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SUMMARY 
 
 
 

The objective of this research is the development of an electrically active 

microneedle array that can deliver biomolecules such as DNA and drugs to epidermal 

cells by means of electroporation. Microneedles are currently used for painless 

transdermal drug delivery, as reported in the literature [1, 2]. Properly metallized 

microneedles could serve as microelectrodes essential for electroporation. Furthermore, 

the close needle-to-needle spacing of microneedle electrodes provides the advantage of 

utilizing reduced voltage, which is essential for safety as well as portable applications, 

while maintaining the large electric fields required for electroporation. Therefore, 

microneedle arrays can potentially be used as part of a minimally invasive, highly-

localized electroporation system for cells in the epidermis layer of the skin. 

This research consists of three parts: development of the 3-D microfabrication 

technology to create the microneedle array, fabrication and characterization of the 

microneedle array, and the electroporation studies performed with the microneedle array. 

A 3-D fabrication process was developed to produce a microneedle array using an 

inclined UV exposure technique combined with micromolding technology, potentially 

enabling low cost mass-manufacture. The developed technology is also capable of 

fabricating 3-D microstructures of various heights using a single mask.  

In order to achieve electrical functionality in the fabricated microneedle array, 

metallization techniques such as laser ablation and metal transfer were exploited. To 

create electrical interconnects between the device and the outer electronics, holes created 

by laser drilling were filled with conductive materials to realize the backside contacts 



 xvi

essential for microneedle functionality. The fabricated microneedle array was then tested 

to demonstrate its feasibility for through-skin electrical and mechanical functionality 

using a skin insertion test. It was found that the microneedles were able to penetrate skin 

without breakage. To study the electrical properties of the array, a finite element 

simulation was performed to examine the electric field distribution. From these 

simulation results, a predictive model was constructed to estimate the effective volume 

for electroporation. Finally, studies to determine hemoglobin release from bovine red 

blood cells (RBC) and the delivery of molecules such as calcein and bovine serum 

albumin (BSA) into human prostate cancer cells were used to verify the electrical 

functionality of this device. 

This work established that this device can be used to lyse RBC and to deliver 

molecules, e.g. calcein, into cells, thus supporting our contention that this metallized 

microneedle array can be used to perform electroporation at reduced voltage. Further 

studies to show efficacy in skin should now be performed. 
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CHAPTER 1 

INTRODUCTION 
 
 
 

Recently, microstructures for biological and biomedical applications have become a 

highly promising research area of microelectromechanical systems (MEMS). Micro-scale 

devices for biological/biomedical applications are often referred to “BioMEMS” and can 

be used for a variety of applications such as biosensors [3-8], micro total analysis systems 

(μTAS) [9-14], neural prostheses [15-18], scaffolds for cell growth [19-21], and drug 

delivery systems [2, 22-25]. The miniaturization of conventional devices used for clinical 

or laboratory purposes not only offers a way to reduce manufacturing costs, but also 

minimizes reagent volumes, increases sensitivity, increases ease of implantation, and 

provides minimal disturbance and discomfort to patients. 

Microsystems are attractive drug delivery devices because many problems of 

conventional drug delivery techniques, which rely on pills and injections, can be 

potentially overcome by these means. The limitations of conventional drug delivery 

techniques, such as loss of drug due to gastrointestinal drug degradation and pain related 

to intramuscular and intravenous injections, can be potentially overcome by 

microfabricated drug delivery devices. In drug delivery, it is desired to deliver precise 

quantities of a particular drug at the proper time and within proximity to the treatment 

site. For example, timed and pulsatile release of a drug at a specific site can be realized 

by an implantable drug delivery microsystem, and minimally invasive, painless injection 

of a drug can be achieved by microneedle arrays. 
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Using recent developments in biotechnology, new formulations of drugs based on 

proteins or DNA have been created. The administration of such drugs through 

conventional approaches such as pills and injection are often not suitable; therefore these 

therapies require an alternative means for systematic administration. Recently, skin has 

attracted considerable interest as an alternative pathway for drug delivery. The 

administration of drugs through the skin can eliminate degradation in the gastrointestinal 

tract, an occurrence associated with oral delivery; as well as reduce the pain and 

inconvenience of intravenous injection. 

Skin is composed of two main layers, the epidermis and the dermis. The epidermis 

acts as a physical barrier which is responsible for the prevention of desiccation and 

mechanical agitation. The outermost layer of the epidermis is called the stratum corneum, 

which consists mainly of keratin and is the rate-limiting barrier to transdermal delivery. 

The dermis acts to supply blood to the epidermis, and mediates thermoregulation and 

immune surveillance. In the stratum granuloma, a deep layer of the epidermis, there is a 

hydrophobic layer made up of various lipids important for the retention of water. These 

lipids also have bacterial and fungal static properties and may serve a role in keeping 

external compounds from entering the deeper layers of the skin [26].  
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Figure 1.1 Anatomy of human skin, reproduced from [27] 
 

 

Skin has attractive gene transfer properties because skin is easily accessible, and 

has a large pool of antigen presenting cells (APCs) that can process and present the 

antigen to the appropriate lymphocytes efficiently. In addition, epidermal cells slough off 

after a relatively short life span, thereby eliminating the bulk of the foreign DNA from 

the patient’s body. This may help to lower the risk of negative long-term effects of 

transfecting cells with foreign DNA. However, skin is a difficult target tissue due to the 

existence of the stratum corneum, a layer of dead tissue protecting the living cells 

underneath.  
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Several methods of transferring genes across the stratum corneum to the epidermis 

have been proposed. These include intradermal injection of naked DNA [28], ballistic 

particle bombardment using a gene gun [29], jet injection [30], puncture-mediated 

transfer [31], tape stripping [32], topical application of viral particles [33], and liposome 

entrapped DNA [34]. However, these methods are still inefficient. Recently, it has been 

reported that skin-targeted DNA vaccine delivery using electroporation is quite promising 

[35, 36], and could provide an alternative means for DNA vaccine delivery to a variety of 

cell types. Target cells of interest include keratinocytes, Langerhans cells (LHC), and 

dendritic cells (DC), which are located in the two main areas of the skin, the epidermis 

and the dermis. After maturation, the LHC, found mainly in the epidermis, and the 

dermal DC, found mainly in the dermis, can migrate to local lymph nodes where 

presentation of antigens to T cells can occur and initiate a variety of immunological 

responses [37]. 

The objective of this research is to develop a microdevice for delivering 

biomolecules such as DNA into the skin by means of electroporation. The basic 

requirements of the device include: 1) penetrating the stratum corneum layer, and 2) 

providing an electrical pathway to generate an electric field. In addition, the device 

should provide a means for reducing pain during injection and alleviating tissue burning 

during applying an electric field, two issues that plague traditional therapies. One 

promising approach for satisfying these requirements is to implement electrical 

functionality on a microneedle array. A properly metallized microneedle array can 

provide minimally invasive, painless insertion into skin and can act as an electrode. Due 

to the shallow insertion depth of the microneedles, pain caused during application of an 
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electric field due to disturbance of the nerves can also be minimized. In addition, the 

voltage required for electroporation can be reduced due to the small size scale of the 

device, avoiding the need for a high voltage source, which is not suitable for portable 

applications, as well as potentially enhancing overall safety. 

In Chapter 2, an overview of electroporation and the fabrication technologies of 

microneedles are presented. Fabrication technologies for 3-D metal-patterned 

microstructures have been developed to achieve the goal of this research, and the details 

are discussed in Chapter 3. By using the technologies presented in Chapter 3, two types 

of microneedle arrays were fabricated and characterized by insertion tests and electric 

field simulations. These results are presented in Chapter 4. To verify electrical 

functionality of the fabricated devices, electroporation experiments were performed with 

red blood cells and human prostate cancer cells in vitro, and the experimental results are 

presented in Chapter 5. The conclusion of this research and suggestions for future 

directions are given in Chapter 6. 
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CHAPTER 2 

BACKGROUND 
 
 
 

2.1 Electroporation Overview 

2.1.1 Background 

Electroporation (also called electropermeabilization) refers to the phenomenon of 

increasing the permeability of cell membranes by exposing cells to a short and strong 

electric field. This phenomena was first reported by Stampfli [38] in 1958, but received 

little attention for over a decade. In 1967, Sale and Hamilton [39] showed that strong 

electric fields could cause cell death, and Neumann and Rosenheck [40] demonstrated a 

change in cell membrane permeability by electrical pulses in 1972. Since their report, 

many researchers have investigated the effect of electric fields on cells to understand the 

fundamental mechanism of the permeability phenomena. The exact mechanism is still not 

fully understood. The most popular theory is that the electric field causes the formation of 

aqueous pores in the plasma membrane [41-43]. According to this theory, the electric 

field causes hydrophilic pores to be formed by reorientation of the plasma membrane 

lipid bilayer in such a manner that the hydrophilic head groups face the pore, while the 

hydrophobic tails are hidden inside the membrane. Calculations based on this theory 

predict that the size of an electroporation-created pore would be on the order of 

nanometers. However, experiments have shown that molecules bigger than the predicted 

size of the pore can cross the cell membrane during electroporation. This indicates that 

another mechanism may be involved in this phenomenon. 
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Although theoretical models of electroporation cannot explain the exact 

mechanism, there is a general agreement between researchers that the exposure of cells to 

an intense electric field for brief periods of time causes a “dielectric breakdown” of 

biological membranes, allowing molecules to be transferred into the cells. Researchers 

have taken advantage of this unique property of electroporation to introduce many 

different molecules such as dyes [44-46], radiotracers [47, 48], drugs [49-51], 

oligonucleotides [52], RNA [53, 54], and DNA [55-58]  into cells. Electroporation is 

currently used for medical applications such as electrochemotherapy (ECT), transdermal 

drug delivery, and gene therapy [59-62]. 

 

 

 
 

Figure 2.1 Illustration of the formation of an aqueous pore by an external electric field; 
adopted from ref. [43] 
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2.1.2 Estimation of Transmembrane Potential 

Electroporation is a threshold phenomenon, and can only occur when a 

transmembrane potential reaches a certain value, typically 0.2-1V [63, 64]. When a cell is 

exposed to an electric field, a transmembrane voltage is induced on the cell membrane. If 

the induced voltage exceeds a threshold value, which is dependent mainly on the size of 

cell, aqueous pores are formed. As the electric field strength increases, the size and the 

number of pores also increase. The aqueous pores are resealed over minutes after a short 

and moderately strong application of the electric field (reversible electroporation). 

However, if exposure to the electric field occurs for too long, or if the magnitude of the 

electric field is too high, the cell membrane cannot return to its normal state, leading to 

cell death (irreversible electroporation). For the purposes of intracellular delivery, it is 

desirable to optimize experimental parameters such that both high intracellular transfer 

rate and high cell viability can be achieved. For electrochemotherapy, both reversible and 

irreversible electroporation could be acceptable, but parameters should be optimized to 

reduce side effects such as pain, muscle contraction, and necrosis of healthy tissue near 

the treated area. 

Many factors must be considered when designing an effective electroporation 

system.  These include electric field strength, pulse length, pulse shape, number of pulses, 

interval between pulses, size of target cells, and thermal conditions during and after the 

pulse. The most important parameters in determining the transmembrane voltage are the 

field strength and the pulse length [65]. To estimate the transmembrane voltage induced 

on the cell membrane by an external electric field, a simple analytical model was 

proposed by Schwan [66]. This model assumed that the cell is spherical, and the 
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membrane is nonconductive. The relationship between an external electric field and the 

induced transmembrane voltage is given as: 

 

                                               ϕcos
2
3 ER=ΔΦ                               (2.1) 

 

where ΔΦ is the induced transmembrane voltage, E  is the external electric field, R  is 

the cell radius, and ϕ  is the polar angle measured from the center of the cell with respect 

to the direction of the field. This is often referred to as Schwan’s equation. 

From the equation given above, it is possible to roughly estimate the minimum 

electric field strength required to achieve electroporation of the cell. However, the 

electric conductivity of cell membrane is not zero. In order to account for this 

conductivity, the above equation can be modified as follows [67]: 
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where iσ , mσ  , and eσ  are electric conductivities of the cytoplasm, cell membrane, and 

external medium, respectively, and d  is the membrane thickness. The above model 

assumes constant thickness and conductivity of the cell membrane. When the 

conductivity of cell membrane, mσ  is set to zero, then Equation 2.2 simplifies to 

Schwan’s equation. 



 10

Equations 2.1 and 2.2 assume that a cell is spherical. However, some types of cells 

such as erythrocytes are not spherical, but are oblate spheroid. So it is desirable to derive 

a generalized form of Schwan’s equation to expand its application to spheroidal cells. In 

2000, Kotnic and Miklavčič [68] derived the equation for transmembrane voltage induced 

by electric fields on spheroidal cells, and the final result reads as follows: 
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where E  is the external electric field, 1R  is the radius along the axis of rotational 

symmetry, 2R  is the radius perpendicular to the axis of rotational symmetry, and ϕ  is the 

polar angle measured from the center of the cell with respect to the direction of the field. 

All equations described thus far are based on single cell models and cannot be applied to 

cell suspensions due to the fact that the electric field outside a cell is not homogeneous. 

However, these models are useful for determining the range of electric field strength 

required for electroporation. 
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2.1.3 Electrodes for Electroporation 

The requirements for successful delivery of molecules through skin via 

electroporation are: 1) administration of molecules to the appropriate sites; and 2) 

application of an appropriate electric field to the sites within a time window. Typically 

the molecule to be delivered is injected with a needle and syringe, followed by the 

application of an electric field with electrodes. 

There are three electrode types, which are shown in Figure 2.2. The most widely 

used electrodes are plate electrodes, separated by either a fixed or a variable distance. In 

the latter case, the electrode plates are typically mounted on a caliper. These types of 

electrodes can generate a uniform electric field required for efficacious electroporation. 

However, the skin must be folded and held between the electrode calipers during 

electroporation.  This results in pain during electroporation that is caused by excitation of 

nerves by the external electric field. Also, superficial skin burning has been observed as a 

consequence of the breakdown of the stratum corneum. 

Needle electrodes can exist as a needle pair or a needle array.  Needle electrodes 

are useful for the treatment of deep-seated tumors, and can also be used for skin 

immunization. Typically, the needle lengths are on the order of a millimeter, causing the 

patient to feel some pain during insertion. Also, the conical geometry results in an 

inhomogeneous electric field; recently, however, it has been reported that this limitation 

can be overcome by a proper arrangement of needles coupled with an appropriate voltage 

application strategy [69].  

Surface electrodes are useful for skin electroporation. Due to the noninvasive 

nature of this method, it offers patient-friendly treatment. Also, the potential drop 
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between the electrodes is mainly confined to the stratum corneum. Underlying nerves and 

muscles are not subjected to a strong electrical stimulus. However, the initial 

administration of molecules into the skin requires a hypodermic needle, resulting in pain. 

 

 

 
                     (a)    (b)    (c) 
 

Figure 2.2 Different types of electrode for electroporation: (a) plate, (b) needle, and (c) 
surface 
 

 

Two main problems associated with electroporation using conventional electrodes 

are occurrence of pain and the high voltage requirement. These problems can potentially 

be overcome by adopting microneedles as electrodes.  Due to their shallow penetration 

depth, microneedles can minimize pain during injection.  Also, the high electric field 

required for traditional electroporation can be reduced because of the small gap between 

microneedles. To illustrate how electroporation can be incorporated into microneedle 

structures, microneedle fabrication techniques will be discussed in the following section. 
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2.2 Microneedle Overview 

2.2.1 Background 

The idea to use micron-sized needles for transdermal drug delivery was proposed in 

1976 [70], and the first micro-piercing structure for delivering molecules across the skin 

was reported in 1995 [71]. The microstructure of these needles was a pyramidal shape 

formed using well-established silicon wet etching technology. It was shown that the tip of 

the microprobe penetrated through a nematode cuticle without causing injury to the 

nematode, and resulting in a foreign gene being successfully delivered into the nematode. 

MEMS technology was developed in the interim, and enabled both new shapes and sizes 

to be fabricated with much greater manufacturability. In 1998, the use of solid 

microneedles for transdermal drug delivery was first demonstrated (Figure 2.3) [72]. To 

create a microneedle structure, Cr was deposited on a silicon wafer, and then patterned. 

Next, the silicon wafer was etched by a deep reactive ion etching process based on 

fluorine/oxygen chemistry. Tests showed that the microneedles were able to penetrate 

skin without breaking and increased the permeability of human epidermis to calcein in 

vitro by 3 to 4 orders of magnitude depending on insertion time. 

 

 

 

Figure 2.3 SEM pictures of microneedles fabricated by Henry et al. [72] 
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 From a structural point of view, microneedle structure can be categorized into two 

groups, solid or hollow microneedles.  Both types will be discussed in the following 

sections. 

 

2.2.2 Solid Microneedles 

Solid microneedles have been used to pierce skin prior to the application of topical 

drugs so that the permeability of the drugs into the skin is dramatically increased. To 

effectively pierce the skin, the microneedle structure should be strong.  Typically silicon 

and metal have been used as structure materials. As discussed before, the first two 

microneedle structures were fabricated from silicon utilizing either wet or dry etching 

technologies.  These technologies are common in the microelectronics industry.  

Another example of silicon-based microneedles are the microenhancer arrays 

(MEAs) fabricated by Mikaszta et al.[73], as shown in Figure 2.4.  These microenhancer 

arrays were fabricated using a KOH etch technique, providing mesa-point geometry. The 

needle heights ranged from 50 to 200 µm, with spacing between microenhancers of twice 

the height. It was demonstrated that these structures were capable of breaching the 

outermost skin layer, the stratum corneum, and enhancing reporter gene activity up to 

2800 fold in vivo. 

 

 



 15

 

Figure 2.4 SEM pictures of microenhancer arrays, Mikszta et al. [73] 

 

 

 

Figure 2.5 SEM picture of microneedle array for biopotential measurement, Griss et al. 
[74] 

 

 

In addition to the application of the microneedle structure for transdermal drug 

delivery, microneedles have also been used for biopotential measurement [74] as shown 

in Figure 2.5. These needles were also fabricated by utilizing silicon etching technology 

(dry and wet).  It was demonstrated that this microneedle structure could pierce human 

skin and record low amplitude biopotentials resulting from brain activity.  
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Previous silicon microneedle structures were based on conventional 

photolithography followed by silicon etching. Recently, Shikida et al. reported pen-

shaped microneedle structures fabricated by a combination of anisotropic wet etching and 

a dicing technology [75]. The fabrication shaped post structure using a dicing saw, and 

then etched the structure anisotropically. The fabrication process and fabricated structures 

are shown in Figure 2.6. 

 

 

   

(a)                                                                         (b) 

Figure 2.6 Pen-shaped microneedle structures reported by Shikida et al. [75]; (a) 
Fabrication process, and (b) fabricated structures 

 

 

Due to its mechanical strength, ease of fabrication, and relatively inexpensive cost, 

metal is an attractive candidate for microneedle fabrication. The Macroflux® 

microprojection array is a metal array currently used in medical applications, and is 

fabricated by etching a titanium or stainless steel sheet with the desired pattern, then 
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bending the arrays perpendicular to the horizontal plane [76, 77], as shown in Figure 2.7. 

These microprojection arrays have been used to deliver desmopressin, a synthetic peptide 

hormone for treatment of enuresis in young children, and ovalbumin, an albumin 

obtained from the white of eggs, through the skin of hairless guinea pigs. 

 

 

 
(a)                                                  (b) 
 

Figure 2.7 SEM picture of microprojection arrays; (a) Matriano et al. [76], and (b) 
Cormier et al. [77] 
 

 

Instead of etching metal sheets to fabricate metal microneedles, Martanto et al. [78] 

utilized a laser ablation technique to form metallic microneedles such as those shown in 

Figure 2.8.  After cutting the microneedles from a 75 µm stainless steel sheet using an 

infrared laser, each microneedle was manually bent vertically. Electropolishing was used 

to sharpen the microneedle tips.  This microneedle array was used to increase transdermal 

delivery of insulin to diabetic hairless rats. 
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Figure 2.8 SEM picture of solid metal microneedles, Martanto et al. [78] 
 

 

Most microneedles have been fabricated from silicon or metal, but recently, 

polymer microneedles have received considerable attention. Compared to both silicon 

and metal microneedles, polymer microneedles offer several advantages including ease of 

manufacture using micromolding technology, fewer safety concerns and the capability of 

using biodegradable polymers to encapsulate molecules that will be delivered into the 

skin.  Various polymers and microneedle geometries have been studied by Park et al. 

[79]. The microneedle structures were made of polylactic acid (PLA), polyglycolic acid 

(PGA), and their co-polymer, PLGA.  Several different microneedle geometries such as 

beveled-tip, chisel-tip, and tapered-cone structures were demonstrated.  

For fabricating a beveled-tip microstructure (Figure 2.9), SU-8 epoxy photoresist 

was patterned in a cylindrical shape followed by the application of a sacrificial polymer 

layer between SU-8 cylinders. Then, a metal layer was deposited to form a mask. The 

sample was etched using reactive ion etching to form a beveled-tip. After forming the tip, 

the sacrificial layer was removed. Once the SU-8 master structure was formed, 



 19

polydimethylsiloxane (PDMS) was applied to form a mold. A polymer microneedle 

structure was formed by melting a polymer in the PDMS mold. 

 

 

 

Figure 2.9 SEM pictures of beveled-tip microneedles, Park et al. [79] 
 

 

Chisel-tip microneedles (Figure 2.10a) were fabricated by using both silicon wet 

etching and high-aspect-ratio SU-8. The mold for a chisel-tip shape was formed by 

etching a silicon wafer, and then applying SU-8 on top of the pre-etched silicon wafer. 

PDMS was used to cover the structure, and then SU-8 was removed by reactive ion 

etching to form the final mold. 

To fabricate tapered-cone microneedles (Figure 2.10b), SU-8 was coated on a glass 

substrate bearing microlenses that were formed by glass wet etching. UV light was then 

exposed from the back side, forming tapered-cone microneedle structures. 
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                                         (a)                                                             (b) 

Figure 2.10 SEM pictures of polymeric microneedles reported by Park et al. [79]; (a) 
chisel-tip, and (b) tapered-cone microneedles 
 

 

2.2.3 Hollow Microneedles 

Solid microneedles can penetrate the skin, resulting in dramatically increased skin 

permeability.  However, the transport mechanism of molecules is then limited to 

diffusion across the breaks in the stratum corneum. To deliver molecules at a faster rate, 

hollow microneedles that enable convective transfer have been fabricated.  

Previously, hollow microneedles were fabricated as in-plane structures by both 

surface and bulk micromachining techniques [80, 81] (Figure 2.11).  
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                                    (a)                                                               (b) 
 

Figure 2.11 Silicon hollow microneedle fabricated by Lin and Pisano [81]; (a) Top view, 
and (b) cross section 
 

 

In-plane hollow metal microneedles have also been fabricated by Chandrasekaran 

et al. [82] (Figure 2.12). This metallic hollow microneedle was formed by 

photolithography of thick photoresist followed by electroplating palladium or nickel and 

platinum.  It was demonstrated that this type of microneedle could withstand an applied 

pressure up to 700 kPa, and achieve a flow rate of 4000µL/h at 106 kPa using water. 

 

 

 
                                (a)                                                                  (b) 
 

Figure 2.12 SEM pictures of fabricated metallic hollow microneedle; (a) Top view, and 
(b) cross section 
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The main advantage of in-plane hollow microneedle structures have over out-of-

plane hollow microneedle structures is that they utilize well-established technologies in 

microelectronics, allowing complex designs of the microneedle arrays. However, it is not 

easy to fabricate an array with high microneedle density due to inherent limitations of 2-

D fabrication. It is possible to increase the density of microneedles by assembling and 

combining multiple microneedle arrays, but this method is inefficient and impractical. By 

virtue of the effort of many researchers, novel technologies for fabricating 3-D 

microstructures have been developed.  These technologies have made it possible to create 

complex, high-density out-of-plane microneedle structures. Gardeniers et al. [83] 

fabricated out-of-plane silicon hollow microneedles for transdermal liquid transport by a 

sequence of deep-reactive ion etching, anisotropic wet etching and conformal thin film 

deposition. The length of the microneedle varied between 150 and 350 µm, and the 

widest needle base was 250 µm.  The detailed fabrication process and the resulting 

fabricated structures are shown in Figure 2.13. 
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                                       (a)                                                           (b) 

Figure 2.13 Out-of-plane microneedles; (a) fabrication process, and (b) fabricated 
structure 
 

 

The fabrication of side-opened, out-of-plane microneedle structures was 

demonstrated by Griss and Stemme [84] (Figure 2.14a and b).  Side-opened structures 

were fabricated to minimize clogging by tissue during microneedle insertion. Therefore, 

this geometry gives low resistance to liquid flows and a large exposure area between the 

fluid and the tissue. Even though the structure looks complex, it requires only 2 masks. 

Recently, the same group reported another type of hollow, side-opened, out-of-plane 

microneedle array fabricated by tapered deep reactive ion etching [85], shown in Figure 

2.14c. 
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                                     (a)                                                            (b) 

 
(c) 

 
Figure 2.14 SEM pictures of side-opened microneedles 

 

 

Mukerjee et al. [86] developed a hollow microneedle array for biological fluid 

extraction. The system contains microfluidic channels, which are used for analyzing 

biological fluid in situ. These arrays were fabricated using deep reactive ion etching, 

diamond blade circular sawing, and isotropic etching. The fabricated device is shown in 

Figure 2.15a. A similar microneedle structure, which is shown in Figure 2.15b, was 

reported by Stoeber and Liepmann [87] using similar fabrication steps. The only 

difference between the fabrication processes of the two microneedle arrays was the 
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method used to define the microneedle. The first group used a diamond saw to define the 

column structure, followed by isotropic etching of the column to form the microneedle 

structure. In contrast, the second group etched silicon isotropically with a mask to define 

the needle structure. 

 

 

 
                                     (a)                                                         (b) 
 

Figure 2.15 SEM picture of hollow microneedle array fabricated by silicon etching,; (a) 
Mukerjee et al. [86], and (b) Stoeber et al. [87] 

 

 

Most hollow microneedle arrays have been fabricated from silicon using well-

established dry and wet etching techniques.  However, other materials, such as metals and 

polymers, are also attractive candidate materials for microneedles. Compared to the 

silicon micromachining process, metals and polymers can be processed at a lower cost 

with higher fidelity.  Davis et al [88] used hollow metal microneedles, which were 

fabricated by electrodeposition of Ni in polyethylene terephthalate,  for insulin delivery 

to diabetic rats. To prepare a micromold for electrodeposition of Ni, a polymer sheet was 

ablated by an excimer laser. After electrodeposition, the polymer sheet was selectively 

etched, forming hollow metal microneedles, which are shown in Figure 2.16. 
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Figure 2.16 SEM picture of hollow metal microneedle array 
 

 

Another technology for the fabrication of hollow metal microneedles was proposed 

by Kim et al.[89]. They utilized a backside exposure technique to form tapered structure 

out of thick photoresist, SU-8. Once the tapered SU-8 structure was fabricated, a seed 

layer was deposited on the structure, and then electroplating was performed.  The top 

opening was formed by a polishing process, and then the metallic structure was separated 

from the SU-8 structure, giving the tapered hollow metal microneedles shown in Figure 

2.17. 

 

 

 

Figure 2.17 SEM picture of tapered hollow metal microneedle array 
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Compared to both silicon and metal, polymers have a relatively low mechanical 

stiffness. Therefore, polymer microneedle fabrication has received considerably less 

attention than the previously discussed materials. Recently, however, it was demonstrated 

that hollow microneedles made of polymethylmethacrylate (PMMA) could penetrate skin 

without breaking [90]. The microneedle structure was fabricated by exposing deep x-ray 

in an inclined fashion similar to the inclined UV exposure technique that has been 

demonstrated by many authors [91-94]. The longest microneedle fabricated was 1000µm, 

with a needle base of 400µm, and a hole diameter of 100µm. A fabricated polymer 

hollow microneedle is shown in Figure 2.18. 

 

 

 

Figure 2.18 SEM pictures of PMMA microneedle, Moon et al. [90] 

 

 

Many fabrication technologies developed for fabricating microneedle structures 

with different materials have been reviewed.  Some representative studies are 

summarized in Table 2.1. 
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Table 2.1 Summary of microneedle fabrication technologies 
 

Technology 

 Material Dry  

etching 

Wet  

etching 
Others 

Henry et al. [72] Silicon RIE – – 

Mikszta et al. [73] Silicon – KOH – 

Griss et al. [74] Silicon DRIE KOH – 

Shikida et al. [75] Silicon – KOH Dicing 

Mukerjee et al. [86] Silicon DRIE KOH Dicing 

Martanto et al. [78] Metal – – Laser ablation 

Davis et al. [88] Metal – – 
Laser ablation / 

Electroplating 

Park et al. [79] 
Polymer (PLA, 

PGA, PLGA) 
RIE – Micromolding 

Moon et al. [90] Polymer (PMMA) – – Deep X-ray 

 

 

Most current microneedle fabrication technologies require etching steps to sharpen 

the tip of the microneedles. These etching steps are not suitable for low-cost mass 

manufacturing, since dry etching techniques demand high-cost equipment and long 

processing time due to the low etch rate.  Wet etching techniques have difficulty 

controlling the etch rate over a large area. Moon et al. [90] demonstrated the fabrication 

of a PMMA microneedle array without any etching steps.  However, this requires a high-

cost process. Other techniques such as laser machining are serial processes, which may 
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not be time-efficient. Therefore, it is desirable to develop a microneedle fabrication 

technology which enables mass production at low cost. To achieve this goal, several 

fabrication technologies have been developed, and will be discussed in the following 

chapter. 

 

2.3 Electroporation with Microneedles 

Microneedles have been used for transdermal drug delivery, and reports indicate 

that they could be inserted into skin without pain [72]. With proper metallization, 

microneedles could serve as microelectrodes to be used for electroporation. In addition, 

the close spacing of the microneedle electrodes provides an advantage of reduced voltage 

while simultaneously maintaining the large electric fields required for electroporation. 

With these advantages, microneedles can potentially be utilized as a minimally invasive, 

highly-localized electroporation system for cells in the epidermis of the skin. The concept 

of an electroporation microneedle array was proposed by Cyto Pulse Sciences, Inc. [95] 

in 2003, and Figure 2.19 illustrates the concept of delivery of biomolecules into cells with 

an electroporation microneedle array. 
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Figure 2.19 Conceptual use of a microneedle electrode array to electroporate cells in 
epidermis 

 

 

Microneedles could serve two functions for delivering molecules into skin. By 

coating microneedle structures with molecules, microneedles could first serve as a 

vehicle to deliver molecules to the epidermis. While microneedles remain inserted in skin, 

they could subsequently serve as microelectrodes to locally electroporate epidermal cells 

and thereby transport the molecules into cells. Recently, several research groups have 

demonstrated the potentiality of this approach [96-98]. Building on previous studies, we 

have developed novel fabrication technologies to overcome some of the problems that 

have limited the application of electroporation by microneedles. 
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CHAPTER 3 

DEVELOPMENT OF 3-D MICROFABRICATION TECHNOLOGY 
 
 
 

3.1 Inclined/Rotational Photolithography for 3-D Fabrication 

3.1.1 Introduction 

Photolithography based on ultraviolet (UV) exposure has been used in both the 

semiconductor industry as well as research to transfer patterns from a mask to a wafer. 

Recently, more exotic lithographic methods such as electron beam lithography, extreme 

ultraviolet lithography, x-ray lithography, and ion beam lithography have been 

investigated to overcome the limitation of conventional UV lithography. These methods 

target the generation of fine features in two dimensions, sufficient for fabrication of 

semiconductors. In the MEMS world, however, it becomes important to fabricate 3-D 

structures for a variety of applications including but not limited to microneedles; thus, 

researchers have devoted much time to the development of 3-D microfabrication 

technologies.  

The simplest technique for 3-D microfabrication is the multilayer process, which 

generates 3-D structures by stacking 2-D structures that have been fabricated by 

conventional 2-D lithography. One example of a multilayer process is the fabrication of 

microchannels [99]. Other methods for 3-D fabrication include multi-beam interference 

lithography [100], gray-scale lithography [101], moving mask lithography [102], and 

inclined lithography [103]. The purpose of this chapter is to describe the fabrication of 3-

D microstructures by using inclined/rotational UV lithography. 

3.1.2 Fabrication of 3-D Microstructures by Inclined/Rotational UV lithography 
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The fabrication of three dimensional microstructures using inclined X-ray exposure 

was first proposed by Schulz et al [104] in 1993. Beuret et al [91] used this idea to 

fabricate 3-D metallic structures which were created by electroplating Ni into a mold 

prepared by inclined UV lithography. This technology has since gone unnoticed for a 

decade by other researchers; however, recently several groups have used this technology 

for fabrication of complex 3-D structures [92-94, 105]. The basic concept of inclined UV 

lithography is the exposure of UV light through a mask at an angle, instead of 

conventional vertical exposure, to transfer a pattern into photoresist. A variety of 3-D 

structures can be formed by changing parameters such as : inclination angle, mask shape, 

exposure numbers, exposure angle, and exposure energy; For example, if a mask with 

square openings is used, a pattern of square rods will be transferred to a negative 

photoresist by conventional lithography. With the same mask, a vertical screen filter can 

be formed by two exposures at different angles, as shown in Figure 3.1.  

 

 

 
Figure 3.1 Fabrication of a vertical screen filter structure by the inclined UV lithography. 
Left schematic shows the fabrication process, and the SEM pictures show the fabricated 
structure [105] 
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Samples exposed to the UV light at an angle can also be continuously rotated, 

allowing creation of complex structures. Our group developed a mask/sample holder to 

perform inclined/rotational UV lithography [105] , as shown in Figure 3.2. The movable 

stage of this device can be tilted from 0° to ±90° and samples can be continuously rotated 

while in a tilted position. 

 

 

 
Figure 3.2 Mask/sample holder with tilting and rotational functionality [105] 

 

 

Using this apparatus, structures with an oblique side wall were fabricated, as shown 

in Figure 3.3. To fabricate these structures, negative photo-epoxy (SU-8) with a thickness 

of approximately 500μm was spun on a glass substrate. Prior to the deposition of SU-8, 

the glass substrate was cleaned by Piranha etch (a 3:1 mixture of concentrated sulfuric 

acid (H2SO4) with hydrogen peroxide (H2O2)) for 15 min at 100°C, then washed with 

deionized (DI) water for 30 sec and dried with a nitrogen gun. The substrate was fully 

dried in an oven at 120°C for 30 min since water will result in poor adhesion between the 
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substrate and the SU-8 and must be completely removed. After deposition, the SU-8 layer 

was baked on a hot plate at 100°C for 18 hrs and exposed to UV (365nm wavelength) in 

an inclined-rotational manner with an energy density of 9000mJ/cm2. After exposure, the 

sample was baked on a hot plate at 100°C for 30 min, and then developed in propylene 

glycol methyl ether acetate (PGMEA). Finally, the sample was washed with isopropyl 

alcohol (IPA) and dried using a nitrogen gun. If the surface of the sample becomes white 

during IPA washing, it indicates that the sample is not fully developed. Therefore, the 

samples were developed in PGMEA until they do not become white during IPA washing. 

A truncated cone-like structure was fabricated with a flat-square top using a mask 

with square openings. Due to the effect of rotation during exposure, the bottom of the 

structure was a circular shape. When a mask with ring openings was used, nozzle-like 

structures were formed, and the nozzle opening can be adjusted by the size of a pattern on 

a mask. With a mask for pad-feeding line, a 3-D structure with tapered side walls was 

formed. 
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                                      (a)            (b) 

   
                                       (c)            (d) 

Figure 3.3 Fabricated structures with the inclined/rotational lithography using different 
masks; (a) and (b) square openings, (c) ring openings, and (d) pad and feeding line 
 

 

3.1.3 Fabrication of 3-D Microstructures by Inclined/Rotational UV Lithography 

Combined with Micromolding 

In the previous section, a direct 3-D fabrication method by inclined/rotational 

lithography was discussed. Although this technique is capable of creating complex 3-D 

microstructures, it has limitations on the shape of the structures; 1) the top surface of the 

fabricated structures is typically flat, and 2) the heights of the structures protruding from 

the same substrate are the same. This technical limitation can be overcome by combining 

inclined/rotational UV lithography with micromolding. 
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This fabrication process begins by forming the negative shape of a final structure, 

known as the “mold,” instead of the direct formation of a final structure as discussed in 

3.1.2. The basic concept in this process is that both the mask dimensions and the incident 

angle of UV light application control the depth of the mold. Therefore, structures with 

various heights can be formed simultaneously with a single mask. In addition, this 

technique is especially useful for fabricating structures with sharp tips such as 

microneedles for transdermal drug delivery, as well as 3-D microelectrode arrays for 

detecting signals from the brain. 

A rigid SU-8 mold is fabricated using inclined UV lithography to form negative 

concave shapes of various depths as shown in Figure 3.4a and b. This rigid mold is used 

to produce a mold master (Figure 3.4c) from Polydimethylsiloxane (PDMS) or other 

suitable material (such as Ni in the case of electroplating). The mold master is then used 

to create a flexible replica (Figure 3.4d) of the original rigid mold; this flexible mold can 

be made from PDMS. Polymer microstructures with various heights are then fabricated 

using the flexible mold (Figure 3.4e and f). 
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Figure 3.4 Fabrication steps for 3-D microstructures with variable heights; (a),(b) 
creation of SU-8 mold, (c) creation of mold master, (d) creation of flexible mold, (e) 
making final structure from polymer of choice, and (f) de-molded final structure 

 

 

Once the rigid SU-8 mold is fabricated, a mold master can be copied from the mold 

by filling the mold with appropriate materials. Because the mold is rigid, a flexible 

material is suitable for casting due to the ease of separation, as compared to rigid 

materials. In this study, PDMS was chosen as a casting material due to its flexibility and 

low surface energy, which means it does not require a releasing agent for separation from 

the mold. PDMS is widely used in the MEMS field for microfluidics and optical 

applications. Its chemical formula is (C2H6OSi)n, and its chemical structure is shown in 

Figure 3.5. 

 

 



 38

 
 

Figure 3.5 Chemical structure of polydimethylsiloxane (PDMS) 

 

 

Commercially available PDMS (Sylgard 184, Dow Corning Corp., USA) has two 

components, base and curing agent, and the mixing ratio is 10:1 based on weight 

(base:curing agent). The two components of PDMS were mixed well and the mixture was 

degassed in a vacuum chamber before casting in an SU-8 mold. The degassed PDMS was 

then cast into the mold and was degassed again in a vacuum chamber after casting. If the 

mold does not contain high-aspect-ratio concave shapes, the second degassing process is 

not necessary because bubbles entrapped inside the shallow mold will disappear naturally 

during the curing process. The cross-linking process occurs at room temperature, but can 

be accelerated at higher temperatures. Usually, it takes 48 hours to form fully-cured 

PDMS at room temperature; however, only 1 hour is required for curing at 100°C. In this 

study, PDMS was cured at 50°C in a conventional oven for 8 hours. 

After curing the cast PDMS, it was separated from the SU-8 mold and attached to a 

polystyrene container, which defines the size of a flexible mold. Before casting PDMS 

into the container to form a flexible PDMS mold, the PDMS master was treated with 

CHF3/O2 gas mixture (45sccm/5sccm, 200mTorr, 200W) using reactive ion etching (700 

Series Wafer/Batch Plasma Processing System, Plasma-Therm Inc., St. Petersburg, FL ) 

for 15 sec to avoid strong adhesion between PDMS surfaces. The other method used to 
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create a PDMS mold from a PDMS master is to coat a PDMS mold with Au, because the 

adhesion between Au and PDMS is poor. One drawback of this method is that heat is 

generated during the Au deposition process, causing thermal expansion of PDMS. This 

thermal expansion results in the formation of wrinkles around the structure, which are 

copied to the PDMS mold after demolding from the PDMS master. Once the PDMS mold 

is fabricated, the final structure can be formed by casting the desired polymer into the 

mold. Several methods for polymer casting will be discussed later. 

Using the fabrication process discussed above, 3-D microstructures were fabricated 

with a single mask. To prepare a thick (>300μm) SU-8 layer, SU-8 2025 was poured on a 

pre-cleaned silicon wafer instead of spin-coating. It is usually possible to define a 300μm 

thick SU-8 layer by spin-coating, and multiple coating can be applied to deposit even 

thicker layer; however, the advantage of the “pouring” method is that it does not require 

multiple baking steps, thus, the processing time can be reduced. The final thickness of the 

SU-8 layer can be estimated using the density of SU-8 and the solid content in SU-8. For 

example, the density of SU-8 is 1.219 g/cm3 and SU-8 2025 contains 68.55% of solid. 

Using this information, it is possible to calculate the amount of SU-8 needed for a 

specific thickness by Equation 3.1.  

 

sC
tA

210−××
=
ρ  [g/cm2]                                     (3.1) 

where ρ is the density of SU-8, t is the target thickness in microns, and Cs is the solids 

content in percent, respectively. 

To make a 500μm thick SU-8 layer, approximately 0.089 g/cm2 of SU-8 2025 was 

poured on and spread over the silicon substrate. The sample was then baked on a hot 
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plate at 100°C for 18 hours. Baking causes the SU-8 layer to form a flat surface without 

an edge bead, due to self-planarization. The sample was cooled slowly to avoid 

delamination and/or crack formation from a mismatch of the coefficient of thermal 

expansion between the SU-8 and the substrate and then exposed in an inclined/rotational 

manner under a UV lamp. The total energy density delivered to the sample was 

9000mJ/cm2. Post-exposure baking (PEB) was then performed on a hot plate at 100°C for 

30 min and the sample was cooled down slowly from 100°C to room temperature by 

turning off the hot plate.  

Development of the sample immediately after PEB frequently causes cracking of 

the structure and/or delamination from the substrate; therefore, the sample was further 

cooled down at room temperature for at least 1 hour before development. To develop the 

sample, it was immersed in PGMEA and agitated to accelerate development. When 

developing a high-aspect-ratio concave structure, it was helpful to place the sample 

upside down using a sample holder and agitating the solvent bath with a magnetic bar 

stirring underneath it. After development, the sample was dried and examined using both 

an optical microscope and a scanning electron microscope (SEM). Fabricated SU-8 

molds are shown in Figure 3.6. 
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Figure 3.6 Fabricated SU-8 molds by inclined/rotational UV lithography 
 

 

In principle, any moldable material can be used to make the master from a mold. 

However, it is desirable to use a flexible material for rigid molds that bear high-aspect-

ratio concave structure, e.g. microneedles. High resolution which enables the replication 

of targeted small features is also necessary. Although PDMS is a suitable material that 

meets these criteria, it is easily torn by an external shear force, which can happen when 

the master is separated from the mold, especially when it is not fully cured. However, this 

drawback is reasonable because PDMS master structures are easy to create quickly. 

Another approach for fabrication of a master structure from a rigid mold is to 

electroplate metal into the mold. Nickel (Ni) is suitable material for this purpose because 

it has appropriate mechanical and chemical properties. In this work, a commercially 

available Ni plating bath (Watts Nickel, Technic Inc., Cranston, RI) was used with a 
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current density of 10 mA/cm2, which gave an approximate 15 μm/hour deposition rate. 

Before electroplating Ni, the mold was coated with a Ti/Cu seed layer (300Å/5000Å). 

The electroplated Ni was separated from the mold by etching a Cu layer in copper etchant 

(saturated CuSO4 in NH4OH). Fabricated master structures created by either PDMS 

casting or Ni electroplating are shown in Figure 3.7. 

 

 

  
(a)                  (b) 

 
Figure 3.7 Fabricated master structures from different materials; (a) PDMS and (b) Ni 

 

 

After fabrication, the master of either PDMS or Ni was placed into a polystyrene 

(PS) container, and PDMS was poured into the container. Because the glass transition 

temperature (Tg) of PS is 95°C, PDMS needs to be cured at temperatures below the Tg. In 

this study, PDMS was cured at 50°C for 8 hours in a conventional oven. If a metal 

container was used, PDMS could be cured at higher temperatures. The PDMS master was 

treated with CHF3/O2 gas mixture before casting PDMS onto the master to prevent strong 

adhesion. When using a Ni master, this step was not required, because strong adhesion 

does not occur. 
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Once the flexible PDMS mold was fabricated, it was possible to cast various 

moldable materials into the mold. In this study, polymethymethacrylate (PMMA), SU-8, 

polyurethane (PU) and polylactic acid (PLA) were used for the fabrication of 3-D 

microstructures as shown in Figure 3.8. 

 

 

  
(a)            (b) 

  
(c)            (d) 

  
(e)            (f) 

Figure 3.8 Fabricated 3-D microstructures of varying heights; (a)-(d) Top view, and (e)-
(h) Oblique view 
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(g)            (h) 

Figure 3.8 continued  
 

 

The fabricated microstructures shown in Figure 3.8 confirmed that it was possible 

to fabricate 3-D microstructures of varying heights by combining inclined/rotational UV 

lithography with micromolding technology. The mask sets used in this experiment were 

basic shapes, including circles, squares, triangles, and hexagons. These shapes produced 

microneedle-like microstructures with sharp tips. Using this technology, it is possible to 

fabricate various microstructures with sharp tips without using the wet/dry etching 

technique. In addition, complex 3-D microstructures can be easily fabricated using proper 

mask designs, as shown in Figure 3.9. This fabrication process is simple and cost-

effective compared to other 3-D fabrication processes. 
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Figure 3.9 Fabricated complex 3-D microstructures 
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In conventional lithography, the thickness of photoresist determines the final 

thickness of the structure. This is typically also true for the fabrication of “positive” 

structures by means of inclined lithography. However, in the case of the fabrication of 

“negative” structures by inclined lithography, the depth of a mold is determined by 

parameters such as mask dimension and inclination angle. Therefore, the targeting depth 

of a mold should be calculated based on such parameters, and the thickness of the SU-8 

layer should be thicker than the calculated depth of the mold. The depth of a mold can be 

calculated by Snell’s law and trigonometry as follows: The incident UV light with angle 

θ1 will be refracted at the interface between air and the mask (glass), resulting in 

changing the incidence angle θ1 to θ2, and the light will be refracted one more time at the 

interface between the mask and SU-8 (Figure 3.10). The final angle of the incident UV 

will be θ3, and the relationship between angles is given by Snell’s law in Equation 3.2. 

 

 

 
 

Figure 3.10 Schematic description of refraction of light at the interfaces with different 
refractive indices 
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where n1,n2, and n3 are the refractive indices of air, glass, and SU-8, respectively. 

Once the refractive angle θ3 is calculated, the depth of the mold is given by 

Equation 3.3 as follows: 

 

                                           
3tanθ

dDepth =                                           (3.3) 

 where d is distance between the centroid of the mask footprint and the boundary of the 

mask footprint.      

For example, if a mask bears circular dark fields with different diameters: 50μm, 

100μm, and 200μm, and the incident angle θ1 is 30°, which corresponds to θ3 of 17.3° 

(the refractive index of SU-8 used for the calculation was 1.68 [105]) then  the depth of 

each circular pattern can be calculated as 80μm, 160μm, and 320μm, respectively.  

From equation 3.2, it is possible to determine the theoretical limit of the structure 

angle, which is designated as θ3  in Figure 3.10. When the incident angle θ1 equals 90°, 

the resultant structural angle is approximately 36.5°, which is the theoretical limit. This 

limitation is dependent on the optical property of the mold material (i.e. the refractive 

index of the material). The refractive index of SU-8 ranges 1.6 to 1.7, depending on the 

wavelength of the incident UV light [106], and this limits the structure angle to 38.7° to 

36°. 

Using methods described in the literature [107], it was possible to fabricate ultra-

thick SU-8 structures up to 2 mm. However, substrate bowing due to stress induced by 

the SU-8 layer was observed as the thickness of the SU-8 layer increased. This effect can 
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be resolved by using a thick substrate that can resist the stress from the SU-8 layer. In 

addition, the optimization of the process parameters such as baking temperature and 

duration, as well as exposure energy can minimize substrate bowing by reducing thermal 

stress.  

It has been reported that ultra high-aspect ratio (higher than 15) structures can be 

realized with SU-8 [107, 108]. Open field structures such as pillars can be easily 

developed in solvent, but there is limitation in developing structures with narrow 

openings. This is due to the difficulty of refreshing the developer in small and deep holes. 

Theoretically, the tip of the mold should be infinitely sharp. However, it was found that 

approximately 5 μm of tip diameter was achievable with the standard development 

procedure (dipping and agitating). The sharpness of the mold could be improved if other 

development technologies are applied. Ultrasonic development technique would be one 

of the promising techniques for developing high-aspect ratio structures [108].  

The procedure of micromolding consists of two steps: 1) filling a material into a 

micromold, and 2) separating the material from the micromold after solidification. The 

filling process depends on both the viscosity of the cast material during the process and 

the depth of the mold. In experiments, a highly viscous material (molten PLA) was 

successfully cast into a mold with an aspect ratio of 7.5 [109].  Separation of the cast 

material from the mold without breakage is a critical step for successful fabrication. 

During the separation step, the molded structure experiences shear stress which increases 

as the aspect ratio increases. For successful separation, the molded structure must be 

mechanically strong enough to resist the stress. In other words, the limit of the achievable 

aspect ratio of the molded structure depends on its mechanical strength and geometry. 
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In conclusion, the developed technology is beneficial for fabrication of complex 3-

D microstructures from a single mask. It would therefore be possible to construct much 

more complex 3-D structures by adding additional lithography steps. 

 

3.1.4 Prediction of the Shapes of Molds and Molded Microstructures 

The geometry of a final structure can be easily determined if the shape of the mask 

footprint is simple, e.g. triangle, square or circle; the final structures of these shapes are 

tetrahedron, quadrangular pyramid, and cone, respectively. Prediction of the shape of the 

final structure becomes more difficult as the complexity of the mask footprint increases; 

however, ray-tracing approaches can be utilized to gain insight as to the final shape. 

Prediction of the final shape can be achieved using a computer-aided design (CAD) 

tool such as AutoCAD (Autodesk, Inc., San Rafael, CA, USA). The concept of 

inclined/rotational UV exposure can be described as the UV light passes at an incident 

angle through a clear field of a mask. The light then sweeps the boundary of a mask 

footprint while keeping the incident angle constant. SU-8 is a negative-tone photoresist; 

therefore, the region swept by the UV light is solidified by photon-induced cross-linking. 

This effect can be mimicked using CAD software by extruding a structure with a hole 

corresponding to a mask footprint with a tapered angle as shown in Figure 3.11. 
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(a)  (b) 

 
 Figure 3.11 Concept of tapered extrusion method to predict a shape of a mold; (a) 
inclined/rotational UV lithography, and (b) tapered extrusion of a 2-D geometry having a 
hole inside 
 

 

To verify this concept, a mask with microstructures of various heights was 

designed with AutoCAD. Figure 3.12 shows the mask footprints and the predicted shape 

of the mold after the tapered extrusion procedure. 
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(b) 

Figure 3.12 Verification of tapered extrusion approach for prediction of mold formation; 

(a) the mask footprints, and (b) the predicted shape of the mold 

 

(a) 
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By extending this approach, it is possible to predict the shape of a molded structure 

directly from the mask footprint by extruding the mask footprint itself at an angle. The 

conceptual view of the tapered extrusion of an arbitrary 2-D shape is shown in Figure 

3.13. 

 

 

 

Figure 3.13 Conceptual view of tapered extrusion of arbitrary 2-D geometry 
 

 

Assume that an arbitrary parametric curve ))(),(()( tytxtC =  defines the boundary 

of a mask footprint in a 2-D space. If we extrude this curve with a tapered angle α, the 

curve which defines the boundary of the extruded object at a certain height h can be 

expressed by )(tCε . Since the tapered angle α is constant along the object, there is a 

relationship between )(tC  and the projection of )(tCε  on the 2-D plane as follows: 
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where )(tN is the unit normal vector of )(tC :  
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At height h, the distance between two curves, ε, can be expressed by 
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For example, a circle with radius R is expressed in a parametric form as 
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and its normal vector )(tN  is expressed as 
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Consequently,  
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Equation 3.8 indicates that the boundary of the extruded circle decreases with the 

height due to the increase of ε  along the height while keeping its original shape, and 

finally converges into a point when R=ε . 

From the above equations it can be deduced that the shape of the cross-section of 

an extruded object at a certain height can be predicted by the inner offset of a mask 

footprint, and the final 3-D structure can be predicted by interpolating the boundaries at 

each height. Because the tapered extrusion process is not simply done by scaling the 

original footprint along the height but done by “offsetting” the original footprint, the 

shape of an original mask footprint is not preserved along the height if the original mask 

footprint is not symmetric with respect to its centroid. For example, the cross-section of a 

trapezoid becomes a triangle at a certain height as shown in Figure 3.14.  

 

 

 

Figure 3.14 Diagram of inner offset of a trapezoid 
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When the trapezoid shrinks to a triangle at the point p1, the offset distance is ε1. 

Given a tapered angle α, the height at the points p1 and p2 can be calculated with equation 

3.5. As shown in the diagram, the structure will be a form of a tapered structure which 

has two vertices at different heights. This result indicates that a tapered-tip microneedle 

structure can be fabricated by inclined/rotational UV lithography of a trapezoidal mask 

footprint, as shown in Figure 3.15. 

 

 

 

                          (a)                                                              (b) 

Figure 3.15 Tapered-tip microneedle structure; (a) predicted structure by tapered 
extrusion, and (b) fabricated structure 

 

 

It was proven that the tapered extrusion method could predict both the shape of the 

mold as well as a molded structure. Since the tested models were relatively simple shapes, 

a more complex mask footprint was created to test the prediction, as shown in Figure 

3.16. 
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                                   (a)                                                          (b) 

Figure 3.16 Vane-like microstructure; (a) predicted model, and (b) fabricated structure 
 

 

The mask footprint was composed of four crescents with a circle at the center. The 

predicted feature (3.16a) was a vane-like structure, and the fabrication results confirmed 

the capability of this approach (3.16b). However, the predicted model is not entirely 

similar to the fabricated model for several reasons: 1) the tapered extrusion process is 

performed by creating inner offsets of given geometry. For simple geometries such as a 

circle, triangle, etc., the exact inner offsets can be computed. However, there exists a 

fundamental difficulty of exact offset computation [110] for complex geometries. In these 

cases, the offset is estimated by several approximation methods [111, 112], resulting in 

errors which cause the prediction to differ from the actual structure. 2) Because the final 

structure is formed from a mold, shrinkage of the molded material cannot be avoided. 

The final dimension of the fabricated structure is strongly dependent on the shrinkage 

rate of the molded material. In addition, the sharpness of the mold is limited by factors 

such as the resolution of SU-8 and other molding materials, as well as by reflection of the 

UV light from the bottom of the substrate. During experiments, it was found that the 

limitation of the sharpness created by a mold was approximately 5 μm when measured in 
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diameter. 3) Finally, if SU-8 deposited during mold fabrication is not perfectly flat, there 

exists a tiny gap between the mask and the deposition, which will affect the shape of the 

final structure. 

 

3.2 Metallization of 3-D Microstructures 

3.2.1 Introduction 

To implement electrical functionality to microstructures, a metallization step is 

required. Using conventional methods, metal is patterned on the surface of a substrate by 

several techniques, including: wet etching, lift-off, and shadow mask. These techniques 

were originally developed for the metallization of 2-D structures; therefore, it has been 

difficult to apply these techniques for 3-D applications. These difficulties include the 

problem of conformal coating of photoresist on 3-D structures when using wet etching 

and lift-off, and the inherent gap between a shadow mask and the sample; both cases can 

result in poor resolution. Recently, researchers have reported methods for the 

metallization of 3-D structures, including spray coating of photoresist [113, 114], multi-

step UV exposure [115], and electrodeposition of photoresist [114]. These methods show 

feasible results, and would be appropriate for metallization of 3-D structures. However, 

the 3-D metallization techniques discussed thus far require the sample to contact the 

mask, so it is not easy to apply these techniques when a sample bears high-aspect-ratio 

structures or for pointed structures such as microneedles. Therefore, it is essential to 

investigate a technology which enables metal patterning on high-aspect-ratio structures 

for the purposes of this work. To this end, laser ablation and metal transfer techniques 

were exploited and will be discussed in following sections. 
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3.2.2 Laser Ablation 

Laser micromachining has been used for many applications such as micro-vias for 

chip interconnection, ink-jet printer nozzles, flat-panel displays, and biomedical devices 

[116]. Recently, laser micromachining has been widely used in the MEMS field for 

fabricating 3-D structures [117, 118], bio-microfluidics applications [119, 120], and thin 

polymer welding [121]. Compared to photolithography, laser micromachining provides 

advantages such as rapid prototyping, flexibility of materials, and simple processing. 

There are many types of laser systems available including: excimer, CO2, IR, and 

Nd:YAG. Among them, the excimer laser has been widely used because it provides high 

resolution, low thermal damage, and can be used on a wide range of materials, many of 

which are polymers. In addition, excimer laser ablation can be used to pattern metal lines 

on high-aspect-ratio structures reported by our group [122, 123]. In these papers, 

parylene was used as a mold for electroplating, and the excimer laser was used to ablate 

the parylene layer. The concept of the fabrication process is shown in Figure 3.17. 
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(a)

(b)

(c)

(d)

(e)

(f)

 
 

Figure 3.17 Schematic of the fabrication process for metallization on a 3-D structure 
 

 

To fabricate metal lines on a 3-D structure (Figure 3.17a), a Ti/Cu seed layer was 

deposited over the sample (Figure 3.17b) followed by parylene deposition (Figure 3.17c), 

which serves to provide conformal sample coating. After parylene deposition, a mold for 

electroplating was formed by selective ablating of the parylene layer by the excimer laser 

(Figure 3.17d). Once the mold was formed, Ni was electroplated into the mold (Figure 

3.17e), followed by removal of the parylene layer and the seed layer simultaneously 

(Figure 3.17f). This technique is suitable for forming metal lines on a 3-D structure. 

It was also possible to make patterns on a seed layer directly by the excimer laser. 

Generally, the excimer laser has been used to process polymers because this laser is able 

to break polymer bonds by supplying photon energy, resulting in the chemical 

dissociation of the polymer into monomers which are volatile. The excimer laser is 
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typically not powerful enough to ablate thick metals, but it was found that it was possible 

to ablate a thin layer of metal (~ 3000Å). The direct patterning method is especially 

suitable for applications that require electrical isolations, in which only a small portion of 

the metal layer needs to be removed. The fabrication process is shown in Figure 3.18. 

The first step is the deposition of a seed layer (Ti/Cu) on a 3-D microstructure 

(Figure 3.18a). The excimer laser then scribes the desired pattern directly on the seed 

layer (Figure 3.18b). After laser scribing, the metal layer could be thickened by 

electroplating if required (Figure 3.18c). The fabrication results are shown in Figure 3.19. 

 

 

 
 

Figure 3.18 Fabrication process of direct patterning of metal layer by excimer laser 
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(a)     (b) 

  
(c) (d) 

 
Figure 3.19 Optical micrographs of metal patterns fabricated by excimer laser ablation; (a) 
pattern on Au layer, (b) close-up view, (c) Ni electroplated after laser scribing, (d) close-
up view 

 

 

Figure 3.19a and b show the pattern scribed on Au surface. The substrate bears 

10x10 pyramidal shaped microneedles, which are shown as black squares, and electrical 

isolation between the microneedles was realized by the excimer laser system (Resonetics 

Inc., Nashua, NH). To ablate a 2000Å thick Au layer, a metal shadow mask with a 

700μm diameter hole was used, and the laser beam was de-magnified optically by 10 

times, resulting in a 70μm beam diameter. The energy level of the system was 250mJ, 

and 20% of the energy was transmitted for ablation. The ablation was performed at a 

scribing speed of 100μm/sec. 
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Figure 3.19c and d show a 16x16 cone shaped metallized and isolated microneedle 

array formed using a 2000Å Cu seed layer. To develop this device, a metal shadow mask 

with a 500μm diameter hole was used at 10X de-magnification. The ablation process was 

performed at 200mJ with 25% power attenuation, and the scribing speed was 100μm/sec. 

After laser scribing, the sample was cleaned with a nitrogen gun, and a 20μm thick Ni 

layer was electroplated on top of the seed layer. 

The laser ablation technique is limited in that it is not suitable for low-cost mass 

production because it is a serial process. Also, there is a problem with misalignment 

between CAD design for laser scribing and the fabricated device due to shrinkage of the 

material during micromolding. The misalignment issue becomes critical as the size of the 

mold increases, which is essential for mass production. In order to overcome these 

limitations, a self-aligned metallization process based on a double-layer metal transfer 

micromolding technique was developed. 

 

3.2.3 Double-layer Metal Transfer Micromolding 

Photolithography has been widely used in both industry and academia to fabricate 

metallic structures. Recently, an approach known as nanotransfer printing (nTP) was 

introduced to fabricate nano-scale metal structures for applications in plastic electronics 

[124]. The basic process of nTP is the deposition of a Au/Ti layer on a PDMS stamp, 

followed by oxidizing both the stamp and the substrate to form –OH groups on the 

surfaces. By brining the surfaces into contact with each other, TiOx on the stamp 

chemically bonds to the substrate, resulting in the complete transfer of the Au/Ti pattern 

from the stamp to the substrate. This process utilizes covalent bonding, and thus is 
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limited to systems in which covalent interactions occur. More recent research has 

reported that it is possible to perform nTP by noncovalent surface forces [125], which 

could expand the range of materials for nTP process. The schematic illustration of steps 

for noncovalent transfer printing is shown in Figure 3.20. 

 

 

 
 

Figure 3.20 Schematic illustration of steps for noncovalent transfer printing [125] 
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The mechanism of noncovalent transfer printing is based on the different strengths 

of adhesion between PDMS-metal and substrate-metal interfaces. The relationship 

between the differences in the work of adhesion of those interfaces can be expressed as 

 

)()( metalPDMSmetalsubPDMSsubmetalPDMSmetalsub WW −−−− −−−=− γγγγ  (3.9) 

 

where γsub and γPDMS denote the surface energies of the substrate and the PDMS, and γsub-

metal and γPDMS-metal denote the interfacial energies between substrate and metal and 

between PDMS and metal, respectively.  

Since the surface energy of metal is usually much higher than the surface energies 

of the substrate or PDMS, the second term of the equation is small. Therefore, the 

difference in work of adhesion between surfaces can be regarded as the difference 

between the surface energies of the substrate and PDMS. In most cases, the surface 

energy of the substrate is higher than that of PDMS (19.8 mJ/m2), such that metal can be 

transferred from PDMS to the substrate. 

In this work, the principles of nTP were used to fabricate electrically active 3-D 

microstructures. A key innovation is the development of a self-aligned double-layer 

micromold approach, in which the nTP metallization isolation features are integral to the 

mold itself. Figure 3.21 illustrates the fabrication process of 3-D metal transfer 

micromolding. 

 

 

 



 65

 

 

Figure 3.21 Schematic illustration of the fabrication process of 3-D metal transfer 
micromolding 
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To fabricate a double-layer SU-8 mold, the first layer of SU-8 was spun on a 

substrate, baked, and exposed at an angle to form a negative shape of the 3-D structure 

(Figure 3.21a). The first SU-8 layer was not developed prior to the second SU-8 layer 

being spun on top of it. The structure was then soft-baked in a conventional oven. The 

second UV lithography was performed with a mask, which defines the negative shape of 

desired metal patterns, and was done in a conventional way (Figure 3.21b). After post-

exposure baking, the sample was developed in propylene glycol monomethyl ether 

acetate (PGMEA) (MicroChem Corp., Newton, MA), forming a double-layer SU-8 mold 

(Figure 3.21c). PDMS was then cast into the SU-8 mold (Figure 3.21d) to copy a 

negative of the mold (i.e., flexible master). After the fabrication of the flexible PDMS 

master, a PDMS mold was formed by casting PDMS onto the PDMS master (Figure 

3.21e). Before casting PDMS onto the PDMS master, the surface of the PDMS master 

was treated with CHF3/O2 plasma to prevent it from adhering to the cast PDMS. Metal 

(Au or Au/Ti) was then evaporated into the PDMS mold by electron-beam evaporation, 

by this method the evaporated metal layer does not cover the side wall of the PDMS mold 

(Figure 3.21f). When a plate with high surface energy was brought into contact with the 

PDMS mold, the first metal transfer occurred so that the metal on the extruded part of the 

mold was selectively transferred to the plate (Figure 3.21g). After patterning the metal 

layer, a desired polymer was cast into the mold, cured, and separated. During the 

separation process, the second metal transfer occurred, resulting in the formation of 3-D 

metal-patterned microstructures (Figure 3.21h and i). The advantage of this process is 

that it does not require any photolithography or etching steps and enables the patterning 

of a metal layer on high-aspect-ratio 3-D structures with high fidelity. When compared to 
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conventional technology for fabricating 3-D metallic structures, the 3-D metal transfer 

micromolding technique is a time and cost-effective process which is attractive to mass 

production. 

Based on the technology mentioned above, a double-layer SU-8 mold for a 3-D 

microelectrode array (MEA) was fabricated, as shown in Figure 3.22. A silicon wafer 

was diced into 2cm by 2cm chips and cleaned in Piranha etch solution for 15 min. After 

cleaning, the substrate was rinsed with DI water for 1 min and dried with a nitrogen gun. 

The sample was then dehydrated at 120°C in an oven for 30 min. A 700μm thick SU-8 

layer was coated on the substrate, and the sample was baked at 100°C on a hot plate for 

24 hours. The sample was placed on the inclined/rotational stage with the mask, and 

exposed to UV light at an energy per unit area of 9000 mJ/cm2. Post-exposure baking was 

done at 95°C on a hot plate for 30 min, and the sample was slowly cooled down to room 

temperature. Without developing the first SU-8 layer, the 2nd SU-8 layer was spun on the 

1st SU-8 layer with a thickness of 80μm. The spin-coating condition for the 80μm thick 

SU-8 layer (SU-8 2025) was composed of two steps: 500 rpm for 5 sec with acceleration 

of 100 rpm/sec, and 1000 rpm for 30 sec with acceleration of 300 rpm/sec. The sample 

was then baked at 95°C in an oven for 30 min. The second mask was aligned with the 

sample, and an energy density of 800mJ/cm2 was exposed through the mask to pattern the 

2nd SU-8 layer. After the second UV exposure, the sample was post-exposure baked at 

95°C in an oven for 15 min. Once the post-exposure baking was done, the sample was 

cooled down at room temperature for 2 hours prior to development. The sample was 

developed in PGMEA with agitation for 4 hours. After development, the sample was 
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rinsed with trichloroethylene (TCE) and isopropyl alcohol (IPA), followed by nitrogen 

blowing. 

 

 

  
                                         (a)                                                       (b) 

  
                                         (c)                                                      (d) 

  
                                         (e)                                                        (f) 

Figure 3.22 Fabricated double-layer SU-8 mold for 3-D microelectrode array; (a) Top 
view of the mold, (b) oblique view of the mold, (c) region where 3-D microelectrodes 
will be formed, (d) close-up view of (c), (e) region where electrical contacts will be 
formed, (f) close-up view of (e) 
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The PDMS master was then copied from the SU-8 mold. PDMS prepolymer and 

curing agent were mixed in a 10:1 weight ratio, and the mixture was cast into the mold 

after degassing. Since the mold contained high-aspect-ratio tapered trenches, vacuum was 

applied to avoid air entrapment in the trenches. The PDMS master was separated from 

the mold after curing for 8 hours at 50°C in an oven. From the PDMS master, a PDMS 

mold was copied and metallized by E-beam evaporation. For metallization, 2000Å thick 

Au layer was deposited at a rate of 1.5Å/sec. To avoid crack formation during handling 

of the PDMS mold, the PDMS mold was firmly attached to a glass slide by polyimide 

tape before metallization. Once the metallization step was done, the 1st metal transfer step 

was performed. In principle, any material which has higher surface energy than PDMS 

can be placed on top of the PDMS mold for transferring metal pattern to the material, and 

the transferring process can be accelerated by applying heat. In thin work, adhesive tape 

was used for metal transfer processing. The results of the 1st metal transfer are shown in 

Figure 3.23. 

 

 

  
 

Figure 3.23 Optical micrographs of the PDMS mold after 1st metal transfer process 
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Due to the low surface energy of PDMS, it was possible to transfer metal from the 

PDMS mold to a variety of materials including SU-8, Polyurethane, and PMMA. To copy 

polymeric structures from the PDMS mold containing deep trenches, air bubbles must be 

removed. Vacuum can be used when the system has no solvent. For solvent systems such 

as SU-8 and solvent-cast PMMA, the solvent was evaporated slowly at mild temperatures 

(65°C for SU-8 and 30°C for PMMA) so that the entrapped bubbles could rise to the 

surface of the cast material and be released prior to surface hardening. After the bubbles 

were removed, the solvent was evaporated at an elevated temperature to accelerate the 

process (95°C for SU-8 and 50°C for PMMA). In two component systems such as 

Polyurethane and PDMS, the degassing process was successfully done under vacuum. 

The fabrication results are shown in Figure 3.24. 
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                                      (a)                      (b) 

  
                                       (c)            (d) 

Figure 3.24 The fabricated 3-D electrically functional microstructure by metal transfer 
micromolding; (a) and (b) optical micrographs of the structure, (c) and (d) SEM pictures 
of the structure 

 

 

3.3 Electrical Connection through Micro-via 

3.3.1 Introduction 

Wire bonding, which is a common method for packaging fabricated chips in the 

semiconductor industry, has been widely used to connect fabricated microdevices to outer 

electronics. For some applications, however, it is required to form large numbers of 

interconnects which can not be implemented by wire bonding due to the limited surface 

area for bonding pads. Also, it is sometimes desirable to form an electrical interconnect 

through the substrate for specific purposes. A potential solution is the formation of micro-
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vias through the substrate to implement electrical interconnects through the vias, a 

method widely used in the printed circuit board (PCB) industry. In this work, the 

formation of electrical interconnects through micro-vias by filling mirco-vias with 

conductive materials was investigated. 

 

3.3.2 Electroplating through Micro-via 

The first approach for implementing electrical connections through the substrate of 

a device was performed by filling vias with electrodeposited metal. As a test vehicle, a 

500μm thick PMMA sheet was used for the substrate, and the detailed fabrication process 

is illustrated in Figure 3.25. 

 

 

 

Figure 3.25 Schematic illustration of micro-via filling process by electroplating 
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One side of the PMMA sheet was coated with a Ti/Cu seed layer (300Å/3000Å), 

followed by electroplating a 10μm thick Cu layer on the seed layer (Figure 3.25a and b). 

Micro-vias were drilled by a CO2 laser which thermally ablates polymeric materials. In 

principle, the CO2 laser system does not provide sufficient energy to ablate the metal 

layer; therefore the deposited seed layer will play a role as an “etch stop” layer. However, 

it was observed that the thin seed layer was easily torn during the laser ablation; thus a 

thick electrodeposited Cu layer was formed prior to the process. Micro-vias of 

approximately 150μm in diameter were drilled with a CO2 laser (Figure 3.25c), and the 

electroplated Cu layer was covered with polyimide tape before electroplating through the 

vias (Figure 3.25d). Cu was then electroplated through the vias with 10mA/cm2 current 

density (Figure 3.25e). Before electroplating Cu, the sample was soaked in water and 

vacuum was applied to degas the air bubbles entrapped in the vias. Since the exposed 

area of the seed layer for electroplating was small, it was hard to control current density. 

To resolve this issue, Cu tape was attached to the sample to increase the surface area for 

electroplating. After electrodeposition of Cu, the seed layer was selectively removed and 

the vertical interconnects were formed (Figure 3.25f). The fabrication results are shown 

in Figure 3.26. 
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(a)                                                                (b) 

Figure 3.26 Vertical interconnects fabricated by electroplating Cu in micro-vias; (a) 
picture taken from the top side where the seed layer was deposited and (b) picture taken 
from the bottom 

 

 

3.3.3 Conductive Polymer Filling 

The second approach to create vertical interconnects was to fill micro-vias with a 

conductive polymer. This approach is attractive in applications such as electroporation 

where extremely low resistance contacts are not required. In this work, commercially 

available conductive ink (Think & Tinker Ltd., Palmer Lake, CO, USA) normally used 

for coating the side walls of through-holes in PCB was utilized. The ink contained a 

mixture of silver and carbon in a polymer resin, and the viscosity was 125 cps. 

Conductive ink was spread over the surface of the substrate bearing pre-drilled micro-

vias, and vacuum application caused the ink to fill the vias. The detailed fabrication 

process is depicted in Figure 3.27. 
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Figure 3.27 Schematic illustration of micro-via filling process 
 

 

In this process, a 100μm thick polyimide sheet covered with 25μm thick Kapton 

tape was used as the substrate (Figure 3.27a). Micro-vias with a diameter of 20μm were 

drilled using the excimer laser system (Resonetics Inc., Nashua, NH, USA), and the 

surface of the sample was cleaned with isopropyl alcohol followed by nitrogen blowing 

(Figure 3.27b). Conductive ink was applied to the top of the sample (Figure 3.27c), and 

vacuum was applied from the backside of the sample to fill the micro-vias (Figure 3.27d), 

followed by a curing process in an oven at 100°C for 30 min. Excess material was 
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removed by rubbing the sample with acetone (Figure 3.27e), and the Kapton tape was 

detached from the sample (Figure 3.27f).  

It was observed that a dimple was formed during the removal of excess material; 

this is not desirable for a smooth electrical connection to external electronics. This 

problem was solved by attaching Kapton tape to both sides of the sample prior to the 

filling process, allowing protruded structures to remain on the surface of the sample after 

the removal of excess material and Kapton tape. The fabrication results are shown in 

Figure 3.28. 

 

 

  
(a)                      (b) 
 

Figure 3.28 Optical micrographs of micro-vias filled with conductive polymer; (a) 3 by 3 
arrays of micro-vias with the diameter of 20μm, and (b) close-up view 
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CHAPTER 4 

FABRICATION AND CHARACTERIZATION OF MICRONEEDLE 
ARRAY FOR ELECTROPORATION 

 
 
 

4.1 Introduction 

Based on fabrication techniques described in Chapter 3, two types of microneedle 

arrays for electroporation were fabricated: parallel-type and checkerboard-type 

microneedle arrays. These microneedle arrays differ in terms of the fabrication 

techniques used and the configuration of electric polarity. The parallel-type microneedle 

array was fabricated using a micromolding and laser ablation technique. The master 

structure of the parallel-type microneedle array was formed by RIE etching. Electrical 

isolation was realized by patterning a metal layer using an excimer laser. Alternate rows 

of the parallel-type microneedle array have the same electric polarity. To fabricate the 

checkerboard-type microneedle array, inclined/rotational UV lithography and metal 

transfer micromolding techniques were used. A rigid SU-8 mold for the microneedle 

array was formed using inclined/rotational UV lithography, and electrical functionality 

was implemented by a metal transfer micromolding technique. Alternate diagonals of the 

checkerboard-type microneedle array have the same electric polarity. 

 

4.2 Parallel-type Microneedle Array 

4.2.1 Fabrication 

The fabrication process for our microneedle array consists of two main steps: 1) 

fabrication of a master structure, 2) fabrication of polymeric structure by micromolding. 
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The master structure was fabricated by reactive ion etching of an SU-8 tower array as 

reported by our group recently [126]. A 100 μm thick layer of SU-8 2025 (Microchem 

Corp., Newton, MA) was spun on a glass substrate bearing a clear field array of circular 

patterns, and baked for 30 min at 95°C on a hotplate. The SU-8 substrate was then 

formed by top exposure (800 mJ/cm2), followed by post exposure baking (15 min at 95°C 

on a hotplate). Without developing the first SU-8 layer, the second layer of SU-8 (500 μm 

thick) was spun on the first layer, and baked for 20 hours at 95°C on a hotplate. The 

tapered SU-8 tower array was defined by exposing UV (5000 mJ/cm2) from the backside 

of the glass substrate through a pre-patterned chromium layer. The sample was post-

exposure baked (2 hours at 95°C on a hotplate), and developed in propylene glycol 

methyl ether acetate (PGMEA, Microchem Corp., Newton, MA). The tapered SU-8 

structure was sharpened by reactive ion etching (700 Series Wafer/Batch Plasma 

Processing System, Plasma-Therm Inc., St. Petersburg, FL). A mixture of O2 and CHF3 

gases (O2:100sccm, CHF3:10sccm) was used for etching SU-8 with 2μm/min etch rate 

under 1000 mTorr and 100W. Figures 4.1 and 4.2 show the fabrication process and the 

fabricated SU-8 master structure, respectively. The final structure contained a 16x16 

array of microneedles with 7μm tip diameter, 70μm base diameter and 350μm height. 

Center-to-center distance between microneedles was 250μm. 
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Figure 4.1 Fabrication process of the SU-8 master structure 
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(a)                                                               (b) 

Figure 4.2 SEM pictures of the fabricated SU-8 master structure; (a) structure in the 
middle of RIE etching, and (b) final structure 
 

 

Once the SU-8 master was fabricated, a flexible polydimethysiloxane (PDMS) 

mold was copied from the master. The master was placed in a polystyrene (PS) container, 

and PDMS (Sylgard 184, Dow Corning Corp., MI) was poured into the container and 

cured at 50°C in a conventional oven for 10 hours. The PDMS mold was then separated 

from the master. Since a micromolding technique was adopted for fabricating the final 

device, many different materials [79] could be used as the microneedle substrate. 

Candidate materials lie at the intersection of moldability into high aspect ratio structures 

and biocompatibility.  In this work, Polymethyl methacrylate (PMMA) was chosen 

because it satisfied both of these criteria. An additional advantage of the molding 

approach is its inherent mass-production capabilities, which are important for ultimate 

disposable applications. It is possible to reproduce the structure easily and quickly 

compared to a conventional photolithography process using SU-8.  

In the micromolding of high aspect ratio structures, it is often difficult to utilize 

conventional thermoplastic melt-molding to form the structure from highly viscous 

polymer due to the potential for bubble entrapment in the deep and narrow mold. For our 
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microneedle array, PMMA powder (MW=75,000, Scientific Polymer Products Inc., 

Ontario, NY) was dissolved in ethyl lactate (Acros Organics, Morris Plains, NJ), which is 

a relatively low toxicity solvent compared to many other PMMA solvents, with 20% in 

weight. The solution was then cast into the PDMS mold and left at room temperature for 

30min to allow the solution to spread over the entire mold. After that the sample was 

placed on a hotplate to evaporate solvent. Several different temperatures below the 

boiling point of the solvent were attempted, and it was observed that low temperature 

process under 50°C avoided bubble formation during evaporation. After evaporating the 

solvent on a hotplate at 50°C, the sample was annealed at 100°C in an oven for 1hour. 

Once the annealing process was completed, the sample was cooled down at room 

temperature, and the PMMA microneedle array was separated from the mold. 

To realize electrical functionality, deposition of a metal seed layer (Ti/Cu, 

300Å/3000Å) on the microneedle array was performed using a DC sputterer (CVC 

Products, Inc., Rochester, NY). Careful control of sputtering parameters was required to 

minimize heat generation during sputtering, which causes deformation of the structure. 

The seed layer was patterned by excimer laser ablation (Resonetics Inc., Nashua, NH) to 

isolate adjacent microneedle rows with a 100μm gap. Excimer lasers are used for 

micromachining polymers, but it was found that a thin metal layer can also be ablated by 

the same laser. The process parameters used in this work were as follows: 248nm 

wavelength, 200mJ energy, 25% power attenuation, 100μm/sec scribing speed. After 

isolation, a 20μm thick Ni layer was electrodeposited at room temperature with stirring to 

enhance structural rigidity. For an electrical connection between the microneedle array 

and external electroporation electronics, a backside contact is required so that there is no 
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interference with insertion of the array into skin.  To achieve this contact, a via was 

formed from the backside of the PMMA substrate using a CO2 laser (LS500 Laser 

Engraving System, New Hermes-Gravograph, Inc., Duluth, GA). Copper wire was then 

inserted through the via and connected to the underside of the metallization using silver 

paste followed by an epoxy mechanical connection. Figure 4.3 shows the fabrication 

process and Figure 4.4 shows the fabricated device containing a 16x16 array of 

electrically active microneedles, with adjacent microneedle rows electrically isolated. 

The height of the microneedles is approximately 400μm, bottom diameter is 110μm, tip 

diameter is 15μm, and center-to-center distance between microneedles is 250μm. 

 

 

 

Figure 4.3 Fabrication process of the metal-patterned PMMA microneedle array 
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Figure 4.4 The fabricated electrically active microneedle array 
 

 

4.2.2 Insertion Test 

To examine the skin penetration ability of the microneedle array, several insertion 

tests were performed on human subjects using either non-coated (polymer-only) PMMA 

microneedles or nickel-coated PMMA microneedles of various nickel thicknesses. The 

microneedle array was placed on the hand of a human subject, and pushed using the 

thumb. After the test, the microneedle array was examined under the microscope. It was 

observed that the polymer-only microneedle array could not penetrate through human 

skin. The PMMA microneedle array was deformed during the penetration process shown 

in Figure 4.5.  This seems to be contrary to the result of Moon et.al [90] who showed that 

a PMMA microneedle array could be successfully inserted into skin. The ability of skin 

penetration depends not only on the mechanical strength of a microneedle, but also on the 

geometry of the microneedle. Even though both works used the same material, there is a 

difference in the mechanical properties between the solvent-cast PMMA used in this 

work and the PMMA sheet used in Moon’s work. The degree of crystallinity of the 
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PMMA sheet, which is commercially available and manufactured by an extrusion 

process, is greater than that of the solvent-cast PMMA, thus leading to higher mechanical 

strength. Compared to Moon’s microneedle structure, the fabricated microneedle 

structure has a smaller base with a larger aspect ratio, indicating that this structure is 

inherently mechanically weaker than Moon’s structure.  

 

 

 

Figure 4.5 Optical micrograph of the PMMA microneedle array after insertion test 
 

 

The rationale behind testing polymer-only microneedle arrays was to determine the 

metal layer thickness needed for implementing electrical functionality. If the polymer-

only microneedle array demonstrated successful insertion into skin without damage, the 

electrical functionality could be realized by a thin metal layer, which would in turn 

reduce process time and cost. Since the experiment for insertion of a PMMA microneedle 

array failed, a thicker metallization is required. This was realized by electroplating a 

10µm thick Ni layer on a PMMA microneedle array and testing the array on a human 

subject with same protocol as before. This test proved to be a success and is consistent 
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with the previous studies [127]. However, it was observed that these needles were bent 

after several successive insertions. This might be due to accumulation of fatigue during 

the insertion/removal procedure. Usually a microneedle experiences not only axial force 

but also lateral forces, especially during removal. Therefore, multiple insertion tests could 

induce mechanical failures in the microneedles. To resolve this issue, thicker (20μm-thick 

Ni) coated arrays were tested.  After the array was removed, the skin was stained with 

blue dye and then observed by microscopy. Figure 4.6 shows the stained skin in the 

pattern of the microneedle electrode array, indicating that the microneedle electrodes 

pierced the skin. Subsequent microscopic examination of the arrays showed that 

microneedle electrode tips were not damaged, even after multiple insertions, as shown in 

Figure 4.7. 

 

 

 

Figure 4.6 Photomicrograph of human skin in vivo after piercing with microneedle 
electrodes and staining with blue dye 
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Figure 4.7 SEM picture of microneedle array after multiple insertion tests. Tissue debris 
is shown on the surface of intact microneedles 

 

 
4.2.3 Electric Field Simulation 

Since electroporation occurs when the cellular transmembrane potential induced by 

an external electric field exceeds a threshold value, it is desirable to generate a 

homogeneous electric field which can affect the cells uniformly, thereby maximizing the 

effect of electroporation. If the strength of the external electric field is too high, cell death 

can result. Therefore, electroporation should be performed within a specific range of 

electric field strength to achieve high uptake rate with high viability of cells. Since the 

electric field generated by the microneedle arrays is inhomogeneous, it is important to 

estimate how much volume in the microneedle array can be effective for electroporation 

and design the arrays and electroporation conditions to maximize this volume.  

To analyze the spatial distribution of the electric field generated by the microneedle 

array, a 3-D finite element (FE) model was created using FEMLAB 3.1 (COMSOL, Inc., 

MA, USA). The 3-D FE model consists of a 4 by 4 sub-array of microneedles with the 

same geometry of the fabricated microneedle array, as shown in Figure 4.8. 
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Figure 4.8 3-D finite element model for electric field simulation 
 

 

The best way to investigate the distribution of the field strength over space is to 

generate homogeneous meshes, examine the field strength of each mesh, and count the 

number of meshes that correspond to the same field strength. However, it is not easy to 

generate homogeneous meshes especially when the geometry for simulation is complex. 

The other approach to extract the distribution of the field strength from inhomogeneous 

meshes is to calculate the area of meshes corresponding to the same field strength. This 

approach is statistically reasonable, but it requires heavy computation. In this work, 

another approach called the “grid approach” was attempted. Instead of counting the 

number of meshes with the same field strength, a grid was defined over the volume 

surrounded by four microneedles and the field strength at each intersecting point was 
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examined. In principle, an infinitesimal grid is needed to accurately represent the entire 

area, but it was realized by several simulations that the overall shape of the distribution 

was not affected by the size of grid as long as the size of the grid is at least twice as small 

as that of the smallest mesh. After electric field simulation, data containing electric field 

strength at each grid point was exported to MATLAB to generate a histogram. 

Using the grid approach with 10μm grid, a quarter of the volume surrounded by 

four microneedles located at the center of the model was analyzed. For analysis, electric 

field strength at each intersecting point was extracted from the model, and histogram was 

generated using MATLAB. Figure 4.9 shows a histogram of electric field strength when 

6 V was applied between microneedles. The x axis represents electric field strength, and 

the y axis represents the number of grid points per electric field strength. The width of the 

bin for the histogram was 1 V/cm. 

 

 

 
Figure 4.9 Distribution of the electric field strength when 6V was applied between the 
microneedle electrodes 
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Due to the geometry of the microneedle array, the electric field generated was 

inhomogeneous. The gap between microneedles varies linearly from 150μm at the bottom 

to 240μm at the tip. It was expected that the distribution of the electric field strength 

would be centered at the field strength given by the applied voltage divided by the 

average distance between microneedles. In this case, the electric field strength can be 

calculated as 300 V/cm. However, the peak of the distribution was shown near 200 V/cm. 

Also, a field strength higher than 400 V/cm, which corresponds to the field strength given 

by dividing the applied voltage by the shortest distance between the microneedle 

electrodes, was generated near the electrodes due to the concentration of the electric field. 

The problem of 3-D modeling is that it requires heavy computation. Since the 

geometry contained high-aspect-ratio structures (i.e. microneedles), small meshes were 

needed to compute the electric field near the tips. Therefore, the total number of meshes 

required for the simulation exceeded more than 100,000 even with rough meshes. This 

implies that accurate 3-D modeling of high-aspect-ratio geometries is computationally 

burdensome, so it is desirable to simulate in 2-D if possible. 

A series of 2-D finite element (FE) models that represent cross-section of the 3-D 

model at certain heights was created to approximate the 3-D model using FEMLAB 3.1. 

The limitation of this approach was that the distribution of electric field strength above 

the tips cannot be represented by the 2-D model. However, it was realized from the 3-D 

model that the contribution of the fringing field above the tips to electroporation could be 

neglected, enabling to use the 2-D models to estimate the electric field distribution at 

certain heights. To examine the effect of a fringing field near the tip of the microneedle 
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array, an electric field in the volume between the tip and 50μm above the tip was 

analyzed from the 3-D model, as shown in Figure 4.10.  

 

 

 

Figure 4.10 Distribution of the electric field strength above tips when 6V was applied 
between the microneedle electrodes 
 

 

It was observed that the field strength due to the fringing field was mostly confined 

to a low field region compared to the field strength within the volume surrounded by the 

microneedle array. Also, the volume fraction occupied by relatively high electric field 

strength, which potentially contributes to electroporation, is small; suggesting that the 

contribution of the fringing field to electroporation should be negligible. 

The 2-D model consisted of 16 circles, which represent the microneedle array at a 

certain height. The geometrical parameters as the microneedle array was maintained 
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similar to the fabricated needles and the region surrounded by 4 circles located at the 

center of the model were analyzed. Figure 4.11a shows a model which mimics the bottom 

of the microneedle array. Regions with the same electric field strength are depicted by 

contours. Figure 4.11b shows the variation of the electrical field strength along the lines 

A and B, which are denoted in Figure 4.11a. 
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 (b) 

Figure 4.11 2-D finite element simulation results; (a) 2-D model also contains 4x4 
electrodes, and only 2x2 electrodes at the center was used for the analysis. Geometric 
parameters are same as the 3-D model. For the analysis, 100 V was applied, and the 
electric field distribution along the two lines denoted as A and B was plotted, (b) Electric 
field distribution along line A (top) and B (bottom) 



 92

For line A, when 100 V was applied between the electrodes the maximum field 

strength was 9.5 kV/cm at the edge of the electrode and the minimum field strength was 

5.7 kV/cm at the middle of the electrodes. For line B, the maximum and the minimum 

field strengths were 7.5 kV/cm and 3.9 kV/cm, respectively. Since the distance between 

the nearest electrodes in A is 150 μm, the field strength generated by the applied voltage 

of 100 V would be 6.67 kV/cm in the case of ideal parallel plates. However, a maximum 

field strength of 9.5 kV/cm was generated due to the field concentration on uneven 

surfaces. For further analysis, the average field strength between the 4 electrodes was 

calculated by integrating the electric field inside the electrodes numerically and dividing 

it by the area as follows: 

 

                                         
Area

dxdyyxE
Eave

∫∫=
),(

                              (4.1) 

where E(x,y) represents an electric field strength at the location (x,y). 

The field strength at (x,y) was extracted from the simulation results, and the 

calculated average field strength was 4.37 kV/cm with a standard deviation σ = 1.595 

kV/cm. Standard deviation was also calculated numerically by the following equation: 

 

                                       
Area
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=

2)(
σ                                       (4.2) 

where 22
yxnorm EEE +=  at (x,y). 
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Since the microneedle array generates an inhomogeneous electric field, it is 

important to know the degree of inhomogeneity of the field. For the case of the ideal 

parallel plate which generates a homogeneous electric field, the histogram of the field 

strength could be represented by the delta function and its field strength is simply found 

by dividing the applied voltage by the distance between two plates. For the microneedle 

case, the field strength varies spatially due to interaction between electrodes. This 

necessitates the use of a distribution function to represent field strength spatially. To 

estimate the distribution of the electric field strength generated by the microneedle array, 

a total of 10 2-D FE models, which mimic the cross section of the microneedle at a 

certain height from the microneedle substrate, were created. From the distribution of the 

electric field strength at a certain height given by the 2-D FE models, the 3-D distribution 

of the electric field strength was approximated by interpolation of the 2-D models. For 

simplicity, it was assumed that the distribution of the electric field strength between two 

slices was the same as that of the bottom slice. When the number of the 2-D models is too 

small (i.e. 3 slices), the error due to interpolation is significant. However, this error can 

be reduced by increasing the number of 2-D models. Also, the overall distribution 

constructed from the 2-D models will underestimate the relatively lower field region 

where the field strength is lower than the mean value of the distribution and overestimate 

the relatively higher field region.  The extremes of the simulation were the cross sections 

of the bottom of the microneedle array (1st Model) and of the tip of the microneedle array 

(10th Model). For each simulation, 6 V was applied between electrodes, and a quarter of 

the area (due to geometrical symmetry) surrounded by the 4 electrodes was used for the 

analysis. The analysis was performed using the grid approach described previously. For 
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each simulation, the smallest mesh size was controlled to be approximately 1 μm, and the 

size of grid was fixed to be 0.5 μm. The simulation was performed by FEMLAB 3.1, and 

the extracted data was processed by MATLAB 7.2 (The MathWorks, Inc., MA, USA). A 

histogram was used to express the distribution of the field strength, and some of the 

results are shown in Figure 4.12.  The x axis represents electric field strength (V/cm), and 

the y axis represents the number of points per electric field strength defined by the grid.  

Figure 4.12a shows the electric field distribution at the bottom of the microneedle 

array, and two peaks with an exponential decay around the peaks can be seen. These two 

peaks indicate that the field distribution is mainly determined by interaction of the nearest 

two electrodes, and an exponentially decaying tail is due to a fringing field generated by 

the uneven shape of the electrode. Figure 4.12b,c, and d show the field distribution at 

different heights, and two peaks move toward lower field region since the gap between 

electrodes increases along the height of the microneedle due to its tapered geometry. It is 

noticeable that even though overall field strength decreases along the height, the tail in 

the high field region becomes longer due to the electric field concentration on small 

features.  
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 (c)      (d) 

Figure 4.12 Distribution of the electric field strength at different heights; (a) at the bottom 
of the microneedle array, (b),(c) in the middle of the microneedle array, and (d) at the tip 
of the microneedle array 

 

 

To estimate the overall field distribution within the volume surrounded by the 

microneedle array from the 2-D simulation results, the electric field distribution in the 

volume between 2 slices was assumed to be same as the distribution of the bottom slice. 

The total distribution of the electric field strength was estimated by adding each 

distribution, and the distribution was divided by the total number of grid points. Figure 

4.13 shows the result of the estimation of the distribution of electric field strengths. 
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Figure 4.13 The distribution of electric field strength when 6V was applied 
 

 

To derive an analytical expression of the distribution from the simulation result, 

curve fitting was performed by MATLAB. For curve fitting, several combinations of 

general functions such as polynomial, exponential, and Gaussian were tested. The 

distribution was best fitted using a combination of two Gaussian functions. Since the 

purpose of the simulation was to derive a general expression of the distribution to predict 

how much percent of the total volume could contribute to electroporation, normalization 

of the distribution was performed. We assumed that the distribution can be expressed by 

a function f(x), and the distribution after normalization is f(x’). The function f(x) is the 
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probability density function, and the area under the probability density function between 

any two points, x1 and x2, represents the probability that a randomly chosen variable 

value will lie between these two values. In our case, the random variable is the electric 

field strength, and the area under the probability density function corresponds to the 

volume fraction corresponding to this field strength. If the relationship between x and x’ 

is x’ = x/k where k is normalization constant, then f(x’) = kf(x). The proof of this 

relationship is given below: 

 

kxx /' =  and ∫ ∫ == constdxxfdxxf )()( ''  

                             since kdxdx /' = ,  

∫ ∫ ∫ === constdxxfdx
k
xfdxxf )()()(

'
''  

                               )()( ' xfkxf ⋅=∴                                                                  (4.3) 

 

For normalization, the nominal field strength, which is given by the applied voltage 

divided by the nearest distance between two electrodes at the bottom of the microneedle 

array (150 μm for the fabricated device), was chosen as normalization constant k. For 

example, if 6 V was applied between electrodes, the nominal field strength would be 400 

V/cm (6 V divided by 150 μm). Figure 4.14a shows two distributions of electric field 

strength generated by two applied voltages of 3 and 6 V, and Figure 4.14b shows the 

distribution after normalization. The analytical expression of the fitted curve was given 

by two Gaussian functions with the coefficient of determination R2=0.9998 as follows: 
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(a) 

Figure 4.14 The distribution of electric field strength; (a) before normalization and (b) 
after normalization 
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 (b) 

Figure 4.14 continued 

 

 

Since the electric field distribution was modeled analytically, it is possible to 

determine the optimal field strength required for electroporation. For example, if we 

know the lower bound (cell membrane permeabilization) and the upper bound (cell death) 

for effective electroporation, the applied voltage required for generating the field strength 

that can maximize the effect of electroporation can be estimated from the model. Suppose 

that the target cell is DU 145 whose diameter is approximately 20μm. According to 

Schwann’s equation (Eq. 2.1), the threshold electric field strength is 166 V/cm (0.5 V of 

transmembrane potential is used for calculation [128]). From the literature [129], 
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approximately 90 % viability was achieved when a field strength of 500 V/cm with 2.8 

msec pulse length was applied to DU 145 for calcein delivery. By defining a “window” 

with these bounds, it is possible to predict a volume fraction which contributes to 

effective electroporation at different voltages applied for experiments. For example, if 

voltages that induce the nominal field strength of 250 V/cm, 500 V/cm, 750 V/cm, and 1 

kV/cm were applied, the volume fraction which contributes to the delivery of molecules 

can be calculated from the model as 22 %, 72 %, 68 %, and 49 %, respectively. The 

volume fraction that exceeds the assumed upper bound for each condition can be given as 

0 %, 3.6 %, 22.4 %, and 46 %, respectively. From these results, it can be expected that a 

field strength of 500 V/cm would be the best condition among the 4 different conditions. 

 

4.3 Checkerboard-type Microneedle Array 

4.3.1 Fabrication 

To fabricate the microneedle array for electroporation, the double-layer micromold 

approach combined with metal transfer micromolding, which was discussed in chapter 3, 

was adopted. As described before, a rigid mold for the microneedle array was fabricated 

by inclined lithography and a protrusion structure for electrical isolation was formed 

successively (Figure 4.15a). From the SU-8 rigid mold, either a flexible or a rigid master 

structure was copied (Figure 4.15b). For the fabrication of a flexible master, PDMS 

(Sylgard 184, Dow Corning, Midland, MI) was cast into the rigid mold and separated 

from the mold after curing. To enhance the wettability of PDMS on the surface of the 

mold, a thin Au layer (1000Å) was deposited (EFFA Sputter Coater, Ernest F. Fullam, 

Inc., Clifton Park, NY) onto the mold prior to PDMS casting. For the fabrication of a 
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rigid master, a Ti/Cu layer (300Å/5000Å) was deposited (DC sputterer, CVC Products, 

Inc., Rochester, NY) into the SU-8 mold as a seed layer and Ni was electroplated into the 

mold. Before electroplating Ni, the sample was degassed in water. Once a 300μm thick 

layer of Ni was electroplated at a deposition rate of 15μm/hour, the sample was washed 

with DI water and immersed in copper etchant for Cu etching. By etching the Cu layer, 

the electroplated Ni master structure was separated from the SU-8 mold. A PDMS mold 

was then copied from the master and metallized with Au/Ti (2000Å/500Å), followed by 

the removal of the metal layer on the protrusion (Figure 4.15c and d) by bringing it in 

contact with adhesive tape (Scotch Magic Tape 810, 3M Corp., St. Paul, MN). The 

remaining metal in the PDMS mold was then transferred to the cast materials such as 

PMMA (MW=75,000, Scientific Polymer Products Inc., Ontario, NY), polyurehtane (PU) 

(Smooth-Cast 310, Smooth-On, Easton, PA), polylactic acid (PLA) (L-PLA, 1.1 dL/g, 

BPI, Birmingham, AL), and epoxy resin (SL. 7510, 3D Systems, Valencia, CA) during 

the separation process (Figure 4.15e). The transferred metal layer was then used as a seed 

layer for electroplating. Even though the transferred metal layer could be sufficient for 

implementing the electrical functionality on the final electroporation needle structure, the 

main purpose of strengthening the metal layer by electroplating is to provide structural 

rigidity to the microneedles for easy and safe insertion into skin. Also, a sufficiently thick 

metal layer can be used as an “etch stop” for drilling holes from the backside of the 

sample by laser machining. A Ni layer with a thickness of 15-20μm was electrodeposited 

on the seed layer (Figure 4.15f), followed by drilling holes from the backside of the 

sample by a CO2 laser for electrical interconnects (Figure 4.15g). Thin copper wires were 
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then inserted into the holes to construct electrical pathways to the outer electronics, and 

the holes were filled with conductive polymer (Figure 4.15h). 

 

 

 
 

Figure 4.15 Schematic illustration of the fabrication process for an electrically active 
microneedle for electroporation 
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For the fabrication of the rigid SU-8 mold, approximately 800μm thick SU-8 2025 

was deposited on a silicon substrate, followed by a soft-baking process at 95°C on a hot 

plate for 30 hours. The negative of the microneedle array was then formed by the 

inclined/rotational UV lithography discussed in Chapter 3, followed by post-exposure 

baking (PEB) at 95°C on a hot plate for 30 min. During the PEB, the epoxy exposed to 

UV changed to a dark yellow hue. Since there was a difference in color between the 

exposed and the unexposed areas, it was possible to align and pattern the second SU-8 

layer without developing the first SU-8 layer. The second SU-8 layer was spun on the 

first SU-8 layer, baked, exposed, and developed in PGMEA along with the first layer 

after PEB. For an 80μm thick SU-8 layer, SU-8 2025 was spun on the first SU-8 layer at 

1000 rpm for 40 sec, and baked in an oven at 95°C for 30 min. An exposure dose of 400 

mJ/cm2 was applied under a 365nm wavelength UV lamp. PEB was done in an oven at 

95°C for 15 min. The fabrication results are shown in Figure 4.16. 

The fabricated SU-8 mold consists of 10 by 10 tapered square wells. The size of the 

squares was 200μm x 200μm, and the gap between each square was also 200μm. The 

protrusion structure was designed to isolate adjacent wells; thereby, the electric polarity 

of each adjacent electrode pairs was opposite in the final device. 
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(a)      (b) 

  
 (c)      (d) 

Figure 4.16 Fabricated double-layer SU-8 mold; (a) Top view, (b) Oblique view of the 
center of the mold, (c) Oblique view showing area where micro-via will be formed, (d) 
Close-up view of the mold 

 

 

For easy and stable removal of the metal on top of the protrusion of the PDMS 

mold, a thick protrusion structure is preferable because the PDMS mold is deformed 

during the 1st metal transfer process. To minimize the possibility of the removal of metal 

on a region where metal should reside, a thicker 2nd SU-8 layer was prepared and was 

spun cast. This resulted in a 250μm thick protrusive structure. The fabrication results are 

shown in Figure 4.17. 
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Figure 4.17 Fabricated SU-8 mold with 250μm thick 2nd layer for electrical isolation 
 

 

From the SU-8 mold, a master structure was subsequently fabricated either by 

PDMS casting or Ni electroplating as described earlier. To fabricate a Ni master, a Ti/Cu 

seed layer (500Å/5000Å) was deposited into the SU-8 mold using a CVC DC sputterer 

(CVC products, Inc., Rochester, NY), and Ni was electroplated with a deposition rate of 
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15μm/hour. After a 20 hour electrodeposition of Ni, the SU-8 mold was soaked in copper 

etchant to etch the Cu seed layer. Etching the Cu seed layer served as a release for the 

electroplated Ni master from the SU-8 mold. The fabricated Ni master structure is shown 

in Figure 4.18. 

 

 

  
                                  (a)                                     (b) 

  
(c)                  (d) 

Figure 4.18 Fabricated Ni master structure; (a) overall view from the top, (b) oblique 
view, (c) side view, and (d) close-up view of (c) 

 

 

 The fabricated master was then placed in a PS container, and PDMS was poured 

into the container to fabricate a PDMS mold. The detailed fabrication steps were 
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described in Chapter 3. Once the PDMS mold was prepared, the mold was metallized 

using an e-beam evaporator. Since PDMS expands during the metal deposition process 

due to temperature elevation inside the chamber, micro-cracks were found along the 

structures. To minimize the formation of these micro-cracks, the PDMS mold was slowly 

cooled down inside the chamber after the deposition of metals for 15 min, and the 

chamber was vented afterward. The metallized PDMS mold is shown in Figure 4.19. 

 

 

  
 (a)     (b) 

Figure 4.19 Optical micrographs of the metallized PDMS mold; (a) center of the mold, (b) 
close-up view 

 

 

After the metallization of the PDMS mold with Ti/Au (500Å/2000Å), an adhesive 

tape was gently placed on the mold to remove the metal layer on the protrusion. After the 

removal of the metal layer, the sample was examined under a microscope. Until the metal 

layer on the protrusion was completely removed, this process was repeated. It was 

realized that if too much pressure was applied during the removal process, micro-cracks 
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were generated due to the flexibility of the PDMS mold. Figure 4.20 shows the PDMS 

mold after the removal of the metal layer on the protrusion. 

 

 

  
 (a)     (b) 

Figure 4.20 The PDMS mold after the removal of the metal layer on the protrusion. 
White region represents Ti layer, and gray region represents PDMS; (a) micro-cracks 
were shown around the structure, and (b) close-up view of the mold 

 

 

After the selective removal of the metal layer from the PDMS mold, the target 

polymer was cast into the mold. For PLA casting, PLA pellets were stacked in the mold 

and melted in a vacuum oven (1415M, VWR, West Chester, PA) at 190°C for 2 hours. 

Since the mold contains high-aspect-ratio tapered well structures, the application of a 

vacuum was necessary to fill the mold with PLA. Degassing was performed at 25 torr for 

30 sec, and the pressure inside the oven was then brought back to atmospheric pressure. 

This process was repeated 3 times. The sample was then further melted for 1 hour and 

degassed again to remove any remaining bubbles on the surface of the sample. After 

degassing, the sample was cooled down at room temperature for 2 hours and the molded 

PLA was separated from the PDMS mold. In addition to PLA, other polymers such as PU 
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and epoxy resin were used as casting materials. For the PU process, a pre-polymer and 

the corresponding curing agent were mixed in a 1:1 ratio before casting into the mold. 

Since the viscosity of the mixture was relatively low (80 cps), it was expected that the 

material could copy high-aspect-ratio structures without the application of vacuum. 

However, it was found that this process was not suitable for sharp tips, and this resulted 

in the process being performed under vacuum. The degassing process was the same as 

that of PLA. The cast PU was then cured at room temperature for 4 hours and post-cured 

at 65°C for 2 hours to both increase physical performance and enhance the metal transfer 

process. The epoxy resin was also processed under vacuum and was cured by UV light 

(OAI mask aligner, Optical Associates, Inc., San Jose, CA) with an exposure energy of 

6000 mJ/cm2 at 365 nm wavelength, followed by separation from the mold. In all cases, 

the metal layer originally residing on the PDMS mold was successfully transferred to the 

molded material, as shown in Figure 4.21. 

 

 

  
 (a)     (b) 

Figure 4.21 Optical micrographs of the molded structure. The metal layer was 
successfully transferred to the molded material; (a) top view, and (b) side view 
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Before electroplating Ni to enhance the mechanical rigidity of the device, the 

sample was examined by scanning electron microscopy (Hitachi 3500H, Hitachi, Ltd., 

Tokyo, Japan). The SEM pictures of the fabricated device are shown in Figure 4.22. 

 

 

  
(a)     (b) 

  
(c)  (d) 

 
Figure 4.22 SEM pictures of the fabricated device; (a) Top view showing electrical 
isolation, (b) pad area, (c) oblique view of the device, and (d) close-up view of the 
microneedle array 

 

 

After the examination, the sample was attached to a glass slide which bears a pre-

deposited Cu seed layer. To make an electrical pathway between the sample and the glass 

slide, silver paste was applied to the edge of the sample. Once the silver paste was cured, 
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the glass slide was covered with polyimide tape except for the sample area where Ni 

would be deposited. Ni electroplating was performed for 1.5 hours with a 10mA/cm2 

current density, resulting in the formation of an approximately 20μm thick Ni layer. The 

results of Ni-plating are shown in Figure 4.23. 

 

 

  
(a)  (b) 

Figure 4.23 Fabricated device after 20μm thick Ni electroplating; (a) overall view, and (b) 
close-up view 

 

 

To implement an electrical connection to the pulse generator for electroporation, 

200μm diameter micro-vias were drilled from the backside of the device using a CO2 

laser operating at 10 μm wavelength. Before drilling micro-vias, the backside of the 

device was covered with 25μm thick polyimide tape. The micro-vias were then filled 

with conductive ink by applying a vacuum. After the filling process, the excessive 

conductive ink was cleaned, followed by removal of the tape. The fabrication results are 

shown in Figure 4.24. 
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(a)                                                          (b) 

Figure 4.24 Electrical interconnects through micro-vias; (a) overall view showing two 
micro-vias filled with conductive ink, and (b) close-up view of the micro-via filled with 
conductive ink 

 

 

Once the electrical interconnects were formed, copper wires were attached to the 

interconnects using silver paste. For the electroporation experiments with cells, the 

device was firmly attached to a glass slide for convenient handling of the device. 

 

4.3.2 Insertion Test 

To verify the mechanical functionality of the microneedle array, an insertion test 

was performed using pig cadaver skin. The polymers used to fabricate microneedles 

arrays were: PU and PLA. Full-thickness pig skin with the subcutaneous fat removed was 

affixed to a wooden plate for the test. The fabricated microneedle array was placed on 

this affixed skin and insertion was attempted by applying pressure using the thumb. The 

array was taken off the wooden plate immediately after the test. A red tissue-marking dye 

(Shandon, Pittsburgh, PA, USA), which stains sites of stratum corneum perforation 

selectively, was applied to the site of insertion and gently cleaned with a swab after 10 

min of exposure. After removal of residual dye, the skin was observed under an optical 
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microscope. Also the tested microneedle array was examined optically. Figure 4.25 

shows the stained pig cadaver skin and the microneedle array after the insertion test. 

For the PU microneedle array, a few of the microneedles successfully penetrated 

the stratum corneum. However, it was found that most of the tips were bent during the 

test, indicating that a bare PU microneedle was not mechanically strong enough for 

insertion. In contrast to the PU microneedle array, the PLA microneedle array was 

successfully inserted into skin without severe damage. After careful examination under 

the microscope, it was found that while several tips were broken, most of the tips 

maintained their original shape. 

 

 

   
                                       (a)                     (b) 

   
                                        (c)                     (d) 

Figure 4.25 Optical micrographs of the pig cadaver skin and the microneedle array after 
insertion test; (a) the stained pig skin after the insertion of PU microneedle array, (b) the 
PU microneedle array after the insertion test, (c) the stained pig skin after the insertion of 
PLA microneedle array, and (d) the PLA microneedle array after the insertion test 
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Since electrical functionality is required, all microneedle arrays need to be coated 

with a relatively thick layer of metal. In addition to providing electrical functionality the 

coated metal layer enhances the structural rigidity of the array, enabling skin penetration 

without damage. To determine the proper thickness of the metal layer, microneedle arrays 

with different layer thicknesses of Ni were prepared. For PU microneedle arrays, 5, 10, 

and 15 µm thick Ni layers were electroplated. After Ni plating, the devices were tested 

using the same protocol described in 4.2.2 and the results are shown in Figure 4.26. 

 

 

   
                                       (a)          (b) 

   
                                        (c)           (d) 

Figure 4.26 Optical micrographs of the stained pig cadaver skin and the Ni-plated PU 
microneedle array after multiple insertions; (a, b) 5 µm thick Ni, (c, d) 10 µm thick Ni, 
and (e, f) 15 µm thick Ni, respectively 
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                                         (e)          (f) 
 
Figure 4.26 continued 

 

 

It was observed that all Ni-plated PU microneedle arrays were successfully inserted 

into the skin without tip bending or breaking. After multiple insertion tests, however, 

some of the tips with a 5 or 10 μm thick Ni layer were deformed. For the microneedle 

array with a 20 μm thick Ni layer, tip deformation was not observed after successive 

insertion tests. Since PLA is mechanically stronger than PU, it was expected that a PLA 

microneedle array would require a thinner Ni layer than PU for safe insertion. Based on 

the results from the PU microneedle array, a PLA microneedle array with a 5 µm thick Ni 

layer was prepared and tested. It was observed that it could be successfully inserted into 

skin without mechanical damage. The results are shown in Figure 4.27. 
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                                        (a)         (b) 

Figure 4.27 Optical micrographs of (a) the stained pig cadaver skin and (b) the PLA 
microneedle array with a 5 μm thick Ni layer after multiple insertion tests 

 

 

4.3.3 Electric Field Simulation 

To estimate the distribution of electric field strength over the volume around the 

checkerboard-type microneedle arrays, a series of 2-D FE models was created in a similar 

way to the description of the parallel type microneedle array discussed in 4.2.3. Since the 

cross section of the device can be modeled by an array of squares, a 4 by 4 array of 

squares of various sizes was used to represent the microneedles at a certain height. For 

the analysis, 19 models were created to represent the cross section of the device at several 

heights. A voltage pulse of 4 V was applied between microneedles, and the electric field 

strength at each point defined by the grid was collected. The size of the grid was 1 μm by 

1 μm, and approximately 30,000 data points were generated and exported to MATLAB 

for analysis. Figure 4.28 shows representative results of the FE simulation done by 

FEMLAB. 
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     (a)                         (b) 
 

 
      (c)                                   (d) 

Figure 4.28 Electric field simulation results of 2-D FE models that represent the cross 
section of the pyramidal microneedle array at certain heights; (a) 1st slice, (b) 7th slice, (c) 
13th slice, and (d) 19th slice 

 

 

Due to symmetry in the 2-D model, only a quarter of the area surrounded by the 

four electrodes was examined for the analysis of the distribution of the electric field 

strength. Data containing information on the electric field strength in the selected area 

was created and exported to MATLAB for analysis. To examine the overall shape of the 

distribution at each height, a histogram was drawn based on the data, as shown in Figure 

4.29. 
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          (a)                 (b) 
 

 
(c)      (d) 

Figure 4.29 The distribution of the electric field strength for each 2-D models that 
represent the cross section of a 3-D model at certain heights; (a) at the bottom, (b),(c) in 
the middle, and (d) at the tip 

 

 

After collecting data from 19 models, a 3-D distribution of electric field strength 

was approximated by the method described in section 4.1.3. After successive fittings, it 

was found that the overall distribution of the electric field strength was best fitted by the 

combination of 4 Gaussian functions. Figure 4.30 shows the normalized raw data and the 

fitted curve that represents the overall distribution of the electric field strength generated 

by the fabricated microneedle array. 
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Figure 4.30 Normalized data from the 2-D FE models and the fitted model for estimating 
the overall distribution of the electric field strength generated by the microneedle array 

 

 

The analytical expression of the fitted model is the sum of 4 Gaussian functions 

with the coefficient of determination R2=0.9991 as follows: 

 

    ∑
=

−−=
4

1

2 ))/)((exp(
i

iii cbxaf                                        (4.5) 

 

The coefficients for the fitted model are summarized in Table 4.1. 

 

 

 



 120

Table 4.1 Summary of the coefficients of the model 
 

 ai bi ci 
1 0.7804 0.2122 0.127 
2 0.5815 0.3744 0.1592 
3 0.8751 0.6198 0.3857 
4 0.3507 0.9449 0.1023 

 

 

As discussed in 4.1.3, it is possible to estimate a volume fraction that contributes to 

the delivery of molecules into cells using the calculated model. Suppose that the target 

cell is DU 145 whose diameter is approximately 20μm. According to Schwann’s equation 

(Eq. 2.1), the threshold electric field strength is 166 V/cm (0.5 V of transmembrane 

potential is used for calculation [128]). From the literature [129], approximately 90 % 

viability was achieved when a field strength of 500 V/cm with 2.8 msec pulse length was 

applied to DU 145 for calcein delivery. By defining a “window” with these bounds, it is 

possible to predict a volume fraction which contributes to effective electroporation at 

different voltages applied for experiments. For example, if voltages that induce the 

nominal field strength of 250 V/cm, 500 V/cm, 750 V/cm, and 1 kV/cm were applied, the 

effective volume fraction for electroporation can be calculated as 33 %, 63 %, 53 %, and 

43 %, respectively. For each condition, the volume fraction in which the electric field 

strength exceeds the assumed upper limit is given as 0%, 6 %, 32 %, and 48 %, 

respectively. 

The simulation results showed that the fabricated microneedle array generated an 

inhomogeneous electric field, and the effective volume for electroporation can be 

estimated from the models. This inhomogeneity of the electric field results in lower 

efficiency of the device, compared to the parallel-type macro cuvette. However, the 
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fabricated microneedle arrays can achieve the field strength required for effective 

electroporation at lower voltages due to the smaller gap between electrodes. For example, 

plasmid DNA was successfully delivered into skin with parallel-type electrodes [130] by 

using electric field strengths of 400, 500, 750, and 1500 V/cm with a pulse length of 0.1 

msec. The gap between electrodes was 6 mm. The voltages required to achieve these field 

strength ranged from 240 V to 900 V. If a fabricated microneedle array with a 200 μm 

gap were used, these field strengths could be achieved with a voltage less than 30 V. In 

addition, the volume fraction for effective electroporation can be calculated as 6.3 %, 

21.4 %, 45.5 %, and 72.4 %, respectively by assuming that lower and upper bounds for 

electroporation are 400 V/cm and 1500 V/cm, respectively. 

 

4.4 Conclusion 

Two different types of the microneedle arrays were successfully fabricated and 

characterized. With proper thickness of metal layer, the fabricated microneedle arrays 

were able to penetrate skin without breakage of the tips. The distribution of electric field 

strength for each microneedle array was modeled using a series of 2-D FE models. From 

the distribution, it was possible to estimate the effective volume for electroporation when 

a specific range of electric field strength was defined. 
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CHAPTER 5 

ELECTROPORATION WITH MICRONEEDLE ARRAYS 
 
 
 

5.1 Introduction 

To verify the electrical functionality of the fabricated microneedle arrays, 

electroporation experiments using bovine red blood cells (RBC) and human prostate 

cancer cells (DU145) were performed. The amount of hemoglobin released from red 

blood cells after electroporation with the fabricated microneedle arrays was measured to 

determine whether the arrays can achieve the minimum field strength required for 

electroporation. Calcein and bovine serum albumin (BSA) were selected as model 

molecules for electroporation-mediated uptake into mammalian cells. Calcein delivery 

experiments of can demonstrate whether that the fabricated microneedle arrays are 

capable of transporting small molecules across the cell membrane while maintaining cell 

viability; BSA delivery experiments can determine if large molecules can be transported 

using the fabricated device. 

 

5.2 Parallel-type Microneedle Array 

The electrical functionality of the fabricated microneedle array was examined using 

experiments with bovine red blood cells and human prostate cancer cells. The purpose of 

the red blood cell experiments was to investigate the formation of pores on cell 

membranes after application of an electric field between the microneedle electrodes. 

When cell membranes are permeable or disrupted by an external electric field generated 

by the microneedle array, hemoglobin inside cells is released into the extracellular 
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environment. Hemoglobin can be released through pores formed in the cell membrane or 

by cell rupture. Both cases verify the electrical activity of the fabricated microneedle 

array. Since it is hard to discriminate between the two mechanisms, it was assumed that 

hemoglobin was released by only cell rupture. To examine whether impermeant 

molecules could be delivered through cell membranes, calcein and bovine serum albumin 

(BSA) delivery experiments were performed. The purpose of these experiments was to 

investigate the effects of external electric fields on uptake of molecules and viability of 

cells. For the effective delivery of molecules, it was desirable to optimize the 

electroporation parameters to those where high molecular uptake and high viability are 

achieved. 

 

5.2.1 Hemoglobin Release Experiment 

5.2.1.1 Red Blood Cell Preparation 

Approximately 20 ml of bovine blood in Alsevers anticoagulant (Rockland Inc., 

USA) was measured into a 50 ml polypropylene centrifuge tube (BD Biosciences, San 

Jose, CA). Phosphate buffered saline (PBS) was added to the tube which was then 

centrifuged at 236×g (relative centrifugal force) for 10 minutes at room temperature. The 

supernatant was discarded and approximately 20 ml PBS was added for another wash. A 

total of three PBS washes were done, after which the supernatant was discarded and a 

resultant RBC pellet was formed, which was used intact for experiment. 
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5.2.1.2 Electroporation Apparatus and Protocols 

To apply an electric field, a high pulse voltage source (BTX ElectroCell 

Manipulator 600, Genetronics, San Diego, CA) was connected to the microneedle array. 

This system can supply voltages ranging from 10 V to 2.5 kV with an exponential decay 

waveform. The pulse length can be adjusted by changing the resistance and the 

capacitance of the system. The actual voltage and the pulse length delivered by the 

system was measured using an oscilloscope (TDS 2014B, Tektronix Inc., Beaverton, OR) 

connected to the system. 

The microneedle array under testing was fixed to a glass slide with the 

microneedles facing up. The array was connected to the electroporation apparatus to 

provide a controlled pulse with an exponential decay waveform. For each electroporation 

experiment, 25 µl of RBC pellet was pipetted onto the microneedle array.  

After pulse application, the 25 µl RBC suspension was pipetted off into a 

centrifuge tube (Eppendorf 1.5 ml tube, Eppendorf North America Inc., Westbury, NY). 

One ml of PBS was added and the suspension was centrifuged at 735×g for 5 min at 

room temperature. After centrifugation, 700 µl of the supernatant was collected for 

absorption spectroscopy to quantify the amount of hemoglobin released. A negative 

control was prepared by repeating this procedure without the application of the electrical 

pulse. A positive control was also prepared by lysing 25 µl RBC pellet with 1 ml 

deionized water. All experimental conditions were repeated three times to generate 

triplicate data points. A total of two identical microneedle arrays were used to perform 

the electroporation experiments. The arrays were washed with PBS between each 

electroporation experiment. 
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The amount of released hemoglobin was quantified by measuring the absorbance of 

the supernatant at 575 nm (Spectramax plus 384, Molecular Devices, USA). Hemoglobin 

release after electroporation was calculated as a percentage of total hemoglobin (positive 

control) and reported as RBC lysis (%). Since only 6 μl of the 25 μl RBC dispensed on 

the array was in the electric field, the results were normalized by multiplying by a factor 

of 4.17. RBC lysis from different electroporation conditions were statistically compared 

with α = 0.05. 

 

5.2.1.3 Experimental Results 

Based on the protocols previously described, hemoglobin release experiments were 

performed. After electroporation, RBCs rupture and release hemoglobin that can be 

easily quantified by absorption spectroscopy. 25 μl of washed and pelletted RBC pellet 

was spread over the microneedle array and three different peak voltage levels: 53, 108 or 

173 V, were applied using (i) 1 pulse with an exponential decay time constant τ = 0.5 ms, 

(ii) 3 pulses with τ = 0.5 ms, or (iii) 1 pulse with τ = 1 ms. The inter-pulse spacing for the 

3-pulse experiment was 20 s. After pulse application, the RBC pellet was collected and 

diluted with 1ml PBS. Centrifugation was used to remove RBC from the supernatant, 

ensuring that only hemoglobin release was measured by spectroscopy at 575 nm 

absorption. 

Results from RBC electroporation via microneedles are shown in Figure 5.1. The 

figure summarizes all the electroporation conditions used. Percent RBC lysis is 

represented along the y-axis and the results are grouped on the x-axis according to the 

voltage applied. There is a statistically significant increase in electroporation of RBCs as 
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the applied voltage increases (ANOVA, p<0.0001). Electroporation of as high as 90% 

was achieved at 173 V and 1 pulse with 1 ms pulse duration. RBC lysis also increased 

with both pulse length and pulse duration (ANOVA, p<0.0001). 
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Figure 5.1 Hemoglobin released from red blood cells after electroporation using the 
microneedle electrode array 
 

 

Since electroporation is a threshold phenomenon, it can only occur when the 

induced transmembrane potential exceeds a certain value, typically 0.2-1 V. Previous 

studies have reported that the threshold field strength for hemolysis of human red blood 

cell was approximately 4 kV/cm with 15 μs pulse length [131], and the threshold for 

delivering molecules into human red blood cell ghosts (red blood cells with the 
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hemoglobin removed) ranged 0.5–2 kV/cm with 1-2 ms pulse length [128]. For 1 kV/cm 

field strength, the transmembrane voltage was calculated using Schwan’s equation to be 

approximately 0.5 V. 

In this study 0.5–1ms pulse length was used and RBC hemolysis seems to first 

occur near 50 V, which corresponds to 2-3 kV/cm field strength depending on the 

location of the microneedle electrodes. This value is quite reasonable compared to 

previous studies [128, 131]. Since we used a highly concentrated RBC pellet, Schwann’s 

equation can not be applied to directly calculate the threshold voltage because Schwann’s 

equation models a single sphere in a homogeneous electric field. As the density of cells in 

the suspension increases, the electric field is locally distorted by neighboring cells. Susil 

et al. [132] described the relationship between transmembrane potential and cell density, 

and it showed that the form factor (the 3/2 term in Schwann’s equation) disappears when 

cells are fully packed (i.e. the interspacing between cells is zero). Assuming that the RBC 

pellet is fully packed, the radius of the RBC is 3.3 μm [133], and the distance between 

electrodes is 150 μm, an applied voltage of 50 V should induce a transmembrane voltage 

of approximately 1.1 V, which exceeds the threshold for electroporation.  

Using these hemoglobin release experiments, it was proven that fabricated 

microneedle arrays are electrically active and capable of generating sufficient electric 

field strength to electroporate red blood cells.  
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5.2.2 Calcein Delivery Experiment 

5.2.2.1 Human Prostate Cancer Cell (DU145) Preparation 

Human prostate cancer cells (DU145, American Type Culture Collection, 

Manassas, VA, USA, item no. HTB-81) were grown on T-150 flasks (BD Falcon, 

Franklin Lakes, NJ, USA) as monolayers in RMPI-1640 medium, supplemented with 100 

μg/ml penicillin-streptomycin (Cellgro, Mediatech, Herndon, VA, USA) and 10%(v/v) 

heat inactivated fetal bovine serum (Atlanta Biologicals, Atlanta, GA, USA) in a 

humidified condition of 5% CO2 at 37oC. DU145 cells were harvested using 5 ml 

Trypsin-EDTA (Cellgro) to detach adherent cells from T-150 flasks. Cells were 

centrifuged at 1000×g (Beckman Coulter, Fullerton, CA, model GS-15R) after harvest 

and resuspended in fresh complete media.  

 

5.2.2.2 Experimental Protocols 

DU145 samples were prepared at a concentration of 2.5×106 cells/ml. Calcein (623 

Da, radius = 0.6 nm; Molecular Probes, Eugene, OR, 22 catalog no. C481), a green 

fluorescent molecule that cannot cross intact cell membranes, was used to quantitatively 

monitor the transport of molecules across the membranes of viable cells. Prior to 

electroporation, calcein at a concentration of 30 μM was added to the cell suspension, and 

homogeneously mixed by vortexing. 

6 µL of DU145 samples were suspended on the microneedle array and collected 

after application of voltages ranging 10–45 V with an exponential decay waveform. This 

step was repeated 10 times to collect 60 µL of cell samples per condition. The samples 

were incubated at 37 oC for 10 min and were washed with PBS (Cellgro) and washed 
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with PBS by centrifugation (3500×g, 5 min, Eppendorf 5415C, Brinkman, Westbury, 

NY, USA) three times to remove extracellular calcein from the supernatant. The 

subsequent cell pellets were resuspended in a final volume of 60 μl of PBS containing 2 

μl of propidium 25 iodide (PI) (Molecular Probes, catalog no. P-1304), a viability marker 

that stains nonviable cells with red fluorescence. 

Flow cytometry was used to determine molecular uptake, i.e., fraction of cells 

containing intracellular calcein, and loss of cell viability by detecting the fluorescence 

intensity of intracellular calcein and propidium iodide, respectively, on a cell-by-cell 

basis. A BD LSR benchtop flow cytometer (BD Biosciences, San Jose, CA, USA) was 

used to measure the fluorescence of cells with calcein uptake (FITC fluorescence excited 

using a 488 nm Argon laser, 530/28 nm bandpass filter) and to distinguish viable from 

nonviable cells by the red fluorescence of propidium iodide (Per-CP fluorescence excited 

using a 633 nm HeNe laser, 670 nm longpass filter). Each analysis sampled 

approximately 20000 cells. 

A Zeiss LSM 510 multiphoton microscope (Zeiss, Thornwood, NY) with an oil-

immersion lens of 40× magnification was used to image 5µL of cell sample placed on a 

25mm microscope cover glass (Fisher Scientific, Waltham, MA, USA). Similar lasers 

and filtersets to the flow cytometer were used in order to get comparable results. 

 

5.2.2.3 Experimental Results 

Figure 5.2 shows fluorescent images taken with the multi-photon microscope. The 

left image shows the green channel, and the right image shows the red channel. The 

delivery of calcein into cells by electroporation is determined by the presence of green 
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fluorescence, and dead cells are shown by the presence of red fluorescence. By 

examining the images from the multi-photon microscope qualitatively, it was found that 

the number of cells with uptake of calcein increased as the applied voltage increased. 

Also, the number of dead cells showed a similar trend. No fluorescence in control (non-

electroporated) samples was observed, indicating that fluorescent cellular effects were 

caused by electroporation. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

  
 (e) 

Figure 5.2 Confocal microscopy images of DU 145 after electroporation under different 
applied voltages; (a) control, (b) 11 V, (c) 23 V, (d) 37 V, and (e) 50 V, respectively. 
 

Green Red
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Flow cytometry was used to quantify the effects observed in microscopy. For each 

sample, 20000 cells were examined at a maximum rate of 550 cells/sec. Figure 5.3 shows 

a typical histogram output as obtained via flow cytometry. The X-axis represents the 

level of green fluorescence (arbitrary units), and the Y-axis represents the number of cells 

with a particular level of fluorescence. The fluorescence of the control was due to 

autofluorescence, calcein surface binding, and noise from the flow cytometer. As 

compared to controls, electroporated cell populations had higher green fluorescence 

intensity, indicating that calcein was delivered across the cell membrane. This effect 

increased as the applied voltage increased. Using the histogram data, the percentage of 

uptake cells was determined using analysis software, FCS Express (De Novo Software, 

Los Angeles, CA). Similarly, the viability of the electroporated cells was calculated using 

the red fluorescence channel, which corresponds to the intensity level of propidium 

iodide among the cell population. Non-electroporated cells were normalized to have 

100% viability. An increase in red fluorescence indicates that a cell has lost viability. As 

shown in Figure 5.4, about 40% of cells had calcein uptake at 50V with high viability 

(~90%). 
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Figure 5.3 Flow cytometry results of calcein uptake at different conditions 
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Figure 5.4 Calcein uptake and cell viability with respect to applied voltages 
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DU145 cells are spherical cells with a diameter of 20 ± 2 μm. At a cell 

concentration of 2.5×106 cells/ml, the volume percentage occupied by the cells is only 

1%. Therefore, Schwan’s model can be applied to estimate the threshold voltage for 

electroporation. The electric field strength needed for electroporation using this model is 

calculated to be 333 V/cm at ϕ =0, assuming that the transmembrane potential is 0.5 V. 

Figure 5.4 shows that calcein was delivered to approximately 10 % of the cells at 11 V, 

indicating that 11 V can generate an electric field strong enough to electroporate DU145 

cells. With the applied voltage of 11 V, the electric field strength at the microneedle 

substrate was 733 V/cm and the induced transmembrane potential was 1.01 V, calculated 

using Schwann’s equation. This result is also comparable with our previous 

electroporation studies performed with a 2-mm gap cuvette [129]. In that study, the field 

strength required for uptake of calcein varied with pulse length (~0.7 kV/cm for 1 ms, 

~0.4 kV/cm for 10 ms), suggesting that not only electric field strength but also pulse 

length is strongly involved in the transporting mechanism. Typically, a high field strength 

is needed to electroplate cells at a short pulse length. We used a 2.5 millisecond pulse 

length, implying that the field strength required for electroporation exists the value 

between 0.4 kV/cm and 0.7 kV/cm, which is consistent with the results shown in Figure 

5.4. 

In chapter 4, a model for estimating the distribution of electric field strength was 

described. According to data reported in the literature [129], uptake of calcein requires a 

minimum of 0.5 kV/cm to occur with a 2.8 ms exponential decay pulse. This pulse 

condition is similar to that reported in this work (2.5 ms, exponential decay pulse); 

therefore, the electric field strength of 0.5 kV/cm can be used as the lower limit for 
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effective electroporation. The calcein delivery experiments performed in this work 

showed that cell viability began to decrease at 3.3 kV/cm; thus, this field strength was 

used for as the upper limit for effective electroporation. With these values as the 

“window” for effective delivery of calcein, the volume fraction that contributes to 

electroporation at each applied voltage can be estimated from the model as: 21 %, 76 %, 

91 %, and 91 %, respectively. For each condition, the volume fraction that can cause cell 

death is: 0 %, 0 %, 0.19 %, and 3.54 %, respectively. Assuming that the uptake efficiency 

is 50 %, then the percentage of cells with uptake at each applied voltage (11, 23, 37, and 

50 V) can be estimated as: 10.5 %, 38 %, 45.5 % and 45.5 %, respectively, as shown in 

Figure 5.4. 

 

5.3 Checkerboard-type Microneedle Array 

The checkerboard-type microneedle array discussed in chapter 4 was tested using 

human prostate cancer cells. Two different types of pulses (i.e. exponential and square) 

were used to deliver molecules into the cells. In addition to calcein, fluorescein-tagged 

bovine serum albumin (BSA) was chosen as a large molecule model. 

 

5.3.1 Calcein Delivery Experiment 

5.3.1.1 Calcein Delivery Using Exponential Pulse 

To validate the electrical functionality of the fabricated device, calcein delivery 

experiments were performed with human prostate cancer cells. To create an electric field 

between microneedle electrodes, the fabricated device was connected to the pulse 

generator using the protocols for the experiments described previously. The pulse width 
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was fixed to 2.5 ms, and 7 different voltages were applied. For each experiment, 6 μl of 

cell suspension at a concentration of 2.5 million cells per ml was spread over the device 

and collected with a micropipette. Since the amount of a sample was insufficient for the 

analysis by flow cytometry, 10 experiments were performed for each experimental 

condition to make a 60 μl sample. To examine the consistency of the results, each 

experiment was performed three times and the results were averaged. 

Figure 5.5 shows the representative pictures taken by the confocal microscope for 

each experimental condition. Each picture contains 4 sections, and each section 

represents an image taken by different channels such as normal, green fluorescence, red 

fluorescence, and a combination of all channels. 
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                                                  (a)                    (b) 

  
(c)                    (d) 

  
(e)                     (f) 

  
                                                 (g)                     (h) 

Figure 5.5 Confocal microscopic images of human prostate cancer cells after the delivery 
of calcein by electroporation; (a) control, (b) 12 V, (c) 25 V, (d) 38 V, (e) 49 V, (f) 69 V, 
(g) 82 V, and (h) 91 V applied for the experiment 
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Six μl was extracted from the 60 μl total sample for confocal microscopy. The 

remaining sample was diluted with 200 μl PBS for flow cytometry. By examining the 

pictures from confocal microscopy, it was possible to see the effect of the applied electric 

field on the delivery of calcein qualitatively. As shown in Figure 5.5, the number of cells 

with uptake of calcein increased as the applied voltage increased, and the maximum 

uptake seemed to occur at 69 V. After 69 V, the number of cells with uptake started to 

decrease. To examine the results quantitatively, samples were analyzed by flow 

cytometry. The raw data from the flow cytometer was further processed by FCS Express 

(De Novo Software, CA, USA) to quantify the uptake and viability of each sample. Since 

each experiment was triplicated, the result from each experiment was averaged. The 

results are shown in Figure 5.6 with error bars (standard error).  

 

 

12 25 38 49 69 82 91
0

10

20

30

40

50

60

70

80

90

100

Applied voltage [V]

Pe
rc

en
ta

ge
 [%

]

Calcein, 2.5 msec Exponential pulse

 

 

Uptake
Viability
Predicted uptake
Predicted viability

*

*
* * *

*
*

O O O O

O

O

O

*O

 
Figure 5.6 Uptake of calcein and cell viability at each applied voltage 
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When 12 V was applied for 2.5 ms, the average uptake of calcein was 7 %. The 

uptake of calcein increased until 69 V was applied and then decreased as the applied 

voltage increased. At 69 V, which corresponds to the nominal field strength (applied 

voltage divided by the distance between electrodes at the bottom of the device) of 3.45 

kV/cm, a maximum uptake of 48 % was achieved. However, cell viability suddenly 

dropped at that point, indicating that the field strength induced by the applied voltage 

started to cause cell death rather than uptake of calcein. 

The gap between the microneedle electrodes varies along the height, ranging from 

200 μm to 400 μm. From Schwann’s equation, the induced transmembrane potential at an 

applied voltage of 12 V can be calculated, and it ranges from 0.45 V to 0.9 V depending 

on the gap between the electrodes. It has been observed that electroporation occurs if the 

transmembrane potential exceeds a value of 0.2-0.5 V for pulses longer than 100 μs 

[128], therefore, our results are in good agreement with previous observations. 

Using the model of electric field strength distribution with the same window 

defined in section 5.1.1.3, the effective volume fraction for calcein delivery at each 

condition (list) can be estimated as: 19 %, 60 %, 79 %, 87 %, 84 %, 74 %, and 69 %, 

respectively. In addition, the volume fractions of field strength higher than upper limit 

are: 0%, 0%, 0%, 0.25 %, 9.7 %, 21 %, and 26.8 %, respectively. If the uptake efficiency 

is assumed to be 50 %, then the percent of cells with uptake can be predicted as 9.5 %, 30 

%, 39.5 %, 43.5 %, 42 %, 37 %, and 34.5 %, respectively.  It is apparent that the overall 

trend estimated from the model is similar to that of the experimental results, as shown in 

Figure 5.6. Although the effective volume fraction at 49 V was higher than at 69 V, 

according to the model, the actual uptake of calcein at 69 V was higher than at 49 V. This 
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can be interpreted as follows: the number of pores created by an external electric field 

depends on the field strength. As the field strength increases, the number of pores also 

increases. This implies that there is much higher chance to transport molecules across the 

cell membrane as the field strength becomes higher. The portion of the effective volume 

containing high field strength becomes larger as the applied voltage increases. For 

example, 23 % and 45.8 % of the volume exceeds 2 kV/cm when the applied voltages are 

49 V, and 69 V, respectively.  

 

5.3.1.2 Calcein Delivery Using Square Pulse 

For effective delivery of molecules into cells by electroporation, experimental 

parameters such as field strength, pulse length, number of pulses, and pulse shape must 

be considered. By optimizing these parameters, it is possible to maximize cell 

permeabilization and viability. Traditionally, a cuvette containing parallel electrodes 

inside has been used for electroporation of cells in vitro. Since the electric field induced 

by parallel electrodes is homogeneous, it was possible to achieve more than 90 % of 

uptake with high viability by optimizing experimental parameters. As shown in the 

previous chapter using an electric field simulation, the fabricated microneedle array 

inherently generates an inhomogeneous field, suggesting that it is valuable to study the 

influence of experimental parameters for delivery of molecules by this modality of 

electroporation. In this study, the effect of pulse length on calcein delivery into human 

prostate cancer cells was examined using a square pulse. To apply a square pulse to the 

fabricated device, a square pulse generator (Pulse Agile, Cyto Pulse Sciences, Inc., MD, 

USA) was connected to the microneedle array, and an oscilloscope was also used to 
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examine the actual pulse shape, length, and magnitude in situ. The experimental protocol 

was the same as that for exponential pulse experiments, described previously. A total of 4 

different voltages were applied for the experiments, and 3 different pulse lengths were 

tested. Originally, the applied voltages were set to be 20, 40, 60, and 80 V, but actual 

voltages measured for the oscilloscope were 19, 38, 57, and 75 V, respectively. The 

actual pulse length was the same as the pre-set value in the pulse generator. Both 

confocal microscopy and flow cytometry were used for the analysis, and the 

representative pictures taken from the confocal microscope are shown in Figure 5.7. 

 

 

  
(a)                        (b) 

  
(c)                        (d) 

Figure 5.7 Confocal microscopic images of human prostate cancer cells after 
electroporation. Calcein was delivered into the cells with 2 ms square pulse by different 
voltages; (a) control, (b) 19 V, (c) 38 V, (d) 57 V, and (e) 75 V 
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(e) 

Figure 5.7 continued 
 

 

To examine the effect of pulse length on cellular uptake of calcein, three different 

pulse lengths (0.5 ms, 1 ms, and 2 ms) were used. For each pulse length, 4 different 

voltages were applied as described before, and each sample was analyzed by flow 

cytometry. Figure 5.8 - 5.10 show uptake and viability data for each pulse length. 
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Figure 5.8 Uptake and viability for a 0.5 ms square pulse 
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Figure 5.9 Uptake and viability for a 1 ms square pulse 
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Figure 5.10 Uptake and viability for a 2 ms square pulse 
 

 

Using 0.5 and 1 ms pulses, the uptake of calcein increased as the applied voltage 

increased. For the 2 ms pulse, the maximum uptake seemed to occur between 38 V and 

57 V. These results suggest that pulse length plays an important role in delivering 

molecules into cells by electroporation. If we recall Schwann’s equation, the induced 

transmembrane voltage is dependent on the angle between the applied field and the cell 

membrane, and aqueous pores are created on the cell membrane when the induced 

transmembrane voltage exceeds a certain value. The number of pores created on the cell 

membrane is completely dependent on the applied field strength; therefore, there is a high 

chance for molecules to get into the cell membrane when the applied field strength is 

high enough. However, if the applied field strength is too high, some pores can not be 
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resealed after pulsation, causing cell death. It is thought that the size of pore is dependent 

on the applied field strength and if the pores are too big, a cell loses its ability to reseal its 

membrane. Once pores are formed by an external electric field, molecules which are 

impermeable to an intact cell membrane can be transported into the cell through the pores 

by mechanisms such as osmosis and electrophoresis. During the transport phase, pulse 

length will contribute to electrophoresis and longer pulses can transport more molecules 

into a cell. The effect of pulse length on calcein uptake was well studied by Canatella et 

al. [129]. Viability is also strongly dependent on pulse length, indicating that both applied 

field strength and the duration of a pulse should be considered for effective transport of 

molecules into a cell by electroporation. 

Figure 5.11 summarizes the effect of pulse length on calcein uptake. It was found 

that the percentage of uptake increased as the pulse length increased at relatively low 

voltages, below 40 V. However, shorter pulses showed higher uptake at relatively high 

voltages, above 60 V. The results suggest that the range for effective delivery of 

molecules is dependent on the applied pulse length. For a shorter pulse, the range of 

applied voltages for effective delivery of molecules with high viability is wider than the 

voltage range for a longer pulse. If we compare the relative field strengths, a shorter pulse 

needs higher field strength than a longer pulse to reach the maximum uptake. However, 

the maximum uptake induced by a shorter pulse was higher than the uptake induced by a 

longer pulse. 
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Figure 5.11 The effect of pulse length on calcein uptake 

 

 

5.3.2 Bovine Serum Albumin (BSA) Delivery Experiment 

Since the ultimate goal of the electroporation microneedle is to deliver large 

molecules such as DNA through the skin, it is desirable to show its ability to deliver large 

molecules into cells. Therefore, fluorescein-tagged bovine serum albumin (BSA), which 

has a molecular weight of 68 kDa, was chosen as a model molecule. For electroporation, 

both exponential and square pulses were used. The concentration of BSA was 2.5×10-5 

M. As described above, DU145 human prostate cancer cells with a concentration of 2.5 

million cells per ml were used. The experimental protocol was similar to that of calcein 

delivery experiment, described previously. To remove the extracellular BSA remaining in 

suspension after electroporation, the cells were re-suspended in 200 μl of PBS which as 

then centrifuged. Since BSA tends to adhere to the cell membrane, 0.1 % trypsin was 
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used to wash cells after PBS washing. Cell washing with trypsin was done twice, and 

then the cells were further washed by PBS alone twice. 

 

5.3.2.1 BSA Delivery Using Exponential Pulse 

Using the BTX pulse generator, a 2.5 ms exponential pulse was applied to the 

microneedle array. 6 μl of cell suspension was used for the experiment, and a total of 60 

μl of cell suspension was collected in a micro-centrifuge tube by performing 10 

experiments for each experimental condition. From the 60 μl sample, 6 μl was used for 

taking confocal microscopic images, and the remaining 54 μl was diluted in 200 μl PBS 

for flow cytometry. A total of 7 different voltages were applied for the experiment, and 

the representative images from the confocal microscope are shown in Figure 5.12. 
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      (a)                      (b) 

  
      (c)                      (d) 

  
      (e)           (f) 

  
      (g)           (h) 

Figure 5.12 Confocal microscopic images of the human prostate cancer cell after 
delivering BSA; (a) control, (b) 14 V, (c) 28 V, (d) 42 V, (e) 56 V, (f) 75 V, (g) 86 V, and 
(h) 96 V, respectively 
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In the confocal microscopic images it was apparent that residual BSA was still 

found on cell membranes after washing with PBS and trypsin. However, it was found that 

the trypsin-mediated washing protocol helped remove BSA from the cell membrane 

compared to washing the cells with PBS only. Due to the residual BSA on the cell 

membrane, green fluorescence was detected in the control sample during flow cytometric 

analyses. To remove this artifact, the percentage of uptake in the control samples, which 

was due to the surface BSA, was substracted from the percentage of uptake in each 

electroporated sample. Figure 5.13 shows BSA uptake and viability for each 

experimental condition. In addition, uptake and viability were estimated from the model 

of electric field strength distribution using the same window as that used for the calcein 

delivery model shown in Figure 5.13. An uptake efficiency of 30 % was used, and the 

overall trend of the predicted uptake was similar to that of the experimental results. 

According to the model, uptake increased as the applied voltage increased, and the 

highest uptake was predicted at 56 V. After 56 V, uptake started to decrease, which was 

consistent with the experimental results. 
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Figure 5.13 BSA uptake and viability using a 2.5 ms exponential pulse 

 

 

Compared to calcein delivery experiments performed at the same pulse length, the 

amount of uptake was reduced. This indicates that it is more difficult to deliver large 

molecules across the cell membrane. Statistically, it was determined that the uptake rates 

for the first 4 conditions were not different. Also the last 3 conditions showed the same 

percentage of uptake statistically (Student’s t-test, p<0.05). This may be due to the 

limitation in transporting large molecules by diffusion and the dependency of the size of 

pores on the external field strength. However, further investigation is required to prove 

this hypothesis, and it is beyond the scope of this study.  
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5.3.2.2 BSA Delivery Using Square Pulse 

BSA delivery was also attempted by applying a square pulse using the square pulse 

generator (Pulse Agile, Cyto Pulse Sciences, Inc., MD, USA). For the experiment, a 2 ms 

single square pulse was applied at four different voltages ranging from 20 V to 80 V. As 

described before, the actual voltage applied was recorded by an oscilloscope, and the 

actual values from the oscilloscope were: 19 V, 38 V, 57 V, and 75 V, respectively. The 

experimental protocol was the same as the experiment with exponential pulse, and the 

results are shown in Figure 5.14. 
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Figure 5.14 BSA uptake and viability using a 2 ms square pulse 
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The experimental results of BSA uptake by the application of square pulse were 

similar to the results of those obtained with the exponential pulse. The percentage of 

uptake at each condition was not statistically different (Student’s t-test, p<0.05), except at 

first condition. Using a 2.5 ms exponential pulse, the percentage of uptake increased at 75 

V. With a 2 ms square pulse, however, this increase was not observed. As discussed 

previously, pulse length is associated with the molecular transporting mechanism. 

Typically, short pulses require higher field strengths for transporting molecules than 

longer pulses require. This observation possibly explains why increased cellular uptake 

did not occur at 75 V. 

 

5.4 Conclusion 

Electroporation experiments with the fabricated microneedle arrays were 

performed. The hemoglobin release experiment confirmed that fabricated microneedle 

arrays were electrically functional and could lyse red blood cells. Although the electric 

field generated by the microneedle array was inherently inhomogeneous, up to 

approximately 50 % of cells had uptake of calcein while maintaining high viability (over 

85 %). These results demonstrate that microneedle arrays can effectively deliver small 

molecules by means of electroporation. BSA, a large molecule, could also be transported 

across the cell membrane using the microneedle arrays; however, transport efficiency of 

BSA was lower than that of calcein. The efficiency of delivering large molecules may be 

improved by optimizing parameters such as pulse length. 

 

 



 153

CHAPTER 6 

CONCLUSIONS 

 
 
 

6.1 Summary 

The ultimate goal of this research was to develop a micro-scale electroporation 

device that can deliver molecules into skin cells. To achieve this goal, the device should 

have two functionalities: 1) mechanical functionality to overcome the stratum corneum, 

the outermost layer of skin, which presents the largest barrier to drug transport; and 2) 

electrical functionality to generate an electric field required for electroporation. Those 

goals were successfully implemented in a single device by adding electrical functionality 

to a microneedle array. 

Micromolding techniques were exploited to fabricate the microneedle arrays, 

thereby using a fabrication process is suitable for cost-effective mass production. PDMS 

was selected as the mold material, and different materials such as PMMA, PU, SU-8, and 

PLA were successfully cast using the PDMS mold to create functional microneedle 

arrays. Even highly viscous materials, such as molten PLA, were able to achieve sharp 

microneedle tips by using vacuum. 

Inclined/rotational UV lithography was utilized to fabricate a negative of the 

microneedle array. The advantage of this approach is that it does not require a dry or wet 

etching process, which is necessary for conventional approaches, to form a sharp tip. 

Also, other geometrical parameters such as shape and height of the microneedle, tip 

angle, and spacing between microneedles can be easily controlled by changing the mask 
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footprints or incident angle of the UV light. Combined with micromolding techniques, 

this approach can produce 3-D microstructures of varying heights from a single mask. A 

microneedle array composed of microneedles with different heights can thus be formed. 

Extending this technique with proper masks and further fabrication steps would make it 

possible to fabricate complex 3-D microstructures that would be nearly impossible using 

conventional approaches. 

Laser ablation and metal transfer micromolding were investigated as methods for 

implementing electrical functionality to the microneedle array. An excimer laser was 

used to pattern a thin layer of metal (~3000 Å) deposited on the microneedle array. By 

optimizing ablation parameters such as energy density, scribing speed, and number of 

pulses, the metal layer was clearly patterned without generating cracks around the 

patterns. Laser ablation is a serial process, and may not be suitable for mass production; 

however, it is valuable for prototyping because any changes in design can be easily made 

by modifying the design file in situ.  

A double-layer micromold approach was developed to pattern a metal layer on a 3-

D microstructure by combining metal transfer techniques and micromolding. Since this 

approach does not require any photolithography steps for patterning the metal layer, 

difficulties associated with the metallization of 3-D microstructures using 

photolithography can be avoided. Therefore, this approach is suitable for generating 

metal patterns on a substrate which contains high-aspect-ratio structures, such as 

metallized microneedles. 

Fabricated microneedle arrays should be mechanically strong enough to penetrate 

skin; therefore, insertion tests with human and pig skin were performed. It was shown 
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that the polymeric microneedle array with a thin metal layer (~3000 Å) could not 

penetrate skin without tip breakage. To solve this problem, Ni was electroplated onto the 

microneedle array to enhance the rigidity. The thickness of the Ni layer required for safe 

insertion varied with the materials and the geometry of the microneedle array. It was 

shown that as the thickness of Ni increases, the mechanical strength of the structure 

increases. However, the insertion force required to penetrate skin also increases as a 

function of the expansion of the tip diameter of the microneedle due to the Ni layer. This 

suggests that the optimal thickness of an electroplated metal layer should be determined 

by considering both enhancement of the mechanical rigidity and acceptability of the 

required insertion force due to the thickened metal layer. 

A series of 2-D finite element (FE) models was used to determine the distribution 

of electric field strength generated by the fabricated microneedle arrays. A spatial 

distribution of electric field strength was constructed by interpolating the 2-D models, 

which represent cross-sections of a microneedle array at specfic heights. An analytical 

expression of the distribution was derived by fitting the distribution with Gaussian 

functions. The effective volume for electroporation could be estimated from the 

analytical model within a specific range of electric field strength. 

To verify the electrical functionality of the microneedle arrays, hemoglobin release 

from bovine red blood cells and the delivery of calcein and bovine serum albumin into 

DU145 human prostate cancer cells were performed in vitro. By these experiments, it 

was shown that the fabricated microneedle array could cause electrical permeation of 

cells, or electroporation. Furthermore, it was seen that aqueous pores on the intact cell 
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membrane were created, allowing the transport of both small molecules, calcein, and 

large proteins, BSA, into cells via electroporation.  

Since the fabricated microneedle array generates an inhomogeneous electric field, 

the efficiency of electroporation using this device can not exceed that of a cuvette in 

which parallel electrodes are embedded for generating a homogeneous electric field. The 

advantage of the fabricated microneedle array over the cuvette is that the same electric 

field strength can be generated by a lower applied voltage, due to the smaller gap 

between the electrodes, e.g. microneedles. No uptake of calcein was observed at an 

applied voltage of 50 V with the cuvette, which has a 2 mm gap between electrodes; 

however, the microneedle array caused approximately 40 % of the cells to have uptake at 

the same condition. This result implies that the fabricated microneedle array requires a 

lower voltage for electroporation to occur than a conventional caliper-type skin 

electroporation device. When compared to electroporation devices that use hypodermic 

needles as electrodes, the fabricated microneedle array can reduce pain during insertion, 

as well as lower the voltage required for electroporation. A third type of skin 

electroporation device, surface electrodes, is capable of alleviating pain during the 

application of an electric field by confining most of the electric field to the stratum 

corneum. However, this approach requires initial administration of a drug by either 

injection with a hypodermic needle, which causes pain, or by disrupting the stratum 

corneum with a high electric field, which can cause burning.  

An insertion test of the microneedle array into in vivo human skin pain indicated 

that no pain was felt by the subject during the insertion. It was also shown that the arrays 

can electroporate cells at lower voltages than those required for conventional cuvettes. 
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Overall, fabricated microneedle arrays are a better option for electroporation treatment 

than conventional electroporation devices in terms of pain reduction and low voltage 

requirements due to the much smaller scale. In conclusion, it was demonstrated that 

electroporation using a microneedle array device may be a promising method for delivery 

of molecules into skin.  

 

6.2 Suggestions for Future Work 

It was demonstrated that inclined UV lithography combined with a micromolding 

technique was useful for fabricating 3-D microstructures. The combination of 

inclined/rotational UV lithography and metal transfer micromolding showed that 3-D 

metal-patterned polymeric microstructures can be created. By extending these newly 

developed technologies, it would be possible to fabricate much more complex 3-D 

microstructures, including an implantable microelectrode array. 

For biomedical applications, material selection is very important. For implantable 

devices, biocompatibility of the material is critical. The fabrication processes should be 

tailored based on the material selection. Although Ni was used in this study and did not 

show cytotoxicity to DU145 cells, Ni can cause skin irritation. Therefore, other materials 

such as Au or Pt, which are more biocompatible and also compatible with 

microfabrication techniques such as electroplating, would be desirable for in vivo 

experiments. 

The original goal of the fabricated microneedle arrays was to deliver DNA vaccines 

across the skin and into appropriate cells. These devices demonstrated the ability to create 

pathways for molecular transport in vitro. However, DNA transfection experiments in 
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vivo still need to be performed. One of the main issues associated with completing an in 

vivo study is determining how to inject the target molecules into the skin. There are two 

potential approaches: 1) coating the target molecules on the microneedle array; or 2) 

forming holes (hollow microneedle array) through which the molecules can be injected 

into the skin. 

For efficacious electroporation, a homogeneous distribution of an electric field is 

desirable. Although the microneedle array cannot avoid inhomogeneity of electric field 

distribution, the heterogeneity may be able to be minimized by considering the geometry 

of the microneedles and the configuration of the electrodes. Therefore, the optimization 

of design parameters with finite element simulation is highly recommended for future 

studies. 
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