barreling and the tests were stopped 

at the onset of barreling (approximately 25-30 % strain).  Additionally, pure epoxy was 

also tested and found to experience relatively more barreling than the other filled 

compositions before observed fracture. 

The results indicate that the slope of the elastic region increases with decreasing 

epoxy concentration.  However, the apparent yield points for each composition is less 

obvious and somewhat scattered, with the 60 vol.% epoxy composite showing the 

greatest, and the 47 vol.% epoxy composite having lowest strength, due mainly to a 

relatively high inherent porosity (4.52 %).  Each of the compositions, except for the       
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47 vol.% epoxy composite, experienced an apparent yield point following linear elastic 

loading.  The 47 vol.% epoxy composite did not show a defined apparent yield point and 

began to strain harden immediately upon the onset of yielding until failure occurred at 

approximately 25 % strain.  The 60 and 70 vol.% epoxy composites experienced strain 

softening immediately following the apparent yield point before strain hardening began.  

In contrast, the 78 vol  following the 

apparent yield point with minimal strain hardening and the pure epoxy specimens failed 

 the most apparent enhancements from 

the addition of the reinforcement particles.  The addition of particles to the polymer 

matrix also appears to reduce t

Flexural (three-point bend) tests were conducted using three specimens for each 

composition and typical true flexural stress-strain curves are shown in Figure 4.40.  

These results show similar behaviors experienced for quasistatic compression tests in 

regard to the elastic moduli increasing as the volume fraction of solid particles increase.  

The elastic moduli determined from flexural experiments have a slightly greater value 

than those obtained from quasistatic compression tests.  However, the measured yield 

strength from flexural experiments is lower than values obtained from quasistatic 

compression tests.  In g tress 

that dictates its overall strength.  This difference arises from the flexural specimen being 

subjected to both compressive (top region of specimen) and tensile (bottom region of  

.% epoxy composite displayed strain softening

immediately after the apparent yield point (approximately 5 % strain).  The comparison 

of apparent yield points for each composition with pure epoxy did not show an 

appreciable enhancement from the addition of solid particles.  However, the improved 

elastic modulus and strain hardening effect were

he inherent brittleness experienced for pure epoxy. 

eneral, flexural specimens experience a maximum tensile s
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Figure 4.40 Comparison of true stress-strain curves obtained from flexural (three-point 

specimen) stresses from the geometry of the experiment, as well as the increased 

probability of an existing crack-producing flaw that consequently decreases the flexural 

strength.  The modulus of rupture or failure strength is also measured for each 

composition.  It is apparent that the pure epoxy specimen has a significantly higher 

failure point compared to the particle-reinforced composites.  Each of the other 

compositions have comparable failure strengths with the exception of 78 vol.% epoxy 

composition which exhibits the lowest.  This particular batch of material had a 

moderately high porosity concentration (close to 2 %) with unusually large pores that 

contributed to the extremely low failure strength.  Table 4.10 summarizes the mechanical 

property measurements obtained from quasistatic compression and flexural (three-point 

bend) experiments for epoxy-cast Al+Fe2O3 composites and pure epoxy (batch B). 
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Table 4.10 Data summary for compression and flexural (three-point bend) test values 

Compression Test Flexural Test 

obtained for epoxy-cast Al+Fe2O3 composites and pure epoxy (batch B). 

Epoxy 

[GPa] [MPa] [GPa] [MPa] 
[vol.%] E σyd E σyd 

47 11.83 ± 0.13 97.40 ± 1.71 12.77 ± 0.18 95.93 ± 1.19 
60 10.67 ± 0.18 141.44 ± 2.27 12.48 ± 0.42 98.14 ± 10.45
70 7.30 ± 0.29 115.88 ± 2.39 8.29 ± 0.57 100.93 ± 5.42
78 6.60 ± 0.13 128.69 ± 2.56 6.84 ± 0.29 69.19 ± 20.25
100 3.98 ± 0.02 133.96 ± 0.38 3.92 ± 0.03 122.33 ± 2.43

 

bend) tests.  It is interesting to note that although the flexural test failure stress was 

significantly reduced for the 78 vol.% epoxy composition with a high concentration of 

porosity, the elastic modulus calculated from both testing techniques do not appear to 

fracture surfaces are shown in Figure 4.41 for each composition.  The two halves of the 

specimen are oriented with the top (compressive stressed region) located at the outer 

ure site shows coalescence of  

show significant deviation. 

Representative macroscopic images obtained from the flexural experiment 

edges and the bottom (tensile stressed region) located at the interior edges.  Notice each 

specimen, except for pure epoxy, has ductile shear lips located near the compressive 

stress surface.  Thorough examination of the fracture surfaces shows that the failure 

typically occurs in the bottom region where the specimen is loaded in tension and 

corresponds to the approximate center of the bending span, directly below the 

concentrated load point.  This feature is observed using higher resolution SEM images in 

Figure 4.42(a,b), showing three distinct fracture surface morphology regions originating 

from the failure initiation site (right side of image).  The fail
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Figure 4.41  Macroscopic images of fracture surfaces obtained from flexural test 
specimens.  The two specimen halves are oriented side by side with the compressively 
loaded region on the outer edges and the tensile loaded region located at the interior 
edges. 

 
Figure 4.42 Flexural specimen fracture surface showing a) three distinct fracture 
surface morphology regions originating from the failure initiation site (right side of 
image).  Dark contrast areas within the mirror zone (region ‘1’) are void formations close 
to the fracture initiation site.  Region ‘2’ consists of debonded and plastically deformed 
aluminum particles, while region ‘3’ has a relatively rough fracture surface with no 
evidence of deformed aluminum particles.  Deformed aluminum particles and pull-out 
sites are shown at a higher magnification in b) for a location just beyond the mirror zone 
indicated by the box in a). 
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porosit

    

 mostly brittle fracture.  These features are 

illustra

y within an obvious mirror zone (region ‘1’) defined by a radial marking 

emanating from the initiation site.  Beyond the radial mark (region ‘2’), the fracture zone 

consists of debonded aluminum particles from the matrix and plastic deformation of other 

aluminum particles.  A higher magnification image outside the mirror zone in      

Figure 4.42(b) shows both matrix decohesion and plastic deformation of aluminum 

particles.  This region is followed by a fracture surface morphology generally attributed 

to fast crack propagation (region ‘3’) and possesses no evidence of aluminum particle 

pull-out from the matrix. 

Similarly, pure epoxy specimens show fracture initiation occurs in the tensile 

loaded region with evidence of initial relatively slow crack propagation in this region.  

However, these samples also show a crack transition region closer to the center of the 

specimen’s rectangular cross section, approximately one-third away from the bottom 

surface.  The pure epoxy specimens have fascinating fracture surfaces with highly 

defined feature morphologies indicating

ted in Figure 4.43(a-d), where a relatively low resolution image shows a 

significant a) mirror zone at the fracture transition zone surrounded by fast crack 

propagation regions with distinctive “fish-scale” features on one side and slower 

propagating crack region on the tensile loaded side of the specimen.  It is believed that 

these fish scale features are associated with the precursor of secondary cracks formed 

ahead of the main crack or craze [182].  Additional crazing regions are also apparent near 

the compressively loaded area showing “stress-whitening” features also indicated in 

Figure 4.43(a).  A higher resolution image of this region in d) shows a significant 

concentration of “crumbled” clusters of the polymer attributed to the initial plastically  
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Figure 4.43 Typical SEM images obtained from the fracture surface of pure epoxy, 
showing a) the complete thickness of the flexural (three-point bend) specimen.  The crack 
initiates at the tensile loaded side of the specimen, indicated in a), and propagates 
relatively slowly until reaching the mirror zone (approximately one-third from the tensile 
loaded region).  Location b) is within the slow crack propagation region showing 
evidence of flow lines that indicate shear yielding and cold drawing in close proximity to 
the failure origin.  The specimen undergoes catastrophic failure and proceeds rapidly, 
where region c) exhibits highly defined hackles and river markings, associated with 
brittle fracture.  Region d) shows “crumbled” clusters of the polymer attributed to the 
initial plastically formed crazes and localized heating. 
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formed crazing and localized heating.  The pure epoxy specimen also has flow lines that 

indicate shear yielding and cold drawing in close proximity to the failure origin, 

illustrated in Figure 4.43(b).  Pure epoxy fracture surface shown in Figure 4.43(a) also 

exhibits regions that contain highly defined hackles and river markings, shown up-close 

in Figure 4.43(c), in addition to arrest lines and striations.  The striations are said to be 

formed by the break-up of the crack front as the crack grows through a plastic zone which 

is constrained by the elastically deformed material [183]. 

The fracture surfaces of the flexural specimens indicate several different 

strengthening mechanisms that contribute to the overall resistance to failure for the 

particle-filled composites.  For particle-reinforced composites, these mechanisms include 

crack pinning, decohesion of particles from the matrix, which also introduces crack tip 

blunting [183].  Examination of the other composition’s fracture surfaces shows similar 

features and fracture morphologies highlighted in Figure 4.42(a).  However, decohesion 

inum particle and 

matrix decohesion for the 78 vol.% epoxy composite, while, Figure 4.44(b) shows a 

igher magnification image of this region, indicating several sites where aluminum 

articles were once located and some aluminum particles that show clear decohesion 

form the matrix.  Additionally, deformation of the aluminum particles was not apparent 

batch of material is evident in the image.  Figure 4.44(c) shows the fracture surface of the  

of the hematite particles was not observed for any of the composite’s fracture surfaces.  A 

qualitative trend is observed for the different compositions, showing decohesion of the 

matrix from the solid aluminum filler particles becomes less apparent as the filler volume 

fraction increases.  Figure 4.44(a) shows the high concentration of alum

h

p

for this particular composition, but the unusually high amount of porosity for this specific 
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Figure 4.44 Flexural specimen fracture surface for Al+Fe2O3+78 vol.% epoxy 
composite containing extensive a) pore regions and particle pull-out sites.  Higher 
magnified regions show b) aluminum pull-out sites and porosity for the area identified in 
image a), while c) shows aluminum particles with good epoxy matrix adhesion for 
Al+Fe2O3+60 vol.% epoxy composite. 
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60 vol.% epoxy composite, representing a surface that illustrates the aluminum particles 

have better adhesion with the matrix and less tendency to pull-out. 

Theoretically calculated values were also obtained from various rule of mixture 

models and compared to experimental results discussed previously.  These models 

included simple mechanics of materials approach which assumes each phase of the 

composition experiences the same strain (Voigt model) or the same stress (Reuss model).  

This yields results that give a considerable overestimate of the composite’s elastic 

modulus, for example, using the Voigt model or somewhat underestimated using the 

Reuss model.  How tion of the 

material response to quasistatic loading. 

at proposed by McGee and McCullough [184], provide a 

more realistic approach that deals with the internal distribution of stress and strain.  The 

model considers two extreme behaviors with upper and lower bounds.  The lower bound 

of the calculated modulus considers a dispersion of solid filler particles as a continuous 

polymer matrix.  The upper bound calculation considers inclusions of the polymer in a 

continuous phase using material properties of the filler material.  From these extremes, 

the composite’s bulk and shear moduli can be calculated from elastic material constants 

obtained for the polymer and filler.  The elastic modulus is obtained from these values  

(K and µ) and the isotropic material identities listed in Table 3.4.  The measured elastic 

moduli obtained from compression and three-point bend tests are compared to 

theoretically calculated values and shown in Figure 4.45.  The Voigt model is not 

  However, the McGee and McCullough [184] approach  

ever, neither model provides an accurate enough predic

Other models, such as th

included in this plot since it is the simplest model and gives an extremely large 

overestimate of elastic modulus.
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Figure
different epoxy volume fractions, obtained from compression and flexural bend 

l 
proposed by McGee and McCullough [184]. 

 4.45 Variation of elastic modulus values measured for composites containing 

experiments, and compared to theoretical curves based on the Reuss model and a mode

 

(a) (b)  
Figure 4.46 Calculated a) bulk and b) shear moduli values (K and µ, respectively) 

model proposed by McGee and McCullough [184].
obtained from ultrasonic measurements and compared to theoretical curves based on a 
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pres

tion ure 4.46(a,b).  There is extremely good 

agreem

4.3.4 Charpy Impact Experiments 

 

Charpy impact experiments were conducted to measure the fracture resistance of 

ents excellent agreement for both experimentally determined elastic moduli obtained 

from compression and flexural tests.  Notice that the elastic modulus reaches a 

“saturation-point” and remains fairly constant above a specific solid particle filler 

concentration which corresponds to 60 vol.% epoxy.  The inherently large concentration 

of porosity for the 47 vol.% epoxy composite also contributes significantly to this effect.  

The theoretical bulk and shear moduli are plotted and compared to ultrasonically 

measured values for each composi  in Fig

ent between these values and, interestingly the shear modulus shows no 

significant deviation for the 47 vol.% epoxy composition, which has the highest 

concentration of solid particle filler material.  However, the bulk modulus shows a very 

significant effect at this concentration and reduces the compressibility of the material by 

approximately half the theoretically predicted value. 

 

the epoxy-cast composites.  The blunt notch cut in the specimen produces a stress 

concentration that promotes brittle fracture.  The test apparatus measures the net energy 

absorbed by the specimen from the impact and subsequent breakage.  This process 

includes the dissipation of energy from plastic deformation prior to fracture as well as the 

energy associated with crack nucleation and propagation.  The specimen’s resistance to 

impact, IS, is reported as the energy per unit area [J/m2], where the area is the cross-

sectional area under the notch.  The net breaking energy must be less than 85 % the 
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pendulum capacity for the test to be valid.  For these experiments, the pendulum capacity 

was fixed at 0.223 J and all the tests resulted in the specimen completely breaking from a 

single impact. 

The measured impact resistance obtained for each of the Al+Fe2O3+epoxy 

composites and pure epoxy specimens is shown in Figure 4.47.  The impact resistance for 

each of the composites appear to show very little variation with solid particle fill and 

have an average value of 825.6 ± 64.8 J/m2.  Examination of fracture surfaces indicates 

these specimens exhibit mostly brittle fracture.  Conversely, the pure epoxy specimens 

have a significantly higher average impact resistance of 1339.1 ± 97.2 J/m2 that may be  

 
Figure 4.47 Measured impact resistance, Is, values obtained from Charpy tests for 
epoxy-cast Al+Fe2O3 composites and pure epoxy.  Experimental values obtained for a 
relatively high porosity batch of Al+Fe2O3+78 vol.% epoxy composite are also identified.  
Blunt notch “corrected” impact resistance values are also shown, gradually increasing 
with increasing volume fraction of epoxy. 
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attributed to a considerable amount of ductile t occurs towards the later stages 

of 

porosity.  However, the introduction of porosity does not appear to have a significant 

effect on the measured impact resistance values. 

Impact resistance values obtained from Charpy experiments are a measure of 

energy required to form new surfaces, and therefore should have a relationship with the 

critical energy release rate, GIC.  However, there are several significant differences 

between the Charpy test and fracture mechanics tests that preclude their direct 

correlation.  For example, the Charpy specimen contains a blunt notch, while fracture 

containing a sharp crack.  They showed that for many polymers, a linear relationship 

IC

is given by [185]: 

 fracture tha

of failure.  Figure 4.47 also contains impact resistance values obtained for two different 

78 vol.% epoxy composite batches that have significantly different concentrations 

mechanics specimens have sharp fatigue cracks.  Plati and Williams [185] have derived a 

relationship between the impact resistance from a blunt-notched specimen and that 

exists between the two specimen configurations resulting in a constant value of G .  This 
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where G  and G  are energy release rates for a blunt-notched specimen and a specimen 

containing a sharp crack, respectively; ρ is the notch radius and r  is a critical distance 

ahead of the crack tip where fracture occurs (plastic zone size).  If ρ is significantly 
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greater than rp, equation (4.17) reduces to [185]: 

pIC

IB

rG
G

82
1 ρ

+= ,     (4.18) 

The notch radius, ρ, and the critical e ra unt notch, GIB, are directly 

measured for Charpy impact experim ed on the epoxy-cast composites and 

pure epoxy.  However, the plastic zone size, rp, is not easily measurable and must 

therefore be approximated from known m l param for pure epoxy.  The plastic 

zone size at the tip of a crack is given by [185,186]: 

 energy releas te for a bl

ents perform

ateria eters 

2

2

8 y

IC
p

Kr
σ

π
= ,      (4.19) 

where the critical stress intensity factor, KIC, is equal to 0.5 mMPa  [187,188]; and the 

yield stress, σy, is equal to 134 MPa measured from compression experiments discussed 

in section 4.3.3.  These values correspond to a plastic zone size of 5.47 µm. 

The calculation of “corrected” Charpy impact energies from blunt-notched 

specime

IC

ns using equations (4.18) and (4.19) are also shown in Figure 4.47.  These values 

represent a significant reduction in measured impact energies that now correspond more 

appropriately with values obtained from traditional linear elastic fracture mechanics 

(LEFM) testing techniques.  The critical energy release rates, G , for the particle-filled 

composites ranged between 123.3 ± 7.2 (60 vol.% epoxy) and 141.0 ± 6.1 J/m2             

(47 vol.% epoxy), while pure epoxy specimens were 212.4 ± 15.4 J/m2.  For reference, 
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the typical value of GIC obtained for PMMA is 500 J/m2 [187,189], that of a highly brittle 

material such as glass is 7-10 J/m2 [189], and very tough polymers such as polycarbonate 

have an average value of 4000 J/m2 [189].  A reference value obtained for pure epoxy 

was 100 J/m2 [187,190], although the exact resin and hardener chemistry was not listed.  

It is difficult to directly compare different epoxy materials because of a broad choice of 

sins and hardener chemistry, curing procedures, and even batch-to-batch variability.  

The difference between tes for pure epoxy may 

be attributed to physical differences in the epoxy makeup or ductile deformation behavior 

occurri

 contributing to an increase in measured 

energy 

re

reference and measured energy release ra

ng near the tip of the advancing crack, which is not accounted for in the analysis 

presented by Plati and Williams [185].  The Charpy impact strengths are found to be 

quite sensitive to the polymer composition.  A peak in impact strength, reported by    

Kim, et al. [191], corresponded to an excess of amine curing agent over the 

stoichiometric composition.  The examination of fracture surfaces for pure epoxy also 

indicate that ductile yielding and possibly thermal softening may have occurred towards 

the latter stages of the fracture advancement, also

release rates.  Furthermore, the fracture surfaces for pure epoxy show evidence of 

crazing at the crack tip which can cause the specimen to also exhibit higher energy 

release rate values [192]. 

Figure 4.48 shows macroscopic images of each composition’s fracture surface.  

The two halves of the specimen are oriented top to bottom with the notch located towards 

the center.  The pure epoxy specimen exhibits so-called Wallner lines that emanate from 

the notch surface discontinuity and move almost completely across the specimen.  While 

all the specimens appear to exhibit mostly brittle fracture, pure epoxy specimens have  
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Figure 4.48 Macroscopic fracture surface images obtained from Charpy impact 
experim
of the f

ents conducted on epoxy-cast Al+Fe2O3 composites and pure epoxy.  Each half 
ractured sample is oriented top to bottom with the notch located at the interior 

edges. 

significant ductile shear lips located near the impact location (opposite of the notch) on 

the specimen.  The Wallner lines help define where the ductile deformation region 

begins.  Although less evident, shear lips are also observed for 78 vol.% (low porosity 

batch) and 60 vol.% epoxy specimens.  The macroscopic images also show details of the 

higher porosity 78 vol.% epoxy composite batch with a cross-sectional view of the 

inherent pores, in addition to relatively large aluminum and hematite agglomerate sites.  

Comparison of the two types of specimens indicates, qualitatively, that the higher 

porosity specimen exhibits relatively more brittle behavior. 

 

 252



 

 

 

 

 
Fi .4 es ro pacted fracture surfaces for 
a o o c  crack ncem .  
Im h f u n hro thic e 
sa t i ur s  not ate ) 
an w l o l f t
ba a e r ion e c n 
stripped off (dark contrast region in ar n in e a d 
in a

gure 4 9 Typical SEM imag  obtained f m Charpy im
pure ep xy specimen sh wing haracteristic “fish scale”  adva ent features
ages s ow the racture signat re at differe t locations t ugh the kness of th

mple, s arting w th the a) fract e initiation ite along the ch (indic d by arrows
d follo ed by a ocation close t  the c) midd e and d) end o he sample’s thickness.  A 
nd of r pidly advancing fractur front is sepa

dicated by 
ated by a reg
row) is show

where th
 b) for th

raze has bee
rea indicate

). 

 253



Typical SEM images obtained for pure epoxy fracture surfaces are shown in 

igure 4.49(a-d) and indicate the features observed along the entire fracture surface.  The 

irection of crack propagation is from right to left for all of the images.  The fracture 

(a) shows a fast crack propagation region with the distinctive    

“fish scale” feature emanating from the initiation site (upper right corner of the image).  

otch edge is indicated by the arrows in the image.  A close up 

reg 4.4  a led e 

fracture surface features and indicates a band of crazes separated by a region where the 
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d towa ds the end in Figure 4. 9(c,d), respe tively.  Duri he term

cture, the crack front outpace the craze ti , identified b

dvances by propagating t rough one bundle 

med and the process is r peate [193]. 

E amination of fracture urfaces for the epoxy-ca t Al+Fe2O3 article-fille

mposit s typically showed craz  features in  patch type p ttern.  These re illustrate

 Figure 4.50(a-c) for 60 and 0 vol.% ep xy composit mposit

mposit ons examined also exhi ited a simila  patch pattern igure 4 a-d) shows 

cal fracture surfaces

mposit s.  In some c ses, e aluminum particles d formed and nhibited th

ent of he frac re f nt.  This as observed r the 4 vol.% epox

posi n and s own in igur 4.51(a).  Th  arrows poin  craze r ns along th

oundary of aluminum particles.  A closer v
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2 3

60 vol.% and b) 70 vol.% epoxy, exhibiting a patch pattern from a rapidly advancing 

 

 

Figure 4.50 Typical fracture surfaces for particle-filled Al+Fe O  composites with a) 

crack front.  A higher magnified region identified in b) is shown in c). 
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Figure 4.51 Charpy impact fracture surfaces for epoxy-cast Al+Fe2O3 composites with 
a) 47, b) 60, c) 70, and d) 78 vol.% epoxy.  Deformed aluminum particles and craze 
regions (indicated by arrows) were typically found for the 47 vol.% epoxy composition, 

particle pull-out and deformation.  Conversely, the 78 vol.% epoxy composition showed 

 

while the 60 and 70 vol.% epoxy compositions showed a mixed behavior exhibiting both 

no evidence of deformed particles and only particle pull-out. 
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Figure 4.52 Close-up view from a region in Figure 4.51(a) showing craze formations 
around a deformed aluminum particle. 

Figure 4.51(a) is shown in Figure 4.52.  Other compositions, such as 60 and 70 vol.% 

epoxy, had a mixed response, where evidence of aluminum particles deforming             

(to a lesser degree than the 47 vol.% epoxy composition) and aluminum particle pull-out 

was observed.  These features are shown in Figure 4.51(b,c) for 60 and 70 vol.% epoxy, 

respectively.  Figure 4.53 shows a region where aluminum particles have been removed 

and pulled-out for the 60 vol.% epoxy composition.  In contrast, the 78 vol.% epoxy 

composite typically showed no evidence of deformed particles, and only particle pull-out 

was observed as illustrated in Figure 4.51(d). 

The failure of a material is associated with the concentration of stresses in the 

vicinity of flaws.  Therefore, it is desirable to relate material toughness in terms of 

resistance to crack propagation (in addition to σ  and E).  There are two material 

parameters in fracture mechanics that define the material’s ability to resist crack 

propagation; the energy release rate, G, and the stress intensity factor, K.  At the moment  

y
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Figure 4.53 Charpy impact fracture surface for Al+Fe2O3+60 vol.% epoxy showing 
clustered aluminum particles pull-out site and remaining individual aluminum particles in 
close proximity. 

of fracture, the energy release rate is equal to the critical energy release rate (G = GC).  

According to the Griffith energy criterion [194], fracture occurs when the energy 

available for crack growth is sufficient to overcome the resistance of the material. 

Conversely, the stress intensity approach assumes a material fails locally at a critical 

combination of stress and strain, and therefore fracture occurs at the critical stress 

intensity, KIC.  The energy and stress intensity approaches are essentially equivalent and 

can be related through [194]: 

E
K

G IC
2

= ,      (4.20) 

 

IC

where E is the elastic modulus. 
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Figure 4.54 Critical stress intensity values obtained from Charpy impact experiments 

r epoxy-cast Al+Fe2O3 composites and pure epoxy showing both directly measured and 
” values. 

The energy release rates calculated from equation (4.18) and shown in Figure 4.47 

are used to estimate fracture toughness according to equation (4.20), and are plotted in 

Figure 4.54 as a function of epoxy concentration for each type of composite and 

reference pure epoxy.  The addition of rigid particles to a relatively brittle polymeric 

matrix can significan KIC 

increases for increasing filler volume fraction.  The fracture toughness values range 

fo
blunt notch “corrected

tly affect the KIC and GIC values.  Figure 4.54 shows that the 

between 2.3 and 3.2 mMPa  using directly measured impact resistance values, while 

the “corrected” fracture toughness values range between 0.9 and 1.3 mMPa .  As 

reference, the fracture toughness value listed for pure epoxy is 0.5 mMPa  [187,188]. 

It is convenient to cla o rather 

than merely toughness or strength alone.  Table 4.11 lists calculated toughness/strength  

ssify materials in terms of a toughness/strength rati
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Table 4.11 The ratio of fracture toughness (KIC “corrected” values) to flexural strength 
(three-point bend test) is listed in descending order according to brittleness. 

Epoxy 
[vol.%] 

KIC 
[MPa m ] 

σf 
[MPa] 

fICK σ  

[ m ] 
100 0.918 ± 0.033 122.33 ± 2.43 0.008 ± 0.0003 
70 0.966 ± 0.045 100.93 ± 5.42 0.010 ± 0.001 
47 1.291 ± 0.028 95.93 ± 1.19 0.013 ± 0.0003 
78 0.940 ± 0.034 69.19 ± 20.25 0.014 ± 0.004 
60 1.147 ± 0.033 98.14 ± 10.45 0.017 ± 0.001 

 

(KIC /σf) ratios for each composition in descending order from the most brittle to the most 

ductile using “corrected” KIC and flexural strength values obtained from three-point bend 

tests.  These values are compared to materials traditionally thought of as being highly 

brittle and relatively ductile, such as glass (0.005 m  [189]) and low-carbon steel    

(0.60 m  [189]), respectively.  The toughness/strength ratios listed in Table 4.11 

provide a gradual ranking for the particle-filled epoxy-cast composites evaluated in this 

e

e brittleness and the Al+Fe2O3+60 vol.% epoxy composite ranks close to that of 

PMMA (0.02 

study.  Pure poxy is positioned at the top of the list with a relatively brittle behavior, 

close to that of glass.  However, the addition of solid particles to the epoxy matrix lessens 

th

m  [189]).  For additional reference, extremely tough polymers such as 

polycarbonate have a value of 0.05 m  [189]. 

Failure in polymeric materials may occur in a brittle or a ductile manner.  The 

composite materials were characterized in terms of stress and inherent flaw sizes using 

both the measured stress intensity factor obtained from Charpy impact experiments and 
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measured yield or failure strength values from compression and three-point bend 

experiments, respectively.  For a specimen containing a through crack, the failure stress is 

related to KIC based on the Griffith criterion according to [194]: 

2/12

⎟
⎠

⎞
⎜
⎝

⎛
=

a
K IC

π
σ ,     (4.21) 

where σuc is the ultimate failure s

⎟⎜uc

tress for the composite, and a is half the crack length.  

Using 

flaws, 

sufficient to cause relatively large clusters of particles and significantly large flaw sites.     

measured fracture toughness values for each composition and pure epoxy,     

Figure 4.55 shows the theoretical curves for the variation of failure stress as a function of 

half crack length, a.  An indication of inherent critical flaw sizes is obtained by plotting 

measured compressive yield stress values (obtained for each composition) on the failure 

stress axis and noting the intersection points on the theoretical failure stress curves.  

These points correspond to inherent flaw sizes that influence the material’s mechanical 

behavior to Charpy impacts.  For example, the Al+Fe2O3+60 vol.% epoxy composite has 

a corresponding inherent flaw size of approximately 10.5 µm.  For cracks above 10.5 µm, 

the sample breaks in a brittle manner because the overall stress in the specimen is too low 

to cause significant bulk yielding.  However, if the flaws present in this sample are 

smaller than 10.5 µm, then a sufficient stress may be applied and cause bulk yielding 

resulting in plastic flow. 

The introduction of solid particles to the polymer matrix effectively introduces 

and their sizes depend on the individual particle sizes and their distribution 

throughout the matrix phase.  The tendency for solid particles to agglomerate may be 
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Figure 4.55 Theoretical estimation of critical flaw sizes that result in either ductile or 
brittle fracture behaviors for Charpy im
stresses (points on the failu

pact experiments.  Measured compressive yield 
re stress axis) are used to determine corresponding flaw sizes. 

 

experiments were calculated from measured failure stress values obtained from flexural 
Figure 4.56 Critical flaw sizes that influence material behavior during Charpy impact 

experiments for each composition.  Flexural failure stress values are more sensitive to 
flaws than compressive yield stress values used to determine flaw sizes in Figure 4.55. 
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However, it is interesting that the increasing volume fraction of solid particles for the   

60, 70, and 78 vol.% epoxy compositions do not significantly affect the critical flaw size 

until a sufficient amount is reached by the 47 vol.% epoxy composition.  Figure 4.55 

indicates that each of the compositions including pure epoxy have inherent critical flaw 

sizes ranging between 7.5 and 11.1 µm, except for the Al+Fe2O3+47 vol.% epoxy 

composition which had a significantly larger value of  28 µm. 

Since compressive yield stress values are essentially flaw insensitive, the flexural 

failure stress measured for each composition was also used for determining a critical flaw 

size for initiating brittle or ductile failure, as shown in Figure 4.56.  Additionally, the 

flexural strength test subjects the specimen to loading conditions that are closer to those 

experie

  

nced during a Charpy impact.  The failure stress values range between 

approximately 70 to 120 MPa for the compositions and correspond to critical flaw sizes 

with a relatively broad range between 9 and 30 µm.  The critical flaw size for pure epoxy 

was 9 µm, while the 78 and 47 vol.% epoxy compositions had critical flaw sizes of   

29.3 and 28.8 µm, respectively.  The 78 vol.% epoxy composition had almost 2 % 

porosity with uncharacteristically large pores for the particular batch used in flexural tests 

(discussed in section 4.3.3), which significantly influenced the critical flaw size as 

illustrated by the comparison of flaw sizes calculated from compressive yield strength 

values.  Conversely, flaw sizes calculated for the 47 vol.% epoxy composition showed 

good agreement between the two methods and may be influence significantly by the high 

concentration of porosity exhibited by this composition.  Table 4.12 summarizes the 

critical flaw sizes for each composition, obtained using both methods. 
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Table 4.12 Theoretically determined critical flaw size, a, for epoxy-cast Al+Fe2O3 

Figure 4.56 (using flexural strength). 

Compressive
Stren

 
composites and pure epoxy obtained from Figure 4.55 (using compressive strength) and 

gth
Flexural 
StrengthEpoxy 

[vol.%] 
a [µm] a [µm] 

47 28.0 28.8 
60 10.5 21.8 
70 11.1 14.6 

100 7.5 9.0 
78 8.4 29.3 

 

It is also important to consider that the particle sizes and their distribution 

throughout the matrix alone do not completely influence the brittle or ductile behavior for 

these compositions.  The adhesion between the matrix and inclusion particles also has a 

significant effect on mechanical behavior.  However, it is very challenging to 

quantit

bited a slightly larger flaw size than the                  

atively measure the adhesion of individual particles within a matrix. 

There was no evidence of pores near the critical size ranges listed in Table 4.12 

for the respective compositions and, therefore, one would expect ductile yielding to 

occur.  The fracture surfaces showed some evidence of ductile yielding for pure epoxy, 

particulary early in the fracturing process.  While the 47 and 78 vol.% epoxy 

compositions both had a critical flaw size of approximately 29 µm, the critical flaw sizes 

for the 60 and 70 vol.% epoxy were 21.8 and 14.6 µm, respectively.  The critical flaw 

sizes follow in order according to epoxy concentration, with pure epoxy having the 

smallest, and the 47 vol.% epoxy composition having the largests flaw size.  However, 

the 78 vol.% epoxy composition exhi
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47 vol.

          

aviors.  Upon impact, the samples 

display

            

    

% epoxy composite because of the abnormally high inherent porosity observed for 

this particular batch of material. 

 

4.4 Taylor Anvil Impact Experiments 

 

The characterization of dynamic mechanical behavior of epoxy-cast 

stoichiometric mixtures of nano- and micron-scale aluminum and hematite powders is 

presented next.  The experiments were conducted on rod-shaped samples using 

instrumented reverse-Taylor (anvil-on-rod) impact tests employing high-speed imaging 

and velocity interferometry.  In some cases, direct Taylor impact experiments  

(rod-on-anvil) were also conducted for capturing the transient deformation of the sample 

at discrete times using high-speed imaging only. 

Experimental results indicate that these composites exhibit both viscoelastic-

viscoplastic deformation and brittle fracture beh

ed significant elastic and plastic deformation during both the loading and 

unloading stages, as determined from quantitative high-speed camera measurements of 

the transient deformation states.  Approximately 50 % elastic recovery of total axial strain 

was observed to occur rapidly (within tens of microseconds) after impact.  A   

one-dimensional elastic-plastic wave propagation analysis was used for estimating    

the composite’s dynamic average yield stress and total plastic strain.  The analysis 

additionally provided detailed information about elastic and plastic wave interactions 

within the rod specimen for discrete times up to the final state of the material. 
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The following section presents results obtained from estimating mechanical 

material properties during dynamic impact experiments.  Calculations and observations 

through the coupling of high-speed camera images and velocity interferometry 

measurements are presented.  These results will demonstrate that the instrumented Taylor 

test provides a detailed view of the general wave structure and its propagation within the 

material upon impact and at the same time enables a complete description of the dynamic 

stress-strain response.  The results also indicate intrinsic property influences on the 

overall bulk dynamic mechanical response of these composites and their correlation with 

process

       

                   

e 

of these epoxy-cast material systems.  The first composite was comprised of 

stoichiometric micron-scale aluminum and hematite powder mixture dispersed in           

60 vol.% epoxy, with experiments conducted at impact velocities ranging from 80 to    

423 m/s.  The next composite was comprised of nano-scale aluminum and hematite 

stoichiometric mixture cast in 70 vol.% epoxy.  The higher concentration of epoxy      

(and thus a lower particle fill density) resulted from the nanometric scale particles having 

a large surface area, which made casting at lower epoxy concentrations impossible.  

Impact velocities for this material system ranged from 98 to 288 m/s.  Pure epoxy was 

also examined with impact velocities ranging from 66 to 167 m/s.  Table 4.13 lists

direct and reverse Taylor impact experiments conducted in this study. 

ing effects, specimen architecture, and particle size effects. 

Reverse Taylor anvil-on-rod impact experiments were conducted for  

particle-filled Al+Fe2O3 epoxy-cast composites containing 47, 60, 70, and   

78 vol.% epoxy.  A majority of the experimental work was however, conducted on thre

 

starting densities and dimensions, and post-impact dimensions for specimens used for 
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Table 4.13 Direct and reverse Taylor impact experim
Al+Fe2O3 composite compositions and pure epox

ents conducted for epoxy-cast 
y.  Experiments are listed in order of 

increasing im

Density 

[g/cm ] 

Initial 

[mm] 

Initial 

[mm] 

Final 

[mm] 

Impact 

[m/s] 

pact velocity for each composition. 

Shot 
Number 

Specimen 
ID ρ 

3

TMD
[%] Diameter, D0 Length, L0 Length, Lf Velocity, U 

Al+Fe2O3+47 vol.% epoxy 

0618 085C-2 2.7131 96.59 7.50 ± 0.04 47.45 ± 0.13 46.29 ± 0.12 101.8 ± 3.7 
D RM-23 085D-1 2.6866 95.65 a 7.43 ± 0.01 a 50.77 b 49.61 ± 0.01 105.2 ± 15.4
D RM-26 085D-3 2.6888 95.72 a 7.55 ± 0.02 a 50.75 fracture 169.3 
D a a 

D RM-25 085D-4 2.6861 95.63 a 7.50 ± 0.10 a 50.67 fracture 186.5 
RM-24 085D-2 2.6872 95.67 7.49 ± 0.00 50.72 fracture 209.9 

Al+Fe O +60 vol.% epoxy 

RM-27 085C-1 2.6923 95.85 7.48 ± 0.01 50.76 fracture 175.9 

D a a 

2 3

c 0529 079D-1 2.3719 98.66 7.50 ± 0.04 46.39 ± 0.08 45.75 ± 0.15 80.1 ± 1.2 
 0621 119A-1 2.3875 99.31 7.60 ± 0.03 51.54 ± 0.08 50.61 ± 0.19 97.9 ± 0.9 

D 79C-2 2.3761 98.84 a 7.44 ± 0.00 a 50.76 b 49.16 ± 0.01 109.8 ± 10.8
21A-2 2.3962 99.68 7.52 ± 0.05 49.90 ± 0.12 47.68 132.9 ± 2.4 

c 0541 121A-3 2.4039 100 7.58 ± 0.02 50.91 ± 0.04 48.02 ± 0.08 151.0 ± 1.7 
c 0535 079D-4 2.3702 98.59 7.43 ± 0.05 45.40 ± 0.10 fracture 158.2 ± 2.7 

4 50.40 ± 0.15 46.15 178.0 ± 5.6 
 0544 121B-2 2.3991 99.80 7.16 ± 0.06 51.46 ± 0.09 fracture 181.8 ± 2.6 
c 0531 079D-3 2.3743 98.76 7.44 ± 0.10 47.64 ± 0.13 fracture 207.0 ± 2.6 
c 053
c 0603 121B-1 

Al+Fe O +70 vol.% epoxy 

c 0530 079D-2 2.3734 98.73 7.51 ± 0.03 46.68 ± 0.07 45.50 ± 0.13 108.4 ± 1.5 
RM-22 0
c 0537 1

c 0542 121B-3 2.3876 99.32 7.22 ± 0.0

6 079C-3 2.3793 98.97 7.49 ± 0.04 31.31 ± 0.13 fracture 210.7 ± 7.1 
2.4027 99.95 7.15 ± 0.05 50.71 ± 0.12 fracture 236.6 ± 4.3 

c 0644 136C-2 2.3050 95.88 7.53 ± 0.03 53.02 ± 0.04 fracture 423.2 ± 0.1 

2 3

c 0617 101D-2 2.0252 96.38 7.45 ± 0.05 48.88 ± 0.13 47.82 ± 0.30 105.9 ± 0.6 
D RM-21 101D-1 2.0517 97.64 a 7.57 ± 0.00 a 50.80 b 49.79 ± 0.01 110.6 ± 13.7
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Table 

Density 

[g/cm ] 

Initial 

[mm] 

Initial 

[mm] 

Final 

[mm] 

Impact 

[m/s] 

4.13 (continued) 

Shot 
Number 

Specimen 
ID ρ 

3

TMD
[%] Diameter, D0 Length, L0 Length, Lf Velocity, U 

nano-Al+Fe2O3+70 vol.% epoxy 

 0648 135A-2 2.1041 100 7.57 ± 0.03 52.32 ± 0.03 51.99 ± 0.11 97.8 ± 1.5 
c 

c 0650 134C-2 2.0924 99.58 7.49 ± 0.05 52.35 ± 0.06 49.75 175.2 ± 0.3 

c 0647 135A-1 2.0930 99.61 7.56 ± 0.03 52.34 ± 0.07 fracture 235.3 ± 1.1 
0646 134A-1 2.0867 99.31 7.54 ± 0.03 52.44 ± 0.03 fracture 288.3 ± 0.9 

Al+Fe O +78 vol.% epoxy 

0649 134C-1 2.0905 99.49 7.54 ± 0.04 52.35 ± 0.06 51.25 ± 0.10 143.6 ± 0.4 

0645 135B-2 2.0934 99.63 7.52 ± 0.04 52.99 ± 0.03 48.87 201.1 ± 1.2 

c 

2 3

D RM-14 077C-3 1.8388 98.54 a 7.57 ± 0.00 a 50.75 fracture 87.0 
c 0616 077C-1 1.8402 98.61 ± ± ± ±7.34  0.03 48.51  0.09 48.14  0.10 94.0  0.7 

pure epoxy (batch A) 

 0637 138B-1 1.1961 99.95 7.55 ± 0.04 53.10 ± 0.04 53.12 ± 0.03 66.4 ± 0.4 
 0638 139A-2 1.1943 99.80 7.54 ± 0.03 50.24 ± 0.08 50.29 ± 0.03 98.7 ± 0.6 

pure epoxy (batch B) 

 0640 138B-2 1.1947 99.83 7.54 ± 0.03 51.91 ± 0.06 50.99 ± 0.04 127.9 ± 0.7 
 0639 139A-1 1.1938 99.76 7.53 ± 0.03 52.33 ± 0.05 50.94 143.2 ± 0.6 
 0641 139B-1 1.1947 99.83 7.56 ± 0.03 53.07 ± 0.04 51.40 150.3 ± 0.8 
 0643 139B-2 1.1950 99.86 7.53 ± 0.04 53.04 ± 0.05 50.76 166.7 ± 1.1 

 0601 091D-1 1.2030 100 7.51 ± 0.04 49.72 ± 0.08 49.79 ± 0.06 65.6 ± 0.7 
 0642 091C-1 1.2003 100 7.35 ± 0.04 49.43 ± 0.07 49.17 ± 0.22 104.1 ± 0.7 
 0602 091D-2 1.1990 100 7.46 ± 0.02 49.63 ± 0.08 48.74 ± 0.09 121.0 ± 0.5 
 0614 091D-4 1.1991 100 7.46 ± 0.05 49.47 ± 0.11 fracture 152.4 ± 0.7 
 0613 091D-3 1.1980 100 7.50 ± 0.04 49.56 ± 0.11 fracture 179.7 ± 4.1 

a Physically measured directly from specimen. 
Final length is measured from recovered specimen. 

c Instrumented experiments using VISAR. 

Direct Taylor impact experiments. 

b 

D 
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The next section gives details about dynamic impact measurements conducted in 

 

e

asoned that this  

this study, and highlights observed differences in the deformation behaviors of the 

material systems through high-speed camera images.  This is followed by a detailed 

analysis for estimating dynamic yield stress and strain using a one dimensional linear-

elastic perfectly-plastic material model [98].  The analysis permits the construction of a 

position-time plot depicting the complex wave interactions within the material.  

Additionally, high-speed camera images time synchronized with velocity interferometry 

measurements are employed to obtain details about the deformation process and to gain 

insight into the complex wave interactions occurring within the material during the 

experiment. 

4.4.1 Transient Deformation State Observations 

 

Upon impact, the epoxy-cast Al+Fe2O3 composite samples exhibit a highly 

deformed region confined to the impact end of the specimen.  Detailed examination of 

camera images reveal two different deformation shapes emerging from high velocity 

impacts.  High-speed camera images obtained for all reverse Taylor impact experim nt 

conducted on each composition and pure epoxy are available in Appendix B.  

Representative images captured during the deformation of select experiments shown in 

Figure 4.57(a,b), reveal two types of deformation shapes described as “double-frustum” 

shown in Figure 4.57(a) and “extended-mushroom” shown in Figure 4.57(b).  The 

double-frustum deformation shape has a highly non-uniform deformation zone 

concentrated at the impact face of the specimen.  This shape has been identified in many 

studies examining metallic materials [195-197].  Balendra, et al. [197] re
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Figure 4.57 High-speed camera images from reverse Taylor impact experiments 
illustrate distinctive deformation modes for two experiments with similar impact 

e arrow) correspond to an experiment with an impact 
velocity of 181.8 m/s.  Images a), c), and d) exhibit “double-frustum” type deformation 
while b) shows a uniform “mushroom” shape extending along the specimen’s axial 
length.  Fracture was typically observed for specimens that display “double-frustum” 

dial 

velocity but a larger deformation zone that extends further into the specimen. 

Images shown in Figure 4.57(a,b) were obtained from two separate experiments 

performed on epoxy-cast Al+Fe2O3+60 vol.% epoxy composites at similar impact 

velocities of 158.2 (shot 0535) and 151.0 m/s (shot 0541), respectively.  Both images 

were taken at approximately the same time, 54.43 and 54.59 µs after impact.  Clearly 

velocities of a) 158.2 and b) 151.0 m/s.  Additionally, an image shown c) just prior and d) 
at fracture initiation (indicated by th

deformation. 

shape is due to an extremely high radial velocity imparted to the impact face of the 

specimen initially, but was arrested as the deformation wave propagates into the 

specimen.  In contrast, the extended-mushroom shape has a relatively small ra
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there are two significantly diffe from these two similar 

experimental conditions.  A highly deformed region localized near the impact face of the 

em suggest that specimens displaying a 

double-frustum deformation shape fracture at the point where there was an appreciable 

slope change along the specimen’s axial pr a).  In 

contrast, shot 0541 with a slightly lower impact velocity of 151.0 m/s shows an  

extended-mushroom shape with minimal radial deformation and an extended axial plastic 

urring within the time interval examined by high-speed 

camera images.  Variation in the deformation response between the two specimens was 

attributed to porosity differences.  Specimens that exhibit more than 1 % porosity tend to 

exhibit the characteristic double-frustum deformation shape, and tend to fracture close to 

the region where a sharp change in slope is observed from the axial profile edge. 

One specimen showed mixed deformation modes that exhibited attributes from 

both double-frustum and extended-mushroo rticular 

experiment (shot 0544), the specimen fractured close to the impact face and not in the 

region where there was an abrupt slope change in the deformation zone, as observed for 

many other experiments.  Figure 4.57(c) shows the deformation of the specimen 45.83 µs 

 captured in the next image at 50.91 µs 

and as shown in Figure 4.57(d).  Both images show evidence of mixed deformation 

modes by means of a double-frustum region located towards the impact face and a slight 

rent deformation shapes emerging 

specimen shows the characteristic double-frustum deformation shape observed for shot 

0535 with an impact velocity 158.2 m/s.  Observations from several experiments 

conducted on epoxy-cast composite material syst

ofile, as indicated in Figure 4.57(

deformation zone.  Specimens exhibiting an extended-mushroom type deformation shape 

show no evidence of fracture occ

m deformation shapes.  For this pa

after impact, prior to the observation of fracture
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barreling region (extended-mushroom) away from the impact face along the axial length 

of the specimen.  It is believed that this particular specimen fractured prematurely due to 

a flaw located close to the impact region of the specimen. 

Similar extended-mushroom deformation shapes were observed for   

nano-Al+Fe2O3+70 vol.% epoxy compositions which exhibited very low porosity   

(significantly less than 1 %).  Of the six experiments conducted for this nano-composite 

composition, fracture was observed at impact velocities of 235.3 and 288.3 m/s.  In both 

cases, the specimens exhibited a double-frustum deformation shape that developed very 

rapidly, however, it was restricted to a very small region away from the impact face 

unlike observations obtained on samples of Al+Fe2O3+60 vol.% epoxy and pure epoxy 

compositions.  An extended-mushroom deformation shape was observ

             

    

ed for all 

specim

or all experiments 

that had an impact velocity sufficient to cause plastic deformation.  For these 

experiments, two different slightly 

greater average density of 1.1999 ± 0.0019 g/cm3 (batch B) as compared to              

3 processing conditions were 

identical, it is possible that a slightly greater hardener concentration may have altered the 

density and dynamic me he fact that the 

batch B densities are greater than the theoretical density (1.1967 g/cm3) for this particular 

 

when compared to the clear (colorless) appearance of batch A material. 

ens that showed no evidence of fracture, regardless of composite composition. 

Pure epoxy compositions, however, showed a noticeably different deformation 

response where double-frustum deformation shapes were observed f

 batches of pure epoxy were prepared, one which had a 

1.1948 ± 0.0019 g/cm  (batch A).  Although the controllable 

chanical properties.  This theory is supported by t

epoxy resin and hardener mixture.  Furthermore, the color of batch B had a yellowish tint
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Dynamic impact tes show evidence of 

fracture up to and including impact velocities of 166.7 m/s (shot 0643) for batch A 

tained from batch B material fractured at a lower 

impact velocity of 152.4 m/s (shot 0614).  The measurable differences observed for these 

two epoxy batches will be discussed further, detail

in section 4.4.2 and the dynamic yielding behavior in section 4.4.3. 

 

4.4.2 Axial and Areal Strain Measurements 

 

High-speed camera images were used to make quantitative measurements of 

transient axial and areal strains examined over a time interval of approximately   

100 to 150 µs after impact.  Axial strain was calculated for discrete times according to: 

ting of these epoxy specimens did not 

material.  However, epoxy specimens ob

ing the axial and areal strain response 

 up to 

⎟
⎠

⎜
⎝

=
L

lnLε ,      (4.22) 

where L and L0 are the incremental and initial lengths, respectively.  Similarly, areal 

strain 

⎞⎛ L0

was calculated using: 

⎟
⎠
⎞⎛ A0⎜

⎝
−=

AA 1ε ,     (4.23) 

where A and A0 are the incremental and initial areas, respectively.  Areal strain 

measurements were made at the impact face where the maximum deformation was    
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(a) (b)  
Figure 4.58 a) Areal and b) axial strains measured from high-speed camera images 
show critical fracture strains (arrows indicate).  Points a through d correspond to images 
shown in Figure 4.57 for Al+Fe2O3+60 vol.% epoxy composition. 

 

(a) (b)  
Fi .5 d al  e  e era s 
sh iti c ra ro i o -A 3 l.% y 
co te
 

gure 4 9 a) Areal an  b) axi  strains measur d from high-sp ed cam  image
ow cr cal fra ture st ins (ar ws ind cate) f r nano l+Fe2O +70 vo  epox
mposi . 
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(a) (b)  

Figure 4.60 a) Areal and b) axial strains measured from high-speed camera images 

material is shown with blue data points. 

 velocities ranging from 80 to over   

400 m

(Figure 4.60(a,b)) samples.  Figure 4.60 includes the axial and areal response for epoxy 

differences in dynamic behavior. 

In general, the areal and axial strain plots reveal that the specimens                   

show critical fracture strains (arrows indicate) for pure epoxy (batch A and B).  Batch A 

typically observed.  Typical results of axial and areal strain measurements are presented 

in Figure 4.58(a,b), showing the deformation response over time for epoxy-cast 

Al+Fe2O3+60 vol.% epoxy composites for impact

/s.  Similar plots were also generated for experiments performed on                 

nano-aluminum containing 70 vol.% epoxy composite (Figure 4.59(a,b)) and pure epoxy 

prepared from batches A and B, which had slightly different densities and measurable 

(for all compositions) undergo significant elastic and plastic deformation during both the 

loading and unloading stages of impact.  Elastic recovery was more evident in axial strain 

measurements simply because of the limited peak strain scale as compared to relatively 
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large strains observed for areal strain measurements.  However, elastic recovery was also 

observed in areal strain measurements, which typically correspond very well with axial 

strain recovery times.  The elastic recovery was very rapid and began approximately 30 

to 60 µs after impact depending on the impact velocity, with the longer recovery 

initiation occurring for higher impact velocities.  All of the epoxy-cast compositions 

displayed similar behaviors; resulting in over 50 % elastic recovery from peak axial 

strain.  This response was observed regardless of impact velocity or composition, with 

several experiments showing complete elastic recovery and no further change in 

specimen length after 70 to 100 µs following impact, again depending on impact velocity. 

It was important for the estimation of dynamic yield stress and stress-strain 

calculations that the “final” specimen length was correctly captured before the sample 

moved out of the camera’s field of view.  The final length was determined from multiple 

measurements over a time period where the specimen was no longer experiencing length 

changes, and thus was completely recovered elastically.  Axial strain measurements for 

higher velocity experiments only captured one or two data points during the elastic 

recovery stage before the specimen moved out of the field of view.  However, it was 

observed from lower velocity experiments that elastic recovery times determined from 

areal strain measurements coincided very well with axial strain recovery times.  From this 

observation, indication of full elastic recovery was obtained from areal strain 

measurements even when there were only one or two data points captured.  This gave 

confidence in that the actual final axial strain imparted to the specimen, or the final length 

was measured accurately. 

To further verify the final length determined from high-speed camera images, 
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several recovery experiments were conducted in which the impacted specimen was 

captured in a specially designed soft-recovery fixture.  Comparison of the dimensions 

from high-speed camera images with physically measured initial and final specimen 

ngths showed close agreement (within 0.4 % difference) as shown by the values listed 

f transient 

eformation measurements obtained from high-speed camera images is quite good for 

obtaini

 a 

slightly higher impact velocity of 236.6 m/s also showed a similar areal strain profile, 

with observed fracture occurring slightly earlier, as would be expected.  Furthermore, the 

d  .58 ) re  s 

sh n ia ns t 

le

in Table 3.7 (discussed in section 3.5.2.1).  This illustrates that the accuracy o

d

ng estimates of the dynamic yield stress and stress-strain relationships. 

Strain measurements also provided insight into the fracture behavior of these 

composite materials.  The path to fracture initiation began with the areal strain exceeding 

a critical limit.  Examination of areal strain measurements shown in Figure 4.58(a) for the 

Al+Fe2O3+60 vol.% epoxy composite, reveals that the specimens experience higher strain 

levels (open data points) upon exceeding a critical areal strain of approximately 30 %.  

This leads to observed fracture at strains of approximately 60 to 80 %.  Direct 

comparison between two experiments performed at similar impact velocities of 207.0  

and 210.7 m/s (shots 0531 and 0536, respectively) showed observed fracture occurring at 

identical strain levels (approximately 74 % indicated by an arrow in Figure 4.58(a)), at 

25.50 and 25.81 µs after impact, respectively.  A third experiment (shot 0603) with

strain value at observed fracture decreases as impact velocity increases for specimens that 

fracture. 

Points labele a through d in Figure 4 (a,b cor spond to captured image

own in Figure 4.57(a-d) and illustrate quantitatively differe t mater l respo e eviden
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fr easureme h  li e m d 

ar n se o m u to r 

ex  t s 1 s) he /s 

ex  sp o F 4 at e 

corresponding to the image obtained in Figure 4.57( n exceeds the critical 

ar c a r r an 

F t p t r d he n 

Figure 4.57(

sample for shot 0535 and its influence on mechanical properties.  As a result of this 

porosity, observed differences in deformation shapes that manifest as either           

%, and ultimately fractured.              

Figure 4.58(

ilar axial strain history as sh

om axial and areal strain m nts.  T e first example high ghts th easure

eal strain response differe ces ob rved f r two speci ens s bjected  simila

perimental conditions (shots 0535 a 158 m/  and 0541 at 51 m/ .  For t  158 m

periment (shot 0535), point a corre onds t  54.43 µs in igure .58(a), the tim

a).  The specime

eal strain and proceeds to fra ture at pproximately 82 % st ain, ma ked by arrow in          

igure 4.58(a).  In con rast, ex erimen 0541, with point b co respon ing to t image i

b), never exceeds the critical areal strain and, consequently, does not 

fracture.  The different behaviors observed for these two experiments are attributed 

mainly to the detrimental effect of a small percentage of porosity (≈ 1.4 %) present in the 

double-frustum or extended-mushroom types are distinctive for the two material 

behaviors.  Another example revealing mixed deformation shapes was observed for shot 

0544, as shown in Figure 4.57(c,d).  In this case, the specimen had less than 1 % porosity, 

but still exceeded the critical areal strain of 30 

a) shows evidence of fracture occurring at a time corresponding to point d 

(approximately 51 % areal strain), although, examination of point d in Figure 4.58(b) 

shows a very sim ot 0542, subjected to a slightly lower impact 

velocity of 178.0 m/s.  The fracture behavior observed in this case was possibly related to 

a flaw located in close proximity to the specimen’s impact face as indicated by the 

fracture initiation point marked in Figure 4.57(d).  All other specimens fractured close to 

the region where severe slope change was observed in the double-frustum deformation 
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shape, and not close to the impact face. 

The nano-Al+Fe2O3+70 vol.% epoxy composition showed similar axial and areal 

strain behaviors as illustrated in Figure 4.59(a,b).  The critical areal strain that lead to 

specimen fracture was approximately 30 %, similar to that observed for the  

micron-Al+Fe2O3+60 vol.% epoxy composition discussed previously.  However, the 

nano-aluminum containing composite samples were observed to withstand higher impact 

velocities as compared to other compositions and did not fracture up to an impact 

velocity of 201.1 m/s.  Strain measurements on the nano-aluminum composite materials 

showed similar peak axial strain magnitudes in comparison to pure epoxy specimens, but 

lower peak axial strain values in comparison to the Al+Fe2O3+60 vol.% epoxy 

composition for similar impact velocities. 

Pure epoxy samples however showed a higher critical areal fracture strain of 

approximately 40 %.  Furthermore, the epoxy specimens did not appear to easily fracture 

and withstood impact at velocities up to 166.7 m/s for batch B material.  In contrast,

         

 

batch A material fractured at a lower impact velocity of 152.4 m/s, thus suggesting an 

altered dynamic material response behavior.  Direct comparison of two experiments  

(shot 0641 and 0614) with almost identical impact velocities (150.3 and 152.4 m/s, 

respectively) had similar axial strain behaviors, but completely different areal strain 

behaviors.  Notice that the axial strain response for shots 0641 and 0614 in Figure 4.59(b) 

virtually overlap.  However, the areal strain response for these two experiments shows 

shot 0614 exceeding a critical areal strain of 40 %, which leads to observed fracture at 

approximately 75 % strain.  Similarly, comparing higher velocity shots 0643 (batch A) 

and 0614 (166.7 and 179.7 m/s, respectively) shows identical axial strain responses and 
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significantly different areal strain behaviors that result in observed fracture at 

approximately 78 % strain for shot 0614 (batch B). 

Reverse Taylor impact experiments were also conducted for other epoxy-cast 

composite compositions (ranging from 47 to 78 vol.% epoxy).  The behavior of each 

composition was evaluated by comparing the axial and areal strain response for a 

common impact velocity close to 100 m/s.  Imposing a constrained impact velocity 

permits the evaluation of each composit ately identical loading 

include the responses of pure epoxy (batch A) and the nano-scale aluminum composite 

with 70 vol.% epoxy (shots 0638 and 0648, respectively).  Each specimen shows an 

identical initial rise to peak strain, where the slope is the strain rate (approximately       

2.0 x 103 1/s for axial strain).  Each specimen exhibits a slightly different peak strain 

approximately 35 µs after impact, although with no coherent order.  Notice the              

78 vol.% epoxy, pure epoxy, and the nano-scale 70 vol.% epoxy specimens had a rapid 

recovery response; resulting in complete elastic recovery approximately 100 µs after 

impact.  There was virtually no significant difference in the axial strain response of these 

three compositions.  In contrast, the remaining compositions show some dissimilarity 

between each other, with each experiencing a relatively slower recovery response with 

some retained permanent deformation in the 2 to 3 % range. 

Comparing the axial strain response shown in Figure 4.61(b) for each of the 

imen exhibited the lowest peak areal strain and lowest  

e under approxim

conditions.  The axial and areal strain results are presented in Figure 4.61(a,b) and 

compositions gives some details about the localization of strain at the impact face.  Each 

composition has a significantly different areal strain response for similar impact 

conditions.  The pure epoxy spec
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(a) (b)  

camera images for epoxy-cast Al+Fe2O3 composites (47 to 78 vol.% epoxy) and pure 

resulting permanent plastic deformation.  The nano-scale aluminum composite showed a 

similar areal strain response resulting in slightly greater retained plastic deformation 

approximately 100 µs after impact.  The other compositions show varying degrees of 

peak areal strain and retained plastic deformation. 

While the volume fraction of epoxy and solid particle fill fractions for each 

composite appear to be important parameters, their effect did not directly emerge, and no 

obvious correlation of volume fraction with material response was observed.  Other 

parameters such as particle size definitely show a significant effect on dynamic 

mechanical response.  This was observed by contrasting the areal and axial strain 

response of composites with nano-scale and microns-scale aluminum containing            

70 vol.% epoxy.  The nano-aluminum composite appears to better withstand the impact; 

Figure 4.61 Comparison of a) areal and b) axial strains measured from high-speed 

epoxy (batch A) at an impact velocity close to 100 m/s. 

showing a measurable difference in the response characterized by a rapid axial recovery 
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and reaching a significantly lower peak areal strain for the impact velocity range 

examined. 

 

 

The dynamic yield stress for the various epoxy-cast composite materials was 

calculated using the analysis presented by Hutchings [98].  The original analysis 

estimated the dynamic yield stress for a polymeric material from post-impact 

measurements of the dimensions obtained from the recovered specimens.  However, with 

the introduction of high-speed photography used to obtain transient deformation profiles, 

this same analysis can be applied to calculate material properties for all incremental 

changes in specimen geometry up to the materials’ final state.  The analysis was based on 

the assumption of a linear-elastic perfectly-plastic material model that accounts for 

polymers developing significant elastic strains before yielding. 

Areal and axial strain measurements obtained for relatively low velocity impact 

experiments show that the specimens exhibit complete elastic recovery with no 

measurable permanent deformation following impact.  The critical impact velocity 

identifies the minimum impact condition necessary for onset of plastic deformation 

within the material.  It was determined by measuring the retained deformation within the 

specimen through length changes observed for several impact velocities.  The fractional 

change in overall length was calculated and plotted as a function of impact velocity.  The 

critical impact velocity was then obtained by extrapolating to zero length change from a 

linear fit trend line to these measurements.  Epoxy-cast composites were subjected to 

4.4.3 Estimation of Dynamic Yield Stress 
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several different impact velocities for determining the critical impact velocity which was 

found to be unique for each composition.  For these experiments, high-speed camera 

images were used to capture the final state of the material taken around 100 to 150 µs 

after impact.  This typically provided sufficient time for the specimen to plastically 

manner are plotted in Figure 4.62 as a function of im posites 

and the pure epoxy composition.  The critical v r each n gives an 

indication of sed o parted to 

the specimen necessary to cause plastic deformation.  With this in mind, the relative 

  

deform and completely recover elastically.  Final specimen lengths obtained in this 

pact velocity for the two com

elocity fo compositio

 relative material strength ba n the stress limit or yield stress im

strengths of the three compositions can be quickly evaluated.  As shown in Figure 4.62,      

 

measurements for each composition.  Notice the axial strains for experiments conducted 

composite (0648) show complete elastic recovery and are not included

Figure 4.62 Critical impact velocity determined from retained axial strain 

below the critical impact velocity for pure epoxy (shots 0637 and 0638) and the nano-
 in the linear fit. 
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the na   

 critical velocities of 102.5 and 74.3 m/s, respectively.  Experiments were 

also conducted below the critical velocity determined from Figure 4.62 for verification.  

These are listed in Table 4.1 for the 

Al+Fe2O3+70 vol.% epoxy composite at an impact velocity of 97.8 ± 1.5 m/s, and 

experiments 0637 and 06

The critical velocity is a very sensitive measure of the dynamic material response 

and provides an indication of relative material strength, which is advantageous for 

comparing subtle differences between various polymers and polymeric composites.  This 

was apparent when examining the dynamic material behavior and material strength for 

              

 

   

equations of motion and the material’s constitutive relations using the technique  

no-Al+Fe2O3+70 vol.% epoxy composite has the highest critical velocity of   

120.9 m/s.  This is followed by the pure epoxy sample and the Al+Fe2O3+60 vol.% epoxy 

composite with

3 (shown earlier), and include shot 0648 

38 for pure epoxy at velocities less than 100 m/s. 

two different batches of pure epoxy with slightly different densities, previously 

highlighted in section 4.4.2.  Batch B material had a slightly greater average density of 

1.1999 ± 0.0019 g/cm3 as compared to batch A material with a density of   

1.1948 ± 0.0019 g/cm3 although the controllable processing conditions were identical. 

Figure 4.62 also shows the critical impact velocity plots for both epoxy materials  

(batch A and B) and highlights the sensitivity of this parameter with dynamic yielding.  

Batch B material had a slightly lower critical impact velocity of 98.5 m/s as compared to 

102.5 m/s for batch A material.  Furthermore, batch B material yields at lower impact 

velocities than batch A material under identical loading conditions, thus suggesting that 

batch A material has a greater dynamic yield point and overall strength. 

The response of material to dynamic loading was determined from equilibrium 
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model proposed by Hutchings [98]. 

developed by Hutchings [98].  The propagation of a disturbance wave within a cylindrical 

bar takes on a two wave structure (elastic and plastic) when impact conditions are above 

the material’s elastic limit.  Hutchings [98] considered a polymeric material to be linear-

Figure 4.63 Stress-strain diagram assumed for a linear-elastic perfectly-plastic material 

elastic perfectly-plastic and with a (nominal and true) stress-strain relationship similar to 

that shown in Figure 4.63.  Elastic strains propagate with a velocity C0 given by [98]: 
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where Y is true yield stress, σy is nominal yield stress, εy is yield strain, and ρ0 is density.  

For the plastic wave, the nominal stress and strain is greater than the material’s elastic 

limit; its propagation speed is expressed by [98]: 
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The particle velocity behind the plastic wave is evaluated for an elastic and plastic 

component and is given by [98]: 
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The nominal stress behind the plastic wave front is then given by [98]: 
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Figure 4.64 Illustration showing ideal elastic and plastic wave propagation within the 
rod-shaped specimen (neglecting radial effects). 
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Hutchings [98] considered the deformation of a Taylor impact experiment sample by the 

propagation of elastic and plastic waves within the material, with the characteristic 

di -time ot (x gram  Fi .64, win

wave interactions.  Upon imp tic wave form nd 

pr es h e  t im he ic es ve a 

gr el e e rf   b ow he t fa a 

re a e n ic e a op g ch slower 

ve i  r d release wave som

im c d s ie   r  T tic  

dis e r t t im g  

ax tra g u y a  a  he ela d 

plastic wav tic wave 

ce  a la m n on s 

ion of the specimen. 

Hutchings assumed that the plastic wave front stops advancing with the first 

elastic wave interaction.  Thus, the final position of the plastic zone or axially strained 

stance  pl -t dia ) in gu 4re sho g the principle elastic and plastic 

act, an elastic and plas s at the impact face a

opagat  along t e axial l ngth of he spec en.  T  elast  compr sion wa , with 

eater v ocity, r aches th  free su ace and reflects ack t ards t  impac ce as 

lease w ve.  Th  advanci g plast  compr ssion w ve, pr agatin at a mu

locity, nteracts with the eflecte elastic e distance away from the 

pact fa e.  This istance i  identif d as the axially strained egion. he plas  wave is

persiv  in natu e and a t  o s enuates as it pr pagate along he spec en len th.  The

ially s ined re ion is bo nded b  the imp ct face nd the point w re the stic an

es begin to interact with each other.  This is also where the plas

ases to dvance and the e stic co pressio  wave c tinue to traverse as an unloading 

wave, towards the impact face and in the undeformed reg

region was measured by the fractional reduction in length, k given by: 

0

1 Lk −= .    
L

  (4.28) 

From the geometry shown in Figure 4.64,  
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where, y

yPC −2 εε

εε −  is the residual strain from the plastic wave moving across the material and 
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Solving for the strain, ε, results in [98]: 
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Correspondingly, the dynamic yield strength according to Hutchings [98] is given by: 
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Equation (4.32) is represented only in terms of the two unknown quantities Y and εy.  A 

second relationship also exists between these two unknown parameters for the case when 

the impact velocity is equivalent to the critical velocity and deformation within the 

specimen is purely elastic.  Accordingly, the dynamic yield stress and strain are related as 

[98]: 
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The dynamic yield stress and strain were estimated for epoxy-cast composites using the 

above equations and the measured changes in sam

Y = .     (4.33) 

ple length, along with knowledge of the 

ritical velocity for the onset of plastic deformation.  Numerical methods were used to 

εy.  Values 

of true yield stress, Y, nominal yield stress, σy, and nominal stress, σ, above the yield 

irectly available upon convergence of the two equations.  Additionally, yield 

strain, y

rate, 

c

evaluate equations (4.32) and (4.33) simultaneously with an initial estimate of 

point were d

ε , and nominal strain, ε, above the yield point were also determined.  The strain 

ε& , was obtained from the change in nominal strain with camera imaging time.  

Strain rates varied over the duration of the impact, reaching rates as high as 10  to 10  1/s 

at the first moment of impact down to 10  to 10  1/s towards the end of deformation. 

Results obtained based on the analysis of experiments for each composition are 

shown in Table 4.14.  It should be noted that the calculated values are from experiments 

where the final length of the specimen was obtained from high-speed camera images and 

did not show evidence of fracture.  The average final specimen length was determined 

from multiple measurements (in most cases) after elastic recovery was complete and 

specimen dimensions remained reasonably constant.  The resulting values of yield stress 

and strain, thus obtained for each composition, have very little variation and are nearly 

independent of impact velocity.  For example, the Al+Fe2O3+60 vol.% epoxy composite 

has average true yield stress Y = 389.1 ± 8.6 MPa and yield strain εy = 0.033 ± 0.001     

for impact velocities ranging from 97.9 to 151.0 m/s.  In a similar manner,                              

5 6

3 4
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Table 4.14 Calculated values obtained from reverse Taylor impact experiments using 

Number [m/s] [MPa] [MPa] [MPa] ε εy [GPa] 
C  

[mm/µs] 
C  

[mm/µs]

analysis developed by Hutchings [98]. 

Shot U Y σy σ E P 0

Al+Fe2O3+60 vol.% epoxy 
0621 97.9 390.3 403.5 427.6 0.089 0.034 11.89 0.429 2.274 
0530
0537 

nano-Al+Fe2O3+70 vol.% epoxy 

 108.4 391.7 404.9 440.2 0.111 0.033 12.36 0.437 2.295 
132.9 377.0 390.2 452.2 0.166 0.034 11.50 0.442 2.191 

0541 151.0 397.2 410.5 495.5 0.198 0.032 12.68 0.462 2.297 

0649 143.6 400.2 430.7 453.7 0.119 0.071 6.03 0.483 1.704 
0650 175.2 395.3 425.9 482.5 0.181 0.072 5.93 0.498 1.683 
0645 201.1 365.5 396.1 479.8 0.238 0.077 5.13 0.498 1.565 

pure epoxy (batch A) 
0640 127.9 276.7 289.2 304.9 0.093 0.043 6.65 0.516 2.361 
0639 143.2 296.0 308.6 334.8 0.116 0.041 7.59 0.541 2.521 
0641 150.3 291.3 303.9 334.7 0.130 0.041 7.35 0.541 2.481 
0643 166.7 287.5 300.0 341.9 0.159 0.042 7.17 0.546 2.449 

 

 

deviation was slightly high for the experiments conducted for the nano-aluminum 

composite because the final length measurement obtained from one of the experiments 

(shot 0645) may have been prior to complete elastic recovery being achieved within the 

specimen before moving out of the high-speed image filed of view.  The pure epoxy 

composition (batch A) had values of Y = 287.9 ± 8.3 MPa and εy = 0.042 ± 0.001 with 

impact velocities ranging from 127.9 to 166.7 m/s. 

Calculated true stress-strain curves constructed for each of the compositions are 

shown in Figure 4.65 with a familiar linear-elastic perfectly-plastic form.   

Y = 387.0 ± 18.8 MPa and εy = 0.074 ± 0.003 for nano-Al+Fe2O3+70 vol.% epoxy 

composition with impact velocities ranging from 143.7 to 201.1 m/s.  The yield stress
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Figure 4.65 True dynamic stress-strain diagram determined for Al+Fe2O3+60 vol.% 
epoxy, nano-Al+Fe2O3+70 vol.% epoxy, and pure epoxy (batch A). 

The stress-strain curve for the nano-aluminum composition was comparable to the        

Al+Fe O +60 vol.% epoxy composition, in terms of the stress response, however, with a 

ponse 

was observed in terms of elastic resilience of each of the three sample types.  The 

  

2 3

significantly different yield strain.  The major difference in the overall dynamic res

resilience was obtained by calculating the area under the linear elastic region from the 

true stress-strain curves shown in Figure 4.65.  The nano-Al+Fe2O3+70 vol.% epoxy 

composition showed the greatest resilience with a value of 15.45 ± 0.06 MPa.  In 

contrast, the calculated resilience for Al+Fe2O3+60 vol.% epoxy and pure epoxy   

(batch A) compositions was 6.64 ± 0.04 and 6.31 ± 0.04 MPa, respectively.  Thus, it 

appears that the addition of nano-scale aluminum particles has a profound influence on 

the elastic dynamic impact response in comparison to pure epoxy.  However, the addition 
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of micron-scale particles shows a less evident influence as illustrated from only a slight 

increase in resilience as compared to pure epoxy.  It is possible that the nano-scale 

aluminum particles influence the polymer composite’s chain mobility and extends the 

elastic 

mits the estimation of elastic and plastic wave speeds propagating 

within 

elastic wave speed obtained for the nano-aluminum composite material deviates 

significantly from ultrasonic values. 

 

4.4.4 Distance-Time Plots for Analysis of Elastic-Plastic Wave Interaction 

 

Calculations thus far have been based on the final state of the impacted materials. 

It is also possible to characterize the incremental changes (due to deformation), observed 

deformation response to a significantly greater elastic strain region for a 

comparable stress.  Values of elastic moduli (also listed in Table 4.14) measured for each 

of the compositions in the linear-elastic portion of the stress-strain diagram show good 

agreement with those obtained from ultrasonic measurements, thus, providing confidence 

in the analysis and validity of the stress-strain curves obtained from dynamic impact 

experiments. 

This analysis successfully permits the relative comparison of each composition’s 

performance from several Taylor impact experiments which give quantitatively 

measurable differences in the mechanical behavior for each of the materials examined.  

The analysis also per

the material.  These are calculated directly from equations (4.24) and (4.25), 

respectively.  Elastic wave speeds listed in Table 4.14 compare well with ultrasonic 

measurements for pure epoxy and Al+Fe2O3+60 vol.% epoxy composition.  However, the 
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throughout the impact experiment, with the use of high-speed photography.  As the 

elastic and plastic waves propagate within the specimen, incremental stress and strain 

values can be obtained to yield a detailed history of elastic and plastic wave propagation, 

thereby permitting the precise determination of all possible stress and strains that the 

material experiences throughout the impact.  During the first moment of contact as the 

anvil impacts the target rod, an extremely large stress forms within the material.  The 

peak stress dissipates as the plastic wave travels through the specimen, and upon its 

interaction with the elastic wave, reduces below the yield stress, where the wave ceases to 

propagate.  The corresponding time can be identified experimentally using an x-t  

Time 
[µs] L/L0 k Y 

[MPa]
σy 

[MPa]
σ 

[MPa] ε εy 

Table 4.15 High-speed camera transient deformation measurements are used to 
calculate the dynamic material property at discrete time intervals using analysis 
developed by Hutchings [98] for Al+Fe2O3+60 vol.% epoxy (shot 0530). 

ε&  
[1/s] 

CP 
[mm/µs] 

C0 
[mm/µs]

0.92 0.999 0.001 9855.2 9868.3 10035.8 0.018 0.001 19450 2.058 55.936 
9.23 0.981 0.019 542.6 555.7 596.8 0.091 0.024 9835 0.508 3.150 

156.8 180.1 0.202 0.084 5916 0.288 0.889 

75.71 0.974 0.026 369.3 382.4 416.9 0.114 0.034 1509 0.427 2.168 

17.54 0.963 0.037 247.0 260.2 289.1 0.146 0.050 8300 0.358 1.475 

25.85 0.946 0.054 158.7 171.8 196.0 0.190 0.076 7364 0.299 0.974 

34.16 0.942 0.058 143.7 

42.47 0.950 0.050 171.6 184.7 209.7 0.182 0.071 4274 0.308 1.047 

50.78 0.957 0.043 209.8 222.9 250.0 0.161 0.059 3165 0.335 1.264 

59.09 0.963 0.037 247.0 260.2 289.1 0.146 0.050 2464 0.358 1.475 

84.02 0.976 0.024 407.4 420.5 456.5 0.108 0.031 1282 0.446 2.383 

100.64 0.972 0.029 337.1 350.3 383.4 0.121 0.037 1199 0.410 1.985 

108.95 0.978 0.022 453.2 466.3 504.2 0.101 0.028 927 0.468 2.643 
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for shot 0530.  Each position data point and corresponding time (after impact) is shown 

relation  = C . 

(distance-time) diagram constructed from incremental stress-strain calculations.  The 

details of this analysis are discussed below for the Al+Fe2O3+60 vol.% epoxy material 

from shot 0530, and the calculated values for each time increment determined by      

high-speed camera image timing are listed in Table 4.15. 

x-t diagram in Figure 4.66 shows the propagation path of elastic and plastic 

waves determined from calculated C0 and CP values at discrete times after impact.  The 

relation  was used to calculate the wave positions, where C was either the elastic 

or plastic wave speed determined from equations (4.24) and (4.25), respectively.  The 

 
Figure 4.66 Calculated x-t diagram showing the wave propagation within the specimen 

from measurements obtained from high-speed camera images and calculated using the 
dx dt

The 

Cdtdx =
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elastic wave, of speed consistent with the ultrasonically measured longitudinal wave, 

arrives at the back surface of the rod shaped sample 14.89 µs after impact.  The elastic 

wave reflects from the free surface and arrives at the advancing plastic wave front after 

26.69 µs and then returns to the free surface 36.85 µs after impact.  The plastic wave 

front at the time of interaction with the elastic wave has propagated 10.25 mm into the 

specimen, and its calculated stress using equations (4.32) and (4.33) is reduced to 

approximately 159 MPa (listed in Table 4.15 at 25.85 µs after impact), which is 

significantly lower than the average dynamic yield stress of 389.1 ± 8.6 MPa obtained for 

this composition.  As a consequence, the reduced yield stress suppresses further 

advancement of the plastic wave as indicated by calculated wave position values at later 

times.  Figure 4.66 also incorporates the specimen’s overall axial length change obtained 

from high-speed camera images including elastic recovery towards the end of the 

observed time interval.  The onset of elastic recovery within the material shows good

verify the elastic wave arrival times and are discussed in more detail next (section 4.4.5). 

Taylor’s analysis [45] of such impact events assumes a rigid perfectly-plastic 

material model, and the elastic/plastic wave interaction theoretically causes the stress 

within the material to become zero, thus stopping the advancement of the plastic wave.  

However, for a viscoelastic-viscoplastic plastic material this may not be the case, and the 

plastic wave may continue to have some energy for continued propagation.  This effect is 

 

agreement with the interaction of the elastic and plastic waves.  The elastic and plastic 

wave positions obtained from the analysis appear to overlap on their next encounter with 

each other approximately 50 µs after impact.  This time coincides with the conclusion of 

elastic length recovery within the specimen.  Velocity interferometry measurements 
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evident in the x-t diagram of Figure 4.66, which shows the elastic wave slowly taking 

over the plastic wave upon their second interaction.  Eventually, the plastic wave 

dissipa

     

tes completely and stops propagating.  Experimental calculations show that this 

occurs during the time period where the elastic relaxation is taking place, which 

complicates the calculation of elastic and plastic wave positions.  However, the calculated 

elastic and plastic wave positions show fairly good consistency, as illustrated in  

Figure 4.66.  The impact velocity and, thus, the initial magnitude of the stress wave have 

a direct consequence in the behavior of the elastic/plastic wave interaction. 

 
F
to dete

igure 4.67 Measured axial strained lengths from high-speed camera images are used 
ine plastic wave position in the same x-t diagram as shown in Figure 4.66. rm
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Figure 4.68 Axial strained length measurements determined from high-speed camera 
images are compared to those determined from calculations using analysis developed by 
Hutchings [98].  Arrow indicates an experiment that uses an intentionally (approximately 
30 %) shorter length specimen. 

d length can 

be challenging especially at early times during the impact where the plastic wave position 

 

The axial strained length was determined by measuring along the axial length of the 

deformed specimen and recording the location where there was a 2 % increase in the 

Plastic wave speed values obtained from Hutchings’ analysis [98] for shot 0530 

were verified by making measurements of the axially strained length over time for select 

high-speed camera images.  Determination of the specimen’s axially straine

movement is subtle.  However, image analysis was performed by using a routine that 

measured the diameter of the deformed specimen at every pixel along the axial length. 
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specimen’s diameter.  This method gave highly reproducible results for obtaining the 

plastic deformation distance from the impact face.  The axial strained length was used to 

compare the calculated position of the plastic wave from Hutchings’ analysis, as shown 

in the x-t diagram of Figure 4.67.  The plastic wave position determinations show good 

correlation for the two methods and give excellent confidence in the calculated plastic 

wave values.  Furthermore, the axial strained length for each of the experiments was 

measured using the latest possible image obtained from all the impact experiments 

pared to calculated 

values usi gs’ lysis a  again s g pecimens 

that fracture.  The axially strained length was also measured for a specimen with an 

intentionally shorter initial length of 31.31 ± 0.13 mm (shot 0536), and was found to have 

a good correlation with a calculated value obtained from Hutchings’ analysis.  The 

specimen was approximately 30 % shorter than the other specimens used for reverse 

Taylor impact experiments, and thus, the elastic and plastic wave interaction took place at 

a significantly shorter region along the axial length of the specimen.  This result is also 

shown in Figure 4.68 for an impact velocity of 211 m/s (indicated by the arrow). 

 

4.4.5 Elastic-Plastic Wave Interaction Based on Time-Synchronized VISAR and 

Camera Measurements 

 

Velocity interferometry measurements (VISAR) were perfored to obtain details 

about the material’s wave propagation response during Taylor impact experiments by 

tracking the rod-shaped specimen’s back (free) surface velocity.  Figure 4.69 shows an 

conducted for the Al+Fe2O3+60 vol.% epoxy composition.  These results are plotted as a 

function of impact velocity and shown in Figure 4.68.  This was com

ng Hutchin  ana nd, show ood agreement even for s
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example of the corresponding VISAR signal and time synchronized axial and areal strain 

measurements obtained from high-speed camera images for Al+Fe2O3+60 vol.% epoxy 

composite (shot 0530).  The time it takes for the elastic wave to travel the length of the 

specimen gives the characteristic longitudinal wave speed, which was unique for each 

material composition.  With knowledge of specimen length, the longitudinal wave 

velocity was easily attainable by measuring the elastic wave arrival time at the back 

surface or free surface of the specimen.  Longitudinal wave speed measurements were 

obtained for each epoxy-cast composition, with the exception of experiments conducted 

on pure epoxy specimens in which VISAR was not used.  Longitudinal wave speeds 

determined from VISAR measurements generally showed very good agreement, typically 

2 to 3 % greater than ultrasonic measurements.  The average longitudinal wave speeds 

obtained from Taylor impact experiments compared with ultrasonic values are listed in 

Table 4.16. 

Referring to Figure 4.69, it can be seen that the VISAR signal has an associated 

velocity rise with the arrival of the elastic wave at the free surface, at 14.6 µs compared 

to 14.89 µs, calculated from the elastic wave speed and sample length.  The next change 

in slope is associated with the elastic and plastic wave interaction occurring at 26.3 µs.   

Table 4.16 Comparison of longitudinal wave speed values measured using ultrasonic 
and VISAR techniques. 

Composition CL (Ultrasonic) 
[mm/µs] 

CL (VISAR) 
[mm/µs] 

Al+Fe2O3+60 vol.% epoxy 2.936 ± 0.013 3.080 ± 0.185 

nano-Al+Fe2O3+70 vol.% epoxy 2.778 ± 0.032 2.820 ± 0.022 
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Figure 4.69 Time-synchronized VISAR and camera measurements comparing axial and 
areal strain, and free surface velocity as a function of time for shot 0530.  Corresponding 
wave interaction times are shown next to the free surface velocity trace at slope transition 
regions. 

Again, this shows very good agreement with the calculated value of 26.69 µs.  The final 

change in slope is associated with the elastic wave returning to the free surface at 51.2 µs 

(50.78 µs based on calculations).  Notice that the onset of elastic recovery observed 

through strain measurements coincides precisely with the interaction of the elastic and 

plastic waves. 

The elastic wave propagating within the material is not perfectly smooth or 

square-shaped and has an associated slope due to wave dispersion or an uneven front.  

Viscoelastic-viscoplastic material behavior also “smears” the response.  However, the 

timing observed from x-t diagrams coincides perfectly with the arrival time of the elastic 

wave at the back surface and plastic wave boundary measured with VISAR.  This was 
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typically observed for all of the experiments conducted in this study. 

The VISAR signal can also be used to calculate the material’s dynamic yield 

stress, strain at yield point, and the strain rate at yield, respectively, using the following 

relations [16]: 

fsY uC ∆= 002
1 ρσ ,     (4.34) 

00 2 CC
1 uu fsP ==ε ,     (4.35) 

tdt ∆
d

==
εεε& ,      (4.36) 

where ∆ufs is the change in free surface velocity obtained from VISAR measurements, C0 

is the ultrasonically measured average elastic wave speed, uP is particle velocity, and ∆t 

is the time change associated with the change in free surface velocity.  Figure 4.70 

schematically illustrates the elastic and plastic wave interactions and the resulting VISAR 

response.  The disturbance signal takes time to propagate within the specimen and 

corresponds to a response delay equivalent to the travel time through the length of the 

specimen.  The VISAR measures a rise in free surface velocity when the elastic wave 

reaches the back surface.  Meanwhile the impact area of the specimen is plastically 

deforming, and the signal associated with this disturbance takes time to propagate 

through the specimen before being detected by VISAR.  In order to measure the response 

due to the deformation occurring at the impact face, the VISAR signal was time-shifted  
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Figure 4.70 Illustration depicting wave propagation within a specimen that coincides 
with free surface velocity measurements. 

to coincide with these effects by compensating for the travel time required to traverse the 

specimen.  Figure 4.71 shows the time-shifted VISAR response and strain measurements 

for shot 0530.  Calculated values of yield stress obtained from equation (4.34), as well as 

strain and strain rate at the yield point from equations (4.35) and (4.36), respectively, are 

compared to values obtained from the convergence of equations (4.32) and (4.33) from 

Hutchings [98].  These values are listed in Table 4.17 for experiments that used VISAR 

diagnostics.  Fairly good consistency between each experiment was observed for stress, 

strain, and strain rate values obtained from VISAR measurements.  These values also 

compare well for select experiments with calculated values obtained from Hutchings’ 

analysis (also listed in Table 4.17), for all experiments except for shot 0529; which yields 

at a significantly lower yield stress and strain as compared to that obtained from VISAR  
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Figure 4.71 Time-shifted VISAR and high-speed camera measurements to give 
instantaneous response measurements of elastic/plastic wave interaction for shot 0530. 

analysis.  Since shot 0529 was performed at an impact velocity of 80.1 ± 1.2 m/s, which 

is close to the measured critical velocity (74.3 m/s) for onset of permanent plastic 

deformation, the length measurements show only slight deformation (that are within 

experimental error) and therefore, Hutchings analysis may not be correctly applicable for 

this particular experiment. 

Calculated values listed in Table 4.17 using Hutchings analysis that show 

evidence of fracture were evaluated for measurements obtained from camera images prior 

to fracture.  Calculated strain rates show an order of magnitude increase as compared to 

specimens that did not fracture.  These effects are not apparent in the values obtained 

from the VISAR signal since they are evaluated at the material’s yield point before 

fracture occurs.  Therefore, the analysis does not account for the change in density due to  

 303



Table 4.17 Comparison of computed stress, strain, and strain rate values obtained from 
VISAR measurments and values obtained from the one-dimensional elastic-plastic wave 
analysis developed by Hutchings [98]. 

∆ufs 
[m/s] 

∆t 
[µs] 

σy 
[MPa] εy 

ε&  
[1/s] 

Y 
[MPa] εy 

ε&  
[1/s] Shot 

Number 
U 

[m/s] 
VISAR Measurements Hutchings’ Analysis 

Al+Fe2O3+60 vol.% epoxy 
0529 80.14 110.44 30.32 327.3 0.022 729 101.8 0.122 1431 
0530 108.4 110.77 25.87 328.5 0.022 857 391.7 0.033 1229 
0537 132.9 117.08 26.51 350.5 0.023 884 377.0 0.034 1760 
0541 151.0 112.25 26.64 337.2 0.023 843 397.2 0.032 2091 
*0535 158.20 123.67 27.76 366.3 0.025 891 309.6 0.041 10874 
+0542 177.95 121.20 26.63 361.6 0.024 911 343.2 0.037 2668 
*0531 207.03 110.95 27.08 329.2 0.022 820 389.2 0.033 14018 
*0536 210.74 111.07 16.38 330.2 0.022 1357 385.1 0.033 19891 

nano-Al+Fe2O3+70 vol.% epoxy 
0649 143.6 186.32 36.18 486.7 0.037 1030 400.2 0.071 5701 
0650 175.2 209.87 34.61 548.7 0.042 1213 395.3 0.072 7617 
*0646 235.29 161.74 32.16 423.0 0.032 1006 534.6 0.054 51170 
*0647 288.25 161.85 33.12 422.0 0.032 978 469.7 0.061 67381 

*Indicate experiments where fracture was observed. 
+Final state of specimen was not captured from high-speed images. 

fracture and distension in the composite that alter the resulting elastic and plastic wave 

interaction behaviors.  However, they do show good agreement for the ideal impact 

experiments where fracture was not observed. 

 An additional benefit of VISAR was the ability to detect evidence of fracture 

initiation within the specimen and its correlation with observations made from high-speed 

camera images.  This combined with the calculated x-t diagrams, gives a complete 

description of the material’s deformation behavior throughout the impact experiment.  

Time synchronized high-speed camera and VISAR data (time-shifted) for a specimen that  
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Figure 4.72 Areal ♦ and axial ■ strains measured from high-speed camera images as a 
function of time after impact are time-shifted with the VISAR trace for impact velocity of 
207.0 m/s (0531).  While the specimen elastically recovers to a constant strain level 
approximately 75 µs after impact in the sample that does not fracture (as illustrated in 
Figure 4.69) for shot 0530, shot 0531 shows visual evidence of fracture at 25.81 µs after 
impact (indicated by the arrows).  Notice the significantly greater strain scale for this 
experiment and that shown in Figure 4.71. 

fractures is shown in Figure 4.72 for shot 0531.  Upon impact, the elastic and plastic 

compression waves propagate along the axial length of the specimen, and a rise in free 

surface velocity is observed when the elastic wave arrived at the back surface.  Upon 

reflection, the tensile elastic wave reaches the plastic wave approximately 9.3 µs after 

impact.  The VISAR signal shown in Figure 4.72 has a slight change in acceleration 

following the elastic/plastic wave interaction at 17.1 µs, prior to reflecting from the rear 

surface of the specimen.  The slope change indicates that the specimen has been damaged 

enough to modify the elastic wave propagation.  As revealed from high-speed camera 

images, catastrophic fracture was not evident until 25.81 µs.  The time of fracture 
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initiation is indicated by an arrow shown in the figure corresponding to the measured 

axial and areal strains.  Additionally, the signature of catastrophic fracture is evident in 

the VISAR signal at approximately 25 µs, where the free surface velocity reaches a 

plateau of approximately 110 m/s, which corresponds (in time) very well with the 

observed fracture from high-speed images.  Furthermore, the abrupt change of the 

VISAR signal in this region gives a clear indication that the material response to dynamic 

loading has been altered as compared to a specimen that does not fracture (as shown in 

Figure 4.71).  Comparison of the VISAR signals in  (Figure 4.71 for shot 0530 and 

Figure 4.72 for shot 0531), shows the initial acceleration associated with the elastic wave 

propagating through the material is identical, with slopes of approximately 5.8 x 10-3 and 

5.7 x 10-3 mm/µs2 for the undamaged and fractured specimen experiments, respectively.  

However, the final acceleration observed for the fractured specimen, after the elastic and 

plastic wave interaction, clearly has been altered. 

 

4.4.6 Post-Mortem Characterization of Recovered Impacted Material and 

Fragments 

 

Recovered specimens, including fully intact deformed rods, and fragments of 

fractured rods, were typically collected and analyzed following direct and reverse Taylor 

impact experiments.  For reverse Taylor experiment, subsequent fragmentation typically 

occurred following the initial impact of the anvil and sabot assembly at significantly 

latter times, even for relatively low impact velocities.  This was mainly due to the 

experimental configuration.  Initially, the anvil and sabot assembly impact the specimen 

and the deformation is captured by a high-speed camera.  A secondary impact occurs 
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within the “soft” recovery catch tank where the sample strikes the rags used to slow down 

the projectile and debris from the experiment.  This is followed by the anvil and sabot 

assembly reaching the catch tank and impacting the sample once again.  The additional 

deformation and fragmentation imparted to the specimen occurs at significantly later 

times and is not quantitatively characterized by any experimental parameters measured 

during the relatively short time duration (approximately 150 µm after impact) of the 

experiment.  Some experiments were specifically designed to capture the relatively 

fragile specimen before entering the catch tank and recovering the sample without 

additional secondary damage.  However, this type of experiment could not be performed 

in every instance since it interfered with the time-resolved VISAR diagnostics.  

Therefore, extensive characterization of recovered fragments has not been performed for 

the reverse Taylor impact configuration. 

Conversely, most direct Taylor impact experiments avoid the problem of 

secondary impacts and subsequent damage to the test specimen.  Typically the specimen 

impacts the anvil and drops to the bottom of the experiment chamber.  Fragments were 

recovered for a series of direct Taylor impact experiments conducted on the 

Al+Fe2O3+47 vol.% epoxy composition at velocities ranging from 105.2 to 209.9 m/s.  

The lowest velocity experiment (105.2 ± 15.4 m/s) was recovered fully intact with no 

additional secondary impact damage observed.  The remaining four experiments were at 

sufficient velocities to cause fracture upon impact and these fragments were collected for 

post-mortem analysis.  Examples of recovered specimen materials are shown in       

Figure 4.73 for each impact experiment where fracture occurred.  Typically, 90 to 95 % 

of the specimen’s initial mass was recovered after the experiment.  Approximately 75 to  
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Figure 4.73 Collected fragments recovered from direct Taylor impact experiments for 
Al+Fe2O3+47 vol.% epoxy composites with sufficient impact velocities to cause fracture.  
Impact velocities were a) 169.3, b) 175.9, c) 186.5, and d) 209.9 m/s. 

 
Figure 4.74 Fragment size distributions based on weight fraction of collected material 
from direct Taylor impact experiments for Al+Fe2O3+47 vol.% epoxy composites. 
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85 % of this total mass consisted of relatively large pieces that were part of the back end 

of the specimen.  The remaining 15 to 25 % of the fragments were located close to the 

impact face region of the specimen.  The fragments from each experiment were sorted 

using 850, 300, and 106 µm sieves.  Figure 4.74 shows the fragment size distribution 

based on the weight fraction of material collected from the specimen’s impact face within 

the sieve size range.  This figure does not include the relatively large pieces recovered 

from the back end of the specimen.  In general, the fraction of particles within a particular 

size range increased as impact velocity increased.  However, the fraction of particles 

collected for experiments RM-26 and RM-27 (169.3 and 175.9 m/s, respectively) had 

comparable size distributions within each size interval.  

The fracture surfaces of fragments collected for each impact velocity were also 

examined and representative SEM images are shown in Figure 4.75(a-d) and           

Figure 4.76(a,b).  The fracture surfaces typically showed a combination of features, such 

as aluminum particle pull-out regions as shown in Figure 4.75(a,b) or regions where 

epoxy is highly deformed and shows evidence of smearing while the hematite particles 

dispersed within the epoxy matrix show no evidence of deformation as illustrated in 

Figure 4.75(c,d).  Other regions show the deformation of aluminum particles as 

demonstrated in Figure 4.76(a,b).  For this particular case, a relatively large crack is 

inhibited from continued propagation by an aluminum particle that is possibly deformed 

from the interaction. 

The examination of recovered fragment fracture surfaces provides some details 

about the behavior of the composite and its failure when subjected to high velocity 

impacts.  It is desirable to correlate microstructural features with mechanical deformation  
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Figure 4.75 Recovered fragment fracture surfaces from direct Taylor impact 
experiments a,b) RM-25 (186.5 m/s) and c,d) RM-27 (175.9 m/s).  Specimens generally 
show a,b) aluminum particle pull-out features and c,d) highly deformed (smearing) epoxy 
phase regions.  Higher magnification images illustrate an b) aluminum pull-out site, while 
d) shows a highly deformed hematite dispersed epoxy region with no apparent 
deformation of the individual hematite particles. 

 

Figure 4.76 SEM images of a recovered fragment fracture surface from the direct 
Taylor impact experiment RM-24 (209.9 m/s) showing a) relatively large crack inhibited 
by a b) deformed aluminum particle shown in a magnified view of the rectangular area 
identified in a). 
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and fracture behaviors.  However, it is impossible to directly evaluate the composites 

bulk mechanical behavior as influenced by particle-scale microstructural effects, such as 

changing material architecture through particle morphology and size alterations.  

Recovered Taylor impact specimens were used to estimate the influence that 

microstructural features have on the composite’s overall mechanical behavior.  In some 

cases, post-impact specimens were recovered fully intact and examined, particularly 

looking at the imparted deformation localized to the impact region of the specimen.  

Figure 4.77(a-d) shows optical micrographs of the impact faces for recovered specimens 

with two different compositions and compares the influence of altering aluminum particle 

sizes on crack propagation in the extreme case for nano- and micron-scale particles.    

The images shown in Figure 4.77(a,b) were obtained from shot 0645 for                        

nano-Al+Fe2O3+70 vol.% epoxy with an impact velocity of 201.1 m/s.  The              

nano-composites have unique microstructural features which contain regions with high 

concentrations of nano-aluminum particles as shown in Figure 4.10(a-c) prior to impact 

(section 4.1.1).  The concentrated nano-aluminum regions (indicated by arrows in   

Figure 4.77(a,b)) inhibit the crack propagation throughout the impact face of this sample.  

This was a common feature observed for all the nano-aluminum composite materials 

examined.  Conversely, the micron-scale aluminum composite impact face shown in 

Figure 4.77(c,d), illustrates a completely different fracture behavior.  The micrographs 

shown in this figure were obtained from a micron-Al+Fe2O3+60 vol.% epoxy specimen 

subjected to an impact velocity of 109.8 m/s (shot RM-22).  The images illustrate 

significantly more damage and multiple fracture sites, many of which propagate across 

the impact face without being inhibited by the aluminum particles.  There is also  
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Figure 4.77 Optical micrographs showing the impact faces of recovered (fully intact) 
Taylor specimens.  Images compare the crack propagation behaviors for a,b) nano-
Al+Fe2O3+70 vol.% epoxy with an impact velocity of 201.1 m/s (shot 0645) and c,d) 
micron-Al+Fe2O3+60 vol.% epoxy with an impact velocity of 109.8 m/s (shot RM-22).  
The highly concentrated nano-aluminum regions (indicated by arrows) inhibit the crack 
propagation in a,b), while the micron-scale aluminum composite exhibits intergranular 
crack propagation, typically between the aluminum particles.  The micron-scale 
composite exhibits significantly more damage than its nano-scale counterpart. 
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significant concentration of voids, particularly in the central region of the specimen’s 

impact face.  Examinations of these two particular experiments illustrate the 

microstructural influence on the deformation behavior of these composites.  The   

micron-scale aluminum composite had significantly more damage when compared to the      

nano-aluminum composite with approximately twice the impact velocity. 

Reverse Taylor impact experiments, where the specimens fractured during the 

initial moments of impact, also reveal interesting features that permit the correlation of 

mechanical properties with microstructural features and chemical reactivity.  Select 

reverse Taylor impact experiments with relatively high impact velocities (0644, 0646, 

and 0647) showed evidence of a dark footprint remaining on the anvil face.  The 

recovered anvils are shown in Figure 4.78(a-d) after being removed from the recovered 

sabot.  The entire anvil was placed in the SEM for further analysis, where closer 

examination of these footprints revealed evidence of localized chemical reactions and 

decomposition of the epoxy matrix.  Chemical analysis using energy dispersive x-ray 

spectroscopy (EDS) indicated the presence of elemental aluminum, oxygen, and iron in 

concentrations that corresponded to the formation of Al2O3 and Fe (products of the 

Al+Fe2O3 thermite reaction) and other compounds in location ‘1’ of Figure 4.78(a-d).  

Several other sites on the anvil face had identifiable debris, indicated in Figure 4.78(a-d) 

as locations ‘2’ through ‘4’, however, SEM analysis showed no evidence of chemical 

reaction in these other areas.  

Post-mortem SEM analysis of the surfaces showed evidence of localized melting 

and re-solidification in addition to regions with no reaction, containing mostly hematite 

particles.  Figure 4.79(a-d) shows SEM images acquired, from several locations within  
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Figure 4.78 Photos of recovered anvil plates from reverse Taylor impact experiments 
showing a dark footprint (location ‘1’) and other specimen debris (locations ‘2’ through 
‘4’) on the surface.  The anvils were recovered from experiments with impact velocities 
of a) 423.2 m/s (shot 0644) for Al+Fe2O3+60 vol.% epoxy, and c) 288.3 m/s (shot 0646) 
and d) 235.3 m/s (shot 0647) for nano-Al+Fe2O3+70 vol.% epoxy.  Image b) shows a 
close-up view of the footprint region identified in a). 
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Figure 4.79 Select SEM images obtained from the recovered anvil of shot 0644 within 
the footprint region, identified as location ‘1’ in Figure 4.78(a).  Images show melting 
and re-solidification with evidence of Al+Fe2O3 thermite reaction products determined 
from EDS scans.  Images b) and d) show higher magnification views of a) and c), 
respectively, identifying EDS scan locations that are detailed in Table 4.18. 

the footprint region for Al+Fe2O3+60 vol.% epoxy composite with an impact velocity of 

423.2 ± 0.1 m/s (shot 0644).  Figure 4.79(a) shows a localized reaction site with Al2O3 

and Fe products in addition to an iron-alumina compound (FeAl2O4) at the bottom of a 

shell-like structure.  The partially remaining structure possibly indicates that an 

aluminum particle was “coated” with a hematite shell before reaction.  The background 

of this figure contains mostly hematite particles and possible epoxy decomposition 

products.  Figure 4.79(b) shows a higher magnified view of Figure 4.79(a) indicating 

areas   (labeled ‘1’ through ‘4’) where EDS scans were obtained to identify the chemical 

species present.  The EDS results are listed in Table 4.18 along with the possible 

corresponding compounds for each location based on the identified elemental weight  
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 Chemical analysis corresponding to locations identified in Figure 4.79(b,d) 
for Al+Fe2O3+60 vol.% epoxy composition.  SEM and EDS was used to examine the 
recovered anvil from shot 0644 with an impact velocity of 423.2 m/s. 

Location Fe 
[wt.%] 

O 
[wt.%] 

Al 
[wt.%] Possible Phase(s) Present 

1 98.88 0 1.12 Fe + Al 
2 24.49 33.00 42.51 FeAl2O4 + Al2O3 
3 87.64 4.91 7.45 AlFe3 + FeO + Fe 
4 52.90 27.52 19.58 Fe2O3 + Al2O3 + Fe 
5 16.01 46.45 37.54 FeAl2O4 + Al2O3 + AlO 
6 32.19 37.84 29.96 FeO + Al2O3 

so showed intermediate reaction products, such as AlFe3 and 

c,d) shows another location within the footprint area

elting and re-solidification.  The re-solidified reaction products

e on top of a layer of hematite particles.  Figure 4.79(d) identifies areas

’) where EDS scans were also performed and the resulting probable 

roducts are listed in Table 4.18.  Other locations outside the dark footprint area 

aining on the surface as shown in Figure 4.80, typically

f hematite with no evidence of reaction. 

Post-mortem SEM analysis for epoxy-cast composites containing nano-aluminum 

a-d) and Figure 4.82(a-d) show images acquired from 

recovered anvils for shots 0647 (235.3 m/s) and 0646 (288.3 m/s), 

inum composites showed more evidence of 

atite reduction, however, there were some locations with Al+Fe2O3 thermite reaction

a-c) shows evidence of melting and re-solidification of mostly  
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Table 4.19 Elemental chemical analysis identifying possible phases located in the 
regions identified in Figure 4.79(b,d) for nano-Al+Fe2O3+70 vol.% epoxy composite.  
SEM and EDS was used to examine the recovered anvils from shots 0646 (288.4 m/s) 
and 0647 (235.4 m/s). 

Location Fe 
[wt.%] 

O 
[wt.%] 

Al 
[wt.%] Possible Phase(s) Present 

1 77.72 22.28 0 FeO 
2 50.77 32.21 17.01 FeAl2O4 + Fe2O3 
3 69.93 30.07 0 Fe2O3 
4 72.11 27.89 0 Fe3O4 
5 84.65 15.35 0 FeO + Fe 
6 30.84 69.16 0 Fe2O3 
7 71.40 28.60 0 Fe3O4 
8 72.31 27.69 0 Fe3O4 
9 76.71 23.29 0 FeO 

 

hematite and unique hematite shell formations.  The hematite shells possibly form by 

rapidly fusing initially clustered individual hematite (Fe2O3) particles (or agglomerates) 

before reducing to magnetite (Fe3O4).  Table 4.19 lists chemical analysis results obtained 

from EDS scans for locations ‘1’ through ‘5’ identified in Figure 4.81(a-c).  The       

nano-aluminum composites also had debris located on the anvil face in regions outside 

the footprint area, as indicated in Figure 4.81(d), which shows remaining hematite 

particles and no evidence of chemical reaction. 

The higher velocity nano-aluminum composite impact experiment                   

(shot 0646, 288.3 m/s) showed similar melting and re-solidification features            

(Figure 4.82(a)), as the previously discussed lower velocity experiment.  However, some 

other locations within the impact footprint region showed rather interesting rapidly  
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Figure 4.82 Select SEM images obtained from the recovered anvil of shot 0646 within 
the footprint region, identified as location ‘1’ in Figure 4.78(c).  Image a) shows similar 
evidence of melting and re-solidification with EDS scan locations identified and detailed 
in Table 4.19.  Images b) through d) show unique microstructures evolving due to rapid 
solidification and temperature gradients within the impact footprint region. 

 
(γ-FeOOH) formed by the slow oxi

CO3 (calcite) [198-200]. 
Figure 4.83 Lepidocrocite dation of Fe2+ solutions 
in the presence of solid Ca
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solidified structures as shown in Figure 4.82(b-d).  These unique structures appear to be 

forming from variations in solidification or oxidation rates.  Figure 4.82(b) shows a layer 

of magnetite (Fe3O4) coating the surface while Figure 4.82(c) shows a field of solidified 

FeO structures with a remaining magnetite plate structure identified in the figure.  These 

two sites were in adjacent locations radiating outward from the center of the footprint and 

indicate a possible temperature gradient that caused the differences in the structures 

formed.  Figure 4.82(d) shows the structure that was located furthest from the central 

point of the impact footprint.  This structure illustrates a rather unique formation that is 

associated with a relatively slow oxidation process.  Very similar structures, shown in 

Figure 4.83, have been observed from the oxidized Fe2+ solutions in the presence of    

solid CaCO3 (calcite).  The structures are formed by the oxidation in air,              

producing lepidocrocite (γ-FeOOH) and ferrihydrite (Fe5O8H⋅H2O) deposits on the                   

calcite [198-200].  Lepidocrocite naturally occurs in rock, soils, and rust, often an 

oxidation product of Fe2+ [170].  The lepidocrocite formed by the slow oxidation process 

has a very similar structure to that shown in Figure 4.82(d) for the nano-aluminum 

composite experiment. 

 

4.4.7 Temperature Rise During Plastic Deformation 

 

The mechanical work associated with plastic deformation partially transforms into 

heat with a resulting temperature rise of the specimen.  The impact footprints remaining 

on the anvil face, for select reverse Taylor impact experiments, provides an instantaneous 

signature at the early moments of impact.  The strain and corresponding stress were 
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estimated at the moment this footprint was created, in addition to estimating the bulk 

temperature rise associated with the mechanical work.  The temperature rise has a 

significant effect on mechanical properties, particularly for polymers.  For high-strain 

rates, it is reasonable to assume that the deformation process is essentially adiabatic [16].  

The associated bulk adiabatic temperature rise from the plastic work associated with 

these strains was estimated using [16]: 

∫=∆
f

d
C

T
p

ε

εσ
ρ

β

0

,     (4.37) 

where β is the work rate to heat rate conversion factor, Cp is heat capacity, and ρ is 

density.  The heat capacity of each composition was determined from mixture theory and 

the heat capacity for each constituent (0.90, 0.23, and 1.19 J/g K for aluminum [109], 

hematite [109], and epoxy [201], respectively).  Although Cp is readily available in tables 

(usually as a function of temperature), β is not common and typically assumed to be 

constant in the range of 0.85 to 1.0 for metals [202].  However, Rittel [203] has found 

that β is dependent on strain and strain rate (evaluated in the range of 5.0 to 8.0 x 103 1/s) 

during the plastic deformation of polycarbonate.  The variation of β with strain was very 

low for values up to a strain of about 20 %, however, it rapidly reaches a maximum value 

in the vicinity of 30 % strain and then decreases slowly with increasing strain.  The 

maximum value of β for polycarbonate increases from 0.4 ( =ε&  5.0 x 103 1/s) to            

1.0 ( =ε&  6.5 x 103 1/s ) as strain rate increases.  The same general behavior was     

reported by Trojanowski [204] for epoxy and also by Chou, et al. [205] for 

 321



polymethylmethacrylate, cellulose acetate butyrate, polypropylene, and nylon 6–6.   

Chou, et al. [205] also reported a low temperature rise at low strains followed by a 

noticeable rise with increasing plastic strain.  Since there is a lack of available 

experimental data for β as a function of strain and strain rate, particularly for filled epoxy 

composites, a constant value of 1.0 was used for the estimation of temperature rise.  The 

use of this value was justified based on the experimental work of Rittel [203] showing the 

peak β value rapidly reached 1.0 for polycarbonate at strain rates lower than those 

typically attained for Taylor impacts experiments (104 to 106 1/s initially upon impact).  It 

is reasonable to assume this response is typical for most polymers, including the epoxy 

used for fabricating the structural energetic composites used in this current study. 

The recovered anvils with the identifiable footprint markings discussed previous 

are shown in Figure 4.78(a-d) for each of the experiments.  The diameter of the 

remaining footprints were precisely measured and the corresponding areal strain was 

calculated according to equation (4.23) in section 4.4.2; each resulting in a value close to 

50 % strain.  Table 4.20 lists the dimensions and corresponding areal strains calculated 

for each experiment. 

The footprints were only observed for two different compositions at select impact 

velocities for each.  The micron-Al+Fe2O3+60 vol.% epoxy composition showed 

evidence of a footprint at an impact velocity of 423.3 m/s.  Unfortunately, the next lowest 

impact velocity for this particular composition was 236.6 m/s and showed no evidence of 

a footprint.  The other composition, nano-Al+Fe2O3+70 vol.% epoxy, showed evidence of 

an impact footprint for two experiments at velocities of 235.3 and 288.3 m/s             

(shots 0646 and 0647, respectively).  The next lowest impact velocity for this series of  
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Table 4.20 Estimated temperature rise obtained from size measurements of footprint 
markings remaining on select anvils recovered from reverse Taylor impact experiments. 

Epoxy 
[vol.%] 

Shot 
Number 

Impact 
Velocity 

[m/s] 

Initial 
Diameter 

[mm] 

Footprint 
Diameter 

[mm] 

Areal 
Strain 
[%] 

∆T 
[°C] 

60 0644 423.2 ± 0.1 7.53 ± 0.03 10.54 ± 0.01 48.88 ± 0.002 84.21 ± 0.37
nano-70 0646 288.3 ± 0.9 7.54 ± 0.03 10.85 ± 0.01 51.72 ± 0.002 84.19 ± 0.35
nano-70 0647 235.3 ± 1.1 7.56 ± 0.03 10.82 ± 0.01 51.23 ± 0.002 83.00 ± 0.35

 

experiments was 201.1 m/s and showed no remaining marks on the anvil face. 

The remaining footprint observed from the micron-scale aluminum composite 

experiment was significantly darker and better defined than observed for the two      

nano-scale aluminum composite impact experiments.  Close examination of each 

footprint (using both optical microscopy and SEM) indicated there was no damage to the 

anvil face, but rather, a residue that remained on the surface from the localized reaction 

or decomposition (detailed previously in section 4.4.6) of the epoxy-cast composites 

upon impact. 

The corresponding work was obtained from the dynamic stress strain curves 

shown in Figure 4.65 (in section 4.4.3) for the respective compositions and the measured 

strain obtained from each footprint.  The associated bulk temperature rise calculated 

according to equation (4.37) for the three experiments are listed in Table 4.20 and were 

all found to be above 80 °C.  These temperatures are greater than the composite’s 

measured glass transition, Tg (63.4 and 81.5 °C for Al+Fe2O3+60 vol.% epoxy and     

nano-Al+Fe2O3+70 vol.% epoxy composites, respectively, and detailed in section 4.3.1).  

While the calculated bulk temperature is lower than the threshold temperature for 
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reaction between Al+Fe2O3 or epoxy decomposition (identified by DTA to be 

approximately 700 and 400 °C, respectively, and detailed in section 4.2.1.3), it is 

certainly greater than the Tg measured for epoxy (57.9 °C).  Since there is a significant 

volume fraction of epoxy in these composites, it is possible that local thermal softening 

takes place and triggers a series of subsequent events leading to extensive strains and 

consequent localized reaction. 

The critical strain where thermal softening within the composite begins can also 

be estimated by using the measured glass transition temperatures obtained from DMA          

(section 4.3.1) and solving equation (4.37) for the corresponding strain associated with 

the plastic deformation.  This was calculated for the 60 vol.% epoxy composite, the  

nano-70 vol.% epoxy composite, and pure epoxy.  Using average densities for each type 

of composition, the corresponding strains were 39.10, 50.43, and 33.13 % for the           

60 vol.%, nano-70 vol.%, and pure epoxy compositions, respectively.  Comparing these 

values with the critical areal strains obtained from reverse Taylor impact experiments, 

where fracture was observed, indicate the influence of thermal softening for the observed 

areal deformation behaviors.  While the critical areal fracture strain for the 60 vol.% and      

nano-70 vol.% epoxy composites were both approximately 30 %, the temperature rise 

associated with the plastic deformation up to this strain level does not appear to influence 

the continued areal deformation of the samples.  However, once the specimen exceeds 

both the critical areal fracture strain and the critical thermal softening strain, the 

temperature rise appears to influence the composites’ deformation behavior leading to 

significantly large areal strains (approximately 70 %) and eventual failure.  This effect is 

further substantiated by the change in slope observed for the areal strain curves, 
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indicating the alteration in strain rate response associated with the critical thermal 

softening strain.  Figure 4.58(a) from section 4.4.2 shows a significant slope change at an 

areal strain of approximately 35 to 40 %, in excellent agreement with the critical thermal 

softening strain of 39.10 %.  This effect becomes less apparent, but is still observed for 

experiments with higher impact velocities.  Similarly, the nano-70 vol.% epoxy 

composition also exhibits a change in slope at approximately 45 to 50 % strain as 

illustrated in Figure 4.59(a) from section 4.4.2 and compares well to the calculated 

critical thermal strain of 50.43 %.  The thermal softening effect appears to be more 

significant for the 60 vol.% epoxy composite, since the critical strain for thermal 

softening occurs at lower levels of strain as compared to the nano-70 vol.% epoxy 

composite.  This behavior could possibly contribute to the enhanced mechanochemical 

reactivity qualitatively observed for the 60 vol.% epoxy composition (discussed in  

section 4.4.8). 

It is also interesting that the pure epoxy has a critical thermal softening strain 

below the critical areal fracture strain of approximately 40 %, observed from reverse 

Taylor impacts.  In this case, the epoxy deformation behavior is influenced by the 

temperature rise associated with plastic deformation.  For the particle-filled composites, 

observed fracture was always associated with the specimen having the characteristic 

double-frustum deformation shape, while specimens that recovered elastically exhibited 

an elongated-mushroom deformation shape (discussed in section 4.4.1).  However, the 

pure epoxy always exhibits a double-frustum deformation shape for specimens that 

fractured and elastically recovered.  Thermal softening causes the epoxy to have a 

rubbery behavior that possibly explains the deformation shape associated with this 
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particular composition and its higher critical areal fracture strain.  The thermal softening 

effect is also evident in the measured areal strains shown in Figure 4.60(a) from      

section 4.4.2, indicating a change of slope at approximately 25 to 30 % strain, even for 

specimens that do not fracture. 

 

4.4.8 DTA of Post-Mortem Recovered Composites 

 

Epoxy-cast materials recovered from Taylor impact experiments were also 

studied using DTA to determine if chemical reactivity was altered due to the effects of 

dynamic deformation imparted to the specimens.  Figure 4.84 shows the results obtained 

for pure epoxy, comparing a reference material prior to dynamic deformation (trace a) 

and recovered fragment following a Taylor impact experiment (trace b).  The fragments 

were recovered from shot 0613, with the highest impact velocity for pure epoxy of   

179.7 m/s, and show virtually identical responses. 

In contrast, DTA experiments conducted for recovered fragments obtained from 

the Al+Fe2O3+60 vol.% epoxy composition show a slightly different response as 

compared to the reference non-impacted material.  Figure 4.85 compares the DTA 

records obtained for the Al+Fe2O3+60 vol.% epoxy composite reference material (trace a) 

and three different Taylor tests at impact velocities of 158.2, 210.7, and 236.6 m/s   

(traces b, c, and d, respectively).  Each of the traces shows the characteristic cold 

crystallization and decomposition peaks followed by the reduction of hematite to 

magnetite and the melting of aluminum.  However, the next peaks associated with the 

formation of intermediate phases (possibly FeO and/or FeAl2O4) are shifted slightly to  
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Figure 4.84 DTA traces obtained for pure epoxy samples prior to dynamic deformation 
(trace a) and following a Taylor impact experiment from recovered fragments (trace b).  
Fragments were obtained from the highest velocity experiment (0613) with an impact 
velocity of 179.7 m/s. 

 
Figure 4.85 DTA traces obtained for Al+Fe2O3+60 vol.% epoxy samples prior to 
dynamic deformation (trace a) and following Taylor impact experiments from recovered 
fragments (traces b-d).  Fragments were obtained from experiments with impact 
velocities of b) 158.2 m/s (0535), c) 210.7 m/s (0536), and d) 236.6 m/s (0603). 
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higher temperatures.  The main exothermic reaction peaks are also shifted to higher 

temperatures, possibly indicating a slight alteration of the composite’s behavior post 

impact. 

Similar DTA experiments were conducted for the nano-Al+Fe2O3+70 vol.% 

epoxy composition at the highest impact velocity tested, corresponding to 288.3 m/s  

(shot 0646).  However, in this case there was no change in the exothermic or endothermic 

events that were observed for the reference sample.  Figure 4.86 shows the DTA traces 

obtained for each of the specimens, which exhibit virtually identical responses. 

 

 
Figure 4.86 DTA traces obtained for nano-Al+Fe2O3+70 vol.% epoxy samples prior to 
dynamic deformation (trace a) and following a Taylor impact experiment from recovered 
fragments (trace b).  Fragments were obtained from the highest velocity experiment 
(0646) with an impact velocity of 288.3 m/s. 
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4.5 Time-Resolved Equation of State Experiments 

 

Time-resolved high-strain rate impact experiments were performed on epoxy-cast 

Al+Fe2O3 composites for a range of loading conditions.  Piezoelectric PVDF gauges 

placed on either side of the target were used to measure the stress magnitude and wave 

arrival times, while velocity interferometry directly measured the material’s particle 

velocity.  Data acquired from these measurements were used for obtaining the composite 

material’s Hugoniot equation of state (EOS).  The experimental configuration design 

specifies a state of uniaxial strain for the specimens, and each experiment yields a single 

data point on the Hugoniot.  These experiments additionally provided characteristics 

about the shock wave and the material’s response to dynamic loading over a finite time 

duration, limited by the survivability of the PVDF gauges. 

Several compressed-gas gun impact experiments were performed in which the 

flyer plate impact velocity was varied or the flyer and driver materials were varied to 

achieve an array of loading stress levels.  While a limited number of compressed-gas gun 

experiments were performed for the Al+Fe2O3+78 vol.% epoxy composite, additional 

explosively loaded experiments provided details within an extended pressure range up to 

approximately 25 GPa.  The majority of the results presented in this section are for 

compressed-gas gun experiments conducted for the Al+Fe2O3+60 vol.% epoxy 

composition. 

Experimental details for stress wave measurements and their analysis is presented 

in the following section.  The stress waveforms obtained from PVDF gauge records and 

particle velocity histories measured by VISAR are presented and discussed first.  This is 
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followed by the comparison of directly measured and calculated parameters obtained 

from these experiments.  Calculations are performed to represent the experimentally 

determined data in Hugoniot US-UP and pressure-volume (P-V) space.  The combined 

results for both compositions are next compared and the influence of particle 

reinforcement dispersed in an epoxy matrix is established.  The Hugoniot curves indicate 

that the responses of the composites are altered with the addition of solid particles at a 

critical US and UP value or pressure, possibly due to induced damage to the composite.  

The Birch-Murnaghan equation of state (BM-EOS) is used to characterize the 

composite’s compressibility and account for the altered Hugoniot response by 

quantitatively characterizing the possible resulting damage.  Additionally, experimentally 

determined material behavior was correlated with hydrodynamic calculations for 

evaluating the measured Hugoniot behavior. 

 

4.5.1 Analysis of Stress Wave and Particle Velocity Profiles 

 

Time-resolved impact experiments were performed on epoxy-cast Al+Fe2O3 

composites containing 60 and 78 vol.% epoxy.  A majority of the results presented and 

discussed in this section are for the compressed-gas gun impact experiments conducted 

for the Al+Fe2O3+60 vol.% epoxy composites.  Three lower pressure compressed-gas gun 

experiments conducted for the 78 vol.% epoxy composite are combined with higher 

pressure explosively loaded data obtained in collaboration with Jordan, et al. [161,162].  

The 78 vol.% epoxy composite materials in the low and high pressure studies were of 

identical composition, obtained from the same batch of material prepared for this work. 
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PVDF stress gauges were embedded on the impact and back surfaces of the target 

specimen as described in section 3.5.1, while velocity interferometry (VISAR) directly 

measured the particle velocity at the back surface of the target.  The gauges measure the 

stress history experienced by the target specimen, typically including several 

microseconds after impact.  In some cases, the gauges survived long enough to capture 

the unloading history of the impact.  The gauge records provide a time signature of the 

stress wave arrival and the corresponding rise-to-peak stress at the impact plane and 

propagated back surface of the specimen.  Additionally, the stress gauge records show 

details about the shock wave’s interaction with boundaries that make up the gauge 

package, such as reflecting off the fused silica window attached to the back surface of the 

specimen.  As described in the experimental procedure (section 3.5.1), the time-resolved 

gauge experiments consist of a loading configuration where the specimen is under a state 

of uniaxial strain.  Upon impact, the shock-wave (or pressure pulse) has a distinct rise-to-

peak stress followed by a constant stress of a defined duration that is dependent on the 

target geometry, and then an abrupt release to zero stress.  The thickness and significantly 

large aspect ratio (diameter to thickness) of the flyer and driver plates directly affect the 

wave duration and shape the disturbance wave such that it provides a one-dimensional 

plane wave without edge attenuation effects over the time duration of interest             

(few microseconds).  The rise time of the stress-pulse is also dependent on the planarity 

and angular alignment or tilt at impact.  Every attempt was made to ensure impact 

planarity by lapping all surfaces that make up the target and projectile with additional 

attention directed towards the careful assembly of the target.  The stress waveforms are 

obtained by measuring the voltage change of the PVDF gauge during the impact  

 331



 
Figure 4.87 The a) voltage, b) current, c) charge, and d) stress waveforms obtained 
from impact (left) and propagated (right) gauge records for shot 0627. 
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experiment and subsequent calculations to obtain current and charge histories.  A typical 

example of the measured voltage waveforms obtained from the impact and propagated 

stress gauges of shot 0627 are shown in Figure 4.87(a), respectively.  These voltage 

waveforms are converted to current by dividing the resistance of the current viewing 

resistor (CVR) used in the experiment and then integrated with respect to time to obtain 

the charge histories.  The current waveforms for the impact and propagated gauge records 

are shown in Figure 4.87(b), respectively, while the resulting charge waveforms are 

shown in Figure 4.87(c), respectively.  The PVDF gauges were developed under        

well-known conditions imposed by controlled shock-loading experiments and correlate 

the charge output with stress response [160,164].  PlotData [165] software package was 

used to convert current, charge, and resulting stress traces.  The impact and propagated 

stress traces are shown in Figure 4.87(d), respectively.  The voltage, current, charge, and 

stress waveforms obtained for all the Hugoniot experiments conducted in this study are 

included in Appendix C for reference. 

A combined plot of the stress traces obtained for all of the experiments performed 

on Al+Fe2O3+60 vol.% epoxy composites is shown in Figure 4.88 and Figure 4.89 for the 

impact and propagated gauges, respectively.  These plots only show early portions of the 

traces captured, however, the PVDF gauges typically gave reliable data up to 2 to 3 µs 

after impact.  The longer data records typically show the shock wave interaction with the 

different materials that make up the target assembly.  In some cases, the release wave was 

also captured and will be discussed in section 4.5.4.  The detail data obtained for each of 

these experiments is also listed in Table 4.21.  
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Figure 4.88 A combined plot of the impact stress traces obtained for all parallel-plate 
impact experiments conducted for the Al+Fe2O3+60 vol.% epoxy composite. 

 
Figure 4.89 A combined plot of the propagated stress traces obtained for all parallel-
plate impact experiments conducted for the Al+Fe2O3+60 vol.% epoxy composite. 
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Interpretation of the stress profiles requires careful consideration of wave 

propagation through the different materials that comprise the gauge package and the 

target, because of shock impedance differences.  The PVDF stress gauges are 

approximately 20 to 25 µm thick and placed between two 25.4 µm thick PTFE insulation 

layers.  Typically, the total thickness of the gauge packages were approximately            

70 to 80 µm after assembly, which include thin film epoxy layers (up to a micron thick) 

used for attachment.  As the shock wave moves through the gauge package and into the 

target material, it will reflect off of high impedance interfaces and partially propagate 

back through the gauge package.  However, the impedance mismatch between each of the 

components comprising the gauge package (PVDF, PTFE, and epoxy) and the target 

material are fairly similar.  Therefore, the stress equilibrium is reached fairly rapidly with 

only minor reverberations observed for the traces, which travel back through the gauge 

package.  The mechanical response time or stress equilibrium of the shock wave moving 

through the gauge package can be estimated by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

SU
hnt ,      (4.38) 

where h is the thickness of the gauge package, US is the shock velocity of the disturbance 

wave through the gauge package, and n is the number of reverberations necessary for the 

gauge to reach stress equilibrium.  For many materials, n = 3 if there is a shock 

impedance mismatch between the gauge package and the surrounding materials, and the 

response time of a 25 µm gauge is estimated to be between 10 and 50 ns [206]. 

Careful analysis of the impact and propagated stress profiles (Figure 4.88 and  
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Figure 4.89) resulted in measured reverberation times ranging between 5 and 10 ns.  In 

most cases, there were four to five reverberations observed before reaching the peak 

equilibrium stress value, corresponding to approximately 40 to 50 ns after the arrival of 

the disturbance wave.  These estimates give some confidence in the selection of 

equilibrated stress values obtained from the waveforms. 

In general, the impact gauge equilibrated stress values increase steadily.         

Shots 0507 and 0628 performed under similar impact conditions on the same sample 

illustrate the repeatability of parallel-plate impact experiments conducted in this study.  

Both experiments used a tungsten flyer impacting a copper driver at comparable impact 

velocities in order to achieve the desired stress level.  However, shot 0507 had a slightly 

lower velocity of 972.1 m/s, resulting in a correspondingly lower measured impact stress 

of 7.23 GPa as compared to 7.66 GPa for shot 0628 with an impact velocity of        

1022.0 m/s.  The propagated gauge records also follow this same trend, which result in 

equilibrated stresses of 7.30 and 7.70 GPa for shot 0507 and 0628, respectively.      

Figure 4.89 also indicates shot 0608 shows a similar propagated gauge response as     

shots 0507 and 0628, even though the impact stress for this experiment (shot 0608) was 

significantly lower (5.91 GPa).  It is unclear why this particular experiment showed such 

an extremely high propagated gauge response.  The expected equilibrated stress value 

was estimated from the measured VISAR particle velocity to be approximately 5.6 GPa. 

The rise time to peak equilibrated stress was also estimated for impact and 

propagated gauge records obtained for each experiment.  In general, the rise time for the 

impact gauge record decreased as the impact stress increased for the array of loading 

conditions encountered in these experiments.  However, this general trend was not 
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observed for the propagated gauge records.  Figure 4.90 compares the rise times 

associated with impact and propagated gauge records as a function of peak stress.  Notice 

that the impact gauge shows a relatively smooth decrease in rise time as the impact stress 

increases.  In contrast, there appears to be a rather abrupt transition and decrease of rise 

time following the lowest stress impact experiment, which had a rise time of 122.5 ns.  

The rise time associated with the remaining propagated gauge responses appear to be 

relatively constant, with an average value of approximately 40 ns.  In fact, the              

rise-to-peak stress for the propagated gauge is typically more rapid than the impact 

gauge, as summarized in the measured rise times listed in Table 4.22 for both gauge 

locations.  This is not a surprising result, since many studies have shown that        

particle-filled polymer composites have rather unique loading and unloading properties.   

 
Figure 4.90 Comparison of measured rise times to peak stress obtained for impact and 
propagated stress waveforms shown in Figure 4.88 and Figure 4.89, respectively. 
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Table 4.22 Measured peak stress (pressure) rise times from impact and propagated 
gauge records obtained for Al+Fe2O3+60 vol.% epoxy composite. 

Impact Gauge Propagated Gauge Shot 
Number Pressure, PI 

[GPa] 
Rise Time 

[ns] 
Pressure, PII 

[GPa] 
Rise Time 

[ns] 
0627 2.71 ± 0.01 112.0 3.32 ± 0.02 122.5 
0505 4.14 ± 0.02 77.5 4.01 ± 0.17 42.0 
0608 5.91 ± 0.14 50.0 7.36 ± 0.08 42.8 
0507 7.23 ± 0.15 45.5 7.30 ± 0.19 38.5 
0628 7.66 ± 0.03 50.5 7.70 ± 0.06 50.0 
0609 8.54 ± 0.24 37.0 8.99 ± 0.23 35.0 

 

For example, the extensively studied alumina-epoxy composite ALOX, exhibits 

extraordinarily large release-wave velocities [83,85,87,88].  It is clear that the relatively 

high wave speeds associated with aluminum and hematite particles are very influential on 

the bulk wave propagation behavior within the composite.  Typically, wave dispersion is 

associated with a disturbance effect that attenuates the wave.  However, for the case of 

higher shock impedance particles dispersed in a polymer matrix, the waves appears to 

actually intensify and increase the overall bulk wave velocity for the composite. 

The time chosen for reaching stress equilibrium is based on observing the current 

traces.  Due to the stress rate dependency of the output signal, very fast loading and 

unloading pulses cause large amplitude current spikes with durations of tens of 

nanoseconds [160].  These current spikes are separated by intervals of zero current 

corresponding to the gauge being stressed at a constant level and the stress rate is, 

therefore, zero [160].  The gauge current output is zero except during loading and 

unloading stages of the impact.  The stress equilibrium determined for each experiment 

 339



was based on observing the time when the charge trace returned to zero and was in 

equilibrium.  This is illustrated for the impact and propagated gauge records of shot 0609 

in Figure 4.91(a), which identifies the arrival of the disturbance wave (red arrow), 

followed by a rise in current until the gauge equilibrates back to zero current again  

(green arrow).  The identified times from the current traces in Figure 4.91(a) are used to 

obtain the corresponding equilibrated stresses shown in Figure 4.91(b) for the impact and 

propagated gauges, respectively. 

The current traces also show a definite unloading during the rise-to-peak stress, 

indicated by the significant negative current peak before returning to positive values and 

equilibrating at zero current.  The combined stress waveforms, shown in Figure 4.88 for  

 
Figure 4.91 Impact (left) and propagated (right) gauge records showing a) current and 
b) stress traces obtained for shot 0609.  Red arrows indicate the arrival time of the 
disturbance wave, while green arrows indicate the equilibrium stress determined from the 
current trace returning to zero. 
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the impact gauge and Figure 4.89 for the propagated gauge, each indicate a “step” during 

the rise-to-peak stress.  The impact gauge record for shot 0627 is the only trace that does 

not indicate a step, however, the propagated gauge record does.  These steps or unloading 

correspond to a significant negative peak in the current trace, which typically have not 

been observed for other material systems [12,160,207,208].  Anderson and    

Wackerbarth [160] outline two possible general categories for PVDF gauge current 

outputs; i) mechanical ringing during stress reverberations in the gauge and ii) electrically 

inductive ringing, which shows a significant current peak during the rise-to-peak stress 

and significant noise in the record.  The traces obtained from this study are extremely 

clean and do not appear to have electrically inductive ringing associated with the loading 

step.  Lee, et al., [207] have shown a similar stress response for Teflon, which clearly 

indicates a change in stress rate upon loading to the peak load.  Therefore, the loading 

step may be linked with the viscoelastic-viscoplastic behavior typically associated with 

polymers. 

While the impact gauge records showed a range of rise times (112 to 37 ns) for 

the equilibrated peak stress, decreasing as impact stress increased, and propagated gauge 

records had rise times close to 40 nanoseconds, the rise times associated with the impact 

and propagated step stresses had average values of 15.9 and 15.7 ns, respectively.  This 

possibly gives evidence of a common viscoelastic-viscoplastic loading response 

associated with the relatively large volume fraction of epoxy used for these composites. 

The material particle velocities were also obtained during these experiments, with 

exception to shot 0505, where VISAR was not used.  Particle velocity was measured at 

the specimen and fused silica window interface in close proximity to the propagated  
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Figure 4.92 VISAR traces obtained from the back surface of the target for parallel-plate 
impact experiments conducted for Al+Fe2O3+60 vol.% epoxy composites.  Traces are 
shown for directly measured particle velocities after correction for impedance differences 
between the specimen and the fused silica window. 

PVDF gauge location.  Figure 4.92 shows the VISAR traces obtained for each impact 

experiment after correcting for the impendence differences between the sample and 

window material.  These traces exhibit a much larger time window for the impact 

experiments than shown for the PVDF gauge records thus far. 

The particle velocity traces typically show a rapid rise and slight rounding over as 

it approaches the peak velocity.  In each experiment, a relatively constant particle 

velocity was observed for a reasonably long period of time after the peak velocity is 

reached.  The release wave has a well defined arrival time in most cases, corresponding 

to specimen geometries that were thick enough for allowing ample time between the 

compressive wave reaching the back surface and completely releasing.  Some select 
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experiments (shots 0628 and 0507) had specimen geometries such that the compressive 

and release waves interact to produce attenuation in the signal. 

The VISAR traces show similar features that were observed for the PVDF gauge 

records, such as the arrival of the release wave and steps in the rise-to-peak particle 

velocity.  The steps associated with the arrival of the shock wave are shown in a zoomed 

view of the VISAR traces in Figure 4.93, where the arrows indicate the step regions.  

These appear to occur at relatively similar times as those observed for the PVDF gauge 

records.  However, since the VISAR and PVDF gauge signals are recorded on different 

oscilloscopes, the time synchronization of the respective signals is extremely challenging 

since these features occur a few nanoseconds after impact.  The relative amplitude ratios  

 

 
Figure 4.93 Zoomed region of the VISAR traces shown in Figure 4.92 displaying steps 
(indicated by arrows) in the rise-to-peak particle velocity.  
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Table 4.23 Steps were observed in the rise-to-peak stress and particle velocity traces for 
each parellel-plate impact experiment.  The ratio of step stress (pressure) and peak stress 
(pressure) was calculated for the impact and propagated gauges.  Similarly, the ratio of 
particle step velocity to peak velocity was also calculated and compares well with both 
the impact and propagated gauge step ratios. 

Impact Gauge Propagated Gauge VISAR Particle Velocity
Shot 

Number 
Pressure 
Step, PSI 

[GPa] 

Pressure 
Ratio 

PSI/PI [%] 

Pressure 
Step, PSII 
[GPa]] 

Pressure 
Ratio 

PSII/PI [%]

UPS 
Step 

[mm/µs] 

UP 
Ratio 

UPS/UP [%]
0627 1.44 53.14 1.61 48.49 0.192 56.47 
0505 2.91 70.29 2.60 64.84 n/a n/a 
0608 5.18 87.65 5.41 73.51 0.426 75.13 
0507 5.68 78.56 5.61 76.85 0.463 63.68 
0628 6.08 79.37 5.52 71.69 0.563 79.52 
0609 6.95 81.38 7.79 86.65 0.613 80.87 

 

were therefore calculated to compare the measured response from the impact gauge, 

propagated gauge, and VISAR records.  The ratio of the step amplitude and the peak 

amplitude for the PVDF (impact and propagated) gauge records and the VISAR traces 

are calculated in Table 4.23.  Comparison of the propagated gauge and particle velocity 

step amplitude ratios appears to be in relatively good agreement, both measuring similar 

responses at the specimen/window interface.  As the peak stress increases for each 

experiment, the step occurs closer to the peak amplitude and indicates the influence of 

increasing loading rate or strain rate.  The VISAR signal further verifies that the 

composite materials undergo some type of relaxation during the rise-to-peak stress, 

possibly associated with viscoelastic-viscoplastic deformation behavior. 
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4.5.2 Measured Parameters Obtained from Instrumented Impact Experiments 

 

Directly measured parameters obtained from parallel-plate impact experiments 

include impact and propagated stress histories from PVDF gauges (discussed in      

section 4.5.1), shock velocity, US, from the transit time between the two gauges, and 

particle velocity, UP, gained from VISAR measurements.  These experiments were 

designed to give information necessary for developing the material’s Hugoniot equation 

of state.  In many cases, the directly measured parameters were also verified by 

redundancies built into the design of the experiments. 

The wave speed through the composite specimen is obtained by measuring the 

transit time between the two gauges placed in direct contact with the opposite surfaces of 

the target specimen, less the travel time through the gauge insulation layers.  The transit 

time was measured from the toe-to-toe and half-max locations of the stress waveform 

profiles and corrected for gauge package insulation thicknesses.  This time was used to 

calculate the composite material’s shock velocity, US, according to: 

t
xU S = ,      (4.39) 

where x is the sample thickness and t is the measured transit time through the two gauges.  

Shock velocities obtained for each experiment show excellent correlation, exhibiting less 

than 1 % difference between the toe-to-toe and half-max values listed in Table 4.21.  This 

also gives an indication of the excellent planarity and tilt control maintained for these 

experiments.  The directly measured peak impact pressures (stresses) and shock velocities 
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are plotted in Figure 4.94 for experiments conducted on the Al+Fe2O3+60 vol.% epoxy 

composite.  Viewing the data in this way shows the relationship between the parameters 

without any assumptions about steady wave propagation through the specimen or 

hydrodynamic conditions necessary for calculating the material state using the well 

known Rankine-Hugoniot jump conditions [17].  The impact step pressures, PSI, are also 

featured, along with corresponding propagated gauge, PII, and propagated step      

pressure, PSII, responses after impedance corrections.  The impact and propagated step 

pressures correspond to the step observed in the waveform profile’s rise-to-peak stress 

(discussed in section 4.5.1).  The steps appear to be associated with the loading response 

of pure epoxy.  The impact and propagated step pressures all shift and overlap the 

response observed from pure epoxy shock data obtained from Carter and Marsh [72], and      

Marsh [18].  Figure 4.94 also includes curves obtained for Kel-F [18,72] and the 

theoretically calculated response using mixture theory (inverse Hugoniot EOS discussed 

in section 4.5.4.2) obtained from aluminum and hematite shock data [18].  Kel-F is a 

fluro-polymer, also known as polychlorotrifluoroethylne (PCTFE), which has been 

studied to significantly high pressures and is frequently used for representing the 

behavior of the PVDF gauge package [10,207,209,210].  The step in gauge record 

responses does not appear to be associated with the gauge package response represented 

by the Kel-F curve.  The measured impact and propagated gauge responses have a 

coupled pure epoxy component that influences the overall measured response of the 

composite.  This trend continues until reaching a pressure over approximately 4 GPa, 

where there is a shift to even higher shock velocities possibly associated with a 

strengthening effect.  A more detailed discussion about possible damage and 
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Figure 4.94 Directly measured pressure and shock velocity parameters obtained for the 
Al+Fe2O3+60 vol.% epoxy composite are shown.  The corresponding propagated gauge 
and propagated step pressures after impedance corrections are also featured.  Pure epoxy 
and Kel-F data (representing the gauge package response) from Carter and Marsh [72] 
and Marsh [18] are included for reference, in addition to theoretically calculated response 
for Al+Fe2O3 using mixture theory. 
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strengthening mechanism follow in section 4.5.4.1. 

At higher impact pressures, above 4 GPa, the impact and propagated step 

pressures and the propagated pressure converge, with values of 4.33, 4.57, and 4.72 GPa, 

respectively.  From this point forward, the solid-particle reinforcement inclusions are 

participating in the loading response.  Prior to this point, the epoxy matrix dominates the 

composite’s response and the dispersed particles have little influence in the overall 

response.  For higher impact pressure experiments above this 4 GPa critical limit, the 

propagated pressure response closely follows that observed for pure epoxy.  The impact 

and impedance corrected propagated pressures should theoretically have identical 

responses if the shock wave response is not altered in any way by the composite material.  

However, the wave appears to become focused as it propagates through the specimen and 

thus shifts to higher shock velocities, as a result of relatively high impedance solid 

particles distributed throughout the epoxy matrix.  If this is indeed the case, this trend 

would be expected to continue as the impact pressure for experiments increases, reaching 

a maximum value that would be close to the theoretical aluminum-hematite response 

curve shown in Figure 4.94.  The measured shift to higher shock velocities above a 

critical pressure limit further verifies that the solid particles are influencing the overall 

response of the composite. 

Steady wave propagation through the specimen and hydrodynamic conditions 

were assumed for calculating additional parameters using the Rankine-Hugoniot jump 

conditions [17].  The conservation of momentum equation was used for calculating the 

particle velocity, UP, in terms of the initial density, ρ0, the measured impact stress or 

pressure, PI, and the shock velocity through the composite according to: 
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S

I
P U

P
U

0ρ
= .      (4.40) 

The particle velocity was also directly measured using VISAR for most of the 

experiments.  Comparison of the two measures of particle velocity show good 

agreements, with an average of 1.2 % difference between the two techniques.  However, 

the calculated particle velocity for shot 0608 was greater than the measured VISAR 

value, corresponding to 2.5 % difference.  The particle velocity for shot 0505, where 

VISAR was not used, was obtained from a symmetric impact configuration where the 

flyer is the same material as the target so that the equilibrium particle velocity is known 

to the precision of the impact velocity measurement.  For a symmetric impact, the particle 

velocity is equal to one-half the impact velocity.  The calculated particle velocity using 

equation (4.40) for shot 0505 was less than the value calculated from the measured 

impact velocity, corresponding to a 4.2 % difference between the two measures.   

Figure 4.95 shows impact pressure as a function of particle velocity, comparing 

the directly measured VISAR values and those calculated from equation (4.40) using 

shock velocity values obtained from the impact pressure waveform toe-to-toe and half-

max measurements.  The figure shows a polynomial fit to the pressure and particle 

velocity data for the half-max measured values, although, all the methods used for 

obtaining particle velocity show excellent correlation. 

Similarly, Figure 4.96 shows the relationship between shock velocity, US, and 

particle velocity, UP, again using several calculation methods with excellent correlation.  

The polynomial fit to the US-UP Hugoniot data is obtained from the half-max measured 

values.  Many materials, particularly metals, typically have a linear US-UP relationship  
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Figure 4.95 Impact pressure and particle velocity measured directly by VISAR are 
compared with calculated values using equation (4.40).  Shock velocity values are 
obtained from the impact pressure waveform toe-to-toe and half-max transient time 
measurements. 
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Figure 4.96 Directly measured shock velocity and particle velocity (obtained by 
VISAR) are compared to calculated particle velocities using equation (4.40).  Shock 
velocities from transient times calculated using toe-to-toe and half-max methods are used 
to calculate particle velocity.  Pure epoxy data obtained from Carter and Marsh [72], and 
Marsh [18] is also shown for reference. 
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that describes the shock response fairly well for materials that do not experience a phase 

transformation.  However, a particularly interesting feature common to most polymers 

shows a significant non-linear US-UP Hugoniot behavior within a relatively low pressure 

regime [72].  The non-linear behavior typically has a distinct concave curvature with an 

initially rapid shock velocity.  The particle-filled Al+Fe2O3 epoxy-cast composite with  

60 vol.% epoxy also shows non-linear US-UP Hugoniot behavior, however, the response 

is altered with the plot exhibiting a convex curvature with initially rapid particle velocity.  

The two lowest data points illustrate an initially similar behavior for the particle-filled 

composite and pure epoxy, which gradually deviate at a particle velocity above 

approximately 450 m/s.  Further increase in particle velocity shows a significant 

deviation between pure epoxy and the 60 vol.% epoxy composite.  This suggests that the 

composite’s behavior is being altered at sufficiently high pressures or corresponding 

particle velocities that introduce a kink in the US-UP Hugoniot curve.  It is possible that a 

sharply defined kink could occur at a particle velocity of approximately 500 m/s, 

however, there are only two data points within this region to support this idea. 

Ultrasonically measured longitudinal and bulk sound velocities for the particle-

filled composition and pure epoxy, indicated by L and B, respectively, in Figure 4.96, are 

specified along the shock velocity axis.  The shock velocity intercept obtained by 

extrapolating US-UP data for pure epoxy coincides with its longitudinal wave speed value.  

This phenomenon is typically observed for polymeric materials, which display higher 

bulk sound velocities than obtained from ultrasonic measurements.  In contrast, the        

60 vol.% epoxy composition yields an intercept value significantly below the longitudinal 

sound velocity, but close to the bulk wave speed value.  If the 60 vol.% epoxy composite 
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truly follows a similar response observed for pure epoxy both at ambient pressures and 

within the pressure regime for the two lowest data points, it is possible to construct a 

linear curve that would essentially identify the kink location on the US-UP Hugoniot 

curve.  This is shown by the dashed line in Figure 4.96, which essentially offsets the 

response of pure epoxy to corresponding higher shock velocity values.  This is an effect 

that would be expected when introducing higher shock impedance material to an epoxy 

matrix. 

The compressibility of the composite material is also evaluated from the 

measured parameters obtained from parallel-plate impact experiments.  The specific 

volume, V/V0, is calculated using the conservation equations and result in the relation: 

S

P

U
U

V
V

−= 1
0

.      (4.41) 

iffens the compressibility response 

as compared to pure epoxy.  This effect becomes increasingly more pronounced as 

impact pressure increases, over t

 

Figure 4.97 (shown on the next page) illustrates the compressibility behavior for the 

Al+Fe2O3+60 vol.% epoxy composite in comparison with pure epoxy data obtained from 

Carter and Marsh [72] and Marsh [18].  The introduction of solid particles improves the 

overall strength of the composite and significantly st

he pressure range studied. 
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Figure 4.97 Comparison of measured impact pressure and calculated relative volume 
values for Al+Fe2O3+60 vol.% epoxy and data obtained from Carter and Marsh [72], and 
Marsh [18] for pure epoxy. 
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4.5.3 C

   

ed by               

Jordan, et al. [161,162] are also included to give complete material behavior up to 

pressures of approximately 25 GPa.  The 78 vol.% epoxy composite specimen used for 

one compressed-gas gun experiment (shot tly lower density 

cast 

Al+Fe2

omparison of Shock Hugoniots Obtained for Epoxy-Cast Composites 

 

Previously discussed results obtained for Al+Fe2O3+60 vol.% epoxy composite 

are compared with the higher epoxy containing composite, Al+Fe2O3+78 vol.% epoxy 

and pure epoxy data from Carter and Marsh [72], and Marsh [18].  Although there was a 

limited number of compressed-gas gun experiments performed for the 78 vol.%    

epoxy composite, higher-pressure explosively loaded experiments conduct

 0303) had a significan

(1.7900 g/cm3, 95.92 % TMD) as compared to other specimens (1.8576 ± 0.0071 g/cm3, 

99.54 % TMD) and the theoretical value of 1.8661 g/cm3.  Therefore, this particular 

experiment was not included in the characterizion of the 78 vol.% epoxy composite 

shock-compression behavior. 

The direct comparison of both composites and pure epoxy allows the influence of 

particle-fill volume fraction or overall response of epoxy volume fraction to be evaluated 

with reference to the epoxy baseline.  The P-UP response obtained for both epoxy-

O3 composites and the baseline response of pure epoxy are shown in Figure 4.98.  

The open data points in the figure correspond to compressed-gas gun experiments, while 

the filled triangles are for the explosively loaded higher pressure impact experiments.  

The curves show the influence of solid-particle additions to an epoxy matrix and the 

altered responses as the volume fraction of each component changes.  The direct 

evaluation of each composition at the same pressure in Figure 4.98 corresponds to higher  
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Figure 4.98 Experimentally measured pressure data plotted as a function of calculated 
particle velocity, UP, for 60 and 78 vol.% epoxy composite materials and pure epoxy data 
from Carter and Marsh [72], and Marsh [18]. 
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Figure 4.99 Comparison of US-UP Hugoniot data obtained for epoxy-cast Al+Fe2O3 
composites with 60 and 78 vol.% epoxy and pure epoxy data from Carter and Marsh [72], 
and Marsh [18]. 
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particle velocities as the volume fraction of epoxy increases.  For example, this 

physically represents the higher epoxy-containing material dissipates the shock energy 

( 2
2

1
PmU= ) imparted to the specimen more than the lower containing epoxy composites. 

The US-UP Hugoniot shown in Figure 4.99 also indicates the altered response 

observed for the particle-filled epoxy composites.  The filled polymers show a non-linear 

US-UP Hugoniot behavior exhibiting a convex curvature with initially rapid particle 

velocity.  The comprehensive study conducted by Carter and Marsh [72] for many 

different polymers such as polyethylene, polymethylmethacrylate, and epoxy, which 

include both thermosetting and thermoplastic polymers, also exhibit similar behavior for 

relatively low pressure regime experiments.  However, the non-linear behavior typically 

has a distinct concave curvature with an initially rapid shock velocity for the unfilled 

polymers.  The contrasting curvatures observed for particle-filled (convex) and unfilled 

polymers (concave) illustrate the influence particles have on the overall dynamic 

response of particle-filled composites. 

Ultrasonically measured longitudinal and bulk sound velocities for each        

epoxy-cast composite composition (discussed in section 4.1.2) are indicated by L and B, 

respectively in Figure 4.99 along the shock velocity axis.  Shock velocity intercepts 

obtained by extrapolating US-UP data for pure epoxy and the 78 vol.% epoxy composition 

had similar responses.  The two intercept values coincide with the ultrasonically 

measured longitudinal wave speed for the 78 vol.% epoxy composition.  The pure epoxy  

and 78 vol.% epoxy composite have very similar ultrasonic properties resulting in 

longitudinal waves speeds of 2.63 [18,72] and 2.34 mm/µs, respectively.  This illustrates 

the significant effect that epoxy has on the overall response of the composite due to the 
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relatively large volume fraction present in this composition.  The 60 vol.% epoxy 

composition yields an intercept value significantly below its longitudinal wave speed, but 

close to the bulk wave speed of 2.50 mm/µs.  Again, the response at ambient pressures 

appears to be influenced greatly by the relatively large volume fraction of epoxy present 

in these compositions. 

The results illustrate an initially similar behavior for both the particle-filled 

composites and pure epoxy at close to ambient pressures, which gradually deviate at 

particle velocities above approximately 450 m/s or a pressure close to 4 GPa.  Further 

increase in UP shows a significant deviation between the two composites at 

approximately 550 m/s, with the higher 78 vol.% epoxy containing composition 

exhibiting a sharp transition that approaches pure epoxy behavior.  It is proposed that 

these contrasting behaviors are related to various degrees of damage nucleating at 

inclusion sites within the epoxy matrix.  The damage initially provides a bulk toughening 

effect, which alters the composite’s Hugoniot behavior until significant bulk failure 

occurs.  This effect is illustrated by the 78 vol.% epoxy US-UP curve initially approaching 

and then falling below pure epoxy behavior at higher UP values. 

 

4.5.4 Evolution and Characterization of Composite Material Damage 

 

Theoretically determined bulk material response and hydrodynamic calculations 

are used to estimate and quantify the possible damage occurring in these composite 

materials.  The critical stress is estimated by calculating the composite’s compressive 

behavior using the Birch-Murnaghan equation of state (BM-EOS) [211] for damaged and 
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undamaged material responses.  Additionally, the equilibrated Hugoniot pressure 

response for mixed phases with significantly varying shock impedances are calculated 

using the inverted Hugoniot EOS [212] from the individual constituent’s Hugoniot data.  

Parallel-plate impact experiments are also modeled using a Eulerian shock physics code, 

CTH [213-215], with use of a viscous-elastic-plastic (VEP) constitutive model [216] and 

the Mie-Grüneisen nonlinear US-UP EOS.  The simulations are used to reproduce the 

pressure waveforms obtained from the impact and propagated PVDF gauges using 

experimentally measured bulk material parameters. 

 

4.5.4.1 CTH Hydrodynamic Calculations 

 

CTH [213-215] is a Eulerian code for numerical simulation of hydrodynamics and 

solid mechanics problems involving large stresses and deformations.  It employs a 

standard two-step Eulerian scheme for solving the equations of hydrodynamic flow in 

finite difference form.  There is a Lagrangian step, in which the computational mesh 

distorts with the material motion, followed by a remap step in which the flow variables 

are mapped back onto an Eulerian (stationary) mesh.  In the code, the numerical solution 

proceeds by first moving the spatial mesh through displacements (Lagrangian step) 

determined by the material velocity field, and then remapping the mesh back to its 

original position.  The mesh is fixed in space, and the material flows through the mesh in 

response to boundary and initial conditions.  The volume, mass, momentum, and energy 

must be conserved across the Lagrangian step.  The mass is conserved automatically 

because the mesh moves with the material during this step and no mass crosses the cell 

 360



boundaries.  The remaining conservation equations are replaced with explicit finite 

volume representations of the original integral equations.  After the Lagrangian step, the 

remap step is performed where the distorted cells are returned back to the initially fixed 

mesh. 

Hydrocode simulations of dynamic problems also require models for the 

constitutive behavior of all the materials involved.  The constitutive laws are applied at 

the cell centers following the remap step.  The equation of state, which provides pressure 

and temperature as a function of mass density and internal energy density, is applied 

separately from the strength model, which provides the deviatoric stress rate tensor 

components as a function of the appropriate strain rate tensor variable.  The composite 

materials examined in this work were described by a Mie-Grüneisen equation of state and 

the viscous-elastic-plastic (VEP) constitutive model [216] for a viscoelastic-viscoplastic 

deformation behavior. 

The parallel-plate impact experiments conducted for the Al+Fe2O3+60 vol.% 

epoxy composites were modeled for yielding time-resolved material stress behaviors and 

compared to experimentally measured PVDF stress gauge waveforms.  The highly 

viscoelastic and viscoplastic behaviors observed for the composite materials are 

incorporated in the code and tested with experimental data.  The configuration utilized for 

these experiments is duplicated in the CTH DIATOM description.  The calculations use a 

one-dimensional spatial mesh with a resolution of 12.5 µm.  Several tracer points, which 

record the state variables, were located within the epoxy-cast composite target, fused 

silica window, and the impact and propagated gauge layers that make up the target 
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assembly.  In general, the tracer points within the gauge layers and those close to the 

respective gauge/target or gauge/window interfaces exhibited almost identical responses. 

The shock properties of the epoxy-cast composite were based on the               

Mie-Grüneisen equation of state using the experimentally determined quadratic relation 

between shock velocity and particle velocity.  The shock properties of the copper 

flyer/driver, the tungsten flyer, and the fused silica window components were specified 

by the linear form of the Mie-Grüneisen equation of state, while the PVDF gauge 

packages, represented by Kel-F, were defined using the viscoelastic (VE) equation of 

state [217].  The material parameters were included in CTH for the VE equation of state, 

which uses a separate EOS for the instantaneous and equilibrated material states and 

relaxation rates controlled by the stress state of the material. 

The constitutive behavior of the copper flyer/driver, the tungsten flyer, and the 

fused silica window components was governed by the Steinberg-Guinan model [218], 

while the viscous-elastic-plastic (VEP) constitutive model [216] was used for the PVDF 

gauge layers obtained from material parameters included in the CTH material database.  

The epoxy-cast composite behaviors were also governd by VEP constitutive model [216] 

using experimentally determined parameters.  The dynamic behavior was captured 

through an elastic shear spring model that is in parallel with a series of five viscoelastic 

Maxwell elements.  Each Maxwell element is comprised of an elastic spring and viscous 

damper that are correlated to capture the mechanical response at a given strain rate.  In 

addition, a viscoplastic element is set in series with the composite Maxwell viscoelastic 

element arrangement.  Many of the Maxwell element parameters, consisting of shear 

spring moduli and the damper viscosities, were first approximated for the     
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Al+Fe2O3+60 vol.% epoxy composite based on the significant work performed for solid 

rocket motor propellants (HTPB/AP/Al) [216,219-221] and PMMA [216].  The      

epoxy-cast composite shock loading behavior appeared to have a combination of features 

that were attributes of the generic HTPB/AP/Al propellant and PMMA.  Some of the 

constituent parameters were obtained from measurements conducted in this study, while 

others were approximated by the response of propellant and PMMA.  The parameters 

were adjusted until the model closely matched the experimentally measured composite’s 

behavior. 

Figure 4.100(a-d) shows a snapshot captured at four specific times, which follow 

the progression of the disturbance wave through the different materials that comprise the 

target assembly for the symmetric impact of shot 0627.  Each snapshot shows the 

tracking of density, particle velocity, and stress values through the epoxy-cast flyer and 

target materials, and fused silica window material.  Figure 4.100(a) corresponds to a time 

just after impact and the equilibrated particle velocity and pressure values in the flyer and 

driver materials.  Notice that the particle velocity is cut in half as it enters the target 

material, and the density shows equal compressibility in the similar epoxy-cast flyer and 

target materials.  The wave continues to propagate until it reaches the target/fused silica 

window interface, where there is a marked rise in stress and a significant decrease in 

particle velocity, as shown in Figure 4.100(b).  Also notice the fused silica density is 

relatively unchanged and behaves as a nonlinear elastic solid up to its phase change, 

which occurs at approximately 9.8 GPa [155].  The elastic behavior is evident in     

Figure 4.100(b), which indicates the formation of the elastic step in the stress profile.  

Figure 4.100(c) shows the reflected wave from the target/fused silica window interface 
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Figure 4.100 Captured one-dimensional CTH simulation snapshots illustrating the 
waveform propagation (direction indicated by arrows) within the materials that make up 
the target assembly for shot 0627.  The snapshots are captured at a) 0.3, b) 1.0 c) 1.6, and 
d) 2.4 µs after impact and show the variation of density, particle velocity, and stress 
waveform profiles (in order top-to-bottom) throughout the target assembly. 
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approaching the reflected wave from the back surface of the flyer.  The epoxy-cast 

composite materials show the viscoelastic response as the densities return close to their 

original values, while the elastic wave is fully developed and propagating in the fused 

silica window.  This is followed by Figure 4.100(d), which corresponds to a time after the 

reflected wave interactions of the flyer and target/fused silica interface.  A reduction in 

stress due to the arrival of the release wave is observed at the impact gauge location.  

Similar snapshots for the other experiments conducted in this study are available in 

Appendix D. 

The CTH simulations were also compared to experimentally measured stress 

waveforms.  Figure 4.101(a-f) shows the results of each experiment conducted for the 

Al+Fe2O3+60 vol.% epoxy composite with a range of initial loading conditions.  

Comparison of embedded PVDF stress gauge measurements with one-dimensional CTH 

code at both the impact and propagated gauge locations shows excellent agreement for 

relatively low stress impacts as illustrated in Figure 4.101(a,b).  However, the code 

overestimates once the input stress increases past a critical limit above which damage 

occurs.  Each simulation predicts the correct shock velocity, however the particle velocity 

is typically overestimated as shown in Figure 4.102(b-e), which compares measured 

VISAR particle velocities with those simulated.  This results in the overestimate of the 

stress response seen in Figure 4.101(c-f) for the higher impact stress experiments.  Notice 

the comparison of particle velocities obtained from VISAR and CTH illustrated in  

Figure 4.102(a) show fairly good agreement for shot 0627, which has an impact stress 

below the critical damage stress. 

Although the VEP model is capable of relaxing the total deviatoric strain rate as  

 365



 
Figure 4.101 Comparison of experimental and CTH calculated stress profiles obtained 
for Al+Fe2O3+60 vol.% epoxy composite.  Results are shown for shots a) 0627, b) 0505, 
c) 0608, d) 0507, e) 0628, and f) 0609. 
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Figure 4.102 Comparison of experimental (VISAR) and CTH calculated particle 
velocity profiles obtained for Al+Fe2O3+60 vol.% epoxy composite.  Results are shown 
for shots a) 0627, b) 0608, c) 0507, d) 0628, and e) 0609.   
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induced damage in the material occurs, it does not compute the damage variable 

internally.  Instead, the VEP model relies on the Tensile Damage and Distension (TDD) 

model [222] to acquire the damage level within the material.  Unfortunately, this 

capability has not been fully developed in the CTH code (version 7.0), and the TDD 

model does not currently update the true damage variable, D, in the VEP constitutive 

model used to compute the effective damage, Deff, which controls the material strength 

loss as well as void formation. 

In the absence of a damage model that can be used with the CTH calculations, 

other methods were used to characterize the stress threshold level where damage occurs 

in the composite.  These include predicting the undamaged material response using the 

inverted Hugoniot EOS [212] from individual constituent’s Hugoniot data, and also by 

fitting both the damaged and undamaged material responses with the Birch-Murnaghan 

equation of state (BM-EOS) [211].  The results indicate the critical stress level for 

inducing damage within the composite materials and are discussed next (section 4.5.4.2). 

 

4.5.4.2 Theoretically Determined Hugoniot Behavior 

 

The Birch-Murnaghan equation of state (BM-EOS) [211] was used to account for 

the altered Hugoniot response of particle-filled epoxy-cast composites and quantitatively 

characterize the resulting induced damage.  The experimentally measured US-UP 

Hugoniot data was transformed into pressure-volume (P-V) space using the jump 

conditions and was fit using the BM-EOS in terms of normalized stress, F, and finite 

Eulerian strain, f.  These are given by [211]: 
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The third-order BM-EOS is written as a polynomial with respect to strain according to 

[211]: 

( ) fKKKF 4
2 000 −+= .    (4.44) 

In this form, the BM-EOS gives a direct indication of the compressibility in terms of the 

bulk modulus, K0, and the pressure derivative of the bulk modulus, '
0K .  The constants 

are evaluated from the F-f plot, wh

3 '

ich has a linear fit with a slope equal to ( )423 '
00 −KK  

and an intercept of K0.  The utility of the BM-EOS and its parameters determined from 

the normalized stress and Eulerian finite strain curve is first demonstrated for the 

constituent materials used in the composites from Hugoniot data obtained for aluminum, 

hematite, and epoxy from Marsh [18]. 

The pressure-volume data for each constituent material is transformed to 

normalized stress-finite strain space as shown in Figure 4.103.  The linear fit to the data 

allows the calculation of the bulk modulus and its derivative from the slope and intercept  
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Figure 4.103 Normalized stress and Eulerian strain curves obtained for hematite, 

equation of state (BM-EOS) [211]. 
aluminum, and epoxy data from Marsh [18] using the third-order Birch-Murnaghan 

 
Figure 4.104 Pressure-volume compressibility plot showing hematite, aluminum, and 
epoxy data points from Marsh [18] and the undamaged third-order Birch-Murnaghan 
equation of state (BM-EOS) [211] compressibility curves with parameters determined 
from the normalized stress and Eulerian strain curves in Figure 4.103. 
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values.  While the Hugoniot for hematite was limited to a few data points prior to the 

phase transformation, the bulk modulus obtained from the F-f curves are slightly greater 

than those obtained ultrasonically, however, the parameters show an excellent fit (solid 

curves)

position behaviors are also 

divided.  The justification becomes more evident when trying to calculate K0 from a 

curve fit to all the data, which results in an unrealistic value (close to zero or negative). 

However, fitting the two lowest normalized stress data points with a linear curve, results 

in a more appropriate K0 value that compares well with calculated bulk modulus values 

from ultrasonic measurements for this particular composition.  The values obtained from 

the intercepts of these curves for both compositions are listed Table 4.24 along with K0 

values calculated from ultrasonic measurements.  The pressure derivative of the bulk             

 to the measured compressibility behavior as illustrated in Figure 4.104. 

The same technique was utilized for obtaining the parameters necessary to fit the 

compressibility behavior for the epoxy-cast composite materials examined in this study.  

The P-V data for the particle-filled composites and pure epoxy are transformed to 

normalized stress-finite strain space as shown in Figure 4.105 and Figure 4.106 for the 

Al+Fe2O3 composites with 60 and 78 vol.% epoxy, respectively.  The Hugoniot curves 

comparing the US-UP behaviors for each composition, shown in Figure 4.99, indicate that 

the composite’s response are altered at a critical US and UP value.  Therefore, the curves 

shown in Figure 4.105 and Figure 4.106 were divided in order to evaluate the two regions 

characterized as “damaged” and “undamaged” compressibility of each composition.  

Notice that the damaged and undamaged F-f response curves for the 78 vol.% epoxy 

composite show widely different behaviors; having positive and negative slopes, 

respectively.  Although less apparent, the 60 vol.% epoxy com
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Figure 4.105 Normalized stress and Eulerian strain curves obtained from experimental 
data for Al+Fe2O3+60 vol.% epoxy composite are shown.  The theoretically calculated 
(undamaged) behavior using an inverted Hugoniot [212] and pure epoxy baseline data 
from Carter and Marsh [72], and Marsh [18] are included for reference. 

 
Figure 4.106 Normalized stress and Eulerian strain curves obtained from experimental 
data for Al+Fe2O3+78 vol.% epoxy composite are shown.  The theoretically calculated 
(undamaged) behavior using an inverted Hugoniot [212] and pure epoxy baseline data 
from Carter and Marsh [72], and Marsh [18] are included for reference. 
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Table 4.24 Comparison of bulk modulus, K0, values obtained from F-f curves and 
ultrasonic measurements. 

F-f Intercept Ultrasonic
Material or Composition Compressibility 

Response K0 
[GPa] 

K0 
[GPa] 

Undamaged 13.90 14.77 
Al+Fe2O3+ 60 vol.% epoxy 

Damaged 16.70 n/a 
Undamaged 8.25 10.03 

Al+Fe2O3+ 78 vol.% epoxy 
Damaged 25.58 n/a 

Pure Epoxy [18,72] Undamaged 8.43 6.07 
Aluminum [18] Undamaged 77.32 74.28 
Hematite [223] Undamaged 227.29 206.60 

 

modulus, , is computed from the slope of each curve in Figure 4.105 and            

Figure 4.106.  The BM-EOS can now be applied to the experimental data by fitting the 

damaged and undamaged material responses using equation (4.44) to generate P-V/V0 

curves.  These curves for both compositions are shown in Figure 4.107 along with the 

experimental data in pressure-volume space.  The undamaged responses for both 

compositions overlap and show excellent agreement with the experimental data at 

pressures below approximately 4 GPa.  As the pressure increases, the 60 vol.% epoxy 

composition shows a volume expansion that is not related to a phase change, but to the 

decohesion of inclusion particles from the epoxy matrix that causes the bulk 

compressibility to increase.  These higher pressure values show good agreement with the 

damaged material curve.  In contrast, the 78 vol.% epoxy composition approaches the 

pure epoxy response with no evidence of a volume expansion corresponding to particle 

decohesion.  However, it is apparent that the loading is carried almost completely by the 

binder material, and the solid particle inclusions provide stress concentration sites that  

'
0K
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Figure 4.107 Pressure-volume compressibility plot showing the experimentally 
measured data points with damaged and undamaged third-order Birch-Murnaghan 
equation of state (BM-EOS) [211] compressibility curves with parameters determined 
from the normalized stress and Eulerian strain curves in Figure 4.105 and Figure 4.106. 

permit the nucleation of unobstructed crack growth and propagation.  These curves show 

that both composite compositions experience damage at a critical stress of approximately 

4 GPa.  However, contrasting behaviors for each composition are observed at higher 

pressures, above this critical stress.  While the 78 vol.% epoxy composition shows a 

transition from undamaged to damaged behavior that approaches pure epoxy response, 

the 60 vol.% epoxy composition exhibits a gradual toughening behavior that has not 

reached the maximum damage and consequent transition to lower compressibility 

response.  It is possible that a similar damage transition observed for the 78 vol.% epoxy 

composition would be expected to occur for the 60 vol.% epoxy composition at higher 

impact stresses. 
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The theoretical Hugoniot behavior for Al+Fe2O3 epoxy-cast composites is 

evaluated using the inverse Hugoniot equation of state developed by Reaugh and         

Lee [212].  The model uses the constituent properties according to their relative volume 

fractions within the composite for describing the Hugoniot response.  The pressure on the 

Hugoniot is expressed in terms of the volume using the empirical relation for the modulus 

of the Hugoniot, Kh, where [212]: 

h
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and Kh is also a specific function of the Hugoniot pressure given by [212]: 
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In these expressions, P is pressure, V is volume, K0 is the initial bulk modulus, λ and n 

are fitting parameters that are determined for each constituent material used in the 

composite.  Equations (4.45) and (4.46) are combined and integrated to obtain a Hugoniot 

expression in terms of volume and is given by [212]: 
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The values of λ and n are determined for each component of the composite by fitting 

equation (4.47) to experimentally measured P-V Hugoniot data.  Using regression 

analysis, the Hugoniot expression is solved by numerical iterations with initial guesses 

for λ and n until they converge.  For example, the Hugoniot data for aluminum was fit 

using the bulk modulus, K0 = 74.28 GPa, and the resulting parameters λ and n converge 

to 7.576 and 0.714, respectively.  This compares well with the values obtained by Reaugh 

and Lee [212] for aluminum, taken to be 6 and 0.82 for λ and n, respectively.  The other 

components used in these composites had values of λ = 2.403 and n =1.465 for hematite 

and λ = 12.941 and n = 0.744 for epoxy. 

Having determined the values for λ and n for each component, the Hugoniot of 

the composite is obtained by the weighted sum of the various component volumes given 

by [212]: 

,      (4.48) 

where αi is the initial volume fraction for the ith component.  The shock velocity and 

particle velocity are then given by the usual expressions incorporating the composite’s 

weighted volume response and expressed as: 
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The pressure-volume compressibility Hugoniot based on the weighted volumes 

are shown in Figure 4.108 for the 60 vol.% epoxy composite.  The lowest two data points 

(shown as red diamonds) from the experimental Hugoniot represent the undamaged 

material response and show excellent agreement with the theoretically determined 

compressibility curve until approaching the critical pressure of approximately 4 GPa.  

The inverted Hugoniot calculations also show excellent agreement with the 

compressibility response determined by the BM-EOS.  The theoretical values are  

 
Figure 4.108 Pressure-volume compressibility plot for the Al+Fe2O3+60 vol.% epoxy 
composite comparing the experimentally measured data points and the theoretical 
(undamaged) behavior predicted from the inverted Hugoniot [212].  The experimentally 
determined behavior for the undamaged response using the BM-EOS is extrapolated to 
higher pressures and shows good agreement with the inverted Hugoniot calculation. 
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additionally shown on the normalized stress–Eulerian strain plot (F–f) of Figure 4.105, 

substantiating the use of only two experimental data points for the undamaged response 

curve.  The theoretical US-UP Hugoniot data points shown in Figure 4.109 compare well 

for the undamaged material response with experimental values and are calculated using 

equations (4.49) and (4.50) for the shock velocity and particle velocity, respectively. 

While the theoretically determined compressibility for the 60 vol.% epoxy 

composite shows excellent agreement for the lower pressure (undamaged) material 

responses, the 78 vol.% epoxy composite shows rather significant deviation.            

Figure 4.110 shows the theoretically determined Hugoniot values compared to those 

experimentally measured.  The response of the 78 vol.% epoxy composite appears to 

follow more closely with the behavior observed for the 60 vol.% epoxy composite at 

pressures below 4 GPa, as shown in Figure 4.107.  The discreprency between the 

experimental and theoretical values for this composition could possibly be associated 

with the specimens exhibiting damage initially at very low pressures.  This causes a bulk 

volume expansion due to the particle decohesion with the matrix and possibly introduces 

a strengthening mechanism that represents the experimental response shown in the figure.  

While the 60 vol.% epoxy composite shows strengthening at a critical pressure close to   

4 GPa, the 78 vol.% epoxy composite possibly shows initial strengthening followed by 

significant damage at this critical pressure.  The theoretical values are also included on 

the normalized stress-Eulerian strain plot (F–f) of Figure 4.106 and show the undamaged 

response of the composite experiencing relatively lower strains and corresponding lower 

normalized stresses as compared to the experimental values.  The theoretical US-UP 

Hugoniot data points shown in Figure 4.111 indicate the calculated values are very close  
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Figure 4.109 Experimentally determined US-UP data points for Al+Fe2O3+60 vol.% 
epoxy composite are compared to theoretical inverted Hugoniot [212] values calculated 
for each experiment. 
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Figure 4.110 Pressure-volume compressibility plot for the Al+Fe2O3+78 vol.% epoxy 
composite comparing the experimentally measured data points and the theoretical 
(undamaged) behavior predicted from the inverted Hugoniot [212].  The experimentally 
determined behavior for the undamaged response using the BM-EOS is extrapolated to 
higher pressures and shows good agreement with the inverted Hugoniot calculation. 

to the response of pure epoxy. 

From a damage standpoint, there are two major processes that introduce damage 

into the composite material.  The first is caused by decohesion of solid particles from the 

polymer matrix due to stress-wave interactions.  A typical stress-strain history shows that 

apparent yielding occurs at fairly low strain levels.  Beyond this point, the specimen will 

undergo very large strains before failing.  This is followed by the binder system carrying 

the load with an apparently lower shear modulus until failure occurs.  From examining 

the compressibility (P-V) behavior obtained from parallel-plate impact experiments, the 

60 vol.% epoxy composite shows a slight volume expansion at higher pressures.  This 

volume expansion is attributed to decohesion of solid particles.  One would expect that if  
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Figure 4.111 Experimentally determined US-UP data points for Al+Fe2O3+78 vol.% 
epoxy composite are compared to theoretical inverted Hugoniot [212] values calculated 
for each experiment. 
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the material begins to yield, there should not be any volume change until fracture has 

occurred.  However, decohesion of solid particles causes the volume to expand for the 

material system and is apparent above a critical impact stress of approximately 4 GPa. 

In contrast, the 78 vol.% epoxy composite has less opportunity for solid particle 

decohesion from the binder matrix because of the composite’s higher epoxy 

concentration and, therefore, less of an effect on the bulk material response.  The damage 

within this composition does not offer much strengthening effect because of the relatively 

large distances between the solid particle inclusions.  The damage can propagate through 

the composite without interaction with any of these particle inclusions.  At higher 

stresses, the composite approaches pure epoxy behavior after reaching the same critical 

stress of 4 GPa observed for the 60 vol.% epoxy composite.  It is expected that the         

60 vol.% epoxy composite will approach the pure epoxy response in a similar manner at a 

significantly higher impact stresses. 
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CHAPTER V 
 

ANALYSIS OF KEY ISSUES 

 

Thermite mixtures undergoing oxidation-reduction reactions provide an 

opportunity of dual-functionality if these can also be processed as structural materials.  

The desire was to fabricate a material which possesses a highly reactive component that 

can be integrated within a binder to develop a material that has combined structural 

strength and enhanced chemical reactivity. 

The intimate mixing of fuel and oxidizer is an essential condition for initiation 

and self-sustaining metal-oxide type reactive materials.  Promoting the conditions 

necessary for reaction initiation by altering the microstructure and morphology of 

reactive constituents is essential.  Specific microstructural features were examined for 

determining the degree of constituent fuel and oxide particle premixing within the epoxy 

matrix and additionally characterizing the effect epoxy and void concentrations have on 

mechanochemical reactions and strengthening.  The degree of mixing had consequences 

on many scales, from nanometric mixing of individual particles to macroscopic mixing of 

fuel and oxidizer agglomerates. 

The experimental and theoretical work conducted in this study provides a general 

design for the development and characterization of particle-filled energetic composite 

material systems.  The work is intended to present insight into the fabrication, testing and 
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validation of structural energetic material behavior when subjected to high stress, strain, 

and strain rates and also to identify parameters that can be tuned for specific applications.  

This work provides a framework for conducting such a study and focuses on the most 

important parameters and variables influencing both structural/mechanical and chemical 

properties. 

The following sections highlight the most useful and significant results presented 

in this study.  These results are based on the characterization of intrinsic properties and 

their correlation with i) structural/mechanical material responses observed from static and 

dynamic loading conditions, ii) dynamic mechanochemical reactivity, and iii) shock-

compression damage and strengthening effects. 

 

5.1 Intrinsic Property Characterization of Epoxy-Cast Composites 

 

The intrinsic properties of Al+Fe2O3 epoxy-cast composite materials were 

thoroughly examined for each fabricated composition.  These include physical properties 

such as density and porosity, as well as, configurational features evolving from the      

cast-cure fabrication process, such as reactants’ particle size distributions and 

microstructural morphologies.  The composite’s intrinsic properties are evaluated and 

later coupled with structural/mechanical and chemical material behaviors observed from 

dynamic impact loading experiments.  These effects were mainly evaluated based on the 

volumetric mixture distribution of epoxy and the use of nano- versus micron-scale 

aluminum particles within the composites. 
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All of the fabricated compositions exhibited some degree of particle 

agglomeration, particularly observed for the fine hematite particles.  Typically, each 

composition had hematite particle agglomerates with size classes characterized as fine   

(≤ 1 µm, typically individual particles), medium (5 to 10 µm), and large (20 to 50 µm).  

However, their distribution and frequency varied according to the volume fraction of 

epoxy.  In general, quantitative optical microscopy revealed that the size of particle 

agglomerates increased as epoxy concentration decreased.  This is directly attributed to 

the difficulty associated with mixing higher solid particle fraction composites that raise 

the mixture’s viscosity.  In contrast, the frequency or number of these features generally 

decreased as the volume fraction of epoxy also decreased.  This effect was attributed to 

the increased interaction that particles have with each other during mixing, which causes 

the agglomerates to separate as the volume fraction of solid particles increases.  

However, the Al+Fe2O3+60 vol.% epoxy composition showed an exception to these 

trends, exhibiting slightly greater particle agglomerate sizes with significantly lower 

concentrations of these features as compared to the other fabricated composites.  This 

particular composition appears to have particle and epoxy volume fractions that promote 

efficient mixing.  While the other compositions showed a tendency for hematite particle 

agglomerates, micron-scale aluminum particles, and pores, to cluster in close proximity, 

the 60 vol.% epoxy composite tended to have less of these features which were relatively 

spread throughout the material volume, and thus, reduced the probability for introducing 

significantly large flaw sites within the bulk composite. 

While the aluminum particles appeared to be uniformly dispersed throughout the 

epoxy matrix, the hematite particles displayed several degrees of particle agglomeration 
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ranging in size and frequency for each composition.  The agglomeration of hematite 

particles were representative of tightly distributed individual hematite particles within the 

epoxy matrix, which possibly influence the bulk structural/mechanical properties of the 

composites.  Most composites did not appear to exhibit significant open porosity, which 

was influenced by the mixture viscosity and, thus, the ability to thoroughly combine the 

solid particles within the resin, and the subsequent degassing step used to remove trapped 

air bubbles.  However, the Al+Fe2O3+47 vol.% epoxy, containing the lowest volume 

fraction of epoxy, was particularly challenging to fabricate and exhibited relatively 

significant levels of open porosity of approximately 4.52 %.  Average pore sizes showed 

a dependency on epoxy concentration, which increased as the volume fraction of epoxy 

decreased.  The remaining compositions typically contained a few percent or less 

porosity, with a maximum value of 2.57 % for 70 vol.% epoxy composite. 

As the particle sizes become significantly smaller, the bulk surface area 

significantly increases raising the viscosity for the mixture and making the mixing even 

more difficult.  For compositions containing submicron-scale hematite and nano-scale 

aluminum powders, the lowest volume fraction of epoxy that could be fabricated was    

70 vol.%.  The addition of nano-scale aluminum particles produced unique 

microstructures that exhibited regions containing high concentrations of nano-scale 

aluminum particles or agglomerates.  As similarly observed for the hematite 

agglomerates, the nano-aluminum agglomerates consist of individual tightly packed 

particles completely encapsulated in the epoxy matrix with no open porosity.  The    

nano-aluminum agglomerates were significantly larger than the hematite agglomerates, 

and varied in size, ranging between 50 and over 200 µm in diameter.  While the 
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formation of hematite agglomerates appear to occur during the dry mixing of the 

constituent powders, the nano-aluminum agglomerates appear to form during the wet 

mixing process after their addition to the epoxy resin.  This was evident from 

microstructural observations illustrating a “turbulent” shape, which contained layered or 

swirling particle bands as illustrated earlier in Figure 4.10(a-c) and Figure 4.11(a,b).  The 

microstructures also illustrate the formation of nano-aluminum agglomerates developed 

during premixing of constituent powders around hematite agglomerates. 

 

5.2 Static Structural/Mechanical Behavior 

 

The structural/mechanical behavior of epoxy-cast Al+Fe2O3 composites was 

examined using quasistatic or relatively low-strain rate loading experiments.  These 

included dynamic mechanical analysis (DMA), continuous ball indentation, quasistatic 

compression, three-point flexural bend, and Charpy impact experiments.  These tests 

were used to evaluate the relative behavior between each composition while altering the 

addition of epoxy volume fraction to the micron-scale aluminum and submicron-scale 

hematite powder mixtures. 

It is well known that adding filler or reinforcement phases to a polymer increases 

the overall elastic modulus of the bulk composite.  The addition of solid particles to the 

epoxy matrix typically improved the elastic loading region observed from the measured 

stress-strain behaviors for the epoxy-cast Al+Fe2O3 composites.  The stress-strain curves 

were obtained from a number of testing techniques that included continuous ball 

indentation, quasistatic compression, and flexural three-point bend tests, each of which 
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showed fairly good agreement for each composition as illustrated in Table 5.1.  The 

minor differences between these measurements are attributed to the significantly different 

loading conditions subjected to the specimen.  While the continuous indentation test 

measures mechanical properties within extremely small material volumes at the 

microscopic and submicron scales, the compression tests give a bulk material response as 

does the flexural three-point bend tests.  Therefore, the elastic moduli values listed in 

Table 5.1 for the continuous indentation tests include only indents that were within 

uniformly distributed phase regions of the composite.  Indents that were in hematite rich 

regions, for example, gave significantly high elastic modulus values, which are not 

included.  However, the 70 vol.% epoxy composite contained a significantly large 

number of hematite agglomerates, and avoiding hematite rich regions was impossible.  

This results in a slightly higher elastic modulus value for this composition as compared to 

the other testing techniques.  In general, however, the flexural three-point bend tests had 

the greatest measured values of the different testing techniques, followed by compression  

Table 5.1 Comparison of elastic modulus measurements (GPa units) obtained from 
DMA, continuous ball indentation, quasistatic compression, and flexural (three-point 
bend) tests.  These measurements are also compared to elastic values calculated from 
ultrasonic wave speed measurements. 

Epoxy 
[vol.%] 

Ultrasonic 
(section 4.1.2) 

DMA 
(section 4.3.1)

Indentation 
(section 4.3.2)

Compression 
(section 4.3.3) 

Flexural 
(section 4.3.3)

47 14.99 ± 0.28 8.22 ± 0.62 10.84 ± 0.73 11.83 ± 0.13 12.77 ± 0.18 
60 11.55 ± 0.20 26.62 ± 14.56 9.43 ± 0.66 10.67 ± 0.18 12.48 ± 0.42 
70 9.36 ± 0.22 8.24 ± 1.71 7.95 ± 0.18 7.30 ± 0.29 8.29 ± 0.57 
78 5.63 ± 0.07 4.34 ± 0.43 5.04 ± 0.40 6.60 ± 0.13 6.84 ± 0.29 
100 3.35 ± 0.04 2.63 ± 0.70 3.57 ± 0.50 3.98 ± 0.02 3.92 ± 0.03 
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tests and continuous indentation tests. 

The measured elastic moduli for each composition also showed fairly good 

agreement with values calculated from ultrasonic elastic wave speed measurements that 

are listed in Table 5.1.  However, the ultrasonic elastic moduli values tended to be 3.1, 

8.8, and 11.9 % greater for average values (from continuous indentation, compression, 

and three-point bend tests) obtained for the 60, 70, and 47 vol.% epoxy composites, 

respectively, while the 78 vol.% epoxy composite and pure epoxy were 4.5 and 6.6 % 

less, respectively.  Table 5.1 also lists elastic moduli values obtained from DMA 

experiments for each composition.  These values show fairly good agreement with the 

other measurements and ultrasonic values obtained for the 70 and 78 vol.% epoxy 

composites and pure epoxy, however, the 47 and 60 vol.% epoxy composites show 

relatively poor agreement.  While the relatively low elastic modulus of 8.2 GPa measured 

for the 47 vol.% epoxy is attributed to the high concentration of pores exhibited by this 

composition, the response for the 60 vol.% epoxy composite is more complicated.  The 

60 vol.% epoxy composite exhibits a significantly high elastic modulus of 26.6 GPa for 

the glassy response (temperatures below Tg) and a relatively low modulus of 77.0 MPa 

for the rubbery response (temperatures above Tg).  These contrasting behaviors are 

attributed to solid micron-scale aluminum particles possibly inhibiting the epoxy 

crosslinking during polymerization.  These relatively large inclusion features dominate 

the deformation response in the glass region by transferring the load from the matrix to 

the inclusions.  However, as the temperature increases above the glass transition, Tg, the 

composite’s response is dominated by molecular chain motions that are not inhibited by 

the relatively large aluminum inclusions.  Furthermore, the quantitative microstructural 
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analysis for this composite shows a relatively low concentration of hematite agglomerates 

that are thought to significantly contribute to resisting molecular chain motions and thus 

raise the rubbery modulus of the composite. 

While the elastic moduli increased with decreasing epoxy concentration fairly 

consistently, the apparent yield stresses for each composition were less obvious and 

somewhat scattered.  However, the results generally indicate the importance of reducing 

the concentration of porosity for improving the bulk mechanical properties of the 

composite.  The different testing techniques illustrate the relative sensitivity of the 

measured yield strength values with porosity concentration as shown in Table 5.2.  While 

the 60 vol.% epoxy composite had the greatest yield stress from continuous indentation 

and compression tests, the pure epoxy showed the greatest yield stress from the flexural 

three-point bend tests.  The continuous indentation tests are only slightly influenced by 

the porosity concentration because the indented material volume is relatively pore free, 

however, the flexural three-point bend tests are significantly influenced by pores and the 

relative pore size.  While the 47 vol.% epoxy composite had the greatest porosity of  

Table 5.2 Comparison of yield stress measurements (MPa units) obtained from 
continuous ball indentation, quasistatic compression, and flexural (three-point bend) tests. 

Epoxy 
[vol.%] 

Indentation 
(section 4.3.2)

Compression 
(section 4.3.3)

Flexural 
(section 4.3.3) 

Porosity 
[%] 

47 194.81 ± 10.04 97.40 ± 1.71 95.93 ± 1.19 4.5 
60 196.64 ± 14.21 141.44 ± 2.27 98.14 ± 10.45 1.6 

70 153.70 ± 13.27 115.88 ± 2.39 100.93 ± 5.42 2.6 

78 143.93 ± 18.36 128.69 ± 2.56 *69.19 ± 20.25 1.6 

100 128.51 ± 13.63 133.96 ± 0.38 122.33 ± 2.43 0.1 
*Porosity for this particular batch of material was slightly higher, with a value 
of approximately 2 % and unusually large pores. 
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4.5 %, the particular batch of material used from the flexural three-point bend test for the 

78 vol.% epoxy composition has a slightly higher porosity of approximately 2 %, 

compared to the material used for the other testing techniques for this composition, but 

had significantly large pores that were observable from fracture surface images.  Because 

the load contact is concentrated to a single location of the test specimen, the size of the 

flaws or pores will significantly influence its strength and resistance to failure. 

The failure of a material is associated with the concentration of stresses in the 

vicinity of flaws.  The addition of rigid particles to a relatively brittle polymeric matrix 

significantly affects fracture toughness and shows an increasing value as the filler volume 

fraction increases.  It is also convenient to classify materials in terms of a 

toughness/strength ratio (KIC /σf) rather than merely toughness or strength alone.  This 

provides a gradual ranking for the particle-filled epoxy-cast composites evaluated in this 

study.  The pure epoxy exhibited a relatively brittle behavior, while the addition of solid 

particles to the epoxy matrix lessens the brittleness.  However, the 60 vol.% epoxy 

composite showed the highest ductility of the particle-filled composites, followed closely 

by the 78 vol.% epoxy composite. 

The influence of flaw sizes on mechanical properties was evaluated using Charpy 

impact experiments.  Charpy impact experiments measure the epoxy-cast composite’s 

resistance to fracture.  Although the measured impact resistances obtained for each of the 

Al+Fe2O3 epoxy-cast composites showed relatively little variation with the addition of 

solid particles, there was a slight improvement as the volume fraction of solid particles 

increased.  Examination of the fracture surfaces indicates these specimens typically 

exhibited mostly brittle fracture.  However, the pure epoxy specimens had a significantly 
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higher average impact resistance, which is attributed to a considerable amount of ductile 

fracture that occurs towards the later stages of failure.  The examination of fracture 

surfaces for pure epoxy indicate that ductile yielding and possibly thermal softening may 

have occurred towards the latter stages of the fracture advancement, also contributing to a 

greater resistance to fracture. 

The introduction of solid particles to the polymer matrix effectively introduces 

flaws, and their sizes depend on the individual particle sizes and their distribution 

throughout the epoxy matrix.  The inherent critical flaw size was evaluated for each 

composition by calculating the failure stress, which is related to fracture toughness 

(obtained from Charpy impacts) according to the Griffith criterion [194].  The critical 

flaw sizes for each composition had a relatively broad range between 9 and 30 µm, and 

followed in order according to epoxy concentration, with pure epoxy having the smallest 

and the 47 vol.% epoxy composition having the largest.  However, the 78 vol.% epoxy 

composite exhibited a slightly greater critical flaw size of 29.3 µm than the 47 vol.% 

epoxy composite, with a critical flaw size of 28.8 µm, because of the abnormally high 

inherent porosity observed for this particular batch of material. 

 

5.3 High-Strain Rate Structural/Mechanical Behavior 

 

High-strain rate reverse Taylor anvil impact experiments were conducted on 

epoxy-cast Al+Fe2O3 composites containing nano- and micron-scale aluminum as well as 

pure epoxy specimens.  A limited number of experiments were conducted for each 

composition examined, however, based on the quasistatic mechanical property 
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evaluation, a majority of these experiments were conducted on the 60 vol.% epoxy 

composite and the pure epoxy specimens, in addition to the nano-aluminum containing 

composition with 70 vol.% epoxy. 

High-speed camera images were used to make quantitative measurements of axial 

length and diameter changes observed for select times throughout the deformation 

process.  From these measurements, incremental axial and areal strains (at the impact 

face) were calculated to give a quantitative measure of the deformation experienced 

during the impact.  The detailed analysis of the images also captured two distinctive 

deformation behaviors.  Specimens that have porosity levels above 1 % exhibited a 

characteristic “double-frustum” deformation shape.  This type of deformation typically 

exceeded a critical axial strain that led to fracture at significantly higher strains.  

However, specimens which possess less than 1 % porosity have significantly less radial 

deformation and typically show an “extended-mushroom” deformation shape.  This type 

of deformation promotes the absorption of impact energy along the axial length of the 

specimen and no fracture initiation was observed over the 100 to 150 µs time period 

examined for specimens exhibiting this type of deformation. 

Quantitative measurements reveal that specimens undergo significant elastic and 

plastic deformation during both the loading and unloading stages of dynamic impact 

experiments.  The elastic recovery is observed to occur very rapidly and begins within 

tens of microseconds after impact depending on impact velocity.  Additionally, over 50% 

elastic recovery from peak axial strain is observed regardless of impact velocity or 

composition.  Epoxy-cast composite compositions with dispersed Al+Fe2O3 powders 

typically fractured when exceeding a critical areal strain of 30 %.  However, pure epoxy 
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showed a higher critical areal strain of 40 % before fracture initiation was observed.  Pure 

epoxy undergoes thermal softening at strains below this critical fracture strain and, 

therefore, is in a rubbery state that has a more compliant deformation behavior.  In 

contrast, the particle-filled composites undergo thermal softening at strains above 30 %, 

which leads to significantly large areal strains and ultimately fracture. 

Dynamic yield stress and strain values were estimated using a one-dimensional 

linear-elastic perfectly-plastic wave propagation analysis developed by Hutchings [98].  

Nominal and true stress-strain curves were constructed for each composition, and the 

analysis was successfully used to permit the relative comparison of each composition’s 

performance.  The nano-Al+Fe2O3+70 vol.% epoxy is the most resilient composition and 

capable of absorbing more energy during elastic deformation.  Calculated values of the 

area under the linear-elastic region of true stress-strain curves show that the              

nano-aluminum containing composite has a resilience modulus over two times that of 

micron-aluminum composite and pure epoxy.  Pure epoxy and micron-aluminum 

composite have comparable values of resilience, and the addition of micron-scale 

aluminum particles to epoxy does not appear to offer any significant benefit.  This 

behavior is also evident in the critical impact velocity measurement, which shows that the 

nano-aluminum composite is able to absorb higher energy impacts through the greater 

resistance to plastic deformation and/or failure.  The introduction of a higher volume 

fraction of epoxy should reduce the dynamic yield strength and strain.  However, for the 

nano-aluminum composition, there is a significant increase in dynamic yield strength and 

strain compared to pure epoxy.  These results illustrate that the addition of nano-scale 
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aluminum particles provide significant enhancement to the strength of the epoxy 

composite. 

The analysis also allowed the calculation of the speeds of the elastic and plastic 

waves that propagate through the material.  From this, detailed x-t diagrams can be 

constructed to show the elastic-plastic wave interactions occurring during these 

experiments.  The position-time diagrams show that the plastic wave significantly slows 

upon interacting with the elastic wave, which, in some cases does not completely 

dissipate, and takes over the plastic wave upon their second interaction.  Measurements 

of the axial strained length obtained from high-speed camera images were used to 

validate the position of the plastic wave, which showed good correlation with calculated 

results.  Additionally, VISAR was used to substantiate the arrival times of the elastic 

wave at the free surface and the elastic/plastic interface, which was observed to have 

excellent correlation with the timing in x-t diagrams. 

In addition, high-speed camera images time synchronized with VISAR 

measurements were used to capture the elastic and plastic wave interactions as well as 

show that the beginning of elastic recovery coincides with peak axial strain and the 

interaction of the reflected elastic tensile wave with the compressive plastic wave.  In 

cases where the specimen fractures, there was a clear indication apparent in the VISAR 

signal which matches fracture initiation times observed from high-speed camera images. 

The results illustrate that reverse Taylor impact experiments combining the use of 

high-speed camera images and velocity interferometry measurements provide a detailed 

view of the general wave structure within the material upon impact.  The calculations 

obtained from the one-dimensional elastic-plastic wave analysis give a complete 
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description of the stress-strain behavior for particle-reinforced polymeric materials and 

pure epoxy. 

 

5.4 Mechanochemical Reactivity 

 

Exposing material systems to the combination of high pressure, shear, and 

assorted strain rates can lead to mechanochemical reactions.  There are several key 

parameters that must collaborate to induce the mechanochemical reaction initiation in 

reactive metal-oxide powder mixtures.  Material parameters such as particle size and 

morphology are important for the efficient mixing of reactants during deformation, while 

the viscoplastic deformation behavior observed for the epoxy matrix also contributes to 

the reactant mixing.  Likewise, the complex stress states, strain rates, and their duration 

are furthermore important aspects that must be considered. 

Post-mortem analysis of recovered anvil plates from reverse Taylor impact 

experiments showed evidence of strain-induced mechanochemical reactions.  The 

recovered anvils had distinct dark colored footprints remaining on the impact surface.  

These markings were observed for the highest velocity experiment conducted for the     

60 vol.% epoxy composition and two of the highest velocity experiments conducted for 

the nano-70 vol.% epoxy composite.  In all cases, the markings consisted of a dark ring 

shape with evidence of radial fracture marks or petals.  The petal shapes indicate the 

reaction initiation occurs some time before the radial fracture, and the reaction possibly 

continues after the specimen begins to fracture.  High-speed camera images indicate the 

radial fracture occurs at strains close to approximately 70 %, while the strain associated 
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with the remaining footprint diameter was approximately 50 %.  The time-synchronized 

areal strains measured from the high-speed camera images indicate that the possible 

reaction duration or the associated time between these two strain regimes was only a few 

microseconds for the 60 vol.% epoxy composite, while approximately 10 µs for the  

nano-70 vol.% epoxy composites.  This effect may be related to the significantly higher 

impact velocity used for the 60 vol.% epoxy composition, and therefore higher associated 

strain rates.  However, it illustrates that these reactions can proceed or initiate over 

relatively short or long time durations.  This leads to the notion that the actual wave 

propagating within the material does not cause the reaction (shock-induced type of 

reaction), but rather, the high-shear and the complex strain state (strain-induced reaction 

initiation) is mostly attributed to the local chemical reactivity. 

Post-mortem SEM analysis of the footprint regions showed evidence of localized 

melting and re-solidification in addition to regions with no reaction, which contained 

mostly hematite particles.  The reaction products were identified using EDS and the most 

probable products from considering the concentration of elemental species present.  

Localized reaction sites had products that correspond to Al2O3 and pure Fe, in addition to 

an iron-alumina compound, FeAl2O4.  Identified sites also showed regions where 

intermediate reaction products, such as AlFe3 and Fe1-xO, were observed. 

The reaction products were correlated with thermal analysis experiments 

conducted using DTA and in situ high temperature x-ray diffraction (HTXRD) 

measurements.  Chemical reactivity was validated by first studying the reaction products 

that form during heating at atmospheric pressures within an inert atmosphere.  This was 

accomplished by conducting a series of DTA studies, where exothermic and endothermic 
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peaks were observed during constant heating rate experiments.  These tests were then 

evaluated based on previous knowledge of the classic Al+Fe2O3 thermite reaction from 

phase diagrams and specific studies that focused on the reaction steps and mechanisms 

taking place.  Exothermic and endothermic peaks obtained from the DTA studies were 

complimented by HTXRD scans used to identify each of the chemical species that 

formed during heating.  This gave quantitative information for the epoxy-cast thermite 

composites regarding the phase formation and the resulting products. 

The reaction products identified by HTXRD and indicated by DTA were similar 

to those identified from post-mortem investigation of the recovered anvils.  The good 

correlation between the different experimental techniques gives confidence in the 

calculated reaction products obtained from the elemental species identified by EDS.  The 

results showed the strong possibility of many of the same phases forming during       

high-velocity impacts as those identified from thermal analysis.  However, this type of 

study does not indicate the kinetics involved in the reactions.  The assumption is that the 

strain-induced reactions occur after the passage of the disturbance wave because they 

require time for thermal diffusion to occur. 

The diameters of the footprint also allow the estimation of localized heating due 

to plastic work.  The bulk temperature rise associated with the plastic deformation was 

typically above 80 °C for all three experiments, well above the thermal softening 

temperature identified from DMA experiments for the 60 vol.% epoxy composition.  

However, the temperature rise associated with plastic work for the nano-70 vol.% epoxy 

composites (84.19 °C and 83.00 °C) was only slightly above the measured glass 

transition temperature of 81.50 °C.  It is possible that thermal softening triggered a series 
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of subsequent events leading to extensive strains and consequent reaction.  While the 

calculated bulk temperature was lower than the threshold temperature for reaction 

between Al+Fe2O3 or epoxy decomposition, identified by DTA to be approximately 700 

and 400 °C, respectively, it was certainly significantly higher than the Tg measured for 

pure epoxy (57.92 °C).  The bulk temperature rise may also be significantly lower than 

the temperature rise associated with the aluminum and hematite particle interactions 

achieving submicron-level mixing and, thus providing the driving mechanism for ultra 

fast chemical reactions during dynamic impact loading conditions.  However, the thermal 

softening behavior of the epoxy binder enabled this particle-particle interaction and, 

therefore, is an important component of the strain-induced reaction initiation mechanism 

for structural energetic composites. 

The footprint remaining for the 60 vol.% epoxy composite was much darker than 

observed for the nano-70 vol.% epoxy composite, qualitatively indicating different extent 

of reaction.  This may be attributed to the significantly higher impact velocity used for 

the 60 vol.% epoxy composition.  Further comparison of the nano-70 vol.% and 60 vol.% 

epoxy footprints shows that they all correspond to a strain of approximately 50%.  It is 

difficult to conclude when the reaction took place with certainty.  One possible scenario 

is that the reaction takes place at lower strain levels than identified by the footprint 

marking and proceeds to react as the footprint becomes larger.  The footprint possibly 

identified the final moments of the reaction and the earliest moments of radial fracture.  

This led to catastrophic fracture, which caused the applied stress to drop significant and 

possibly conclude the reaction.   
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Many lower velocity experiments showed that upon impact, the specimens 

fracture and the fragments have secondary impacts with the anvil.  However, these 

experiments did not show any evidence of mechanochemical initiated reactions for these 

secondary locations.  The reactants need to be in intimate contact for the reaction to 

proceed.  The post-mortem analysis of the recovered anvils shows that the dark colored 

footprints also had regions where material remained from secondary impacts.  These 

locations also showed no evidence of mechanochemical reaction initiation.  This further 

verifies that the significant viscoplastic deformation of the epoxy matrix is important for 

strain-induced reactions to take place. 

The correlation of microstructural features and the compressibility behavior show 

that it is important to have a composite with relatively small inclusion particles that are 

uniformly dispersed throughout the matrix in order to optimize mechanical properties.  

However, it is also important for chemical reactively purposes, that there are a sufficient 

volume fraction of these reactant particles in close proximity to each other for causing 

chemical reactions upon impact and to sustain these reactions until the reactants are 

consumed. 

 

5.5 Shock-Compression Damage and Strengthening Effects 

 

The shock Hugoniot of polymers is known to exhibit a non-linear US-UP 

relationship at relatively low pressures and commonly displays a concave curvature with 

an initially rapid shock velocity.  However, the experimentally measured shock Hugoniot 

obtained for Al+Fe2O3 particle-reinforced composites shows an opposite effect 
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displaying a convex curvature with an initially rapid particle velocity.  Transformation to      

pressure-volume space shows an initial expansion that is not related to a low-pressure 

phase change or reaction.  In contrast, the volume expansion is connected to damage 

associated with decohesion of solid particles from the polymer matrix.  Equation of state 

experiments conducted for epoxy-cast Al+Fe2O3 composites show deviation from ideal 

Hugoniot behavior as a result of damage evolving at a critical impact stress.  These 

experiments were conducted for the epoxy-cast Al+Fe2O3 composites with 60 and         

78 vol.% epoxy.  Two compositions prepared with significantly different volume 

fractions of the binder phase show damage occurring at approximately the same critical 

impact stress.  The Birch-Murnaghan equation of state (BM-EOS) was used to 

characterize the composite’s compressibility and identify the magnitude of the critical 

damage stress.  Additionally, experimentally determined material behavior was correlated 

with hydrodynamic calculations for evaluating the measured Hugoniot behavior. 

Comparison of embedded PVDF stress gauge measurements with                    

one-dimensional CTH code simulations initially show excellent agreement with 

experimental stress waveform histories, but overestimate as the input stress increases past 

a critical limit above which damage occurs.  The code currently does not account for 

damage in the epoxy-cast composite during shock loading.  The stress overestimation for 

the hydrodynamic calculations also corresponds to overestimation by similar magnitudes 

for the particle velocity behind the shock front, which was compared to directly measured 

values using VISAR.  The inverse Hugoniot, which is the theoretically determined 

pressure-volume compressibility response based on the weighted volumes for the 

constituent Hugoniots, along with fitting the compressibility behavior using the BM-EOS 
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for the damaged and undamaged material responses, both quantitatively identify the 

damage initiation stress threshold. 

The experimental measured US-UP Hugoniot response illustrates an initially 

similar behavior for both the particle-filled composites and pure epoxy, which gradually 

deviate at particle velocities above approximately 450 m/s.  Further increase in UP shows 

a significant deviation between the two composites at approximately 550 m/s, with the 

higher 78 vol.% epoxy containing composition exhibiting a sharp transition that 

approaches pure epoxy behavior.  These contrasting behaviors are related to various 

degrees of damage nucleating at inclusion sites within the epoxy matrix as pressure 

increases.  The damage initially provides a bulk toughening effect that alters the 

composite’s Hugoniot behavior until significant bulk failure occurs.  This effect is 

illustrated by the 78 vol.% epoxy US-UP curve initially approaching and then falling 

below pure epoxy behavior at higher UP values. 

The BM-EOS was used to account for the altered Hugoniot response and 

quantitatively characterize the resulting damage.  The experimentally measured US-UP 

Hugoniot data was transformed into pressure-volume space using the jump conditions 

and fit using the BM-EOS in terms of normalized stress and finite Eulerian strain.  The 

US-UP Hugoniot curves indicate that the responses of the composites are altered at a 

critical US and UP value.  Therefore, the normalized stress-Eulerian strain curves were 

divided in order to evaluate the damaged and undamaged compressibility of each 

composition.  The damaged and undamaged response curves for the 78 vol.% epoxy 

composite showed widely different behaviors; having positive and negative slopes, 

respectively.  Although less apparent, the 60 vol.% epoxy composition behaviors are also 
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divided.  The justification becomes more evident when trying to calculate K0 from a 

curve fit to all the data, which results in an unrealistic value that is close to zero or 

negative.  However, the values obtained from the intercepts of the undamaged response 

curves agree well with values calculated from ultrasonic measurements for both 

compositions.  The BM-EOS was applied to the experimental data by fitting the damaged 

and undamaged material responses to generate P-V/V0 compressibility curves.  The 

undamaged responses for both compositions overlap and show excellent agreement with 

the experimental data at pressures below approximately 4 GPa.  The experimental data 

and the BM-EOS fit for the undamaged response also correspond well with the 

theoretically obtained inverse Hugoniot for the 60 vol.% epoxy composition.  However, 

the 78 vol.% epoxy composite shows a rather significant deviation and appears to follow 

the observed behavior for the 60 vol.% epoxy composite at pressures below 4 GPa.  The 

discrepancy between the experimental and theoretical values for the 78 vol.% epoxy 

composite could possibly be associated with the specimens exhibiting damage initially, 

below pressures examined in this current work.  This causes bulk volume expansions due 

to the particle decohesion with the matrix and possibly introduces a strengthening 

mechanism below 4 GPa.  While the 60 vol.% epoxy composite shows strengthening at a 

critical pressure close to 4 GPa, the 78 vol.% epoxy composite possibly shows initial 

strengthening followed by significant damage at this same critical pressure. 

As the pressure increases, the 60 vol.% epoxy composition shows a volume 

expansion that is related to decohesion of inclusion particles from the epoxy matrix and 

causes the bulk compressibility to increase.  These higher pressure values show good 

agreement with the damaged material curve obtained from the BM-EOS.  In contrast, the 
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78 vol.% epoxy composition approaches the pure epoxy response beginning at 4 GPa.  It 

is apparent that the loading in this composition is carried almost completely by the binder 

material and the solid particle inclusions provide stress concentration sites that permit the 

nucleation of unobstructed crack growth and propagation due mainly to the 

compositional makeup. 

 

5.6 Influence of Reactant Particle Size and Epoxy Volume Fraction 

 

The addition of solid particles to an epoxy matrix significantly influences the 

structural/mechanical behavior and chemical reactivity of the bulk composite.  In the 

present study, the composite’s behavior has been altered by changing two main 

processing parameters; the reactants’ particle size and the relative volume fraction of the 

epoxy matrix.  These modifications ultimately alter the distribution and uniformity of 

reactant particle features throughout the material volume, which affects both the 

structural strength and chemical reactivity. 

The mechanical behavior of epoxy-cast Al+Fe2O3 composites as a function of the 

influence of epoxy volume fraction has been evaluated for a variety of loading conditions 

and a broad range of strain rates, which include quasistatic loading experiments            

(10-4 to 10-2 1/s), medium-strain rate Charpy and Taylor impacts (103 to 104 1/s), and 

high-strain rate parallel-plate impact experiments (105 to 106 1/s).  In general, structural 

strength and toughness were observed to improve as the volume fraction of epoxy 

decreases, regardless of the loading strain rate regime explored.  However, the influence 

of microstructural aspects, such as particle distribution and porosity, has significant effect 
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on the bulk mechanical behavior.  This is particularly observable for experiments that are 

very sensitive to porosity, such as flexural (three-point bend) tests and Charpy impacts.  

For these experiments, the largest flaw present in the composition, which may be a 

cluster of micron-scale aluminum particles or pores, significantly influences the bulk 

material behavior.  High-strain rate Taylor impact experiments were even more sensitive 

to porosity, showing significantly different deformation behaviors for composites 

containing more than 1 % porosity that led to eventual failure. 

For relatively low-strain rate experiments, the elastic modulus was observed to 

increase as the volume fraction of epoxy decreased.  However, the influence of epoxy   

(or solid filler particle quantities) was less significant in altering the yield stress 

magnitudes, which were observed to be relatively similar for each composite.  The 

primary toughening mechanism for low-strain rate loading of particle-filled composites 

has been associated with the debonding of the inclusion particles from the matrix [53].  

The addition of solid particles to the epoxy matrix influences the composite’s yielding 

behavior when debonding occurs prior to reaching the yield strain of the epoxy matrix, 

and thus, changes the stress state within the matrix material.  This effect was apparent 

from quasistatic compression and flexural bend tests, illustrating an increasing yield 

strain as the epoxy concentration increases.  The influence of the inclusion volume 

fraction was also apparent after yielding, which manifests as an increasing strain 

hardening effect associated with the decreasing volume fraction of epoxy.  However, the 

yield stress was fairly similar for each composition, with exception of the lowest epoxy 

containing composite (47 vol.% epoxy) that was influenced by a relatively high 

concentration of pores.  The similar yielding magnitudes suggest that the debonding of 
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inclusion particles from the matrix is unaltered by particle size and morphology 

differences and the variation of epoxy volume fraction observed for each composition.  

Furthermore, the relatively high concentration of submicron hematite particles present in 

each composite may initially control the yielding behavior, until significant debonding of 

the micron-scale aluminum particles occurs and creates fracture initiation sites. 

The influence of particle size and morphology is also observed to be significant in 

altering the viscoelastic response of specimens subjected to Taylor impact experiments.  

While the addition of micron-scale aluminum particles to epoxy was observed to increase 

the dynamic yield stress, the dynamic yield strain was essentially the same for the 

particle-filled composite and pure epoxy.  In contrast, the addition of nano-scale 

aluminum particles significantly increased the dynamic yield strain while providing only 

a slight improvement for the dynamic yield stress, when compared to the micron-scale 

aluminum composite.  The influence of particle size and morphology was directly 

evaluated based on measurements of elastic resilience from the composite’s dynamic 

stress-strain behaviors.  The nano-aluminum containing composite exhibited over two 

times the resilience as observed for the micron-scale aluminum composite and pure 

epoxy.  The significant elastic response is attributed to the introduction of nanoscale 

particles that provide physical entanglements which inhibit molecular polymer chain 

motions and improve the composite’s impact resistance. 

In addition to improved elastic properties, the use of nano-scale particles also 

contributes to inhibiting the propagation of cracks and the resistance to plastic 

deformation of the bulk composite.  Microstructural observations of the impact faces 

from recovered specimens show that the nano-scale aluminum composite contains 
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significantly less damage as compared to the micron-scale composite.  The damage is 

illustrated by multiple interparticle cracks propagating across the impact face, uninhibited 

by the micron-scale aluminum particles, and the formation of coalescing voids.  In 

contrast, the nano-scale composite shows significantly less cracking on the impact face, 

which was inhibited by nano-scale aluminum agglomerate regions, with no evidence of 

void formation.  Additionally, the critical impact velocity where plastic deformation was 

observed to initiate, illustrates the relative strength of these composites and the influence 

of nano- and micron-scale particle inclusions.  Similarly, the nano-scale aluminum 

composite had the greatest resistance to plastic deformation and therefore the greatest 

strength of these composites.  This is followed by pure epoxy and the 60 vol.% epoxy 

composite containing micron-scale aluminum particles.  The influence of micron-scale 

particles becomes apparent through a lower resistance to plastic deformation by 

introducing large stress concentration sites that promote fracture initiation. 

High-strain rate parallel-plate impact experiments were used to compare the 

response of 60 and 78 vol.% epoxy composites.  Both composites experienced similar 

compressibility behaviors up to a critical impact stress of approximately 4 GPa.  In the 

same regard, the distribution of aluminum and hematite particles and agglomerates 

significantly influences the composite’s deformation and fracture behaviors.  While the 

60 vol.% epoxy composite shows initial strengthening, the 78 vol.% epoxy exhibits 

significantly low strengthening above the critical impact stress.  The similar response of 

the two composites up to this point suggests that this critical stress is associated with the 

particle debonding behavior from the epoxy matrix.  Similar to the lower strain rate 

experiments discussed previously, the influence of particle size and morphology does not 
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become apparent until the stress is significant enough to cause void formation near the 

particle and matrix interface.  Additionally, the different compressibilities above the 

critical stress for the two composites may be associated with different crack diversion 

behaviors that partially absorb the impact energy.  These differences manifest as crack 

deflections around closely packed particles which hamper the crack propagation.  The   

60 vol.% epoxy provides opportunities for crack deflection and additionally has a greater 

number of submicron hematite particles as compared to the 78 vol.% epoxy composite.  

Both of these factors contribute to the significant toughening effect observed above the 

critical impact stress for the 60 vol.% epoxy composite.  The relatively spread out particle 

distribution for the 78 vol.% epoxy allows uninhibited crack propagation through the 

composite.  Additionally, if the particles are contributing to crack propagation deflection, 

the relative size of the damage zone will be significantly larger due to the distance 

between the particles as compared to closer packed particle morphology observed for the 

60 vol.% epoxy composite. 

The distribution of particles and the epoxy matrix volume fraction also influences 

chemical reactivity.  The recovery and post-mortem analysis for Taylor impact 

experiments have indicated evidence for strain-induced chemical reactions, which subject 

the composite to large shear conditions preceding the reaction.  Chemical reactions were 

observed in composites that contain both micron and nano-scale aluminum particles for 

select high velocity impacts, which caused combined conditions of highly strained 

material that, are subsequently subjected to continued high stresses.  The reactions were 

confined to specific locations that contained aluminum and hematite particles in close 

proximity to each other.  Since the hematite particles were abundant, the distribution of 
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aluminum particles limited the locations where chemical reactions could take place.  

Although Taylor impact experiments showed evidence for chemical reaction initiation, 

these reactions were not sustained and are possibly rapidly quenched due to the relatively 

large distance between the reactants.  Additionally, post-mortem analysis indicates that 

the epoxy matrix may hinder the sustainability of the reaction. 

 

5.7 Significance and Impact of Research 

 

Nano- and micro-scale aluminum and hematite powder mixtures combined with 

epoxy form a class of structural energetic materials that are capable of having both     

high-strength and enhanced chemical reactivity.  Such reactive material systems are of 

significant interest because of their capability to release high heat content or energy with 

temperatures in excess of 3000°C, while remaining relatively insensitive to unintended 

initiation.  The particular epoxy-cast metal-oxide mixture composite examined in this 

research was chosen as a model system for studying material strength at high-strain rates 

and the mechanochemical nature of strain-induced chemical reactions.  Knowledge 

gained from this system can be applied to other thermite-based energetic material systems 

that are also highly reactive, such as Al+MnO2, Al+MoO3, or intermetallic-forming 

materials such as Ti+Si, Mo+Si, and Ni+Al, with and without the addition of polymeric 

binders.  A key feature of reactive materials distributed within a polymer matrix, is their 

ability to release energy while additionally providing structural strength attributes. 
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5.7.1 Fabrication and Design of Structural Energetic Materials 

 

The fabrication and design of structural energetic composites, which relies on the 

interaction of metal-oxide powder mixtures with the epoxy matrix and how their 

chemical and mechanical properties balance to provide structural integrity and energetics, 

require careful consideration.  The ability to process these materials is of significant 

importance because processing dictates the composite’s overall chemical and mechanical 

behavior and processing variables provide the ability to tune these behaviors.  The 

challenge is to preserve the energetic characteristics of the metal-oxide powder mixture 

without sacrificing mechanical strength and vice versa.  The results of the current study 

indicate an ideal composite should incorporate uniformly dispersed aluminum and 

hematite structural reinforcement particles that are within relatively close proximity for 

enhancing their intimate interaction and mixing for chemical reactivity.  Furthermore, the 

composite’s overall bulk behavior can be improved by considering the distribution, size, 

and shape of the reactant particles and avoiding the addition of particles that create 

significant stress concentration sites, which are detrimental to structural/mechanical 

strength. 

The current study indicates that nano-scale reactant particles significantly 

improve mechanical behavior and can enhance chemical reactivity with their uniform 

distribution.  The influence of particle size on structural strength has been demonstrated 

from Taylor impact experiments (discussed in section 4.4) by comparing the dynamic 

deformation behavior for epoxy-cast Al+Fe2O3 composites containing nano- and micron-

scale aluminum particles.  The results indicate that the nano-aluminum containing 
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composite exhibits significantly greater impact resistance and elastic resilience.  The 

uniform dispersion of nano-scale particles is admittedly a challenging endeavor, however, 

the introduction of nano-scale particle agglomerates have been shown to improve the 

structural/mechanical behavior of the composites in the absence of significant porosity.  

These improvements are attributed to the nano-scale particles inhibiting molecular-scale 

polymer chain motions in the epoxy binder.  Similarly, the submicron-scale hematite 

particles and agglomerates containing these closely-packed particles also possibly 

contribute to restricting polymer chain motions in a similar manner and, thus, improve 

overall bulk mechanical response.  Similar strengthening effects for the nano-aluminum 

containing Al+Fe2O3+70 vol.% epoxy composite is observed in both the low-strain rate 

and high-strain rate regimes. 

The introduction of nano-scale reactants additionally enhances the energy content 

by increasing the surface area, and effectively alters the reaction pathways.  Post-mortem 

characterization of Taylor impact experiments indicate that these structural energetic 

composites undergo strain-induced mechanochemical reactions under specific impact 

conditions (discussed in section 4.4.6).  The use of nano-scale reactants require an equal 

volumetric mixture of aluminum and hematite particles, to ensure the intimacy between 

the reactants and provide opportunities for intimate mixing throughout the material 

volume.  Post-mortem characterization of specimens that have undergone strain-induced 

reactions show only localized chemical reactivity in regions that contain relatively larger 

scale micron aluminum particles in close contact with submicron hematite particles.  The 

enhancement of chemical reactions for the composite mixtures require refinement of 

reactant particle distributions to introduce a significant number of local reaction initiation 
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sites that will additionally provide opportunities for sustained chemical reactivity 

throughout the composite. 

While offering structural strength, the epoxy matrix effectively separates the 

individual reactant particles and provides a level of sensitivity that requires a specific 

mechanical stimulus to initiate chemical reactions.  Unlike an explosive that contains the 

fuel and oxidizer components within a single molecule, thermite mixtures require the 

interaction of individual reactants for chemical reaction initiation.  Mixing of these 

reactants is enhanced under specific loading conditions that cause significant mechanical 

work and introduce a temperature rise that causes thermal softening within the epoxy 

matrix.  The associated adiabatic bulk temperature rise from the mechanical work of 

plastic deformation was significant enough to cause thermal softening (discussed in 

section 4.4.7), however, lower than the threshold temperature observed for the thermite 

reaction or decomposition of epoxy.  The thermal softening triggers a series of 

subsequent events leading to extensive strains or deformation and consequent reaction.  

Thermal softening is an important component of the reaction mechanism in that it 

initiates a series of events culminating in the strain-induced chemical reaction initiation. 

 

5.7.2 Damage Influence and Characterization 

 

The introduction of solid micron-scale particles to the epoxy matrix effectively 

introduces flaws, and their sizes depend on the individual particle sizes and their 

distribution throughout the matrix phase.  The tendency for solid particles to agglomerate 

may be sufficient to cause relatively large clusters of particles and significantly large flaw 

 412



sites.  The failure of the epoxy-cast composites is associated with the concentration of 

stresses in the vicinity of these flaws or inclusion particles.  The introduction of damage 

significantly alters the composite’s response to dynamic loading and its bulk mechanical 

behavior.  Additionally, damage may obstruct submicron-level reactant particle mixing 

that is thought to be the driving mechanism for mechanochemical reactions.     

The influence of flaw sizes on mechanical properties was evaluated using Charpy 

impact experiments (discussed in section 4.3.4).  The estimated critical flaw size that 

causes failure in the composite showed a dependence upon the volume fraction of solid 

particle additions.  The critical flaw size increased and followed in order as the epoxy 

concentration decreased.  It follows that as the epoxy concentration decreases, the 

number of solid particles increases and so does the tendency for particles to cluster.        

High-strain rate impact experiments show a similar tendency towards 

structural/mechanical behavior with the introduction of solid inclusion particles.  Taylor 

impact experiments were used to establish the influence of particle sizes by examining 

the extreme case of comparing the response of Al+Fe2O3 composites containing       

nano- and micron-scale aluminum particles (discussed in section 4.4.3).  From a damage 

standpoint, the nano-aluminum containing composites showed significantly greater 

strengthening effects as compared to its micron-scale counterpart.  The incorporation of 

nano-scale aluminum particles eliminates stress concentration sites and the formation of 

nano-scale particle agglomerates actually enhances their structural behavior and impact 

resistance for damage or failure.  This result is contrary to the typical nanocomposites 

design goals for significantly enhancing structural strength of the bulk composite, which 

try to uniformly distribute nano-scale particles within the polymer matrix.  Considerable 
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strengthening of nanocomposites can be realized for composites fabricated with        

nano-scale particle agglomerates, provided a relatively low porosity level is maintained. 

Many energetic material systems including traditional explosives and new 

generation reactive thermite mixtures are dispersed within a polymeric binder.  For the 

latter, the polymer binder holds the reinforcement phase (thermite powder mixture) in an 

arranged pattern that enhances transfer of the load among the individual particles.  

However, for relatively large volume fractions, the binder phase has a significant effect 

on the overall response of the composite.   

In the present study, instrumented parallel-plate impact experiments were 

conducted on two types of epoxy-cast Al+Fe2O3 particle-filled composites prepared with 

60 and 78 vol.% epoxy (discussed in section 4.5).  These filled polymer composites show 

a non-linear US-UP Hugoniot behavior that has an altered response when compared to 

unfilled polymers.  The altered Hugoniot behaviors emerge from the addition of local 

stresses applied to the rigid aluminum and hematite particles from compression of the 

compliant epoxy.  It is proposed that these distinct behaviors are related to various 

degrees of damage nucleating at solid particle inclusion sites within the epoxy matrix.  

The damage initially provides a bulk toughening effect that alters the composite’s 

Hugoniot behavior until significant bulk failure occurs.  This effect is illustrated by the 

78 vol.% epoxy US-UP curve initially approaching and then falling below pure epoxy 

behavior at higher UP  values.  It is also apparent that the loading is carried almost 

completely by the binder material and the solid particle inclusions provide stress 

concentration sites that permit the nucleation of unobstructed crack growth and 

propagation. 
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The observed bulk damage of the composites from time-resolved high-strain rate 

impact experiments have been characterized using the Birch-Murnaghan equation of state 

(BM-EOS) and hydrodynamic calculations.  The BM-EOS was used to characterize this 

damage by fitting experimental data to curves that represent undamaged and damaged 

material behaviors.  The experimentally measured US-UP Hugoniot data was transformed 

into pressure-volume (P-V) space using the jump conditions and fit using the BM-EOS in 

terms of normalized stress and finite eulerian strain.  The comparison of both composites 

(60 and 78 vol.% epoxy) and pure epoxy allows the influence of particle-fill volume 

fraction on the altered Hugoniot response to be evaluated.  The results illustrate an 

initially similar behavior for both particle-filled composites and pure epoxy within a 

relatively low impact stress range.  However, as the impact stress increases past a critical 

limit, bulk damage alters the composites response. 

The damage within the composite possibly manifests from decohesion of solid 

particles from the epoxy matrix.  A similar response is observed from quasistatic 

compression tests (discussed in section 4.3.3), where changing the volume fraction of 

solid particles does not significantly influence the observed yield stress and possibly 

gives a measure of the cohesive strength between the solid particles and the epoxy 

matrix.  The BM-EOS used to characterize the damaged material response indicates that 

the critical damage stress is approximately 4 GPa for both epoxy-cast composites.  In a 

similar manner, the common critical stress observed from high-strain rate impact 

experiments is possibly related to decohesion of solid particles.   

Comparison of embedded PVDF stress gauge measurements with                    

one-dimensional CTH code simulations shows excellent agreement with experimental 
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stress histories up to a stress level below the damage threshold.  However, the simulations 

overestimate the input stress past a critical limit above which damage occurs.  The CTH 

strength model does not currently account for the evolution of damage, because of which, 

the associated overestimation of stress is observed.  These results further illustrate that 

the composite’s response is altered from the addition of solid particles to the polymer 

matrix and their influence on damage. 

The high-strain rate impact experiments conducted in this study mainly 

characterize the overall bulk composite response to dynamic loading.  Therefore, it is 

unclear how the damage is evolving at the particle-interface level.  However, it is 

suggested that the damage occurs typically from decohesion of solid particles.  The 

introduction of relatively rigid particles to a compliant epoxy matrix will have some type 

of damage associated with its response to dynamic loading at a specific stress level 

simply because of the significant contrasting bulk compressibility afforded by the 

different phases that comprise the composite.  Similar behavior was also observed for 

quasistatic mechanical tests (compression and Charpy impact) and medium-strain rate 

(Taylor impact) experiments.   

The use of micron-scale solid reactants introduce significant stress concentration 

sites that influence the overall bulk strength/mechanical behavior.  In contrast, the 

agglomeration of submicron-scale hematite and nano-scale aluminum particles show 

improved strengthening effects by inhibiting polymer chain motions.  The use of      

nano-scale constituent particles will alter the Hugoniot response even further and 

possibly offer significantly greater compressibility, while alleviating the introduction of 
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stress concentration sites.  This in turn should be expected to improve the structural 

strength and the mixing of reactant particles for enhanced chemical reactivity.               
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CHAPTER VI 
 

CONCLUDING REMARKS 

 

The present investigation focuses on describing the principles underlying the 

deformation and fracture behavior, mechanochemical sensitivity and reaction response, 

and processing characteristics of epoxy-cast Al+Fe2O3 thermite composites.  The 

mechanical response and reaction behavior are closely interlinked through the 

deformation characteristics of these composite materials.  As such, it was important to 

identify and fully characterize the deformation mechanism of the epoxy-cast composites 

to further establish the influence that the various structural characteristics of the reactants 

have on the overall mechanical properties, as well as their connection to the nature of 

chemical reaction initiation.  It was also desirable to establish the required stress and 

strain state or combination essential for initiating a chemical reaction in this material 

system. 

The design and testing of energetic structural materials were performed by 

systematically altering the microstructure, morphology, and composition while observing 

the material response to dynamic loading denoted by chemical reactivity and mechanical 

strength.  The following sections highlight the main conclusions and contributions 

obtained from this study, as well as suggestions for continued work that will serve  

 418



to improve upon the selection, design, and characterization of structural energetic 

material systems. 

 

6.1 Conclusions 

 

The research performed in the present investigation included the                        

i) characterization of Al+Fe2O3 epoxy-cast composite’s intrinsic properties and their 

correlation with structural/mechanical material responses observed from ii) static and   

iii) dynamic loading conditions, iv) dynamic mechanochemical reaction behavior, and    

v) shock-compression damage and strengthening effects.  The main conclusions include: 

 

i) The mixing of Al+Fe2O3 reactant powders and their dispersion within an epoxy 

matrix influences the composite’s overall microstructural features and the bulk 

structural/mechanical and chemical behavior.  These behaviors are closely 

interlinked through characteristics of deformation and intermixing of reactants.  

Quantitative characterization of the features of the evolving microstructures for 

each composition containing various volume fraction of epoxy, and the 

assessment of the influence of nano- and micron-scale aluminum particles reveal 

the following main features:  

 

a. Relatively broad size distributions were observed for hematite 

agglomerates that comprise the composite’s microstructure.  Average 

hematite agglomerate and pore sizes show a dependence on epoxy 
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concentration, which increased as the volume fraction of epoxy decreased.  

However, an Al+Fe2O3 composition containing 60 vol.% epoxy showed 

relatively larger aluminum and hematite agglomerate feature sizes, and a 

significantly lower concentration of the features, which were distributed 

fairly uniformly throughout the material volume.  Other compositions had 

hematite agglomerates and pores that were in relatively close proximity to 

each other, thus introducing the probability of significantly more stress 

concentration features that affect the overall structural/mechanical 

behavior of these composites. 

 

b. The addition of nano-scale aluminum produced unique microstructures 

that exhibited regions containing high concentrations of nano-scale 

aluminum particles or agglomerates.  These regions varied in size and 

ranged between 50 and over 200 µm in diameter.  This composite also 

exhibited similar features such as hematite agglomerates and minor 

concentration of porosity, which were significantly smaller than the 

micron-scale composite counterpart.  The agglomeration of submicron 

hematite and nano-scale aluminum particles appears to improve the 

structural/mechanical properties of these composites, when containing no 

appreciable porosity throughout the material volume. 

 

c. Typically, each composition had hematite particle agglomerates with size 

classes characterized as fine (≤ 1 µm, typically individual particles), 
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medium (5 to 10 µm), and large (20 to 50 µm).  However, their 

distribution and frequency varied according to the volume fraction of 

epoxy.  This is directly attributed to the increased difficulty associated 

with mixing higher solid particle fraction composites and suggests the 

agglomeration of hematite particles occurs during the dry mixing process 

of precursor powders before their addition to the epoxy resin.  In contrast, 

the agglomeration of nano-aluminum particles appears to occur during 

mixing, after their addition to the resin, signified by their turbulent spiral 

shape consisting of “layers” or “bands” of particles within the 

agglomerates. 

 

d. Hematite and nano-aluminum agglomerates consist of individual tightly 

packed particles that are encapsulated in the epoxy matrix and do not 

appear to have any open porosity.  This also suggests that some 

agglomeration may be beneficial for enhancing structural/mechanical 

properties of these composites, evident from continuous indentation tests 

that show significantly higher elastic moduli and yield stresses for these 

features.  However, the agglomeration of micron-scale aluminum is not 

desirable, as evident from DMA experiments that show these features do 

not contribute to bulk strengthening by inhibiting polymer chain motions 

for the epoxy matrix. 
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ii) The influence of microstructure on mechanical behavior was examined using 

quasistatic or relatively low-strain rate loading experiments that include dynamic 

mechanical analysis (DMA), continuous ball indentation, quasistatic compression, 

three-point flexural bend, and Charpy impact experiments.  These tests were used 

to evaluate the relative behavior between each composition while altering the 

addition of epoxy volume fraction to the micron-scale aluminum and    

submicron-scale hematite powder mixtures.  The results from these experiments 

are as follows: 

 

a. The addition of solid particles to the epoxy matrix typically improved the 

elastic modulus, observed from the measured stress-strain behaviors 

obtained from continuous ball indentation, quasistatic compression, and 

flexural three-point bend tests.  DMA scans show relatively steady 

improvements, with the storage modulus typically increasing in both the 

glassy and rubbery states with the addition of solid particles.  However, 

the 60 vol.% epoxy composition exhibited a significantly high modulus in 

the glassy region and a relatively low modulus in the rubbery region.  

These contrasting behaviors were attributed to solid micron-scale 

aluminum particles which possibly inhibit the epoxy crosslinking during 

polymerization.  These relatively large inclusion features dominate the 

deformation response in the glassy region by transferring the load from the 

matrix to the inclusions.  However, as temperature increases above the 

glass transition, the composite’s response is dominated by molecular chain 
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motions that are not inhibited by the relatively large inclusion features, 

thus, resulting in a significantly low storage modulus in the rubbery 

region. 

 

b. The glass transition temperature obtained from DMA experiments does 

not significantly change with solid particle filler content except for the    

60 and 78 vol.% epoxy compositions.  Higher glass transition temperatures 

are typically related to higher crosslink densities, which tends to increase 

as molecular motion becomes more difficult.  However, the calculated 

crosslink density for the 60 vol.% epoxy composite was relatively low, 

while the 78 vol.% epoxy composite was relatively normal when 

compared to the other compositions.  This suggests that the relatively high 

glass transition temperatures for these composites are not directly related 

to crosslink density, but possibly influenced more by microstructural 

features such as hematite agglomeration and the uniformity of aluminum 

particle distribution.  The hematite agglomerates may be improving the 

local mechanical properties of the composite, since the individual particles 

are uniformly dispersed, however, in closer proximity to each other.  

Furthermore, as evidence for this effect, the significantly low number of 

hematite agglomerates present in the 60 vol.% epoxy composite are not 

sufficient to improve the overall mechanical behavior of this composite. 
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c. The dispersion of nanoscale particles provides physical entanglements that 

lead to a loss of polymer chain mobility, which in turn raises the glass 

transition temperature and increases the average crosslink density.  The 

use of nano-scale aluminum particles was also apparent in improving the 

load capacity in the rubber modulus region above the glass transition 

temperature. 

 

d. The apparent yield points for each composition are somewhat scattered 

and have less obvious responses, with the 60 vol.% epoxy composite 

having the greatest value.  Inherent porosity significantly affects the 

composites response as illustrated by the significantly low yield stress 

observed for the 78 vol.% epoxy composite, which had moderately high 

porosity concentration (close to 2 %) with unusually large pores.  

However, the addition of solid particles to the epoxy matrix did not show 

significant improvements towards yielding.  The most significant effect 

was improved elastic modulus and strain hardening from the addition of 

reinforcement particles.  The addition of solid particles also reduced 

inherent brittleness of pure epoxy.  The ratio of toughness and strength 

(KIC/σf) provides a gradual ranking for the epoxy-cast composites, with 

pure epoxy showing the most brittle behavior, followed by 70, 47, 78, and 

60 vol.% epoxy composites. 
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e. The introduction of solid particles to the polymer matrix effectively 

introduces flaws, and their sizes depend on the individual particle sizes 

and their distribution throughout the epoxy matrix.  The inherent critical 

flaw sizes for each composition had relatively broad range between 9 and 

30 µm and follow in order according to epoxy concentration, with pure 

epoxy having the smallest and the 47 vol.% epoxy composition having the 

largest.  However, the 78 vol.% epoxy composite exhibited a slightly 

greater critical flaw size than the 47 vol.% epoxy composite because of the 

abnormally high inherent porosity observed for this particular batch of 

material. 

 

iii) The influence of epoxy-cast composites containing nano- and micron-scale 

aluminum and hematite powders on the dynamic structural/mechanical behavior 

was evaluated using Taylor anvil impact experiments.  These behaviors were 

compared to the dynamic response of pure epoxy.  The results from these 

experiments are as follows: 

 

a. The measurement of transient deformation dimensions obtained from 

high-speed camera images indicate the epoxy-cast Al+Fe2O3 composites 

exhibit both viscoelastic deformation and brittle fracture behaviors.  Upon 

impact, the specimens display significant elastic and plastic deformation 

both during the loading and unloading stages of the deformation response.  

 425



Approximately 50 % elastic recovery of total axial strain was observed to 

occur rapidly (within tens of microseconds) after impact. 

 

b. Strain measurements provide insight into the fracture behavior of these 

composite materials.  The path to fracture initiation begins with the areal 

strain exceeding a critical limit.  The epoxy-cast Al+Fe2O3 composites, 

including nano-aluminum containing composites, have critical areal 

strains of 30 %, above which the samples continue to strain to 

approximately 60 to 80 % prior to fracture.  Pure epoxy specimens 

however showed a higher critical areal fracture strain of approximately   

40 %, which is attributed to thermal softening permitting the rubbery 

response commodat te  hi r areal 

xhibit thermal 

 th ca  fr t

 

he me e y on es that 

s fr igh d   ens typically 

do fru  t rmation was 

o ra th ct  o  the l strain 

igh 

ushroom” deformation 

shape promotes the absorption of the impact energy along the axial length 

of the specimen and no fracture initiation is typically observed.  The 

to ac e grea r radial deformation or ghe

strains.  In contrast, the particle-filled composites e

softening above e criti l areal acture s rain. 

c. Upon impact, t  speci ns rev al two t pes of deformati shap

were ob erved om h -spee camera images.  Specim

exhibited a “ uble- stum” shape when he defo

c ncent ted at e impa  region f the specimen, causing axia

to exceed a critical value leading to radial failure at significantly h

strains of 60 to 80 %.  In contrast, the “elongated-m
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introduction of a small fraction of porosity, typically more than 1 %, 

significantly influences the deformation character, which manifests as the 

“double-frustum” deformation shape that leads to specimen failure. 

impact velocity identifies the minimum impact condition 

ry f the c d ation a ensi asure 

that provides an indication of relati

or n x site, followed 

v p  re ctively.  

 different batches of pure epoxy that were processed 

rs. e lower 

e  (b ),  w c  retical density, 

li hi rit p l I st, the higher 

e m al h po e ight higher 

ardener, which in turn caused the density to be greater 

h  th ica lcu a  o al h a brittle 

e r au lo isc

o it pa oci

 

as 

comparable to the 60 vol.% epoxy composition in terms of stress response, 

however, exhibiting significantly different yield strains.  The major 

difference in the overall dynamic response was observed in terms of 

 

d. The critical 

necessa or onset of plasti eform nd is a s tive me

ve material strength.  The highest 

strength was observed f the na o-70 vol.% epo y compo

by pure epoxy and the 60 ol.% e oxy composite, spe

Additionally, two
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l wer cr ical im ct vel ty. 

e. The stress-strain behavior for the nano-70 vol.% epoxy composition w
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elastic resilience, with the nano-70 vol.% epoxy composition showing the 

d resilience for the 60 vol.% epoxy and pure epoxy 

compositions was very similar and the addition of micron-scale particles 

showed only a slight improvement. 

 

f. The elastic/plastic wave interaction directly influences the composites 

response to dynamic loading.  Position-time diagrams of the elastic and 

plastic waves coincide with elastic recovery if the stress magnitude is 

below the fracture strength of the composite.  Specimens are observed to 

fracture following the elastic and plastic wave interaction if the stress 

magnitude is sufficiently high.  The one-dimensional elastic-plastic wave 

analysis combined with time synchronized velocity interferometry 

measurements and high speed camera images identify the stress and strain 

magnitude in the vicinity of these interactions. 

 

iv) Select reverse Taylor impact experiments with relatively high impact velocities 

showed evidence of a dark footprint remaining on the anvil surface.  Post-mortem 

analysis identified localized chemical reactions and decomposition of the epoxy 

matrix.  The characterization of thermochemical reaction energetics was used to 

identify the most probable reaction products observed from the strain-induced 

chemical reactions.  The results obtained from Taylor impact experiments, which 

reveal evidence for mechanochemical reactions, are as follows: 

greatest value, over twice that observed for 60 vol.% epoxy and pure 

epoxy.  The calculate
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a. Post-mortem SEM analysis of the footprints showed evidence of localized 

melting and re-solidification of melted reaction products.  These sites 

display evidence of Al2O3 and Fe reaction products remaining on the anvil 

surface, in addition to an iron-alumina compound (FeAl2O4).  Identified 

sites also showed regions where intermediate reaction products, such as 

AlFe3 and Fe1-xO, were observed.  In some cases, the reaction products 

were in close proximity to hematite particles that were not involved in the 

reaction.  The reactions appear to be localized to sites that contain 

aluminum within the vicinity of hematite particles.  There was no evidence 

of aluminum particles remaining on the anvil surface, which thus, appears 

to be the limiting component for the thermite reaction. 

 

b. Other locations outside the dark footprint area showed identifiable debris 

remaining on the surface from secondary impacts of the rod specimen 

fragments.  The locations typically consisted of hematite particles with no 

evidence of chemical reaction.  Additionally, no aluminum particles were 

found, indicating that the micron-scale particles are possibly ejected for 

the epoxy matrix upon impact.  This indicates that fracture may inhibit the 

sustainability of the reaction and constrain it to a limited radial-strained 

region. 

 

c. The reaction products identified from in situ high-temperature x-ray 

diffraction (HTXRD) and indicated by DTA were similar to those 
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identified from the post-mortem investigation of the recovered anvils.  The 

good correlation of the reaction products identified from the different 

experimental conditions give confidence in the calculated reaction 

products obtained from the elemental species identified by EDS. 

 

d. Both types of composites, containing micron- and nano-aluminum, 

showed evidence of reaction initiation.  The initiation, indicated from the 

contact footprint remaining on the anvil surface, occurred at 

approximately 50 % areal strain, regardless of significantly different 

impact velocities. 

 

e. The remaining impact footprints on the anvil face provide an 

instantaneous signature of the strain-induced reaction initiations.  The 

strain and corresponding stress were estimated from the footprint, in 

addition to estimating the bulk temperature rise associated with the 

mechanical work from plastic deformation.  While the associated 

temperature rise was sufficient to cause thermal softening, it was 

significantly lower than that needed for directly initiating the thermite 

reactants.  However, thermal softening is an important component of the 

reaction mechanism and provides additional viscoplastic deformation that 

allows the intimate interaction of the reactant particles and         

submicron-level mixing, which is thought to be crucial for reaction 

initiation. 

 430



v) The shock Hugoniot of epoxy-cast Al+Fe2O3 composites containing                   

60 and 78 vol.% epoxy was compared.  The study of particle-filled composites 

showed a deviation from ideal Hugoniot behavior that was initiated from the 

addition of solid particles and possible damage evolving at a critical impact stress.  

The results obtained from these expe ents are as follows: 

 

ce of wave dispersion 

effects that attenuate the wave as it propagates through the specimen. 

 

b. The US-UP Hugoniot behavior for each composition initially shows similar 

behaviors for the particle-filled composites and pure epoxy.  However, this 

response gradually deviates at a critical value that corresponds to induced 

damage.  While the 60 vol.% epoxy composite exhibits a gradually 

increasing particle velocity for higher impact stress, the 78 vol.% epoxy 

shows a sharp transition towards the response of pure epoxy.  These 

rim

a. The addition of solid particles to the epoxy matrix altered the typically 

non-linear US-UP response observed for pure polymers.  The particle-filled 

Al+Fe2O3 composites showed an opposite effect, displaying a non-linear 

US-UP response with an initially rapid particle velocity, resulting in a 

convex curvature.  This effect is attributed to the addition of higher shock 

impedance particles that intensify and increase the overall bulk wave 

velocity for the composite.  In contrast, the addition of lower shock 

impedance features, such as pores, show eviden
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contrasting behaviors are related to various degrees of damage possibly 

nucleating at the particle inclusion sites. 

 

c. The transformation of US-UP Hugoniot data to the pressure-volume space 

allows the determination of the critical impact stress that initiates damage 

in the composite materials.  Comparing the experimentally determined 

compressibility to those calculated from fitting damaged and undamaged 

material responses with the Birch-Murnaghan equation of state           

(BM-EOS), indicates possible damage occurs at approximately 4 GPa for 

onnected to decohesion of solid 

particles from the epoxy matrix.  While the 60 vol.% epoxy composite 

 the critical damage stress, the        

78 vol.% epoxy composite exhibits significantly more damage as the 

impact stress increases, introducing significantly more damage that can 

not support the greater loading. 

 

d. Comparison of embedded PVDF stress gauge measurements with 

hydrodynamic simulations initially show excellent agreement with 

experimental stress waveforms, but overestimate as the input stress 

increases past a critical limit of approximately 4 GPa, above which 

ed for in the models used for the 

numerical simulations. 

both compositions.  The damage is c

exhibits a toughening response above

damage occurs.  The stress overestimation corresponds to induced 

damage, which is currently not account
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6.2 Summary of Contributions 

 

The experimental and theoretical work conducted in this study provides a general 

design for the development and characterization of particle-filled structural energetic 

composite material systems.  The main contributions from this investigation are as 

follows: 

 

material behavior of epoxy-cast 

composites using instrumented reverse Taylor anvil impact experiments by 

extending the one-dimensional elastic-plastic wave propagation analysis 

presented by Hutchings [98].  Experiments coupled high-speed camera images for 

capturing the transient deformation of the specimen and velocity interferometry 

(VISAR) to measure the surface velocity of the rear of the specimen.  Time 

synchronizing the camera images with VISAR and calculations using the    

elastic-plastic wave propagation analysis provides a detailed account of the 

deformation behavior and identifies complex wave interaction phenomena 

throughout the entire deformation interval up to the final state of the specimen, 

his type of analysis specifically 

a. High-speed camera images to quantitatively measure axial and areal 

strains at each time instance and calculate the stress-strain history from 

one-dimensional elastic-plastic wave propagation analysis.  High-speed 

i) Devised a method for obtaining dynamic 

including details about fracture initiation.  T

enables: 
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camera images provided accurate specimen dimensions that compared 

well with physically measured post impact dimensions, within 0.4 % of 

each other. 

 

b. Identification of the characteristic “double-frustum” deformation shape 

associated with specimen failure and the “elongated-mushroom” shape, 

which was observed for all specimens that showed no evidence of fracture, 

regardless of the particle-filled composites’ composition. 

 

tions dispersed with 

Al+Fe2O3 powders typically showed evidence of fracture when exceeding 

a critical areal strain of 30 %, while pure epoxy endured higher critical 

areal strains of 40 % before fracture initiation was observed. 

 

d. The detection of subtle differences between various epoxy-cast Al+Fe2O3 

composites and pure epoxy batches through the measure of critical impact 

velocity, where the onset of plastic deformation occurs.  The critical 

mic material response 

and provides an indication of relative material strength. 

 

e. Quantitative measurements revealing significant elastic and plastic 

deformation during both the loading and unloading stages, where over    

c. Strain measurements used to identify composi

impact velocity is a very sensitive measure of dyna
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50 % elastic recovery of total axial strain occurred rapidly (within tens of 

microseconds) after impact. 

 

f. The detection of subtle plastic wave motion and the total axial strained 

length of the deformed body from captured high-speed camera images.  

An image analysis routine was employed for measuring the diameter of 

the deformed specimen at every pixel along the axial length, which was 

r was 2 % greater than 

the specimen’s initial diameter. 

g. Construction of x-t (distance-time) diagrams depicting the propagation of 

elastic and plastic waves from incremental stress-strain calculations using 

the one-dimensional elastic-plastic wave propagation analysis.  The 

impact velocity, and thus, the initial magnitude of the stress wave have a 

direct consequence in the behavior of the elastic/plastic wave interaction.  

The analysis calculates the stress and strain magnitudes for discrete time 

increments from high-speed camera images of the transient deformation. 

 

ns, which is used 

for validating predictions obtained from the one-dimensional           

elastic-plastic wave propagation analysis and identifying the moment of 

specimen failure. 

used to identify the axial position where the diamete

 

h. Coupling of high-speed camera images with VISAR data for 

characterizing the complex elastic-plastic wave interactio
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ii) Post-mortem material analysis of relatively high velocity reverse Taylor anvil 

impact experiments indicates strain-induced mechanochemical reaction initiation.  

Select experiments showed evidence of a dark impact footprint remaining on the 

anvil surface containing reaction products consistent with those formed for the 

Al+Fe2O3 thermite system.  The footprints also provide a signature identifying the 

stress, strain, and strain rates associated with the reaction initiation.  The 

recovered anvils were used for: 

a. Post-mortem SEM analysis of the footprint regions showing evidence of 

localized melting and re-solidification.  The most probable reaction 

products were established from identified EDS chemical species compared 

with those identified from in situ high temperature x-ray diffraction 

(HTXRD) measurements and DTA exothermic and endothermic peak 

signatures. 

 

b. Calculating the specific strains associated with the measured footprint 

contact diameters remaining on the anvil surface.  The calculated strains 

 the dynamic          

om high-speed camera 

images. 

 

 

were used to obtain the corresponding stress from

stress-strain behavior, while the strain rate was estimated from            

time-synchronized strain measurements obtained fr
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c. Calculating the associated bulk adiabatic temperature rise from the plastic 

work, corresponding to the measured footprint contact strain, and 

identifying the thermal softening effect that triggers a series of events 

culminating in strain-induced chemical reaction initiation. 

 

iii) Conducted time-resolved impact experiments, using PVDF stress gauges and 

velocity interferometry (VISAR), for obtaining the composite material’s Hugoniot 

equation of state (EOS).  Several compressed-gas gun impacts were performed for 

the epoxy-cast Al+Fe2O3 composites containing 60 and 78 vol.% at relatively low 

 GPa, respectively).  Additional 

explosively loaded experiments were performed to an extended pressure range up 

to approximately 25 GPa for the 78 vol.% epoxy composite in collaboration with 

Jordan, et al. [161,162].  The detailed analysis of the impact and propagated stress 

waveforms, and the particle velocity waveform provide shock loading behavior 

used to: 

 

a. Identify a non-linear U -U  Hugoniot relationship for particle-filled 

ature with initially rapid particle 

velocity from the addition of solid particles with relatively high shock 

impedances.  This response was contrary to the behavior typically 

observed for unfilled polymers, which have a non-linear concave 

curvature with an initially rapid shock velocity. 

 

impact pressures (2.7 to 8.5 GPa and 2.1 to 4.7

S P

composites, which exhibits a convex curv
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b. Identify a significantly rapid rise time-to-peak equilibrated stress for the 

propagated PVDF stress gauge waveform as compared to the impact stress 

gauge response.  For composites that contain higher shock impedance 

particles dispersed in a low shock impedance polymer matrix, the wave 

intensifies as it propagates through the specimen and increases the overall 

bulk wave velocity. 

 

s (pressure) for both impact and 

propagated PVDF gauge waveforms linked to the viscoelastic-viscoplastic 

step” was also detected in the 

VISAR rise-to-peak particle velocity waveforms. 

 

d. Compare embedded PVDF stress gauge measurements with                  

one-dimensional CTH code simulations that initially show excellent 

agreement with experimental stress waveforms, but overestimate as 

impact stress increases past a critical limit above which damage occurs.  

The hydrodynamic calculations also overestimate the particle velocity 

behind the shock front, by similar magnitudes, for directly measured 

e. Identify the critical impact stress where damage occurs by comparing 

transformed US-UP Hugoniot data to pressure-volume space with the 

calculated undamaged responses obtained from the Birch-Murnaghan 

c. Identify a “step” in the rise-to-peak stres

epoxy response behavior.  A similar “

values using VISAR. 
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equation of state (BM-EOS) [211] and the theoretically determined 

equilibrated Hugoniot pressure response for mixed phases using the 

inverted Hugoniot EOS [212]. 

 

f. Directly compare the influence of particle-fill volume fraction for the 

epoxy-cast Al+Fe2O3 composites with 60 and 78 vol.% epoxy, with pure 

epoxy response.  The particle-filled composites illustrate initially similar 

 deviate at higher pressures or 

particle velocities.  However, contrasting behaviors for each composition 

are observed at higher pressures, above the critical damage stress.  While 

the 78 vol.% epoxy composition shows a transition from undamaged to 

damaged behavior that approaches pure epoxy response, the 60 vol.% 

epoxy composition exhibits a gradual toughening behavior. 

 

iv) Correlation of the structural/mechanical response and chemical reaction behavior 

with quantitative microstructural analysis is conducted for the various 

compositions examined in this study.  The bulk material response is closely 

formation and intermixing of 

reactants.  Although the bulk material response for the different compositions is 

homogenized from the main response attributed to the relatively large volume 

fraction of epoxy used in these composites, some select cases directly illustrate 

the influence of the microstructure on mechanical behavior.  Therefore, the 

influence of microstructural characteristics is obtained mainly as a function of 

behaviors with pure epoxy, but gradually

interlinked through the characteristics of de
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epoxy volume fraction (from 47 to 78 vol.%) and solid particle size effects 

observed for Al+Fe2O3 composites containing nano- and micron-scale aluminum.  

The microstructural analysis indicates: 

 

a. The dynamic response obtained from Taylor impacts shows a minor 

gation between particles. 

 

c. The strain-induced mechanochemical reactivity response for the       

epoxy-cast Al+Fe2O3 composites using micron- and nano-scale aluminum 

influence in mechanical behavior when varying the epoxy concentration 

from 47 to 78 vol.% for the Al+Fe2O3 composites.  The bulk material 

response is typically dominated by the viscoelastic-viscoplastic behavior 

observed for the epoxy matrix. 

 

b. The dynamic stress-strain behavior obtained from the Taylor impact 

analysis shows that the use of nano-scale aluminum particles significantly 

increases the composites’ elastic resilience and the ability to absorb the 

impact energy as compared to using micron-scale aluminum and pure 

epoxy response.  The port-mortem analysis illustrates the strengthening 

mechanism of nano-aluminum agglomerates, which also improve the 

composite’s elastic resilience and the ability to absorb high velocity 

impacts by inhibiting crack propagation.  In contrast, composites 

containing micron-scale aluminum particles experienced uninhibited crack 

propa
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particles appear to initiate at similar areal strain of approximately 50 %, 

 

d. Hugoniot experiments conducted for the epoxy-cast Al+Fe2O3 composites 

with 60 and 78 vol.% epoxy indicate that the addition of solid particle 

inclusions alters the US-UP response as compared to pure epoxy behavior.  

The contrasting behaviors for each composition were observed at higher 

pressures, above a critical damage stress, where the 78 vol.% epoxy 

composition transitions rapidly from undamaged to damaged behavior and 

approaches the pure epoxy response.  In contrast, the 60 vol.% epoxy 

composition exhibits a gradual toughening behavior as impact pressure 

increases. 

 

e. Quasistatic or relatively low-strain rate mechanical testing, which include 

dynamic mechanical analysis (DMA), continuous ball indentation, 

compression, three-point flexural bend, and Charpy impacts, each 

typically showed that the specific measured parameter, for example, the 

elastic moduli, yield stress, or toughness increase as epoxy concentration 

decreases. 

 

 

 

 

regardless of impact velocity. 
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6.3 Future Research Recommendations 

 

The current study has examined several aspects that are important for the 

development and enhancement of structural energetic materials.  The established methods 

and techniques provide opportunities for extension into the future development of similar 

materials with enhanced dual-functionality between the reactants and matrix.  As in most 

studies on relatively new and untested materials, unexpected results were encountered 

which could not be adequately pursued in more detail within the scope of the immediate 

work.  The recommendations for future experimental and theoretical work are as follows: 

 

i) It would be advantageous to identify the mechanical and chemical influence of 

micron- and nano-scale aluminum particles used within Al+Fe2O3 epoxy-cast 

composites.  Additional reverse Taylor impact experiments for the    

Al+Fe2O3+70 vol.% epoxy composites would provide the opportunity to directly 

compare the behavior with the nano-Al+Fe2O3+70 vol.% epoxy composite 

already examined.  Extending the characterization of this particular composition 

will assist in identifying the mechanochemical reaction threshold with more 

clarity, the relative degree of reactivity, and the direct influence of reactants’ 

particle morphologies. 

 

ii) The current study has examined the bulk material response to dynamic loading 

and explained the observed structural/mechanical behavior and mechanochemical 

reactivity.  However, it would be beneficial to scale down the specimen size and 
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fabricate composites that contain highly controlled morphologies and distributions 

reactant particles and the associated mechanism(s) for mechanochemical reaction 

initiation, particularly for composites containing nanoscale reactants.   

 

iii) What is the influence on the many possible epoxy systems and other polymeric 

binders that are typically used as a matrix material for particle-filled composites?  

There have been limited high-strain rate studies which correlate mechanical 

behaviors with well characterized polymers.  It would be of interest to extend the 

Taylor impact study to include pure polymer structures that are characterized in 

terms of degree of crystallinity, crosslinking density, and other intrinsic polymer 

properties.  Many of these intrinsic properties can be modified and tailored to 

meet specific needs of the composite system.  It would also be benifical to 

conduct these studies at different temperatures for developing the constitutive 

relationship and the influence of temperature on structural/mechanical properties. 

 

iv) Structural energetic materials subjected to significantly high velocity impacts 

have revealed a delayed reaction response from secondary impacts of highly 

strained and damaged materials with a rigid surface [8,46].  The geometry of the 

traditional right-circular cylindrical Taylor specimen can be modified to enhance 

strain-induced chemical reactivity by introducing a conical frustum tip (created by 

slicing the top of a cone).  This geometry would enhance conditions for        

strain-induced chemical reactions by duplicating the loading conditions observed 

of the reactants.  This would be beneficial for identifying the interaction of 

 443



for delayed reaction initiation experiments.  The deformation behavior for the 

conical Taylor impact test would cause highly strained material from the tip to 

“jet” across the anvil face while undamaged material along the axial length of the 

specimen tip produces a “secondary” impact.  This effectively introduces the 

undamaged material to impact in a cascading manner with damaged material.  

High-speed camera images can be used to quantitatively capture the transient 

deformation and calculate the stress, strain, and strain rates necessary for reaction 

initiation. 

 

v) Metal honeycomb structures, termed linear cellular alloys (LCA’s), are fabricated 

from an oxide paste extrusion process and subsequent reduction from thermal heat 

treatment [224].  These structures can be fabricated in a variety of geometries, 

while maintaining mechanical properties typically observed for traditionally 

processed metal alloys.  The suitability of LCA’s as energetic capsules were 

examined from a limited dynamic impact study, where the open structure of the 

LCA was filled with epoxy acting as an inert simulant [225].  The study found 

that the filled specimens experience increased overall strength and energy 

absorption capabilities upon impact.  It would be interesting to continue this study 

and replace the inert epoxy with the well-characterized epoxy-cast Al+Fe2O3 filler 

material.  Additionally, the fragmentation of the LCA introduces a significant 

shearing component and confinement that can help initiate and sustain chemical 

reactions. 
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vi) In the current study, the shock Hugoniot experiments for Al+Fe2O3+78 vol.% 

the Al+Fe2O3+60 vol.% epoxy composite.  While the 78 vol.% epoxy composition 

shows a transition from undamaged to damaged behavior that approaches pure 

epoxy response, the 60 vol.% epoxy composition exhibited a gradual toughening 

behavior that never approached pure epoxy or a significantly damaged response.  

It is possible that a similar damage transition observed for the 78 vol.% epoxy 

composite is expected to occur for the 60 vol.% epoxy composition at 

significantly higher impact stresses.  Extending the loading range for shock 

Hugoniot experiments conducted for the Al+Fe2O3+60 vol.% epoxy composite 

would permit the complete evaluation of damage at higher impact pressures.  It 

would also be valuable to conduct additional experiment for evaluating the 

influence of nano-scale particles on the shock Hugoniot response of particle-filled 

epoxy-cast composites. 

 

vii) The introduction of a damage model that couples the viscous-elastic-plastic (VEP) 

constitutive model [216], already in use, with the CTH hydrodynamic calculations 

would be beneficial for the complete description of the complex          

viscoelastic-viscoplastic behavior observed for the epoxy-cast composites.  

Currently, the hydrodynamic calculations show excellent agreement with 

experimentally determined stress waveforms, but overestimate as the input stress 

increases past a critical limit above which damage occurs.  The introduction of a 

damage model will allow the calculation of distention and the degree of damage 

epoxy composite were conducted over a significantly greater pressure range than 
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induced from the high velocity impacts.  This will account for the formation of 

pores during the debonding process and the subsequent microcracking and 

scission that take place in the binder material, thus reducing the predicted stress 

waveform magnitudes.  It would also be beneficial to introduce a reactive flow 

model that accounts for the polymer disassociation and intermetallic reaction of 

the thermite constituents. 
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APPENDIX A: Continuous Spherical Ball Indentation Tests 

 

Instrumented continuous indentation experiments were conducted for evaluating 

the local mechanical behavior of epoxy-cast Al+Fe2O3 composites.  The penetration 

depth or displacement, h, of the spherical tipped indenter is measured as a function of an 

applied load.  The measured load-displacement curves are shown in Figure A.1(a-e) for 

a) pure epoxy, and the Al+Fe2O3 epoxy-cast composites with b) 78, c) 70, d) 60, and      

e) 47 vol.% epoxy, respectively.  Similarly, load to the 2/3 power displacement 

dependence curves and stress-strain curves for each composition are shown in         

Figure A.2(a-e) and Figure A.3(a-e), respectively.  Table A.1 lists the measured 

parameters obtained for each experiment.  These include the calculated reduced and 

specimen elastic moduli (Er and Es, respectively), the viscoelastic and viscoplastic yield 

stresses (σy(ve) and σy(vp), respectively), and Meyer hardness, HM.  The elastic/plastic limit 

for each composite is identified by load and displacement values, P and h, respectively. 

 

 447



 

 

 

Table A.1 Measured data obtained from continuous ball indentation experiments for 
Al+Fe2O3 epoxy-cast composites and pure epoxy (batch B).  The quality of each indent 
was evaluated using optical microscopy to observe microstructural features that influence 
the indentation results. 

elastic/plastic
Specimen 

ID 
Er 

[GPa] 
Es 

[GPa] h 
[µm] 

P 
[N] 

σy(ve) 
[MPa] 

σy(vp) 
[MPa] 

HM 
[MPa] 

Indent 
Features*

 Al+Fe2O3+47 vol.% epoxy 
085E-1,1 8.83 8.43 7.37 6.53 120.79 200.74 252.44 P 
085E-1,2 9.75 9.34 6.82 6.41 132.68 232.93 271.16 P 
085E-1,3 15.19 14.95 9.86 17.52 225.83 391.90 356.85 Ag 
085E-1,4 11.76 11.38 3.69 3.04 66.50 183.14 262.03 P, Ag 
085E-1,5 7.53 7.14 4.87 2.95 44.21 124.18 222.24 P 
085E-5,1 8.33 7.93 4.29 2.75 86.40 185.60 234.87 P 
085E-5,2 10.51 10.11 5.36 4.82 87.40 201.48 241.98 P, Ag 
085E-5,3 6.92 6.54 2.58 1.06 41.62 133.13 220.99 P 
085E-10,1 10.70 10.30 2.84 1.92 86.17 189.93 240.48 P, Ag 
085E-10,2 11.92 11.55 3.74 3.20 67.51 204.69 230.62 P, Ag 
 Al+Fe2O3+60 vol.% epoxy 
079E-1,1 19.15 18.13 3.54 4.73 174.66 278.85 296.33 Ag 
079E-1,2 10.44 9.46 3.50 2.49 97.85 208.75 279.56 G 
079E-5,1 7.79 6.97 5.78 4.08 42.76 141.89 261.98 P 
079E-5,2 11.07 10.07 5.01 4.56 104.05 200.18 275.89 G 
079E-5,3 7.84 7.02 8.09 6.78 44.23 173.91 249.05 P 
079E-10,1 9.69 8.75 5.61 4.80 41.60 181.00 255.61 G 
*P and Ag represent pores and Fe2O3 agglomerates, respectively, located within 
the indent’s contact area observed from optical micrographs.  G corresponds to a 
good indent with relatively homogeneous phase distribution. 
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Table A.1 (continued). 

elastic/

 

plastic
Specimen 

ID 
Er 

[GPa] 
Es 

[GPa] h 
[µm] 

P 
[N] 

σy(ve) 
[MPa] 

σy(vp) 
[MPa] 

HM 
[MPa] 

Indent 
Features*

 Al+Fe2O3+70 vol.% 
087E-1,1 8.72 8.08 4.51 3.11 40.09 163.08 231.09 Ag 
087E-5,1 5.82 5.31 5.85 3.06 16.06 140.87 210.59 P 
087E-10,1 8.45 7.82 2.25 1.05 40.62 144.32 216.79 Ag 
 Al+Fe2O3+78 vol.% epoxy 
077E-1,1 5.94 5.10 9.77 6.67 75.49 146.15 196.48 G 
077E-1,2 6.43 5.53 3.15 1.32 50.91 160.11 193.62 G 
077E-1,3 5.33 4.57 8.15 4.55 31.61 117.76 182.62 G 
077E-5,2 10.28 9.01 5.54 4.98 93.61 193.39 274.35 Ag 
077E-5,1 3.20 2.71 2.53 0.50 12.56 147.41 186.99 P 
077E-10,1 5.76 4.95 5.52 2.77 33.3 151.68 197.12 G 
 100 vol.% epoxy (batch B) 
091E-1,1 4.48 3.79 12.41 7.26 46.88 155.88 179.80 P 
091E-1,2 4.68 3.97 4.67 1.76 30.42 120.98 173.34 P 
091E-1,3 4.49 3.81 9.25 4.69 25.8 121.45 173.73 P 
091E-5,1 4.12 3.49 7.93 3.42 26.11 125.11 168.70 G 
091E-5,3 3.10 2.61 2.87 0.57 20.48 126.83 164.39 G 
091E-10,1 4.46 3.77 23.02 18.37 26.42 120.8 203.25 G 
*P and Ag represent pores and Fe2O3 agglomerates, respectively, located within 
the indent’s contact area observed from optical micrographs.  G corresponds to a 
good indent with relatively homogeneous phase distribution. 
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Figure A.1 Load-displacement curves obtained from each continuous indentation 
experiment conducted for a) pure epoxy, and epoxy-cast Al+Fe2O3 composite with b) 78, 
c) 70, d) 60, and e) 47 vol.% epoxy. 
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Figure A.2 Load to the 2/3 power displacement dependence curves obtained from each 
continuous indentation experiment conducted for a) pure epoxy, and epoxy-cast 
Al+Fe2O3 composite with b) 78, c) 70, d) 60, and e) 47 vol.% epoxy. 

 451



 
Figure A.3 Stress-strain curves obtained from each continuous indentation experiment 
conducted for a) pure epoxy, and epoxy-cast Al+Fe2O3 composite with b) 78, c) 70, d) 
60, and e) 47 vol.% epoxy. 
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APPENDIX B: High-Speed Camera Images for Reverse Taylor Impacts 

 

The measurements and calculations described in section 4.4 for reverse Taylor 

impact experiments relied on high-speed camera images capturing the transient 

deformation of the specimen.  Images obtained for each reverse Taylor impact 

experiment, which was conducted for each composition and pure epoxy, are shown in 

Figure B.1 to B.32.  The images consist of sixteen individual frames taken at specific 

times, which depend on impact velocity, to capture the specimen’s deformation.  For each 

experiment, the images are arranged in a rectangular (4x4) array, with the first image 

located in the upper left corner and the final image located at the lower right corner.  The 

images generally increase in time from left to right for each row. 

Each individual image shows the steel anvil coming from the left side of the 

frame.  The specimen is held stationary by an acrylic ring and a cross-sectional view is 

shown towards the right end of the specimen, located approximately "41  from its back 

surface.  Every image shows a fiducial marker consisting of concentric arcs, located to 

the left of the acrylic ring, that are fastened along the center axis of the specimen.  In 

some cases, difficulties were encountered with the camera, where images misfired and 

show a completely black frame or a frame oversaturated by light. 
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Figure B.1 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+47 vol.% epoxy composite (shot 0618). 

 
Figure B.2 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+60 vol.% epoxy composite (shot 0529). 

 
Figure B.3 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+60 vol.% epoxy composite (shot 0621). 
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Figure B.4 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+60 vol.% epoxy composite (shot 0530). 

 
Figure B.5 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+60 vol.% epoxy composite (shot 0537). 

 
Figure B.6 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+60 vol.% epoxy composite (shot 0541). 
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Figure B.7 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+60 vol.% epoxy composite (shot 0535). 

 
Figure B.8 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+60 vol.% epoxy composite (shot 0542). 

 
Figure B.9 High-speed camera images obtained from reverse Taylor impact experiment 
for Al+Fe2O3+60 vol.% epoxy composite (shot 0544). 
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Figure B.10 High-speed camera images obtained from reverse Taylor impact 
experiment for Al+Fe2O3+60 vol.% epoxy composite (shot 0531). 

 
Figure B.11 High-speed camera images obtained from reverse Taylor impact 
experiment for Al+Fe2O3+60 vol.% epoxy composite (shot 0536). 

 
Figure B.12 High-speed camera images obtained from reverse Taylor impact 
experiment for Al+Fe2O3+60 vol.% epoxy composite (shot 0603). 
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Figure B.13 High-speed camera images obtained from reverse Taylor impact 
experiment for Al+Fe2O3+60 vol.% epoxy composite (shot 0644). 

 
Figure B.14 High-speed camera images obtained from reverse Taylor impact 
experiment for Al+Fe2O3+70 vol.% epoxy composite (shot 0617). 

 
Figure B.15 High-speed camera images obtained from reverse Taylor impact 
experiment for nano-Al+Fe2O3+70 vol.% epoxy composite (shot 0648). 
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Figure B.16 High-speed camera images obtained from reverse Taylor impact 
experiment for nano-Al+Fe2O3+70 vol.% epoxy composite (shot 0649). 

 
Figure B.17 High-speed camera images obtained from reverse Taylor impact 
experiment for nano-Al+Fe2O3+70 vol.% epoxy composite (shot 0650). 

 
Figure B.18 High-speed camera images obtained from reverse Taylor impact 
experiment for nano-Al+Fe2O3+70 vol.% epoxy composite (shot 0645). 
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Figure B.19 High-speed camera images obtained from reverse Taylor impact 
experiment for nano-Al+Fe2O3+70 vol.% epoxy composite (shot 0647). 

 
Figure B.20 High-speed camera images obtained from reverse Taylor impact 
experiment for nano-Al+Fe2O3+70 vol.% epoxy composite (shot 0646). 

 
Figure B.21 High-speed camera images obtained from reverse Taylor impact 
experiment for Al+Fe2O3+78 vol.% epoxy composite (shot 0616). 
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Figure B.22 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0637). 

 
Figure B.23 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0638). 

 
Figure B.24 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0640). 
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Figure B.25 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0639). 

 
Figure B.26 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0641). 

 
Figure B.27 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0643). 
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Figure B.28 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0601). 

 
Figure B.29 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0642). 

 
Figure B.30 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0602). 
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Figure B.31 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0614). 

 
Figure B.32 High-speed camera images obtained from reverse Taylor impact 
experiment for 100 vol.% epoxy composite (shot 0613). 
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APPENDIX C: Hugoniot Equation of State Data 

 

Several equation of state experiments (EOS) using the Georgia Tech.  

compressed-gas gun were conducted for Al+Fe2O3 epoxy-cast composites with              

60 and 78 vol.% epoxy.  Shown below are the a) voltage waveforms and converted        

b) current, c) charge, and d) stress traces, using PlotData software [165], obtained from 

the PVDF gauges located on the impact and back surfaces of the epoxy-cast target 

materials.  The waveforms obtained for each experiment are shown in Figure C.1 to C.10. 

The complete voltage signal was not obtained for shots 0303 (Figure C.7) and 

308 (Figure C.8), where the peak voltages for the impact and propagated gauges were 

cut-off, respectively.  These experiments were conducted for the Al+Fe2O3+78 vol.% 

ugoniot, since shock velocity was still experimentally determined from the arrival 

signal i ot 0303 was conducted on a lower density 

Hugoniot behavior. 

0

epoxy composite and show only a portion of the voltage signal captured, thus, not 

allowing the calculation of stress.  However, this did not impact the composite’s 

H

n the propagated gauge (shot 0308).  Sh

specimen with a significant amount of porosity and not included on the overall material’s 
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Figure C.1 The a) voltage, b) current, c) charge, and d) stress waveforms obtained from 
impact (left) and propagated (right) gauge records for shot 0627. 
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Figure C.2 The a) voltage, b) current, c) charge, and d) stress waveforms obtained from 
impact (left) and propagated (right) gauge records for shot 0505. 
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 C.3 The a) voltage, b) current, c) charge, and d) stress waveforms obtained from Figure

impact (left) and propagated (right) gauge records for shot 0608. 

 468



 
Figure C.4 The a) voltage, b) current, c) charge, and d) stress waveforms obtained from 
impact (left) and propagated (right) gauge records for shot 0507. 
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 C.5 The a) voltageFigure , b) current, c) charge, and d) stress waveforms obtained from 

impact (left) and propagated (right) gauge records for shot 0628. 

 470



 
 C.6 The a) voltage, b) current, c) charge, and d) stress waveforms obtained from 
left) and propagated (

Figure
impact ( right) gauge records for shot 0609. 
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 C.7 The a) voltage, b) current, c) charge, and d) stress waveformFigure s obtained from 

impact (left) and propagated (right) gauge records for shot 0303. 

 472



 
Figure C.8 The a) voltage, b) current, c) charge, and d) stress waveforms obtained from 
impact (left) and propagated (right) gauge records for shot 0308. 
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Figure C.9 The a) voltage, b) current, c) charge, and d) stress waveforms obtained from 
impact (left) and propagated (right) gauge records for shot 0311. 
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Figure C.10 The a) voltage, b) current, c) charge, and d) stress waveforms obtained 
from impact (left) and propagated (right) gauge records for shot 0403. 
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APPENDIX D: One-Dimensional CTH Simulation Snapshots 

One-dimensional simulations using the Eulerian hydrodynamic code               

CTH [2

the Al+ figuration utilized for these 

  

one-dim

e state variables, were positioned within the center of the impact and propagated gauge 

layers l

ach material that comprise the target assembly for select time instances, in addition to 

the com

the arr

ropagation of the disturbance wave through the target and reaching the target/fused 

silica w

flected waves from the back of the flyer and target/window interface approaching each 

other. 

cation.  Snapshots obtained for each experiment conducted for the Al+Fe O +60 vol.% 

epoxy c

 

13-215] were conducted for each parallel-plate impact experiment performed for 

Fe2O3+60 vol.% epoxy composite.  The exact con

experiments is duplicated in the CTH DIATOM description.  The calculations use a  

ensional spatial mesh with a resolution of 12.5 µm.  Tracer points, which record 

th

ocated on either side of the epoxy-cast target material. 

The snapshots show the stress and particle velocity waveforms propagating within 

e

pressibility in terms of density changes.  Typically, the first frame corresponds to 

ival of the stress wave within the target material.  This is followed by the 

p

indow interface or propagated gauge location.  The next snapshot shows the 

re

 The final snapshot shows the arrival of the release wave at the impact gauge 

lo 2 3

omposite are shown in Figure D.1 to D.6. 
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Shot 0627 and 0505 were symmetric type impacts, where the flyer and target are 

identica er, target, and window 

r tungsten flyer impacting a copper driver.  Refer to Table 4.21 for a complete summary 

of these

 

 

 

 

 

l materials and therefore, the snapshots only show the fly

materials comprising the target assembly.  The remaining experiments use either a copper 

o

 experiments. 
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Figure D.1 Captured CTH simulation snapshots illustrating the waveform propagation 
(direction indicated by arrows) within the materials that make up the target assembly for 
shot 0627.  The snapshots are captured at a) 0.3, b) 1.0 c) 1.6, and d) 2.4 µs after impact 
and show the variation of density, particle velocity, and stress waveform profiles (in 
order top-to-bottom) throughout the target assembly. 
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Figure D.2 Captured CTH simulation snapshots illustrating the waveform propagation 
within the materials that make up the target assembly for shot 0505.  The snapshots are 
captured at a) 0.2, b) 0.9 c) 1.4, and d) 2.1 µs after impact and show the variation of 
density, particle velocity, and stress waveform profiles (in order top-to-bottom) 
throughout the target assembly. 
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Figure D.3 Captured CTH simulation snapshots illustrating the waveform propagation 
within the materials that make up the target assembly for shot 0608.  The snapshots are 
captured at a) 0.7, b) 1.4 c) 1.9, and d) 3.4 µs after impact and show the variation of 
density, particle velocity, and stress waveform profiles (in order top-to-bottom) 
throughout the target assembly. 
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Figure D.4 Captured CTH simulation snapshots illustrating the waveform propagation 
within the materials that make up the target assembly for shot 0507.  The snapshots are 
captured at a) 0.7, b) 1.2 c) 1.3, and d) 3.2 µs after impact and show the variation of 
density, particle velocity, and stress waveform profiles (in order top-to-bottom) 
throughout the target assembly. 
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Figure D.5 Captured CTH simulation snapshots illustrating the waveform propagation 
within the materials that make up the target assembly for shot 0628.  The snapshots are 
captured at a) 0.5, b) 0.9 c) 1.0, and d) 1.7 µs after impact and show the variation of 
density, particle velocity, and stress waveform profiles (in order top-to-bottom) 
throughout the target assembly. 
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Figure D.6 Captured CTH simulation snapshots illustrating the waveform propagation 
within the materials that make up the target assembly for shot 0609.  The snapshots are 
captured at a) 0.7, b) 1.3 c) 1.6, and d) 3.7 µs after impact and show the variation of 
density, particle velocity, and stress waveform profiles (in order top-to-bottom) 
throughout the target assembly. 
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