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SUMMARY 

 Mask Projection Stereolithography (MPSLA) is a high resolution manufacturing 

process that builds parts layer by layer in a photopolymer. In this research, a process 

planning method to fabricate MPSLA parts with constraints on dimensions, surface finish 

and build time is formulated.  

 As a part of this dissertation, a MPSLA system is designed and assembled. The 

irradiance incident on the resin surface when a given bitmap is imaged onto it is modeled 

as the “Irradiance model”. This model is used to formulate the “Bitmap generation 

method” which generates the bitmap to be imaged onto the resin in order to cure the 

required layer. 

 Print-through errors occur in multi-layered builds because of radiation penetrating 

beyond the intended thickness of a layer, causing unwanted curing. In this research, the 

print through errors are modeled in terms of the process parameters used to build a multi 

layered part. To this effect, the “Transient layer cure model” is formulated, that models 

the curing of a layer as a transient phenomenon, in which, the rate of radiation attenuation 

changes continuously during exposure. In addition, the effect of diffusion of radicals and 

oxygen on the cure depth when discrete exposure doses, as opposed to a single 

continuous exposure dose, are used to cure layers is quantified. The print through model 

is used to formulate a process planning method to cure multi-layered parts with accurate 

vertical dimensions. This method is demonstrated by building a test part on the MPSLA 

system realized as a part of this research.  



 xx

 A method to improve the surface finish of down facing surfaces by modulating 

the exposure supplied at the edges of layers cured is formulated and demonstrated on a 

test part.  

 The models formulated and validated in this dissertation are used to formulate a 

process planning method to build MPSLA parts with constraints on dimensions, surface 

finish and build time. The process planning method is demonstrated by means of a case 

study.  
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CHAPTER 1 INTRODUCTION AND MOTIVATION 
 

 Micro-Stereolithography, with its ability to fabricate high resolution 3D parts in a 

free form fashion, is emerging as a promising candidate to address the needs of all those 

industries that need high resolution polymer parts. The potential applications of micro 

Stereolithography have been mentioned in packaging of MEMS devices, (Ikuta et al., 

1999), fabrication of scaffolds for tissue growth (Laoui et al., 2005), fabrication of fluidic 

channels for BioMEMS (Ikuta et al., 1999), etc. 

 Micro Stereolithography is a term used to denote the adaptation of the 

Stereolithography process to micro applications (Gardner et al., 2001). The 

Stereolithography process builds parts in a layer-by-layer fashion, curing every layer by 

scanning the surface of a photo polymerizing resin by using a laser. There are several 

adaptations of this process for micro fabrication. 

• Integrated hardening: where the laser spot is focused to a 5µm diameter and the 

resin vat is scanned underneath it to cure a layer (Ikuta et al., 1998; Ikuta et al., 

1999) 

• Mask Projection Micro Stereolithography: where a bitmap corresponding to the 

layer to be cured is displayed on a dynamic mask and is imaged onto the resin 

surface to cure the desired layer (Bertsch et al., 1997) 

• Two photon polymerization: where an infrared femto second pulsed laser is 

focused in the interiors of the resin to initiate polymerization by two photon 

absorption (Maruo et al., 1997) 
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 All these technologies are fairly new, only about a decade old and none of them 

has been applied commercially. The author’s research is focused on Mask Projection 

Stereolithography (MPSLA). 

 

 

 

 

 

 

 

 

Figure 1.1 Schematic of a Mask Projection Micro Stereolithography system, from Bertsch et al., 
(2001) 

 

 The schematic of the MPSLA system is shown in Figure 1.1. MPSLA process 

starts with the CAD model of the object to be built. The object is sliced at various heights 

and the cross-sections of the slices are stored as bitmaps. These bitmaps are displayed on 

a dynamic pattern generator and are imaged onto the resin surface in order to cure a layer. 

The layer is built on a platform which is lowered into a vat of resin to coat the cured layer 

with a fresh layer of resin and the next layer, corresponding to the next cross section is 

cured on top on it. Likewise, by curing layers one over the other, the entire micro part is 

built. 

 Since this technology is inchoate, most work on it has been experimental in nature 

and very little work on process planning has been done. The process capabilities have 
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been demonstrated by building very high resolution 3D parts. However, analytical 

modeling of this process has not been done. In order to mature this technology into a high 

resolution manufacturing process, it needs to be studied in more detail. The author’s 

research is focused on analyzing the MPSLA process and formulating a process planning 

method, which will enable the selection of the values of the process parameters to build 

the part of interest. 

 The need for a greater understanding of Mask Projection Stereolithography has 

been accentuated by its adoption by the additive manufacturing companies. Desktop 3D 

printers by 3D SystemsTM , Desktop FactoryTM and Envision TecTM are expected to flood 

the low cost prototyping market in the near future. These printers are based on the 

MPSLA technology. 

 In Section 1.1, an introduction to Micro-Stereolithography has been provided.  In 

Section 1.2, the status of research in MPSLA and in process planning for additive 

manufacturing technologies has been reviewed and the areas where research is needed are 

identified. In Section 1.3, the research objective for this PhD is scoped out. In Section 

1.4, the organization of this dissertation is presented. 

 

1.1 Micro Stereolithography 

 The Stereolithography process is explained in Section 1.1.1. The adaptations of 

this process for micro fabrication have been presented in Section 1.1.2. In Section 1.1.3, 

the advantages the Mask Projection approach over the other adaptations is presented. 
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1.1.1 Stereolithography 

 The Stereolithography process begins with the definition of a CAD model of the 

desired object, followed by slicing of the three dimensional (3-D) model into a series of 

very closely spaced horizontal planes that represent the X-Y cross sections of the 3-D 

object, each with a slightly different Z-coordinate value. All the cross-sections are then 

translated into a numerical control code and merged together into a build file. This build 

file is used to control the ultraviolet (UV) light scanner and Z-axis translator. The desired 

polymer object is then “written” into the UV-curable resist, layer by layer, until the entire 

structure has been defined.  

 The schematic of the Stereolithography process is shown in Figure 1.2  

 
Figure 1.2 Schematic of a Stereolithography machine from Jacobs (1992) 

 

 The basic elements of a Stereolithography system are as follows: 

• Laser Optics System, 

• Scanning System, 
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• Elevator and Recoater, and 

• Computer Control and Software 

 The laser optics system consists of the laser used to cure the resin and the beam 

shaping optics. The beam shaping optics is responsible for conditioning the laser beam 

and focusing it on the resin surface with the desired spot size.  

 The scanning system consists of a set of galvanometric mirrors, which direct the 

laser beam so that the required cross-section is scanned. 

 The elevator lowers the cured layer by a distance of one layer thickness. The 

recoater coats a fresh layer of resin on the cured layer. This layer is then scanned by the 

laser.  

 Computer and the controlling software are used to control the galvanometric 

mirrors. The computer also synchronizes the motion of laser, elevator and recoater. 

When light is incident on a Stereolithography resin, it polymerizes. 

Polymerization is the process of linking small molecules (monomers) into larger 

molecules (polymers) comprised of many monomer units. Most Stereolithography resins 

contain the vinyl monomers and acrylate monomers. Vinyl monomers are broadly 

defined as monomers containing a carbon-carbon double bond. Acrylate monomers are a 

subset of the vinyl family with the carboxylic acid group (-COOH) attached to the 

carbon-carbon double bond. For an acrylate resin system, the usual catalyst is a free 

radical. In Stereolithography, the radical is generated photo chemically. The source of the 

photo chemically generated radical is a photo initiator, which reacts with an actinic 

photon as shown in the photo-polymerization scheme presented in Figure 1.3. This 

produces radicals (indicated by a large dot) that catalyze the polymerization process.  
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Figure 1.3 Scheme of the photo-polymerization process (Jacobs, 1992) 

 

1.1.2 Three approaches to Micro-Stereolithography 

When Stereolithography is used to fabricate micro-parts, it is called Micro 

Stereolithography. The principle of Micro Stereolithography is the same as 

Stereolithography, i.e. “Writing a cross section on a photopolymer surface by means of 

UV light”. However, the resolution required of a Micro-Stereolithography process is 

much finer.  

Micro-Stereolithography technologies developed so far can be divided into three 

categories: 

• Scanning Micro-Stereolithography 

• Two photon polymerization, and 

• Mask Projection Micro-Stereolithography, or Integral Micro-Stereolithography 

1.1.2.1 Scanning Micro-Stereolithography Systems 
The scanning optical system of the conventional Stereolithography machine 

introduces errors in the build. Also, the spot size doesn’t remain constant throughout the 

layer cross-section. As a result, the resolution and accuracy are low. In scanning Micro-



 7

Stereolithography, this drawback is eliminated by keeping the light beam focused onto a 

stationary tight spot and scanning the layer by moving the work piece under the spot. 

The principle of Scanning Micro-Stereolithography is shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Principle of Scanning Micro-Stereolithography from Beluze et al., (1999) 

 

Scanning Micro-Stereolithography systems have been presented in literature in 

(Nakamoto et al., 1996; Maruo and Kawata, 1998). The following specifications of a 

typical scanning Micro-Stereolithography process have been presented in (Gardner, 

Varadan, Awadelkarim, 2001) 

• 5 µm spot size of the UV beam 

• Positional accuracy is 0.25 µm (in the X-Y directions) and 1.0 µm in the Z-

direction. 

• Minimum size of the unit of harden polymer is 5 µm x 5 µm x 3 µm (in X, Y, Z). 
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• Maximum size of fabrication structure is 10mm x 10mm x 10mm. 

1.1.2.2 Two photon polymerization 
 When near IR light, with a high peak power is focused inside a resin, the spatial 

density of photons becomes high at the focal point. Each initiator in the two photon 

absorbing (TPA) resin absorbs two near IR photons at the same time and becomes a 

radical. Resultant radicals break double bonds of carbon in acrylyl group in the 

monomers and oligomers and successively create new radicals at the ends of these 

monomers and oligomers. Radicals combine with another monomer. This chain reaction 

continues till chained radical meets another chained radical. The polymerization 

mechanism is shown in Figure 1.5. 

 

Figure 1.5 Photo chemical reaction for two-photon micro-fabrication. From (Maruo et al., 1997) 

  

Two-photon polymerization (TPP) has been successfully used to fabricate parts 

with lateral resolution as small as 200nm (Stute et al., 2003).  

 The schematic of the TPP system realized by Maruo et al., (1997) is shown in 

Figure 1.6. They used a Ti Sapphire laser, with wavelength 790nm, pulse-width 200fs, 

and peak power 50kW. The objective lens had an NA = 0.85. The micro part was scanned 

bottom up.  
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 There are two advantages of the TPP process. First, it is a high resolution process, 

with a resolution almost 10 times better than other Micro-SLA technologies. Secondly, it 

is not a layer based technology. This eliminates the errors and delays associated with 

recoating of resin on layers. 

 

Figure 1.6 Optical setup for two-photon micro fabrication. From Maruo et al., (1997) 

 

1.1.2.3 Mask Projection Micro-Stereolithography 
In Mask Projection Micro-Stereolithography, also called Integral Micro 

Stereolithography, a complete layer is polymerized in one radiation only. The principle of 

Mask Projection Micro-Stereolithography is shown in Figure 1.7. 

 In this process, a pattern generator generates the shape of the layer to be cured. 

This shape patterns a beam of light. The beam is projected onto the resin surface to cure a 

pattern-shaped layer. This way, layers are built one over the other to build the entire part.  

Mask Projection Micro Stereolithography Systems have been presented in literature. 

(Bertsch et al., 1997; Chatwin, 1998; Farsari et al., 1999; Chatwin et al., 1999; Monneret 

et al., 1999; Bertsch et al., 2000; Farsari et al., 2000; Monneret et al., 2001; Hadipoespito 

et al., 2003). 
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Figure 1.7 Principle of Mask Projection Micro-Stereolithography 

 

1.1.3 Advantages of Mask Projection approach over Scanning approach 

 The Mask Projection Micro-Stereolithography process has the following 

advantages over Scanning Micro-Stereolithography. 

• The light flux density arriving on the surface of the photopolymerizable resin 

when projecting the image of a complete layer is low compared to the one of a 

light beam accurately focused in one point. As a result there are no problems of 

unwanted polymerizations due to thermal effect. 

• Mask Projection Micro-Stereolithography processes are faster than the scanning 

processes because vector-by-vector scanning is a slower process. The TPP 
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process is very slow because the spot size of the laser used is very small (~200-

400nm).  

• The accuracy of integral process is also better because the errors introduced by 

the X-Y translation stages are avoided. The only mobile element in these systems 

is the Z-Stage. 

 Due to these advantages, the author’s research is focused on Mask Projection 

Stereolithography. 

1.2 Literature review 

 The status of research in the field of MPSLA is presented in Section 1.2.1. A 

review of the research done in process planning for other Rapid Prototyping technologies 

is presented in Section 1.2.2. Areas which need to be researched are identified in Section 

1.2.3. 

1.2.1 Status of research in MPSLA 

 Complex 3D parts cured by MPSLA have been presented in literature by various 

research groups (Figure 1.8). The specifications of their systems are presented in Table 

1.1.  
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Figure 1.8 Complex 3D microstructures fabricated by Mask Projection Stereolithography. (a) 
microcup made up of 80 layers of 5 µm thicknesses; (b) microturbine made of 110 layers of 4.5 µm 

thickness; (c) microcar made of 673 layers of 5 µm thicnkess; (d) microspring 

Table 1.1 Performance and specifications of the MPSLA systems realized by various research groups 

Research group Papers published Light 
source Mask Resolution  Component 

size Speed 

Bertsch  (Bertsch et al., 
1997) 

Laser: 515 
nm  LCD 5 x 5 x 5 µm 1.3 x 1.3 x 

10mm3 Not reported 

Chatwin 

(Chatwin et al., 
1998); (Farsari et 
al., 1999); 
(Chatwin et al., 
1999); (Farsari et 
al., 2000) 

Laser: 
351.1 nm SLM 5 µm lateral 

resolution Not reported 

60s 
exposure 
time per 
layer 50µm 
thick 

Monneret 
(Monneret at al., 
1999); (Monneret 
et al., 2001) 

Broadband 
Visible light LCD 2 µm lateral 

resolution Not reported 
10µm layers 
at 1 layer / 
minute 

Bertsch 
(Bertsch et al, 
1999); (Beluze et 
al., 1999) 

Lamp 
(Visible) DMD 5 x 5 x 5 µm 6 x 8 x 15 

mm3 

Components 
fabricated at 
the rate of 
1mm/hour 

Bertsch (Bertsch et al., 
2000) Lamp (UV) DMD 10 x 10 x 10 

µm 
10.24 x 7.68 x 
20 mm3 

673 layer 
micro-car 
model with 
each layer 
5µm thick in 
3 hours. 

Hadipoespito (Hadipoespito et 
al., 2003) Lamp (UV) DMD 20µm lateral 

resolution Not reported Not reported 

Limaye and 
Rosen 

(Limaye and 
Rosen, 2004, 2005) Lamp (UV) DMD 6 µm lateral 

resolution 2 x 2 x 1 mm 90s per layer 

Zhang (Sun et al., 2005) Lamp (UV) DMD 0.6µm lateral 
resolution Not reported Not reported 
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 Research in MPSLA has been largely experimental in nature. Analytical modeling 

has been presented only in Limaye and Rosen, (2004). In this paper, we have formulated 

the “Layer cure model” which models the dimensions of a single layer cured using our 

system in terms of the process parameters used to cure it. The structure of the Layer cure 

model is presented in Figure 1.9.   

 

  

 

 

 

 

 

 

 

Figure 1.9 Structure of Layer cure model, from Limaye and Rosen (2004) 

 

 The Layer cure model consists of two models: the Irradiance model and the Cure 

model. The Irradiance model computes the irradiance received at every point on the resin 

surface by adopting the ray tracing procedure. Cure model computes the cure profile of a 

layer in terms of the irradiance incident on the resin surface and the resin properties. The 

Irradiance model and the Cure model can be used in conjunction to model the dimensions 

of the layer cured. 
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1.2.2 Process planning in other additive manufacturing technologies 

 Process planning has been done for various RP processes with different 

objectives, like reducing dimensional errors, improving surface finish and reducing build 

time. In this section, this literature has been reviewed. 

Dimensional accuracy 

 The most common source of errors in the vertical dimensions of 

Stereolithography builds is print through. Print through is caused by the addition of 

residual energies from separate laser scans exceeding the photo polymerization threshold 

of the resin. This problem has been addressed in commercial Stereolithography machines 

by adopting the “Layer compensation” approach. Here, the lowest layer of a part being 

built is skipped in order to compensate for the increase in dimension that would occur 

due to print through (AccuMaxTM Toolkit User Guide, 1996). 

 Lynn-Charney and Rosen (2000) empirically modeled geometric tolerances of 

Stereolithography builds in terms of process parameters. They considered six types of 

geometric tolerances: positional, flatness, parallelism, perpendicularity, concentricity and 

circularity. Response surfaces (Myers and Montgomery, 1995) were constructed to relate 

these tolerances with various process parameters. 

Surface finish 

 Surface finish is rougher along the z-axis of RP parts than parallel to the xy-plane 

because of the “stair stepping” effect (Paul and Voorakarnam, 2001). It is most prominent 

when the surface orientation is not orthogonal to the slice’s vertical profile. The cusp 

height is considered as a measure of the surface finish of a RP prototype in the vertical 

direction. Cusp height is the maximum surface deviation due to stair stepping effect and 
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is directly dependent on the layer thickness and orientation angle. Suh and Wozny, 

(1994) formulated an analytical relation between the cusp height and the layer thickness 

to determine the maximum allowable layer thickness that would satisfy the constraint on 

cusp height.  

 Reduction in layer thicknesses leads to an increase in build time. Sabourin et al., 

(1996) addressed this problem by stepwise uniform refinement. They proposed using 

thinner slices only where the vertical profile is highly curved, while using thicker slices 

everywhere else, thereby reducing the build time. Mani et al., (1999) proposed region 

based adaptive slicing, where only the portion of layers adjacent to the edge of the part 

are sliced with smaller layer thicknesses while the interiors are composed of thicker 

layers. (Figure 1.10) 

 

Figure 1.10 Region based adaptive slicing and traditional adaptive slicing (Mani et al., 1999) 

 

 Reeves and Cobb, (1997) expressed surface roughness of RP parts as a function of 

surface angle (θ ), layer thickness (α ) and layer profile (φ ), as shown in Figure 1.11, to 

obtain the following expression for surface roughness of up- and down-facing surfaces. 
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Figure 1.11 Nomenclature used by Reeves and Cobb (1997) 
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where K and K1 are factors determined experimentally. 

 Reeves and Cobb, (1997) observed that the surface finish of the down facing 

surfaces was much better than that predicted by their analytical model. They attribute this 

effect to ‘print through’. As shown in Figure 1.12, print through causes a partial “fillet” 

between two layers causing a modification to the layer profile and hence, reducing the 

surface deviation. 

 Sager and Rosen (2005) formulated a process planning method to cure smooth 

down facing SLA surfaces by controlling the scan parameters (laser velocity and pitch of 

scan). They discretized the down facing surface into an array of points and chose process 

parameters in such a way that the sum of squares of the deviations of the exposures 

received by these points from the threshold exposure was minimized.  
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Figure 1.12 Surface smoothing caused by print through. From Reeves and Cobb, (1997) 

 

Build time 

 Chen and Sullivan, (1996) formulated an algorithm to predict build time of 

Stereolithography parts by using detailed scan and recoat information from the build 

files. Other researchers have also quantified build time. All of them have broken down 

the part building process into its constituent steps and modeled the time required to 

complete each of these steps. 

1.2.3 Identifying areas where research is needed 

 In this subsection, the areas in which research needs to be done in order to mature 

the MPSLA technology into a MEMS packaging technology are identified. 

Dimensional accuracy of the 3D MPSLA part 

 In Limaye and Rosen, (2004), the dimensional accuracy of a single layer cured 

using MPSLA has been quantified. However, the accuracy in all the three dimensions of 

a MPSLA part has not been studied. While tolerances can be empirically expressed in 

terms of process parameters by conducting numerous experiments as done by Lynn-

Charney and Rosen, (2000) this would require numerous experiments to have enough 
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confidence in the response surfaces. Analytically relating the errors in dimensions to 

the process parameter values would aid process planning to a large extent.  

 The Layer compensation approach in commercial SLA systems to compensate for 

errors in vertical dimensions is an ad-hoc approach that would work only if the down 

facing surface is horizontal and the print through is exactly equal to the thickness of the 

lowermost (skipped) layer. A more rigorous approach to avoid print through errors, 

applicable to parts of any geometry is needed. 

Surface finish of MPSLA builds  

 Extensive research has been done on improving the surface finish of laser-

scanning Stereolithography. The relation between layer thicknesses and surface finish has 

already been formulated by numerous researchers. This can be adapted to MPSLA. 

Though print through smoothing phenomenon has been observed in Stereolithography by 

Reeves and Cobb (1997), it has not been successfully employed to obtain smoother down 

facing surfaces due to lack of control offered by SLA machines. “The size of the print 

through fillet is related to the laser energy initiating photo polymerization, which is, in 

turn affected by both laser power and scan speed. If either or both of  these process 

attributes could be varied, then the size of the fillet could be modified and matched to 

surface angle, hence producing smoother down facing surfaces. In reality, both scan 

speed and laser power are complex attributes of the SLA process and out of control of the 

SL user” (Reeves and Cobb, 1997). MPSLA process can achieve the gray scaling of the 

irradiance pattern required for print through smoothing. Analytical model relating the 

gray scaling of irradiance pattern projected onto the resin surface with the surface 

finish is needed. 
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Process planning 

 Process planning under multiple conflicting objectives has been done by Lynn-

Charney and Rosen (2000) and West et al. (2001), for commercial Stereolithography 

process. A similar process planning method needs to be formulated for MPSLA.  

1.3 Research Objective 

 In this research, the author seeks to address the research areas identified in 

Section 1.2.3. In this section, a motivating problem is provided that integrates all the 

research areas mentioned above.  

 Micro nozzles have numerous applications. Apart from their current use in printer 

heads, their usage is envisaged as propelling devices for micro/nano satellites, as micro 

fuel injectors and for numerous other micro fluidic applications. Micro nozzles are 

currently fabricated by bulk etching techniques by etching a trench of the shape of the 

nozzle in the plane of a wafer and anodically bonding glass on both sides (Bayt and 

Breuer, 2000) or by etching a ‘via’ in silicon using anisotropic etch (Meacham et al., 

2004). However, these fabrication techniques cannot fabricate micro nozzles with any 

geometry in any orientation. Mask Projection Stereolithography can be used for this 

purpose. 
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Figure 1.13 Micro nozzle 

Example problem 

 The micro nozzle shown in Figure 1.13 is to be built in the vertical orientation. 

Hypothetical constraints on the dimensions of the nozzle and on its surface roughness are 

shown in the figure. The nozzle is to be fabricated using the MPSLA process in less than 

10 minutes. 

 The micro nozzle example presented here is representative of the class of parts 

whose fabrication would be enabled by this research. From the example problem, the 

following research objective has been abstracted. 

To formulate a process planning method to build MPSLA parts with constraints on 
dimensions, surface finish and build time 
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1.4 Organization of this dissertation 

 The research objective scoped out in Section 1.3 is realized in this dissertation by 

completing the tasks as expressed in Figure 1.14. A MPSLA system is realized as a part 

of this research. The part building process is modeled by adopting a multi-scale modeling 

strategy. This model is used to do process planning to achieve objectives of dimensional 

accuracy, build time and surface finish. The work done in achieving these three 

objectives in integrated to formulate a multi-objective process planning method that 

would allow a user to obtain trade-offs between these objectives. As shown in Figure 

1.14, there are three research questions that would have to be addressed in order to 

complete these tasks. Hypotheses are formulated and tested for each of these research 

questions. 

 In Chapter 2, the foundational knowledge and theory necessary to achieve the 

research objective is presented. 

 In Chapter 3, the design of the MPSLA system realized as a part of this research 

is presented. 

 In Chapter 4, the research objective is broken down into research questions and 

hypotheses are formulated for these research questions. Strategies to test these hypotheses 

are formulated in this chapter. 

 In Chapter 5, the “Irradiance model” is formulated. This model computes the 

irradiance received by the resin surface when a given bitmap is imaged onto it for a given 

time. The Irradiance model is validated by building test layers on the MPSLA system. 

 In Chapter 6, the Print through model is formulated, which computes the print 

through that would occur underneath a multi- layered part. The Print through model is 
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used to formulate the Compensation zone approach is introduced to avoid print through 

errors introduced when layers are cured over each other. The Compensation zone 

approach is demonstrated by building test parts. 

 In Chapter 7, the Adaptive exposure method is formulated which can be used to 

cure downward facing surfaces accurately and with a good surface finish. A slicing 

algorithm is presented to enable a process planner slice a 3D CAD file in order to achieve 

the required tradeoffs between objectives of build time and surface finish of up facing 

surfaces is formulated 

 In Chapter 8, the work presented in Chapters 5, 6 and 7 is integrated to formulate 

a process planning method to build MPSLA parts with constraints on dimensions, surface 

finish and build time is formulated. This process planning method is demonstrated on a 

test part with quadratic up facing and down facing surfaces.  

 In Chapter 9, the research questions are re-visited and the contributions of this 

work are summarized. The limitations of the work and directions for future work are also 

discussed. 
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Figure 1.14 Organization of this dissertation 

 

Summary 

 In this chapter, the motivation to analytically model the Mask Projection 

Stereolithography process and formulate a process planning method for the same is 

presented. Literature review has been presented on Mask Projection Stereolithography 

and on process planning for other additive manufacturing processes. The organization of 

chapters in this dissertation has been presented. 
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CHAPTER 2 FOUNDATIONS FOR FORMLULATING PROCESS PLANNING 
METHOD FOR MASK PROJECTION STEREOLITHOGRAPHY 

 

 In this chapter, the foundational knowledge required to analytically model the 

MPSLA process is presented. The fundamentals of image formation are discussed in 

Section 2.1. The fundamentals of resin curing are presented in Section 2.2. 

2.1 Fundamentals of image formation 

 During the irradiation step, a bitmap displayed on the DMD is imaged onto the 

resin surface. Modeling the irradiance on the resin surface is, essentially, modeling the 

process of image formation by the imaging lens. There are two possible ways of 

modeling the process of image formation: by assuming wave nature of light; and by 

assuming ray nature of light. In the first case, diffraction analysis is used, while, if the 

second assumption is considered valid, then geometric optical analysis is used to model 

the image formed. In this section, both the methods of analysis are presented.  

 If the imaging system is ‘perfect’, i.e. free of aberrations, then diffraction analysis 

should be used. If the imaging system is imperfect, i.e. has significant aberrations, then, 

geometric optical analysis is to be used. This section also presents the conditions that 

have to be satisfied in order for either of these analyses to be used. 

 2.1.1 Diffraction (Physical optics) analysis 

 In diffraction analysis, light is considered to be propagating as waves. When light 

passes through an aperture in an opaque screen, it gets diffracted. If the diffracted pattern 

is observed far away from the screen, then, the Fraunhofer diffraction pattern is observed. 

The distance between the aperture and the image plane, for observing Fraunhofer 
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diffraction is very large. A practical method of realizing this diffraction pattern is to use a 

convex lens to focus the diffraction pattern onto the screen. Fraunhofer diffraction pattern 

is generated by the lens. The Fraunhofer diffraction pattern can be shown to be the 

Fourier transform of the aperture function. Thus, the lens is considered as a Fourier 

transformer. 

 In this section, apart from presenting formulae, the derivations explaining the role 

of a lens as a Fourier transformer are also presented in order to highlight the assumptions 

that are made in these derivations. It is important to be aware of these assumptions while 

evaluating the validity of using diffraction analysis to model image formation in practical 

situations. In Section 2.1.1.1, the Fraunhofer diffraction pattern for light passing through 

an aperture is derived. In Section 2.1.1.2, the Fraunhofer diffraction pattern is shown to 

be the Fourier transform of the aperture function. In Section 2.1.1.3, the role of a 

converging lens as a Fourier transformer is presented. 

2.1.1.1 Fraunhofer diffraction 
 Physical optics assumes that light propagates in the form of wavefronts. Huygen-

Fresnel principle states that: “Every unobstructed point of a wavefront at a given instant 

in time, serves as a source of spherical secondary wavelets (with the same frequency as 

that of the primary wave).  The amplitude of the optical field at any point beyond is the 

superposition of all these wavelets (considering their amplitudes and relative phases)”. 
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Figure 2. 1 Practical realization of the Fraunhofer diffraction pattern from Hecht (1987) 

  

 Imagine an opaque shield, Σ, containing a single small aperture illuminated by 

plane waves from a distant point source. Suppose the plane of observation σ is parallel to 

the shield and far away from Σ as shown in Figure 2.1. The waves emanating from the 

aperture interfere (either constructively or destructively) on σ and a diffraction pattern is 

formed. If the distance between the two screens is sufficiently large (or if a perfect lens is 

used to focus the light), Fraunhofer, or far-field diffraction pattern, can be observed on 

the screen σ.  
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Derivation of Fraunhofer diffraction from an aperture 

 

Figure 2.2 Fraunhofer diffraction from an arbitrary aperture where r and R and very large 
compared to the size of the hole, from Hecht (1987) 

  

 Consider the configuration depicted in Figure 2.2. A monochromatic plane wave 

propagating in the x-direction is incident on the opaque diffracting screen Σ. We wish to 

find the consequent (far-field) flux-density distribution in space, or equivalently at some 

arbitrary point P. According to the Huygens-Fresnel principle, a differential area dS, 

within the aperture may be envisioned as being covered with coherent secondary point 

sources. But dS is much smaller in extent than λ so that contributions at P from dS remain 

in phase and interfere constructively. If ε A  is the source strength per unit area, assumed 

to be constant over the entire aperture, then the optical disturbance at P due to dS is the 

real part of  

 dE
r

e dSA i t kr= −ε ω( )             (2.1) 

 where k = 2π λ/  
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 The source strength is divided by r, the distance of the area dS from point P, to 

account for the attenuation in strength that would occur due to distance. The distance r 

can be expressed in terms of the co-ordinates of point P and those of area dS as 

 r X Y y Z z= + − + −[ ( ) ( ) ] /2 2 2 1 2           (2.2) 

Fraunhofer condition occurs when this distance approaches infinity. For such large 

distances, we can replace r by the distanceO P , i.e. R, in the amplitude term, as long as 

the aperture is relatively small. But the approximation of r in phase needs to be treated 

more carefully because k = 2π λ/  is a large number. 

 R X Y Z= + +[ ] /2 2 2 1 2             (2.3) 

Hence, 

 r R y z R Yy Zz R= + + − +[ ( ) / ( ) / ] /1 22 2 2 2 1 2          (2.4) 

In the far field case, R is very large in comparison with aperture dimensions and the term 

( ) /y z R2 2 2+  can be neglected to obtain equation (2.5). 

 r R Yy Zz R= − +[ ( ) / ] /1 2 2 1 2           (2.5) 

The total disturbance arriving at point P is 

E e
R

e dSA
i t kR

ik Yy Zz R

Aperture

=
−

+zzε ω( . )
( )/            (2.6) 

2.1.1.2 Fraunhofer diffraction as a Fourier transform 
 Equation (2.6) can be re-written by replacing the differential area term dS with 

dydz to get equation (2.7). 

 E Y Z e
R

e dydzA
i t kR

ik Yy Zz R

Aperture
( , )

( )
( )/=

−
+zzε ω

         (2.7) 
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If we limit ourselves to a small region in space over which R is essentially constant, 

everything in front of the integral, with the exception of ε A , can be lumped together. ε A  

could vary within the aperture and can be expressed by the complex quantity  

 A y z A y z ei y z( , ) ( , ) ( , )= 0
φ            (2.8) 

which is called as the aperture function. The amplitude of the field over the aperture is 

described by A y z0 ( , ) while the point to point phase variation is represented by ei y zφ ( , ) . 

Accordingly, A y z dydz( , )  is proportional to the diffracted field emanating from the 

differential source element dydz . Consolidating this much, we can reformulate equation 

(2.8) more generally as 

 E Y Z A y z e dydzik Yy Zz R( , ) ( , ) ( )/= +

−∞

+∞

−∞

+∞zz          (2.9) 

The limits on the integral can be extended to ±∞ because the aperture function is nonzero 

only over the region of the aperture. 

 Let us define spatial frequencies kY  and kZ  as  

 k kY RY = /            (2.10) 

and 

 k kZ RZ = /            (2.11) 

The diffracted field (equation 2.9) can now be written as 

 E k k A y z e dydzY Z
i k y k zY Z( , ) ( , ) ( )= +

−∞

+∞

−∞

+∞zz        (2.12) 

Equation 2.12 can be immediately recognized to be the Fourier transform of A y z( , ). 

Thus, the derivation proves that: the field distribution in the Fraunhofer diffraction 

pattern is the Fourier transform of the field distribution across the aperture (i.e. the 

aperture function). Symbolically, this is written as 
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 E k k F A y zY Z( , ) { ( , )}=          (2.13) 

2.1.1.3 Lens as a Fourier transformer 
 

 

Figure 2.3 The light diffracted by a transparency (or object) at front focal point of a lens converges to 
form a far-field diffraction pattern at the back (or image) focal point of the lens 

  

Figure 2.3 shows a transparency, located in the front focal plane of a converging 

lens, being illuminated by parallel light. The object, in turn scatters plane waves, which 

are collected by the lens, and parallel bundles of rays are brought to convergence at its 

back focal plane. If a screen was placed there, at Σ t , the so-called transform plane, we 

would see the far-field diffraction pattern of the object spread across it. In other words, 

the electric field distribution across the object mask, i.e. the aperture function, is 

transformed by the lens into the far-field diffraction pattern. This diffracted field is the 

Fourier transform of the aperture function, as has been derived in equation 2.12. Thus, the 

image formed by a lens is simply the Fourier transform of the aperture function, or, the 

object.  

The role of the lens in forming a Fraunhofer diffraction pattern on its back focal 

plane is described here. In Figure 2.4, when plane waves from the aperture are incident 
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on a convex lens, the lens transforms the plane waves into spherical waves, converging at 

the various points on the screen.  

 

Figure 2. 4 Transformation of plane waves into spherical waves by a converging lens 

 

Consider an off axis point P. The plane wave AB gets converted to a spherical wave, 

which converges at P. Since the wave converging at point P is spherical, it is equivalent 

to saying that the point P is equidistant from every point on the plane wave AB. In other 

words, it is equivalent to saying that, in the absence of lens, point P is located at an 

infinite distance from the diffracting aperture. Hence, the conditions of far field 

diffraction pattern are satisfied and a Fraunhofer diffraction pattern is obtained on the 

screen. It should thus be noted that the lens has to transform plane waves incident on it 

into spherical waves to simulate a Fraunhofer diffraction pattern. In case of real 

lenses with spherical surfaces, the optical aberrations distort the wavefront emanating 

from the lens, thereby making the wavefront non-spherical. For such a situation, the 

image will not be the Fourier transform of the aperture function. 
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Another important consideration is related to the waves that are incident on the 

lens from the aperture. If they are not plane waves then again, there is an error introduced 

in the wavefront emanating beyond the lens. Further, the light from the aperture has to be 

monochromatic and coherent in order to obtain Fraunhofer diffraction pattern.  

2.1.2 Image modeling by Geometric Optics 

 In this section, an alternative approach to modeling the image formation by an 

imaging system is presented. This approach assumes that light travels in the form of rays, 

as opposed to waves. This theory is valid in case of aberration limited optical systems. In 

Section 2.1.2.1, an introduction to optical aberrations is provided. In Section 2.1.2.2, the 

concept of Optical Path Difference (OPD) is introduced as the parameter which is used to 

quantify the extents of optical aberrations present in an optical system. In Section 2.1.2.3, 

the exact ray tracing procedure, used to model imaging in an aberration limited optical 

system is presented. 

2.1.2.1 Introduction to optical aberrations 
 When a perfect lens focuses any object onto an image plane, all rays emanating 

from any one point on the object meet at one and the same point on the image. Under this 

condition, the image formed is termed as the perfect image.  For a thin lens, this 

condition occurs when the image distance (i) and the object distance (o) are related to the 

focal length (f) of the lens by the thin lens equation:  

1/i – 1/o = 1/f           (2.14) 

The magnification of the image is given by M = – (i/o).  
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For a spherical lens with a finite thickness, even if the image and object distances are set 

as calculated using the thin-lens equation, all rays from any one point on the object do not 

converge to the same point on the image. Also, the focal length of a spherical lens is not 

the same for all object points. This results in optical aberrations. Optical aberrations can 

be thought of as imperfections caused in an image. They lead to the formation of a 

distorted image, with lower contrast. Aberrations are classified as follows: 

• Spherical aberration 

• Astigmatism 

• Coma 

• Distortion 

• Chromatic aberration 

Spherical aberration 
 Spherical aberration can be defined as variation of focus with aperture. Figure 2.5 

is an exaggerated sketch of a spherical lens forming an image of an axial object point 

situated a great distance away. It can be seen that the rays away from the optical axis 

come to focus (intersect the axis) earlier than the rays closer to it. In Figure 2.5, point A 

is the paraxial focus. The distance from the paraxial focus to the axial intersection of the 

marginal rays (i.e. rays from the edges of the lens) is called longitudinal spherical 

aberration. LAR is the longitudinal spherical aberration. Transverse or lateral spherical 

aberration is the name give to the aberration when it is measured in a direction 

perpendicular to the optical axis. TAR is the transverse spherical aberration. 
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Figure 2.5 Spherical aberration from Smith, (1990) 

 

Coma 
 Coma can be defined as variation in magnification with aperture. When a bundle 

of oblique rays is incident on a lens with coma, the rays passing through the edge 

portions of the lens are imaged at a different height than those passing through the center 

portion. In Figure 2.6, the upper and lower rim rays A and B intersect the image plane 

above the ray P which passes through the center of the lens. The distance from P to the 

intersection of A and B is called tangential coma of the lens. 

ComaT = HAB - Hp 
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Figure 2.6 Coma from Smith, (1990) 

 

The appearance of a point image formed by a comatic lens is indicated in Figure 2.7. 

 

Figure 2.7 The coma patch. The image of a point source is spread out into a comet-shaped flare from 
Smith, (1990) 
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Astigmatism 
Any plane through the optical axis is called as the meridional, or the tangential 

plane. The imaginary plane passing through the chief ray (an oblique ray passing through 

a point on the object and the center of the lens) and perpendicular to the meridional plane 

is called the sagittal plane. All the rays from the object, which lie in this plane, are called 

sagittal rays. See Figure 2.8. 

Astigmatism occurs when the tangential and the sagittal images don’t coincide. In 

the presence of astigmatism, the image of a point source is not a point, but takes the form 

of two separate lines as shown in Figure 2.8.  

Unless there is some manufacturing defect in a lens, there is no astigmatism when an 

axial point is imaged. However, as the imaged point moves farther from the axis, the 

amount of astigmatism gradually increases.  

 

 

Figure 2.8 Astigmatism  from Smith, (1990) 
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Distortion 
 When the image of an off axis point is formed farther from the axis or closer to 

the axis than the image height given by the paraxial expressions (i.e. expressions derived 

by assuming that rays pass through an infinitesimal threadlike region on the lens around 

the optical axis), the image of the extended object is said to be distorted. The amount of 

distortion increases as the cube of the image height. Thus, if a centered rectilinear object 

is imaged by a system afflicted with distortion, it can be seen that the images of corners 

will be displaced more than the images of the points making up the sides. In Figure 2.9, 

the appearance of a square figure imaged by a lens system with distortion is shown. In 

Figure 2.9a, the distortion is such that the images are displaced outwards from the correct 

position. This is called positive or pincushion distortion. In Figure 2.9b, the distortion is 

of opposite type and the corners of the square are pulled inward more than the sides. This 

is called the negative of the barrel distortion. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 a) Pincushion or positive distortion b) Barrel or negative distortion  from (Smith, 1990) 

a b 
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Chromatic Aberration 
 These aberrations can be understood intuitively. Chromatic aberrations are caused 

because the refractive index of any material is different for different wavelengths of 

lights. 

 The above section described the aberrations in terms of the inability of a lens to 

focus down all rays at the ideal image points. When we consider light as waves 

propagating along these rays, their relative phases are not the same as would be expected 

in case of a far field diffraction pattern. It is interesting to note the effects of aberrations 

on the relative phase differences in the various waves arriving at a point, from the point 

of view of questioning the validity of the optical analysis method. The aberrations are 

described in terms of the distortions produced in a wavefront in the next section. 

2.1.2.2 Wavefront aberrations 
The optical aberrations cause deformations in the wavefront. The extent of these 

deformations can be used as a quantitative measure for deciding which modeling strategy 

to use. If these deformations are minor, then aberrations analysis can be used to augment 

the diffraction analysis presented earlier. If the deformations in wavefronts however are 

very large, then, geometric optics should be used. 

The extent of the variation of the deformed wavefront from its actual shape is 

denoted by measuring the “Optical Path Difference”, or OPD. In this section, the OPD 

introduced by a system having spherical aberrations is derived to explain the meaning of 

OPD. 
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OPD introduced by spherical aberration  

 
Figure 2.10 Optical path difference as the distance between ideal and distorted wave fronts, from 

Smith, (1990) 

 

 A wavefront converging to form a point image at the paraxial focus of a lens, P is 

shown in Figure 2.10. The ideal wavefront is represented by the dotted curve, while, the 

wavefront distorted by spherical aberration is shown by the solid line. The OPD for a 

given zone, i.e. radial distance from the optical axis, is given by the distance from the 

ideal wavefront to the distorted wavefront along the radius of the ideal wavefront. In 

Figure 2.10, the normal to the distorted wavefront intersects the axis at point P. The ideal 

wavefront, or the reference sphere, is centered at P. The angle between the normals to the 

two wavefronts is also equal to the angle between the two wavefronts, as indicated in the 

lower sketch. This angle is given by the relation 

 α =
−dOPD

NdY
           (2.15) 

But angular aberration is also related to the spherical aberrations, in Smith, (1990) as 

 α =
( ) sinLA U

l
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     = ( )LA Y
l2            (2.16) 

By combining and solving for dOPD, we get 

 dOPD YN LA dY
l

=
− ( )

2           (2.17) 

Longitudinal spherical aberrations can be represented by the series  

 LA aY bY cY= + + +2 4 6 .... 

For most optical systems, the spherical aberration is almost entirely of the third order and 

can be expressed as  

 LA aY= 2  

Making this substitution and integrating throughout the zone of radius Y, we get 

 OPD NY
l

aY dY
Y

= −z 2
0

2( )  

         = −NY
l

aY2

2

2

2 2
.            (2.18) 

         = −1
2 2

2
2

N U aYsin ( ) 

At the edge of the aperture, Y=Ym and LA=LAm, (the subscript denoting marginal ray and 

marginal longitudinal spherical aberration). Substitute the value of a as:  

 a LA
Y

m

m

= 2            (2.19) 

Thus, 

 OPD N U LA Y
Ym

m

=
−1
4

2 2sin ( )[ ]        (2.20) 

Equation (2.20) gives the OPD caused only because of spherical aberrations. Real 

optical systems have numerous lenses and stops in series and introduce numerous kinds 
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of aberrations apart from spherical. Analytical computation of the OPD in the distorted 

wavefront that would occur due to the combined presence of all these aberrations is a 

non-trivial task and can be performed by means of some optical analysis software. 

It is clear from the preceding discussion that the size and shape of an image 

formed by a lens is not intuitive. Due to optical aberrations, the thin lens equation will 

calculate erroneous dimensions of the aerial image formed on the resin surface. The exact 

image size can be calculated by adopting the procedure of tracing rays through a lens as 

explained in the next sub-section. 

2.1.2.3 Exact ray tracing 
From Section 2.1.2.1, it is clear that the size of the expected image cannot be 

determined from the simple lens equation. The exact size of the image can be obtained 

through “exact ray tracing procedures.” In an exact ray trace, the object is considered as a 

collection of point sources. Rays in all possible directions are traced from each of these 

point sources. The rays undergo refraction at every surface separating two media. The 

refraction is governed by Snell’s law: 

sin i / n1 = sin i’/n2,          (2.21) 

where i and i’ are the angles of incidence and refraction, and n1 and n2 are the refractive 

indices of the media on either side of the surface on which the rays are incident. By 

tracing rays, their points of intersection with the image plane are calculated. The farthest 

points of intersections give the size and shape of the image. 

 Exact ray tracing is an involved procedure, especially because the angle of 

incidence (i) for every ray is in a different plane. In this section, the ray tracing procedure 
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presented in (Smith, 1990) is described. This ray tracing procedure was first published by 

D. Feder in the Journal of the Optical Society of America vol. 41, pp. 630-636, 1951. 

Exact Ray Tracing Procedure for spherical surfaces 
 A skew ray is a perfectly general ray. The ray is defined by the coordinates x, y 

and z of its intersection with a surface and by its direction cosines X, Y and Z. The origin 

of the coordinate system is at the vertex of each surface. Figure 2.11 shows the meanings 

of these terms.  

 

Figure 2.11 Symbol used in Transfer and Refraction equations. a) The physical meanings of the 
spatial coordinates (x,y,z) of the ray intersection with the surface and of the ray direction cosines, X, 

Y, and Z. b) Illustrating the system of sub-script notation from Smith,(1990) 

 

 The computation is opened by determining the values for x, y, z, X, Y and Z with 

respect to an arbitrarily chosen reference surface which is usually chosen to be the object 

plane. Then, the following “Transfer equations” give the coordinates (x1, y1, z1) of the 

point of intersection of the ray with the next surface: 

e =  tX  (xX +  yY +  zZ)  
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M x ex t1x = + −  

M x y z e t 2tx1
2 2 2 2 2 2= + + − + −  

E X c (c M 2M )1
2

1 1 1
2

1x= − −  

L e (c M 2M ) / (X E )1 1
2

1x 1= + − +  

x x LX t1 = + −  

y y LY1 = +  

z z LZ1 = +  

The direction cosines of a ray after it undergoes refraction at a surface are given by the 

following “Refraction equations”: 

E1
'

1 2
2

1
21 (N / N ) (1 E )= − −  

g E (N / N )E1 1
'

1 1= −  

X (N / N )X g c x g1 1 1 1 1 1= − +  

Y (N / N )Y g c y1 1 1 1 1= −  

Z (N / N )Z g c z1 1 1 1 1= −  

In the above Transfer and Refraction equations, the symbols have the following 

meanings: 

      t        Distance between two surfaces  

x,y,z   The spatial coordinates of the ray intersection with the 

reference surface 



 44

     x ,y ,z1 1 1       The spatial coordinates of the ray intersection with surface #1 

M1   The distance (vector) from the vertex of surface # 1 to the ray, 

perpendicular to the ray 

M1x   The x component of M1 

E1        The cosine of the angle of incidence at surface #1 

L   The distance along the ray from the reference surface (x, y, z) 

to surface #1 (x1, y1, z1) 

E1
'        The cosine of the angle of refraction (I’) at surface #1 

X,  Y,  Z        The direction cosines of the ray in space between the reference      

surface and surface #1 (before refraction) 

X ,  Y ,  Z1 1 1      The direction cosines after refraction by surface #1 

c   The curvature (reciprocal radius = 1/R) of the reference surface 

c1   The curvature of surface #1 

N   The refractive index between the reference surface and surface 

#1  

N'   The refractive index following surface #1 

T   The axial spacing between the reference surface and surface #1  

2.1.3 Selection of modeling strategy 

 In Sections 2.1.1 and 2.1.2, two strategies of modeling the image formation 

process have been presented: Physical Optics, which assumes the wave nature of light, 
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and Geometric Optics, which assumes the ray nature of light. The selection of the Optical 

modeling strategy would depend upon the kind of optical system that is being used. 

2.1.3.1 When to use Physical Optics? 
 Physical Optics can be used to model image formation is the system is 

“diffraction limited”. Goodman (1968) says that “an imaging system is said to be 

diffraction limited if a diverging spherical wave, emanating from a point-source object, is 

converted by the system into a new wave, again perfectly spherical, that converges 

towards an ideal point in the image plane. Thus, the terminal property of a diffraction 

limited lens system is that a diverging spherical wave is mapped into a converging 

spherical wave at the exit pupil. For any real imaging system, this property will, at best 

be satisfied over only a finite region of the object plane. If the object is confined to that 

region, the system may be regarded as diffraction limited”.  

Rayleigh Quarter-wave limit 

 The effect of optical aberrations is to distort the wave emerging from an optical 

system from its ideal spherical shape. The Rayleigh quarter wave limit is used as a 

measure of the amount of distortion that can be tolerated, for diffraction analysis to be 

used. According to Rayleigh, there is no appreciable deterioration of image if the phase 

differences introduced do not exceed π/2. In other words, the image quality is not 

seriously impaired if the wavefront aberration does not exceed λ/4. If the wavefront 

aberrations are within the Rayleigh quarter wave limit, then diffraction analysis is used. 

In order to secure this high degree of correction, it is usually necessary to employ a 

complicated and expensive optical system. 
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2.1.3.2 When to use Geometric Optics? 
 Geometric optics is used for modeling image formation if the aberrations 

introduced by the imaging system are significant. When the thin lens and the paraxial 

approximations are not valid, the aberrations become significant. In such cases, 

diffraction theory cannot be used. Goodman (1968) states: “The conclusion that a lens 

composed of spherical surfaces maps an incident plane wave into a spherical wave is 

dependent on the paraxial approximation. Under nonparaxial conditions the emerging 

wavefront will exhibit departures from perfect sphericity (called aberrations) even if the 

surfaces of the lens are perfectly spherical.” 

 The optical aberrations cause deformations in the wavefront which are not 

accounted for in Physical optics. The extent of these deformations can be used as a 

quantitative measure for deciding which modeling strategy to use. If these deformations 

are minor, then aberrations analysis can be used to augment the diffraction analysis 

presented earlier. If the deformations in wavefronts however are very large, then, 

Geometric optics should be used. The choice of modeling strategy is summarized well in 

Smith, (1990) as: “for small departures from perfection (i.e. aberrations which cause a 

deformation of wavefront amounting to less than one or two wavelengths), it is 

appropriate to consider the manner in which an aberration affects the distribution of 

energy in the diffraction pattern. For larger amounts of aberration, however, the 

illumination distribution, as described by raytracing can yield a quite adequate 

representation of the performance of the [optical] system. Thus, it is convenient to divide 

the considerations into (1) the effects of small amounts of aberration, which we treat in 

terms of the wave nature of light, and (2) the effects of large amounts of aberration, 

which may be treated geometrically.” 



 47

2.2 Fundamentals of resin curing 

In this section, the chemistry behind the photo polymerization reactions that occur 

when a Stereolithography resin cures is presented. Most commercial Stereolithography 

resins are a mixture of acrylic monomers and epoxy resins. The acrylic monomers are 

polymerized using a process called “Free Radical Photopolymerization”, while the epoxy 

resins are cured using a process called “Cationic Photopolymerization”. The curing 

mechanism of a commercial Stereolithography resin (SL 7510) is proposed in Rosen, 

(2002). In this section, the curing mechanism of a commercial resin containing a mixture 

of acrylates and epoxies is explained in Section 2.2.1. The Beer Lambert’s law of 

radiation attenuation and the threshold model of resin cure is presented in Section 2.2.2.  

2.2.1 Curing mechanism of commercial Stereolithography resins 

Commercial SLA resins are a mixture of acrylates, epoxies, radical photo 

initiators and cationic photoinitiators. When radiant energy is incident upon the resin, the 

photoinitiators initiate polymerization reactions. In addition to these constituents, the 

resins also contain photosensitizers, which increase the UV absorbance and increase the 

initiation efficiency. The mechanisms of polymerization for acrylate and epoxy resins are 

different. The “Free Radical Photopolymerization” mechanism of curing of acrylate 

resins is described in Section 2.2.1.1. The “Cationic Photopolymerization” mechanism of 

curing of epoxy resins is presented in Section 2.2.1.2. The polymer network formation is 

discussed in Section 2.2.1.3. 

2.2.1.1 Free Radical Photopolymerization 
Polymerization is the process of linking small molecules (monomers) into larger 

molecules (polymers) comprised of many monomer units. Most Stereolithography resins 



 48

contain the vinyl monomers and acrylate monomers. Vinyl monomers are broadly 

defined as monomers containing a carbon-carbon double bond. Acrylate monomers are a 

subset of the vinyl family with the carboxylic acid group (-COOH) attached to the 

carbon-carbon double bond. For an acrylate resin system, the usual catalyst is a free 

radical. In Stereolithography, the radical is generated photo chemically. The source of the 

photo chemically generated radical is a photo initiator, which reacts with an actinic 

photon as shown in the photo-polymerization scheme presented in Figure 2.12. This 

produces radicals (indicated by a large dot) that catalyze the polymerization process.  

 

Figure 2.12 Scheme of the photo-polymerization process (Jacobs, 1992) 

 

 The free radical photopolymerization of acrylate systems is very fast, but of lower 

density. This process is exothermic which is beneficial for activating the heat activated 

cationic photoinitiators. 

2.2.1.2 Cationic Photopolymerization 
 The most important cationic photoinitiators are the onium salts, particularly the 

triarylsulphonium and diaryliodonium salts. The photodecomposition mechanism of 

triarylsulphonium is described in Rosen, (2002). When light is incident on the cationic 
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photointiator, a Bronted acid (H+X-) is generated by photolysis. The Bronsted acid acts as 

a catalyst for the polymerization of the epoxide groups. The polymerization occurs by a 

chain reaction, initiated by a protonated epoxide group. The termination of the chain 

reaction is not immediate. The cationic polymerization once initiated continues over a 

period of few hours to even a few days. It is speculated in Rosen, (2002) that hydroxyl 

compounds are added to the mixture to terminate the chain reaction. 

2.2.1.3 Interpenetrating polymer network formation 
 When the acrylate and epoxy groups polymerize, they form their respective 

networks. In the presence of each other, an interpenetrating network gets formed. An 

interpenetrating network is defined as a combination of two polymers in network form, at 

least one of which is synthesized and/or cross linked in the immediate presence of the 

other. Thus, the polymers are formed in network form, and are not just mechanically 

mixed. The formations of the acrylate and epoxy networks influence each other’s 

formation. The reaction of acrylates increases the photospeed, reduces the energy 

requirements of the epoxy reaction and also reduces the inhibitory effects of humidity on 

the epoxy polymerization. The epoxy monomers also favor the acrylate 

photopolymerization reaction. The epoxy monomer acts as a plasticizer, which increases 

the molecular mobility, which favors the acrylate chain reaction. Further, the acrylate is 

less sensitive to oxygen in a hybrid acrylate-epoxy system.  

2.2.2 Beer Lambert’s law of light absorption 

As the photons penetrate the resin, they are progressively absorbed by initiators. 

According to Beer Lambert’s law of absorption, the exposure (mJ/cm2) decreases 

exponentially with depth.  
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E(z) = Emax exp(-z/Dp)                 (2.22) 

where Dp is the resin “penetration depth” (a resin parameter) at the given wavelength and 

Emax is the exposure at the surface of the resin (z = 0).  

In practice, polymerization doesn’t proceed beyond a limited depth where the 

exposure falls below a threshold value. This is primarily due to oxygen inhibition 

(Drobny 2002), which imposes a minimal threshold to start polymerization. The exposure 

level where the gel point is reached is still higher. The exposure threshold for the 

formation of gel is known as the “Critical Exposure” (Ec). 

Suppose that a point on the resin surface receives an exposure Emax. If the point 

gets cured to a depth Cd then the exposure received at the depth Cd will be equal to Ec.  

Putting z = Cd and E(z) = Ec in Beer Lambert’s law: 

Ec = Emax exp (-Cd/Dp) 

Rearranging the terms, 

Cd = Dp ln(Emax/Ec)          (2.23) 

Thus, the plot of Cd versus ln(Emax) is straight line with slope equal to Dp and the 

X intercept = ln (Ec) (Jacobs, 1992).This plot is called as the Working curve of the 

Stereolithography resin. See Figure 2.12. 
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Figure 2.13 Theoretical Working curve of a Stereolithography resin 

The values of Ec and Dp are fixed for any resin and so, the working curve of any 

resin is, theoretically, invariant. 

 

Summary 

 Analytically modeling the Mask Projection Stereolithography process entails 

modeling the optical process of imaging a bitmap onto the resin surface and modeling the 

curing process that occurs after the bitmap is imaged. The fundamental knowledge 

related to optical imaging is presented in Section 2.1. Geometric optics and Physical 

optics are the two theories that can be used for modeling image formation. The 

assumptions made in these theories are presented and the method of image modeling 

using both these methods is presented. In Section 2.2, the fundamentals of resin curing 

has been presented. The polymerization mechanism of acrylate and epoxy based resins is 

presented. The relation between the cure depth of a layer and the exposure supplied to it 

is presented. 
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CHAPTER 3 DESIGN OF THE MASK PROJECTION STEREOLITHOGRAPHY 
SYSTEM 

 
 In this chapter, the design of the Mask Projection Stereolithography System 

realized as a part of this research is presented. The primary modules of a MPSLA system 

are identified in Limaye, (2004) as Collimation system; Imaging system; and Build 

system. In this chapter, the design of all these systems is presented. In Section 3.1, the 

requirements from the system to be designed are presented. In Section 3.2, the design of 

every module is presented.  

3.1 Requirements list 

Prior to designing any system/machine, the performance requirements from that 

system should be explicit identified. The requirements from the MPSLA system are 

presented in Table 3.1. They are classified as “Demands”, which have to be fulfilled and 

“Wishes”, whose fulfillment is preferred. 

Table 3.1 Requirements list for the Mask Projection Stereolithography System 

REQUIREMENTS LIST FOR THE MASK PROJECTON STEREOLITHOGRAPHY SYSTEM 
Formulated by Ameya Limaye 

Demand/Wish Requirement 
Demand The largest cured layer dimension in one exposure should be greater than 10mm x 5 mm 
Demand The largest vertical dimension of a cured part should be greater than 5mm 

Wish The distortions due to optical aberrations should be as less as possible 
Wish The lateral resolution should be better than 20µm 
Wish The vertical resolution of the system should be better than 100µm 
Wish The system should have as much depth of focus as possible 

Demand The total cost of realizing the system should be less than $16000 
 

3.2 Design of the MPSLA system 

The optical schematic of a M PSLA system has been presented in Limaye, 

(2004), as shown in Figure 3.1. 
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Figure 3.1 Optical Structure to embody 

3.2.1 Collimating system 

The function of the collimating system is to collect the diverging rays emerging 

from the lamp and send out parallel or almost parallel rays. Rays parallel to the optical 

axis reduce the Coma that would be introduced by the imaging system subsequently.  

The light source should emit radiation in the UV range, mostly at around 365nm. 

The light source selected is ADACTM System’s Cure Spot TM 50. This lamp emits 3000 + 

mW/cm2 at 365 nm. The Spectral distribution of the lamp is as shown in Figure 3.2. The 

typical half cone divergence angle of the light emitted from the light guide is given to be 
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30ο. This lamp is selected because it is the most inexpensive lamp available, which emits 

in the required spectrum. 

 

Figure 3.2 Relative Spectral Distribution of Cure Spot 50 

 

A pinhole is placed immediately after the light guide of the lamp, to simulate a 

point source of light. A plano convex lens is placed one focal length away from the 

pinhole, to collect the rays from the point source and form its image at infinity (send out 

parallel rays). Definitely, all the rays are not parallel due to spherical aberration. Greater 

the focal number of the lens, greater is the angle of the cone subtended by the lens at the 

point source and hence, greater is the amount of light collected. So, a fast lens is to be 

used. A plano convex lens with effective focal length 40mm is used. A plano convex lens 

is chosen with its convex side facing the aperture because this lens is known to introduce 

less spherical aberrations than a bi-convex lens. 
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 A filter, allowing only 365nm wavelength to pass through, was placed after the 

collimating lens. However, it was found that the light intensity coming out of the filter 

was unacceptably low. So, the filter was removed from the system. 

The final collimating system is shown in Figure 3.3 

 

Figure 3.3 Collimating system 

3.2.2 Imaging system 

 The function of the imaging system is to image the pattern displayed on the DMD 

onto the photopolymer resin. The requirements for this system are that it should introduce 

minimum optical aberrations; and it should give the best possible depth of focus and 

lateral resolution. To minimize the optical aberrations and to increase the depth of focus, 

a telecentric optic system is used. 
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Telecentric system 

 

Figure 3.4 Imaging lens without a stop 

 

Consider the lens shown in Figure 3.4. The lens itself acts as an aperture stop and 

all the rays emanating from every object point, which are collected by the lens are 

focused by the lens onto the image. 

 

Figure 3.5 Stop placed at the focal point of the lens (Telecentric of the object side) 
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In Figure 3.5, a small stop ‘S’ is placed at the focal point of the lens. This stop 

allows only a narrow bundle of rays emanating from every object point to pass through it. 

Since the stop is located at the focal point of the lens, only a small cone of rays 

emanating from every object point, parallel to the optical axis can pass through the 

aperture. In such a situation, since the image is formed mostly by rays parallel to the 

optical axis, if the object is moved nearer or farther from the lens, every ray reaches the 

object plane at the same point. Thus, the magnification of the image is constant with 

respect to the object position. Such an imaging system is called “telecentric on the object 

side”. 

Due to finite size of the stop, rays not exactly parallel to the optical axis also 

reach the image plane, which produce what is called as a “circle of confusion”. The 

smaller the size of the stop, the smaller is the circle of confusion.  

 
Figure 3.6 Imaging system telecentric on both sides 

 In Figure 3.6, lens 1, stop and lens 2 are each spaced once focal length apart from 

each other. The rays pass through the stop in parallel bundles. This system is telecentric 

on both, the object as well as the image side. Such a system has less coma and 

astigmatism in the image. It shows less effect of field curvature in the image and other 
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geometric distortions. In fact, coma and astigmatism would theoretically approach zero as 

the aperture stop diameter approaches zero. 

 A telecentric imaging system as shown in Figure 3.7 is realized for the MPSLA 

system. The imaging system utilizes two bi convex lenses with effective focal lengths of 

40mm. An aperture stop of diameter 1.5mm is placed between the two lenses. The 

distances from the DMD to lens 1, from lens 1 to aperture stop, from aperture stop to lens 

2 and from lens 2 to the resin surface are, each, 40mm.  

 

Figure 3.7 Imaging system 
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 A system telecentric on both the sides has the following advantages for the 

MPSLA system. 

• The optical aberrations (coma, astigmatism, distortions) are minimized and hence 

the layers are cured with fewer distortions. 

• The system is more robust to variations in the resin level. 

• The system is robust to the angular mounting of the DMD. 

Mask 

The Digital Micromirror Device (DMDTM) is an array of individually addressable, 

bi-stable micro-mirrors (Dudley et al., 2003). A bitmap can be displayed on the DMD by 

selectively orienting its mirrors in one direction. As opposed to the Liquid Crystal 

Display (LCD) and Spatial Light Modulator (SLM), the DMD is a reflective mask. As a 

mask, the DMD has advantages over LCD and SLM. The pixel density of the DMD is 

higher because the mirrors are smaller in size than the LCD and SLM pixels (12.7µm 

square as opposed to 24µm square in LCD and SLM) and also because the spacing 

between mirrors is much less than that between the LCD and SLM pixels. 

The DMD is mounted so as to direct the beam of light incident on it is reflected 

downwards.  
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Figure 3.8 Digital micromirror device from Nayar et al., (2004) 

3.2.3 Build System 

The Build system consists of a vat and a platform mounted on a XYZ translation 

stage. The platform can be translated vertically into the resin vat under computer control. 

In addition, the platform can also be translated in the lateral direction. The translation 

stage has a resolution of 100nm. 

DSM SOMOS 10120 resin is used with this setup. This resin was used because it 

was the lowest viscosity commercial Stereolithography resin that was readily available in 

the laboratory. 

 The final system is as shown in Figure 3.9. The description of every component is 

presented in Table 3.2. 

 

Figure 3.9 Optical schematic of the MPSLA system realized as a part of this research 
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Table 3.2 Specifications of the components used in the MPSLA system 

Component Description Model/Manufacturer 
Broadband UV lamp Broadband Mercury vapor lamp. Peak at 365nm. 

3000mW at 365nm.  
ADAC System Cure 
Spot 50/ Dymax 
Corporation 

Aperture 1 Adjusted to 4mm diameter Thorlabs  
Catalog # SMO5D5 

Collimating lens Fused silica Plano convex lens 
Effective focal length = 40mm 
Diameter = 25.4mm 
Radius of surface 1 = 18.4mm 
Radius of surface 2 = infinity (plane) 
Lens thickness = 7.1mm 
Material refractive index = 1.460 

Thorlabs 
Catalog # LA4306-UV 

DMD 1024 X 768 array of micromirrors 
Dimension of micromirror = 12.65µm square. 
Spacing between mirrors = 1µm  

Texas Instruments. 
Distributed by Prodsys 
Inc. 

Imaging Lens 1 and 
Imaging Lens 2 

Fused silica Plano convex lens 
Effective focal length = 40mm 
Diameter = 25.4mm 
Radius of surface 1 = 35.7mm 
Radius of surface 2 = 35.7mm 
Lens thickness = 6.7mm 
Material refractive index = 1.460 

Thorlabs 
Catalog # LB4030 

Aperture 2 Adjusted to 1.5mm diameter Thorlabs 
Catalog # SM05D5 

Translation stage XYZ translation stage; 100nm resolution 
 

Applied Scientific 
Instruments 
Model # MS2000 

Photopolymer resin Ec, Dp to be found experimentally  DSM SOMOS 10120  
 

Summary 

 In this chapter, the design of the Mask Projection Stereolithography system 

realized as a part of this research has been explained in detail. Using the optical 

schematic presented in Figure 3.9 and the specifications of components, presented in 

Table 3.2, it will be possible for a reader to assemble a similar MPSLA system. The 

analytical models that shall be formulated later in this dissertation shall be validated by 

building parts on this system. 
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CHAPTER 4 FORMULATION OF RESEARCH QUESTIONS AND 
HYPOTHESES 

  

 The research objective presented in Section 1.3 can be achieved by completing 

the tasks proposed in Figure 1.14.  The proposed research effort is explained in detail in 

Sections 4.1 to 4.4. In Section 4.1, a multi scale modeling strategy for modeling the 

exposure on the resin surface in terms of process parameters is proposed (Exposure 

model). In Section 4.2, the compensation zone approach is proposed to cure 

dimensionally accurate parts. In Section 4.3, an adaptation of the Compensation zone 

approach to improve the surface finish of downward facing parts is proposed. In Section 

4.4, the structure of a multi objective process planning method, which would enable the 

building of MPSLA parts with requirements on dimensions, surface finish and build time, 

is proposed. 

 In this chapter, research questions that need to be tackled in order to formulate a 

process planning method for MPSLA are identified. Hypotheses to these research 

questions are presented and tasks that will be undertaken to test these hypotheses are 

enunciated. 

4.1 Exposure modeling 

4.1.1 Selection of optical modeling method 

 Image formation can be modeled in two ways. One is by assuming the wave 

nature of light, and the principles of physical optics. The second is by assuming ray 

nature of light and using the fundamentals of geometric optics. This leads us to the first 

research question. 
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Research Question 1a Should the image formation process in the MPSLA system under 

consideration by modeled using physical optics or using geometric optics? 

Hypothesis The theory of geometric optics is more suitable than that of physical optics to 

model the image formation by the MPSLA system under consideration. 

Explanation  

 At a first glance, it seems that geometric optics should be used as opposed to 

physical optics, because of the following reasons. 

1. The light used in the setup is incoherent. A diffraction pattern is not obtained with 

incoherent light.  

2. The imaging system is expected to be aberration limited.  

Tasks 

 As explained in Chapter 2, Section 2.1.3, physical optics theory should be used to 

model image formation by a diffraction limited system, while the theory of geometric 

optics should be used to model image formation by an aberration limited system. If the 

Optical Path Difference (OPD), as explained in Section 2.1.2.2 is comparable with the 

Rayleigh limit (λ/4), the system is diffraction limited and physical optics should be used 

to model image formation. In case the OPD is several times the Rayleigh limit, the 

imaging system is aberration limited. In order to test the hypothesis to Research Question 

1a, the following tasks shall be performed 

Task 1 Quantify the Optical Path Difference 

The OPD introduced by the aberrations in the imaging system shall be quantified 

to see if it exceeds the Rayleigh quarter wave limit by several times. 

Task 2 Cure test layers  
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A ray tracing algorithm shall be formulated to obtain the exposure on the resin 

surface given the bitmap to be imaged. A test bitmap shall be fed to this algorithm and 

the lateral extents of the exposed region shall be measured. This bitmap shall be imaged 

onto the resin surface for a long time and a layer will be cured. The lateral extents of the 

exposed regions, returned by the algorithm, shall be compared with the lateral extents of 

the cured layer. The extent agreement of the two results could shed some light on the 

validity of using the geometric optics approach to image modeling. 

4.1.2 Reducing the computational expense of ray-tracing approach  

 Ray tracing approach is a high fidelity approach which takes into account the 

optical aberrations introduced by the imaging system and thereby accounts for the 

distortions in the image and variation in irradiance across it that occurs due to 

aberrations. The downside of the ray-tracing approach is that a large number of rays need 

to be traced through the imaging system in order to converge to the irradiance profile on 

the resin surface. If the model is to be implemented at a higher resolution, an even larger 

number of rays would have to be traced. This leads us to our next research question. 

Research Question 1b: How to model the exposure profile on the resin surface with the 

fidelity of the ray tracing approach, in a computationally inexpensive way? 

Hypothesis: A multi scale modeling approach can be adopted. The irradiance profile can 

be thought of as a collection of pixels overlapping each other. Modeling should be done 

at two levels:  

1. Curing of individual pixels (computationally expensive part) 

2. Overlapping of pixels to give the exposure profile on the resin surface 

(computationally inexpensive part) 
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Explanation 

 Whenever any bitmap displayed on the DMD is imaged onto the resin surface, 

every micro mirror in the “ON” state is imaged as a pixel on the resin surface. Depending 

upon the time that a micro mirror is imaged, every pixel will get some exposure dose. 

Thus, every micro mirror results in the exposure of a single pixel. Within a single layer, 

adjacent pixels overlap each other laterally. The shape and dimensions of a pixel as well 

as the exposure distribution across it will depend upon the location of the micromirror 

exposing it, on the DMD. 

 It is proposed to model the exposure profile on the resin surface in two steps. 

First, a ‘Pixel Image database’ shall be populated which would record the irradiance at 

every pixel in terms of the optical parameters of the MPSLA system. Then, the Pixel 

overlap model will be formulated that would compute the exposure profile on the resin 

surface. The imaging of pixels, which is a computationally intensive process, will be 

computed only once and a database recording the location and dimensions of every pixel, 

including the irradiance distribution across it, shall be created. The proposed multi scale 

strategy for modeling irradiance is shown in Figure 4.1. 
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Figure 4.1 Multi scale approach to model exposure 

 

Tasks 

 In order to test this hypothesis, the following tasks shall be undertaken. 

Task 1 Formulate the Pixel image model 

 First the resin surface shall be discretized into elements 10µm square each. In the 

Pixel image model, rays will be traced from every micromirror on the DMD in all 

directions. The lateral extents of the irradiated area (pixel) would encompass numerous 

elements. The radiation (in mW/cm2) at these elements shall be stored in the pixel image 

database. Let us denote the radiation received by the element (p,q) on the resin surface 

due to rays emanating from the micromirror given by coordinates (a,b) as Hpq,ab. Suppose 

the micromirror (a,b) is imaged for time Tab. Due to the radiation received solely from the 

micromirror (a,b) for time Tab, the element (p,q) will receive an exposure dosage of Epq,ab 
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 E H Tpq ab pq ab pq ab, , ,= ×                   (4.1)        

Task 2 Formulate the Pixel summation model 

 When pixels overlap laterally, they would share some element(s). At a shared 

element, the total exposure would simply be the algebraic sum of the exposure it receives 

from all the micromirrors that end up irradiating it. Suppose the element (p,q) is shared 

between various pixels. Then, the irradiance at the element (p,q) due to the overlap is 

given by equation 4.2. 

 E Epq pq ab= ∑ ,  with a,b across all the pixels which overlap at (p,q)      (4.2) 

Task 3 Test the model 

 The exposure profile obtained by imaging a test bitmap on the resin surface shall 

be computed by using the multi-scale approach proposed above and the computational 

time shall be quantified. 

4.2 Curing dimensionally accurate parts 

 The first step towards curing a dimensionally accurate MPSLA part is to cure 

dimensionally accurate layers. The lateral extents of every layer can be meshed with 

pixels from the Pixel image database (Section 4.1.2) and then, the pixels can be mapped 

onto the micromirrors on the DMD to generate the bitmap to be displayed on the DMD. 

The next step is to determine the vertical dimension of the voxels that would be cured at 

these pixels. The vertical dimensions of any Stereolithography part are prone to errors 

because of print through errors.  

 When a layer is cured, radiation penetrates beyond its intended thickness. While 

penetration of radiation beyond the layer is desirable in order to bind it to the layer 
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underneath it, the radiation also penetrates to the bottom surface of the part being built, 

causing print-through errors. As the radiation propagates through the resin, it gets 

attenuated according to the Beer Lambert’s law of absorption. The exposure received by 

the resin at a depth z from the surface is given by 

E z E e z Dp( ) /= −
0               (4.3) 

where E z( )  is the exposure at the depth z  in resin, 

E0   is the exposure at the resin surface, 

Dp  is the depth of penetration, which is a resin constant. 

The resin beneath a MPSLA build gets exposed due to radiation penetrating to it from all 

the layers cured above it. Exposure being additive, a point is reached when the exposure 

received by the resin underneath the MPSLA part equals its threshold exposure for 

polymerization (Ec). This unwanted curing causes an increase in the vertical dimension of 

the part. This error is called as the print-through error. The source of print-through error 

is depicted pictorially in Figure 4.2. The author aims to minimize the print through errors 

through efficient process planning. 

Research Question 2: How to reduce print through errors in MPSLA builds? 

Hypothesis: Print through errors can be reduced by subtracting a tailored volume 

(compensation zone) from underneath the CAD model which is used to build the part, in 

such a way that the exposure received by the down facing surface of the part is exactly 

equal to the threshold exposure of polymerization (Ec).  
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Figure 4.2 Print-through error 

 

Explanation  

 The idea behind compensation zone approach is to subtract that volume which 

would exactly compensate for increase in vertical dimension that would occur due to 

print through. Radiation penetrating from all layers results in print through. Thus, given a 

slicing scheme, the exposure supplied to the various layers should be controlled in such a 

way that the exposure reaching the bottom surface of the part being cured is exactly equal 

to Ec.  

4.2.1 Failed attempt at modeling print through 

 In order to implement the Compensation zone approach, the author modeled print 

through using  Beer Lambert’s law of resin attenuation and the threshold model of resin 

cure (both explained in Section 2.2). This attempt failed because of some assumptions 
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made in the cure modeling in Jacobs, (1992). In this sub-Section, the author’s failed 

attempt at modeling and validating print-through is presented.  

 
Figure 4.3 Modeling print through 

  

 Suppose an n layered part is built as shown in Figure 4.3. The total print through 

will be caused by the energies penetrating to the bottom surface from all the layers cured 

above it. If exposure Ek is provided to cure the kth layer, the energy penetrating to the 

bottom surface from the kth layer can be computed using Beer Lambert’s law, as given by 

equation 4.4 

 )/exp(
1
∑
=

=

−=
km

m
pmkbk DLTEE            (4.4) 

The total exposure that will cause print through will be given by the summation of the 

exposures penetrating from all the layers. 
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             (4.5) 

This exposure would cause print through as given by equation (4.6) 
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c

b
p E

E
DPT ln=             (4.6) 

The total height of the part thus cured will be given by the summation of the layer 

thicknesses and the print through as given in equation 4.7. 

 PTLTh
n

k
k += ∑

=1
            (4.7) 

   

 
Figure 4.4 Validating the print through model 

 

 The author tested this model by building the four layer test part as shown in 

Figure 4.4. The part consists of four identical layers of lateral dimensions 

2500µmX600µm and 500µm thick. These layers were offset over each other by 500µm 

by translating the part being built beneath the imaging system. The irradiance profile 

across the layer was modeled using the “Irradiance model” as formulated in Limaye and 

Rosen, (2007) (explained in this dissertation in Section 5.1) to obtain the value of 

irradiance (H) received at every pixel. The layers were exposed for 80s. The print through 

was calculated at every lateral location on the extents of the part using equation 4.5 and 
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the profile of the down facing surface was simulated. The test part was built and its 

profile was compared with the down facing surface profile of the part. The profiles did 

not agree even qualitatively. See Figure 4.5. This disagreement was observed for various 

combinations of the times of exposures for the layers. 

 
(a) 

Figure 4.5 Profiles of down facing surfaces (a) simulated; (b) experimentally observed  

 

Simulated surface  
profile
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(b) 

Figure 4.5 (continued) 

 

 In both the figures, rectangles are shown corresponding to the layers that would 

have been cured had there been no print through and no irradiance variation across a 

cured layer. It can be seen from the simulation results in Figure 4.5 (a) that the cure depth 

is smaller than the layer thickness. This is because the irradiance falls sharply at the 

edges, where the exposure received is not enough to cure resin up to the layer thickness. 

Also, it can be seen that the simulation predicts almost same profiles for the overhanging 

portions under each of the four layers. This is also expected since we are using very thick 

layers. The radiation attenuation, being exponentially decreasing is less than 1% beyond a 

depth for 1000µm. 

 It can be seen from the experimentally cured profile that there is a significant 

amount of print through actually happening. The simulation results based upon the 

calculation of print through using equation 4.6 do not account for this excessive observed 
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print through. This made the author questions some of the fundamental assumptions 

made in the formulation of equation on 4.6. Two assumptions were identified as 

explained in Section 4.2.2 and Section 4.2.3. 

4.2.2 Modeling layer curing as a transient process 

The print through model presented in equation 4.6 assumes that when any layer is 

cured, all the energy supplied to cure the layer is supplied in an instant and the depth of 

cure is proportional to the logarithm of exposure.  Suppose that irradiance H is incident 

on the resin surface for a duration t. It would supply an exposure tHE ⋅= . This energy 

would get attenuated as it enters the resin, according to the Beer Lambert’s law. The 

exposure at a depth z is given by )/exp( pz DzEE −= . Curing occurs at all points where 

exposure is greater than or equal to Ec. The thickness of the layer cured will thus be given 

by equation (4.8). 

)/ln( cpd EtHDC ⋅=                        (4.8) 

 where Dp is the depth of penetration of the resin (a measure of attenuation of 

 radiation), and 

 Ec is the threshold exposure for polymerization. 

This model assumes that the attenuation of radiation through a cured layer is the 

same as that through uncured resin, given by the parameter Dp. This assumption is highly 

suspicious, because most of the photo-initiator is consumed in cured resin. The chemical 

composition of cured resin is significantly different from that of uncured resin, which will 

definitely alter its rate of absorption of light. In other words, the depth of penetration for a 

cured layer DpS is expected to be different from that of liquid resin DpL.  
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Suppose that the thickness of the layer that is cured after a time t1 during exposure 

is equal to Cd1, and the thickness cured after time t2 is equal to Cd2, as shown in Figure 

4.6. Suppose that an infinitesimal amount of energy δE is incident on the top surface of 

the layer being cured. This energy will get attenuated as it passes through the cured layer 

and then through the uncured resin. The plot of energy versus depth into the resin vat is 

shown in Figure 4.6. Consider the fraction of the incident energy δE that would reach an 

arbitrary depth z from the top surface of the layer. In the first case, an energy equal to 

)/][exp()/exp(. 11 pLdpSd DCzDCE −−−δ  will reach the depth z. In the second case where 

the thickness of the layer already cured is equal to Cd2, the energy reaching the depth z 

will be equal to )/][exp()/exp(. 22 pLdpSd DCzDCE −−−δ .  

 
Figure 4.6 Different rates of radiation attenuation  with respect to depth at different instances of time 

during exposure 
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Thus, the average attenuation of radiation per unit depth will vary with respect to 

time. In other words, the rate of radiation attenuation with respect to depth, will vary with 

respect to time. It is necessary to capture this effect of varying rate of attenuation on the 

depth of cure. This leads us to Research Question 2a. 

Research Question 2a: How to capture the effect of the varying rate of radiation 

attenuation throughout the duration of exposure, as a layer gets cured? 

Hypothesis: The effect of varying rate of attenuation as a layer gets cured can be 

captured by modeling layer curing as a transient phenomenon, by discretizing the time 

domain.  

Explanation 

 Suppose the depth of penetration for a cured layer is DpS and that for the liquid 

resin is DpL. By discretizing the time domain into infinitesimal time intervals (dt), we can 

formulate a differential equation relating the incremental curing (dz) that would occur 

during the time interval dt. By solving this differential equation, we can obtain a 

relationship between the depth of cure and time of exposure. 

 By conducting experiments on our MPSLA system, we can see if we get the same 

relationship between cure depth and exposure as that predicted by solving the differential 

equation. This would validate our theory of the transient layer curing. 

Task 1: Formulate the transient layer cure model  

 A differential equation relating the incremental curing dz and the infinitesimal 

time interval dt shall be formulated and solved 

Task 2: Validate the transient layer cure model 
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 Layers shall be cured for various times of exposures and plotted against the 

exposure supplied to cure them to validate the transient layer cure model 

4.2.3 Quantifying effect of diffusion underneath cured layer 

 The print through model makes another assumption. It assumes that exposure is 

additive (equation 4.5). In other words, it assumes that the total energy that would cause 

print through is simply the algebraic summation of the energies that reach the bottom 

surface from all the layers cured above it. The author finds this assumption highly invalid 

for the MPSLA process. In case of the MPSLA process used by the author, a time 

interval of up to one minute is allowed for the resin surface to level itself before any layer 

is cured. The author expects that during this duration, reactive species underneath the 

partially cured part would diffuse out into the vat and would carry energy away with 

them. In addition, oxygen from the surrounding resin would diffuse towards the solid-

liquid interface and quench the excited species, thereby further reducing the amount of 

energy carried by excited species at the bottom surface. These two diffusion phenomena 

are expected to cause a fall in the net energy available at the bottom surface. The author 

intended to pose his suspicion as Research Question 2b. 

Research Question 2b: Is exposure at the bottom surface of a cured layer additive or 

does it get significantly affected by diffusion of radicals and oxygen into the resin vat? 

Hypothesis: The exposure is not additive because there is a significant diffusion of 

radicals and oxygen in the resin vat. 
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Explanation 

 
Figure 4.7 Effect of diffusion of reactive species underneath a cured layers 

 

 Figure 4.7 shows a time line from the time that the radiance was first incident on 

the resin surface to the time t1+t+t2. Suppose that radiance H is incident on the resin 

surface for a time duration t1 and causes curing up to a depth z. Reactive species in their 

excited state are present at the solid-liquid interface of this cured layer and the effective 

exposure at this interface is equal to the threshold exposure of polymerization (Ec). This 

cured layer is allowed to remain in the resin vat for a time t. During this time, the cure 

depth remains unchanged. During the time t though, reactive species would diffuse out 

from the bottom surface of the layer, while oxygen from the surrounding resin would 

diffuse towards the layer and quench the reactive species. As a result of this diffusion, the 

effective exposure at the bottom surface would drop to (1-k)Ec. This is shown in Figure 

4.7 at the time t1+t. Now, the top surface of the cured layer is exposed to the same 

radiance H for a second time interval of duration t2. This second dose of energy will pass 

through the transparent layer and will add up with the exposure at the bottom surface.  

 Further incremental curing will start only after the energy lost due to diffusion of 

radicals and oxygen is replenished by the incoming radiation. After a time t’ into the 

H H H 
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second exposure dose, the lost energy will be replenished and the effective exposure at 

the bottom surface will once again be equal to Ec. This is shown on the time line in 

Figure 4.6 at the time t1+t+t’.  

 At the end of the second exposure dose of duration t2, the effective exposure at the 

bottom surface will be as given in equation 4.9.   

 )/exp()()1( 2 pScb DztHEkE −⋅+−=        (4.9)  

This exposure is what will cause incremental curing upto a depth y as shown in Figure 

4.7. The value of ‘k’ (let us call it as “Radical diffusion factor”) in equation (4.9) is 

expected to be a strong function of time. We shall compute this factor experimentally. 

Task 1: Validate the theory of diffusion of radicals 

 Single layered parts, as shown in Figure 4.7 shall be cured by supplying two 

discrete exposure doses and by allowing different durations in between the two exposures 

to allow time for the radicals and oxygen to diffuse. By measuring the thickness of the 

layers cured, the value of the radical diffusion coefficient k shall be plotted and it shall be 

seen if it is a logarithmic function of the time allowed for diffusion t (typical for 

diffusion-based phenomena). If it is, then we can take a leap of faith to conclude that 

radical diffusion occurs underneath a cured part.  

 

4.2.4 Modeling print through and implementing Compensation zone approach 

 After having done the preceding work, the author again intends to pursue 

modeling print through and hopes to get much better agreement between experimental 

and analytical results. Using this model, it would be possible to simulate a down facing 

surface and then, solve the print through equation to obtain the reduction in layer 
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thicknesses that would compensate for print through. Thus, the compensation zone 

approach shall get implemented. 

4.3 Smoothing down facing surfaces 

Research Question 3: How to implement the print through smoothing approach to obtain 

smoother down facing surfaces in MPSLA builds? 

Hypothesis: Print through smoothing can be achieved by gray scaling the pixels near the 

edges of a layer to cure voxels of different heights that conform to the part’s vertical 

profile. This method shall be called as “adaptive exposure” since it involves adapting the 

exposure to suit the part’s vertical profile. 

 

Figure 4.8 Curing smoother down facing surfaces through "adaptive exposure" 

 

Explanation  

The idea in adaptive exposure is to mesh every layer with voxels with vertical 

dimensions better approximating the part’s vertical profile. With this method, the down 

facing surface’s approximation will be limited by the voxel dimensions and not by the 

layer thicknesses (Figure 4.8). 

Task: Demonstrate Adaptive exposure method 

 Improvement in surface finish due to adaptive exposure shall be demonstrated on 

a test part. 

Sliced
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4.4 Process planning for MPSLA 

 Suppose the part with quadratic up and down facing surfaces as shown in Figure 

4.8 is to be built. There are requirements on the part’s lateral dimensions, vertical 

dimensions, surface finish as well as build time. The curing of dimensionally accurate 

parts has been addressed in Research Questions 2. Improvements to surface finish 

through intelligent process planning have been addressed in Research Question 3. The 

build time of an MPSLA part can be easily modeled by breaking down the part building 

process into its constituent steps and summing the time required to complete each of 

those steps.  

Research Question 4: How to build a MPSLA part with multiple objectives of 

dimensional accuracy, surface finish and build time? 

Hypothesis: Process planning can be done in two steps. First, a multi-objective 

optimization method, like the compromise DSP (Mistree et al., 1994) should be 

formulated and solved to select the slicing scheme, i.e. layer thicknesses that would 

obtain a tradeoff between the objectives of surface finish and build time. For this slicing 

scheme, the compensation zone approach should be adopted to obtain part with accurate 

vertical dimensions 

Explanation 

 The layer thicknesses have the largest effect on two of our process objectives: 

surface finish and build time. It can be intuitively seen that larger the number of layers, 

greater would be the build time. Also, larger the number of layers to build a given a part, 

smaller will be the layer thicknesses and thus, smoother would be the up facing surface. 

Thus, a compromise DSP can be formulated and solved to generate slicing schemes that 
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would achieve tradeoffs between the goals of surface finish and build time. A set of 

slicing schemes that are acceptable would be selected. The Compensation zone approach 

shall be applied on each of these slicing schemes to reduce the print through errors. 

Task: Formulate and test the multi objective process planning method 

The following are the proposed steps of the process planning method. 

1. Slice the CAD model and populate the slices with elements so that the surface 

finish and build time requirements are satisfied as well as the lateral dimensional 

requirements are satisfied. 

2. Choose a couple of “likely to succeed” slicing schemes that would satisfy the 

build time and surface finish requirements and pass them on to the second c-DSP. 

3. Now, choose the combination of compensation zone thickness, and cure depths 

that will give the required vertical dimension, i.e. satisfy equations 4.3, 4.4 and 

4.5. The structure of the proposed process planning method is shown in Figure 

4.8. 
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Figure 4.9 Multi objective process planning method 

Summary 

 This chapter identifies the research questions that need to be addressed in order to 

meet the research objective of formulating a process planning method for Mask 

Projection Stereolithography. Research Question 1 deals with the modeling of image 

formation in a computationally inexpensive manner. Research Question 2 deals with the 

rigorous modeling and validation of the print through that occurs when multi-layered 

parts are built. Research Question 3 deals with achieving print-through smoothing for 

down facing surfaces, a phenomenon observed in laser scanning Stereolithography 

systems, but never demonstrated in Mask Projection Stereolithography. Research 
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Question 4 deals with the formulation of a process planning method that will utilize all 

the research done in answering research questions 1 to 3, in order to formulate a multi-

objective process planning method for Mask Projection Stereolithography. 
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CHAPTER 5 IRRADIANCE MODEL 
 

 In this chapter, Research Questions 1a and 1b, as presented in Chapter 4, are 

tackled. In Section 5.1, the validity of the geometric optics approach to model the image 

formation process for the MPSLA system is verified. In Section 5.2, the multi scale 

modeling approach to model the irradiance distribution, is implemented and tested. 

5.1 Geometric Optics to model image formation 

Research Question 1 dealt with the approach to be used to model the image 

formation process. The hypothesis was that geometric optics is a better approach than 

physical optics to model the image formation process. This hypothesis is validated in this 

section. In Section 5.1.1, the imaging system is modeled using the optical design software 

OSLOTM to quantify the optical path difference (OPD) introduced due to aberrations. 

This OPD is compared with the Rayleigh quarter wavelength criterion to show that the 

system is ‘aberration limited’, as opposed to ‘diffraction limited’. In Section 5.1.2, the ray 

tracing algorithm is used to model the dimensions of an image formed on the resin. These 

dimensions are compared by curing a layer in the resin. This is used to quantify the 

accuracy of the geometric optics approach for modeling image formation.  

5.1.1 Quantifying the OPD 

It has been observed that the imaging system of the realized MPSLA machine can 

image an area comprising of 300x300 micromirrors or smaller with acceptable amounts 

of distortions. Thus, the active area of the mask is only 300x300 pixels. The pitch of the 

micro-mirrors (pixels) on the mask is 13.65µm. The maximum distance of any point on a 

pattern displayed on the mask, from the optical axis, is 150 x 13.65 = 2047µm, i.e. 2.047 
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mm. We wish to determine the optical path difference introduced due to distortion of the 

wavefront by aberrations introduced by the imaging system when an object as large as 

2.047mm is imaged. In Section 2.1.2.2, the OPD introduced by an imaging system having 

spherical aberrations is derived. In reality, an imaging system has numerous types of 

aberrations (defocus, spherical, astigmatism, coma, distortion). Computing the OPD 

introduced by all these aberrations acting simultaneously is not possible analytically. 

Hence, the author has used optical design software OSLOTM.  

 The imaging system data is input to OSLO as shown in Figure 5.1. The radii of all 

surfaces, the clear apertures of these surfaces, the distances between the surfaces, the 

height of the object being imaged and the refractive indices of spaces are fed to the 

software. It can be seen that the height of the image is calculated by OSLO as 

2.098370mm. 

The imaging system thus modeled is depicted in OSLO as shown in Figure 5.1. 

 
Figure 5.1 Imaging system modeled in OSLO 
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Figure 5.1 (continued) 

  

 Across the entire field of radius 2.047mm, the peak to valley OPD is calculated as 

0.49637mm. See Figure 5.2. Since most of the light is in the i-line spectrum, the 

wavelength is assumed to be 365nm. The Rayleigh quarter wave criterion is λ/4, i.e. 

91.25nm. Thus, the peak to valley OPD is more than 5400 times the Rayleigh quarter 

wave criterion. This shows that the imaging system is severely aberration limited and 

hence, geometric analysis should be used to model the image formation process (Smith, 

1990). 
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Figure 5.2 OPD calculated by OSLO 

5.1.2 Irradiance model 

 Ray tracing is the method to model the irradiance across an image formed by an 

aberration limited optical system. An exact ray tracing algorithm is formulated to trace 

rays through the imaging system of the MPSLA system. The ray tracing equations 

presented in Section 2.1.2.3, as presented in Smith, (1990), are used to formulate the ray 

tracing algorithm.  

 The DMD is arranged so as to reflect a horizontal beam of light coming from the 

collimating system downwards towards the imaging system. The orientation of a 

displayed bitmap pattern in the three dimensional space and hence the co-ordinates of the 

points from which rays shall be traced are computed before starting the ray tracing. 

 In the Figure 5.3(a), the starting orientation of the DMD chip is shown with its 

plane perpendicular to the beam coming from the collimating system The global co-
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ordinate system [XYZ] is defined as shown in the figure. X axis is the axis along the 

beam coming from the collimating system, Z axis is vertically downwards and the Y axis 

is perpendicular to the X and Z axes, along the plane of the DMD chip. The 

micromirrors, in their neutral state, are parallel to the DMD chip as shown in Figure 5.3 

(a). The co-ordinate system [XmYmZm] of one of the micromirrors on the DMD chip is  

exactly aligned with the global co-ordinate system in the beginning as shown in Figure 

5.3(a). The global co-ordinate system is centered at the midpoint of the chip. The local 

co-ordinate system of every micro-mirror is centered at its midpoint. In the figure, the 

origins of the global co-ordinate system and that of the micro-mirror being considered are 

shown to be co-incident, but this is not necessary. In its ‘ON’ state, a mirror is tilted 

about its diagonal by 100. The DMD needs to be oriented in such a sense, so that a micro-

mirror in its ‘ON’ state would reflect the horizontal beam coming from the collimating 

system vertically downwards. Since the beam is coming along the global X axis, an ‘ON’ 

micro-mirror needs to be tilted at an angle 450 about the global Y axis. Since the micro-

mirror tilts about its diagonal, the diagonal needs to be aligned parallel to the global Y 

axis. We align the DMD in such a way that this is achieved. The DMD chip is rotated 

about the X axis by 450 to make the diagonal along which the micromirror would tilt, 

parallel to the global Y axis. This is shown in Figure 5.3(b). Now, the DMD chip is 

rotated by 550 about the global Y axis, so that when the micro-mirror tilts by 100 in its 

‘ON’ state, it will be effectively tilted at 450 along the global Y axis and would thus 

direct the beam vertically downwards 
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(b) 

Figure 5.3 3D transformation of the DMD to reflect the light beam downwards 

DMD chip 

Micro mirror 

Light beam from 
collimating system 

Light beam from 
collimating system
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.  

 When any bitmap is input to the Irradiance model, geometric transformations are 

applied to the bitmap to account for the above mentioned alignment procedure. Then, 

every ‘ON’ micro-mirror on the DMD is meshed with points and rays are traced from 

each of these points to compute the irradiance distribution on the resin surface. This 

procedure is explained in detail in Sections 5.1.2.1 to 5.1.2.3. 

5.1.2.1 Geometric transformations to determine center of every ‘ON’ micromirror 
 Given a bitmap, the ‘ON’ micro-mirrors on the DMD are identified. The co-

ordinates of the center of each micro-mirror is passed through the 3D transformations that 

occur due to the alignment of the DMD as explained above. Suppose the global co-

ordinates of the center of a micro-mirror are given by (x1, y1, z1). It is passed through the 

following transformations: 

• Rotation about the X axis would change the co-ordinates to (x2, y2, z2) 
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• Rotation about Y axis would change the co-ordinates to (x3, y3, z3) 
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 Since z2 = 0, equation (5.2) gets simplified as: 
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 In Appendix B, the co-ordinates of the midpoint of every ‘ON’ micro mirror are 

computed using the Matlab code “bitmap_read.m”. 

5.1.2.2 Meshing every ‘ON’ micro mirror with points 

 

Figure 5.4 Projected image of an 'ON' micromirror to mesh with points 

 

Using equation 7.1 and 7.2, the center of every ‘ON’ micromirror is computed as 

(x, y, z). The ‘ON’ micro-mirrors are all tilted at an angle about the global Y axis by 450. 

We mesh the projection of these micromirrors on the horizontal plane with equally 

spaced points from which to trace rays. The projected image of a micro mirror is meshed 

and not its true extents, in accordance to the laws of radiometry (O’Shea, 1985).  

Figure 5.4 shows the projection of a micromirror tilted at 450 to the horizontal. 

The true dimensions of the micro-mirror are 12.65µm square. Using the Pythagoras 

theorem, the length of its diagonal can be computed to be 17.89µm. In Figure 5.4, this is 

(x, y, z) 

10.955µm 

6.325µm8.
94

5µ
m
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the dimension of the diagonal along the global Y axis. Due to the tilting by 450, the 

shorter diagonal will be of length 17.89cos(450) = 12.65µm. From the dimensions of the 

diagonals, it is possible to compute the side of the projected parallelogram in Figure 5.4, 

using Pythagoras theorem, to be 10.955µm.  

Consider a two dimensional co-ordinate system [XcYc] centered at the corner of 

the projected micro mirror as shown in Figure 5.4. Consider another two dimensional co-

ordinate system [L1L2] centered at the same corner, with axes along the sides of the 

projected image of the micro-mirror. The angle between the axes Xc and L1 is 54.740, as 

can be found out using trigonometry. 

The projected image of the micro-mirror is meshed by 121 points, by dividing 

every side into 11 points. Given the location of a point in the [L1L2] co-ordinate system 

as (a,b), we need to determine the co-ordinates of that point in [XcYc] co-ordinate system 

and then, in global [X,Y] coordinate system. The transformations of the co-ordinates of a 

point from the [L1L2] co-ordinate system to the global [XY] co-ordinate system is 

achieved as follows. 

Let l1 and l2 be unit vectors along the axes L1 and L2 respectively and xc and yc be 

unit vectors along the Xc and Yc axes respectively. The relationship between these unit 

vectors from different co-ordinate system can be obtained by projecting l1 and l2 on Xc 

and Yc, as given in equation 5.4. 

cc

cc

yxl
yxl
)74.54sin()74.54cos(

)74.54sin()74.54cos(

2

1

+−=
+=

          (5.4) 

Any point with the co-ordinates (a,b) in the (L1,L2) co-ordinate system can be 

expressed by the vector 

21 blal +              (5.5) 
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Substituting from equation 5.4, the point can be represented by a vector in the 

(Xc,Yc) co-ordinate system as 

])74.54sin()74.54cos([])74.54sin()74.54[cos( cccc yxbyxa +−++    

Simplifying, the point can be represented by the vector 

cc ybaxba )74.54sin(][)74.54cos(][ ++−           

Thus, the co-ordinates of the point in (Xc,Yc) co-ordinate system are  

 ))74.54sin(][),74.54cos(]([ baba +−  

 In the global co-ordinate system, the (X,Y) co-ordinates would thus be 

 )945.8)74.54sin(][,)74.54cos(]([ −+++− yx baba        (5.6) 

where (x,y) are the co-ordinates of the center of the micro-mirror in global co-ordinates. 

 The Z co-ordinate of the point on the micro-mirror corresponding to a point with 

given (X,Y) co-ordinates on the projection will simply be equal to the Z co-ordinate of 

the mid-point of the micro mirror plus the X co-ordinate of that point multiplied by 

tangent of 450. Thus, the Z-co-ordinate of the point (a,b) in (L1L2) co-ordinate system 

will be )45tan()74.54cos(][ ba − . 

 Thus, the [XYZ] co-ordinate of a point with coordinates (a,b) in the [L1L2] co-

ordinate system is 

))45tan()74.54cos(][,945.8)74.54sin(][,)74.54cos(]([ bababa −−+++− yx      (5.7) 

 In Appendix B, a given micro-mirror is meshed with 121 points and the co-

ordinates of every point are computed as explained above, in the Matlab code 

“pointselector.m”. This code is called as a function from “bitmap_read.m”. 
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5.1.2.3 Tracing rays from a selected point 
Once the co-ordinates of every point from which rays need to be traced are 

determined, direction cosines of the vectors along which rays need to be traced through 

the imaging system are formulated. Equally spaced direction vectors are traced within a 

cone of half cone angle 40. The computation of the direction vectors along which rays 

need to be traced from a given point is performed in the Matlab code “psf.m” in 

Appendix B. The code “psf.m” is called as a function from the code “pointselector.m”. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Ray tracing to model irradiance 

 

Rays are traced through the imaging optical system following the equations of the 

exact ray tracing procedure, presented in Section 2.1.2.3 to compute the location of the 

point of intersection of every ray with the resin surface. The resin surface is meshed with 

10µmX10µm squares and the number of rays incident in each of these squares is counted. 

We introduce a function δ which evaluates whether a particular ray will strike an 
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infinitesimal area centered on a given point on the resin surface or not. Suppose that in 

all, n points are used to mesh any bitmap displayed on the DMD and m rays are traced 

from each of these n points as shown in Figure 5.5. 

If a ray starting from point pj, along a direction vector vk intersects the resin surface in 

one of the 10µmX10µm squares, centered on the point pri on the resin surface, then, 

δ( pj, vk, pri ) = 1; 
             else,   

 δ( pj, vk, pri ) = 0 

The function δ is evaluated by adopting the exact ray tracing procedure as explained 

in (Smith, 1990). In an exact ray trace the path of every ray is traced through the lens, 

and the coordinates of the point where it intersects the image plane are analytically 

computed. The imaging system parameters are used in the evaluation of the function 

δ. The procedure of ray tracing has been explained in Section 2.1.2.3. 

The irradiance received by any point on the resin surface will be proportional to the 

number of rays striking an infinitesimal area centered on that point. The number of 

rays striking a 10µmX10µm area centered at point pri on the resin surface will be 

given by the function: 

N pr p v pri j k i
k

m

j

n

( ) ( , , )=
==
∑∑ δ

11

                       (5.8) 

Since the irradiance at a point on the resin surface is proportional to the number of 

rays striking that point, the irradiance can be given by: 

H pr c p v pri j k i
k

m

j

n

( ) ( , , )=
==
∑∑ δ

11

                          (5.9) 
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where c is a constant.   

The constant c is calculated as follows: 

Using a radiometer, the average irradiance across an aerial image can be measured. 

Let the average irradiance be Hav. The average number of rays striking a point on the 

resin surface will be given by (total number of rays/total number of points on the 

resin surface) = nm/x. So, nm/x rays correspond to an irradiance of Hav. The constant 

c is thus determined to be Hav/(nm/x). Substituting for c in the equation (6.3), 

H pr H x nm p v pri av j k i
k

m

j

n

( ) ( / ) ( , , )=
==
∑∑ δ

11

                      (5.10) 

Equation (5.10) will give accurate results when n ∞ and m ∞. 

In equation 5.10, all rays are assumed to carry the same amount of energy. This is 

because only a small portion of the center of the beam incident on the DMD is sampled 

by the active area of the mask (300X300 pixel area). The power in this small area can be 

assumed to be constant. Also, only a small portion at the center of the cone of rays 

emitted from every point on every micro-mirror is allowed to pass through the telecentric 

optic system. The power across this small cone (of less than 40 half cone angle), can also 

be safely assumed to be constant. 

While conducting the ray tracing, it is checked if the ray would passed through 

the 2mm diameter aperture at the center of the telecentric imaging system. The tracing of 

a ray from a given point on a given micro-mirror in a given direction is conducted by 

means of the Matlab code “raytrace.m”. This code is called as a function from the Matlab 

code “psf.m”. The code “raytrace.m” is also presented in Appendix B. 
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5.1.3 Validating Irradiance model 

The bitmap in Figure 5.6 was run through the Irradiance model to generate the 

irradiance distribution on the resin surface, the top view of which is shown in Figure 5.7. 

The bitmap in Figure 5.6 was imaged onto the resin surface for a long duration of time 

(160s) to cure single layer parts. For such a long duration of exposure, the entire 

irradiated area would cure and the dimensions of the cured layer would be the same as the 

dimensions of the irradiated area on the resin surface. One such cured layer in shown in 

Figure 5.8. 

 

Figure 5.6 Dimensions of the test bitmap imaged onto the resin surface 
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Figure 5.7 Irradiance profile on returned by the ray tracing code 
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Figure 5.8 Layer cured by imaging the bitmap in Figure 5.6 onto the resin surface 

  

 In all, 8 such layers were cured. The pictures of all these layers are presented in 

Appendix A. The dimensions of these layers were compared with those of the irradiance 

pattern returned by the Irradiance model. The dimensions that are measured are shown in 

Figure 5.9 and the dimensions are presented in Table 5.1. 
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Figure 5.9 Dimensions compared in Table 5.1 

 

Table 5.1Comparison of experimental observed and analytically computed dimensions of the test 
layers 

Test layers Dimension in µm 
 p q r s t u 

Layer #1 716.7 699.9 699.9 699.9 3899.6 3866.3 
Layer #2 716.7 699.9 699.9 699.9 3899.6 3899.6 
Layer #3 716.7 699.9 716.7 699.9 3899.6 3899.6 
Layer #4 699.9 699.9 666.7 666.7 3866.3 3833.9 
Layer #5 699.9 683.3 666.7 699.9 3866.3 3833.9 
Layer #6 699.9 699.9 699.9 699.9 3866.3 3866.3 
Layer #7 733.3 699.9 699.9 699.9 3899.6 3866.3 
Layer #8 716.6 699.9 699.9 699.9 3866.3 3882.9 
Average 712.5 697.8 693.7 695.7 3882.9 3868.6 

Std. Deviation 11.82 5.87 17.64 11.74 17.8 25.5 
Simulation 718.7 718.7 640.6 640.6 3718.7 3718.7 

Error  6.2 20.9 -53.1 -55.1 -164.2 -149.9 
% Error 0.86 2.91 -8.29 -8.6 -4.42 -4.03 

 

p 

qr 

s 

t u
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 It is clear from Table 5.1 that the image dimensions obtained by the ray tracing 

algorithm very closely match the dimensions of the layer cured. Thus, the hypothesis that 

geometric optics can be used to model the image formation by the MPSLA system is 

validated. The errors observed in the dimensions are expected to have their origins in the 

misalignment of the optical system and in the diffraction effects that have been ignored. 

5.2 Multi scale Irradiance model 

Consider the modeling the irradiance distribution obtained by running the test 

bitmap as shown in Figure 5.6 through the ray tracing algorithm. In order to generate the 

irradiance distribution, 2816 million rays were traced through the optical system. The 

computation time was more than 152 hours. Research Question 2 dealt with reducing the 

computation time of running the ray tracing approach for modeling image formation. A 

multi-scale modeling method is proposed in Hypothesis 2 to speed up the computation of 

irradiance distribution. According to this method, the irradiance is modeled at two scales: 

pixel scale; and bitmap scale. At the pixel scale, a high resolution database documenting 

the irradiance across the resin surface obtained when each micro-mirror is individually 

imaged onto it, is populated by ray tracing. At the bitmap scale, this database is used to 

compute the irradiance distribution across the resin surface when any bitmap is imaged 

onto it. This approach is depicted in Figure 5.10.  
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Figure 5.10 Multi scale modeling of irradiance 

 

There are two models formulated as a part of the Multi-scale Irradiance model: Pixel 

Image model and Pixel Summation model.  

Pixel Image model 

 As shown in Figure 5.10, the Pixel Image model is used to populate the “Pixel 

Image database”. The Pixel Image model takes in the location of every micro-mirror on 

the DMD individually as an input. The projection of this micromirror on the horizontal 

plane is meshed with points and rays are traced from each of these points, following the 

procedure as explained in Section 5.1.2. The irradiance distribution on the resin surface 

obtained due to the imaging of this micro-mirror is recorded in the form of a matrix. A 

6mmX6mm area on resin surface is meshed with 10µmX10µm squares. The irradiance 

on the resin surface is thus recorded in the form of a 601X601 matrix. Thus, in general, 
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the irradiance from a micro-mirror with indices (p,q) is recorded in the Pixel Image 

database as a 601X601 matrix Hpq. 

 In Appendix B, the Matlab code that implements the Pixel Image model to 

populate the Pixel Image database is presented as “massive_database.m”. In order to 

populate the database, the functions “pointselector.m”, “psf.m” and “raytrace.m”, as 

documented in Appendix B and called by this code “massive.database.m”. 

 The population of the Pixel Image database entailed tracing of billions of rays. 

The database populated is of size 7.65GBytes.  It took around 500 hours to populate it.  

Pixel Summation model 

 Given any bitmap, the co-ordinates of the ‘ON’ micro-mirrors on the DMD can be 

obtained from the black pixels on bitmap. Given a set on ‘ON’ micro-mirrors, their 

corresponding 601X601 matrices recording the irradiance on the resin surface can be 

mined from the Pixel Image database. These matrices then are simply added to obtain the 

irradiance distribution that would result when the bitmap is imaged onto the resin surface. 

This is given by equation 5.11. 

 ∑= pqHH            (5.11) 

 where (p,q) are indices of all the ‘ON’ micro-mirrors on the DMD. 

 The Pixel Summation model (Equation 5.11) is implemented for the test bitmap 

as shown in Figure 5.6, in the Matlab code “bitmap_read_database.m”, as presented in 

Appendix B. 

 The test bitmap as shown in Figure 5.6 was passed through the Pixel Summation 

model and the irradiance distribution across the resin surface was computed. This 

irradiance distribution, as expected, was found to be exactly the same as that obtained by 
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running the same bitmap through the Irradiance model. The time required to generate this 

irradiance distribution by using the Pixel Image database only 15 minutes. Thus, the 

computation time has been reduced from 152 hours to 15 minutes by adopting this multi 

scale modeling method. 

5.3  Bitmap Generation method 

 The Multi scale Irradiance model can compute the lateral extents of the aerial 

image that will be formed on the resin surface when a bitmap displayed on the DMD is 

imaged onto it. The bitmap generation method uses the Pixel Image database to do just 

the opposite, i.e., generate the bitmap to be displayed on the DMD in order to irradiate a 

given area on the resin surface. 

 Using the Pixel Image database, the center of the pixel irradiated by every micro-

mirror is determined. A second database relating the location of the central element 

irradiated by every micro-mirror on the DMD with the micro-mirror irradiating it is 

created. This, we call as the “Element-Micromirror Mapping” database. Given the area to 

be irradiated on the resin surface, it is meshed with 10µmX10µm elements, just like those 

used in populating the Pixel Image database. Using the “Element Micromirror Mapping 

database, every element composing the layer is checked to see if it is at the center of one 

of the pixels irradiated by one of the micro-mirrors. If it is, then that micro-mirror is 

deemed as ‘ON’. Knowing the micro mirrors that are ‘ON’, it is possible to generate the 

bitmap with a black pixel corresponding to every ‘ON’ micro mirror and a white pixel 

corresponding to every ‘OFF’ micro mirror. The Inverse Irradiance model is in the form 

of a computer code which accomplishes the above mentioned tasks.  
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 The Bitmap generation method is demonstrated by curing the layer as shown in 

Figure 5.11. The layer is in the form of a rectangle of dimensions 2500µmX600µm. It is 

to be cured parallel to the global X axis. This layer is meshed with pixels, which are 

mapped onto the micro-mirrors on the DMD, to generate the bitmap as shown in Figure 

5.12. The Matlab code implementing the Layer Cure model is presented as the Matlab 

code “element_micromirror_mapping.m”, presented in Appendix C. 

  

 

 Figure 5.11 Rectangular layer to be cured  

 

 
Figure 5.12 Bitmap generated by applying Layer cure model 

  

      2500µm

60
0µ

m
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 The bitmap in Figure 5.12 can be seen to be getting blurry towards the part 

corresponding to the global negative Z axis. This blurriness is related to the mapping of 

elements on the resin surface with the micro-mirrors and also with the focusing errors. 

Due to the tilted mounting of the DMD, the object distances change along the Z axis. 

There are focusing errors towards the negative Z axis, and the shapes of the pixels 

irradiated by micro-mirrors in that region are irregular in shape. This causes errors and 

approximations in the determination of the central element irradiated by micro-mirrors 

that are located towards the negative Z direction. When the elements on the layer are 

mapped onto the micro-mirrors, some of the micro-mirrors are not identified as ‘ON’ 

because their approximated center of the irradiated pixel is not a part of the layer. 

 Hence, a manual step is performed, in which the ‘OFF’ micro-mirrors 

(corresponding to white pixels) dotting in between the ‘ON’ micro-mirrors (black pixels) 

are manually turned on (i.e. pixels are turned black.). This smoothing of the bitmap is 

performed to obtain the bitmap presented in Figure 5.13. 

 
Figure 5.13 Bitmap generated by the pixel mapping database manually smoothened 
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 Note that the smoothing out is done manually by the author by exercising his own 

judgment. A better filtering or an edge detection algorithm should be implemented in 

future to do the smoothing. 

 The smoothened bitmap was imaged onto the resin surface to cure three layers, as 

shown in Figure 5.13. The lengths and widths of each of these layers were measured to be 

2433µm and 566.67µm respectively. This good agreement between the required and the 

obtained dimensions of the rectangular layer demonstrates the Inverse Irradiance model 

and also further bolsters the Irradiance model itself. 

 

 
Figure 5.14 Rectangular layers cured by imaging bitmap in Figure 5.13 onto the resin surface 
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Summary 

 In this chapter, the modeling of irradiance that would be supplied to the resin 

surface when a given bitmap is imaged onto it is modeled. The geometric theory of optics 

is shown to be valid for the modeling of image formation in case of an aberration limited 

system such as the author’s. A ray tracing algorithm is formulated to model the image 

formation process. Test layers have been cured on the MPSLA part and the ray tracing 

algorithm has been shown to be valid within 8.6% error.  

 A multi scale modeling approach, which allows the computationally intensive 

task of computing image formation through ray tracing manageable is also presented. 

 The chapter ends with the Bitmap Generation model, which generates the bitmap 

to be displayed on the DMD in order to irradiate a given area on the resin surface. 

 

Progress made towards answering research questions 

 In this chapter, research questions 1(a) and 1(b) are answered. Research question 

1(a) dealt with choosing the optical theory to model image formation by the MPSLA 

system. There are two theories for modeling image formation: geometric optics and 

physical optics. In this chapter, the Optical Path Difference (OPD) of the telecentric 

imaging system of the MPSLA system designed as a part of this research (Chapter 3) is 

quantified. The OPD is shown to be more than 4000 times the Rayleigh limit (λ/4), and 

thus the imaging system is shown to be aberration limited. The image formation for 

aberration limited systems is modeled using the theory of geometric optics. A ray tracing 

algorithm is formulated in this chapter to formulate the “Irradiance model”. The 

Irradiance model computes the irradiance on the resin surface when a given bitmap is 
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imaged onto it. The model is validated by curing test layers on the MPSLA system and 

comparing the dimensions of these layers with those of the irradiate area computed by 

using the Irradiance model. 

 Research question 1(b) was concerning reducing the computation time involved in 

implementing a ray tracing algorithm, which entails tracing of billions of rays through the 

imaging system. A multi scale modeling strategy has been presented in this chapter to 

reduce the computational expense of executing Irradiance model. “Pixel image model” is 

formulated that traces rays from each micro mirror on the DMD individually and 

computes the irradiance on the resin surface when that particular micro mirror is imaged 

onto it. A “Pixel image database” which stores the irradiance across the pixels irradiated 

by all the micro-mirrors on the DMD is populated. Once this database is formulated, the 

image modeling can be done very rapidly. Give a bitmap to be imaged onto the resin 

surface, the ‘ON’ pixels of the bitmap are identified, the corresponding pixels are mined 

from the Pixel image database and are overlapped to obtain the irradiance on the resin 

surface. The improvement in computational efficiency is demonstrated in this chapter by 

modeling the image formation of a test bitmap without using the multi scale modeling 

approach and using the multi scale modeling approach. The reduction in computation 

time was found to be from 114 hours to 15 minutes. 
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CHAPTER 6 BUILDING ACCURATE THREE DIMENSIONAL PARTS 
 

 In Chapter 5, the Irradiance model was formulated which computes the irradiance 

received by the resin surface when a bitmap is imaged onto it. This enables curing of 

dimensionally accurate layers. In this chapter, the print through errors that would result 

when layers are cured over each other are modeled. Research Question 2 deals with 

avoiding the print through errors by adopting the “compensation zone” approach. 

Research Question 2 has been broken down into two sub research questions, questioning 

long held assumptions about the curing process of Stereolithography resins. The 

hypotheses presented for these research questions are tested in this chapter.  

 In Section 6.1, the transient model of layer curing is formulated and validated. 

This model takes into account the changing rate of attenuation of light in resin during 

exposure. In Section 6.2, the effect of diffusion of reactive species and oxygen molecules 

underneath a part being built, on the print through, is modeled and validated. In Section 

6.3, the models formulated in Sections 6.1 and 6.2 are utilized to model the print through 

that would occur when multiple layers are built over each other. The down facing surface 

profile of the four-layered part presented in Figure 4.4 is simulated and validated in 

Section 6.4. In Section 6.5, the compensation zone approach is implemented, utilizing the 

derivations made in Sections 6.3 and 6.4, to compute the process parameters that would 

build the required test part with accurate down-facing surface.  

 Research Question 3 was regarding employing the compensation zone approach 

to smoothen the down facing surfaces of MPSLA builds. In Section 6.6, an 

implementation of the compensation zone approach to smoothen the down facing 

surfaces of MPSLA builds is demonstrated. 
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6.1 Transient layer cure model 

The cure model presented in standard Stereolithography texts, like Jacobs (1992), 

is fairly simple. It assumes that the depth of cure is proportional to the logarithm of 

exposure and assumes the threshold model of resin cure. Suppose that irradiance H is 

incident on the resin surface for a duration t. It would supply an exposure tHE ⋅= . This 

energy would get attenuated as it enters the resin, according to the Beer Lambert’s law. 

The exposure at a depth z is given by )/exp( pz DzEE −= . Curing occurs at all points 

where exposure is greater than or equal to Ec. The thickness of the layer cured will thus 

be given by equation (6.1). 

)/ln( cpd EtHDC ⋅=                        (6.1) 

 where Dp is the depth of penetration of the resin (a measure of attenuation of 

 radiation), and 

 Ec is the threshold exposure for polymerization. 

This model assumes that the attenuation of radiation through a cured layer is the 

same as that through uncured resin, given by the parameter Dp. The author has observed 

experimentally that the rate of radiation attenuation through a cured layer is significantly 

less than that through liquid resin. Thus, the depth of penetration for a cured layer DpS is 

expected to be different from that for the liquid resin DpL. The effect of these different 

rates of attenuation on the cure depth is captured in this section by modeling layer curing 

as a transient phenomenon. 

Suppose irradiation H is incident on the resin surface at a particular location. It 

will initiate curing after time tc (let us call it as “critical time”), when the exposure 

received by the resin equals Ec. 
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H
E

t c
c =                         (6.2) 

A thin film of cured resin shall be formed on the surface. The energy now incident on the 

top surface of the cured film will have to pass through this film of cured resin and then, 

through the uncured resin under the film. The attenuation of radiation will now be a 

function of the attenuation through the cured film and that through uncured liquid resin. 

This effective attenuation will go on changing as the cured film gets thicker during 

exposure. 

Suppose that, as shown in Figure 6.1, the thickness of the film cured after time t is 

equal to z. The exposure at the bottom surface of this film is equal to Ec. At time t+dt, the 

next dose of energy equal to dtH ⋅  will be incident on the top of the cured film. This 

energy will get attenuated following the Beer Lambert’s law of attenuation as it would 

pass through the cured layer of thickness z and the energy reaching its bottom surface 

would be )/exp( pSDzdtH −⋅ . Here, it will add up with Ec, the energy already at the 

bottom of the film and cause an incremental curing equal to dz. This incremental curing 

will be given by 

]
)/exp(

ln[
c

cpS
pL E

EDzdtH
Ddz

+−⋅
=          (6.3) 

This is a first order differential equation with the initial condition: z = 0 at t = tc. 
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Figure 6.1 Modeling layer curing as a transient phenomenon 

  

 Equation 6.3 was solved numerically to obtain the relationship between the depth 

of cure (z) and the time of exposure (t). The solution to equation 6.3 converged when the 

time domain was discretized to dt = 0.1s. In equation 6.3, the parameters DpL, DpS and Ec 

are to be determined experimentally.  

Characterizing the resin 

 In order to determine these parameters, the experimental procedure as shown in 

Figure 6.2 was adopted. An optical window was placed in contact with the free surface of 

resin contained in a vat and lines were imaged onto the resin surface for various time 

durations. Curing was first noticed at 15s. The time durations were incremented in steps 

of 5s, from 15s to 50s. This range of the times of exposure is fairly close to the typical 

times of exposure for the author’s MPSLA system. Three lines were cured for each time 
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of exposure and the average of the cure depth of the lines cured was for each time of 

exposure was calculated. The micro scope images of the test layers are shown in 

Appendix D. The thicknesses of the three lines are documented against the time of 

exposure in Table 6.1. 

 
Figure 6.2 Characterizing the photopolymer 

 

Table 6.1 Thicknesses of experimentally cured lines against the time of exposure 

Thickness of the cured lines (µm) Time of exposure (s) 
Experiment 1 Experiment 2 Experiment 3 Average 

15 0 0 0 0 
20 48.38 56.45 56.45 53.76 
25 120.96 129.03 129.03 126.34 
30 201.61 201.61 193.55 198.92 
35 274.19 282.26 282.26 279.57 
40 354.83 362.90 346.77 354.84 
45 419.35 411.28 411.29 413.97 
50 483.87 467.74 467.74 473.12 
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The plot of the average cure depth of the line cured versus the time of exposure 

was found to be linear, as shown in Figure 6.3. Hadipoespito et al, (2003) have 

characterized the same photopolymer (DSM SOMOS 10120) using their Mask Projection 

Stereolithography system and have also observed a linear relationship between cure depth 

and time of exposure. The linear relationship between cure depth and time of exposure 

cannot be explained by the standard SLA theory which assumes equal rates of radiation 

attenuation through cured and uncured resin.  

 Equation 6.3 was integrated numerically, by discretizing the time domain into 

durations of 0.1s. The analytical and experimental results agreed the best when the values 

of the unknown parameters were chosen to be: 

DpL = 0.192mm 

DpS  infinity 

Ec = 10.2 mJ/cm2 

From Table 6.2, it can be seen that the experimental and analytical values of cure 

depths agree very well. The value of the depth of penetration through liquid resin (Dp) 

and that of the threshold exposure of polymerization (Ec) are specified by the 

manufacturer to be 0.16mm and 9.81mJ/cm2 respectively. These values agree very 

closely with the values that have been measured. It should be noted that the value of 

depth of penetration through cured resin (DpS) tends to infinity, indicating that a cured 

layer is almost transparent to radiation. 
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Table 6.2 Analytically computed and experimentally measured values of layer thicknesses 

Time of exposure (s) Exposure (mW/cm2) Experimental value of 
layer thickness (µm) 

Analytical value of 
layer thickness(µm) 

15 10.5 0 0 
20 14 53.76 68.26 
25 17.5 126.34 136.52 
30 21 198.92 204.77 
35 24.5 279.57 273.03 
40 28 354.84 341.29 
45 31.5 413.97 409.55 
50 35 473.12 477.81 

 

The thicknesses of the lines cured on the author’s system have been plotted 

against the times of exposure in Figure 6.3. It is seen that the plot can be best 

approximated by a straight line, which indicates that the relationship between the 

thickness of a cured layer and the time of exposure is linear. The relationship is given in 

equation 6.4. 

59.195.172.19 −= Ez            (6.4) 

 

 

 

 

 

 

 

 

 

Figure 6.3 Thickness of layer cured plotted cured against exposure 
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 In general, the author postulates that the working curve for a Stereolithography 

resin used with a Mask Projection Stereolithography system is linear, of the form 

 )( cpM EEDz −⋅=             (6.5)  

 where DpM is the effective slope of the working curve, which is the rate at which 

 the cure-front propagates into the resin depth; and 

 Ec is the threshold exposure of polymerization. 

For the MPSLA system under consideration, 

 DpM  = 19.172 µm/(mW/cm2), or 1.9172mm3/mW and     

 Ec = 10.2 mW/cm2 

 It should be noted that linear relationship between cured depth and time of 

exposure will be observed only for those resins for which the rate of radiation attenuation 

through cured resin is negligible compared to that through uncured resin.  

6.2 Effect of diffusion of radicals and oxygen 

 Jacobs, (1992) assumes exposure to be additive. This assumption means that if a 

particular location in the depth of resin receives multiple doses of exposures, their effect 

is the same as if the combined exposure was continuous. The author has experimentally 

found that the additive nature of exposure is a strong function of time. 

 Suppose that, irradiance H is incident on the resin surface for a time duration t1 

and causes curing up to a depth z.  This is plotted in Figure 6.4. This cured layer is 

allowed to remain in the resin bath for a time t. Now, the top surface of the cured layer is 

supplied the radiance H for a second time interval of duration t2. This second dose of 

energy will pass through the transparent layer and will add up with the exposure at the 
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bottom surface. The assumption of additive exposure says that the exposure at the bottom 

surface will be equal to 

  )/exp()( 2 pScb DztHEE −⋅+=           (6.6) 

Since DpS  ∞, 

 2tHEE cb ⋅+=             (6.7)  

This exposure will cause further incremental curing underneath the already cured layer. 

The plot of cure depth versus time of exposure will thus be expected to be linear and 

continuous as shown in Figure 6.4. 

 
Figure 6.4 Plot of cure depth versus time of exposure under the assumption of additive nature of 

exposure 

  

 In reality the exposure is not additive. When the layer cured after the first 

exposure dose is allowed to sit in the resin vat for time t, there will be a diffusion of the 

reactive species away from, and diffusion of oxygen molecules towards, the bottom 

surface of the cured layer. The reactive species diffusing out will carry energy away with 
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them. Also, the oxygen diffusing in will combine with the reactive species underneath the 

layer and ‘quench’ them. As a result of this diffusion, an energy equal to cEk ⋅  will be 

lost from the bottom surface of the cured layer. This will reduce the effective exposure 

underneath the cured layer to (1-k)Ec. This is shown along the time line in Figure 6.5 at 

the location (t1+t). Thus, after the second exposure dose, the exposure at the bottom 

surface will be less than that calculated in equation (6.7), and will be equal to  

2)1( tHEkE cb ⋅+−=            (6.8) 

 The value of ‘k’ (let us call it as “diffusion factor”) in equation 6.8 is found to be 

a strong function of time. As a result of the diffusion of reactive species and oxygen, the 

incremental curing does not start the moment the second exposure reaches the bottom 

surface, but only after the energy carried lost due to diffusion is compensated for. Thus, 

curing starts only after a time 't  where 

H
kE

t c='              (6.9) 

This can be observed at the location (t1+t+t’) along the time line shown in Figure 6.5. 

The remainder of the second exposure dose, beyond time t’, will cause incremental 

curing. 
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Figure 6.5 Effect of two discrete exposures on the thickness of a layer cured 

 

Thus, the plot of cured depth against time of exposure will not be continuous 

linear as presented in Figure 6.4, but will have a discontinuity as shown in Figure 6.6. 

The portion of the plot parallel to the time axis is the time it takes for the second exposure 

dose to compensate for the energy lost because of diffusion. 

 
Figure 6.6 Effect of diffusion of radicals underneath a cured layer on the layer thickness 
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Measuring the value of k 

 The value of diffusion factor ‘k’ is measured experimentally as follows. The same 

experimental arrangement as shown in Figure 6.2 is used, with a glass window kept flush 

with the free surface of resin held in a vat. A single layer is cured sticking to the glass, for 

by imaging a line onto the resin for 25s. This layer is allowed to remain in the vat for a 

variable duration of time, called ‘waiting time’, (t seconds) and then, the same line is 

again imaged onto the resin surface for 25s. The cure depth of the line cured after this 

two exposure dose was measured. The micro scope images of the test layers are presented 

in Appendix E. In all three replicate experiments were conducted for each duration of 

‘waiting time’. The final thicknesses of the lines cured after the two exposure doses are 

tabulated against the waiting time in Table 6.3.  

Table 6.3 Thicknesses of lines cured with two discrete exposure doses 

Thickness of the line cured after two exposure doses (µm) Waiting time between 
exposures (s) Experiment 1 Experiment 2 Experiment 3 Average 

4 467.7 483.9 - 475.8 
30 375 388.9 368.1 377.3 
60 333.3 347.2 340.3 340.3 
120 312.5 305.6 305.6 307.9 
180 298.6 291.7 263.9 284.7 

 

 The value of t' which gave the best agreement with the depths of the cured line 

was obtained experimentally. The plots are shown in Figure 6.7.  
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Figure 6.7 Experimentally determining the value of t' for various waiting times 

  

 It was experimentally found that the effect of diffusion of radicals and oxygen on 

the cure depth was negligible till the value of waiting time t was up to 4s. The waiting 

time was then increased in steps of half a minute till three minutes. The values of the 

diffusion factor ‘k’ were computed from the values of t’ using equation 6.9. The values of 

t', and hence, those of k are tabulated against the waiting times (t), i.e. the times that the 

layers were allowed to sit in resin before receiving the second dose of exposure, in Table 

6.4. A logarithmic curve is fitted to the data, as shown in Figure 6.8. The relationship 

between the diffusion factor and the waiting time is given by equation 6.10 

Table 6.4 Effect of waiting time on the diffusion factor  

Waiting time (t) in 
seconds 

Time required to compensate for 
diffusion of reactive species (t’) in 
seconds 

Diffusion factor 
(k)   

4 0 0 
30 6.4 0.439 
60 9.2 0.631 

120 11.7 0.803 
180 13.4 0.920 
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Figure 6.8 Plot of the radical diffusion factor against the waiting time 

 

3491.0)ln(2406.0 −= tk               (6.10) 

 The general form of equation relating the diffusion factor and time allowed for 

diffusion is 

CtBk −= )ln(           (6.11) 

where B and C are constants that will depend upon the resin, the temperature of 

resin and even the size of the vat. 

Thus, the energy at a cure front, i.e. at solid-liquid interface sitting in a resin vat 

for t seconds will be given by 

ct

ct

EtBCE
EkE

⋅−+=
−=

)]ln(1[
)1(

         (6.12) 

6.3 Modeling print through 

 Based on the transient layer cure model and the diffusion model developed in 

Sections 6.1 and 6.2, it is possible to model the print-through that would occur when a 
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multi-layer part is cured. Suppose that an n layered part, as shown in Figure 6.9 is built. 

Irradiance H is incident on the layers. Let the thickness of the kth layer be given by LTk. 

and the exposure supplied to cure it be given by Ek. Suppose the time allowed for the 

resin to settle before exposing the kth layer is tk seconds.  

 
Figure 6.9 Modeling the print through occurring in a "n" layered part 

 

 We now model PTk: the print through that would occur because of radiation 

penetrating from the kth layer. From equation 6.5, it can be seen that an exposure equal to 

cpMk EDLT +)/(  is sufficient to cure the layer to the cure depth LTk. The exposure in 

excess of this value will penetrate down, un-attenuated, through all the cured layers 

underneath the kth layer, and will cause print-through. Let us denote this exposure as EPTk. 

It is given by equation 6.13. 

cpMkkPTk
EDLTEE −−= )/(                                          (6.13) 

This energy will add to the energy already existing at the bottom surface. The 

energy at the bottom surface, after the (k-1)th layer is cured, will be equal to the threshold 
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exposure of polymerization Ec. The diffusion of radicals would have occurred at the 

bottom surface for a time tdk, given as the summation of the time that was allowed for the 

resin to settle before exposing the kth layer, and the time that it took for the kth
 layer to be 

cured.  

tdk = tk + [(LTk /DpM) + Ec]/H                             (6.14) 

After the diffusion of reactive species and oxygen that would occur during the 

time tdk, we can compute the effective exposure at the bottom surface of the part being 

cured by applying equation (6.12). 

 cdkb EtBCE )]ln(1[ −+=                       (6.15) 

The print-through will be caused by exposure Ebk at the bottom surface, given as the 

addition of the exposures given by equations 6.13 and 6.15. 

 ckdcpMkkbk EtBCEDLTEE )]ln(1[)/( −++−−=                (6.16) 

 Simplifying, 

 cdkpMkkbk EtBCDLTEE )]ln([)/( −+−=        (6.17) 

The print through caused by this exposure can be easily derived from equation 6.5 as 

 )( cbkpMk EEDPT −=          (6.18) 

 }]1)ln([)/({ cdkpMkkpMk EtBCDLTEDPT −−+−=      (6.19) 

The total print through will be equal to  

∑=
=

n

k
kPTPT

1
           (6.20) 

The total height of the part cured will thereby be equal to 

∑ ∑+=
= =

n

k

n

k
kk PTLTh

1 1
          (6.21) 
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Simplifying equation 6.21 by plugging in the value of print through from equation 6.19, 

we get 

 ]}]1)ln([)/({[
11
∑∑
==

−−+−+=
n

k
cdkpMkkpM

n

k
k EtBCDLTEDLTh     (6.22) 

 where 

 Ek = ktH ⋅  (tk being the time of imaging) 

 tdk = tk + [(LTk /DpM ) + Ec]/H 

 pMD = 1.9172mm3/mW 

 B = 0.2406 

 C = 0.3491 

 Ec = 10.2 mJ/cm2 

Effect of layer thickness on the height of the pixel column 

 Equation 6.22 can be further simplified as 
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 It would appear from equation 6.23 that there is no terms LTk in the equation that 

gives the height of the pixel column and hence, might indicate that the height of a pixel 

column that will be cured is independent of the layer thicknesses. However, the reader 

must note that the variable tdk in equation 6.23, which is the time allowed for diffusion of 

reactive species and oxygen molecules is dependent upon the layer thicknesses.  
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 Also, the minimum limit on the exposure Ek incident on the kth layer is dependent 

upon the thickness of the kth layer, i.e. LTk. Thus, the values of the layer thicknesses will 

influence equation 6.23 even though no LTk terms appear in it. The layer thickness will 

decide the time allowed for diffusion (tdk) before the kth layer is imaged and the limit on 

exposure (Ek) supplied to cure the kth layer. 

6.4 Simulating down facing profile of a test part 

 In this section, the print through model developed in Section 6.3 is used to 

simulate a test part. This simulation is validated by building the part on the MPSLA 

system. The part shown in Figure 6.10 is chosen as the test part. The part consists of four 

layers, each 2500µmX600µm in lateral dimensions and 500µm thick. The bitmap to be 

displayed is generated by using the inverse layer cure model presented in Section 5.4. 

The irradiance distribution across the bitmap was obtained by inputting it to the 

irradiance model developed in Chapter 5. The bitmap and the irradiance distribution are 

shown in Figure 6.11. 
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Sliced 

 

 

 

 
Figure 6.10 Test part to simulate the down facing profile of a MPSLA build 
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Figure 6.11 (a) Bitmap to be displayed to cure the required layer; (b) Irradiance distribution on resin 

surface upon imaging the bitmap 

  

 The irradiance (H) at the center of every pixel on the resin surface was obtained 

from the irradiance distribution as shown in Figure 6.11. The minimum irradiance across 

the irradiance profile is at its left-most edge, equal to 0.47mW/cm2. In order to ensure 

that the layer at this location cures down and binds to the layer underneath it, the time of 

exposure for the layers is calculated to be 80s, by using equation 6.5. Every layer is alike 

and was built by imaging the same bitmap on the resin surface for the same time of 

exposure (80s). The layers were built offset by 500µm by translating the platform 

laterally under the imaging system. The time allowed for the resin to settle before 

exposing any layer was 60s, i.e.  tk = 60s. The value of print through at every lateral 

location on the built part was computed using equation 6.20 and the down facing surface 

was simulated as shown in Figure 6.12. The Matlab code written to generate the 

simulated profile is documented in Appendix F. 

 

(a) Bitmap to be imaged 
(b) Irradiance distribution on resin surface 
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Figure 6.12 Simulating profile of the down facing surface for every layer exposed for 80s 

 

 The four layered part was built on the MPSLA system using the same parameters 

as those used in the simulation. The part’s profile, as shown in Figure 6.13, can be seen to 

be qualitatively agreeing with the simulated profile.  In Figures 6.12 and 6.13, rectangles 

are shown corresponding to the layers that would have been cured had there been no print 

through and no irradiance variation across a cured layer. The ideal down facing surface is 

shown by the line at 450 as shown in Figures 6.12 and 6.13. It is seen in both the figures 

that there is extra curing than required. 

80s

80s

80s

80s

Simulated 
surface profile
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Figure 6.13 Profile of experimentally cured part with every layer exposed for 80s 

  

Explaining the disparity between experimental and analytical results 

 It can be seen from Figures 6.12 to 6.13 that the cured surface is smoother than 

the simulated surface. The author surmises that it is because of partially cured 

photopolymer lodged in between the nooks of the down facing surface. The simulation is 

based on the threshold model of resin cure and ignores any partial curing that might 

occur. The threshold model makes the assumption that there is a sharp transition between 

liquid and solid resin at the threshold exposure of polymerization. In reality, the phase 

change occurs over a range of exposure centered about the threshold exposure of 

polymerization. As a result, exposures approaching but not yet Ec, result in the formation 

of viscous, partially polymerized gels. The author surmises that this gel gets lodged in 

between the stair-steps on the down-facing surface, as shown in the simulations and ends 

up creating a fillet, thereby smoothing the surface. 
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 In order to shed some light on the causes of the disparity between simulated and 

experimentally cured profile, two more part profiles were cured and simulated. The 

simulated and cured profiles of the parts are presented along with the times of exposure 

of every layer in Figure 6.14. The times of exposure for the part shown in Figure 6.14(a) 

is exactly equal to the time of exposure supplied to cure the part shown in Figure 6.13. 

The times of exposures of the part shown in Figure 6.14 are also similar to the times of 

exposures supplied to cured part in Figure 6.13, except that the overhanging portions of 

the top three layers are exposed for 70s.  

 
(a) 

 
(b) 

Figure 6.14 Part cured in order to compare cured profile with simulated profile of down facing 
surface 
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 The profiles of the parts cured in Figures 6.13 and 6.14 are superimposed on the 

simulated profile for comparison. The superimposed profiles are shown in Figure 6.15.  

 
(a) Profile of part in Figure 6.13  

Figure 6.15 Comparison of the profiles of cured and simulated down facing surfaces 

 

 
(b) Profile of part in Figure 6.14 (a) 

Figure 6.15 (continued) 
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(c) Profile of part in Figure 6.14(b) 

Figure 6.15 (continued) 

 
 In Figure 6.15, the cured profile is shown in red, while the simulated profile is 

shown in blue. It can be seen in Figure 6.15 that the red line is to the right of the blue 

line, indicating extra curing than expected for most part. Only at the very bottom of the 

part does the red line appear to the left of the blue line indicating less amount of curing. 

The error in the part cured is the difference between the cured and the simulated 

dimension. If the red line is to the right of the blue line, it means that there is a positive 

error. If the blue line is to the right of the red line, it would indicate a negative error. The 

error is plotted against the vertical dimension of the part (2000µm), measured from top to 

bottom, in Figure 6.16. Figure 6.16 also documents the maximum, minimum and the root 

mean square (RMS) value of the errors. 
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(a) Error plot for part presented in Figure 6.13 

 

Figure 6.16 Plot of error in lateral direction of cured parts plotted against the vertical dimension of 
the part 

 

 
(b) Error plot for part presented in Figure 6.14(a) 

 
Figure 6.16 (continued) 

Max error = 220µm 
Min error = -80µm 
RMS error =91.7µm

Max error = 350µm 
Min error = -160µm 
RMS error =127.5µm
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(c) Error plot for part presented in Figure 6.14(b) 

 
Figure 6.16 (continued) 

 

 A general trend can be observed from the error plots presented in Figure 6.16. All 

plots have a positive peak at around 800µm from the top of the part. This corresponds to 

the portion where the stair step corresponding to the third and fourth layer. The second 

larges peak appears at around 1400µm from the top, which corresponds to the stair step 

formed by the second and third layer. These observations indicate that a greater amount 

of positive error is observed where there are nooks in the simulated profile. Perhaps it is 

because the partially cured resin occupies these nooks. 

 A valley is observed in all these profiles towards the bottom of the part, at around 

1850µm from the top. The appearance of the peaks and valleys in all the error plots 

indicate the presence of some systematic error in the model. There are two peaks in all 

three error plots and the second peak is smaller than the first one. Also, there is a valley, 

indicating that there is less than expected curing, beyond the second peak. This indicates 

Max error = 320µm 
Min error = -230µm 
RMS error = 107.9µm 
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that the print through model formulated in this research is consistently over-computing 

print through as we go towards the bottom of the part. The author speculates that this is 

because the rate of radiation attenuation through a cured layer is not exactly zero, as 

assumed in the print through model. Some amount of finite loss of energy occurs as the 

radiation travels through the cured layers. This error gets compounded towards the 

bottom regions of the part which receive radiation penetrating to it through larger cured 

depths. 

 The maximum error along the part profiles can be seen to be varying from 220µm 

to 350µm. The minimum error varies from -230µm to -80µm. Thus, the presence of some 

random errors can also be seen. From the error plots, the following conclusions can be 

drawn: 

1. There is some extra curing expected at the location where the simulated profile 

predicts a nook. 

2. The amount of extra curing is expected to be a couple of hundreds of µm 

3. Some negative error is expected towards the bottom of the part. It is expected to 

be a couple of hundreds of µm too. 

6.5 Compensation zone approach: Inverse print-through model 

 Now that the simulation of print through and hence the down-facing surface is 

validated, it is possible to solve equation (6.22) in order to determine the values of layer 

thicknesses and times of exposures to build a dimensionally accurate part. In this section 

the compensation zone approach is formulated and demonstrated on a test part. 



 139

6.5.1 Formulation of compensation zone approach 

 At every lateral location on a MPSLA part to be built, the compensation zone 

approach is would tailor the time of exposure at the lowermost layer in order to 

compensate for print through. At every pixel, equation 6.22 is solved. In addition, for all 

layers above the bottom-most layer, at the given pixel location, the time of exposure (t) 

should be such that the curing depth should be at least equal to the layer thickness plus 

the overcure. This condition is captured in equation 6.24. 

 
H

EDOCLT
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k
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/)(
         (6.24) 

 The value of constants in equation 6.22 for the MPSLA system at RPMI being: 

 DpM = 1.9172mm3/mW 
 OC = 40µm 
 Ec = 10.2 mJ/cm2 
 The compensation zone approach can thus be expressed as shown in Figure 6.17. 

 

 

  

 

 

 

 

 

 

 

 

Figure 6.17 Problem formulation for the compensation zone approach 

At every pixel column at pixel (a,b), 
 
Given 

• Height of the column (h) 
• Irradiance at the pixel (H) 
• Number of layers (n) 
• Thicknesses of the layers (LTk) 
• Overcure (OC) 
• Time allowed for settling resin before exposure kth layer (Tk) 

 
Find 

• Time of exposure of pixel at every layer (tk) 
 

Satisfy 

• For k = 2 to n, 
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6.5.2 Demonstration of compensation zone approach 

 Suppose we want to compute the exact profile of the part as shown in Figure 6.10. 

The down-facing surface is to be linear, as opposed to an approximation to linear surface. 

This can be achieved by applying the compensation zone approach at every pixel location 

of the part.  

 The part consists of four rectangular layers of dimensions 2500µmX600µm and 

500µm thick. The same bitmap is used to cure every layer. The layers are offset from 

each other by 500µm along their lengths by translating the build underneath the imaging 

system. The bitmap to be displayed on the DMD is generated by applying the inverse 

irradiance model, presented in Section 5.4. The bitmap generated and the irradiance 

distribution on the resin surface upon imaging this bitmap onto the resin surface is shown 

in Figure 6.11. 

 Thus, all the inputs to the Compensation zone problem formulation, as presented 

in Figure 6.17 are available as follows: 

• Height of the pixel column (h): Obtained from the geometry of the part 

• Irradiance at every pixel (H) : Generated using the irradiance model 

• Number of layers (n) = 4 

• Thickness of every layer (LTk) = 500µm 

• Overcure (OC) = 40µm 

• Settling time before imaging every layer (Tk) = 60s 

The unknowns in the problem formulation are the times of imaging of every micro 

mirror. For simplification, the time of exposure of the “bodies” of all the layers, as shown 
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in Figure 6.10, i.e. the portion of every layer that binds to the layer underneath it is 

assumed to be 80s.  

At every pixel location, with the values of tk for all layers but the bottom most 

layer computed as 80s, the value of the time of exposure for the micro mirror at the 

bottom-most layer (t1) at that pixel location can be determined by solving equation 6.22, 

re-written here. 

]}]1)ln([)/({[
11
∑∑
==

−−+−+=
n

k
cdkpMkkpM

n

k
k EtBCDLTEDLTh     (6.22) 

The Matlab code implementing the Compensation zone approach at every micro 

mirror location is presented in Appendix G. The time of exposure for every layer is 

plotted against the X dimension of that layer as shown in Figure 6.18. 

 
(a) Time of exposure across first layer 

Figure 6.18 Times of exposure of the (a) first; (b) second; (c) third; and (d) fourth layer 
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(b) Time of exposure across second layer 

 

 
(c) Time of exposure across third layer 

Figure 6.18 (continued) 
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(d) Time of exposure of the fourth layer 

 
Figure 6.18 (continued) 

 
 From Figure 6.18, we can see that the time for which the overhanging portion of 

every layer needs to be exposed varies along its length. The simulated profile of the down 

facing surface that would be cured for these values of times is shown in Figure 6.19, as 

exactly linear. 
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Figure 6.19 Simulated profile of the down facing surface for the times of exposure as given in Figure 

6.18 

 

 In order to supply the times of exposure as given in Figure 6.18, it would be 

necessary to display and image every micro-mirror on the bitmap irradiating the 

overhanging portion of the layer separately for a given duration of time. Since this is not 

possible to do manually, the author computed the average time of exposure across the 

overhanging portion of the bitmap. This has been illustrated in Figure 6.20.  
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Figure 6.20 Time of exposure discretized into a step function 

 

 Likewise, the times of exposure as presented in Figure 6.18 are discretized for 

every layer into step functions. These step functions are presented in Figure 6.21. The 

times of exposure for every layer is shown in Table 6.4. 
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(a) Time of exposure for first layer approximated by a step function 

Figure 6.21 Times of exposure for the (a) first; (b) second; (c) third; and (d) fourth layer 
approximated by a step function 
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(b) Time of exposure for second layer approximated by a step function 

 
Figure 6.21 (continued) 
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(c) Time of exposure for second layer approximated by a step function 
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(d) Time of exposure for second layer approximated by a step function 

 
Figure 6.21 (continued) 
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Table 6.5 Times of exposure of the layers to implement compensation zone approach 

Time of exposure (s) Layer # (Bottom most to top most) 
Body of layer Overhang of layer 

Layer 1 80 12.9 
Layer 2 80 32.5 
Layer 3 80 51.6 
Layer 4 80 64.6 

  

 It should be remembered that the body of every layer (i.e. the part that bonds to 

the layer underneath it), is exposed for 80s. 

 These times of exposures were run through the simulation code to obtain the 

profile as shown in Figure 6.22. The simulation code with the bitmap discretized into two 

portions is presented in Appendix G. 

 
Figure 6.22 Simulated profile of the down facing surface cured by implementing the Compensation 

zone approach 
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 The part was built on the MPSLA system using the times of exposure as given in 

Table 6.4 to build the part as shown in Figure 6.23. 

 
 

Figure 6.23 Part built on MPSLA system by applying compensation zone approach  

 

 It can be seen that the part cured in Figure 6.23 approximates the desired linear 

down facing surface much better. This validates and demonstrates the compensation zone 

approach. 

Summary 

 In this chapter, two new theories have been presented and validated: the transient 

nature of curing of layer and the non-additive nature of exposure. In Section 6.1, the 

transient layer cure model has been formulated which models layer curing as a transient 

phenomenon. In Section 6.2, the loss of energy from the bottom surface of a part being 

built due to diffusion of reactive species and oxygen molecules is quantified. The additive 

nature of exposure is thereby shown to be a function of time. These theories have been 

used to compute the print through that occurs when a multi-layered part is cured. The 
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compensation zone approach is presented as a method to avoid the print though errors 

and build parts with accurate down-facing surfaces.  

Progress made towards answering the research questions 

 Research question 2(a) dealt with the transient nature of layer curing. 

Conventional SLA theory assumes the rate of radiation attenuation with respect to 

distance to be constant during exposure. Layer curing is hypothesized in this chapter to 

be a transient curing process, in which the rate of attenuation of radiation with respect to 

distance, goes on varying during exposure. This hypothesis is tested by modeling the 

curing as a transient process, by discretizing the time domain. A differential equation 

relating the increment in cure depth with the increment in time is formulated and solved 

numerically. The resin constants are determined by curing test layers. 

 Research question 2(b) was concerning the additive nature of exposure. 

Conventional SLA theory assumes that exposure is additive, meaning that the effect of 

two discrete exposure doses on cure depth is the same that of a single, combined 

exposure dose. The author has hypothesized that the additive nature of exposure is a 

strong function of time. It has been shown in this chapter that when the layer remains in 

the resin in between the two exposures, there is a significant loss of energy from the 

bottom surface of the layer. This loss of energy is shown to vary as the logarithm of the 

time for which the layer sits in the resin. Thus, it has been shown that some diffusion 

based phenomenon is at work for reducing the energy available at the bottom surface of 

the layer. Thus, the additive nature of exposure is shown to be a function of time. 
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CHAPTER 7 SURFACE FINISH OF MASK PROJECTION 
STEREOLITHOGRAPHY BUILDS 

  

 Surface finish is rougher along the z-axis of RP parts than parallel to the xy-plane 

because of the “stair stepping” effect (Paul and Voorakarnam, 2001). In this chapter, 

methods to improving surface finish and to achieve a trade off between surface finish and 

build time of MPSLA builds is presented. The issues of improvement of surface finishes 

of up- and down facing surfaces have been handled separately in this chapter. 

 In case of down facing surfaces, print through results in filleting in the stair steps, 

thereby smoothing the down facing surface (Reeves and Cobb, 1999). This has also been 

observed by the author in this dissertation (Chapter 6). Research Question 3 was 

regarding employing print through smoothing to approximate the vertical profiles of 

MPSLA builds beyond the approximation possible by the stair steps created by layers, by 

modulating the exposure supplied at the edges of the layers. This method of modulating 

the exposure to better approximate down facing surface is referred to, in this dissertation, 

as the “adaptive exposure” method. In Section 7.1, and adaptive exposure method to 

improve surface finish of a down facing surface is explained in detail and is demonstrated 

on a test part. 

 The surface finish of up-facing surfaces of MPSLA parts is limited by the stair 

stepping phenomena. There is no print through to smoothen out the top facing surface. 

Meniscus smoothing, in which the resin meniscus lodged between the stair steps is cured, 

is proposed as a method to smoothen up facing surfaces (Cobb and Reeves, 1997), but 

this method is not repeatable and controllable. Thus, the only method to improve the 

surface finish of up facing surfaces is to use thinner layers to build the part.  This 



 152

however increases the build time of the part. On the other hand, larger layer thicknesses 

result in shorter build times, but poorer surface finish. Adaptive slicing algorithms are in 

use since a long time to obtain Stereolithography builds to improve surface finish of 

Stereolithography parts, without a commensurate increase in build time. The algorithms 

have been presented in Hope et al., (1997), Tyberg and Bohn, (1998), Mani et al., (1999), 

Zhao and Laperriere, (2000), amongst other papers. These algorithms populate those 

features of a Stereolithography build, which subtend small angles with the vertical with 

thicker layers and the features subtending large angle with the vertical with thin layers. 

Alternatively, thin layers are used only where a very good approximation to the desired 

geometry is required. Thicker layers are used elsewhere in order to reduce the build time. 

 Adaptive slicing has been implemented by numerous authors using different 

mathematical techniques. In this dissertation, the author has used a gradient projection 

optimization method to implement the adaptive slicing. An adaptive slicing algorithm, 

employing a gradient projection method has been formulated and implemented on a test 

part in Section 7.2. 

7.1 Surface finish of down facing surfaces 

 The adaptive exposure method to obtain MPSLA builds with smooth down facing 

surfaces is presented in this chapter. In Section 7.1.1, the concept of the adaptive 

exposure method is explained. In Section 7.1.2, it is demonstrated on a test part. 

7.1.1 Adaptive exposure method 

 The surface finish of down facing surfaces can be improved by modulating the 

exposure at the edges of layers in such a way that the edge profiles of layers better 
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approximate the down facing profile of the part. To demonstrate the adaptive exposure 

method, we consider the same test part as used to demonstrate the compensation zone 

approach in Chapter 6. The reader can refer to the four layered part, with up-and down 

facing surfaces at 450 to the horizontal is shown in Figure 6.10. This part was sliced into 

layers 500µm thick. The time of exposure of these layers was computed using the 

compensation zone approach in Section 6.5.2. The times of exposure for every layer have 

been plotted against their X dimensions in Figure 6.18. In implementing the 

compensation zone approach, the author averaged the time of exposure along the 

overhanging portion of every layer. Thus, every layer was cured by exposing it in two 

steps. In the first step, the body of the layer (the part which binds to the layer underneath 

it) was exposed for certain duration of time so that the layers bind to each other. In the 

second step, the overhanging portion of the layer was exposed for a duration equal to that 

obtained by averaging out the time of exposure across it, presented in Figure 6.21. This 

method has been pictorially explained in Chapter 6, in Figure 6.20.  The simulated profile 

of the part that will be cured by implementing the compensation zone has been presented 

in Figure 6.22 and the actually cured part has been presented in Figure 6.23. From both 

these figures, we can see than the approximation to the down facing profile is not exact. 

Also, the effect of stair steps is visible. 

 A better approximation can be obtained by modulating the exposure at the 

overhanging portion of every layer. This can be achieved by discretizing the overhanging 

portion of every layer into two regions. The time of exposure can be averaged out along 

these two regions separately. This is illustrated in Figure 7.1. Thus, every layer will be 

cured in three steps. In the first step, the body of the layer will be cured for a time 
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duration such that it binds to the layer underneath it. In the second step, the first 

discretized region will be exposed in such a way that it approximates the down facing 

profile of the part. In the third step, the second discretized region of the overhanging 

portion of layer will be imaged for a time so that it approximates the down facing profile 

too. 

 
Figure 7.1 Time of exposure discretized into a step function 

7.1.2 Implementing the adaptive exposure method 

 Consider the test part presented in Figure 6.10. It is a four layered part, each layer 

500µm thick. Each layer is cured by imaging the same bitmap on the resin surface. As 
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explained in Section 7.1.1, we divide the overhanging portion of every layer into two 

regions and average out the time of exposure across each of these regions. The time of 

exposure to be supplied to cure every layer after averaging the time of exposure over the 

discretized regions is shown in Figure 7.2. The time of exposures are presented in Table 

7.1. 

 
(e) Time of exposure for first layer approximated by a step function 

 

Figure 7.2 Times of exposure for the (a) first; (b) second; (c) third; and (d) fourth layer 
approximated by a step function 
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(f) Time of exposure for second layer approximated by a step function 

 
(g) Time of exposure for second layer approximated by a step function 

Figure 7.2 (continued) 
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(h) Time of exposure for second layer approximated by a step function 

 
Figure 7.2 (continued) 

 

Table 7. 1 Times of exposure of the layers to implement the adaptive exposure method 

Time of exposure (s) Layer # (bottom 
most to top most) Body of layer Overhang (Discretized region 1) Overhang (Discretized region 2) 

Layer 1 80 12.9 -- 
Layer 2 80 40.1 26.3 
Layer 3 80 56.4 46.8 
Layer 4 80 71.8 57.4 

 
 Note that due to the nature of slicing, there is only one discretized region for the 

bottom most layer. 

 The down facing profile of the part that would be built with these times of 

exposure was simulated by implementing the print through model. The simulated profile 

is presented in Figure 7.3. The Matlab code for this simulation is documented in 

Appendix H. 
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Figure 7.3 Simulated profile of the down facing surface after discretizing the overhanging portion of 

every layer into two parts and applying compensation zone approach at every part 

The part was built on the MPSLA system using the said times of exposures to obtain the 

part as shown in Figure 7.4. 

  
Figure 7.4 Part built on MPSLA system by applying compensation zone approach by discretizing the 

bitmap into three regions 
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 By comparing the surface finish of the down facing surface of the part cured by 

discretizing the bitmap to be imaged into two regions (Figure 6.23) and by discretizing it 

into three regions (Figure 7.4), it can be seen that the surface finish can be improved by 

increasing the discretizations.  The improvement in surface finish has been quantified by 

super imposing the cured profiles of the part built without using adaptive exposure and 

the part built using the adaptive exposure method. 

 The cured profile of the part built without using the adaptive exposure method is 

shown in Figure 6.23. In Figure 7.5, the cured profile, in red is superimposed on the ideal 

profile (solid black line) for that part. The distance between the cured profile and the 

ideal profile is the error. The error in the lateral direction is plotted along the vertical 

dimension of the part in Figure 7.6.  

 
Figure 7. 5 Cured profile of part built without using adaptive exposure method superimposed on the 

ideal, i.e. required profile 
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Figure 7. 6 Error in the lateral direction of the part built without using adaptive exposure 

 

 The cured profile of the part built using the adaptive exposure method is shown in 

Figure 7.4. In Figure 7.7, the cured profile, in red is superimposed on the ideal profile 

(solid black line) for that part. The distance between the cured profile and the ideal 

profile is the error. The error in the lateral direction is plotted along the vertical 

dimension of the part in Figure 7.8. 

Max error = 110µm 
Min error = -250µm 
RMS error = 104.2µm 
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Figure 7. 7 Cured profile of part built using adaptive exposure method superimposed on the ideal, i.e. 

required profile 

 

 
Figure 7. 8 Error in the lateral direction of the part built using adaptive exposure 

 
 From Figures 7.6 and 7.8, it can be seen that there are more fluctuations in the 

error profile in case of the part built without using adaptive exposure method. In case of 

the part built using the adaptive exposure method, the fluctuations can be seen to be less. 

However, a systematic error can be observed in the part built using the adaptive exposure 

Max error = 220µm 
Min error = -70µm 
RMS error = 89.3µm 
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method. The positive error in the lateral direction can be seen to be increasing from top of 

the part to the bottom of the part. 

 Thus the adaptive exposure method has been shown to improve the surface finish 

of the test part. However, a systematic error in observed in the part built with adaptive 

exposure, in which the amount of positive deviation from the ideal profile goes on 

increasing from the top to bottom. 

7.2 Surface finish of up facing surfaces 

 Surface finish of an up-facing surface and the build time of a MPSLA part are 

directly affected by the layer thicknesses. In choosing a slicing scheme, a process planner 

needs to achieve a trade-off between surface finish and build time. In this section, an 

adaptive slicing algorithm employing a gradient projection optimization method is 

formulated and implemented on a test part. In Section 7.2.1, the tradeoff between the two 

objectives of build time and surface finish is modeled as a compromise Decision Support 

Problem (cDSP), which is a multi-objective optimization problem.  In Section 7.2.2, 

Rosen’s gradient projection method (Belegundu and Chandrupatla, 1999) is explained as 

a method to solve the multi-objective optimization problem. In Section 7.2.3, the adaptive 

slicing algorithm employing the gradient projection method is presented. The slicing 

algorithm is implemented on a test part in Section 7.2.4. 

7.2.1 Formulating a multi-objective optimization  

 Consider a general MPSLA system that can lay down layers as thin as LTmin and 

as thick as LTmax. Let the height of a MPSLA part to be built be h units. The variables for 

this problem are the thickness of every layer, with the bounds on the layers being LTmin 
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and LTmax. Another related variable is the number of layers n. The constraint on the part is 

an equality constraint, which states that the summation of all the layers is equal to the 

height of the part h. The variables and constraints are summarized as: 

Variables: 
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Constraints:         
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k =∑
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             (7.2) 

 We now derive the objective functions of surface finish and build time. 

7.2.1.1 Derivation of objective function for surface finish 
 Consider a MPSLA part sliced as shown in Figure 7.9. The thickness of every 

layer that this part is sliced into is given as LT1, LT2 … LTn. The lateral axis is denoted as 

“R” and the vertical axis is denoted as “Z”. The vertical profile of the part is given by 

 )(rfz =              (7.3) 
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Figure 7.9 Nomenclature for the derivation of cusp height as a function of orientation and layer 

thickness 

 
 West et al., (2001) have associated the ‘cusp’ (which is a function of both the 

layer thickness and orientation), as a measure of the surface finish of a part. The aim of 

minimizing surface roughness can be treated as the goal of minimizing the cusp height. 

The cusp height is shown in Figure 7.9 as δk. The formula for cusp height is given by 

equation 7.4. 

δ θk kLT= sin                  (7.4) 
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In general, if the vertical profile of a part is given by the function z = f(r), the Z-

coordinate of the (k-1)th layer will be zk-1 given by equation 

z LTk i
i

k

−
=

−

= ∑1
1

1

             (7.5) 

and that of the kth layer will be zk given by equation 
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             (7.6) 

The r-coordinates of the points on the intersection of the k-1th and kth layer would be 

given by equations 
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The angle θ  as shown in Figure 7.9 would thus be given by equation 
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The cusp height at the kth layer would be given by equation 

 δ θk k kLT= sin( )            (7.9) 

The maximum cusp height will be given by 

 ]max[max kδδ = , k 1 to n         (7.10) 

Thus, the first objective: “to minimize the surface finish”, is given in terms of the 

variables LTk and n by making substitutions from equation 7.5 to 7.10 as: 
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Objective 1: 

 Minimize 
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7.2.1.2 Derivation of objective function for build time 
 Chen and Sullivan, (1996) formulated an algorithm to predict build time of 

Stereolithography parts by using detailed scan and recoat information from the build 

files. Other researchers have also quantified build time. All of them have broken down 

the part building process into its constituent steps and modeled the time required to 

complete each of these steps. 

 The build time of an MPSLA build can be calculated by breaking down the 

process of building a part into its constituent steps. A MPSLA part is built by performing 

the following steps for every layer cured: 

1. Lower platform into resin (Deep dip). Translate the platform underneath the 

recoater blade, raise it to the required level and bring it back to the required 

position. 

2. Wait for the resin film to settle to its final thickness. This is a function of the layer 

thickness. 

3. Expose the layer for the required time. This time is a function of the layer 

thickness. 

 The first step involves the translation of the platform and will take approximately 

the same time, regardless of the layer thickness. Let us denote this time as Ttrans. After the 

second step, there is a slight bulge on top of the part being cured (Jacobs, 1992). The 



 167

second step is to allow the resin film to settle to its final thickness, and the bulge to 

disappear. This duration is dependent upon the layer thickness. The smaller the thickness 

of the layer to be cured, the greater is the time required to allow the resin to settle. Let us 

denote the time as Tsettle, given by the function Tsettle. The time taken for the resin film to 

settle before the kth layer is exposed is will be given by equation 7.12. 

 TsettleK = Tsettle (LTk)          (7.12) 

 The third step is to expose the layer. The time of exposure is dependent upon the 

layer thickness. In fact, it is a linear function of the layer thickness, as shown in Chapter 

6, equation 6.5. Let us denote the time of exposure by the variable Texp, given by the 

function Texp. The time of exposure of the kth layer is will be given by equation 7.13. 

TexpK = Texp(LTk)          (7.13) 

The total time required to build the part will be given by the summation of the time 

required for completing all the three steps for every layer. Thus, build time is given by 

equation 7.14 as 

 ∑
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exp ][         (7.14) 

The second objective: “to minimize build time” is given in terms of the free 

variables in equation 7.15 

Objective 2: 

Minimize 
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7.2.1.3 Modeling Formulating multi objective optimization problem 
 The multi-objective optimization problem for slicing a general MPSLA part is 

formulated as shown in Figure 7.10. 

Given 
• Part profile       z = f(r) 
• Height of part       h 
• Functions and constants related to build time   Ttrans; Tsettle ;  Texp 

 
Find 

• Number of layers       n 
• Layer thicknesses      LTk 

 
Satisfy 

• Sum of layer thicknesses equals part height   hLT
n

k
k =∑

=1

 

• Bounds on layer thickness     ],[ maxmin LTLTLT ∈  
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Figure 7.10 Multi objective slicing problem 
  

 The multi-objective slicing problem can be modeled using the compromise 

Decision Support Problem formulation. Compromise DSP (c-DSP) is a multi objective 

decision model which is a hybrid formulation based on Mathematical Programming and 

Goal Programming. Refer to Mistree et al. (1994).  In the c-DSP, each goal, Ai, has two 

associated deviation variables di
+ and di

- which indicate the extent of the deviation of the 

target (Gi). The deviation variables di
+ and di

- are always non negative, and the product 



 169

constraint:  di
+· di

-= 0 ensures that at least one of the deviation variables for a particular 

goal is always zero.  

 Weights are assigned to different goals depending upon their relative importance. 

A deviation function is formulated by multiplying every deviation variable with its 

corresponding weight and adding up of all these weighted deviation functions. The 

mathematical form of the c-DSP is shown in Figure 7.11. 

 
Figure 7.11 Compromise Decision Support Problem: Word formulation 

  

 Suppose the targets for the surface finish and build time are given as ett argδ  and 

ettBT arg  respectively. In case of the adaptive slicing problem, both the targets are related 

to minimization. Hence, the deviation variables d1
-
 and d2

- are 0. The aim is to find the 

values of layer thicknesses LTk such that the deviation function formulated in the cDSP is 

minimized. The adaptive slicing problem modeled as a cDSP is presented in Figure 7.12. 
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 Given 
• Part profile       z = f(r) 
• Height of part       h 
• Functions and constants related to build time   Ttrans; Tsettle ;  Texp 
• Deviation variables      0;0 21 == −− dd  
 

Find 
• Number of layers       n 
• Layer thicknesses      LTk 
• Deviation variables      d1

+, d2
+ 

 
Satisfy 

• Sum of layer thicknesses equals part height   hLT
n

k
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• Bounds on layer thickness     ],[ maxmin LTLTLT ∈  
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• Meet low target of surface finish 
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• Meet low target for build time 
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Minimize 
 Deviation function 
 Example scenarios:  

• Both goals rated equally:  Z d d d d= + + +− + − +1
2

1
21 1 2 2( ) ( ) 

• Surface finish rated more than Build time: Z d d d d= + + +− + − +3
4

1
41 1 2 2( ) ( )  

• Build time rated more than Surface finish: Z d d d d= + + +− + − +1
4

3
41 1 2 2( ) ( )  

• Surface finish not important: Z d d d d= ⋅ + + ⋅ +− + − +0 11 1 2 2( ) ( )  
• Build time not important: Z d d d d= ⋅ + + ⋅ +− + − +1 01 1 2 2( ) ( )  

 

Figure 7.12 Adaptive slicing problem modeled as a compromise DSP 
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7.2.2 Solution to the cDSP (Rosen’s gradient projection method) 

 In this chapter, an optimization method to minimize the deviation function of the 

cDSP presented in Figure 7.12 is presented. Rosen’s gradient projection Method 

(Belegundu and Chandrupatla, 1999) works the best when there is a linear equality 

constraint and is hence chosen as the optimization method to solve the cDSP. In Section 

7.2.2.1, the theory behind Rosen’s gradient projection method is explained. In Section 

7.2.2.2, the method is applied to the adaptive slicing problem at hand. 

7.2.2.1 Theory of Rosen’s gradient projection method 
 Consider problems that can be expressed in the form 

 Minimize f(x) 

            Subject to     aix – bi <=0 i = 1,…., m       (7.16) 

                   aix -bi =0 i = m+1, ....., m+l 

Let t = number of active constraints, consisting of all the equalities and active 

inequalities. 

 Assume that xk is the current feasible start point, as shown in Figure 7.13. xk lies 

on the linear constraint in equation 7.16. The task in any optimization algorithm is to 

determine a direction vector d followed by a step length along this direction that would 

give us a new and better feasible point. We repeat this iterative process until we arrive at 

the optimum. If we are at an interior point then the steepest descent direction is the 

obvious choice:−∇f xk( ). After moving along the direction of steepest descent by some 

step size, a projection is obtained on the multi- dimensional plane corresponding to the 

equality constraint. 
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Figure 7.13 Rosen's gradient projection method 

 

 In other words, the direction d is found by projecting the step taken along 

−∇f xk( ) in such a way that d−∇− )(xf  is the minimum possible. Suppose we define a 

matrix B as consisting of rows of the gradient vectors of the active constraint, then we 

can get the relation  

  Bd = 0           (7.17) 

Thus, we need the direction d such that which shall be the solution of: 

 Minimize ))(())(( dd −−∇−−∇ xfxf T        (7.18) 

 Subject to Bd = 0 

Defining the Lagrangian Bddd TT ffL β++∇+∇= )()( , we have the optimality 

conditions: 
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 0)( =++∇=
∂
∂ βT

T

fL Bd
d

          (7.19) 

Pre-multiplying by B and substituting equation 7.17, we get 

 fT ∇−= BBB β][           (7.20) 

For a detailed explanation of Lagrangian formulations to find exact minimum, please 

refer to Belegundu and Chandrupatla, (1999).  

 From equation 7.19, we can get a relation for the direction d as 

 βTf Bd −−∇=             (7.21) 

Substituting the value of β  from equation 7.20 into equation 7.21, we get 

 ff TT ∇+−∇= − BBBBd 1][          (7.22) 

Combining the matrices multiplying ( f∇− ), we can write 

  )( f−∇−= Pd               (7.23) 

 where P is the “projection matrix”, which is given by 

 ]][[ 1BBBBIP −−= TT          (7.24) 

 The vector d obtained by solving equation 7.23 can be shown to be the descent 

direction. When the optimum (minimum) point is reached, d becomes equal to 0. 

7.2.2.2 Applying Rosen’s gradient projection method for adaptive slicing 
 In case of the problem at hand, the solution is supposed to lie on the equality 

(active) constraint LT hk
k

n

=
∑ =

1

. The starting point is chosen to be any point that satisfied 

this constraint. For a given value of number of layers n, we can choose the starting 

feasible solution that all the layers are of the same thickness. Thus, the starting solution is 

given by equation 7.25. 
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n
hLTk =            (7.25) 

There are bounds on the layer thickness. These bounds are captured in the objective 

function by modifying the deviation function by adding penalty functions, as presented in 

equation (7.26).  

 Minimize 

 Z d d d d Penalty= + + + +− + − +1
2

1
21 1 2 2( ) ( )  

 where Penalty = 109(Penalty1 + Penalty2)       (7.26) 

  where Penalty1 = (LTmin -LTk), if LTk < 50 
    = 0, otherwise. 
  and 
  Penalty1 = (LTk – LTmax)  , if LTk > 1000 
    = 0, otherwise. 
  where k 1 to n 
 

For a given number of layers (n), the matrix B is a column matrix with n elements, since 

there is only one active constraint to consider. 

 B = [1,1,1,....n times]T          (7.27) 

The projection matrix P can be obtained from equation (7.24). The gradient of the 

objective function at the starting point xk can be obtained numerically. The direction d is 

obtained from equation (7.23). The step size is obtained by using a “pattern search” 

algorithm (Belegundu and Chandrupatla, 1999). The Matlab code to implement the 

gradient projection algorithm has been presented in Appendix I. 

 The gradient projection method can thus be represented as a black box, with 

inputs and outputs as shown in Figure 7.14. Inside the black box, the optimization 

process as explained above occurs.  
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Figure 7.14 Rosen's gradient projection method as a black box 

7.2.3 Adaptive slicing algorithm 

 In this section, we present the algorithm used to solve the cDSP presented in 

Figure 7.12. Using Rosen’s gradient projection method as a black box, we can optimize 

the layer thicknesses, provided we supply to it the number of layers. Thus, the algorithm 

is formulated in which we conduct an exhaustive search across the number of layers that 

the part can be populated by (n), and find the optimum slicing scheme for every value of 

n. The generated optimum slicing schemes can be compared to see which scheme gives 

the least value of the deviation function Z in the compromise DSP. 

 The adaptive slicing algorithm is presented in Figure 7.15. 
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  GIVEN:  Height of part (h), Vertical profile (f), bounds on layer thickness   

       [LTmin, LTmax], priorities given to objectives,  

Minimum number of layers nmin = h/LTmax 

Maximum number of layers nmax = h/LTmin 

  (where nmin and nmax are closest feasible integers) 

 

FOR Number of layer n = nmin:1:nmax 

 Starting feasible solution: nhLTk /=  

 Apply Rosen’s gradient projection method 

 Generate optimum slicing scheme for number of layers = n 

 Compute deviation function of the slicing scheme 

END 

 

FOR i = nmin:1:nmax 

 Compare optimum values of dev. functions obtained for all values of n 

END 

Figure 7.15 Adaptive slicing algorithm 

7.2.4 Applying adaptive slicing algorithm to a test problem 

 Suppose that the bell shaped part as shown in Figure 7.16 needs to be sliced. The 

up facing surface of the part can be seen to be composed of two quadratic curves. The 

part needs to be built on the MPSLA system realized at RPMI, in such a way that the 

build time is less than or equal to 80 minutes and the maximum cusp height is not more 

than 40µm. The bounds on the layer thicknesses are assumed to be [60µm, 600µm]. 

 The compromise DSP formulated in Figure 7.8 can be particularized to the 

MPSLA build at hand.  

   



 177

 
Figure 7.16 Part to be adaptively sliced 

  

 The slicing is effected by executing the algorithm presented in Figure 7.15. We 

first determine the values of the constants and functions related to the build time: Ttrans; 

Tsettle ;  Texp. Ttrans is the time taken by the platform to translate underneath the recoater 

and to bring it back to the required position. This translation time has been measured to 

be 10s. This time is almost constant regardless of the layer thickness. The function 

Tsettle(LTk) returns the time required to settle the free surface of resin, before supplying an 

exposure dose to cure it.  The time required to settle the resin if the thickness of a layer is 

500µm has been timed by the author to be 60s. The time required to settle the resin for 

lower layer thicknesses has not been measured and so, we do not have the function Tsettle. 

So, we simply assume the function to be inversely proportional to the layer thickness. We 

assume the function Tsettle in equation (7.28) for our system to be to be  

 TsettleK = 30000/LTk          (7.28) 
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where  

 TsettleK  is in seconds; and 

 LTk is in µm 

 Texp  is the function which acts on the layer thickness and return the time of 

exposure. This function can be formulated by using the relationship between the cure 

depth and exposure, presented in Chapter 6, in equation 6.5.  

 )( cpM EEDz −⋅=         (6.5) 

where  

where DpM is the slope of the working curve, which is the rate at which the cure- front 

propagates into the resin depth, and 

 Ec is the threshold exposure of polymerization. 

For our system,  

 DpM  = 19.172 µm/(mW/cm2), or 1.9172mm3/mW and     

 Ec = 10.2 mW/cm2 

For our system, we have determined that an overcure of 40µm is necessary for the layer 

to bind to each other. Thus, the depth of cure is LTk+OC 

 Rearranging equation 6.5,  

 cPM EDzE += /           (7.29) 

Assuming the average irradiance (H) to be 0.7mW/cm2, the function Texp can be 

particularized as given in equation 7.30. 

  7.0/]5.10
172.19

40
[exp +

+
= k

K
LT

t         (7.30)  
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Given: 

Height of part h = 1800µm 

Bounds on layer thickness ]600,60[ mmLT µµ∈  

Bounds on number of layers ]
60

1800,
600

1800[∈n , i.e. [3,30] 

Vertical profile of part: )400(72001200 −−= rz  for ]1200,0[∈z  

     1200)400(1200 +−= rz  for ]1800,1200[∈z  

For n = 3:1:30 

 Starting feasible solution: LTk = 1800/n 

 Applying Rosen’s gradient projection method 

END 

FOR i = 3:1:30 

Compare optimum values of dev. functions obtained for all values of n 

END 

  The Matlab code implementing of this algorithm is Rosen’s gradient projection 

method for this part is presented in Appendix I.  

 The results of the adaptive slicing algorithm for various values of weighting 

factors given to the objectives of surface finish and build time are shown in Table 7.2.  
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Table 7. 2 Optimum slicing schemes for various priority schemes 

  

Validating the adaptive slicing algorithm  

 The following observations can be made from the optimum slicing schemes 

presented in Table 7.2.  

• When weight given to build time is increased and that given to surface finish is 

decreased, the optimum number of layers decreases and the layer thicknesses 

increase. Conversely, when the weight given to surface finish is increased and that 

given to build time is decreased, the optimum number of layers increases and the 

layer thicknesses decrease. 

• When weight given to the objective of build time is made 1 and that given to the 

objective of surface finish is made 0, the optimum slicing scheme comprises of 

the thickest possible layers (600µm) 

• When weight given to the objective of surface finish is made 1 and that given to 

the objective of build time is made 0, the optimum slicing scheme comprises of 

the thinnest possible layers (60µm). 

• For any scenario, the optimum slicing scheme consists of thicker layers at the 

lower portion of the part and thinner layers are the upper top portion. This is 

Weights 
given to 
Surf. 
finish 

Build 
time 

Optimum 
no. of 
layers (n) 

Layer thicknesses (µm) Objective  
function 

(Z) 

0.5 0.5 14 149.4;149.4;149.4;149.4;149.4;149.4; 149.4;149.4;149.4;148.4;89.2; 
66.8;75.6;75.1 

0.1419 

0.25 0.75 14 149.4;149.4;149.4;149.4;149.4;149.4; 149.4;149.4;149.4;148.4;89.2; 
66.8;75.6;75.1  

0.0709 

0.75 0.25 18 108;108;108;108;108;108;108;108;108;108;108;108;108;108;84.6;74.1; 
65.9;62.9 

0.1845 

1 0 30 60;60;60;60;60;60;60;60;60;60;60;60;60;60;60;60;60;60;60;60;60;60; 
60; 60;60;60;60;60;60;60; 

0.0331 

0 1 3 600;600;600 0 
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because the bottom portion of the vertical profile subtends lesser angle with the 

vertical, while the upper portion of the vertical profile subtends a larger angle 

with the vertical. Thus, adaptive slicing has been implemented. 

 All the above observations make intuitive sense and hence, validate the adaptive 

slicing algorithm. 

 

Summary 

 In this chapter, work has been presented on surface finish of MPSLA parts. 

Adaptive exposure method is presented as a method to improve the down facing surfaces 

of MPSLA builds. This method is an implementation of the Compensation zone 

approach, to modulate the exposure supplied to the edge of every layer so that the edge 

profile of the layer approximates the MPSLA part’s down facing surface better. The 

adaptive exposure method is presented in a test part. 

 An adaptive slicing algorithm is formulated that slices a CAD model so as to 

obtain the required tradeoff between build time and surface finish of up facing surfaces of 

the part. This slicing algorithm models the trade off as a compromise Decision Support 

Problem (cDSP) and then solves the cDSP by using a gradient projection algorithm. The 

slicing algorithm is demonstrated in a test part. 

Progress made towards validating research questions 

 Research question 3 was concerning implementing print through smoothing to 

obtain a better approximation to the down facing surface. The adaptive exposure method 

is formulated in this chapter to implement print through smoothing on MPSLA parts. The 

overhanging portion of every layer of a test part is cured by supplying two separate 

exposure doses. The exposure doses are carefully controlled to ensure that the cure 
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profile of the overhanging region of every layer approximates the part’s down facing 

surface profile. A part with a better surface finish of the down facing surface is built by 

implementing the adaptive slicing algorithm. The RMS deviation from the ideal, or 

required surface was improved from 104.2µm to 89.3µm. The fluctuations from the ideal 

surface were also significantly reduced, as shown in the error profiles in Figures 7.6 and 

7.8. However, a systematic error seems to have been introduced by implementing the 

adaptive exposure method, in that the positive error goes on increasing from the top to the 

bottom of the part. Thus, the demonstration of adaptive exposure lends support to the 

hypothesis that adaptive exposure can be used to effect print through smoothing in 

MPSLA builds. 
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CHAPTER 8 CASE STUDY: BUILDING A PART WITH A QUADRATIC 
VERTICAL PROFILE 

 

 Research Question 4 was regarding formulating a process planning method in 

order to cure a MPSLA part with constraints on dimensions, surface finish and build 

time. Using the models formulated and validated in Chapters 5, 6 and 7, it is now 

possible to present a process planning method to cure a 3D MPSLA part with multiple 

constraints. In this chapter, the process plan is described and its implementation to cure a 

test part is demonstrated.  

 The process planning method is as shown in Figure 8.1. 

Given:  CAD model, targets on surface finish and build time, relative importance of the 

 targets. 

1. Compute the vertical profile of the up-facing surface 

2. Apply the “adaptive slicing algorithm” to obtain a required tradeoff between 

surface finish of up-facing surface and build time. Slicing scheme will be 

generated. 

3. Generate the bitmaps to cure every layer 

4. Apply the compensation zone approach to compute the time of exposure of every 

bitmap 

5. Approximate the time of exposure across some of the bitmap pixels (if required) 

6. Build part 
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Figure 8.1 Process planning method for Mask Projection Stereolithography 

  

 In this chapter, the process planning method is Figure 8.1 is applied on a test 

part shown in Figure 8.2. The test part has quadratic up and down facing surfaces, the 

vertical profile of which is given by equation 8.1. 

 yyz += 20005.0            (8.1) 

 The cross-section of the part is a rectangle of dimensions 2600µmX400µm. The height 

of the part is 2000µm and its larger dimension is to be built parallel to the global Y axis. 

It should be noted that the part used to validate the compensation zone approach in 

Chapter 6 was built along the global X axis. The maximum allowable cusp height on the 

up and down facing surfaces is 40µm. The build time of the part is required to be less 

than 30 minutes. 
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Figure 8.2 Test part to demonstrate process planning method 

 
In Section 8.1, the test part is sliced using the adaptive slicing algorithm presented 

in Chapter 7, to obtain the required tradeoff between the build time and the surface finish 

of the up facing surface. One of the slicing schemes is selected for executing further steps 

of process planning. The bitmaps to be imaged onto the resin surface in order to cure the 

required layers are generated using the “bitmap generation model”, presented in Chapter 

5. In Section 8.3, the irradiance distribution incident on the resin surface when these 

bitmaps are imaged onto it is computed using the multi-scale irradiance model, presented 

in Chapter 5. Using the irradiance distributions as inputs to the compensation zone 

approach presented in Chapter 6, the times of exposure of these bitmaps are computed. 

The part is built on the MPSLA system by using the generated process plan. The built 

part is presented in Section 8.4 and its geometry is compared to the required geometry. 

8.1 Slicing the part to be built 

The vertical profile of the CAD model presented in Figure 8.2 is quadratic, given 

by equation 8.1. The slicing algorithm for obtaining tradeoff between build time and 
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surface finish is presented in Chapter 7. As explained in Chapter 7, only the top facing 

surface is of interest in executing the slicing algorithm for MPSLA, because the down-

facing surface is significantly smoother than the top-facing surface because of print 

through.  

The bounds on the layer thickness are taken to be 50µm to 500µm. In reality, the 

MPSLA system realized as a part of this research cannot build layers thinner than 400µm. 

However, purely to demonstrate the execution of the adaptive slicing algorithm, the 

author has chosen the bounds on layer thicknesses to be [50µm, 500µm]. The part with 

vertical dimension 2000µm can thus be meshed with a minimum of 40 layers and 

maximum of 4 layers. The problem is modeled as a compromise DSP as shown in Figure 

8.3. 
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 Given 
• Part profile z = f(y):                            yyz += 20005.0   
• Height of part       2000µm 
• Functions and constants related to build time    
 Time taken to translate platform underneath recoated:  Ttrans = 10s 
  Time taken for resin to settle before exposure:     TsettleK = 30000/LTk 

      Time of exposure for the bitmap           7.0/]5.10
172.19

40
[exp +

+
= k

K
LT

t  

• Deviation variables      0;0 21 == −− dd  
 

Find 
• Number of layers       n 
• Layer thicknesses      LTk 
• Deviation variables      d1

+, d2
+ 

 
Satisfy 

• Sum of layer thicknesses equals part height   2000
1

=∑
=

n

k
kLT  

• Bounds on layer thickness     ]500,50[ mmLT µµ∈  
 

Goals 
• Meet low target of surface finish 

 mdd
LT

LTfLTf
LT

k

k

i

k

i
ii

k µ40)}]
)()(

(sin{tanmax[ 11
1

1

1

11

1 =−+
−

+−=

−

=

−−

−
∑ ∑

 

• Meet low target for build time 

 sddLTLTT kk

n

k
settletrans 1800)]()([ 22exp

1
=−+++ +−

=
∑ TT  

 
Minimize 
 Deviation function 
 Example scenarios:  

• Both goals rated equally:  Z d d d d= + + +− + − +1
2

1
21 1 2 2( ) ( ) 

• Surface finish rated more than Build time: Z d d d d= + + +− + − +3
4

1
41 1 2 2( ) ( )  

• Build time rated more than Surface finish: Z d d d d= + + +− + − +1
4

3
41 1 2 2( ) ( )  

• Surface finish not important: Z d d d d= ⋅ + + ⋅ +− + − +0 11 1 2 2( ) ( )  
• Build time not important: Z d d d d= ⋅ + + ⋅ +− + − +1 01 1 2 2( ) ( )  

Figure 8.3 Modeling the slicing problem as a compromise DSP 
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Table 8.1 Optimum slicing schemes for various priorities to objectives 

 

 The cDSP presented in Figure 8.3 is executed by means of the adaptive slicing 

algorithm formulated in Chapter 7 (Figure 7.11). The Matlab code written to solve the 

cDSP is presented in Appendix J. The optimum slicing schemes are presented in Table 

8.1. 

 Suppose that the process planner has the highest priority on the build time and the 

least priority on the surface finish. In that case, the optimum slicing scheme will be the 

one returned for the weights given to objectives on surface finish and build time as 0 and 

1 respectively. Thus, the slicing scheme selected to implement the process planning 

method further is the last one in Table 8.1, with all layers being 500µm.  

Weights 
given to 
Surf. 
finish 

Build 
time 

Optimum 
no. of 
layers (n) 

Layer thicknesses (µm) Objective  
function 

(Z) 

0.5 0.5 12 131.3; 139.1; 147.8; 155.9; 164.5; 172.1; 180.6; 181.7; 181.7; 181.7; 
181.7; 181.7 

0.8724 

0.25 0.75 10  159.3; 171.4; 182.8; 194.2; 205.3; 217.4; 217.4; 217.4; 217.4; 217.4 0.4906 
0.75 0.25 16 98; 103; 107.3; 111.4; 116.4; 120.9; 126.2; 129.8; 134; 136.1; 136.1; 

136.1; 136.1; 136.1; 136.1; 136.1 
0.8983 

1 0 40 50; 50; 50; 50; 50; 50; 50; 50; 50; 50;50; 50; 50; 50; 50; 50; 50; 50; 50; 
50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 50; 
50; 50       

0 

0 1 4 500; 500; 500; 500 0 



 189

8.2 Generating bitmaps to be imaged 

 
Figure 8.4 Sliced part to be built 

  

 The sliced part looks as shown in Figure 8.4. It is composed of four layers, each 

500µm thick and of lateral extents 2600µmX400µm. The required down facing surface is 

shown by the dotted line in Figure 8.4. The four identical layers are to be cured by 

imaging the same bitmap onto the resin surface. In this section, the bitmap to be imaged 

onto the resin surface to cure a layer 2600µmX400µm, with its longer dimensions 

parallel to global Y axis is generated. 

 The layer to be cured is meshed with points. These points are mapped onto the 

micro-mirrors on the DMD using the “Pixel image database” (Refer to Chapter 5), in 

order to determine which micro-mirrors are ‘ON’. Every ‘ON’ micro-mirror on the DMD 

corresponds to a black pixel on the bitmap. The bitmap generated to cure the 

2600µmX400µm layer is shown in Figure 8.5. All the black pixels in Figure 8.5 

correspond to ‘ON’ micro-mirrors. 
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Figure 8.5 Bitmap generated by bitmap generation model to cure the required layer 

  

 There can be seen some jaggedness at the edges of the bitmap presented in Figure 

8.5. This jaggedness is because of the errors in mapping the elements to the micro-

mirrors, as explained in Chapter 5. The white pixels dotting the edges are manually made 

black and the edges are smoothened, as explained in Chapter 5, before proceeding with 

the process planning method. 

8.3 Applying compensation zone approach 

 The bitmap generated by the “bitmap generation model” is input to the multi scale 

irradiance model (presented in Chapter 5) and the irradiance distribution on the resin 

surface that would be made incident when the bitmap is imaged onto it is computed. The 

irradiance distribution is shown in Figure 8.6. 
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Figure 8.6 Irradiance distribution along the Y dimension of the layer to be cured 

  

 In order to build the four layered part, the same bitmap as shown in Figure 8.5 is 

imaged onto the resin surface. The platform is translated underneath the imaging system, 

along the Y direction to offset layers over each other. The times of exposures for the 

bitmaps need to be found out. This is determined by using the compensation zone 

approach. 

 The time of exposure for the body of every layer in Figure 8.5, is imaged for 80s, 

as explained in Chapter 6. We need to compute the time of exposure for the overhanging 

portion of every layer. Compensation zone approach is adopted at every pixel column on 

the part to be built. The generic formulation for the compensation zone approach is given 

in Figure 6.14. By solving equation 6.22 at every pixel location, the times of exposure of 

the overhanging region of every layer is computed. The times of exposure are shown in 

Figure 8.7. The Matlab code to generate these times of exposure is presented in Appendix 

J. 
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(a) Time of exposure along first layer 

Figure 8.7 Times of exposure for curing the (a) first; (b) second; (c) third; and (d) fourth layer 

 
(b) Time of exposure along second layer 

Figure 8.7 (continued) 
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(c) Time of exposure along third layer 

 
(d) Time of exposure along fourth layer 

 
Figure 8.7 (continued) 
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 The profile simulated upon running the times of exposure shown in Figure 8.7 

through the print through model applied at every pixel location is shown in Figure 8.8. 

 
Figure 8.8 Simulated profile of the down facing surface for the times of exposure as given in Figure 

8.7 

 In order to supply the times of exposure as shown in Figure 8.7, it would be 

necessary to display and image every micro mirror on the bitmap irradiation the 

overhanging portion of the layer separately for a given duration of time. Since this is not 

possible to do manually, the author computed the average time of exposure across the 

overhanging portion of the bitmap. Thus, every layer was cured in two steps, by imaging 

two bitmaps onto it. The first bitmap cured that part of the layer which bonds to the layer 

underneath it. The second bitmap cures the overhanging portion of the layer. This 

division of every bitmap into two bitmaps is explained pictorially in Figure 6.17.  
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 The times of exposure for every layer, after those along the overhanging portion 

have been averaged out are shown in Figure 8.9. The times of exposure now appear as 

step functions, with one constant value of time of exposure across the body of the layer 

and another constant time of exposure across the overhanging portion of the layer. 

 
(a) Time of exposure supplied to cure the first layer 

 

Figure 8.9 Times of exposure for the (a) first; (b) second; (c) third; and (d) fourth layer 
approximated by step functions 
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(b) Time of exposure supplied to cure the second layer 

 
(c) Time of exposure supplied to cure the third layer 

 
Figure 8.9 (continued) 
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(d) Time of exposure supplied to cure the fourth layer 

 
 Figure 8.9 (continued) 

 

The times of exposure for every layer are tabulated in Table 8.2. 

Table8.2 Times of exposure for every layer 

Time of exposure (s) Layer # (Bottom most to top most) 
Body of layer Overhang of layer 

Layer 1 80 27.2 
Layer 2 80 57.4 
Layer 3 80 68.6 
Layer 4 80 69.6 

 

The down facing profile of the part was simulated using the print through model for the 

times of exposure as shown in Figure 8.9. The simulated profile of the down facing 

surface is shown in Figure 8.10. 
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Figure 8.10 Simulated and ideal profiles of the down facing surface of the test part for the times of 

exposure as shown in Figure 8.9 

 

 In Figure 8.10, the blue line shows the simulated profile of the down facing 

surface of the part that would be built. The red line shows the ideal, quadratic profile. 

8.4 Building the test part 

 The process plan generated in Sections 8.1 to 8.3 is used to build the part on the 

MPSLA system. The exposure of different portions of every layer for different times was 

achieved by splitting the bitmap generated in Figure 8.5 into two portions. These bitmaps 

were imaged onto the resin surface in succession to cure the layer, supply an exposure as 

given by the exposure plots presented in Figure 8.9. Thus, every layer is exposed in two 

steps. This process is pictorially shown in Figure 8.11. 
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Figure 8.11 Curing every layer by imaging two bitmaps onto the resin surface in succession 

 

The down facing profile of the part thus built is shown in Figure 8.12. In Figure 8.12, the 

dotted red line is the required profile given by equation 8.1. It can be seen that the down 

facing profile of the part cured approximate the required profile very well.  
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Figure 8.12 MPSLA part built by using the process plan developed in this chapter 

 

 The down facing surface profile of the simulated part presented in Figure 8.10 can 

be seen to be having noticeable stair steps. The cured part’s down facing surface profile is 

exceptionally smooth. The stair steps are not visible at all. Thus, we observe again the 

same phenomenon of smoothing that we observed in Chapter 6, where the cured parts 

were significantly smoother than the simulated part. This is perhaps because of the semi 

cured resin lodging itself in between the stair steps of the cured part. 

 Another point to note is that adaptive exposure has not been applied for this case 

study. In spite of this, the down facing surface is exceptionally smooth. This is because, 

the profile of the part in Figure 8.12 has very little overhang. It is almost vertical. The Y 

dimensions of the steps on bottom-most layer to the top most layer are 220µm, 360µm, 

290µm and 250µm respectively. For such small steps, there is not need of adaptive 

exposure. Also, we have seen in Chapter 7 that when the size of steps approaches 250µm, 

the part profile becomes exceedingly smooth. 
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Summary 

 A process planning method to build a part with constraints on dimensions, surface 

finish and build time is presented in Figure 8.1.The process planning method first slices 

the parts using the adaptive slicing algorithm presented in Chapter 7. The sliced part is 

built using Irradiance model and Compensation zone approach presented in Chapter 5 

and 6 respectively. The process planning method is demonstrated on a test part with 

quadratic up facing and down facing surfaces. 

Progress made towards answering the research questions 

 Research question 4 was concerning formulating a process planning method for 

MPSLA that would build a part with constraints on dimensions, surface finish and build 

time. The hypothesis was that the process planning should be performed in two steps. 

First, the CAD model is sliced so that the required trade off between surface finish of up 

facing surface of the part to be built and the build time is obtained. In the second step, the 

sliced part is to be built by using the Irradiance model and the Compensation zone 

approach.  

 In this chapter, the process planning method is formulated and demonstrated on a 

test part. The CAD model of the test part is sliced by using an adaptive slicing algorithm. 

This algorithm models the trade off between the objective of surface finish of up facing 

surfaces and that of build time as a compromise Decision Support Problem (cDSP). The 

multi objective optimization problem is solved by using a gradient projection 

optimization method. Bitmaps are generated for every layer of the sliced part using the 

“Bitmap generation method” (Chapter 5) and Compensation zone approach (Chapter 7). 

The part is successfully built on the MPSLA system by using the generated process plan. 
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CHAPTER 9 CLOSURE AND CONTRIBUTIONS 
 

 This chapter wraps up the dissertation. In Section 9.1, the entire work documented 

in this dissertation is summarized. In Section 9.2, the research questions posed in Chapter 

4 are revisited and answered by testing the proposed hypotheses. The intellectual 

contributions of this work are enunciated in Section 9.3. The chapter ends with Section 

9.4, which recommends the areas in which future work would be of value. 

9.1 Summary of the dissertation 

  The objective in this research is to analyze the Mask Projection Stereolithography 

(MPSLA) process in order to formulate a process planning method which would enable 

the fabrication of dimensionally accurate 3D parts with constraints on build time and 

surface finish. In working towards attaining this objective, a Mask Projection 

Stereolithography system is designed and realized. The process of part building is 

modeled and the models are validated by building test parts on the MPSLA system. 

Optical models, that model the process of image formation on the resin surface when any 

bitmap displayed on the mask is imaged onto it, are formulated. The process of layer 

curing and the phenomenon of print through have also been modeled to understand the 

sources of errors in MPSLA builds. These models have been used in a process planning 

method to control the dimensional errors. The issue of obtaining a tradeoff between build 

time and surface finish of MPSLA builds has also been addressed and an algorithm that 

enables this tradeoff has also been presented. 

 Using the work presented in this dissertation, it is possible to build a MPSLA part 

with multiple constraints on dimensions, surface finish and build time. 
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9.1.1 MPSLA system designed and built 

 A Mask Projection Stereolithography system is designed and built as a part of this 

research. The design, including the bill of materials is documented in Chapter 3. A 

broadband UV lamp is used as the light source. A collimating system is designed, 

consisting of a pinhole and a converging lens, in order to collimate the light coming from 

UV lamp. This light is made incident onto a Digital Micromirror Device (DMDTM), from 

Texas InstrumentsTM, which acts as a dynamic mask. The DMDTM consists of an array of 

individually addressable, bi-stable micro mirrors that can be selectively oriented to 

display any bitmap (pattern). The pattern is imaged onto a photopolymer resin contained 

in a vat using a 1X telecentric optical system. The optical system is designed to be 

telecentric because such systems are robust against variations in image and object 

distances. Layers are built on a platform which is mounted on an XYZ stage.  

 The MPSLA system is used to validate all the analytical models developed in this 

dissertation. 

9.1.2 Modeling image formation 

 When any bitmap displayed on the DMDTM is imaged onto the resin, an aerial 

image is formed on the resin surface. This aerial image is distorted due to the optical 

aberrations introduced by the imaging system and the diffraction effects. Due to these 

two phenomena, the irradiance distribution across the image is also not uniform. In order 

to build MPSLA parts of accurate dimensions, it is essential to model the irradiance that 

any point on the resin surface would receive when any given bitmap is imaged onto it. 

The modeling of image formation process has been presented in Chapter 5.  
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 Two theories can be used to model image formation: the theory of physical optics, 

which assumes light to be traveling in the form of wave fronts; and the theory of 

geometric optics, which assumes light to be traveling as rays. The applicability of these 

theories is evaluated for the imaging module of the MPSLA system assembled as a part 

of this research. By performing aberration analysis, it is shown that the imaging system 

realized by the author is aberration limited as opposed to diffraction limited. In case of 

aberration limited optical systems, the diffraction effects are supposed to be ignored and 

geometric optics give accurate results. Thus, ray tracing is used to formulate the 

“Irradiance model” that models the irradiance across the resin surface, when any bitmap 

is imaged onto it. The Irradiance model has been validated by building test layers on the 

MPSLA system. 

 The Irradiance model, while high fidelity has a serious limitation, in that billions 

of rays need to be traced in order to run the model. This limitation has been tackled by 

adopting a multi-scale irradiance modeling strategy, in which modeling is done at two 

levels: micro-mirror level and bitmap level. At the micro-mirror level, the irradiance 

incident on the resin surface when every micro-mirror is individually imaged onto it is 

recorded and stored in a database. At the bitmap level, the irradiance distributions 

corresponding to all the ‘ON’ micro mirrors are mined from the database and combined 

to obtain the irradiance distribution on the resin surface when that bitmap is imaged onto 

it. This modeling strategy resulted in reduction in the computation time by a factor of 

1/600. 
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9.1.3 Cure modeling 

 In Chapter 6, cure modeling is done at two levels. First, the thickness of the layer 

that would be cured when any bitmap is imaged onto the resin surface is modeled. 

Second, the print through that would result when multiple layers are cured over each 

other is modeled. 

 In Chapter 6, the transient model of layer curing is presented. This model takes 

into account the change in the rate of attenuation of light in the resin during exposure. It 

has been shown that, for large exposure times, cure depth is a linear function of exposure 

as opposed to being a logarithmic function. The transient layer cure model has been 

validated by building test layers on the MPSLA system. 

 The effect of diffusion of reactive species away from the bottom surface of a part 

being built has been quantified. When a MPSLA part is being built, reactive species are 

present at the bottom surface of the part, near the solid-liquid interface. These reactive 

species, in their excited state, carry a total energy equal to the threshold exposure of 

polymerization (Ec). When the part sits in the resin vat, these reactive species diffuse out 

carrying energy away with them. Also, oxygen from surrounding resin diffuses in and 

‘quenches’ the excited species. Due to this, the effective exposure at the bottom surface 

of an MPSLA part drops down as a function of time. The rate of drop of effective 

exposure has been quantified in Chapter 6. 

 Chapter 6 also presents the “print through model”, which computes the amount of 

print through that would occur when a multi-layered part is built. Print through is caused 

due to residual radiation penetrating beyond the intended layer thickness to the bottom 

surface of part, causing unwanted curing. The print through model is used to simulate the 
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profile of the down facing surface of a test four-layered part. The simulation is validated 

by building test parts on the MPSLA system. 

 The print through model is used to formulate the “compensation zone approach”, 

which is essentially, the inverse of the print through model. The compensation zone 

approach enables the computation of process parameters that would result a part with the 

required down facing profile. The compensation zone approach is demonstrated 

successfully on a test part. 

9.1.4 Improving surface finish of MPSLA builds 

 The compensation zone approach presented in Chapter 6 is validated by exposing 

the overhanging portion of a layer for time duration different from the duration time that 

its body was exposed. The method of adaptive exposure was proposed in Chapter 7. This 

method entailed discretizing the overhanging portion of every layer even more in order to 

better approximate the down-facing profile. This method was demonstrated on a test part. 

 The slicing of an MPSLA part influences its build time as well as its surface 

finish. Larger layer thicknesses result in shorter build times but poor surface finish, while 

smaller layer thicknesses result in smoother surfaces, but larger build times. It is essential 

to select a slicing scheme that would achieve a tradeoff between these two objectives.  

 A multi-objective slicing algorithm is formulated and demonstrated on a quadratic 

down facing surface in Chapter 7. 
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9.2 Revisiting the research questions 

 In this section, the research questions posed in Chapter 4 are revisited and the 

proposed hypotheses tested. The purpose of this research was to achieve the objective 

presented in Chapter 1, restated here: 

“To formulate a process planning method to build MPSLA parts with 

constraints on dimensions, surface finish and build time” 

This objective is broken down in Chapter 4 and research question and hypothesis are 

proposed for each of them. In light of the work presented in this thesis, the validity of 

these hypotheses is tested in this section. 

 

Research Question 1a: Should the image formation process in the MPSLA system under 

consideration by modeled using physical optics or using geometric optics? 

Hypothesis: The theory of geometric optics is more suitable than that of physical optics 

to model the image formation by the MPSLA system under consideration. 

Testing the hypothesis: It has been determined from literature in optics that the Optical 

Path Difference (OPD) is the measure of the wave front aberrations and can be used as a 

guideline to choose the optical modeling method. The OPD of the imaging system of the 

MPSLA system was computed by modeled the system using the optical analysis software 

OSLOTM to show that the imaging system is aberration limited.  

 The irradiance is modeled using ray-tracing algorithm as the “Irradiance model”. 

This is the method of modeling an aberration limited optical system. The Irradiance 

model is validated by curing test layers on the MPSLA system. The close agreement in 

the dimensions of the cured layers and the dimensions of the aerial image formed on the 
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resin, computed by the Irradiance model, suggests that the Irradiance model is valid. 

Thus, the geometric optics has been used successfully to model the image formation 

process for the MPSLA system. Thus, the hypothesis has been tested and has been found 

to be valid. 

 

Research Question 1b: How to model the exposure profile on the resin surface with the 

fidelity of the ray tracing approach, in a computationally inexpensive way? 

Hypothesis: A multi scale modeling approach can be adopted. The irradiance profile can 

be thought of as a collection of pixels overlapping each other. Modeling should be done 

at two levels:  

1.   Curing of individual pixels (computationally expensive part) 

2. Overlapping of pixels to give the exposure profile on the resin surface 

(computationally inexpensive part) 

Testing the hypothesis: The “Pixel image model” has been formulated in Chapter 5. 

This models the irradiance on the resin surface when every micro-mirror is imaged 

individually onto it. The irradiance is stored as a matrix. This database is used to model 

the irradiance on the resin surface when a test bitmap was imaged onto it. The 

computation of the irradiance entailed simply choosing the pixels (irradiance matrices) 

corresponding to the ‘ON’ micro mirrors from the Pixel image database, and adding them 

up. The time to compute the irradiance computation created by a test bitmap without 

using the pixel image database was found to be 152 hours. Using the Pixel image 

database, the same irradiance distribution could be generated in less than 15 minutes. 
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Thus, the multi-scale modeling approach resulted in significant savings in the 

computation time. Thus validates the hypothesis to research question 1b. 

 

Research Question 2: How to reduce print through errors in MPSLA builds? 

Hypothesis: Print through errors can be reduced by subtracting a tailored volume 

(compensation zone) from underneath the CAD model which is used to build the part, in 

such a way that the exposure received by the down facing surface of the part is exactly 

equal to the threshold exposure of polymerization (Ec).  

 This research question was further broken down into two sub-questions in the 

course of this research. We test the hypotheses to these sub-research questions before 

testing the hypothesis to research questions 2. 

 

Research Question 2a: How to capture the effect of the varying rate of radiation 

attenuation throughout the duration of exposure, as a layer gets cured? 

Hypothesis: The effect of varying rate of attenuation as a layer gets cured can be 

captured by modeling layer curing as a transient phenomenon, by discretizing the time 

domain.  

Testing the hypothesis: In Chapter 6, the incremental curing that would occur during an 

infinitesimal duration of time is modeled as a differential equation. This equation takes 

into account the different rate of attenuation through a cured layer and the uncured resin 

underneath that layer. The differential equation is solved numerically to obtain an almost 

linear relationship between cure depth and exposure. This linear relationship is validated 

by building test layers on the MPSLA system. The values of the constants of this linear 
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curve between cure depth and exposure are determined experimentally. Thus, layer 

curing has been successfully modeled as a transient process and this model has been 

validated. This successfully tests the hypothesis to research question 2a. 

 

Research Question 2b: Is exposure at the bottom surface of a cured layer additive or 

does it get significantly affected by diffusion of radicals and oxygen into the resin vat? 

Hypothesis: The exposure is not additive because there is a significant diffusion of 

radicals and oxygen in the resin vat. 

Testing of hypothesis: The loss energy due to diffusion of radicals and oxygen 

underneath the bottom surface of a cured layer is assumed to be a factor k times the 

energy at the bottom surface of the layer when it was just cured (Ec). Layers were cured 

using two discrete exposure doses and allowing the layer to stay in the resin for a variable 

duration of time in between these two exposure doses. The value of ‘k’ was found out by 

measuring the thickness of the layer cured after receiving both the exposure doses. The 

relationship between k and the time that the layer was allowed to stay in the resin in 

between the two exposures was found to be logarithmic. Thus, the loss of energy from 

underneath the bottom of a cured layer varies as the logarithm of time. This is typical of 

the diffusion phenomenon. This lends strong evidence that there is a loss of effective 

exposure from the bottom surface of a part being built due to a diffusion based 

phenomenon (most likely the diffusion of reactive species and oxygen molecules) thereby 

making the additive nature of exposure a strong function of time. 

 Now, we can revisit the hypothesis to research question 2. In Chapter 6, the “Print 

through model is formulated using the models developed in testing hypotheses 2a and 2b. 
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The print through model computes the print through that would occur underneath a multi-

layered MPSLA build. This model is used to compute the reduced time of exposure for 

which the lower most layers of an MPSLA build must be exposed. When the lower most 

layer is exposed for a lesser duration of time, the effect is the same as subtracting a 

tailored volume from underneath the CAD model to be built. The compensation zone 

approach has been demonstrated on a test part. 

 

Research question 3: How to implement the print through smoothing approach to obtain 

smoother down facing surfaces in MPSLA builds? 

Hypothesis: Print through smoothing can be achieved by gray scaling the pixels near the 

edges of a layer to cure voxels of different heights that conform to the part’s vertical 

profile. This method shall be called as “adaptive exposure” since it involves adapting the 

exposure to suit the part’s vertical profile. 

Testing the hypothesis: The adaptive exposure method entails modulating the exposure 

at the edges of the layers in such a way that profile of the edges confirm to the part’s 

down facing vertical profile. This method has been demonstrated in Chapter 7. Exposure 

has been modulated at the edges by using three bitmaps to cure every layer. The 

improvement in surface finish is demonstrated by building a part without adaptive 

exposure (Chapter 6) and with adaptive exposure (Chapter 7).  

 

Research Question 4: How to build a MPSLA part with multiple objectives of 

dimensional accuracy, surface finish and build time? 
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Hypothesis: Process planning can be done in two steps. First, a multi-objective 

optimization method, like the compromise DSP (Mistree et al., 1994) should be 

formulated and solved to select the slicing scheme, i.e. layer thicknesses that would 

obtain a tradeoff between the objectives of surface finish and build time. For this slicing 

scheme, the compensation zone approach should be adopted to obtain part with accurate 

vertical dimensions 

Testing the hypothesis: The process planning method to build a MPSLA part with 

constraints on dimensions, surface finish and build time is presented in Figure 8.1. The 

process planning method first slices the CAD model to be built by adopting the adaptive 

slicing algorithm presented in Chapter 7. The compensation zone approach (Chapter 6) 

and Irradiance model (Chapter 5) is then used to build the sliced part. The process 

planning method is demonstrated on a part with quadratic up- and down facing surfaces 

in Chapter 8.  

9.3 Contributions 

 The contributions made by this work can be characterized into two categories: 

1. Contributions to fundamental knowledge in Stereolithography; and 

2. Developmental contributions 

9.3.1 Contribution to fundamental knowledge 

 Process planning literature available for the conventional laser scanning 

Stereolithography allows a manufacturer to build prototypes with the required properties. 

This literature can’t be directly extended to Mask Projection micro Stereolithography 

because the nature of irradiation of the resin surface and curing characteristics of a resin 
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are considerably different in both the cases. The primary contributions of this work are in 

the realm of analyzing the MPµSLA process and explaining it in mathematical terms. 

The following are the contributions of the thesis to the field of MPµSLA: 

 The irradiation of the resin surface in the case of MPµSLA is a much more 

complex process than that achieved by laser scanning. While the laser beam has a 

Gaussian irradiance profile, which remains constant regardless of the cross section it is 

scanning, in case of MPµSLA, the irradiation distribution changes with the change in the 

pattern imaged. The method of modeling irradiance on the resin surface in a 

computationally feasible manner is the first contribution on this work. 

 The transient model is more rigorous than the conventional Stereolithography 

cure model, which assumes that the entire energy is delivered to the resin in one instant 

and that the light gets attenuated exponentially according to the Beer Lambert’s law. The 

transient model takes into account the variation in the rate of attenuation of light during 

exposure. This model has been formulated and validated on the MPSLA system. 

 The effect of diffusion of reactive species away from, and oxygen towards, the 

bottom surface of a part being built has also been quantified for the first time (radical 

diffusion model). Standard Stereolithography texts ignore these diffusion phenomena and 

treat exposure to be additive. The author has shown that there is a fall in the energy at the 

bottom surface of a MPSLA part being built due to diffusion and has quantified the rate 

of loss of this energy. 

 The transient layer cure model and the radical diffusion model have been used to 

model the print through that would result when a multi layered part is built. This model is 

used to formulate the compensation zone approach, which enables the avoiding of print 
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through errors. The compensation zone approach, which deals with the tailoring of 

process parameters in order to avoid print through errors, is also presented for the first 

time in Stereolithography literature. 

 It is for the first time that print through smoothing has been demonstrated to 

approximate the vertical profile of the part, by adaptive exposure.  

9.3.2 Developmental contributions 

 Apart from the intellectual contributions, there are a number of contributions of a 

developmental nature. An MPSLA system has been successfully realized. The design of 

the system has been documented, which will enable replication of this system. 

 A slicing algorithm that computes the optimum slicing scheme that achieves a 

tradeoff between build time and surface finish has been formulated. This algorithm can 

be used not just for Stereolithography, but also for any additive manufacturing process. 

 A process planning method that would guide a manufacturer through all steps of 

process planning, starting from the CAD model and ending with a finished part has been 

formulated. 

9.4 Future work  

 Future work is needed from the view of bolstering confidence in the models and 

process planning methods presented in this thesis. 

 The transient layer cure model developed in Chapter 6 predicts a linear 

relationship between cure depth and exposure, for long durations of exposure. This model 

has been validated by building layers in the DSM SOMOS 10120TM resin.  It will be 

useful to validate this model on other resins. 
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 The MPSLA system could repeatedly lay down layers only as thick as 500µm. 

Layers thinner than that could not be laid down with confidence. As a result, all the multi 

layered parts built presented in this dissertation have been built using 500µm thick layers. 

It would be useful to validate the compensation zone approach for layers of thicknesses 

smaller than 500µm. It should be noted that the compensation zone approach is based 

upon the transient layer cure model and the diffusion mode, both of which have been 

validated for cure depths starting at around 70µm. So, the compensation zone approach is 

definitely expected to work well at smaller layer thicknesses, even though an actual 

demonstration would increase confidence in it. 

 All the multi layered parts cured have been observed to be significantly smoother 

down facing surface than those predicted by the simulations. The author surmises that the 

smoothing is because of partially cured resin lodging itself between the stair steps. This 

claim however has not been validated. It would be of value of conclusively explain the 

cause behind the smoothing of down facing surfaces. 

 Future work is needed towards improving the MPSLA system. The imaging 

module of the current MPSLA system is severely aberration limited. This limits the size 

of the bitmap that can be imaged onto the resin surface within reasonable distortions. The 

imaging system can be made more sophisticated by introducing more number of optical 

components, so that aberrations can be reduced and the field of exposure can be 

increased. 

 The author has used a commercial Stereolithography resin (DSM SOMOS 10120) 

with his system. This resin has a very high value of depth of penetration (Dp), i.e. very 

low rate of attenuation of radiation. For micro applications, a resin which would result in 
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rapid attenuation of radiation, and hence thinner layer should be used. Another limitation 

of using DSM SOMOS 10120 is its high viscosity (120 cP). This high viscosity prohibits 

laying down of very thin films of resin. A resin with lower viscosity would enable laying 

down of much thinner layers.  
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APPENDIX A. VALIDATION OF IRRADIANCE MODEL 
 

 In this appendix, the test layers cured to validate the irradiance model formulated 

in Chapter 5 are presented. In all, eight cross shaped layers were cured by imaging a test 

bitmap onto the resin surface. The dimensions of these layers were measured and 

compared with the dimensions of the irradiance profile returned by the irradiance model. 

 The dimensions of the layers are recorded in Table 5.1. 

 
Figure A. 1 Validating irradiance model: Test layer 1 
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Figure A. 2 Validating irradiance model: Test layer 2 
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Figure A. 3 Validating irradiance model: Test layer 3 
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Figure A. 4 Validating irradiance model: Test layer 4 



 221

 
Figure A. 5 Validating irradiance model: Test layer 5 
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Figure A. 6 Validating irradiance model: Test layer 6 
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Figure A. 7 Validating irradiance model: Test layer 7 
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Figure A. 8  Calibration scale for measuring the dimensions of the test layers 
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Figure A. 9 Validating irradiance model: Test layer 8 
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APPENDIX B. MATLAB CODE FOR IMPLEMENTING MULTI-SCALE 
IRRADIANCE MODEL 
 

 In Appendix B.1, the Matlab code written to populate the pixel mapping database 

is presented. In Appendix B.2addition, the Matlab code that uses the pixel mapping 

database in order to compute the irradiance distribution on the resin surface when a 

bitmap is imaged onto it is documented. 

 

Appendix B.1. Code to generate pixel mapping database 

 This code consists of the script: “massivedatabase.m”, which computes the 

locations of the various ‘ON’ micromirrors on the DMD in 3D space. This code then 

employs, at every micromirror, the function “pointselector.m”, which meshes every 

micromirror with 121 points. The function “pointselector.m”, for every point on the 

micromirror, then calls the function “psf.m”, which computes the direction cosines from 

every micromirror, along which a ray can be traced. The function “psf.m”, in turn, calls 

the function “raytrace.m” which traces a ray from the given point, on a given 

micromirror, in a given direction through the imaging system.  

 These four Matlab codes are presented here. 

massivedatabase.m 

%Code to create the massive database 
clear all; 
for i = 1:1:300; 
    for j = 1:1:300; 
        tempi = i-150; 
        tempj = j-150; %This is the first row 
        Z1 = tempi*0.01365; 
        Y1 = tempj*0.01365; 
        clear tempi; 
        clear tempj; 
        Z2 = Z1*cos(45*pi/180) - Y1*sin(45*pi/180); 
        Y2 = Z1*sin(45*pi/180) + Y1*cos(45*pi/180);%Rotating about X 
axis 
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        clear Z1; 
        clear Y1; 
        %Now we rotate by 35 degrees about the Y axis 
        Y(i,j) = Y2; 
        Z(i,j) = Z2*cos(35*pi/180); 
        clear Y2; 
        clear Z2; 
    end 
end 
clear i; 
database = zeros(601,601); 
for i = 1:1:300; 
    for j = 1:1:50; 
        database = pointselector(Z(i,j), Y(i,j)); 
        save (strcat('database', (int2str(i)), '.', (int2str(j)), 
'.mat')),database; 
        database = zeros(601,601); 
    end 
end 
 
 

pointselector.m 

%This code is used to select points on a given micromirror. 
%The micromirror location is specified by its coordinates. Then, points 
are 
%selected on this micromirror. Rays are traced from every point using 
the 
%function "psf" defined seperately. psf returns the localresincount 
matrix. 
%We shall all that matrix to the mirrorresincount matrix, which is 
%initialized to be full of zeros. 
  
function [mirrorresincount] = pointselector(midpointz, midpointy) 
meshpoints = 9;  
midpointx = midpointz*tan(35*pi/180); 
y0 = midpointy; 
z0 = midpointz-0.0080948; 
  
%Now, the coordinates of the midpoint of the micromirror of interest 
have 
%been obtained. Now, selecting the points on this micromirror. 
mirrorresincount = zeros(601,601); 
i = 1; 
%Now, selecting the points 
for l1 = 0:0.0109552/meshpoints:0.0109552; 
    for l2 = 0:0.0109552/meshpoints:0.0109552; 
        mirrorpointy(i) = (l1-l2)*0.8165 + y0; 
        mirrorpointz(i) = (l1+l2)*0.5773 + z0; 
        mirrorpointx(i) = ((mirrorpointz(i)-
midpointz)*tan(45*pi/180))+midpointx; 
        mirrorresincount = mirrorresincount + psf(mirrorpointx(i), 
mirrorpointy(i), mirrorpointz(i)); 
        i = i+1; 
    end 
end 
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psf.m 

 
%Code written to compute the Point Spread Function (PSF) 
  
%Code will trace rays from one point through the tleecentric imagign 
%system. Rays are emitted in a cone. It is assumed that all these rays 
have 
%the same amount if energy. The cone angle is the variable.  
%This code uses the function "raytrace" to trace rays from a given 
point in a given direction. "Raytrace" which is defined seperately. 
%**********************************************************************
**** 
  
%The number of rays from the point (pointx,pointy,pointz) hitting every  
%small square in the resindatabase is counted and stored in the counter 
%localraycount(y,z).  
%For example, localraycount(1,1) will denote the square centered at (-
4.5,-4.5). 
%localresincount, because it is going to measure only the rays in this 
%function. Later the contents of local raycount will be transferred to 
the 
%matrix resincount, which shall be in the code that selects points on 
the 
%micromirror. 
function[localresincount] = psf(pointx,pointy,pointz); 
  
%Start point is 0,0,0 
  
raycount = 1; 
pupildistance = 100; %Entrance pupil at 100mm from start point 
theta = 1.5;  %Half angle of cone. Makes pupil radius = 5mm 
pupilradius = pupildistance*theta*pi/180; 
  
for i = -pupilradius:pupilradius/15:pupilradius; 
   for j = -pupilradius:pupilradius/15:pupilradius; 
      if  sqrt(i^2+j^2) <= pupilradius; 
            Y(raycount) = (pointy-i)/sqrt((i-pointy)^2+(j-
pointz)^2+(pupildistance-pointx)^2); 
            Z(raycount) = (pointz-j)/sqrt((i-pointy)^2+(j-
pointz)^2+(pupildistance-pointx)^2); 
            X(raycount) = (pupildistance-pointx)/sqrt((i-pointy)^2+(j-
pointz)^2+(pupildistance-pointx)^2); 
            check(raycount) = 
Y(raycount)*Y(raycount)+Z(raycount)*Z(raycount)+X(raycount)*X(raycount)
; 
            [resiny(raycount), resinz(raycount)] = raytrace(pointx, 
pointy, pointz, X(raycount), Y(raycount), Z(raycount)); 
            phi(raycount) = atan((sqrt(i^2+j^2))/pupildistance); 
            weight(raycount) = 1*cos(phi(raycount))*cos(phi(raycount)); 
            if resiny(raycount) == 1000; 
               raycount = raycount - 1; 
            end 
            raycount = raycount + 1; 
        end 
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    end 
 end 
  
 sizey = max(size(resiny)); 
 if sizey == raycount 
    resiny(raycount) = []; 
    resinz(raycount) = []; 
    weight(raycount) = []; 
 end 
  
clear i; 
clear j; 
  
%Now, we count the rays in the tiny squares that the resin surface is 
%discretized into. The squares are 10 micron each. The extents of the 
%resin are from -3 to +3 mm. The number of divisions will be (6/0.01 + 
1) = 601 
localresincount = zeros(601,601); 
for i = 1:1:sizey-1; 
    localy = int16(((resiny(i)+3)/0.01))+1; 
    localz = int16(((resinz(i)+3)/0.01))+1; 
    localresincount(localz,localy) = localresincount(localz,localy)+1; 
end 
 
 

raytrace.m 
 

%Function to trace a single ray from a given point in a given direction 
%Written by Ameya Limaye on May 19 2006 
  
function[y6,z6]= raytrace(x1,y1,z1,X1,Y1,Z1) 
x(1) = x1; 
y(1) = y1; 
z(1) = z1; 
X(1) = X1; 
Y(1) = Y1; 
Z(1) = Z1; 
%Inputting the system parameters 
c(1) = 0; % c is the curvature of surface 
c(2) = 0.028;  
c(3) = -0.028; 
c(4) = 0.028; 
c(5) = -0.028; 
c(6) = 0; 
t(1) = 36.65-x1; %t is the distance 
t(2) = 6.7; 
t(3) = 73.3; 
t(4) = 6.7; 
t(5) = 36.65; 
N(1) = 1; %N is the refractive index 
N(2) = 1.46; 
N(3) = 1; 
N(4) = 1.46; 
N(5) = 1; 
aperture = 1; %Aperture stop = 2mm radius 
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%Now, tracing the ray from x1,y1,z1 in direction X1, Y1, Z1 
  
i = 2; 
%Transfer equations 
e(i) = t(i-1)*X(i-1) - (x(i-1)*X(i-1) + y(i-1)*Y(i-1) + z(i-1)*Z(i-1)); 
Mx(i) = x(i-1) + e(i)*X(i-1) - t(i-1); 
Msquare(i) = x(i-1)^2 + y(i-1)^2 + z(i-1)^2 - e(i)^2 + t(i-1)^2 - 
2*t(i-1)*x(i-1); 
E(i) = sqrt(X(i-1)^2 - c(i)*(c(i)*Msquare(i) - 2*Mx(i))); 
L(i) = e(i) + (c(i)*Msquare(i) - 2*Mx(i))/(X(i-1)+E(i)); 
x(i) = x(i-1) + L(i)*X(i-1) - t(i-1); 
y(i) = y(i-1) + L(i)*Y(i-1); 
z(i) = z(i-1) + L(i)*Z(i-1); 
  
%Refarction equations 
 Edash(i) = sqrt(1- ((N(i-1)/N(i))^2) * (1-E(i)^2)); 
g(i) = Edash(i) - ((N(i-1)/N(i)))*E(i); 
X(i) = (N(i-1)/N(i))*X(i-1) - g(i)*c(i)*x(i) + g(i); 
Y(i) = (N(i-1)/N(i))*Y(i-1) - g(i)*c(i)*y(i); 
Z(i) = (N(i-1)/N(i))*Z(i-1) - g(i)*c(i)*z(i); 
  
                 
clear i; 
i = 3; 
  
%Transfer equations 
e(i) = t(i-1)*X(i-1) - (x(i-1)*X(i-1) + y(i-1)*Y(i-1) + z(i-1)*Z(i-1)); 
Mx(i) = x(i-1) + e(i)*X(i-1) - t(i-1); 
Msquare(i) = x(i-1)^2 + y(i-1)^2 + z(i-1)^2 - e(i)^2 + t(i-1)^2 - 
2*t(i-1)*x(i-1); 
E(i) = sqrt(X(i-1)^2 - c(i)*(c(i)*Msquare(i) - 2*Mx(i))); 
L(i) = e(i) + (c(i)*Msquare(i) - 2*Mx(i))/(X(i-1)+E(i)); 
x(i) = x(i-1) + L(i)*X(i-1) - t(i-1); 
y(i) = y(i-1) + L(i)*Y(i-1); 
z(i) = z(i-1) + L(i)*Z(i-1); 
  
%Refarction equations 
 Edash(i) = sqrt(1- ((N(i-1)/N(i))^2) * (1-E(i)^2)); 
g(i) = Edash(i) - ((N(i-1)/N(i)))*E(i); 
X(i) = (N(i-1)/N(i))*X(i-1) - g(i)*c(i)*x(i) + g(i); 
Y(i) = (N(i-1)/N(i))*Y(i-1) - g(i)*c(i)*y(i); 
Z(i) = (N(i-1)/N(i))*Z(i-1) - g(i)*c(i)*z(i); 
  
clear i; 
i = 4; 
  
%Transfer equations 
e(i) = t(i-1)*X(i-1) - (x(i-1)*X(i-1) + y(i-1)*Y(i-1) + z(i-1)*Z(i-1)); 
Mx(i) = x(i-1) + e(i)*X(i-1) - t(i-1); 
Msquare(i) = x(i-1)^2 + y(i-1)^2 + z(i-1)^2 - e(i)^2 + t(i-1)^2 - 
2*t(i-1)*x(i-1); 
E(i) = sqrt(X(i-1)^2 - c(i)*(c(i)*Msquare(i) - 2*Mx(i))); 
L(i) = e(i) + (c(i)*Msquare(i) - 2*Mx(i))/(X(i-1)+E(i)); 
x(i) = x(i-1) + L(i)*X(i-1) - t(i-1); 
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y(i) = y(i-1) + L(i)*Y(i-1); 
z(i) = z(i-1) + L(i)*Z(i-1); 
  
%Refarction equations 
 Edash(i) = sqrt(1- ((N(i-1)/N(i))^2) * (1-E(i)^2)); 
g(i) = Edash(i) - ((N(i-1)/N(i)))*E(i); 
X(i) = (N(i-1)/N(i))*X(i-1) - g(i)*c(i)*x(i) + g(i); 
Y(i) = (N(i-1)/N(i))*Y(i-1) - g(i)*c(i)*y(i); 
Z(i) = (N(i-1)/N(i))*Z(i-1) - g(i)*c(i)*z(i); 
  
%Check if the ray passes through the aperture stop 
if (((y(3)+y(4))/2)^2 + ((z(3)+z(4))/2)^2)<= aperture^2 
    clear i; 
    i = 5; 
  
    %Transfer equations 
    e(i) = t(i-1)*X(i-1) - (x(i-1)*X(i-1) + y(i-1)*Y(i-1) + z(i-1)*Z(i-
1)); 
    Mx(i) = x(i-1) + e(i)*X(i-1) - t(i-1); 
    Msquare(i) = x(i-1)^2 + y(i-1)^2 + z(i-1)^2 - e(i)^2 + t(i-1)^2 - 
2*t(i-1)*x(i-1); 
    E(i) = sqrt(X(i-1)^2 - c(i)*(c(i)*Msquare(i) - 2*Mx(i))); 
    L(i) = e(i) + (c(i)*Msquare(i) - 2*Mx(i))/(X(i-1)+E(i)); 
    x(i) = x(i-1) + L(i)*X(i-1) - t(i-1); 
    y(i) = y(i-1) + L(i)*Y(i-1); 
    z(i) = z(i-1) + L(i)*Z(i-1); 
  
    %Refarction equations 
     Edash(i) = sqrt(1- ((N(i-1)/N(i))^2) * (1-E(i)^2)); 
    g(i) = Edash(i) - ((N(i-1)/N(i)))*E(i); 
    X(i) = (N(i-1)/N(i))*X(i-1) - g(i)*c(i)*x(i) + g(i); 
    Y(i) = (N(i-1)/N(i))*Y(i-1) - g(i)*c(i)*y(i); 
    Z(i) = (N(i-1)/N(i))*Z(i-1) - g(i)*c(i)*z(i); 
  
    clear i; 
    i = 6; 
    %Transfer equations 
    e(i) = t(i-1)*X(i-1) - (x(i-1)*X(i-1) + y(i-1)*Y(i-1) + z(i-1)*Z(i-
1)); 
    Mx(i) = x(i-1) + e(i)*X(i-1) - t(i-1); 
    Msquare(i) = x(i-1)^2 + y(i-1)^2 + z(i-1)^2 - e(i)^2 + t(i-1)^2 - 
2*t(i-1)*x(i-1); 
    E(i) = sqrt(X(i-1)^2 - c(i)*(c(i)*Msquare(i) - 2*Mx(i))); 
    L(i) = e(i) + (c(i)*Msquare(i) - 2*Mx(i))/(X(i-1)+E(i)); 
    x(i) = x(i-1) + L(i)*X(i-1) - t(i-1); 
    y(i) = y(i-1) + L(i)*Y(i-1); 
    z(i) = z(i-1) + L(i)*Z(i-1); 
  
    x6 = x(6); 
    y6 = y(6); 
    z6 = z(6); 
else 
    x6 = 1000; 
    y6 = 1000; 
    z6 = 1000; 
end 
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clear i; 
 
 

Appendix B.2. Code to use generate pixel mapping to compute irradiance 
distribution 
 

 The name of the Matlab code which computes the irradiance distribution using the 

pixel-mapping database is “bitmap_read_database.m”. This code takes in the bitmap as 

an input and mines the irradiance distribution corresponding to every black, i.e. ‘ON’ 

pixel. These irradiance distributions are added together to obtain the irradiance 

distribution. 

bitmap_read_database.m 

%This is the code to get a bitmap and then use the Pixel Image Database 
to 
%populated the irradiance distribution. 
%Code written by Ameya on April 29th 
clear all; 
bitmap_matrix = imread('C:\Ameya\JournalPaper3\Generating 
bitmaps\layer_bitmap_GT.bmp','BMP'); 
irradiance_body = zeros(601,601); 
for i = 1:1:300 
    for j = 1:1:100 
        if bitmap_matrix(i,j) == 0 
           load (strcat('Database300.1to100\database', (int2str(i)), 
'.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
  
for i = 1:1:300 
    for j = 101:1:200 
        if (bitmap_matrix(i,j) == 0) 
           load (strcat('Database300.101to200\database', (int2str(i)), 
'.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
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    end 
end 
  
  
  
for i = 1:1:300 
    for j = 201:1:300 
        if bitmap_matrix(i,j) == 0 
           load (strcat('Database300.201to300\database', (int2str(i)), 
'.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
for i = 1:1:601; 
    for j = 1:1:601; 
        for k = 1:1:2; 
            B(i,j,k) = irradiance_body(i,j); 
        end 
    end 
end 
  
A = smooth3(smooth3(B)); 
irradiance = A(:,:,1); 
for i = 1:1:601; 
    X(i) = 10*i-10; 
end 
factor = 0.7/max(max(irradiance)); 
irradiance = irradiance*factor; 
plot(X,max(irradiance)); 
AMEYA = 100 
  
clear bitmap_matrix 
  
irradiance_strip = zeros(601,601); 
bitmap_matrix = imread('C:\Ameya\JournalPaper3\4 layer linear part 500 
layer thick_ AT EDGE\strip1.bmp','BMP'); 
for i = 1:1:300 
    for j = 1:1:100 
        if bitmap_matrix(i,j) == 0 
           load (strcat('Database300.1to100\database', (int2str(i)), 
'.', (int2str(j)), '.mat')) 
           irradiance_strip = irradiance_strip + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
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for i = 1:1:300 
    for j = 101:1:200 
        if bitmap_matrix(i,j) == 0 
           load (strcat('Database300.101to200\database', (int2str(i)), 
'.', (int2str(j)), '.mat')) 
           irradiance_strip = irradiance_strip + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
for i = 1:1:300 
    for j = 201:1:300 
        if bitmap_matrix(i,j) == 0 
           load (strcat('Database300.201to300\database', (int2str(i)), 
'.', (int2str(j)), '.mat')) 
           irradiance_strip = irradiance_strip + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
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APPENDIX C. MATLAB CODE TO IMPLEMENT INVERSE IRRADIANCE 
MODEL 
 

 In this Appendix, the Matlab code “element_micromirror_mapping” is presented. 

This code meshes the layer to be cured with 10µmX10µm squares. Then, for every 

element that is at the center of any pixel in the pixel-mapping-database, it designates the 

corresponding micro-mirror on the DMD ‘ON’. Once the micro-mirrors to be turned 

‘ON’ are known, the bitmap is generated by making every corresponding pixel black. 

 

element_micromirror_mapping.m 

%Code to map the a layer ont oa bitmap using the lement database 
%Code writen by Ameya on 3rh May 
%****************************% 
%This code takes in an element. Then, it sees if it is at the center of 
any 
%micromirror. It goes to every micromirror and sees inf the element of 
%interest is at its center. Very long, inefficient algorithm:( 
  
clear all 
load 'elements.mat' 
bitmap_matrix = imread('strip.bmp') 
bitmap = ones(300,300); 
for p = 1:1:300 
    for q = 1:1:300 
        if bitmap_matrix(p,q) == 0 
            layerelementz = (150+p); 
            layerelementy = (150+q);              
            for i = 1:1:300; 
                for j = 1:1:300;             
                    if abs(elementz(i,j)-layerelementz) < 1 & 
abs(elementy(i,j) - layerelementy) < 1 
                        bitmap(i,j) = 0; 
                    end 
                end 
            end 
        end 
    end 
end 
imwrite(bitmap,'strip_bitmap.bmp','bmp') 
 

 

 



 236

APPENDIX D. VALIDATION OF TRANSIENT LAYER CURE MODEL 
 

 In this appendix, the test layers cured to validate the transient layer cure model, 

formulated in Chapter 4 are presented. The layers are cured by supplying different 

exposures. The thicknesses of the layers cured are tabulated against the time of exposure 

and exposure  in Table 6.1.  

 Three layers were cured for each value of exposure. The layer thickness was 

measured for seven values of times of exposure. Thus, in all, 21 layers were cured. For 

15s exposure, no layer was cured, i.e. the thickness of the cured layer for 15s exposure is 

0µm. 

 These layers are cured against a glass slide. So, in the pictures, their reflection is 

also visible. The top part of the figure is the true layer, while, the bottom part is the 

reflection. 
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 Figure D. 1 Layer cured for 20s exposure: Validation layer 1 
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Figure D. 2 Layer cured for 20s exposure: Validation layer 2 
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Figure D. 3 Layer cured for 20s exposure: Validation layer 3 
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Figure D. 4 Layer cured for 25s exposure: Validation layer 1 
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Figure D. 5 Layer cured for 25s exposure: Validation layer 2 
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Figure D. 6 Layer cured for 25s exposure: Validation layer 3 
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Figure D. 7 Layer cured for 30s exposure: Validation layer 1 

 



 244

 
Figure D. 8 Layer cured for 30s exposure: Validation layer 2 
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Figure D. 9 Layer cured for 30s exposure: Validation layer 3 
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Figure D. 10 Layer cured for 35s exposure: Validation layer 1 
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Figure D. 11 Layer cured for 35s exposure: Validation layer 2 
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Figure D. 12 Layer cured for 35s exposure: Validation layer 3 
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Figure D. 13 Layer cured for 40s exposure: Validation layer 1 
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Figure D. 14 Layer cured for 40s exposure: Validation layer 2 
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Figure D. 15 Layer cured for 40s exposure: Validation layer 3 
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Figure D. 16 Layer cured for 45s exposure: Validation layer 1 
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Figure D. 17 Layer cured for 45s exposure: Validation layer 2 
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Figure D. 18 Layer cured for 45s exposure: Validation layer 3 
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Figure D. 19 Layer cured for 50s exposure: Validation layer 1 
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Figure D. 20 Layer cured for 50s exposure: Validation layer 2 
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Figure D. 21 Layer cured for 50s exposure: Validation layer 3 
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Figure D. 22 Calibration scale for validation layers (Distance shown in 1mm) 
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APPENDIX E. QUANTIFYING EFFECT OF RADICAL DIFFUSION 
 

 In this appendix, the pictures of the layers cured by supplying two discrete 

exposure doses of 25s each are presented. The variable is the time interval (called waiting 

time) allowed in between these two exposure doses. Greater the “waiting time”, greater is 

the loss of energy from the bottom surface and smaller is the thickness of the layer cured 

after the second exposure dose.  

 Experiments are conducted for 5 waiting times, of 4s, 30s, 60s, 120s, and 180s. 

Three repeat experiments are conducted for each of these waiting times. 

 
Figure E.1 Waiting time between exposures = 4s. Test layer 1 
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Figure E.2 Waiting time between exposures = 4s. Test layer 2 
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Figure E.3 Waiting time between exposures = 30s. Test layer 1 
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Figure E.4 Waiting time between exposures = 30s. Test layer 2 
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Figure E.5 Waiting time between exposures = 30s. Test layer 3 
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Figure E.6 Waiting time between exposures = 60s. Test layer 1 
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Figure E.7 Waiting time between exposures = 60s. Test layer 2 
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Figure E.8 Waiting time between exposures = 60s. Test layer 3 
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Figure E.9 Waiting time between exposures = 120s. Test layer 1 
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Figure E.10 Waiting time between exposures = 120s. Test layer 2 
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Figure E.11 Waiting time between exposures = 120s. Test layer 3 
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Figure E.12 Waiting time between exposures = 180s. Test layer 1 
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Figure E.13 Waiting time between exposures = 180s. Test layer 2 
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Figure E.14 Waiting time between exposures = 180s. Test layer 3 
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Figure E.15 Calibration scale for above layers (1 mm) 
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APPENDIX F. MATLAB CODE TO GENERATE DOWNFACING PROFILE OF A 
MULTI-LAYERED PART 
 

 The code “simulating_downfacing.m” is written to simulate the downfacing 

surface profile at the center of the four layered test part as shown in Figure 6.9. The code 

generates the irradiance distribution for the four layers using the code 

“bitmap_read_database”, as presented in Appendix B and then computes the print 

through at the center of every pixel by using the Print-through model presented in Section 

6.3. 

simulating_downfacing.m 

%Code reads bitmap and computes irradiance profile. Bitmap stored in 
%another folder as shown in the code 
  
clear all; 
bitmap_matrix = imread('C:\Ameya\JournalPaper3\4 layer linear part 500 
layer thick_ AT EDGE\layer_alongZ.bmp','BMP'); 
irradiance_body = zeros(601,601); 
for i = 1:1:300 
    for j = 1:1:100 
        if bitmap_matrix(i,j) == 0 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.1to100\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
  
for i = 1:1:300 
    for j = 101:1:200 
        if (bitmap_matrix(i,j) == 0) 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.101to200\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
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end 
  
  
  
for i = 1:1:300 
    for j = 201:1:300 
        if bitmap_matrix(i,j) == 0 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.201to300\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
for i = 1:1:601; 
    for j = 1:1:601; 
        for k = 1:1:2; 
            B(i,j,k) = irradiance_body(i,j); 
        end 
    end 
end 
  
A = smooth3(smooth3(B)); 
irradiance = A(:,:,1); 
for i = 1:1:567; 
    X(i) = 10*i; 
end 
factor = 0.7/max(max(irradiance)); 
irradiance = irradiance*factor; 
plot(X,max(irradiance)); 
  
  
%********************************************** 
  
%Code written to compute the cure depth taking into account that there 
is 
%different attenuation through a cured layer and through uncured resin 
  
%This code takes in the irradiance distribution on a resin surface. 
Then, 
%given a time of exposure, it computes the cure depth at all the points 
on 
%the resin surface. The time domain is discretized into deltat seconds. 
  
%DpL is the depth of penetration throug liquid and DpS through solid. 
  
%Code written by Ameya on June 27, 2007 
clear irradiance1; 
clear irradiance2; 
clear irradiance3; 
clear irradiance4; 
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irradiance1 = irradiance; 
for z = 600:-1:180; 
    irradiance2(z,:) = irradiance1((z-50),:);     
end 
for z = 600:-1:180; 
    irradiance3(z,:) = irradiance1((z-100),:);     
end 
for z = 600:-1:180; 
    irradiance4(z,:) = irradiance1((z-150),:);     
end 
  
%Creating the four exposure matrices 
  
clear cd; 
clear Cd; 
  
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
  
  
% Now, we have a seperate code for the four steps. 
  
%**************************************************% 
%Step on layer 1 from z = 368 to 417 
T1 = 32; 
T2 = 80; 
T3 = 80; 
T4 = 80; 
  
for z = 1:1:367; 
    cd(z) = 2000; 
end 
  
LT1 = 500; 
LT2 = 500; 
LT3 = 500; 
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
for z = 368:1:417; 
    y = 300 
    H1 = irradiance1(z,y); 
    H2 = irradiance2(z,y); 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    E1 = H1*T1; 
    E2 = H2*T2; 
    E3 = H3*T3; 
    E4 = H4*T4; 
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    PT1 = 19.649*E1-207.72-LT1; 
  
     
    EPT2 = E2 - (LT2+207.72)/19.649; %Energy seeping from 2nd layer 
    waitingtime2 = 60 + (LT2+207.72)/19.649/H2; % Total waiting time 
    k2 = 0.2629*log(waitingtime2)-0.3637; %Radical diffusion factor 
    Eb = (1-k2)*Ec; %Energy already at bottom surfacel 
    Eb2 = Eb + EPT2; %Total energy causing print through; 
    PT2 = 19.649*Eb2-207.72; 
    if PT2 < 0 
       PT2 = 0; 
    end 
     
    EPT3 = E3 - (LT3+207.72)/19.649; %Energy seeping from 3rd layer 
    waitingtime3 = 60 + (LT3+207.72)/19.649/H3; % Total waiting time 
    k3 = 0.2629*log(waitingtime3)-0.3637; %Radical diffusion factor 
    Eb = (1-k3)*Ec; %Energy already at bottom surfacel 
    Eb3 = Eb + EPT3; %Total energy causing print through; 
    PT3 = 19.649*Eb3-207.72; 
    if PT3 < 0 
        PT3 = 0; 
    end 
     
    EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
    waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting time 
    k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
    Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
    Eb4 = Eb + EPT4; %Total energy causing print through; 
    PT4 = 19.649*Eb4-207.72; 
    if PT4 < 0 
        PT4 = 0; 
    end 
     
    cd(z) = LT1 + LT2 + LT3 + LT4 + PT1 + PT2 + PT3 + PT4; 
end 
         
%Step on layer 1 
finished**********************************************************% 
  
  
%**************************************************% 
%Step on layer 2 from z = 418 to 467 
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
T2 = 60; 
T3 = 80; 
T4 = 80; 
  
  
LT2 = 500; 
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LT3 = 500; 
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
for z = 418:1:467; 
    y = 300; 
    H2 = irradiance2(z,y); 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    E2 = H2*T2; 
    E3 = H3*T3; 
    E4 = H4*T4; 
     
    PT2 = 19.649*E2-207.72-LT2; 
    
    EPT3 = E3 - (LT3+207.72)/19.649; %Energy seeping from 3rd layer 
    waitingtime3 = 60 + (LT3+207.72)/19.649/H3; % Total waiting time 
    k3 = 0.2629*log(waitingtime3)-0.3637; %Radical diffusion factor 
    Eb = (1-k3)*Ec; %Energy already at bottom surfacel 
    Eb3 = Eb + EPT3; %Total energy causing print through; 
    PT3 = 19.649*Eb3-207.72; 
    if PT3 < 0 
        PT3 = 0; 
    end 
     
    EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
    waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting time 
    k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
    Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
    Eb4 = Eb + EPT4; %Total energy causing print through; 
    PT4 = 19.649*Eb4-207.72; 
    if PT4 < 0 
       PT4 = 0; 
    end 
     
    cd(z) = LT2 + LT3 + LT4 + PT2 + PT3 + PT4; 
end 
  
%Step on layer 2 
finished**********************************************************% 
  
%**************************************************% 
%Step on layer 3 from z = 468 to 517 
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
T3 = 65; 
T4 = 80; 
  
  
LT3 = 500; 
LT4 = 500; 
DpL = 190; 
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Ec = 9.81; 
for z = 468:1:517; 
    y = 300; 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    E3 = H3*T3; 
    E4 = H4*T4; 
     
    PT3 = 19.649*E3-207.72-LT3; 
     
    EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
    waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting time 
    k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
    Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
    Eb4 = Eb + EPT4; %Total energy causing print through; 
    PT4 = 19.649*Eb4-207.72; 
    if PT4 < 0 
       PT4 = 0; 
    end 
     
    cd(z) = LT3 + LT4 + PT3 + PT4; 
end 
  
%Step on layer 3 
finished**********************************************************% 
  
%**************************************************% 
%Step on layer 4 from z = 518 to 567 
  
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
  
T4 = 84; 
  
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
for z = 518:1:567; 
    y = 300; 
    H4 = irradiance4(z,y); 
    E4 = H4*T4; 
     
    PT4 = 19.649*E4-207.72-LT4; 
  
    cd(z) = LT4 + PT4; 
end 
%Step on layer 4 
finished**********************************************************% 
  
for i = 1:1:567; 
    Y(i) = X(i)-4170+2500; 
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end 
Cd = 2000-cd 
plot(Y,Cd); 
  
axis equal 
line(1500:4000,2000) 
line(1500:4000,1500) 
line(4000,1500:2000) 
line(1500,1500:2000) 
line(1000:3500,1500) 
line(1000:3500,1000) 
line(3500,1000:1500) 
line(1000,1000:1500) 
line(500:3000,1000) 
line(500:3000,500) 
line(3000,500:1000) 
line(500,500:1000) 
line(0:2500,500) 
line(0:2500,0) 
line(2500,0:500) 
line(0,0:500) 
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APPENDIX G. MATLAB CODE USED TO IMPLEMENT COMPENSATION 
ZONE APPROACH 
 

 The code “simulating_downfacing_inverse_design.m” is used to implement the 

Compensation zone approach. This code computes the time of exposure of every 

micromirror on the overhanging portion of every layer in order to obtain the exact linear 

down facing surface on the test part in Figure 6.9. 

simulating_downfacing_inverse_design.m 

%Code reads bitmap and computes irradiance profile. Bitmap stored in 
%another folder as shown in the code 
  
clear all; 
bitmap_matrix = imread('C:\Ameya\JournalPaper3\4 layer linear part 500 
layer thick_ AT EDGE\layer_alongZ.bmp','BMP'); 
irradiance_body = zeros(601,601); 
for i = 1:1:300 
    for j = 1:1:100 
        if bitmap_matrix(i,j) == 0 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.1to100\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
  
for i = 1:1:300 
    for j = 101:1:200 
        if (bitmap_matrix(i,j) == 0) 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.101to200\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
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for i = 1:1:300 
    for j = 201:1:300 
        if bitmap_matrix(i,j) == 0 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.201to300\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
for i = 1:1:601; 
    for j = 1:1:601; 
        for k = 1:1:2; 
            B(i,j,k) = irradiance_body(i,j); 
        end 
    end 
end 
  
A = smooth3(smooth3(B)); 
irradiance = A(:,:,1); 
for i = 1:1:567; 
    X(i) = 10*i; 
end 
factor = 0.7/max(max(irradiance)); 
irradiance = irradiance*factor; 
%plot(X,max(irradiance)); 
  
  
%********************************************** 
  
%Code written to compute the cure depth taking into account that there 
is 
%different attenuation through a cured layer and through uncured resin 
  
%This code takes in the irradiance distribution on a resin surface. 
Then, 
%given a time of exposure, it computes the cure depth at all the points 
on 
%the resin surface. The time domain is discretized into deltat seconds. 
  
%DpL is the depth of penetration throug liquid and DpS through solid. 
  
%Code written by Ameya on June 27, 2007 
clear irradiance1; 
clear irradiance2; 
clear irradiance3; 
clear irradiance4; 
  
  
irradiance1 = irradiance; 
for z = 600:-1:180; 
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    irradiance2(z,:) = irradiance1((z-50),:);     
end 
for z = 600:-1:180; 
    irradiance3(z,:) = irradiance1((z-100),:);     
end 
for z = 600:-1:180; 
    irradiance4(z,:) = irradiance1((z-150),:);     
end 
  
%Creating the four exposure matrices 
  
clear cd; 
clear Cd; 
  
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
  
  
% Now, we have a seperate code for the four steps. 
  
%**************************************************% 
%Step on layer 1 from z = 368 to 417 
T1 = 80; 
T2 = 80; 
T3 = 80; 
T4 = 80; 
  
for z = 1:1:392; 
    cd(z) = 2000; 
     
end 
  
LT1 = 500; 
LT2 = 500; 
LT3 = 500; 
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
  
for z = 168:1:392; 
    Time1(z) = 80; 
end 
    
for z = 418:1:567; 
    Time1(z) = 0; 
end 
  
for z = 393:1:417; 
    y = 300 
    T1 = 80 
    fun = 3000; 
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    target = 2000-10*(z-392); 
    H1 = irradiance1(z,y); 
    H2 = irradiance2(z,y); 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    while abs(fun - target)> 10; 
        E1 = H1*T1; 
        E2 = H2*T2; 
        E3 = H3*T3; 
        E4 = H4*T4; 
  
        PT1 = 19.649*E1-207.72-LT1; 
         
        EPT2 = E2 - (LT2+207.72)/19.649; %Energy seeping from 2nd layer 
        waitingtime2 = 60 + (LT2+207.72)/19.649/H2; % Total waiting 
time 
        k2 = 0.2629*log(waitingtime2)-0.3637; %Radical diffusion factor 
        Eb = (1-k2)*Ec; %Energy already at bottom surfacel 
        Eb2 = Eb + EPT2; %Total energy causing print through; 
        PT2 = 19.649*Eb2-207.72; 
        if PT2 < 0 
           PT2 = 0; 
        end 
  
        EPT3 = E3 - (LT3+207.72)/19.649; %Energy seeping from 3rd layer 
        waitingtime3 = 60 + (LT3+207.72)/19.649/H3; % Total waiting 
time 
        k3 = 0.2629*log(waitingtime3)-0.3637; %Radical diffusion factor 
        Eb = (1-k3)*Ec; %Energy already at bottom surfacel 
        Eb3 = Eb + EPT3; %Total energy causing print through; 
        PT3 = 19.649*Eb3-207.72; 
        if PT3 < 0 
            PT3 = 0; 
        end 
  
        EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
        waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting 
time 
        k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
        Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
        Eb4 = Eb + EPT4; %Total energy causing print through; 
        PT4 = 19.649*Eb4-207.72; 
        if PT4 < 0 
            PT4 = 0; 
        end 
     
        fun = LT1 + LT2 + LT3 + LT4 + PT1 + PT2 + PT3 + PT4; 
        if fun>target; 
            T1 = T1-1; 
        end 
        if fun<target; 
            T1 = T1+1; 
        end 
    end 
Time1(z) = T1; 
cd(z) = fun; 
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end 
         
%Step on layer 1 
finished**********************************************************% 
  
  
%**************************************************% 
%Step on layer 2 from z = 418 to 467 
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
T2 = 80; 
T3 = 80; 
T4 = 80; 
  
  
LT2 = 500; 
LT3 = 500; 
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
  
for z = 218:1:417; 
    Time2(z) = 80; 
end 
  
for z = 468:1:567; 
    Time2(z) = 0; 
end 
  
for z = 418:1:467; 
    y = 300; 
    T2 = 80; 
    fun = 3000; 
    target = 2000-10*(z-392); 
    H2 = irradiance2(z,y); 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    while abs(fun-target)>10; 
         
        E2 = H2*T2; 
        E3 = H3*T3; 
        E4 = H4*T4; 
  
        PT2 = 19.649*E2-207.72-LT2; 
  
        EPT3 = E3 - (LT3+207.72)/19.649; %Energy seeping from 3rd layer 
        waitingtime3 = 60 + (LT3+207.72)/19.649/H3; % Total waiting 
time 
        k3 = 0.2629*log(waitingtime3)-0.3637; %Radical diffusion factor 
        Eb = (1-k3)*Ec; %Energy already at bottom surfacel 
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        Eb3 = Eb + EPT3; %Total energy causing print through; 
        PT3 = 19.649*Eb3-207.72; 
        if PT3 < 0 
            PT3 = 0; 
        end 
  
        EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
        waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting 
time 
        k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
        Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
        Eb4 = Eb + EPT4; %Total energy causing print through; 
        PT4 = 19.649*Eb4-207.72; 
        if PT4 < 0 
           PT4 = 0; 
        end 
  
        fun = LT2 + LT3 + LT4 + PT2 + PT3 + PT4; 
        if fun > target; 
            T2 = T2-1; 
        end 
        if fun < target; 
            T2 = T2 + 1; 
        end 
    end 
    Time2(z) = T2; 
    cd(z) = fun; 
end 
  
%Step on layer 2 
finished**********************************************************% 
  
%**************************************************% 
%Step on layer 3 from z = 468 to 517 
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
T3 = 80; 
T4 = 80; 
  
  
LT3 = 500; 
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
  
for z = 268:1:467; 
    Time3(z) = 80; 
end 
  
for z = 518:1:567; 
    Time3(z) = 0; 
end 



 287

  
for z = 468:1:517; 
    y = 300; 
    T3 = 80; 
    fun = 3000; 
    target = 2000-10*(z-392); 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    while abs(fun-target)>10; 
        E3 = H3*T3; 
        E4 = H4*T4; 
  
        PT3 = 19.649*E3-207.72-LT3; 
  
        EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
        waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting 
time 
        k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
        Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
        Eb4 = Eb + EPT4; %Total energy causing print through; 
        PT4 = 19.649*Eb4-207.72; 
        if PT4 < 0 
           PT4 = 0; 
        end 
  
        fun = LT3 + LT4 + PT3 + PT4; 
         
        if fun > target; 
            T3 = T3 -1; 
        end 
        if fun < target; 
            T3 = T3 + 1; 
        end 
    end 
    Time3(z) = T3; 
    cd(z) = fun; 
               
end 
  
%Step on layer 3 
finished**********************************************************% 
  
%**************************************************% 
%Step on layer 4 from z = 518 to 567 
  
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
  
T4 = 80; 
  
LT4 = 500; 
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DpL = 190; 
Ec = 9.81; 
  
for z = 317:1:517; 
    Time4(z) = 80; 
end 
  
for z = 518:1:567; 
    y = 300; 
    fun = 3000; 
    target = 2000-10*(z-392); 
    while abs(fun-target) > 10; 
        H4 = irradiance4(z,y); 
        E4 = H4*T4; 
  
        PT4 = 19.649*E4-207.72-LT4; 
  
        fun = LT4 + PT4; 
        if fun > target; 
            T4 = T4 - 1; 
        end 
        if fun < target; 
            T4 = T4 + 1; 
        end 
    end 
    Time4(z) = T4; 
    cd(z) = fun; 
end 
%Step on layer 4 
finished**********************************************************% 
  
for i = 1:1:567; 
    Y(i) = X(i)-4170+2500; 
end 
Cd = 2000-cd 
plot(Y,Cd); 
  
axis equal 
line(1500:4000,2000) 
line(1500:4000,1500) 
line(4000,1500:2000) 
line(1500,1500:2000) 
line(1000:3500,1500) 
line(1000:3500,1000) 
line(3500,1000:1500) 
line(1000,1000:1500) 
line(500:3000,1000) 
line(500:3000,500) 
line(3000,500:1000) 
line(500,500:1000) 
line(0:2500,500) 
line(0:2500,0) 
line(2500,0:500) 
line(0,0:500) 
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APPENDIX H. MATLAB CODE TO SIMULATE THE DOWN FACING 
SURFACE PROFILE OF A PART WITH THE OVERHANGING PORTION 
DISCRETIZED INTO TWO REGIONS 
 

 In the Matlab code “simulating_downfacing_discretized.m”, profile of the part 

that would be cured for the times of exposure for every layer as mentioned in Section 

6.5.2 is presented. 

Simulating_downfacing_discretized.m 

%Code reads bitmap and computes irradiance profile. Bitmap stored in 
%another folder as shown in the code 
  
clear all; 
bitmap_matrix = imread('C:\Ameya\JournalPaper3\4 layer linear part 500 
layer thick_ AT EDGE\layer_alongZ.bmp','BMP'); 
irradiance_body = zeros(601,601); 
for i = 1:1:300 
    for j = 1:1:100 
        if bitmap_matrix(i,j) == 0 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.1to100\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
  
for i = 1:1:300 
    for j = 101:1:200 
        if (bitmap_matrix(i,j) == 0) 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.101to200\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
  
  
for i = 1:1:300 
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    for j = 201:1:300 
        if bitmap_matrix(i,j) == 0 
           load 
(strcat('C:\Ameya\JournalPaper3\Database300.201to300\database', 
(int2str(i)), '.', (int2str(j)), '.mat')) 
           irradiance_body = irradiance_body + database; 
           clear database; 
           clear Z; 
           clear Y; 
        end 
    end 
end 
  
for i = 1:1:601; 
    for j = 1:1:601; 
        for k = 1:1:2; 
            B(i,j,k) = irradiance_body(i,j); 
        end 
    end 
end 
  
A = smooth3(smooth3(B)); 
irradiance = A(:,:,1); 
for i = 1:1:567; 
    X(i) = 10*i; 
end 
factor = 0.7/max(max(irradiance)); 
irradiance = irradiance*factor; 
plot(X,max(irradiance)); 
  
  
%********************************************** 
  
%Code written to compute the cure depth taking into account that there 
is 
%different attenuation through a cured layer and through uncured resin 
  
%This code takes in the irradiance distribution on a resin surface. 
Then, 
%given a time of exposure, it computes the cure depth at all the points 
on 
%the resin surface. The time domain is discretized into deltat seconds. 
  
%DpL is the depth of penetration throug liquid and DpS through solid. 
  
%Code written by Ameya on June 27, 2007 
clear irradiance1; 
clear irradiance2; 
clear irradiance3; 
clear irradiance4; 
  
  
irradiance1 = irradiance; 
for z = 600:-1:180; 
    irradiance2(z,:) = irradiance1((z-50),:);     
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end 
for z = 600:-1:180; 
    irradiance3(z,:) = irradiance1((z-100),:);     
end 
for z = 600:-1:180; 
    irradiance4(z,:) = irradiance1((z-150),:);     
end 
  
%Creating the four exposure matrices 
  
clear cd; 
clear Cd; 
  
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
  
  
% Now, we have a seperate code for the four steps. 
  
%**************************************************% 
%Step on layer 1 from z = 368 to 417 
  
T2 = 80; 
T3 = 80; 
T4 = 80; 
  
for z = 1:1:392; 
    cd(z) = 2000; 
end 
  
LT1 = 500; 
LT2 = 500; 
LT3 = 500; 
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
for z = 393:1:417; 
    T1 = 13.3 
    Time1(z) = T1; 
    y = 300 
    H1 = irradiance1(z,y); 
    H2 = irradiance2(z,y); 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    E1 = H1*T1; 
    E2 = H2*T2; 
    E3 = H3*T3; 
    E4 = H4*T4; 
     
    PT1 = 19.649*E1-207.72-LT1; 
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    EPT2 = E2 - (LT2+207.72)/19.649; %Energy seeping from 2nd layer 
    waitingtime2 = 60 + (LT2+207.72)/19.649/H2; % Total waiting time 
    k2 = 0.2629*log(waitingtime2)-0.3637; %Radical diffusion factor 
    Eb = (1-k2)*Ec; %Energy already at bottom surfacel 
    Eb2 = Eb + EPT2; %Total energy causing print through; 
    PT2 = 19.649*Eb2-207.72; 
    if PT2 < 0 
       PT2 = 0; 
    end 
     
    EPT3 = E3 - (LT3+207.72)/19.649; %Energy seeping from 3rd layer 
    waitingtime3 = 60 + (LT3+207.72)/19.649/H3; % Total waiting time 
    k3 = 0.2629*log(waitingtime3)-0.3637; %Radical diffusion factor 
    Eb = (1-k3)*Ec; %Energy already at bottom surfacel 
    Eb3 = Eb + EPT3; %Total energy causing print through; 
    PT3 = 19.649*Eb3-207.72; 
    if PT3 < 0 
        PT3 = 0; 
    end 
     
    EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
    waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting time 
    k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
    Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
    Eb4 = Eb + EPT4; %Total energy causing print through; 
    PT4 = 19.649*Eb4-207.72; 
    if PT4 < 0 
        PT4 = 0; 
    end 
     
    cd(z) = LT1 + LT2 + LT3 + LT4 + PT1 + PT2 + PT3 + PT4; 
end 
         
  
%Step on layer 1 
finished**********************************************************% 
  
  
%**************************************************% 
%Step on layer 2 from z = 418 to 467 
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
  
T3 = 80; 
T4 = 80; 
  
  
LT2 = 500; 
LT3 = 500; 
LT4 = 500; 
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DpL = 190; 
Ec = 9.81; 
for z = 418:1:442; 
    T2 = 40.1; 
    Time2(z) = T2; 
    y = 300; 
    H2 = irradiance2(z,y); 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    E2 = H2*T2; 
    E3 = H3*T3; 
    E4 = H4*T4; 
     
    PT2 = 19.649*E2-207.72-LT2; 
    
    EPT3 = E3 - (LT3+207.72)/19.649; %Energy seeping from 3rd layer 
    waitingtime3 = 60 + (LT3+207.72)/19.649/H3; % Total waiting time 
    k3 = 0.2629*log(waitingtime3)-0.3637; %Radical diffusion factor 
    Eb = (1-k3)*Ec; %Energy already at bottom surfacel 
    Eb3 = Eb + EPT3; %Total energy causing print through; 
    PT3 = 19.649*Eb3-207.72; 
    if PT3 < 0 
        PT3 = 0; 
    end 
     
    EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
    waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting time 
    k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
    Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
    Eb4 = Eb + EPT4; %Total energy causing print through; 
    PT4 = 19.649*Eb4-207.72; 
    if PT4 < 0 
       PT4 = 0; 
    end 
     
    cd(z) = LT2 + LT3 + LT4 + PT2 + PT3 + PT4; 
end 
  
for z = 443:1:467; 
    T2 = 26.3; 
    Time2(z) = T2; 
    y = 300; 
    H2 = irradiance2(z,y); 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    E2 = H2*T2; 
    E3 = H3*T3; 
    E4 = H4*T4; 
     
    PT2 = 19.649*E2-207.72-LT2; 
    
    EPT3 = E3 - (LT3+207.72)/19.649; %Energy seeping from 3rd layer 
    waitingtime3 = 60 + (LT3+207.72)/19.649/H3; % Total waiting time 
    k3 = 0.2629*log(waitingtime3)-0.3637; %Radical diffusion factor 
    Eb = (1-k3)*Ec; %Energy already at bottom surfacel 
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    Eb3 = Eb + EPT3; %Total energy causing print through; 
    PT3 = 19.649*Eb3-207.72; 
    if PT3 < 0 
        PT3 = 0; 
    end 
     
    EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
    waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting time 
    k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
    Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
    Eb4 = Eb + EPT4; %Total energy causing print through; 
    PT4 = 19.649*Eb4-207.72; 
    if PT4 < 0 
       PT4 = 0; 
    end 
     
    cd(z) = LT2 + LT3 + LT4 + PT2 + PT3 + PT4; 
end 
%Step on layer 2 
finished**********************************************************% 
  
%**************************************************% 
%Step on layer 3 from z = 468 to 517 
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
  
T4 = 80; 
  
  
LT3 = 500; 
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
for z = 468:1:492; 
    T3 = 56.4; 
    Time3(z) = T3; 
    y = 300; 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    E3 = H3*T3; 
    E4 = H4*T4; 
     
    PT3 = 19.649*E3-207.72-LT3; 
     
    EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
    waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting time 
    k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
    Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
    Eb4 = Eb + EPT4; %Total energy causing print through; 
    PT4 = 19.649*Eb4-207.72; 
    if PT4 < 0 
       PT4 = 0; 
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    end 
     
    cd(z) = LT3 + LT4 + PT3 + PT4; 
end 
  
for z = 493:1:517; 
    T3 = 46.8; 
    Time3(z) = T3; 
    y = 300; 
    H3 = irradiance3(z,y); 
    H4 = irradiance4(z,y); 
    E3 = H3*T3; 
    E4 = H4*T4; 
     
    PT3 = 19.649*E3-207.72-LT3; 
     
    EPT4 = E4 - (LT4+207.72)/19.649; %Energy seeping from 4th layer 
    waitingtime4 = 60 + (LT4+207.72)/19.649/H4; % Total waiting time 
    k4 = 0.2629*log(waitingtime4)-0.3637; %Radical diffusion factor 
    Eb = (1-k4)*Ec; %Energy already at bottom surfacel 
    Eb4 = Eb + EPT4; %Total energy causing print through; 
    PT4 = 19.649*Eb4-207.72; 
    if PT4 < 0 
       PT4 = 0; 
    end 
     
    cd(z) = LT3 + LT4 + PT3 + PT4; 
end 
%Step on layer 3 
finished**********************************************************% 
  
%**************************************************% 
%Step on layer 4 from z = 518 to 567 
  
clear T1; 
clear T2; 
clear T3; 
clear T4; 
  
  
  
  
LT4 = 500; 
DpL = 190; 
Ec = 9.81; 
for z = 518:1:542; 
    T4 = 71.8; 
    Time4(z) = T4; 
    y = 300; 
    H4 = irradiance4(z,y); 
    E4 = H4*T4; 
     
    PT4 = 19.649*E4-207.72-LT4; 
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    cd(z) = LT4 + PT4; 
end 
  
for z = 543:1:567; 
    T4 = 57.4; 
    Time4(z) = T4; 
    y = 300; 
    H4 = irradiance4(z,y); 
    E4 = H4*T4; 
     
    PT4 = 19.649*E4-207.72-LT4; 
  
    cd(z) = LT4 + PT4; 
end 
%Step on layer 4 
finished**********************************************************% 
  
for i = 1:1:567; 
    Y(i) = X(i)-4170+2500; 
end 
Cd = 2000-cd 
plot(Y,Cd); 
  
axis equal 
line(1500:4000,2000) 
line(1500:4000,1500) 
line(4000,1500:2000) 
line(1500,1500:2000) 
line(1000:3500,1500) 
line(1000:3500,1000) 
line(3500,1000:1500) 
line(1000,1000:1500) 
line(500:3000,1000) 
line(500:3000,500) 
line(3000,500:1000) 
line(500,500:1000) 
line(0:2500,500) 
line(0:2500,0) 
line(2500,0:500) 
line(0,0:500) 
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APPENDIX I. MATLAB CODE TO IMPLEMENT ROSEN’S GRADIENT 
PROJECTION ALGORITHM TO OPTIMIZE THE DEVIATION FUNCTION OF 
THE SLICING COMPROMISE DSP 
 

 In the Matlab code “gradient_projection.m”, an exhaustive search across the 

entire range of the possible number of layers, from 3 to 30 is performed. For every 

number of layers, the gradient projection method is executed as explained in Chapter 7. 

The Matlab code “f.m” computes the value of the deviation function. “f.m” is called as a 

function from the code “gradient_pojection.m”. 

gradient_projection.m 

%Rosens gradient projectin method to solve the slicing optimization 
problem 
%Written on 15th September 2007 
  
clear all; 
  
%Calculating the projection matrix 
for n = 3:1:30; 
   
     
    for i = 1:1:n; 
         
       B(i) = 1; 
    end 
    clear i; 
    P = eye(n)- transpose(B)*(inv(B*transpose(B)))*B; 
  
    %Calculating delf 
     
    for i = 1:1:n; 
       xstart(i) = 1800/n; 
    end 
  
  
     
    clear i; 
    direction = [100,100]; 
    clear count; 
    count = 1; 
    while (sum(abs(direction))>1e-5 & count < 100); 
       direction1 = direction; 
       clear direction; 
       Z = f(xstart); 
       for i = 1:1:n; 
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          xstart1 = xstart; 
          xstart1(i) = xstart(i) + 0.1; 
          Z1 = f(xstart1); 
          delf(i) = Z1-Z; 
          clear xstart1; 
       end 
       clear i; 
       delf = transpose(delf); 
       d0 = P*delf; 
       direction = d0; 
       d0 = -d0; 
       maxd0 = max(abs(d0)); 
       if maxd0>0; 
           d0 = d0/maxd0; 
           alpha = 2; 
           while alpha >=(1/4096) 
                xstart1 = xstart + alpha*transpose(d0); 
                if f(xstart1) < f(xstart) 
                   xstart = xstart1;  
                else 
                    alpha = alpha/2; 
                end 
           end 
       end 
        clear delf; 
        count = count + 1; 
    end 
        n 
        xstart 
        f(xstart) 
end 
 

f.m 

%Here, the function f is defined 
function Z = f(x) 
  
%Evaluating delta and d1plus 
for count1 = 2:1:max(size(x)); 
    sum1 = 0; 
    sum2 = 0; 
    for i = 1:1:count1; 
        sum1 = sum1 + x(i); 
    end 
    clear i; 
    for i = 1:1:count1-1; 
        sum2 = sum2 + x(i); 
    end 
  
    if  sum1 <= 1200; 
        r1 = ((1200-sum1)^2)/7200 + 400; 
    end 
    if sum1 >1200; 
        r1 = -((sum1-1200)^2)/1200 + 400; 
    end 
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    if  sum2 <= 1199; 
        r2 = ((1200-sum2)^2)/7200 + 400; 
    end 
    if sum2 >1200; 
        r2 = -((sum2-1200)^2)/1200 + 400; 
    end 
    deltar(count1) = abs(r1-r2); 
    theta(count1) = atan(deltar(count1)/x(count1)); 
    delta(count1) = x(count1)*sin(theta(count1)); 
end 
theta1 = atan(abs(((1200-x(1))^2/7200-200)/x(1))); 
delta1 = abs((x(1)*sin(theta1))); 
Max1Delta = max(delta); 
MaxDelta = max(Max1Delta, delta1); 
d1plus = (MaxDelta - 40)/40; 
if d1plus < 0; 
    d1plus = 0; 
end 
clear count1; 
  
%Now, evaluating the build time 
BT = 0; 
for i = 1:1:max(size(x)) 
       Ttrans = 10; 
       Tsettle = 30000/x(i); 
       Texp = ((x(i)+40)/19.172+10.5)/0.7; 
       BT = BT + Ttrans + Tsettle + Texp; 
       clear Ttrans; 
       clear Tsettle; 
       clear Texp; 
end 
d2plus = (BT-4200)/4200; 
  
if d2plus < 0; 
    d2plus = 0; 
end 
%Evauating the penalty function 
penalty = 0; 
for i = 1:1:max(size(x)); 
    if x(i) - 600 < 0; 
        temp1 = 0; 
    else 
        temp1 = x(i) - 600; 
    end 
    if 60-x(i) < 0; 
        temp2 = 0; 
    else  
        temp2 = 60-x(i); 
    end 
    penalty = penalty + temp1 + temp2; 
    clear temp1; 
    clear temp2; 
end 
  
Z = 0*d1plus + 1*d2plus + 1000000*penalty; 
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