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1. Executive Summary 

This report describes a three-dimensional numerical method for calculating the 

trajectories of and the loads exerted on fish passing through the various components of a 

hydraulic powerplant. The model employs a Lagrangian approach for tracking the paths of an 

arbitrary (user-specified) number of fish, as they are transported by the flow through the 

powerplant. The flow conditions that drive the motion of the fish correspond to a steady, 

Reynolds-averaged flowfield obtained via a separate CFD calculation on a fixed (Eulerian) 

mesh. The geometry of the fish is approximated by a prolate ellipsoid, retaining the basic 

dimensions and physical properties of the original species (weight, length etc.). It is assumed 

that the presence of the fish does not alter the precomputed flow field. Moreover, the fish is 

considered not to respond to the flow (no "free will"), that is, the present method simulates the 

passage of sedated fish, which are commonly employed in controlled laboratory experiments 

with real fish. The model accounts for all the important forces that drive the fish motion, can 

simulate mechanical strike and scrape events and can provide detailed information about all 

aspects of the flow environment encountered by the fish during its passage. 

Since the purpose of this algorithm is the improvement of fish-friendliness of 

powerplants, the resulting computer tool had to be very efficient and relatively easy to use. 

This need has guided all the modeling choices that are described in subsequent sections of this 

report. It should be emphasized, however, that the model has been constructed in a modular 

form so that its various procedures can be readily enhanced as additional data or more refined 

models become available. 
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Previous work in the area of hydropower plant induced fish mortality has primarily 

focused on site-specific field experiments that have documented the frequency and type of 

injuries suffered by passing fish. Such experiments (like those presented in Heisey et al., 1995, 

1996; Schoeneman et al., 1991), are usually conducted by releasing a number of tagged fish at 

chosen locations in the forebay, near the upstream end of the intakes, for various powerplant 

operating conditions. The tagged fish are subsequently recovered in the tailrace and examined 

in order to identify and classify the bodily injuries they have suffered. Assuming that enough 

fish are released per experiment, information can thus be collected on: i) types of injury; ii) 

correlation of type of injury with release location; and iii) correlation of powerplant operating 

conditions with overall survivability statistics. 

Such experiments have provided most of the available knowledge to date on the 

impact of hydropower installations on passing fish. For instance, they have helped clarify, and 

in most cases diss-prove, historical misconceptions regarding widely accepted, "common-

sense" correlations between fish survival and turbine operation and design characteristics. 

Furthermore, they have also led to a first systematic classification, albeit based on after the fact 

speculation, of possible injury factors (flow induced forces and moments; strike and abrasion 

on walls and blades; sudden pressure rise or pressure drop; cavitation bubbles collapse; 

dizziness and disorientation; etc.). Given, however, the manner in which these experiments 

are conducted and the geometrical complexities of typical powerplants, it is evident that any 

correlation of the type of injury observed with the actual mechanism that caused it can only be 

speculative, since: 

i) such experiments can neither record the trajectories of fish through the powerplant nor 

the specific events that led to injury; and 

ii) the flow field in a typical powerplant is a very complex, highly three-dimensional, 

turbulent flow environment, whose physics are still not entirely understood. 

Therefore, even if we could design experiments that could yield the precise trajectories of 

passing fish, we would still need estimates of flow induced loads (pressure and velocity 
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strike and scrape events, are ultimately responsible for injuries. Obtaining such detailed flow 

measurements along the trajectory of a moving three-dimensional body, however, is very 

difficult even in model scale, laboratory experiments. 

The complexity of the flow environment in the hydraulic components of a powerplant 

has been a significant roadblock hindering efforts to develop computational models for 

predicting fish survivability. In recent years, advanced computational fluid dynamics (CFD) 

methods have been applied with a great deal of success to several complex 3D turbulent flows 

(Ventikos et al., 1996; Voith Hydro, 1997; Sotiropoulos and Ventikos, 1998; Lin and 

Sotiropoulos, 1997). These successful applications have demonstrated that CFD offers the 

only viable alternative today for developing a general numerical model for predicting fish 

passage through hydropower installations. Assuming that the flow details can be calculated 

using existing state-of-the-art CFD tools, numerical evaluation of the level of fish-friendliness 

of a powerplant further requires a computer model capable of tracking fish trajectories from 

the forebay to the tailrace. For such an approach to be successful, simulations should be 

carried out for three-dimensional fish-like bodies, closely resembling the geometrical and 

physical characteristics of the species under consideration, so that the distribution of flow-

induced forces and moments acting on the fish body can be computed in detail everywhere 

along the calculated trajectories. Species-specific biological information could subsequently 

translate this data into estimates of injury and/or mortality rates. Existing fish passage models, 

however, are mainly based on geometrical assumptions and can only give gross estimates 

about the probability of fish impact on the turbine blades (Voith Hydro, 1997). These models 

have built into them little or no detailed flow physics and can not be used to predict mortality 

which is the combination of numerous poorly understood phenomena. 

The objective of this work is to develop an innovative numerical model for simulating, 

in a realistic manner, the passage of fish through various components of hydropower 

installations over the entire range of operating conditions. The input for such a model consists 

of: 
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i) the geometrical and physical characteristics of the fish species under consideration; and 

ii) a complete three-dimensional solution (in terms of mean velocity components, 

pressure, and turbulence quantities) of the flowfield through the subsystem in which 

fish trajectories need to be predicted. 

The model predicts three-dimensional fish trajectories, thus directly yielding information for 

mechanical strike and potential for abrasion. Furthermore, at every point along the predicted 

trajectory, the distributions of the various flow quantities (pressure, shear stresses, turbulence 

fluctuations, etc.) on the fish body may be readily calculated via interpolation from the 

surrounding flowfield. The interpolated flow quantities are used to estimate, among others, 

pressure variations on crucial fish body parts (head, bladder, etc.), direction and magnitude of 

flow induced forces on fish, dizziness effects due to intense spinning, potential for cavitation-

related damage, etc.. 

In what follows, we begin with a review of previous studies on fish passage in 

hydropower installations. Subsequently, we describe the overall architecture and the various 

components of the model and discuss a small set of representative results in typical powerplant 

components. A detailed description of the computer code, along with a Users Manual is 

presented in the Appendix. 
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3. Review of Previous Work 

In this section, we briefly review available in the literature studies aimed at elucidating 

the causes of powerpiant-induced fish injuries and mortality. It is important to emphasize that 

although anadromous species, like salmon and American shad, have to migrate from 

freshwater to marine habitat and back during their life cycles, our emphasis herein is 

exclusively on downstream migration. This is because the upstream journey is usually 

facilitated by the use of ladders, lifts and other mechanical aids (Cada and Sale, 1993), that 

have been found to induce practically no mortality to the species. On the other hand, similar 

efforts to collect downstream-travelling fish upstream of the powerplant and appropriately 

direct them, with the use of similar mechanical devices (screens, water-blowers etc.), to bypass 

the turbines have yielded inconsistent, site-specific, results—being very successful in some 

powerplants but not in others. Moreover, there have been some cases studies reported in the 

literature in which the survivability of fish passing through the turbines was observed to be 

identical to that of fish bypassing the powerplant (Heisey et al., 1996). For these reasons, and 

due to the fact that most of the powerplants in the US are due for re-licensing and retrofitting, 

most recent work in this area has focused on understanding fish passage through the 

powerplant and developing innovative remedies for eliminating mortality. 

The vast majority of previous studies have relied on field and laboratory experiments. 

As already discussed in a previous section, the former experiments are by nature site-specific 

and their objective is to correlate, in a global sense, the frequency and type of injuries suffered 

by passing fish in terms of upstream release location and powerplant operating conditions. 

Laboratory experiments, on the other hand, are typically designed to study a particular 

mortality mechanism. For that reason they are specifically tailored to reproduce that 

mechanism in the laboratory and quantify critical, for inducing injury and/or mortality, 

threshold loads on fish. As the subsequent discussion will show, some mortality mechanisms 

have received more attention than others. For example, there is a significant amount of work 

on the effects of pressure and pressure variation, whereas very little has been done to study 

possible effects of turbulence induced mortality. Such disproportionate focus should by no 
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means be interpreted as a reflection of the relative importance of various mortality 

mechanisms. It should be rather attributed to the difficulties in conducting meaningful 

experiments for some mechanisms (like turbulence induced mortality) and to the fact that the 

underlying fluid mechanics phenomena associated with some mechanisms are not entirely 

understood. 

The subsequent discussion is not intended to be a comprehensive literature review, as 

such a task has been already undertaken successfully in a number of recent studies (see, for 

example, Cada and Sale (1993) for a thorough review of recent work in the area). It is, 

however, intended to be a critical discussion with emphasis on examining and evaluating the 

extent to which existing data sets can provide us with the information necessary for facilitating 

our modeling efforts. 

We choose to classify various laboratory experiments based on the specific injury 

mechanism they examined. The following mechanisms are considered: i) pressure and 

pressure variation effects; ii) cavitation; ii) shearing forces; iii) turbulence; and iv) mechanical 

impact. 

3.1 Pressure and pressure variation effects 

Fish travelling through the powerplant continuously encounter environments of 

changing ambient pressure. Given the very short residency time within the plant, it is 

important to investigate not only the impact of the absolute pressure level on the fish health 

but also the possible effects of the rate at which pressure changes along fish trajectories. A 

number of experiments, with a variety of species, have shown that the typical pressure levels 

associated with the various subsystems of hydraulic powerplants do not induce any significant 

mortality, provided that the fish have the opportunity to gradually acclimate to these pressure 

levels, (Foye and Scott, 1965). In essence these results suggest that compression and 

decompression at slow rates is non-fatal. 

The same, however, does not hold for higher rates of pressure change (especially 

decompression). In order to understand the reasons that cause high mortality rates in rapidly 
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decompressing fish, let us briefly comment on an important aspect of fish physiology. 

Depending on how the swim bladder of fish exchanges air with the environment, fish species 

can be classified into two broad categories: i) physoclistous species (like perch, bass, etc.), 

which have a closed bladder that changes its air content through diffusion to the blood system 

of the fish; ii) physostomous fish (like salmon, catfish etc), which have a small duct 

connecting the bladder with the environment (usually through the mouth cavity). There is a 

great difference at the response speed of these two systems to pressure variations. 

Physostomous fish react in a matter of seconds, whereas for physoclistous fish the process may 

take a few hours (Lagler et al., 1962). It is, therefore, evident that physoclistous fish are much 

more susceptible to rapid pressure variations than physostomous fish, a trend which has been 

verified in a number of laboratory experiments (Tsvetkov et al., 1972; Turnpenny et al., 1992; 

Feathers and Knable, 1983). It should be pointed out, however, that extremely large temporal 

changes of pressure can also harm physostomous fish. Since, therefore, typical passage time 

through high flow turbines is very small (order of 1 second), the total pressure drop across the 

dam plays a crucial role in determining this kind of mortality. Pressure sensitivity experiments 

have typically been carried out in closed pressurized chambers in which the water pressure can 

be accuratelly controlled via mechanical means, (Feathers and Knable, 1983; Tsvetkov et al., 

1972; Turnpenny et al., 1992). More unusual tests, in which the pressure variations were 

created by underwater explosions, have also been conducted (Traxler et al., 1993). In both 

approaches, fish that are acclimated to a specified pressure, usually near the atmospheric 

pressure, experience a sudden pressure change. The resulting temporal pressure variations 

experienced by the fish were then recorded and correlated with observed injury and mortality 

rates. It was thus shown that pressure drops more rapid than about 90 KPa/sec cause 

significant mortality rates. 

It should be noted that the relative ease that such experiments can be set up and 

conducted has led to an extensive data set, perhaps the most comprehensive among those 

available for other mortality sources. Despite the large body of data, however, very few of 

these experiments were systematic and detailed enough to provide information that is readily 

usable within a modeling framework. 
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3.2 Cavitation 

Cavitation is probably the most complex and intriguing fluid mechanics phenomenon 

occurring in hydraulic turbomachinery. When the water pressure drops below a critical 

threshold (usually at the suction side of blades, blade tips or high velocity regions) pockets of 

vapor are created in the fluid, providing water temperature and purity are favorable (Knapp et 

al., 1970; Young, 1989). When these vapor bubbles are transported by the flow to areas of 

higher pressure, they collapse and create shock waves, of originally spherical shape, that 

propagate through the water. These shock waves are extremely intense as they can reach 

several hundred atmospheres in the immediate vicinity of the collapse location. When a fish 

happens to be in the proximity of such an event, hemorrhaging of the eyes and gills of 

moderate to fatal severity can occur. 

The impact of cavitation on passing fish has been studied experimentally in small 

pressure controlled cavitation chambers (Muir, 1959; Turnpenny et al., 1992). It is of course 

very difficult to reproduce the exact conditions existing in the turbine, because of scale effects 

as well as the fact that, as mentioned before, the phenomenon is very complex and not fully 

understood or simulated numerically. Although very little experimental evidence is available 

(Turnpenny et al., 1992), it is reasonable to assume that since metal elements of the hydraulic 

machinery can sustain considerable cavitation-induced damage, collapsing cavitation bubbles 

could inflict potentially serious injuries on passing fish. A concrete correlation, however, 

between cavitation and fish injuries has yet to established experimentally. 

One approach that can be used to alleviate the intensity of shock wave induced by a 

collapsing cavity is to introduce air bubbles into the water. Under certain conditions, the 

resulting air pockets have been shown to provide a cushion that can absorp some of the energy 

released by the cavity, thus, acting like a shock-wave damping mechanism (Chanson, 1989). 

These findings led Cada and Coutant (1997) to speculate that air injection, an approach already 

employed in autoventing hydroturbines for enhancing the dissolved oxygen concentration of 

the tailwater, could also be suitable for reducing cavitation-related injuries. Further 

experimental and numerical modeling studies are needed, however, before more specific 

conclusions can be reached. These studies must focus on: i) clarifying the physics of 
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cavitation in hydroturbines; ii) documenting the nature and quantifying the extent of 

cavitation-induced injuries; and iii) evaluating the overall effectiveness and impact on turbine 

efficiency of remedies based on air-injection strategies. 

3.3 Shearing loads 

Before proceeding to review experiments that focused on shear-induced injuries and 

mortality, let us briefly review some fundamental fluid mechanics concepts regarding the 

definition of the shear-stress concept in a fluid. This brief review will be useful in our 

subsequent discussion as it will help us evaluate the completeness and usefulness of existing 

experiments as well as identify specific needs for future experiments. 

The flowfield in most subsystems of a hydropower plant is very complex, highly three-

dimensional and unsteady. The level of spatial complexity of a flowfield can be quantified in 

terms of the gradients of the three velocity components (u, v, w) along each spatial direction 

(x, y, z). For a three-dimensional flow, these gradients comprise a 3x3 velocity-gradient 

tensor, defined as follows: 

\dujdx dujdy dul d{] 

VV = \dv/dx &/dy dv/dz\ (1) 

dx dwl dy dw/dzj 

As a general rule, the complexity of a flowfield is directly proportional to the number of non

zero components of the above tensor. For example, for parallel Couette flow (flow driven by 

two flat belts moving at different speeds), the simplest viscous flowfield, the velocity gradient 

tensor has only non-zero component, du/dy. Within the powerplant, on the other hand, there 

are no regions where some components of the velocity gradient tensor are identically zero, 

although in certain areas some may be considerably smaller than others. For instance, within 

the intake the spatial derivatives of u, the velocity component along the predominant flow 

direction, should be expected to de significantly greater than the derivatives of the other 

[dwl 
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distributor and the wicket gates, the rotation of the runner, and the complex curvatures and 

area expansion within the draft-tube make all velocity derivatives non-zero and of comparable 

relative magnitude. 

For a viscous fluid, the velocity gradient tensor produces a shear-stress field which is 

also quantified in terms of a 3x3 tensor, the so-called shear-stress tensor. For a Newtonian 

fluid of viscosity (i, this tensor is symmetric and is expressed in terms of the velocity gradients 

as follows: 

T^,, T.n Txz~] [ Idujdx dujdy+dvldx du/dz + dw/dx'] 

T = ITXV TVV TyJ = nfyv+VVT)=n\duldy + dvldx 2dv/dy dv/dz + dwjdy I (2) 

\jxz Tyz Tzz\ \_du/dZ + dw/dx (h>/dZ+dw/dy 2dw/dz J 

Let us now consider a small material surface of area A within the flowfield that is arbitrarily 

oriented with respect to the local velocity vector. The orientation of this surface can be 

defined in terms of three, mutually perpendicular, unit vectors nl,n2,n3-n] and n2 are oriented 

parallel to the surface will n3 is normal to the surface. The components of the shear stress 

tensor will induce a shearing force, Fs, on this surface which can be expressed in terms of its 

components along each of the three unit vectors (Fs - Fs + Fs^ + Fs ): 

k A x + Txynky + v v 1 

K=*'"k=\ r*y\ + T v/V + *yz\ for k = 1, 2, 3 (3) 

where nkx, nkv, and nk_ are the three Cartesian components of the nk unit vector. The above 

serve to demonstrate that in a complex three-dimensional flow, the shearing force acting on a 

arbitrarily oriented surface has components along all three spatial directions. Furthermore, it is 

important to emphasize that in order to determine the total flow-induced force on the material 
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surface under consideration we should also consider the contribution of the pressure field 

which creates a force acting along the /23 direction, i.e. the direction normal to the surface. 

Let us consider now a fish travelling with velocity Vf within a complex three-

dimensional flow environment. With respect to an observer that moves with the fish the 

ambient flow velocity is V - Vf . Thus, eqns. (1) and (2) can be readily applied to obtain the 

velocity gradient and stress tensors as observed by the fish simply by replacing u, v, and w 

with u-Uf, v-Vf, and vv-wy. If the material surface we considered in our previous discussion is 

now thought to represent a small panel on the fish skin, eqn. (3) can be used to calculate the 

three components of the shearing forces acting on that panel. Since the fish bodies exhibit 

both longitudinal and transverse curvatures, the orientation of the n{,n2,n3 vectors changes 

continuously as we move along the fish skin. For that reason it is more convenient to express 

the resulting shearing forces in terms of a coordinate system whose origin is attached at a fixed 

point on the fish body (say the center of gravity of the fish) and its axes are always oriented 

along the principal and two minor axes of the fish body (see fig. 2). Clearly the total shearing 

force will have, in the general case, three non-zero components along each one of these axes. 

The component along the principal axis of the fish (from head to tail) will act to stretch or 

compress the fish body, leading to possible decapitation and descaling, and could also induce 

bending loads. The components along the two lateral directions, on the other hand, would tend 

to compress or stretch the fish laterally as well as produce twisting and/or bending loads. It is, 

therefore, clear from these general qualitative arguments that meaningful shear experiments, 

that are representative of real-life situations encountered by passing fish in powerplants, 

should be able to reproduce, quantify, and correlate with specific injuries all these possible 

three-dimensional loads. 

Most previous shear experiments have been conducted by introducing fish in the 

turbulent shear layer generated by a high-speed jet discharging into a tank of stagnant water 

(Groves, 1972; Turnpenny et al., 1992)-experiments involving the flow between two co-

rotating cylinders have also been reported (Morgan et al., 1976), but these have focused on the 

effects of mild shear on eggs and larvae of bass and perch. In such a flowfield the 
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predominant components of the mean (time averaged) velocity gradient and shear-stress 

tensors are du/dy aridity, respectively. It is important to emphasize, however, that in the 

vicinity of the jet the instantaneous flowfield, which is the actual environment encountered by 

the fish, is very complex, highly three-dimensional, unsteady, and characterized by a broad 

range of spatial and temporal scales. In other words, in such experiments, and for that matter 

in any flowfield in which strong mean velocity gradients exist, it is very difficult, if not 

impossible, to isolate the effects of "shear" from those of "turbulence"—this point is further 

discussed in more detail in the subsequent section. 

The main limitation of such experiments is the lack of any flow measurements. As a 

result, the jet velocity is the only parameter that has been traditionally used, (Groves, 1972; 

Turnpenny et al., 1992) to estimate the magnitude of the shearing force experienced by the fish 

and develop correlations with observed adverse effects, such as dissorientation, severe injuries 

and even mortality. Although this velocity can be used to come up with an order of magnitude 

estimate of the mean shearing force experienced by the fish, it is important to recognize that 

any particular injury could have been the result of an instantaneous extreme turbulent 

fluctuation which could very well be considerably higher than the mean. To estimate the 

likelihood and intensity of such events, therefore, it is necessary to supplement whatever 

method of fish tracking and observation is employed with detailed mean velocity and 

turbulence statistics measurements. 

Moreover, although jet experiments can expose fish into very high levels of shearing 

forces and turbulence fluctuations, they do not necessarily represent, neither quantitatively nor 

qualitatively, all real-life situations encountered within a powerplant. Quantitatively similar 

flowfields, in the sense that they exhibit a single dominant component of the mean shear-stress 

tensor, could of course occur in regions within the powerplant such as near gaps at the 

downstream end of overhanging wicket gates or hub gaps of Kaplan turbines, where the local 

geometry could possibly induce high-speed jet-like flowfields. Clearly, however, these 

experiments are not representative of situations such as those a fish could encounter within a 

swirling flow core entering a region of strong adverse pressure gradients (draft-tube inlet), or 

within strong longitudinal vortices developing along a wall, like those emanating from tip 
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components of the mean velocity gradient tensor being comparable to each other, with 

distinctly different, as compared to jet configurations, turbulence structures. For that reason it 

is important that any attempt to design controlled laboratory experiments with real fish begins 

with a detailed examination of the flow within the various components of the powerplant in 

order to identify and carefully classify, based on their overall structure, all local flow scenaria 

a fish is likely to encounter during its passage. This zonal approach will naturally lead to a 

number of different laboratory experiments with real fish, each designed to reproduce the 

features of the various flow zones within the powerplant and study the type and intensity of 

loads they impart on passing fish. 

3.4 Turbulence induced loads 

Turbulence induced fish damage is probably the least understood and most commonly 

misunderstood injury mechanism. Few simple experiments conducted by introducing 

"turbulence" into a chamber via a series of water jets (Killgore et al, 1987) have shown that 

although there is practically no dependence of fish mortality on the frequency of the turbulent 

fluctuations, there is significant dependence on "turbulence" intensity. To facilitate a more in-

depth critical look in such experiments, let us briefly start by discussing some fundamental 

aspects of turbulent flows. 

Turbulent flows are unsteady, three-dimensional, and characterized by a broad range of 

spatial and temporal scales. Within a powerplant, the largest turbulent scales are associated 

with eddies whose size is comparable to a characteristic dimension of a given subsystem (say, 

the height of the runner blades or the diameter of the draft-tube, etc.). The smallest scales (the 

so-called Kolmogorov scales), on the other hand, are those eddies whose energy is dissipated 

directly into heat by the molecular viscosity of the fluid. The resulting disparity in scales 

along with the complex, highly non-linear transfer of energy among them is what makes 

turbulent flows extremely difficult to study and understand. In powerplants this disparity is 

further exaggerated by the large size of real-life hudroturbines and the very high Reynolds 
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increases and the relative importance of the molecular viscosity of the fluid diminishes, 

The most common engineering approach for describing a turbulent flowfield is the so-

called Reynolds decomposition. The instantaneous values of the various flow quantities 

(velocity components and pressure) are expressed as a sum of a mean value plus a fluctuating, 

about the mean, component of variable frequency and intensity. It is important to recognize 

that in hydroturbines the so resulting mean value is not necessarily constant in time but it 

contains large scale organized temporal changes in the flow, such as those induced by the 

rotation of the runner. By substituting the Reynolds decomposition of the velocity components 

and pressure into the instantaneous equations of motion (continuity and momentum) and 

averaging the resulting equations, we obtain the so-called Reynolds-averaged Navier-Stokes 

(RANS) equations. The resulting equations look very similar to the original instantaneous 

Navier-Stokes equations but they are formulated in terms of the mean velocity and pressure 

components (eqn. (1) and (2) are still applicable but now they represent the mean velocity 

gradient and shear-stress tensors, respectively). Most importantly, the Reynolds-averaged 

momentum equations contain additional terms, the so-called Reynolds stresses, that represent 

the effects of turbulent velocity fluctuations on the evolution of the mean flow quantities. We 

refer to these terms as stresses because like the mean shear-stress tensor given by eqn. (2), 

which represents transport of momentum by molecular action in the flow, they too represent 

momentum transport but due to the action of turbulent eddies. Since turbulence is far more 

effective in transporting momentum and enhancing mixing, the Reynolds stresses are, for the 

most part of the flowfield, considerably larger than the viscous stresses. The production and 

evolution of the Reynolds stresses are governed by a set of very complex transport equations, 

which contain the mean velocity components and their gradients, and turbulent correlations 

involving Reynolds-averaged products of velocity and pressure fluctuations as well as triple 

fluctuating velocity products. The importance of these equations for our discussion lies in the 

fact that they clearly demonstrate that Reynolds-stresses, and, thus, turbulence, can be 

produced and sustained only when gradients in the mean velocity exist. 

The above discussion has important implications insofar as fish experiments are 
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effects of mean shear as an injury inducing mechanism can be separated from those of 

turbulence, as the former is responsible for producing and affecting the structure of the latter. 

Although in principal experiments could be carried out by introducing fish into a 

homogeneous turbulence field (which in the absence of mean shear will decay in time), it is 

unlikely that such a situation will ever occur in a real powerplant where the geometrical 

complexities induce intense velocity gradients and, thus, continuously produce turbulence. 

Therefore, rather than trying to isolate the effects of mean shear from those of turbulence we, 

once again, recommend that the zonal experimental approach described in the previous section 

is adopted. By carefully designing controlled laboratory experiments that reproduce various 

local flow scenaria within the powerplant, we can ensure that fish will be exposed to flow 

environments whose mean flow and turbulence structures are broadly similar to typical real-

life situations. 

It should be recognized, however, that meaningful quantification of turbulence-

induced loads on fish bodies in such experiments is a particularly challenging task. This is 

because out of the broad range of turbulent eddies present within the powerplant, those whose 

size is comparable to the characteristic length and time scales associated with a given fish will 

mainly determine the severity of the local loads imparted on the fish body and the extent of 

possible diss-orientation effects. The typical length and time scales of such "fish-sized" eddies 

are determined by the size of the fish and the relative, with respect to the fish, ambient flow 

velocity. Turbulent eddies smaller than a "fish-sized" eddy are, from the fish standpoint, 

small-scale noise. Much larger eddies, on the other hand, contribute in the general motion of 

the fish within the flowfield, while intermediate size eddies could cause mild diss-orientation. 

Therefore, quantifying the potential for turbulence-induced injuries and diss-orientation 

requires information about the so-called spectral content of turbulence, that is the manner in 

which turbulent energy is distributed among the various eddies in the flow. Generally 

speaking, the more energetic "fish-sized" eddies are the more likely it is that they could inflict 

serious damage on passing fish. 
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3.5 Mechanical injuries 

The term mechanical injuries refers to all injury events caused when a fish comes in 

contact with a solid surface. These include direct strike with a turbine blade, impact and scrape 

on walls, piers etc. Such events can induce injuries, mortality, or be completely harmless, 

depending on the angle the fish strikes the solid surface and its velocity at the time of impact. 

Several types of injuries are observed in the case of contact with a wall or blade, ranging from 

descaling (result of scraping against a rough surface like a cement wall, or grinding, i.e. 

passage through a narrow opening like a blade-hub gap), to decapitation and fatal spinal 

injuries. 

Laboratory experiments performed to investigate mechanical injuries (Turnpenny et al. 

1992), have shown that mortality is proportional with the velocity of impact, and inversely 

proportional with the thickness of the blades. Moreover, the inertia of the fish was found to 

directly determine the likelihood of avoiding wall contact, since lighter fish can follow the 

flow streamlines much easier than heavier fish. For instance, Turnpenny et al (1992) reported 

that, for identical geometrical configuration and flow conditions, fish heavier than 0.2 kg 

exhibited a 75 percent strike probability, whereas for lighter fish (=0.02 kg) this number was 

reduced to approximately 13 percent. 

Field experiments are significantly more difficult to conduct, because of the 

geometrical and flow complexities encountered in an actual powerplant. We can classify such 

experiments in two broad categories based on whether the powerplant is treated as a "black 

box," or whether attempts are made to track the exact passage of fish inside the various 

subsystems. In the former approach, fish are introduced at specified upstream locations near 

the intakes and are subsequently collected at the tailrace. The fish are tagged by balloons or 

other means in order to facilitate the retrieval. This method of experimentation has provided 

valuable results in the forms of identification of realistic types of injuries suffered and overall 

mortality rates, (Mathur et al., 1996; Heisey et al., 1995, 1996; Schoeneman et al., 1991). 

However, it is obvious that such a "black box" type of approach provides little or no 

information of what actually happens inside the powerplant. 

The latter approach attempts to elucidate this very problem, that is to determine the 
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them. Obviously such an approach poses considerable challenges to experimentalists: the 

environment in the plant is absolutely dark, very turbulent, often cavitating, the fluid is moving 

very fast and exerts large forces on any recording device introduced in the flowfield. Original 

attempts to use high-speed photographic equipment, (Moore and Scott, 1988; Vaughn, 1995), 

were inconclusive due to the "unnatural" effect the necessary lighting (dim as it might be with 

the new low-lux video equipment) has on fish behavior. Moreover, the actual environment in 

the powerplant does not allow for photography of objects at distances greater that 2-4 feet 

from the lenses. Suggestions to use low intensity, fish-attached illuminating devices for fish 

tracking (like LED elements, etc.) may improve the capability for tracking the trajectory of fish 

and for impact events recording. Even this technique, however, will not provide information 

injury mechanisms other than mechanical strike and scrape, as it does not provide any 

information regarding the flow environment encountered by the fish. A second technique that 

has been used to study fish passage is through the employment of hydroacoustic equipment. 

Based on the SONAR concept, hydroacoustics have been used extensively in open sea fishing 

vessels to detect fish schools with success. The use of such equipment for hydropower plant 

fish passage detection has the great advantage of being non-intrusive and, in case of split-beam 

acoustics, of being capable to track the full three-dimensional motion and velocity of the fish 

in real time, (Ransom and Steig, 1994). The correct application of this technique is far form 

being straightforward however: cavitation, background noise, fish species confusion and 

resolution capability (as far as small fish species are concerned) are some of the problems that 

make the application of this technique very challenging. Advanced pattern recognition 

software, expensive equipment and highly skilled personnel (both at the installation-operation 

level and at the results interpretation level) are necessary for the successful application of this 

technique. Despite these difficulties, it is however the most promising in situ fish tracking 

method reported so far. 

Finally, we should point out that very few attempts have been made to tackle the 

problem via theoretical or numerical approaches. Most theoretical efforts have concentrated on 

regression analysis of experimental data (Turnpenny et ah, 1992; US ACE, 1991) and 
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subsequent formulation of laws and rules that are supposed to govern fish passage. More 

recently efforts have been made to correlate the fish dimensions with the geometrical 

characteristics of a blade-to-blade passage by taking into account possible effects of fish 

orientation, (Fisher et al., 1997). 

The above literature review underscores the enormous complexity of the problem and 

the numerous challenges that need to be overcome for conducting meaningful laboratory and 

field experiments. In that regard, the subsequently described numerical model provides, for 

the first time, a comprehensive, albeit simplified in some instances, framework that could 

facilitate the systematic assessment of most possible injury mechanisms. It should be made 

clear, however, that the proposed numerical model requires considerable input from carefully 

designed controlled laboratory experiments for calibration and validation purposes before it 

can be employed as a reliable engineering tool. Such experiments are identified in a 

subsequent section at the end of this report. 
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4. Description of the method 

The numerical model requires as input a complete three-dimensional CFD solution of 

the flow through the entire powerplant at a given operating point. The computed flowfield is 

described in terms of pressure, mean velocity components, and turbulence statistics. These 

flow quantities are defined on an assembly of computational blocks, each corresponding to a 

powerplant subsystem (e.g. forebay, intake, stay vanes, wicket gates, runner, draft-tube, and 

tailrace). Given the geometrical complexity of a typical powerplant, it is very common that a 

large number of sub-blocks are necessary to adequately describe each one of these subsystems. 

For that reason the model has been designed so that it can accommodate an arbitrary number 

of blocks and block sizes, limited only by the available computer memory. 

Within this pre-computed virtual flow environment, fish are introduced, one after the 

other, at user-specified locations, initial velocities and orientations. The trajectory of each fish 

is computed using a fully three-dimensional tracking algorithm. The motion of each fish is 

described in terms of a sequence of translations and rotations along the three Cartesian axes, 

and, thus, a total of six differential equations (for the Cartesian components of the linear and 

angular acceleration vectors) are necessary for describing the entire spectrum of possible 

motions. The source terms in these equations represent the various forces exerted by the flow 

on the individual fish. At every point along the computed trajectory the local flow conditions 

experienced by the fish are recorded. The application of this algorithm continues until one of 

the following events occurs: 

1) the fish exits the computational domain, 

2) the fish impacts a solid wall or blade with a velocity and angle of attack that 

exceeds a pre-specified threshold and is assumed dead. 

It is evident from the above brief description that the algorithm consists of several 

modules that need to be carefully formulated for realistic simulations. These include the: i) 

selection of a plausible fish geometry representation ii) formulation and accurate and efficient 

numerical solution of the equations of motion and iii) implementation of a physically 
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meaningful model that accounts for wall impact and scrape events (collectively denoted herein 

as the "bounce-back" model). The modeling strategies adopted for each of these modules are 

described in detail in the subsequent sections. 

4.1 "Virtual Fish" geometry and characteristics 

Real life fish are bodies of extreme complexity, with a non-analytical shape, a plethora 

of appendages (fins, gills etc.), openings and a complex surface roughness distribution due to 

the scales. It would be very difficult to account for all these complexities in an engineering 

design tool that needs to be fast and efficient. For that reason, we have chosen to approximate 

the actual fish body with a prolate ellipsoid, shown in figure 1, which, in our subsequent 

discussion, will be referred to as the Virtual Fish (VF). The VF retains all of the main features 

of the actual fish: its length, width and height, its weight (and weight distribution), its 

buoyancy characteristics and, at least for part of the model, its surface roughness. 

Figure 1. Transformation from real to virtual fish 
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The equation that describes the VF geometry is of the following form: 

2 2 2 
^ + ^ + ^7 = 1 (4) 2 . 2 2 a b c 

where a, b and c correspond to the three principal axes of the body. 

Some geometrical characteristics of interest, that are employed in the subsequently 

described model, include the VF volume, V, and its three moments of inertia—/*, /v, and lz, 

where x, y, and are the VF principal axes, see figure 2. For a body described by eqn. (4), these 

quantities are given as follows: 

V = — Ttabc, 
3 

L = \v{b2+c2), 

(5) 
Iy=-V(a2+c2\ 

/ = Iv / (a 2 +£ 2 ) , 
z 5 

The VF surface is discretized using a structured two-dimensional surface mesh as 

shown in figure 1. It is important to point out that each node of this mesh can be link to a 

specific fish body part. Assuming, for example, that the body of a 15 centimeter juvenile 

salmon is discretized using a 6x6 (along the head-to-tail and girthwise directions, respectively) 

mesh, node (2,1) can be used to mark the left eye of the fish, nodes (2,3) and (2,4) define the 

right gill, while the midbody spine is located between nodes 3,2 to node 5,2. Such a 

topological mapping, which can be specified as desired by the user, allows the interpretation of 

the results in terms of biological rather than geometrical terms and facilitates the classification 

of specific types of injuries. 
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Since the VF is a three-dimensional object, six differential equations are necessary for 

the full description of its motion: three linear acceleration components (for the translatory 

motion along the three Cartesian axis), along with three angular acceleration components (for 

the rotational motion around the aforementioned axis). Assuming steady flow, these equations 

are formulated as follows: 

m ~ F o +F/ +Fjw + F ; + F;„ +F j +••-,; = 1,2,3 and 
at 
dco, 

I,—x~-co.ca,(L -L) = T* , 
x dt v z \ • z * 

dco, 
L -G)>0).(L-L) = T* and 

y dt i x z x , 

dco, 
L—s.-©.fi}.(/. -L) = Th 

(6) 

dt x v x v 

where: mh is the mass of the fish; d/dt is the Lagrangian derivative; ui are the Cartesian 

A A A 

components of the fish velocity vector; x, y, z are the coordinates of a system that coincides 

with the principal axes of the fish (see figure 2); cox,cos,andcoz are the angular velocities 

around each principal axis; and Ix, /v, and /, are the principal moments of inertia defined by 

eqns. (5). The terms in the right hand side of eqn. (6) represent the various forces and torques 

acting on the VF at a given point along its trajectory. These include, forces due to: i) viscous 

drag, Fl
D, and lift, Fl

L ; ii) ambient mean shear in the flow, F'SH ; iii) ambient pressure gradient in 

the flow, F'P\ iv) added mass effects, F'AM; and v) buoyancy, F'B. The dots in eqn. (6) 

represent higher order forces that are typically difficult and time consuming to compute while 

their overall effect on the fish trajectory is fairly small. For the sake of expedience and 

computational efficiency such forces are neglected herein. 
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Assuming that the various forces acting on the VF are known, eqn. (6) can be 

integrated in time to obtain the VF velocities at the new time step. The new position of the VF 

can subsequently determined by integrating in time the following equations for the Cartesian 

components, x^, of the VF position vector: 

dx, 

dt 
•=ubi, i = 1,2,3 (7) 

The equations governing the rotational motion of the body are formulated in terms of 

A A A 

the body fitted principal-axes coordinate system (x,y,z) and thus their integration requires 

special treatment. For this purpose, we introduce a co-motion coordinate system, whose origin 

coincides with the origin of the principal-axes coordinate system, located at the VF rotation 

center, and its axes, x\ y', z\ remain always parallel to the original Cartesian system (see figure 

2)—that is, the co-motion coordinate system translates with the VF velocity but does not rotate. 

Then the transformation between the co-motion system and the fish rotational system is given 

by x = Ax', where A is the transformation matrix defined as follows: 

A = 

l - 2 ( £ 2 + £ 2 ) 2(£r,e2 + e3/7) 2(e,e3 +£ 2 T?) 

2(£2£]+£/l) l - 2 ( £ 2 + £ , 2 ) 2(£2£3+£,77) 

2(£3£, +£277) 2(£3£2+£i77) l - 2 ( £ 2 + £ 2 ) 

(8) 

In the above equation, (£i, £2, £3, v\) are the so-called Euler's quartenions defined as: 

[£,,£2 ,£3f =<?sin 

(^ 

(t 
Uv (9) 

77 = c o s 
k2y 
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where e is the unit vector along the axis of rotation, and 0 is the angle of rotation. Since 

there are only three degrees of rotational freedom, Euler's quartenions must satisfy the 

following constraint: 

e,2 + e2 +e] +7]2 =1 (10) 

By the definition of the co-rotation system and due to the fact that the VF rotates continuously 

as it is transported through the flow, the Euler's quartenions change in time at a rate that is 

given by the following set of ordinary differential equations: 

£\ 
rjco, -e^co, +e2co, 

X V Z 

£2 I £3CO, +7]C0. -£]Q). 
x y z 

£3 ~2* -£2CD* +£lCO, +r\(D, 
x y z 

n - £ , & ) . -£2(0, - £ , 6 ) , 
X V 7 

(11) 

Finally, the initial conditions necessary for the rotations integration are obtained by the 

following relations, assuming that Tĵ O: 

7] = ± — (\ + au +a22 +tf33)' 

£ = 
4ri 

LA- -")'! L4- *><j 

a3\ ~ a\3 

a\2 ~ a2\ 

(12) 

In the above equations (12), â  correspond to the elements of the transformation matrix A of 

equation (8). 

The details of the numerical technique employed to integrate eqns. (6) and (7) are 

given in section 4.4 below. The formulation of the equations used to calculate the various 

forces in the right hand side of eqn. (6) is described in the next sections. 
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properties initialized, the initial positions of all nodes are located in the CFD grid topology 

using the given initial position and orientation of the fish along with eqn (12). Then all 

necessary quantities are interpolated, forces and torques are computed and eqns (6) and (7) are 

integrated to the next time step. Eqns (8) to (11) are then used to estimate the exact position 

for all surface node of the fish and the procedure is repeated for the next time step. 

A / 

• x' 

Figure 2. Coordinate systems 

4.3 Description of driving forces 
The various forces acting on the Virtual Fish that drive its passage through the 

powerplant and correspond to the source terms of the equations of motion are presented in the 

sequel. The forces described and used in the model correspond to the most important 

contributions present. Basset- (unsteady memory effects), Magnus- (rotation-induced lift) and 

turbulence-induced forces are omitted in the present version of the model. It is our intention, 

however, to carefully investigate the significance of these forces in the second phase of this 

work and take into account those that are found to be significant. Given the modular structure 
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of the model, additional forces can be readily implemented in the right hand side of the 

equations of motion. 

4.3.1 Force due to viscous flow around the fish 

This force accounts for the effects of the three-dimensional flowfield that develops 

locally around the fish body and consists of contributions from both shearing and pressure 

forces. Since the fish-induced flowfield is not known in the present model, we estimate this 

force by assuming that it is equal to the force that would be exerted on the fish body if a 

uniform ambient flow was approaching the fish at an incidence angle equal to the local 

incidence angle at the current location of the fish within the powerplant. The so resulting force 

is expressed as the sum of a lift, FLf , and a drag, FDf , force acting along the direction of and 

perpendicular to the relative velocity vector (=V -VVF , where V and VVF are the fluid and VF 

velocity vectors), respectively, that is: 

Ff=Fv+Fv (13) 

The magnitude of the lift and drag forces is determined as follows: 

1 I - - | 2 
F = — C oS \V - V 
1 Lf ^ Lf r J VF I v v VF | ' 

9 (14) 
F = — C nS \v-V |2 

1 Df ^^Dfr^VFy yVF\ 

where SVF is the VF frontal area, p is the fluid density, and CL,D are the VF lift and drag 

coefficients, respectively. 

Accurate determination of these forces is a particularly challenging problem as it 

requires knowledge of the lift and drag coefficients of the VF body under arbitrary surrounding 

flow conditions. Since these coefficients depend on the VF geometry, its local Reynolds 

29 



number (defined as ReVF = W - VVF L^ v ) and the flow angle of incidence, we need to 

device correlations that provide us with their values for every possible angle of attack and 

Reynolds number for every possible fish geometry. Such a correlation can be derived via 

either laboratory experiments or detailed three-dimensional Navier-Stokes computations of the 

flow around a VF body over the entire range of possible free-stream conditions. Neither 

approach, however, is economical as it is estimated that in order to cover just the angle of 

attack parameter, for a fixed Reynolds number and a given VF geometry, a set of at least 

6x6=36 measurements or computations will be required to obtain a moderate resolution of 15° 

rotation increments (6 measurement points for rotation around each one of the transverse 

principal axes of the VF). For that reason, we chose to construct approximate correlations by 

compiling available experimental measurements for prolate spheroid (VF-like) bodies and real 

fish. 

Based on experiments with real fish, fish biologists have proposed similar correlations 

that link the flow-induced force with the fish geometry at zero angle of attack-see (Childress, 

1977; Wu et al., 1974; Hoerner, 1965), among others. Such relations are of the following 

general form: 

CDo=Cf(l. + 1.5(l/d f/2> + 7(d/l f) (15) 

where CD« is the drag coefficient at zero incidence, l/d the fish body length-to-diameter ratio 

and Cf is the friction coefficient for a flat plate at the same Reynolds number. 

There is a significant amount of experimental and computational data on the lift and 

drag forces acting on prolate spheroids for angles of attack ranging from 0° to almost 90°, with 

more detailed data for the regime up to 30°, (Su et al., 1993; Costis et al., 1989; Fu et al., 1994; 

Meier and Kreplin, 1980) and others. Using regression analysis, most available data in the 

literature can be fitted, with relatively small dispersion, by simple quadratic equations linking 

the forces exerted on the body by the fluid with the angle of attack: 
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CDg = aDe2 + pD6 + l 

where C^ and CD are corrections for the lift and drag coefficients due to non-zero angle of 

attack, 6, and a^o, and PLD are regression parameters, currently with values equal to - CCD=-

0.483, pD=0.5\4, aL=-0.09l, and fiL=0M3, respectively. It is important to point out that due 

to lack of suitable experiments, the above correlations do not account for the effects of: i) 

laminar-to-turbulent flow transition, possibly occurring somewhere along the fish body; and ii) 

unsteady flow, which for prolate spheroid geometries has been observed in experiments to 

occur for 6>60°. 

The final lift and drag coefficients used in eqns. (12) are calculated as follows: 

C = C C C =C C (\1) 

Although at first glance this methodology appears somewhat crude, it is, given the lack of 

more detailed measurements, the only reasonable and computationally efficient approach to 

tackle an otherwise unsolvable problem. As more data become available, either from 

experiments (see section 7 below) or from in-house computations, they can be very easily 

incorporated in the model and enhance the accuracy of the aforementioned regression 

formulas. 

4.3.2 Force due to ambient pressure gradient 

In a complex three-dimensional flow environment, the pressure sensed by the various 

sides of the VF is not uniform but depends on the local pressure gradients in the flow. By 

integrating the pressure on the fish surface we obtain a force due to the ambient pressure 

gradient that contributes to its motion. This is done by simply multiplying the area of each fish 

surface panel with the average of the four vertex pressures that define that panel and by the 

normal unit vector of that panel, resulting in three force components, which are summed for 
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pressure, this term does not include the effect of buoyancy, and should be viewed as the 

integral of the difference of static pressure minus hydrostatic pressure. 

4.3.3 Force due to added mass effect 

In order to account for the response of the fluid surrounding the VF to acceleration, the 

so-called added mass effect, an additional force term is introduced as follows: 

PAU=^VFpmKrj-{v-VVF) (18) 

where Vv/r is the volume of the fish and a is the added mass coefficient, (Newman, 1977). The 

velocity derivative along the three directions is computed via a first order accurate finite 

difference scheme, from current and stored fish velocity values. 

The numerical integration of the equations of motion (eqn. (6)), can be greatly 

simplified and stabilized by moving the added mass force to the left hand side of the these 

equations. This amounts to substituting the mass of the fish with a new effective mass that 

accounts for both the inertial mass and the added mass. 

4.3.4 Buoyancy force 

The net buoyancy force (effective fish weight) acts in the vertical direction and is 

computed as follows: 

FB=Vfish{pflsh-pwaJg (19) 

where g is the gravitational acceleration. In the coordinate system used in our CFD 

simulations, g = (g,0,0). The density of the VF is computed from its dimensions and weight. 

We should note that the modular structure of the method makes it very easy to take into 
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unwillingly) the air content of its bladder. Lack of knowledge of the biological laws that 

dictate such changes made us omit this capability from the current version of the code. 

After composing all the forces acting on the fish, we are left with three Cartesian 

components of the sum force and their point of action. With this set, the system of equations 

presented in (6) and (7) is closed and can be integrated appropriately. 

4.4 Numerical integration of the equations of motion 

The governing equations of a motion, eqns. (6) and (7), are integrated in time in a 

Lagrangian fashion. That is, unlike the governing flow equations which are solved on a fixed 

Eulerian mesh, the solution of eqns. (6) requires the calculation at every time step of the fish 

position, velocities etc. This implies that any numerical scheme to be used for this purpose 

should consist of two components: i) a temporal integration scheme for advancing in time 

eqns. (6) and (7) and to achieve that it is necessary to employ ii) an algorithm for searching 

and interpolating in space. As is the case with all our modeling choices in this work, the 

selection of an appropriate numerical scheme was guided by the need to balance computational 

efficiency and numerical accuracy. 

4.4.1 Temporal integration scheme 

Extensive numerical experiments with temporal integration schemes showed that 

schemes that are second order accurate and higher yield identical results for the fish 

trajectories, provided that the time step is kept sufficiently small. However, schemes whose 

accuracy is higher that second order require either excessive memory (Euler type schemes) or 

significantly more computational time (Runge-Kutta, predictor-corrector and other multi-stage 

type schemes). Both of the above requirements can substantially increase the overall 

computational overhead, particularly when such schemes are employed to integrate in time the 

trajectories of many fish, one after the other. Since we found no significant accuracy 
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improvements with the use of a higher-than-second order approximation, the three-point, 

second-order accurate Euler explicit scheme was selected for integrating both eqns. (6) and 

(7): 

(du,:T
X 3unf -4u"+u "bi 

dt 

n-i 

bi hi bi 

2te 
(20) 

where n denotes the time level and At is time step. The time step in eqn. (20) is selected in a 

manner that guarantees numerical accuracy and stability while minimizes the computational 

resources required for carrying out spatial searches and interpolations. A module has been 

introduced in the code that pre-estimates1 mean fish node traveling times along the three 

directions of every cell of the CFD computational grid. Consequently, the smaller of these 

traveling times is chosen as the time step (usually multiplied by a factor of 0.1-0.5, to increase 

accuracy and take into account inertia effects). This approach yields a very conservative time 

step estimate but has two major advantages: i) the time step is kept small enough for the 

temporal integrator to be accurate and stable; and ii) it guarantees that the spatial position of a 

given fish at the new time level will be in the close neighborhood of its current position. 

A small example can illustrate clearly the speedup achieved by selecting the time step 

as described above. Assuming that the new position of a particular node on the fish surface 

will be within, say, 4 computational cells from the old one, the required search area consists 

of (4+l+4)3=729 cells (four cells upstream, the current cell and four cells down stream, for all 

three spatial directions). If our estimation involves a neighborhood of 10 computational cells, 

we get a total of (10+1+10)3 =9,261 cells to be searched. Arbitrarily defined, user-specified 

time step requires a searching area that spans 10-15 cell neighborhoods in every direction. The 

time step selected using the above procedure allows the use of just 1 cell neighborhoods, 

which implies that the total number of grid cells to be scanned is (1+1 + 1)3=27. Since the 

search algorithm takes up more that 60% of the total CPU usage of the model, it is obvious 

'This is done only once, in the beginning of each run 
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course the final speedup of the model is reduced by a factor 10-15 because the smaller time 

step means increased number of time steps required for the completion of each trajectory. Still, 

a significant overall speedup of approximately 15 has been achieved though the use of this 

technique. 

It is important to point out that the code is constructed in such a way, that if the initial 

1-cell-neighborhood fails, then all of the computational domain is searched. This happens 

very rarely, however, and usually only for newly injected fish. The actual mechanism that this 

position finding takes place is described in the next section. 

4.4.2 Spatial search and interpolation algorithm 

In order to be able to estimate the local flow conditions around every fish surface mesh 

node, we need to pinpoint the location of that node in the computational flow field. This is not 

an easy task, since computational grids for draft tubes are in general curvilinear, skewed, 

stretched and very irregular. The technique used to find the grid cell that the fish is in is based 

on an equality of volumes principle. Each of the grid cells is subdivided in six tetrahedra that 

span the original volume. Then, the searching algorithm assumes that the center of the fish is 

in every one of these tetrahedra and defines four new tetrahedra for each of the initial ones. 

The four vertices of the new sub-tetrahedra correspond to three vertices of the original 

tetrahedron and the fish node under investigation. The sum of the volumes of these new four 

tetrahedra will be equal (within some accuracy depending on roundoff error) to the original 

tetrahedron volume, if and only if the center of the fish is within this tetrahedron (figure 3). 

When this is satisfied, we declare the center of the fish to be in that cell and interpolate the 

values of the variables from the eight grid nodes defining that grid ceil. An inverse distance 

formula, with an exponent of 3.5 is used for the interpolation: 

*„*=—» (16) 

l^J 
nd=\ 
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where dnd is the distance of the node from every cell vertex. 

For very skewed grids, the above search algorithm might fail due to roundoff errors in 

the calculation of the cell volumes. Our experience so far has shown that this occurs very 

rarely. In the rare occasion that this happens, the user is provided with a hard-coded constant 

that can be altered (increased slightly) to accommodate these roundoff errors. 

Figure 3. Schematic of the technique used to locate the center of a fish in space 

4.5 The bounce back model 

The ability of the present approach to account for mechanical strike and scrape events 

is critical for realistic simulations. For that reason we have incorporated in the model the so-

called "bounce-back" module which allows for a VF to impact a solid surface, scrape against 

it, and continue its motion through the flowfield. The proposed model is conceptually very 

simple, and, thus, computationally efficient, but it is based on solid kinematic-elastic physical 

principles. It is described as follows. 

Wall impact is assumed when a node of the VF surface grid enters the first layer of grid 

cells off the solid boundary . The model determines if a node corresponds to a wall node or not 

2 
CFD computational grids are very fine near solid surfaces, so this assumption does not restrict the 

general applicability of the model. On the contrary, it solves very efficiently the problem of determining when a 
node is "in" or "out" of the computational domain, leading to significant speedup. 
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by a set of user supplied values, one for each computational cell of the multiblock grid 

enseble, that are also used by the CFD solver. When an impact event is detected, the VF center 

of rotation is moved from its original location, CRb in figure 4, (which is computed using the 

center of gravity of the fish and the center of application of the various forces on it), to the 

particular node that impacted the wall, CRa in figure 4. This means that all subsequent 

rotations, until the fish leaves the proximity of the wall, will take place around this new point. 

The VF motion is computed as usual, with the exception of the introduction of two 

new forces that account for the presence of the wall: 

a frictional force tangent to the wall (Ffr in figure 4).; and 

an elastic 'bounce-back' force perpendicular to the wall, Fbb in figure 4. 

The magnitude of these forces is calculated as follows: 

* > = V W and Fhh=TlhFimp (22) 

where Fimp is the force applied by the VF on the wall (see figure 4) and r\j and r\t> are empirical 

coefficient set equal to 0.5 and 0.1 respectively. 

During the time interval that VF is in contact with the wall and rotates around one of 

its surface nodes, it is possible that a second fish surface grid node enters the first near wall 

grid cells layer. If this occurs, the code sets this second fish surface node as the new center of 

rotation and computation of motion is continued as described before. 

Extensive numerical tests have shown this bounce-back model to behave in a realistic 

manner. The so computed trajectories are reasonable and broadly consistent with what one 

would anticipate, based on the conservation of momentum and energy, for the impact of a 3D 

semi-elastic body on a solid surface. Moreover the model is easy to implement and the 

constants are very easily adjustable. 
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Figure 4. The bounce-back model 
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Each run of the VF model requires as input a set of initial fish release characteristics. 

These include the location, velocity and orientation at which the fish is introduced in the 

computational domain and the physical characteristics of each specific fish. Usually, a set of 

initial locations that forms a 3D surface grid, matching the release locations of interest is 

generated using a small FORTRAN program. Examples of such initial distributions are 

provided in Section 6 of the present report. Additionally, the model requires a full 3D solution 

of the flow within the component to be simulated. Such a solution is produced by a separate 

CFD algotrithm, comes in terms of velocity components, pressure and turbulent quantities on a 

set of structured grid nodes and is accompanied by the geometric definition of the 

aforementioned grid and additional information for the walls that comprise the hydraulic 

component. 

The output of the model consists of an enormous set of time series of various flow 

quantities and flow-induced loads, stored on each node of the VF body at every position along 

its trajectory. The coordinates of each node, velocity of the node and of the ambient fluid, 

pressure, turbulence kinetic energy, a flag indicating impact or scraping along with the forces 

exerted on the fish from possible impact are the data stored. If we take into consideration the 

fact that each trajectory consists of several thousands of time steps, the surface of the fish is 

covered with several dozens of nodes and we might introduce several hundreds of fish for a 

detailed study, we come up with very large data sets from a single run—approximately 50-100 

Mbytes of results are generated for a detailed run. Additionally , for reasons of graphic 

representation of the solution, an organized set of snapshots of the fish location in the 

component can be stored. Such time frames can be used for creating animations of the fish 

trajectory through the machine. 

There are several postprocessing techniques that are used with the VF model and allow 

for an understanding of the characteristics of fish passage. The first thing that the design 

engineer usually looks for are the actual fish paths and these can be depicted either by plotting 
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or by the aforementioned technique of animating a sequence of snapshots of the fish. 

Commercial software packages like Tecplot or Ensight are used to perform these and all 

subsequent visualizations. The VF model can produce customized output for one or both of the 

aforementioned packages simultaneously. The results provided by the post processor, can be 

classified as follows: 

• Trajectory of fish (time history of the location of fish). This set of results corresponds to 

straightforward recording of the coordinates of one point on or in the fish and when plotted 

in combination with the CFD mesh topology allows for the determination of the passage of 

the fish. 

• Time histories of the linear and angular velocity of the fish. These series provide 

information on the velocity and rotation magnitudes experienced by the fish. 

• Time histories of the time derivatives of the linear and angular velocity of the fish, which 

of course correspond to the inertial load the fish experienced during its passage. They serve 

as an indirect measure of the overall influence the fish experienced during its passage, 

since, for instance, sudden acceleration or deceleration usually means that a slow-moving 

fish encounters a rapid-moving water current or vice-versa. 

• Cumulative indices of rotations around the three axis. Computed through dividing the total 

number of times the fish completed a full revolution around an axis by the time necessary 

for these revolutions, these three numbers are a good measure for fish dizziness. 

• Time histories of the flow variables (slip velocity, pressure, turbulence intensity) on every 

node of the fish surface grid. All these quantities are very useful for the determination of 

the flow environment the fish (or better yet, every part of the fish body) encountered during 

its passage. 

• Time histories of the maxima or minima of the flow variables (slip velocity, pressure, 

turbulence intensity) on the fish. By filtering the previous time histories, we can construct a 

set of time series that instead of being the evolution of a variable on one particular fish 

node, correspond to the minimum and maximum of this quantity throughout the fish 

surface. 
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respect to time, in terms of local node data or instantaneous maxima throughout the surface 

of the fish. 

• Time histories of the various forcing quantities that propagate the fish, viscous forces, 

buoyancy forces etc. This data may be used to understand why the fish is following a 

specific trajectory and to quantify the influence of the various driving terms of the motion 

equations. 

• Time history of flow-induced loads on the fish, including forces and moments. These very 

important quantities are computed locally, on every node of the fish, as described in the 

previous sections, and can be interpreted either through local or integrated values for shear 

load, bending and torsion loads. 

As revealing as time-histories can be, their usability is partially hindered by the fact 

that one usually has to deal with a huge number of individual graphs, since it is quite common 

to include dozens or even hundrends of fish in each VF run. A faster and more comprehensive 

way to short through all this data has been devised, a technique that is call "danger-zone 

maps". Such maps can be constructed, for a particular flow quantity, or flow-induced load 

acting on the fish, in the following manner: First we define a set of initial release locations, 

which are located on a plane upstream of the subsystem we wish to analyze. Fish are released 

from these initial locations and their trajectories through the subsystem are calculated using the 

VF model. Along the computed trajectory, we record certain quantities of interest, such as 

maximum pressure, or shear velocity, or strike velocity, etc. The so computed quantities are 

then assigned to the initial release location of the fish so that contour plots of each quantity can 

be constructed on the initial release plane. The resulting plots provide a wealth of information 

in a very compact manner and can be very helpful in assessing the fish friendliness of a given 

subsystem, as they can be used to identify the "danger zones" associated with this subsystem. 

Danger zones are defined as the areas upstream of the subsystem within which if fish find 

themselves are likely to experience, during their passage through the subsystem, a particular 

load that exceeds biological thresholds for survivability. 
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In this section we present and briefly discuss a small representative set of computed 

results. We should emphasize that this section is intended only to demonstrate the ability of 

the VF model to calculate fish trajectories through every component of a typical hydraulic 

powerplant. Extensive applications of the model over a range of operating conditions and 

comprehensive analysis of the computed results will be the primary focus of the second phase 

of this work. The flowfields used to obtain the subsequently presented results were obtained by 

Voith's CFD group using AEA's TASCFLOW commercial software (TASCFLOW Users 

Manual, 1998). Flow simulations were carried out for most subsystems of the Wanapum dam 

at a single operating condition. 

Since it has been shown in the literature that shear can be a critical, injury-inducing 

factor at the head-gills-eyes region, a focal point of the results presented is the determination 

of shear on or near one of the fish gills. Shear forces are quantified in terms of the magnitude 

of the average, over the fish body, relative velocity between the fish and the ambient flow, or 

similarly, by the relative velocity between the fish and the ambient flow at one particular point 

on the fish body. We also monitor, along computed trajectories, two additional quantities: i) 

pressure variation; and ii) acceleration magnitude, which serves as an estimate of the total 

force acting on the fish body. Finally, for those trajectories that involve impact, strike or other 

wall contact events, the impact velocity of the fish is recorded. All results are dimensional 

(S.I. unit system) and correspond to the full-scale hydro turbine. A virtual fish of 0.2m x 

0.05m x 0.03m principal dimensions, with a weight of approximately 0.2 kg, discretized using 

121 surface elements, has been used for all the simulations of this section. 

6.1 Description of the Wanapum CFD Model 
The trajectories of virtual fish were calculated in a region spanning the intake bays of 

the semispiral case to the draft tube cone. This section of the machine was divided into two 

subsystems: one containing the intake, scroll, stay vanes and guide vanes, and the other 

including the runner and the draft tube cone. The first subsystem was modeled with 
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approximately 300,000 nodes for a flow rate of 17,000 cfs. The second subsystem is that of 

the five-blade runner at a tilt of 31.35 degrees and includes the hub ramp structure as well as 

gaps at the hub and periphery. In the CFD analysis, a single blade was modeled with periodic 

boundaries, thus utilizing the assumption that the velocity field in the vicinity of each blade is 

the same. The assumption of periodic flow allows us to carry out our computations for a 

single, blade-to-blade passage using a very fine grid resolution. A total of approximately 

402,000 nodes are used to discretize the blade passage, which corresponds to a grid for the 

complete runner consisting of more than two million nodes. The flow rate for this component 

is 11,000 cfs, with the inflow velocity angles determined from a separate analysis of the stay 

vanes and wicket gates at this operating condition. 

6.2 Passage through the Intake/Scroll/Stay-Vanes/ Guide-Vanes Subsystem 
In order to carry out a comprehensive investigation of the fish passage characteristics 

within the first subsystem of the powerplant, a total of 300 fish were evenly distributed among 

the three intake bays and tracked through the scroll and vanes. A sample of 18 fish trajectories 

is presented in figure 5. Even for the six trajectories per intake bay depicted in this figure, 

several qualitative trends can be identified. For instance, fish entering from the left intake bay 

tend to span most of the scroll with their trajectories and enter the stay vanes from the back 

part of the scroll. Also, several fish entering from the middle and right bays (for the 

distribution presented in figure 5) appear to come in contact with either the stay vanes or the 

guide vanes at the front part of the scroll section. 

A number of additional features of the fish passage can be elucidated by considering a 

different set of release locations. Figure 6 shows a horizontal, constant-depth, distribution of 

initial positions. It is seen that fish entering from the left-most part of the left bay appear to 

scrape the rear wall of the scroll, whereas fish entering from the right-most part of the right 

bay, consistent with the behavior discussed in the previous paragraph, seem to come in contact 

with the vanes arrays. We have found, however, that these fish strike the rear part of the scroll 

ate relatively small angles and with rather small velocities (typical impact velocities in this part 

of the system were found to be less than lm/s). We do not anticipate, therefore, that the scrape 

events indicated by the model in this region would result in significant injuries. Instead, fish 
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would probably bounce back in the flow, with minor, if any, injuries and continue their 

trajectories. 

As we have already discussed above, the VF model can record specific quantitative 

information regarding the local flow quantities encountered by fish along their trajectories. 

Figure 7 shows the pressure and shear velocity at the left gill and also the average acceleration 

of fish No 4 of figure 6. A mild increase of the pressure (which is obviously hydrostatic) is 

followed by a sharp drop, which corresponds to the passage through the vanes arrays. The 

sudden change of direction of the fluid in that region is reflected in the rapid increase of the 

shear velocity during the last few seconds of this trajectory and also in the time-lagged 

acceleration that the fish undergoes. 

Another interesting behavior is recorded in figure 8, which depicts the time histories of 

fish No 5 of figure 6. This particular fish clears the first array of vanes but comes in contact 

with the second set. Its fate is reflected in the time-records presented in figure 8. The mild 

hydrostatic pressure variation that occurs as the fish is carried from the inlet to the vanes is 

followed by a short but sudden drop that corresponds to the acceleration within the first 

cascade passage. This acceleration is evident both in the shear velocity and in the total fish 

acceleration signal of figure 8. 

Presenting information in the manner shown in figs. 7 and 8, although helpful in 

analyzing the behavior of individual fish, does not enhance our understanding of the global 

fish passage characteristics. For that reason, and to facilitate an in depth analysis of fish 

passage, the "danger-zone" maps technique, as described in the previous chapter, is used. 

To demonstrate the concept of the danger-zone map, we employ it to evaluate the 

global fish passage characteristics for the subsystem consisting of the stay and guide vanes. 

We chose not to apply this technique to the intake/scroll subsystem as this is the region within 

which we anticipate the accuracy of the VF model to deteriorate considerably due to the 

overall slow flow velocities and the potential for significant fish free-will effects (which have 

not been incorporated in the model yet). The initial release plane and the fish release locations 

on this plane are shown in figure 9. Approximately 220 fish are introduced along a segment 

outside of the vanes periphery, that spans 1/5 of the total scroll circumference. This was 
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subsequent section for the analysis of the runner subsystem. Few typical subsets of fish 

trajectories are shown in figures 10 (for a horizontally oriented subset) and 11, (for a vertically 

oriented one)—the jagged shape of the trajectories in these figures is due to the fact that, to 

reduce storage requirements, fish locations are plotted only every two hundred time steps. 

Figure 12 shows the "danger-zone" map for the maximum shear velocity corresponding to the 

initial locations shown in figure 9. The vertical strips of high shear velocity at the top part of 

this figure correlate with pairs of stay vanes-wicket gates. The diagonal stripes at the lower 

part, on the other hand, should be attributed to the local flow conditions within the scroll, 

where the flow encounters the vane arrays at an angle and not horizontally as the flow at the 

top part does. Similar patterns are observed in figures 13 and 14, which depict the maximum 

acceleration and impact velocity. For this latter figure, a zero impact velocity implies that no 

impact took place. As seen in figure 14, the majority of fish clears this subsystem without 

striking walls. Even those that do strike, do so at relatively low velocities and only a small 

percentage of fish could possibly experience mild injury-inducing strike events (for velocities 

greater than 3m/s). Similar quantitative results can also be deduced from the shear-velocity 

map—maximum shear velocities nowhere exceed 3.2 m/s. 
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Figure 5. Typical fish trajectories for vertical arrays of release locations for the 
inlet-scroll-vanes subsystem 



Figure 6. Typical fish trajectories for a horizontal array of fish release locations for the 
inlet-scroll-vanes subsystem 
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Figure 9. Initial fish locations for the vanes region 



Figure 10. Typical fish trajectories for a horizontal array of release locations for the 
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Figure 11. Typical fish trajectories for a vertical array of release locations for the vanes region 
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A similar analysis as the one presented above is also performed for the runner. Since 

the runner CFD solution is periodic for the five blades, we can adequately analyze the fish 

behavior in this component by introducing fish at a section spanning 1/5 of the periphery of the 

runner. Again, a systematic distribution of approximately 100 fish release locations is used to 

fully cover this part of the periphery, figure 15. 

Figure 16 depicts trajectories originating from a subset of the aforementioned release 

locations, oriented along the runner axis. Out of the seven trajectories presented in this figure, 

the three near the top seem to come in contact with the runner blades, whereas the four near 

the bottom clear the runner and exit through the outflow plane to the draft tube ring. Figure 

17, depicting a horizontal initial location distribution, shows four trajectories clearing the 

blade, along with one that scrapes tangentially the blade trailing edge. 

Figures 18 and 19 show the time records for two fish of figure 17, namely fish 1 and 3. 

Although the trajectory for fish 1 strikes the blade trailing edge, it does reveal some typical 

features of runner fish passage, such as the rapid pressure drop along the blade and the intense 

acceleration the experienced by the fish. The same overall features can also be identified in 

figure 19. This figure also reveals that the fish passes through a relatively short zone of 

pressure recovery and near-zero acceleration after it clears the blades and before reaching the 

draft tube ring. 

The danger-zone maps for the maximum acceleration, shear-velocity, and strike 

velocity, for the set of initial conditions shown in figure 15, are shown in figures 20, 21, and 

22. All three plots exhibit a diagonally oriented high-intensity zone, which should be linked to 

the orientation of the runner blade. Comparisons with the danger-zone maps for the vanes 

subsystem (see figures 12, 13, 14) indicate that fish passing through the runner are likely to be 

exposed to considerably higher levels of shear and strike velocities, which could induce 

injuries and possibly mortality. That is, the relatively uneventful passage of fish through the 

upstream components is accompanied by a potentially dangerous passage through the runner 

blades. We should emphasize, however, that insofar as both shear and strike are concerned 
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only a small percentage of release locations will expose fish to potentially lethal levels. 
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Figure 16. Typical fish trajectories for a vertical array of release locations for 
the runner subsystem 



Figure 17. Typical fish trajectories for a horizontal array of release locations for the runner subsystem 
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Figure 19. Pressure, shear velocity and acceleration time histories for fish No 3 of figure 17 
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Figure 18. Pressure, shear velocity and acceleration time histories for fish No lof figure 17 
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Figure 21. Maximum shear velocity iso-contours for the initial fish release locations of figure 15 
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Figure 22. Impact velocity iso-contours for the initial fish release locations of figure 15 
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As we have already discussed, the VF method simulates the three-dimensional 

trajectories of fish-like bodies through realistic turbine geometries. Here we demonstrate how 

the output of the model can be utilized to visualize fish passage in a manner that allows for a 

better understanding of the interaction between the fish-like body and the machine 

components. 

In the complex, multi-element environment of the Wanapum plant, figure 23, we 

visualize several events of interest. Figure 24, for instance, depicts a fish just before its impact 

with a vane. Figure 25 shows a rake of streamlines, along with two fish trajectories that clear 

the vane arrays and enter the runner. Figure 26 shows the same situation, viewed from the 

turbine shaft. Figure 27 demonstrates an additional capabiJity of enhanced visualization 

options embodied in the VF model, i.e. that of color-coding the surface of the fish-like body 

according to the values of a quantity of interest, pressure in this case. Figures 28 and 29 

present similar visualizations for the runner subsystem. 

We should emphasize that the above results are only indicative of the capabilities of 

the model. The user can take advantage of these capabilities in order to better correlate fish 

trajectory specifics with features of the flow and elaborate on the understanding of the effect 

certain flow mechanisms have on fish passage. Moreover, even more advanced visualization 

techniques, like immersive 3D stereoscopic animation, are well within the capabilities of the 

VF model since all the necessary information is computed and stored. 
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Figure 23. Global view of the simulated environment for the Wanapum project 
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Figure 24. View of a fish-like body before impact on a vane 
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Figure 25. Typical streamlines and fish trajectories through the vanes cascade 
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Figure 26. Typical streamlines and fish trajectories through the vanes cascade, view from 
the turbine shaft 
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Figure 27. Fish surface pressure used for color-coding fish approaching a vane 



Figure 28. Rake of streamlines and fish trajectory snapshots above a turbine blade 



Figure 29. Rake of streamlines and fish trajectory snapshots above a turbine blade 



8. Future experiments for model calibration and validation 

The brief literature review along with the experience gained during the development 

and preliminary applications of the VF model, underscore the need for various carefully 

designed laboratory experiments to supplement our modeling efforts in order to develop a 

quantitatively accurate design tool. These are summarized below. 

1) The empirical correlations for the VF drag and lift coefficients (eqns. 15, 16) used to 

calculate the force due to the fish-induced viscous flowfield, can be greatly improved using 

input from suitable experiments. Such experiments can be carried out by placing fish-shaped 

bodies in a wind-tunnel and measuring the forces exerted on them as function of incidence 

angle and Reynolds number. This approach should be far more economical than 3-D Navier-

Stokes computations around fish-like bodies and could be easily employed to study the 

aerodynamic properties of a variety of fish species. It should be emphasized that these 

experiments can be conducted using models that include most real fish characteristics (fins, 

tail, body roughness, etc.), rather than simplified fish-like bodies. Thus, the resulting data sets 

will provide very reliable correlations for lift and drag coefficients that can be readily 

implemented in the model in place of eqns. (15) and (16). 

2) Experiments designed to shed light into the response of various fish species to external 

flow forcing (pressure gradients, vortices, swirl, etc.) are almost entirely lacking from the 

literature. Yet such information is essential in order to develop a set of behavior rules that 

could be implemented in conjunction with a neural network to devise a free-will model—such a 

model can be very easily implemented in the current version of the VF model. Designing and 

interpreting the results of such experiments will require very close collaboration between CFD 

modelers and fish biologists. 

3) The ultimate objective of the VF model is to provide a tool for estimating fish 
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mortality. Assuming that we overcome all previously discussed modeling shortcomings, 

accomplishing this objective further requires input from experiments that are designed to 

correlate flow-induced loads with injury and mortality. These will provide the necessary 

threshold loads that can then be incorporated into the model to develop survivability estimates. 

Rather than trying to isolate various flow effects (e.g. shear vs. turbulence, etc.), as has been 

done in the past, we propose to adopt a zonal approach. That is, identify a number of 

potentially harmful to fish flow zones within the powerplant and design experiments that 

simulate the essential physics of each such zone. The output of such experiments should be 

detailed mean flow and turbulence statistics measurements along with information regarding 

individual fish trajectories. The design and execution of these experiments can be greatly 

facilitated by simultaneous usage of advanced CFD methods. 

4) Finally the VF model is ultimately as good as the accuracy of the CFD solutions that 

supply the virtual flow environments. A significant road block obstructing the application and 

testing of advanced CFD methods to real-life hydroturbine flows is the lack of comprehensive 

experiments for model calibration and validation. Such experiments, focusing on obtaining 

mean flow and turbulence statistics measurements in various subsystems, are also essential for 

building a powerful predictive tool. 
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APPENDIX A: The Virtual Fish code - Users Manual 

In the sequel, we shall describe the structure and operation of the Fortran code 

developed. Text that appears under C o u r i e r f o n t s corresponds to file names, code 

constants, variables and subroutines and in general to elements of the actual computer 

program. The files necessary for a computation are: 

• the source Fortran code v i r t u a l . f 

• the include common block file c o m m o n - v i r t u a l 

• the executable obtained from compiling the source Fortran code v i r t u a l . f 

• the main data file d a t a - v i r t u a l 

• a grid specification file (name defined in main data file d a t a - v i r t u a l ) 

• a set of solution specification files (names defined in main data file d a t a - v i r t u a l ) 

• a blanking specification file, used to identify the solid wall regions within the multiblock 

CFD environment (name defined in main data file d a t a - v i r t u a l ) 

Description of the code 
The result of the research effort described so far is the Fortran computer code 

v i r t u a l . f. The code has been tested on three Unix SGI platforms, the Powerchallenge XL, 

the Origin 2000 and the Octane. Since the algorithm uses standard Fortran instructions, it is 

expected to be readily portable to any platform, providing adequate resources are present. The 

main restriction of the method, as far as computer resources necessary, is the main memory: 

since complex hydraulic machinery components require complex grid topologies to be 

described accurately, it is commonplace for CFD codes to employ numerous grid blocks, with 

many nodes each. The need to accommodate such demanding CFD solutions and on the same 

time be time-efficient, makes the algorithm usable only on medium-high memory sized 

computers. The hardware and software requirements for a successful execution of the code are: 
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REQUIREMENTS Minimum Suggested 

CPU RISK processor Last generation RISK processor 

(Alpha, Rl OK, Ultra) 

MEMORY 256 Mbytes 1024 Mbytes 

HARD DISK SPACE 100 Mbytes per CFD solution 

(excluding the solution files) 

200 Mbytes per CFD solution 

(excluding the solution files) 

OPERATING SYSTEM UNIX UNIX 

FORTRAN COMPILER ANSI Fortran Fortran 90 

Table 1. System requirements 

A compromise between modularity/adaptability and execution speed has been made. 

More specifically, core parts of the algorithm that are extremely time consuming and are not 

bound to serious updates in future versions, are quite efficiently but rather obscurely coded. On 

the other hand, most of the physical modeling part is very easy to adapt and upgrade. 

The global variable approach has been used during the construction of the code, 

meaning that most variables are globally addressable throughout the code. To facilitate this, 

the use of a single include file containing all the variable definitions has been implemented 

and call from every subroutine of the code. 

A single data file (named d a t a - v i r t u a l ) is used to specify all user supplied data to 

the code. The structure of this file is described in the sequel. The grid and solution files 
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necessary to run the code correspond to the format ot the voith Hydro iaskriow solver. An 

average Fortran programmer can very easily alter the appropriate read statements in the 

r e a d f i e l d subroutine to enable the code to input differently formatted data. 

The program is distributed in three forms: a source code file, an executable and a set of 

subroutines accompanied by a suitably prepared m a k e f i l e file. In this manner, the program 

can be executed immediately (providing proper UNIX environment settings have been 

adjusted), it can be re-compiled as a whole, or it can be compiled module-per-module in order 

serious development is to take place. The latter compilation method is very useful since it cuts 

down on the overhead of recompiling unaltered program segments. 
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Summary of the solution algorithm 
A detailed description of the solution algorithm is provided herewith. 

1. a data file containing instructions for the specific run is read 

2. the grid and field data blocks of the CFD solution are read 

3. each fish to be simulated is defined geometrically, physically and it is positioned in a 

predefined initial location at a predefined initial orientation and velocity. Equations (8) to 

(11) are used to define all necessary auxiliary orientation quantities 

4. each node of the fish surface mesh is scanned and the cell and grid block that it is 

contained is determined, following the technique described in section 4.4.2 

5. if the fish node is determined to be on a solid boundary (in the sense described in section 

4.5), that node is tagged as impact node and vertical to the wall velocities are computed. 

An additional force term plus a modified center of rotation are saved not the next steps 

6. the values for the velocity components, pressure and turbulence kinetic energy are 

interpolated from the eight cell vertices to the fish surface node, following equation (21) 

7. using the values estimated at the previous step, the forces acting on the fish are defined, as 

described in section 4.3 

8. the equations of motion (6) and (7) are integrated in time according to the scheme 

presented in 4.4.1 and equation (20). 

9. the new fish surface mesh node coordinates are computed from the translations and 

rotations estimated on the previous step 

10. all the quantities of interest are stored, to be used as input for the postprocessor 

subsequently 
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The subroutines of the code 
The most important subroutines and functions of the FORTRAN program are listed 

along with a brief description of every subroutine's usage. An attempt has been made to make 

the program as modular as possible, in order to achieve ease in maintenance, upgrades and 

troubleshooting. 

program virtual_fish 
This main program segment reads the control data file named "data_virtual", calls all the 
initialization subroutines and loops through the various fish trajectories to be simulated 

subroutine locate 
This subroutine searches "cleverly" the cells of all grid blocks in order to pinpoint the position 
of each individual fish surface node 

subroutine interpol 
For every surface node of the fish, this subroutine interpolates the flow variables from the 
neighbouring grid cell corners, using an inverse distance operator 

subroutine march 
This subroutine computes the various force contributions for every node and for the whole fish 
and integrates the equations of motion in order to propagate the fish in the flow domain 

integer function icheck 
xf1,xijk,xiljk,xijIk,xijkl,+yf1,yijk,yiljk,yijIk,yijkl,zf1, 
zijk,ziljk,zijlk,zijkl,acura) 
This function examines if a fish node is in a particular cell of the grid or not 

r e a l f u n c t i o n v o l u ( x l , x 2 , x 3 , x 4 , y l , y 2 , y 3 , y 4 , z l , z 2 , z 3 , z 4 ) 
This function computes the volume of a tetrahedron with vertices (x,y,z) 1,2,3,4 

s u b r o u t i n e r e a d f i e l d 
This subroutine reads the grid, velocity, pressure and turbulence multiblock solutions as they 
are computed by the CFD solver 

subroutine dimensions 
This subroutines scales the CFD grid and solution from model to full scale 

subroutine constants 
This subroutine sets useful global constants 
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subroutine fishinit 
This subroutine sets initial values for all important fish species properties and also establishes 
the fish surface mesh 

subroutine cdcoef 
This subroutine estimates the drag coefficient for the fish 

subroutine prepare 
This subroutine precomputes main cell volumes for speed 

subroutine inivol 
(xf1,xijk,xiljk,xijlk,xijkl, 
+yf 1 ,yijk,yiljk,yijlk,yijkl, zfl, zijk, ziljk, zijlk, zijkl, vol are) 
This is the subroutine where the actual volumes are computed initially for speed. 

subroutine geom 
This subroutine pre-computes the directions of the grid cells, to speed up subsequent force 
computations. 

subroutine dtcompute 
This routine computes the optimum time step to be used in the integration procedure. 

subroutine impact 
This subroutine estimates wheather the fish has come in contact with the solid wall, and if 
such an event has occurred, computes the additional forces such an event implies. 

subroutine record 
Subroutine record performs most of the output for the VF model by writing time histories and 
animation sequences to appropriate files. 

s u b r o u t i n e r o t a t i o n 
This routine performs the transformation of the flow velocity field from arotating to a 
stationary frame of reference and vice versa, if such a transformation is necessary. 

subroutine pres_scl_scroll 
subroutine pres_scl_run 
subroutine pres_scl_dt 
These three routines re-dimensionalize the pressure field in the hydraulic component. Only one 
of these three is called in the beginning of an indivudual run of the VF model. 
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i nc most impuruiiii vdridDies 01 me coae 
Description and usage for some of the key variable of the code is given in this section. 

All dimensional variables are in metric. 

ib lock 

is the current CFD grid block number the computations is in 

i x ( ib lmax) , iy ( ib lmax) , i z ( i b l m a x ) , i b l ( i m a x , j max,kmax,iblmax) 

hold the i,j,k dimensions of the various grid blocks of the CFD solution 

x(imax,jmax,kmax,iblmax),y(imax,jmax,kmax,iblmax),z(imax,jmax,kmax,iblmax) 

store the grid node coordinates of the various grid blocks of the CFD solution 

u(imax,jmax,kmax,iblmax),v(imax,jmax,kmax,iblmax),w(imax,jmax,kmax,iblmax), 

p(imax,jmax,kmax,iblmax),tke(imax,jmax,kmax,iblmax) 

store the velocity components, pressure and turbulence kinetic energy of the various grid 

blocks of the CFD solution 

i x f , j x f 

are the number of fish surface grid cells in the lengthwise and girthwise directions respectively 

xfish( ifmax, j fmax) , y f i sh ( i fmax , j fmax) , z f i s h ( i f m a x , j fmax) 

are the current position of the fish surface nodes 

ufish(ifmax,j fmax) ,vfish(ifmax,j fmax) ,wfish(ifmax,j fmax) ,pfish(ifmax,j fmax) , 

tkefish(ifmax,j fmax) 

are the current velocities, pressure etc. on the fish surface nodes as computed by interpolated 

from the ambient flow field 

umfish,vmfish,wmfish,mulfish,vmlfish,wmlfish 

are the previous time step and one before previous time step velocity components of the fish 
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is the time step used for the integration of the equations, as it is computed by the algorithm 

acura 

is a variable that controls the maximum allowed relative error in the determination of the 

location of every fish surface node in the CFD grid topology. This variable should be set to 

values between 0.5 and 1.0. In case the grid is extremely stretched, skewed and with large 

aspect ratios, roundoff error might interfere in the accurate determination of fish node 

locations. In that case it is advised to slightly increase this value, up to 1.5 

i1omem(i fmax , j fmax) , imem( i fmax , j fmax) , j mem(i fmax, j fmax),kmem(i fmax , j fmax) 

these auxiliary variables hold the previous time step position (in i,j,k mode) of each fish 

surface node, in order to speed up the location and interpolation procedure 

grfile,velfile,presfile,tkefile 

these character variables hold the names of the files that contain the CFD solution data 

geomscale,velscale,ipref,jpref,kpref,ilopref 

these variables are used to scale the CFD grid and solution from model to full scale and 

correspond to geometrical ratio, velocity ratio, plus pressure scaling and reference data 

rpm 

is the revolutions per minute of the component. Set to -999 is the component is stationary 

x f i n i t ( 1 0 0 ) , z f i n i t ( 1 0 0 ) , y f i n i t ( 1 0 0 ) 

are the initial positions of the centers of gravity of the fish to be simulated 

xrinit(100),zrinit(100),yrinit(100) 

are the initial orientations of the fish to be simulated in degrees 

ufinit(100)fvfinit(100),wfinit(100) 

are the initial velocities of the fish to be simulated in degrees. Set to -999 if fish are to be 

injected isokinematically 
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correspond to the basic dimensions of the fish, its mass, center of gravity and center of 

buoyancy. The center of gravity and center of buoyancy are given as fraction of the total 

length, measuring from the tip of the head. In the current version of the code, the center of 

buoyancy is fixed, however it is very easy to include a biological law that dictates bladder 

inflation-deflation and translation of center of buoyancy, following the local pressure for 

instance. 

gi ,denw,viscw 

are constants corresponding to the acceleration of gravity, and the properties of water, density 

and absolute viscocity 

i t y p e c f d 

specifies the type of hydraulic component to be simulated: value 1 is for the intake-scroll-

vanes system, value 2 is for the runner and value 3 is for the draft tube. Depending on the 

value of this variable, proper assignment of the revolutions per minute and for the pressure-

redimensionalization variables have to be set, see discussion in the description of the data file 

section. 
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A typical data-virtual data file and the significance of the various data items in it 
The data file is structured in such a way that a descriptive line preceeds every actual 

data line, thus it is more or less self explanatory. All units are metric, angles are in degrees and 

rotation speed is in revolutions per minute. It should be noted that one pair of lines in the 

d a t a - v i r t u a l file correspond to the necessary input for pressure re-dimensionalization. 

Depending wheather a run for a scroll, a turbine or a draft tube is performed, different structure 

for these two lines is necessary, since the VF code requires different quantities for each run. 

The following sample file, as well as the computer file provided, include all three possibilities 

(leading to an additional 4 lines of data in this file), for reasons of demonstration and 

completeness. The user should modify this file by removing the two pairs of lines that are 

redundant and keep just the pair that is pertinent to the run to be performed. The block of lines 

under discussion is marked in the datafile that follows. 

Grid file in plot3d format (binary) 

plot3d.grd 

Velocity file in plot3d format (binary) 

velocity 

Pressure file in plot3d format (binary) 

P 

Blanking file for wall definition (ascii) 

plot3d.wall 

Turbulence kinetic energy file in plot3d format (binary) 

TKE 

Number of fish trajectories to simulate and their initial coordinates 

2 <- Number of fish per run 

O.OE+OO 0.3 5 -0.16 <- x,y,z initial position of fish No 1 

5 0 . 4 0 . 6 . <- (j),6,̂  initial angles of orientation of fish No 1 

-999. -999. -999. <- u,v,w initial velocity of fish No 1 

o.OE+oo 0.35 -2.49E-02 ^- x,y,z initial position of fish No 2 

5 0 . 4 0 . 6 . <- <{),9,£ initial angles of orientation of fish No 2 

-999. -999. -999. <- u,v,w initial velocity of fish No 2 
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IxJ fish surface grid 

11 11 

Length,Width,Height,center of gravity,center of boyancy,density of fish 

0.25 .05 .03 .1 .1 1000. 

Geometry and Velocity Scale of powerplant (full scale to CFD) 

20. 1.714 

itypecfd Inlet-Scroll (1) Runner (2) Draft tube (3) 

1 

Href Pcfdinlet- Vinlet hLvsoverH sigmaPHW Pvapor PrefProto Zref (scroll) 

7.78 35400 0.6096 0.0 1.81292 2450 241800 0.1289 

Href HLoverHREF VSQexover2gHref Pvapor PrefProto sigmaP Zref VsqDTE (runner) 

7.78 0.02 0.142 2450 241800 0.812 0.1289 0. 

Href HLoverHREF VSQexover2gHref Pvapor PrefProto sigmaP Zref VsqDTE (dt) 

7.78 0.02 0.142 2450 241800 0.812 0.1289 0. 

Locator accuracy factor (suggested: 0.9) 

0.9 

Rotating elements rmps (-999. if none). Voith conventions mean positive rpm 

sign. 

-999. 

Write output every n steps, write animation file every n steps 

50 1000 

Select Tecplot (1), Ensight(2), both(3) or none(0) animation output 

1 

Pressure 
redimension-
alization. 
Only one of 
these pairs 
of lines 
should be 
kept in the 
running 
version. 
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The common-virtual INCLUDE file 
The common block that follows is included in every subroutine of the program and is 

the primary way of communication between the subroutines. The first line of the common 

block corresponds to a parameter statement declaring the maximum CFD grid and solution 

sizes fom the I,j and k directions (imax, jmax, kmax) respectively. The constant ib lmax 

sets the maximum number of blocks the CFD data may have. It should be noted that these 

numbers correspond to the maximum dimensions, the actual dimensions to be used are 

defined dynamically in the CFD grid and solution files. However, since the crucial restriction 

for successfully runing this program is its memory requirements, it is strongly suggested that 

the current desired values are set in the common block and the executable is regenerated 

through compilation and linking. 

The second line is another parameter statement seting the number of surface grid cells 

to be generated on the fish body, ( ifmax, j fmax). Again this corresponds to a maximum 

number, the actual number is determined in the data file data-virtual. 

parameter(imax=25,jmax=89,kmax=73,iblmax=137) 
parameter(ifmax=ll,j fmax=ll,mxtr=5000 ) 
common/geom/ iblock,x(imax,jmax,kmax,iblmax), 
+y(imax,j max,kmax,iblmax) ,z(imax,jmax,kmax,iblmax) , 
+ ix(iblmax),iy(iblmax),iz(iblmax),ibl(imax,jmax,kmax,iblmax), 
+wall(imax,jmax,kmax,iblmax) 
common /var/ u(imax,jmax,kmax,iblmax), 

+v(imax,jmax,kmax,iblmax),w(imax,jmax,kmax,iblmax), 
+p(imax,j max,kmax,iblmax) ,tke(25,89,73,137) 
common /fish/ xfish(ifmax,jfmax),yfish(ifmax,jfmax), 

+ zfish(ifmax,j fmax) ,ufish(ifmax,j fmax) ,vfish(ifmax,j fmax) , 
+wfish(ifmax,j fmax) ,pfish{ifmax,j fmax) ,tkefish(ifmax,j fmax) , 
+umfish,vmfish,wmfish,umlfish,vmlfish,wmlfish,um2fish,vm2fish, 
+wm2fish,cdvforce,wfish,xix,xiy,xiz,ixf,jxf,poldfish(ifmax,j fmax] 
common/rot/omegax,omegay,ornegaz,omegaxml,omegayml,omegazml,tpx, 

+tpy,tpz,thetax,thetay,thetaz,theta 
common/int/dt,xp,yp,zp,istep,acura,ilomem(ifmax,j fmax) , 
+ imem(i fmax,j fmax) ,j mem(i fmax,j fmax) ,kmem(i fmax,j fmax) ,i t ra j end, 
+xpml,ypml,zpml,xpm2,ypm2,zpm2 
common/files/ grfile,velfile,presfile,tkefile,wallfile 
common/scale/geomscale,velscale,ipref,jpref,kpref, 
+ilopref,rpm,irunner 
common/initfishp/ xfinit(mxtr),zfinit(mxtr),yfinit(mxtr) 
common/initfishr/ xrinit(mxtr),zrinit(mxtr),yrinit(mxtr) 
common/initfishu/ ufinit(mxtr),vfinit(mxtr),wfinit(mxtr) 

94 



+denfish 
common/cnstnts/gi,denw,viscw,pi 
common/bounce/ fxbounce,fybounce,fzbounce 
common/general/notraj,ifish,j fish,n,ievery,time,ieveryanim, 
+iensight 
common/bladder/pmean,umean,vmean,wmean 
common/presRscale/Href,HLoverHREF,VSQexover2gHref,Pvapor, 
+PrefProto,sigmaP,Zref,VsqDTE,itypecfd 
common/presIscale/Pcfdinlet,Vinlet,hLvsoverH,sigmaPHW 

c 
character*3 0,grfile,velfile,presfile,tkefile,wallfile 

95 



1 l i e H a l i n g U l l l l c L U U c 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

A sample listing of the FORTRAN code is presented herewith. Since the actual 

program is constantly undergoing upgrades and enhancements, this should be viewed as a 

general guideline, small to moderate changes might be present when compared with newer 

versions to be released. 

program virtual_fish 
c 
c 
c * * 
c * Virtual Fish Program * 
c * Yiannis Ventikos & Fotis Sotiropoulos * 
c * CEE, Georgia Tech 1998 * 
c * 
c * * 
c * Version 2.5 * 
c * * 
c * * 
Q ******************************************* 
C 

c This main program segment reads the control data file 
c named "data_virtual", calls all the initialization 
c subroutines and loops through the various fish trajectories 
c to be simulated 
c 

include'common_virtual' 
character*13 ffilel,ffile2 
character*l zzz 

c 
c Open and read data file 

write(*,*) 'Starting simulation' 
open(1,file='data_virtual' ) 
read(l,200) zzz 
read(l,100) grfile 
read(l,200) zzz 
read(l,100) velfile 
read(l,200) zzz 
read(l,100) presfile 
read(l,200) zzz 
read(l,100) tkefile 
read(l,200) zzz 
read(l,100) wallfile 
read(l,200) zzz 
read(1,*) notraj 
do i=l,notraj 
read(l,*) xfinit(i),yfinit(i),zfinit(i) 
read(l,*) xrinit(i),yrinit(i),zrinit(i) 
read(l,*) ufinit(i),vfinit(i),wfinit(i) 
enddo 96 



readd,*) ixf,jxf 
readd,200) zzz 
read(1,*) xlfish,hlfish,wlfish,cgfish,cbfish,denfish 
readd,200) zzz 
readd,*) geomscale,velscale 
readd,200) zzz 
readd,*) itypecfd 
if (itypecfd.eq.1) then 

c read for intake 
readd,200) zzz 
readd,*)Href,Pcfdinlet,Vinlet,hLvsoverH,sigmaPHW, 
+Pvapor,PrefProto,Zref 
endif 
if (itypecfd.eq.2) then 

c read for runner 
readd,200) zzz 
read(1,*)Href,HLoverHREF,VSQexover2gHref, 
+Pvapor,PrefProto,sigmaP,Zref,VsqDTE 
endif 
if (itypecfd.eq.3) then 

c read for draft tube 
readd,200) zzz 
read(1,*)Href,HLoverHREF,VSQexover2gHref, 
+Pvapor,PrefProto,sigmaP,Zref,VsqDTE 
endif 
readd,200) zzz 
readd#*) acura 
readd,200) zzz 
readd / * ) rpm 
readd,200) zzz 
readd,*) i every, ieveryanim 
readd,200) zzz 
readd,*) iensight 

100 format(a30) 
200 format(80al) 

close(1) 
c 
c Set various constants 

call constants 
c 
c 
c 
c Read CFD solution 

call readfield 
c 
c Scale geometry and CFD solution to full scale 

call dimensions 
c 
c Fix up runner rotation if necessary c 

irunner=0 
if(rpm.ne.-999.) then 

Convert rpm to rad/sec and adjust for relative frame 
rpm=-(2.*pi)*rpm/60. 
irunner=l 
write(*,*) 'Rotational frame of reference' 
call rotation 
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c 
c 
c Compute optimum time step 

call dtcompute 
c 
c Loop through all requested trajectories 

do 1 n=l,notraj 
write(*,*) 'Computing trajectory no:', n 
time=0. 
istep=0 
itraj end=0 
close(44) 

c close(55) 
write(ffilel,3 00) 'FISH1-',n,'.pit' 
write(ffile2,3 00) 'FISH2-', n,'.pit' 

300 format(a6,i3.3,a4) 
open(66,file='IMPACT_DATA') 
open(44,file=ffilel) 
write(44,*) 'TITLE="FISHDATA"' 
write(44,*) 'VARIABLES=X,Y,Z,TIME,P2 ,SHRT,SHRU,ACCEL' 
write(44,*) 'ZONE T="l", F=point' 

c open(55,file=ffile2) 
c write(55,*) 'TITLE="FISHDATA"' 
c write(55,*) 'VARIABLES=X,Y,Z,TIME,U,V,W,SHEAR' 
c write(55,*) 'ZONE T="1", F=point' 
c 
c initialize fish geometry, properties and location 

call fishinit 
c 
1000 continue 

time=time+dt 
c 
c write all important quantities to output files 

istep=istep+l 
c 

if(itrajend.eq.1) goto 1 
c 
c Loop through every fish node 

do ifish=l,ixf 
do j fish=l,jxf 

c 
c Initialize locators variables 

xp=xfish(ifish,jfish) 
yp=yfish(ifish,j fish) 
zp=zfish(ifish,jfish) 

c 
c Find the cell each fish node is in 

call locate 
c 
c Check every fish node for impact. 

call impact 
if(itrajend.eq.1) then 
write(66,66) n,umfish*xfmass,vmfish*xfmass,wmfish*xfmass, 
+xfmass*sqrt(umfish*umfish+vmfish*vmfish+wmfish*wmfish) 
call fiush(66) 

66 format(i4,4fl5.7) 
goto 1 
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endif 
if(itrajend.eq.2) then 
write(*,*) 'impact on wall' 
goto 1 
endif 

c 
c Interpolate surrounding velocities on every 
c fish node 

call interpol 
enddo 
enddo 

c 
if(mod(istep,ievery).eq.0) then 
write(*,55)'Traj. ',n,', Step, block, i, j, k for fish "tip" 
+ ,istep,ilomem(1,1),imem(1,1),jmem(1,1),kmem(1,1) 

55 format(a6,i4,a38,5i6) 
endif 

c 
c 
c Estimate forces and propagate fish 

call march 
c 

goto 1000 
c 

1 continue 
stop 
end 

c 
subroutine locate 
include'common_virtual' 
dimension ipl(6) ,ip2(6),ip3(6),ip4(6) 
dimension xt(9),yt(9),zt(9) 

c 
data ipl 

+/3,7,7,4,2,3/ 
data ip2 

+/4,8,9,5,3,5/ 
data ip3 

+/6,9,6,6,5,2/ 
data ip4 

+/7,4,4,9,6,6/ 
c 
c This subroutine searches "cleverly" the cells of all 
c grid blocks in order to pinpoint the position of each 
c individual fish surface node 
c 
c center-ispan to center+ispan search 

ispan=2 
c 

if(istep.eq.1) goto 6688 
c 

ilo=ilomem(ifish,j fish) 
istart=imem(ifish,j fish)-ispan 
iend=imem(ifish,j fish)+ispan 
jstart=jmem(ifish,jfish)-ispan 
jend=jmem(ifish,jfish)+ispan 
kstart=kmem(ifish,j fish)-ispan 
kend=kmem(ifish,j fish)+ispan 

99 



if(istart.It.1) istart=l 
if(jstart.lt.1) jstart=l 
if(kstart.It.1) kstart=l 

if(iend.gt.(ix(ilo)-1)) iend=ix(ilo)-1 
if(jend.gt.(iy(ilo)-1)) jend=iy(ilo)-1 
if(kend.gt. (iz (ilo)-1)) kend=iz(ilo)-1 

do 2000 i=istart,iend 
do 3000 j=jstart,jend 
do 4000 k=kstart,kend 

c 
c find cell 
c 

xt (1 =xp 
yt(l =yp 
zt (1 = zp 
xt (2 =x (i, j,k,ilo) 
yt(2 =y(i, j, k,ilo) 
zt (2 = z ( i , j,k,ilo) 
xt (3 =x ( i , j,k+l,ilo) 
yt(3 =y(i, j ,k+l,ilo) 
zt (3 = z (i , j,k+l,ilo) 
xt (4 =x (i , j+l,k+l,ilo) 
yt (4 =y(i, j+l,k+l,ilo) 
zt (4 = z (i , j+l,k,ilo) 
xt (5 =x (i , j+1,k,ilo) 
yt (5 =y(i, j+l,k,ilo) 
zt(5 = z (i, j+l,k,ilo) 
xt (6 =x (i-f 1,j,k,ilo) 
yt (6 =y(i + 1,j,k,ilo) 
zt (6 = z (i-f 1,j,k,ilo) 
xt (7 =x (i-f 1,j,k+l,ilo) 
yt(7 =y(i + 1,j,k+l,ilo) 
zt (7 = z (i-f 1,j,k+l,ilo) 
xt (8 = x (i-f 1,j+l,k+l,ilo 

yt (8 =y(i + 1, j + 1, k-f-1, ilo 
zt (8 = z (i-t 1,j+l,k+l,ilo 
xt (9 = x (i-f 1,j+1,k,ilo) 
yt (9 =y (i-f l,j+l,k,ilo) 
zt (9 = z (i-f 1,j+l,k,ilo) 

c 
do 5 ilat= 1,6 
iii = . LpKil at) 
J D J =: Lp2(ilat) 
kkk=. Lp3(il at) 
111 = : Lp4(il at) 

idecis= 
+icheck(xt(1),xt(iii),xt(jjj 
+, yt(1),yt(iii),yt(jjj 
+, zt(1),zt(iii),zt(jjj 
if (idecis.eq.1) then 
ilomem(ifish,jfish)=ilo 
imem(ifish,j fish)=i 
jmem(ifish,jfish)=j 

xt(kkk),xt(lll) 
yt(kkk),yt(111) 
zt(kkk) , zt(111) ,acura) 
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return 
endif 

5 continue 
4000 continue 
3000 continue 
2000 continue 

c 
6688 continue 

c 
c If mini-search fails, Rcheck if first fish node has been located and helps 
c 
c 

if ((jfish.eq.l).and.(ifish.eq.l)) goto 6689 

ilo=ilomem(l,1) 
istart=imem(l,1)-ispan 
i end= imem(1,1)+ i span 
jstart=jmem(1,1)-ispan 
jend= j mem(1,1)+ ispan 
kstart=kmem(l,1)-ispan 
kend=kmem(1,1) + i span 

c 
if(istart.lt.1) istart=l 
if(jstart.lt.1) jstart=l 
if(kstart.It.1) kstart=l 

c 
if(iend.gt.(ix(ilo)-1)) iend=ix(ilo)-1 
if(jend.gt.(iy(ilo)-1)) jend=iy(ilo)-1 
if(kend.gt.(iz(ilo)-1)) kend=iz(ilo)-1 

do 2002 i=istart,iend 
do 3002 j=jstart,jend 
do 4002 k=kstart,kend 

c 
c find cell 

c 
xt (1 =xp 
yt(i =yp 
zt(l = zp 
xt (2 =x(i,j,k,ilo) 
yt(2 =y(i,j,k,ilo) 
zt (2 =z(i,j,k,ilo) 
xt (3 =x(i,j,k+l,ilo) 
yt(3 =y(i,j ,k+1,ilo) 
zt(3 =z(i,j,k+1,ilo) 
xt (4 =x(i,j+1,k+1,ilo) 
yt(4 =y(i,j+1,k+1,ilo) 
zt (4 =z(i,j+l,k,ilo) 
xt (5 =x(i,j+1,k,ilo) 
yt(5 =y(i,j+1,k,ilo) 
zt (5 = z (i,j+1,k,ilo) 
xt(6 =x(i+l,j,k,ilo) 
yt(6 =y(i+l,j,k,ilo) 
zt(6 =z(i+1,j,k,ilo) 
xt(7 =x(i+l,j,k+1,ilo) 
yt(7 =y(i+1,j,k+1,ilo) 
zt (7 =z(i+l,j,k+l,ilo) 
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yt(8)=y(i+l,j+1,k+1,ilo) 
zt(8)=z(i+l,j+1,k+1,ilo) 
xt(9)=x(i+l,j+1,k,ilo) 
yt(9)=y(i+l,j+1,k,ilo) 
zt(9)=z(i+l,j+l,k,ilo) 

c 
do 7 ilat=l,6 
iii=ipl(ilat) 
J jD=ip2(ilat) 
kkk=ip3(ilat) 
lll=ip4(ilat) 

c 
c 

idecis= 
+icheck(xt(1),xt(iii),xt(jjj),xt(kkk),xt(111) 
+ , yt(l),yt(iii),yt(jjj),yt(kkk),yt(lll) 
+ , zt(l),zt(iii),zt(jjj),zt(kkk) ,zt (111) ,acura) 
if (idecis.eq.1) then 
ilomem(ifish,jfish)=ilo 
imem(ifish,j fish)=i 
jmem(ifish,j fish)=j 
kmem(ifish,j fish)=k 
return 
endif 

7 continue 
4002 continue 
3002 continue 
2002 continue 

c 

6689 continue 
c 
c If mini-search fails, do the global search 
c 

do 1000 ilo=l,iblock 
do 2001 i=l,ix(ilo)-l 
do 3001 j=l,iy(ilo)-l 
do 4001 k=l,iz(ilo)-1 

c 
c find cell 

xt(l =xp 
yt(i =yp 
zt (1 = zp 
xt(2 =x (i, j,k,ilo) 
yt(2 =y(i, j,k,ilo) 
zt (2 =z(i,j,k,ilo) 
xt (3 =x(i,j,k+1,ilo) 
yt(3 =y(i,j,k+1,ilo) 
zt(3 =z(i,j,k+l,ilo) 
xt(4 =x(i,j+1,k+1,ilo) 
yt(4 =y(i,j+1,k+1,ilo) 
zt (4 = z (i,j+1,k,ilo) 
xt (5 =x(i,j+l,k,ilo) 
yt(5 =y(i,j+l,k, ilo) 
zt(5 =z(i,j+1,k,ilo) 
xt(6 =x(i + l,j,k, ilo) 
yt(6 =y(i+1,j,k,ilo) 
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zt (6 ) =z (i + 1 j,k,ilo) 
xt (7 =x i + 1 j,k+l,ilo) 
yt(7 =y i + 1 j,k+l,ilo) 
zt (7 = z i + 1 j,k+l,ilo) 
xt (8 =x i+1 j+1,k+1,ilo) 
yt(8 =y i + 1 j+1,k+1,ilo) 
zt (8 = z i + 1 j+1,k+1,ilo) 
xt(9) =x i + 1. j+1,k,ilo) 
yt(9' =y i + 1, j+l,k,ilo) 
zt(9 = z i + 1 j+l,k,ilo) 

6 
001 
001 
001 
000 

do 6 ilat=l,6 
iii = ipl (Hat) 
jjj=ip2(ilat) 
kkk=ip3(ilat) 
lll=ip4(ilat) 

idecis= 
+icheck(xt(1),xt(iii),xt(jjj),xt(kkk),xt(lll) 
+ , yt(l),yt(iii),yt(jjj),yt(kkk),yt(lll) 
+ , zt(l),zt(iii),zt(jjj),zt(kkk) ,zt (111) ,acura) 
if (idecis.eq.1) then 
ilomem(ifish,j fish)=ilo 
imem(ifish,jfish)=i 
jmem(ifish,j fish) = j 
kmem(ifish,jfish)=k 
goto 8000 
endif 
continue 
continue 
continue 
continue 
continue 

This means (hopefully!) exit of point and end of trajectory 
or bounce back 

itrajend=l 
write(*,*) 'Locate itrajend=l' 

000 continue 
return 
end 

subroutine interpol 
include'common_virtual' 

For every surface node of the fish, this subroutine 
interpolates the flow variables from the neighbouring 
grid cell corners, using an inverse distance operator 

i = imem(ifish,j fish) 
j=jmem(ifish,j fish) 
k=kmem(ifish,j fish) 
ilo=ilomem(ifish,j fish) 

ddl=sqrt((x(i,j,k,ilo)-xpl 
+(z(i,j,k,ilo)-zp)* * 2) 

2 + (y(i,j,k,ilo)-yp)**2 + 

103 



dd2=sqrt((x(i#j+l,k,ilo)-xp)**2 + (y(i,j+1,k,ilo)-yp)**2 + 
+(z(i,j+l,k,ilo)-zp)**2) 
dd3=sqrt((x(i,j+1,k+1,ilo)-xp)**2 
+(z(i,j+l,k+l,ilo)-zp)**2) 
dd4=sqrt((x(i,j,k+l,ilo)-xp)**2 + 
+(z(i,j,k+l,ilo)-zp)**2) 
dd5=sqrt((x(i+l,j,k,ilo)-xp)**2 + 
+(z(i+l,j,k,ilo)-zp)**2) 
dd6=sqrt((x(i+1,j+1,k,ilo)-xp)**2 + (y(i+1,j+1,k,ilo)-yp)**2 + 
+(z(i+l,j+l,k,ilo)-zp)**2) 
dd7=sqrt((x(i+l,j+1,k+1,ilo)-xp)**2 + (y(i+1,j+1,k+1,ilo)-yp)* 
+(z(i+1,j+1,k+1,ilo)-zp)**2) 
dd8 = sqrt •((x(i + l,j,k+1,ilo)-xp)**2 + (y(i+1,j,k+1,ilo)-yp)**2 + 
+(z(i+l,j,k+l,ilo)-zp)**2) 

+ (y(i,j+1,k+1,ilo)-yp)**2 

(y(i,j,k+1,ilo)-yp)**2 + 

(y(i+1,j,k,ilo)-yp)**2 + 

uijk=u(i,j,k,ilo) 
uijlk=u(i,j+l,k,ilo) 
uijlkl=u(i,j+l,k+l,ilo) 
uijkl=u(i,j,k+1,ilo) 
uiljk=u(i+l,j,k,ilo) 
uiljlk=u(i+1,j+1,k,iloj 
uiljlkl=u(i+l,j+1,k+1,ilo) 
uiljkl=u(i+l,j,k+l,ilo) 

vijk=v(i,j,k,ilo) 
vijlk=v(i,j+1,k,ilo) 
vijlkl=v(i,j+1,k+1,ilo) 
vijkl=v(i,j,k+1,ilo) 
viljk=v(i+l,j,k,ilo) 
viljlk=v(i+1,j+1,k,ilo) 
viljlkl=v(i+l,j+1,k+1,ilo) 
viljkl=v(i+1,j,k+1,ilo) 

wijk=w(i,j,k,ilo) 
wijlk=w(i,j+1,k,ilo) 
wijlkl=w(i,j+1,k+1,ilo) 
wijkl=w(i,j,k+1,ilo) 
wiljk=w(i+l,j,k,ilo) 
wiljlk=w(i+1,j+l,k,ilo) 
wiljlkl=w(i+1,j+1,k+1,ilo) 
wiljkl=w(i+1,j,k+1,ilo) 

pijk=p(i,j,k,ilo) 
pijlk=p(i,j+1,k,ilo) 
pijlkl=p(i,j+1,k+1,ilo) 
pijkl=p(i,j,k+1,ilo) 
piljk=p(i+l,j,k,ilo) 
piljlk=p(i+1,j+1,k,ilo) 
piljlkl=p(i+l,j+1,k+1,ilo) 
piljkl=p(i+1,j,k+1,ilo) 

tkeijk=tke(i,j,k,ilo) 
tkeijlk=tke(i,j+1,k,ilo) 
tkeijlkl=tke(i,j+1,k+1,ilo) 
tkeijki^tke(i,j,k+l,ilo) 
tkeiljk=tke(i+l,j,k,ilo) 
tkeiljlk=tke(i+l,j+1,k,ilo) 
tkeiljlkl = tke(i + l,j+1,k+1, ilo) 
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if(ddl.lt.0.000000001) 
if(dd2.lt.0.000000001) 
if(dd3.It.0.000000001) 
if(dd4.lt.0.000000001) 
if(dd5.lt.0.000000001) 
if(dd6.lt.0.000000001) 
if(dd7.lt.0.000000001) 
if(dd8.lt.0.000000001) 

ekth=-3.5 
ddl=ddl**(ekth) 
dd2=dd2**(ekth) 
dd3=dd3**(ekth) 
dd4=dd4**(ekth) 
dd5=dd5**(ekth) 
dd6=dd6**(ekth) 
dd7=dd7**(ekth) 
dd8=dd8**(ekth) 
dtot=ddl+dd2+dd3+dd4+dd5+dd6+dd7+dd8 
ufish(ifish,jfish)=(ddl*uijk+dd2*uijlk+dd3*uijlkl+dd4*uijkl+ 
+dd5*uiljk+dd6*uiljlk+dd7*uiljlkl+dd8*uiljkl)/dtot 
vfish(ifish,jfish)=(ddl*vijk+dd2*vijlk+dd3*vijlkl+dd4*vijkl+ 
+dd5*viljk+dd6*viljlk+dd7*viljlkl+dd8*viljkl)/dtot 
wfish(ifish,j fish) = (ddl*wijk+dd2*wijlk+dd3*wijlkl+dd4*wijkl + 
+dd5*wiljk+dd6*wiljlk+dd7*wiljlkl+dd8*wiljkl)/dtot 
pfish(ifish,jfish)=(ddl*pijk+dd2*pijlk+dd3*pijlkl+dd4*pijkl + 
+dd5*piljk+dd6*piljlk+dd7*piljlkl+dd8*piljkl)/dtot 

c tkef ishdfish, jfish) = (ddl*tkei jk+dd2*tkei j lk+dd3 *tkeij lkl+dd4*tkei jkl + 
c +dd5*tkeiljk+dd6*tkeiljlk+dd7*tkeiljlkl+dd8*tkeiljkl)/dtot 
c 

return 
end 

c 
c 

subroutine march 
include'common_virtual' 
dimension xxxx(ifmax,j fmax) ,yyyy(ifmax,j fmax) ,zzzz(ifmax,j fmax) 

c 
c This subroutine computes the various force contributions 
c for every node and for the whole fish and integrates the 
c equations of motion in order to propagate the fish in the 
c flow domain 
c 
c compute average velocity field influencing the fish 

umean=0. 
vmean=0. 
wmean=0. 
pmean=0. 
itotnod=ixf*jxf 
do i=l,ixf 
do j=l,jxf 
umean= umean+ufish(i,j) 
vmean= vmean+vfish(i,j) 
wmean= wmean+wfish(i , j ) 
pmean= pmean+pfish(i,j) 
enddo 

ddl = .000000001 
dd2 = .000000001 
dd3 = .000000001 
dd4 = .000000001 
dd5 = .000000001 
dd6 = .000000001 
dd7 = .000000001 
dd8 = .000000001 
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umean=umean/float(itotnod) 
vmean=vmean/float(itotnod) 
wmean=wmean/float(itotnod) 
pmean=pmean/float(itotnod) 

c 
c necessary initializations if new fish is to be "injected" 

if (istep.eq.l) then 
umfi sh=umean 
vmfish=vmean 
wmfish=wmean 

c 
umlf i sh=umean 
um2 fish=umean 
vmlfish=vmean 
vm2fish=vmean 
wmlfish=wmean 
wm2fish=wmean 
do i=l,ixf 
do j=l,jxf 
poldfish(i,j)=pmean 
enddo 
enddo 
if (ufinit(n).gt.(-998.)) then 
umfish=ufinit(n) 
umlfish=ufinit(n) 
um2fish=ufinit(n) 
vmfish=vfinit(n) 
vmlfish=vfinit(n) 
vm2fish=vfinit(n) 
wmfish=wfinit(n) 
wmlfish=wfinit(n) 
wm2fish=wfinit(n) 
endif 
endif 

c 
c compute relative velocities 

urel=umfish-umean 
vrel=vmfish-vmean 
wrel=wmfish-wmean 
velrel=sqrt(urel*urel+vrel*vrel+wrel*wrel) 
call cdcoef(velrel) 
pold=pmean 

c 
c effective mass 

acoef=0.5 
xmass=xfmass+acoef *wf ish*denw 

c 
c viscous components 

fv=-cdvforce*velrel*velrel*surf*0.5*denw 
if(velrel.eq.0.) then 
fxv=0. 
fyv=0. 
fzv=0. 
else 
fxv=fv*urel/velrel 
f^'-^fv^vrel/velrel 
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fzv=fv*wrel/velrel 
endif 

pressure forces 

xpress=0. 
ypress=0. 
zpress=0. 
tpz=0. 
tpx=0. 
tpy=0. 
do i=l,ixf-1 
do j=l,jxf-1 

compute 

xml = 0.5*(xfish 
xm2=0.5*(xfish 
vectlx=xm2-xml 
xm3 = 0.5*(xfish 
xm4=0.5*(xfish 
vect2x=xm4-xm3 

yml=0.5*(yfish 
ym2=0.5*(yfish 
vectly=ym2-yml 
ym3 = 0.5*(yfish 
ym4=0.5*(yfish 
vect2y=ym4-ym3 

i,j)+xfish(i+1,j 
i,j+1)+xfish(i+1 

i,j)+xfish(i,j+1 
i+1,j)+xfish(i+l 

i/j)+yfish(i+1,j 
i,j +1)+yfish(i + 1 

i, j )+yfish(i,j+1 
i+1,j)+yfish(i+l 

z m l = 0 . 5 * ( z f i s h 
z m 2 = 0 . 5 * ( z f i s h ( i , j + l ) + z f i s h ( i + l , j + l ) ) 
vec 11 z = zrn2 - zml 
z m 3 = 0 . 5 * ( z f i s h 
zm4 = 0 . 5 * ( z f i s h ( i + l , j ) + z f i s h ( i + l , j + l ) ) 
vect2z=zm4-zm3 
d s l = s q r t ( v e c t l x * v e c t l x + v e c t l y * v e c t l y + v e c t l z * v e c t l z ) 
d s 2 = s q r t ( v e c t 2 x * v e c t 2 x + v e c t 2 y * v e c t 2 y + v e c t 2 z * v e c t 2 z ) 
d a = d s l * d s 2 

) 
j + D ) 

) 
j + D ) 

) 
j + D ) 

) 
j + D ) 

d p a = 0 . 2 5 * ( p f i s h ( i , j ) + p f i s h ( i , j + l ) + p f i s h ( i + l , j + l ) + p f i s h ( i + l , j ) ) 
d f p r e s s a = d a * d p a 

decompose 

xnorm=vectly*vect2z-vectlz*vect2y 
ynorm=vectlz*vect2x-vectlx*vect2z 
znorm=vectlx*vect2y-vectly*vect2x 
snorm=sqrt(xnorm*xnorm+ynorm*ynorm+znorm* znorm) 
xpresl=dfpressa*xnorm/snorm 
ypresl=dfpressa*ynorm/snorm 
zpresl=dfpressa*znorm/snorm 
xpress=xpress+xpresl 
ypress=ypress+ypresl 
zpress=zpress+zpresl 

Torque contributions 

darm=sqrt( (xfish(i,j)-xpml)**2+(yfish(i,j)-ypml) **2 + 
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+(zfish(i,j)-zpml)**2) 
tpz=tpz+darm*xpresl 
tpz=tpz+darm*ypresl 
tpy=tpy+darm*xpresl 
tpy=tpy+darm*zpresl 
tpx=tpx+darm*ypresl 
tpx=tpx+darm*zpresl 

c 
enddo 
enddo 

888 continue 
xpress=-xpress 
ypress=-ypress 
zpress=-zpress 

c 
c buoyancy 

dendif=denw-denfish 
bf orce=dendif *wf ish*gi 

c 
c total force 

fx=fxv+xpress+fxbounce 
fy=fyv+ypress+fybounce 
fz=fzv+zpress+bforce+fzbounce 
fx=fxv+fxbounce 
fy= fyv+ fybounce 
fz=fzv+bforce+fzbounce 

c 
c integrate twice for translatory 
c velocities 

umfish= 
+ (4. *umlf ish-um2f ish+ (2 . *dt* fx/xraass ) ) /3 . 
vmfish= 
+ (4 .*vmlfish-vm2fish+(2.*dt*fy/xmass))/3. 
wmfish= 
+ (4.*wmlfish-wm2fish+(2.*dt*fz/xmass) ) /3 . 

c add rotation of runner to fish speed if necessary 
if (irunner.eq.1) then 
umfish=umfish+((-1.)*ypml*rpm) 
vmfish=vmfish+((-1.)*xpml*(-1.)*rpm) 
endif 

c positions 
xp= (4 . *xpml-xpm2+ (2 . *dt*umf ish) ) /3 . 
yp= (4 . *ypml-ypm2+ (2 . *dt*vmf ish) ) /3 . 
zp=(4.*zpml-zpm2+(2.*dt*wmfish))/3. 

c remove rotation of runner until next step... 
if (irunner.eq.1) then 
umfish=umfish-((-1.)*ypml*rpm) 
vmfish=vmfish-((-1.)*xpml*(-1.)*rpm) 
endif 

c 
c 
c integrate for rotational 

omegax=omegaxml+dt*(tpx+omegay*omegaz* 
*(xiy-xiz))/xix 
thetax=thetax+omegax*dt 
omegay=omegayml+dt*(tpy+omegax*omegaz* 

*(xiz-xix))/xiy 
thetay=thetay+omegay*dt 
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*(xix-xiy))/xiz 
thetaz=thetaz+omegaz*dt 

c 
c fix rotations and orientations 
c 
c update position of fish 

do i=l,ixf 
do j=l,jxf 
xfish(i,j)=xfish(i,j)+(xp-xpml) 
yfish(i,j)=yfish(i,j)+(yp-ypml) 
zfish(i,j)=zfish(i,j)+(zp-zpml) 
enddo 
enddo 

c 
c rotate fish 
c 
c localize 

xpce=0. 
ypce=0. 
zpce=0. 
do i=l,ixf 
do j=l,jxf 
xpce=xpce+xfish(i,j) 
ypce=ypce+yfish(i , j ) 
zpce=zpce+zfish(i , j ) 
enddo 
enddo 
xpce=xpce/(float(ixf*jxf) ) 
ypce=ypce/(float(ixf* jxf) ) 
zpce=zpce/(float(ixf*jxf) ) 
do i=l,ixf 
do j=l,jxf 
xxxx(i,j)=xfish(i,j)-xpce 
yyyy(i,j)=yfish(i,j)-ypce 
zzzz(i,j)=zfish(i,j)-zpce 
enddo 
enddo 

c 
do ii=l,ixf 
do j j =1,jxf 
xxx=xxxx(ii,jj)*cos(thetaz)+yyyy(ii,j j)*sin (thetaz) 
yyy=-xxxx(ii,jj)*sin(thetaz)+yyyy(ii,jj)*cos(thetaz) 
xxxx(i i,j j)=xxx 
yyyy(i i,j j)=yyy 
enddo 
enddo 
do ii=l,ixf 
do j j=l,jxf 
xxx=xxxx(ii,j j)*cos(thetay)+zzzz(ii,j j)*sin(thetay) 
zzz=-xxxx(ii,jj)*sin(thetay)+zzzz(ii,jj)*cos(thetay) 
xxxx(i i,j j)=xxx 
zzzz(ii,jj)=zzz 
enddo 
enddo 
do ii=l,ixf 
do jj=l,jxf 
yyy=yyyy(ii,jj)*cos(thetax)+zzzz(ii,jj)*sin(thetax) 109 



yyyy(ii,jj)=yyy 
zzzz ( ii,jj)=zzz 
enddo 
enddo 

c 
c 
substitute 

do i=l,ixf 
do j=l,jxf 
xfish(i,j)=xxxx(i,j)+xpce 
yfish(i,j)=yyyy(i,j)+ypce 
zfish(i,j)=zzzz(i,j)+zpce 
enddo 
enddo 
omegax=0. 
omegay=0. 
omegaz=0. 
thetax=0. 
thetay=0. 
thetaz=0. 
theta=amaxl(thetax,thety,thetaz) 

c 
c backsubstitute 

xpm2=xpml 
xpml=xp 
ypm2=ypml 
ypml=yp 
zpm2=zpml 
zpml=zp 
um2fish=umlfish 
umlfish=umfish 
vm2fish=vmlfish 
vmlfish=vmfish 
wm2fish=wmlfish 
wmlfish=wmfish 
omegaxml=omegax 
omegayml=omegay 
omegazml=omegaz 

c 
c write all important quantities to output files 

call record 
c 
c Update pressure on fish 

do i=l,ixf 
do j=l,jxf 
poldfish(i,j)=pfish(i,j) 
enddo 
enddo 
return 
end 

c 
integer function icheck(xf1,xijk,xiljk,xijIk,xijkl, 

+yf1,yijk,yiljk,yijIk,yijkl,zfl,zijk,ziljk,zijIk,zijkl,acura] 
c 
c This function examines if a fish node is in 
c a particular cell of the grid or not 
c 

icheck=0 
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c 
c volume of main tetrahedron (this is precomputed) 
c 

volIf=volu(xijk,xiljk,xijlk,xij kl, 
+ yijk,yiljk,yijIk,yijkl, 
+ zijk,ziljk,zijlk,zijkl) 

c 
c subvolumes inside tetrahedron 1 
c 
c subvolume 1 
c 

volll=volu(xf1,xiljk,xijIk,xijkl, 
+ yf1,yiljk,yijlk,yijkl, 
+ zf1,ziljk,zijIk,zijkl) 

c 
c subvolume 2 
c 

voll2=volu(xf1,xijk,xijIk,xijkl, 
+ yf1,yijk,yijIk,yijkl, 
+ zf1,zijk,zijIk,zijkl) 

c 
c subvolume 3 
c 

voll3=volu(xfl,xiljk,xijk,xijkl, 
+ yf1,yiljk,yijk,yijkl, 
+ zf1,ziljk,zijk,zijkl) 

c 
c subvolume 4 
c 

voll4=volu(xfl,xiljk,xijlk,xijk, 
+ yf1,yiljk,yijIk,yijk, 
+ zf1,ziljk,zijIk,zijk) 

c 
vollc=volll+voll2+voll3+voll4 
voldif=abs(vollf-voile)/vollf 
if (voldif.le.acura) then 
icheck=l 
endif 
return 
end 

c 
c 

real function volu(xl,x2,x3,x4,yl,y2,y3,y4,zl,z2,z3,z4) 
c 
c this function computes the volume of a tetrahedron with 
c vertices (x,y,z)_l,2,3,4 
c 

dxl=x2-xl 
dx2=x3-xl 
dx3=x4-xl 
dyl=y2-yl 
dy2=y3-yl 
dy3=y4-yl 
dzl=z2-zl 
dz2=z3-zl 
dz3=z4-zl 
volu =abs(dxl*dy2*dz3+dyl*dz2*dx3+dzl*dx2*dy3-

dyl*dx2*dz3-dxl*dz2*dy3-dzl*dy2*dx3) 111 



c 
c Note: The exact formula of the volume of a tetrahedron requires 
c multiplication by 1/6, a term that can and is omited (since 
c only comparisons of volumes take place) for the sake of performance. 
c 

return 
end 

c 
subroutine readfield 
include'common_virtual' 

c 
c This subroutine reads the grid, velocity, pressure and 
c turbulence multiblock solutions as they are computed by 
c CFD solver 
c 
c•read the grid blocks 

open(10,file=grfile,form='unformatted') 
read(10) iblock 
read(10) (ix(ilo) ,iy(ilo) ,iz ( ilo) ,ilo = l,iblock) 
do 101 ilo=l,iblock 
read(10) (((x(i,j,k,ilo),i=l,ix(ilo)),j=1,iy(ilo)),k=l,iz(ilo)), 

+ (((y(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k=l,iz(ilo)), 
+ (((z(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k=l,iz(ilo)), 
+ (((ibl(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k=l,iz(ilo)) 

101 continue 
close(10) 
write(*,*) 'Grid o.k.' 

c 
c read the velocity blocks 

open(10,file=velfile,form='unformatted' ) 
read(10) iblock 
read(10) (ix(ilo) ,iy(ilo) ,iz(ilo) ,idum,ilo = l,iblock) 
do 102 ilo=l,iblock 
read(10) (((u(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k=l,iz(ilo)), 

+ (((v(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k=l,iz(ilo)), 
+ (((w(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k=l,iz(ilo)) 

102 continue 
close (10) 
write(*,*) 'Velocity o.k.' 

c 
c read the pressure blocks 

open(10,file=presfile,form='unformatted ' ) 
read(10) iblock 
read(10) (ix(ilo),iy(ilo),iz(ilo),idum,ilo=l,iblock) 
do 103 ilo=l,iblock 
read(10) (((p (i,j,k,ilo) ,i = l,ix(ilo)) ,j = l,iy(ilo)) ,k=l,iz(ilo)) 

103 continue 
close(lO) 
write(*,*) 'Pressure o.k.' 

c 
c read the turbulence kinetic energy blocks 
c open(10,file=tkefile,form='unformatted' ) 
c read(10) iblock 
c read(10) (ix(ilo),iy(ilo),iz(ilo),idum,ilo=l,iblock) 
c do 104 ilo=l,iblock 
c read(10)(((tke(i,j,k,ilo),i=l,ix(ilo)),j=1,iy(ilo)),k=l,iz(ilo)) 
cl04 continue 
c close(10) 
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c 
c Read the Wall information 

open(10,file=wallfile) 
do ilo=l,iblock 
do i=l,ix(ilo) 
do j=l,jx(ilo) 
do k=l,kx(ilo) 
read(10,*) iduml,idum2,idum3,idum4,wall(idum2,idum3,idum4,iduml) 
enddo 
enddo 
enddo 
enddo 
write!*,*) 'Wall data o.k.1 

c 
return 
end 

c 
subroutine dtcompute 
include'common_virtual' 

c 
c This subroutine makes a very conservative estimation of the 
c time step to be used for the integration of the equations 
c 

dt=10.e30 
do 34 ilo=l,iblock 
do 34 i = 2,ix(ilo)-1 
do 34 j=2,iy(ilo)-1 
do 34 k=2,iz(ilo)-1 
xll=sqrt( 
+((x(i+l,j,k,ilo)-x(i,j,k,ilo))**2)+ 
+((y(i+l,j,k,ilo)-y(i,j,k,ilo))**2)+ 
+((z(i+l,j,k,ilo)-z(i,j,k,ilo))**2)) 
xl2=sqrt( 
+((x(i,j+l,k,ilo)-x(i,j,k,ilo))**2)+ 
+((y(i,j+l,k,ilo)-y(i,j,k,ilo))**2)+ 
+((z(i,j+l,k,ilo)-z(i,j,k,ilo))**2)) 
xl3=sqrt( 
+((x(i,j,k+l,ilo)-x(i,j,k,ilo))**2)+ 
+((y(i,j,k+l,ilo)-y(i,j,k,ilo))**2)+ 
+((z(i,j, k+1,ilo)-z(i,j,k,ilo))**2)) 
xlmin=aminl(xll,xl2,xl3) 
if(xlmin.lt.0.000001) write(*,*) 'Problem with grid at ',i,j,k 
velmax=sqrt (u(i,j,k,ilo)*u(i,:J,k,ilo)+v(i,j,k,ilo)*v(i,j,k,ilo) 
+ +w(i,j,k,ilo)*w(i,j,k,ilo) ) 
dt=aminl(dt,(xlmin/velmax)) 

34 continue 
c A walk on the wild side: this has spectacular results as far as speedup 
and 
c has never failed *so far*. If it does in the future, the user is hinted 
c to reduce this factor to something more modest. 

dt=4.0*dt 
write(*,*) 'dt computed=',dt 

c 
return 
end 

c 
subroutine dimensions 
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c 
c This subroutines scales the CFD grid and solution 
c from model to full scale 
c Pressure must be scaled and dimensionalized (using sigma) 
c BEFORE the grid is scaled 
c 
c 
c scale pressure using sigma values 
c 

if(itypecfd.eq.1) then 
call pres_scl_scroll 
endif 
if(itypecfd.eq.2) then 
call pres_scl_run 
endif 
if(itypecfd.eq.3) then 
call pres_scl_dt 
endif 

c 
c 
c scale velocities and grid 
c 

do 34 ilo=l,iblock 
do 34 i=l,ix(ilo) 
do 34 j=l,iy(ilo) 
do 34 k=l,iz(ilo) 

c 
u(i,j,k,ilo)=u(i,j,k,ilo)*velscale 
v(i,j, k,ilo)=v (i,j,k,ilo)*velscale 
w(i,j,k,ilo)=w(i,j,k,ilo)*velscale 

c tke (i, j , k, ilo) =tke(i, j,k,ilo)*(velscale**2) 
x(i,j,k,ilo)=x(i,j,k,ilo)*geomscale 
y(i , j,k,ilo)=y(i,j,k,ilo)*geomscale 
z(i,j,k,ilo)=z(i,j,k,ilo)*geomscale 

c 
34 continue 

return 
end 

c 
subroutine constants 
include'common_virtual' 

c 
c This subroutine sets useful global constants. 
c Make sure that the constants you add here, appear also 
c in the common INCLUDE file "common_virtual" 
c 
c Density of water is 1000.00 kg/m^3 

denw=1000.00 
c 
c Dynamic viscocity of water is 1.12e-3 N*s/m~2 

viscw=l.12e-3 
c 
c Acceleration of gravity on earth is 9.81 m/s^2 

gi=9.81 
c 
c Pi is pi 
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pi=3.14159 
c 

return 
end 

c 
subroutine fishinit 
include'common_virtual' 

c 
c This subroutine sets initial values for all 
c important fish species properties and also 
c establishes the fish surface mesh 
c 
c geometrically "build" fish as a prolate ellipsoid 

theta=0. 
dth=pi/float(ixf-1) 
dphi=2.*pi/float(jxf-1) 
do i=l,ixf 
phi=0. 
do j=l,jxf 

xfish(i,j) = cos(theta) 
yfishd,j) = sin (theta) *sin (phi) 
zfish(i,j) = sin(theta)*cos(phi) 

phi=phi+dphi 
enddo 

theta=theta+dth 
enddo 

do i=l,ixf 
do j =1,j x f 
xfishd, j)=0.5*xfish(i,j) *xlfish 
yfishd, j ) =0.5*yfish(i, j) *hlfish 
zfish(i,j)=0.5*zfish(i,j)*wlfish 
enddo 
enddo 

c dxlfish=xlfish/float(ixf-1) 
c dpp=2.*pi/float(jxf-1) 
c i = 0 
c do 11 ik=0,float(ixf-1) 
c xpp=(-xlfish/2.)+(dxlfish*ik) 
c i=i+l 
c j=0 
c do 11 il=0,float(jxf-1) 
c ypp=dpp*il 
c j=j+l 
c xfish(i,j)=xpp 
c yfishd, j ) =hlf ish*cos (yppj * ( (xlfish/2 . ) -abs (xpp) ) / (xlfish/2 . ) 
c zfishd, j)=wl fish* sin (ypp) * ( (xlfish/2 . ) -abs (xpp) ) / (xlfish/2 . ) 
c 11 continue 
c 

wfish=1.33* (hlfish/2. ) * (xlfish/2. ) * (wlfish/2. ) *pi 
xfmass=denf ish*wf ish 
surf=xlfish*(wlfish+hlfish)*2. 

c 
c initial rotations 

115 



xrinit(n)=pi*xrinit(n)/180. 
yrinit(n)=pi*yrinit(n)/180. 
zrinit(n)=pi*zrinit(n)/180. 
thetax=xrinit(n) 
thetay=yrinit(n) 
thetaz=zrinit(n) 
do ii=l,ixf 
do 33=1,jxf 
xxx=xfish(ii,j j)*cos(zrinit(n))+yfish(ii,jj)*sin(zrinit(n)) 
yyy=-xfish(ii,jj)*sin(zrinit(n))+yfish(ii,jj)*cos(zrinit(n)) 
xfish(ii,3 3)=xxx 
yfish(ii,jj)=yyy 
enddo 
enddo 
do ii=l,ixf 
do 3j=l,jxf 
xxx=xfish(ii,33)*cos(yrinit(n))+zfish(ii,jj)*sin(yrinit(n)) 
zzz=-xfish(ii,jj)*sin(yrinit(n))+zfish(ii,jj)*cos(yrinit(n)) 
xfish(ii,3 3)=xxx 
zfish(ii,jj)=zzz 
enddo 
enddo 
do ii=l,ixf 
do 3 3=1,jxf 
yyy=yfish(ii,jj)*cos(xrinit(n))+zfish(ii,jj)*sin (xrinit(n)) 
zzz=-yfish(ii,jj)*sin(xrinit(n))+zfish(ii,jj)*cos(xrinit(n)) 
yfish(ii,jj)=yyy 
zfish(ii,33)=zzz 
enddo 
enddo 

c place fish in desired initial position 
do ii=l,ixf 
do jj =1,jxf 
xfish(ii,jj)=xfish(ii,jj)+xfinit(n)*geomscale 
yfish(ii,jj)=yfish(ii,jj)+yfinit(n)*geomscale 
zfish(ii,jj)=zfish(ii,jj)+zfinit(n)*geomscale 
enddo 
enddo 

c open(22,file 
c write(22,* 
c write(22,* 
c write(22,* 
c write(22,* 
c write(22,* 
c write(22,* 
c write(22,* 
c wr i t e (2 2 , * 
c write(22 , * 
c write(22,* 
c write(22,* 
c close(22) 

'TESTl.plt') 
TITLE="FISHBODY"' 
VARIABLES=X,Y,Z,P,DUM,DIM,DUM,DUM' 
ZONET="B", 1= ',jxf,',J= ',ixf,' , F=block 
((xfish(i,3)/geomscale),j=l,jxf),i=l,ixf) 
((yfish(i,3)/geomscale),j=l,jxf),i=l,ixf) 
((zfish(i,j)/geomscale),j=l,jxf),i=l,ixf) 
(pfish(i,j),j=l,jxf),i=l,ixf) 
(xfish(i,j),j=l,jxf),i=l,ixf) 
(xfish(i,j),j=l,jxf),i=l,ixf) 
(xfish(i,j),j=l,jxf),i=l,ixf) 
(xfish(i,j),j=l,jxf),i=l,ixf) 

open(33,file='Fish_Shape') 
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do ii=l,ixf 
do jj=l,jxf 
write(33,*) xfish(ii,jj) ,yfish(ii,jj) ,zfish(ii,jj) 
enddo 
enddo 
close(33) 

c 
c center through locus 

xpml=0. 
xpm2 = 0. 
ypml=0. 
ypm2 = 0. 
zpml=0. 
zpm2 = 0. 
do ii=l,ixf 
do j j=l,jxf 
xpml=xpml+xfish(ii , j j ) 
ypml=ypml+yfish(ii,j j) 
zpml=zpml+zfish(ii,jj) 
enddo 
enddo 
xpml=xpml/float(ixf*jxf) 
ypml=ypml/float(ixf*jxf) 
zpml=zpml/float(ixf*jxf) 
xpm2=xpml 
ypm2 =ypml 
zpm2=zpml 

c 
c Set the three moments of inertia 

x i x = d e n f i s h * w f i s h * . 2 * ( h l f i s h * * 2 + w l f i s h * * 2 ) 
x i y = d e n f i s h * w f i s h * . 2 * ( x l f i s h * * 2 + h l f i s h * * 2 ) 
x i z = d e n f i s h * w f i s h * .2* ( x l f i s h * * 2 + w l f i s h * * 2 ) 

c 
c I n i t i a l i z e a n g u l a r v e l o c i t y 

omegax=0. 
omegay=0. 
omegaz=0. 
omegaxml=0. 
omegayml^O. 
omegazml=0. 

c 
r e t u r n 
end 

c 
c 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

c 
s u b r o u t i n e c d c o e f ( v e l r e l ) 
i n c l u d e ' co rnmon_v i r tua l ' 

c 
c This subroutine estimates the drag coefficient for the 
c fish 
c 
c fish reynolds number 

ren=abs(denw*xlfish*velrel/viscw) 
if(ren.lt.0.0000001) then 
cdvforce=0. 
return 
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endif 
c 
c turbulent flat plate 

cdft=0.455/((log(ren)/log(10.))**2.5 8) 
c 
c fish body cd 

cdfb=cdft*(l.+(1.5*(xlfish/hlfish)**1.5) 
++7.*(hlfish/xlfish)**3) 

c correction for angle 
notheta=int(theta/(pi/2.)) 
theta=theta-float(notheta)*(pi/2.) 
cdcor=0.4 05*theta**2 +0.0 014*theta+l.0 

c correction for roughness s to be put here, when that info becomes 
available, (typical scales size over xlfish=) 

cdcor=cdcor*l. 
c final 

cdvforce=cdfb*cdcor 
if(cdvforce.It.5.) cdvforce=5. 
return 
end 

subroutine record 
c 
c This soubroutine handles practically all of the output 
c 

include'common_virtual' 
character*19,anims 
character*17,animse,animsp 

c 
if (mod(istep,ievery).eq.0) then 
shearmax=-10.e30 
pmaxf=-10.e30 
pminf=10.e30 
dpdtmaxf=-10.e30 
dpdtminf=10.e30 
do i=l,ixf 
do j=l,jxf 
pmaxf=amaxl(pmaxf,pfish(i , j ) ) 
pminf=aminl(pminf,pfish(i,j) ) 
dpdt= (pfish(i, J) -poldfishd. J) ) /dt 
dpdtmaxf=amaxl(dpdtmaxf,dpdt) 
dpdtminf=aminl(dpdtminf,dpdt) 
difu=abs(umfish-umean) 
difv=abs(vmfish-vmean) 
difw=abs(wmfish-wmean) 
shearmax=amaxl(difu,difv,difw) 
sheartot=sqrt(difu*difu+difv*difv+difw*difw) 
enddo 
enddo 
speedl=sqrt(umfish*umfish+vmfish*vmfish+wmfish*wmfish) 
speed2=sqrt(um2fish*um2fish+vm2fish*vm2fish+wm2fish*wm2fish) 
accel=(speedl-speed2)/dt 
dpdt=(pfish(2,2)-poldfish(2,2))/dt 
dpdtmaxf=dpdt 
dpdtminf=dpdt 
pmaxf=pfish(2,2) 
pminf=pfish(2,2) 

118 



+time,pfish(2,2)/100 0.,sheartot,difu,accel/9.81 
call flush(44) 

write(55,100) xp/geomscale,yp/geomscale,zp/geomscale 
+time,umfish,vmfish,wmfish,shearmax 
call flush(55) 

endif 

100 format(8el2.4) 

write fish node for animations 

if(mod(istep,ieveryanim).eq.O) then 

if((iensight.eq.1).or.(iensight.eq.3)) then 
Do tecplot output 

write(anims,101) 'ANIM',n,'-',istep,'.pit' 
open(22,file=anims) 

101 format(a4,i4.4,al,i6.6,a4) 

write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
close 
endif 

(22, 
(22, 
(22, 
(22, 
(22, 
(22, 
(22, 
(22, 
(22, 
(22, 
(22, 
(22) 

'TITLE="FISHBODY"' 
'VARIABLES=X,Y,Z,P , DUM, DUM, DUM, DUM ' 
'ZONE T="B", I- ',jxf,',J= ',ixf,' , F=block 
(((xfish(i,j)/geomscale),j=l,jxf),i=l,ixf) 
(((yfish(i,j)/geomscale),j =1,jxf),i=l,ixf) 
(((zfish(i,j)/geomscale),j=l,jxf),i=l,ixf) 
((pfish(i,j),j=l,jxf),i=l,ixf) 
((xfish(i,j),j=l,jxf),i=l,ixf) 
((xfish(i,j),j=l,jxf),i=l,ixf) 
((xfish(i,j),j=l,jxf),i=l,ixf) 
((xfish(i,j),j=l,jxf),i=l,ixf) 

if((iensight.eq.2).or.(iensight.eq.3 
Do Ensight output 

then 

write(animse,102) 'displace',n,istep 
open(22,file=animse) 

102 format(a8,i3.3,i6.6) 
write(22,200) 

lie,yfish(i,j)/geomscale, 
-xf),i = l,ixf) 

+ ( (xf ish ( i , j ) /geomscaie, ynsi 
+zfish(i,j)/geomscale,j=l,jx: 

200 format(6(lx,ell.5)) 
close(22) 

write(animsp,102) 'pressure',n,istep 
open(23,file=animsp) 
write(23,200) ((pfish(i,j),j=l,jxf),i=l,ixf) 

endif 

endif 

return 
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subroutine rotation 
c 
c This soubroutine transforms the velocity field from 
c rotational to absolute by adding the runner rpms 
c 

include'common virtual' 

do 100 ilo=l,iblock 
do 100 i=l,ix(ilo) 
do 100 j=l,iy(ilo) 
do 100 k=l,iz(ilo) 

u(i/j,k#ilo)=u(i,j,k/ilo)+(y(i/j,k,ilo)*rpm) 
v(i,j,k,ilo)=v(i,j,k/ilo)+(x(i,j,k,ilo)*(-l. 

rrpm) 

100 continue 

c open(88,file='ROTATED.DAT1) 
c write(88,*) 'TITLE = "ALL"' 
c write(88,*) 'VARIABLES= X, Y, Z,I,U,V,W,P' 

c do 201 ilo=l,iblock 
c write(88,*) 
c +'ZONE T="f", 1=',ix(ilo),', J=',iy(ilo),', K=',iz(ilo), 
c write(88,*)(((x(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k= 
c write(88,*)(((y(i,j,k,ilo),i=l,ix(ilo)),j=1,iy(ilo)),k= 
c write(88,*)(((z(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k= 
c write(88,*)(((ibl(i,j,k,ilo),i=l,ix(ilo)),j=1,iy(ilo)), 
c +k=l,iz(ilo)) 
c write(88,*)(((u(i,j,k,ilo),i=l,ix(ilo)),j=1,iy(ilo)),k= 
c write(88,*)(((v(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k= 
c write(88,*)(((w(i,j,k,ilo),i=l,ix(ilo)),j=l,iy(ilo)),k= 
c write(88,*) ( ( (p(i,j,k,ilo) ,i = l,ix.(ilo)) ,j=1,iy(ilo)) ,k= 
c201 continue 

1 F 
l,i 
1, i 
l,i 

1, i 
1, i 
1,1 
1, i 

=block' 
z(ilo)) 
z(ilo)) 
z(ilo)) 

z(ilo) 
z(ilo) 
z(ilo) 
z(ilo) 

return 
end 

c 
subroutine pres_scl_scroll 

c 
c This soubroutine dimensionalizes the pressure in the 
c scroll Sc vanes and sets it to real full-scale values 
c Dimensionalization procedure provided by: 
c Garry Franke and Justin Hall, Voith Hydro Inc. 
c 

include'common_virtual' 
c 

do 100 ilo=l,iblock 
do 100 i=l,ix(ilo) 
do 100 j=l,iy(ilo) 
do 100 k=l,iz(ilo) 

sigmaT=-(p(i,j,k,ilo)-pcfdinlet)/(denw*gi*Href)+ 
+(Vinlet**2)/(2.*gi*Href) + hLvsoverH 
pinterm=PrefProto*(sigmaPHW-sigmaT)+Pvapor + 
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c 

c 

c 

c 

p(i,j,k,ilo)=pinterm 

100 continue 
return 
end 

subroutine pres_scl_run 
c 
c This soubroutine dimensionalizes the pressure in the 
c runner and sets it to real full-scale runner values. 
c Dimensionalization procedure provided by: 
c Garry Franke and Justin Hall, Voith Hydro Inc. 

include'common_virtual' 

write(*,*) 'Pressure re-dimensionalized' 

do 100 ilo=l,iblock 
do 100 i=l,ix(ilo) 
do 100 j=l,iy(ilo) 
do 100 k=l,iz(ilo) 

c 
sigmaT=(-p(i,j , k,ilo)/(denw*gi*Href))-HLoverHREF-f 
+VSQexover2gHref-VsqDTE 
pinterm=PrefProto*(sigmaP-sigmaT)+Pvapor + 
+denw*gi*(Zref-z(i,j,k,ilo))*geomscale 

c 
p(i,j,k,ilo)=pinterm 

c 
100 continue 

return 
end 

c 
subroutine pres_scl_dt 

c 
c This soubroutine dimensionalizes the pressure in the 
c draft tube and sets it to real full-scale values. 
c Dimensionalization procedure provided by: 
c Garry Franke and Justin Hall, Voith Hydro Inc. 
c 

include'common_virtual' 
c 

do 100 ilo=l,iblock 
do 100 i=l,ix(ilo) 
do 100 j=l,iy(ilo) 
do 100 k=l,iz(ilo) 

c 
sigmaT=(-p(i,j,k,ilo)/(denw*gi*Href))-HLoverHREF+ 
+VSQexover2gHref-VsqDTE 
pinterm=PrefProto*(sigmaP-sigmaT)+Pvapor + 
+denw*gi*(Zref-z(i,j,k,ilo))*geomscale 

c 
p(i,j,k,ilo)=pinterm 
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c 
100 continue 

return 
end 
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