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Rocket exhaust nozzles utilizing steep inlet cone angles and

tight throat contours to produce high acceleration of the gas flow have

'sevg;al advantages over conventional nozzles, Nozzles of this type are

shorter and lighter, have smaller surface area, and have fewer heat

transfer problems. Detailed design and performance analyses on steep

- inlet (P, 2z 30°) rocket nozzles have been virtually impossible din the

past. Severe two-dimensional effects in: the inlet cone and throat
regions of these nozzles have invalidated classical oné-dimensional
analysis. _A general two-dimensional solution of the entire flbw field
is required before detailed analysis can be initiate&.l

This work develops a computational technique and a computer

program for fast and accurate solution of flow fields in severely con-

toured ‘axisymmetric nozzles. An asymtotic time-dependent finite-differ-

ence method developed by Moretti and Abbett is used in the solution of

‘the governing fluld flow equations. The method is not restrictéd to a

simplified thermodynaﬁic:model, and the technique presented can be
extended for solution of the_complete Navier-Stokes equationé. The -
importance of bdundary-condition analysis is discussed. Computational
techniques consistent with the goals of this report are used iﬁ;the
development éf.the boundary regions. |

The program developed.can construct a flow field for isentropic




axisymmetric nozzles with severe wall curvature. .It is demonstrated
that the solution constructs flow fields for not only transonic but also
subsonic and supersonic conditions. Solutions are compared with experi-

mental data for several axisymmetric nozzles.
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SUMMARY

Rocket exhaust nozzles utilizing steep inlet cone angles aqd
tight throat dontours to produce high acceleration of the gas flow have:
several advantéges over counventional nozzlés. Nozzles of this type are
shorter and lighter, have smaller surface area, and have fewer heat
transfer problems. Detailed design and performance.analyses_on steep
inlet (¢ = 30°) rocket nozzles have been virtually impossible in the
past. Severe two—dimensionai effects in the inlet cone and throat
regions of these nozzles have invalidatéd-élassical one-dimengional
analysié. A general two-dimensional solution of the entire flow field
is required before detailed analysis can be initiated.

This work deﬁelops a éomputatidnal technique and a computer
program for fast and accurate solution of flow fiélds in severely con-
toured axisymmetric nozzles. An asymtotic time—dependent finite-differ-
ence method deﬁeloped by Moretti and Abbett is used.in the sqlution of
the governing fluid flow equations. The method is not restricted';o'é
simplified thermodynamic model, and the technique presented can be
extended for solution of the complete Navier-Stokes equations. The
importance of boundary condition analysis is discussed. Computational
techniques consistent with the goals of this report ére used in.the
development of the boundary :eéions.

. The program developed can construct a flow field for isentropic
axisymmetric nozzles with severe wall curvature. It is demonstrated

that the solution constructs flow fields for not only transonic but also




3ub$onic and supersomic conditions. Solutions are compared with experi-

mental data for several axisymﬁetric nozzles,




CHAFTER 1

INTRODUCTION

Nature and:PurPQSe of the Problem
Flowé through supersdnic nozzles are of interest in design and
development and in baéic research. In application, nozzles are used in
jet and rocket enginés and in measufing flow rates. In research they
are used in wind tunnels and in the study of non«equilibrium effects (1)}.
This study was initisted to develop a computational tgchﬂique and a

computer program for the solution of two-dimensiomal flows through

nozzles by applying new techniques to the solution of the two-dimensional

flow equations. Prediction of thé'flow is basic te the séudy of other
effects such as chemical reactions and heat transfer.

During the last three decades, a major emphasis has been placed
on understanding the aerodynamic design and performance of converging-
diverging exhaust nozzles. Investigatﬁrs have been ﬂindered, however,
by intrinsic difficulties-associated with the flow sclution.  One of the
major problem areas has been the solution of the transonic region.
Emphasis in this paper is therefore placed ou the threat region of the
npézle where the flow is transonic. Several interesting phenomena
associated with the transonic region of the flow field have been noticed
which haﬁe'important ramifications fer the design of rocket exhaust
nozzles.

One of the critical factors in.the design of exhaust nozzles is

the containment of high-temperature gases. Tﬁe cooling requirements may
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be the limiting factor in the design of rocket exhbaust nozzles, A

‘method for reducing the heat transfer, then, could have for-reaching

benefits. Numerous investigators (see References 1-4) have noticed that
the heat transfer from the gas to the wall in a nozﬁle throat is appre-
ciably less than a standard heat transfer correlation predicts. This
phenomenon has been found to be dependent on the Reynolds number ;nd the
convergent half-angle, i.e., the acceleration of the flow. It was found
that in the region of the throat of.a supersoni¢ nozzle, a reduction of
as much as 50 per cent in heat transfer below that typical for turbulent
boundary layer could be obtained by increasing the convergent half-
angle (1,2). This suggests advantages in utilizing nozzle designs
creating high acceleration of the flow. There are other factors: however,
which must be considered before this can be done, |

To ‘achieve high accelerations 'in.nezzles, steep (Pg = 30°) inlet
cone angles and tight throat contours (R, 2 1.3) are required. Con-
siderable deviations in pressure measurements frqm classical one-
dimensional isentropic flow behavior have been observed in the transonic
rggion of such nozzles, Pressure measurements have shown that deviations
of as much as 30 to 45 per cent from that for one-dimgnsional flow occur
just down stream of the throat (1,5). These deviations result from
radial velocity components caused by the taper and curvature of the

nozzle (6). Similar deviations have been observed where measurements

were'made'in the divergent region.of conical nozzles (1), Other inﬁesti—

gators have observed this phenomena in the convergent (7) and throat (8)

regions of converging-diverging nozzles.

Thus a nozzle using a steep inlet angle and a tight throat contour

a
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to produce high acceleration of the gas flow has several advantages.
Also, nozzles of this type are shorter, weight less, have smaller sur-
face area and fewer of the probleme associated with heat transfer from
hot exhauét gases. To design and build a nozzle of this type, however,
a heat transfer correlation at the wall is required,. To-theoretically
evaluate the heat transfer, the boundary 1ayer acceleration must be
known. This, in turn, is dependent upon the velocity of the flow in
the neighborhood of the nozzle wall. A selution for the-free'strgam

flow conditions, then, is required for use in solﬁing the boundary

layer flow. It has been shown, however, that the classical one-dimen-.

. sional analysis is no longer valid for nozzles with high entrance angles

and tight throat contours. A general two-dimensional solution of the

AS

entire flow field is therefore necessary before a boundary layer in-

vegtigation can be:inisiated.

A solution ié needed for two~dimensional isentfopic.fldw which
is valid throughout a supersoﬁiC'no#zle. The literature reveals that
such_a solution is. virtually non-existent {(1). The reason lies_iﬁ the
varying mathematical charactef of the equations describing the flow
through the nozzle. The equations for subsonic, sonic and-suﬁetsonic
flow are.elliptiq, parabolic, and hyperbolic respectively. Existing
studies, therefore, usually énkailuanalysis_in-tﬂree different flow
regions; namely, the subsonic or convergent region, the tr;nsonic or’
throat region, and the supersonic or divergent region. The solutions
are then coupled to describe the entire flow field.

The solutions of the three regions, however, are not independent.

There is a definite order in which the vegions should be solved. The .

ey




subsonic and transonic solutiens are interdependent and should be solved
simulténeoﬁslyJ The subsonic-transonic solution then provides the bound-
ary conditions for the supersonic solution (9). In the following para-'
graphs the character of éach'of the three nozzle flow regimes is briefly
discussed.

in'the subsonic region the governing equatioﬁs are of elliptic
type. The solﬁtion is classified as a boundary value problem of poten-
tial theory. When either the stream function.or the velocity potential
is considered. as thé dependent variable for incompressible inviscid
subsonic flow, the governing equations reduce to Lablace's equation. The
solution must satisfy Laplace's equation everywhere within the interior
of the flow. At the boundaries either the Dirichlet condition (the de-
pendent variable specified), the von Neuman condition (the normal deri-
vative of the dependént variable specified), or a combination.of these
conditions must be satisfied by.the solution (10). This simplicity does
not carry over to the transonic region.

The equations controlling transonic flow must describe the transi-

1

tion from subsoni¢ to supersonic¢ conditioms. - The-resultiﬁg equations are

a set of non-linear partial differential equations with variable coeffi-
cients which cannot be solved in closed form. This region.therefore, is
the most difficult of the three flow regimes to.solﬁe...ln the absence

of an exact solution,. investigators have Been forced tb make simplifying
assumptions and solve the resultant equationé numerically. Numerical
methdds.capable'of'solving the steady state'tfansenié equations . have bgeu
developed for irretaticonal flow in nozzles. These methods have been

successful only for the solution of flow flelds in .mozzles with moderate




‘wall curvature. Theyfhave severe limitations when.applied to the analy-
sis of rocket nozZzles. The presence of extremely large velocity gradients
in the nozzle fhroat-give rise to numerical instabilities in the calcula-
tions. This causes the accuracy of the solutions to rapidly deteriorate.
The solution is also erroneocusly uncoupled from the subsonic regionf

In the sgpersonic region, the system of equétions’is hyperbolic.
Theé solution is generally obtained by the method of characteristics,
which uses a set of given data alomg an initial start@ng line to solve
the equations of motion at a discrete set of points on an adjacent line.
This is accomplished by tramsforming the governing partial differential
equations into a charactefistic'téerdinate"system and numerically inte-
grating the resulting system of ordiﬁary'différentiél equations along
predetermined characteristic lines. Thié'procedure is then repéated
until the desired pottibn_of the supersonic flow field is const;ucted
(11). Solution of the two-dimensional supersonic equations by the
method of .characteristics is weil developed but tﬁe flow conditions
must be specified on a line upstream of the region to be selved.  This
boundary condition can be obtained only by solving the transonic region.

The problem then, is to develop a two—dimensiqnal-solution tech-
nique fbr the SubSOHic—transoﬂic region of a conical converging—diverging
nozzle with a steeply inclined entrance cone and a tight throat contour.
This solution can then provide the boundary conditions necessary for the
solutioﬁ:of the supersonle region by the methdd of characteristics.

In the following sections the techniques available for the solution
of the combined subsonic;transonic'region are presenfed. Their relative

merits and disadvantages are discussed and the method of solution is . .
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selected. The problems associated with the chosen technique are then
analyzed to determine the most promising technique for solution of the

entire flow field.

Previous Related Studies

The early studies of transonic two~dimensional and axisymmetric
flow involve velocity perturbations about the sonic velocity. The con-

tinuity equation can be re-written in terms of a vélocity perturbation

" potential and its partial derivatives. Meyer (12) first obtained a sol-

ution to this equation-by expanding the perturbation-potential in a
powef series and assuming a linear velocity distribution along the nozzle
axis. Lighthill (13) made use of the series solution to make a qualité-
tive analysis of the behavior of the flow near the soniC'line.' The
method can be applied conveniently only to the indirgct (or design)
problem. That is, the flbﬁ field is developed dependent'upon the assumed
centerline velocity distriﬁution. Any streamline may be a wall and,
therefore, once the solution is obﬁained, the flow field for the stream-
line contour prodﬁced is known. Application of the method to the direct
{or performance) problem is cumbersome anditime—éonsgming beéause the
centeriine velﬁcity &istribution which will produce a given wall contour
is not known.

The direct problem for symmetric two-dimensional and axisymmetric
flow was -first sqlved by Taylor (1l4) énd Hoﬁkér.(l5) respectively, Using
a double power.series; Taylor evaluated the velocity perturbation poten-
tial up to and including fourth order terms. This involved the simultan-
eous soiution of eight equations for the eight unknowm series coefficients.

The perturbation solutions are fundamental in their approach. The




evaluation, however, of a double power series expansion for the general
equations of motion ié'a_major effort even for the simple case of a
linear axial velocity distribution. The complexity cannot be justified,
especially when the method camnot be conveniently utilized for perfor-
mance analysis of nozzles. To overcome this drawback variéus authors
have simplifiedlthe equations of motion'and obtained approximate gol-
utions for transonic flow in a nozzlé.

Séuer (68) was the first to make a major simplification to the
equations of motion. He_wrdte the-governing equations in terms of'the

veloeity perturbation potential. Then noting that several of the terms

approached zero in the vicinity of the throat, he retained only the first

order factors in these terms. This produced a series solution which was

the first three terms of Meyer's solution, The technique was found to be’

aﬁpliéable for nozzles with low inlét cone angles only. Several attempts
have, therefore, been made to improve Sauer's original solution. Yur'ev
{16) obtaineﬂ a solution by includipg an extra term and Sims (17) ex-
panded the power series solution tg five terms. Mendelson (18) extended
Meyer's power series solution by formulating recurrence relationships for
the general series coefficients in terms of the ﬁelocity distribution
specified along the nozzle axis. Im-all fheée'cases.no substantial
improvement was made Iin accuracy oﬁer Sauer's o:iginal:solution.
Oswatitsch and Rothstein (19) in an effort to eliminate the.need
to specify the axial velocity distribution, developed an iterative solu-
tion Based on successive approximations to the flow field. Although
Oswatitsch (20) later showed that the numericél technique was unstable

when applied to nozzles with steep inlet cone angles, their work became




the basis for ﬁany investigators.

The most significant factor that influences the transonic flow
pattern is the wall fadius curvature in the throat region. Realizing
this, Hall (21) produced a technique for symmetric nozzles. Using a
perturbation technique, he wrote the series expansion in inverse powers
of Ry, the ratio of throét radius of cufvature to throat radius. Subse~
quent studies typified by the works of Moore and Hall (22) and Quag and
Kliegal (23) have extended Hall's original solution to two-dimensional
and annular nozzles with arbitrary profiles and dual gas flows. The
solutions have shown favorable reSults, however, only for slender

nozzles (@, = 30°, R, 2 1.5). Increase the accuracy of the method for

;Rt less than one, Kliegel and Levine (24) reformulated the series ex-

pansion to inverse powers of (Ry +l). The method solved only the tran-
sonic flow region. Thé-intérdependancy of subsonic and transonic |
solutions was not taken into account.

The streamline érocedure developed first by Friedrichs (25, 26)

is an attempt to improve on the perturbation methods. The procedure

“utilizes the full nonlinear partial differential equations of motion for

inviscid, irrotational, isentropic transonic nozzle flow. The equation
of continuity for stéady, axisymmetric flow is expressed in.terms of
the stream function and the velocity potential. A transforﬁétion is
then made using the velocity distribution alqngvthe nozzle axis. The
resulting system of partial differential equations ‘is then solved by . a
series expansion of the stream function. The method determiﬁes the
flow field in both the subsonic and supersonic regioms.

The streamline procedure has been adapted to thé'two-dimensional




problem by Liepman (é?). Gray (28) gemeralized thé technique to allow
any curve in axisymmetric or two~dimensional flow to be selected as the
reference line along which the velocity distribution is specified.
Hopkiﬁé and Hill (29, 30) and Thompson (31) have utilized the.method in
the study of asymmetric, two-dimensional annular plug, expansion- -
deflection type nozzles and two-dimensional curved channelé.

Other procedures using a streamline technique have been for-
mplated which numerically iterate the equations of motion across the

fiow field. The results of an iterationm are used to'approximate the

© partial derivatives in.the axial direction for the next iteration,

Utilizing a given velocity.distributiou along the axis Pirumov (32)
constructed-the transonic solution in a converging-diverging nozzle.
Zupnik and Nilson (33) generalized the approach to solve the direct
problem in two-dimensional and axisymmetric nozzles.

A variety of flows was analyzed by Emmons (34, 35) using a

modified version of the classical relaxation technique discussed by

Southwell (36). Hyperbolic nozzles were examined for a range of flows =7

~ extending from the fully subsonic flow case to the shock free subsonic-

supersonic flow case. The relaxation method was not as formalized as
other methods and success was often dependent on the skill, intuition
and problem knowledge of the practitioner.

A much-used procedure in the Soviet Unien is the method of
integral relations (39, 40). The method applies to problems in two-
dimensianal isentropic mixed flow., The computational region is first
divided into a number of axial strips. The governiﬁg differential

equations are then numerically integrated across these strips; while
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the method of characteristics is used to find disturbance movements
between strips.

A geometrical technique wasldeVeloped by Ringleb 641,.42) which
uses'ﬁiecewisé circular arcs to approximate the streamlines and equi-
potential lines. Using the infinite series expansion of Oswatitsch and
Rothstein (19), Ringleb constructed the flow field in two-dimensional
and axisymmetric nozzles. His procedure w&s-later extended by Chou
and Mortimer (41) by includiﬁg an iterative boundary point computational
technique which reduced the amount of specified information required

to solve the flow. The method has been shown by Holt (42) to be-

numerically limited to ﬁozzles with small inlet cone half-angles.

Selection of the Method of Solution

As is shown in the previous section, many methods have been
déveloped which are capable of solving the steady-state eduatiﬁns for
near-sonic conditions. These methods do not, howéver, completely
couple the.subsonic flow to the sonic flow and cannot solve thé'sﬁb-
sonic fldw field. They also canmot handle rotational non-isentropic
flows and are not considered in this paper. An alternate approach
which dces not have these restrictiocns and whiph may be used to éolve

the complete Navier-Stokes eqdations consldersithe mixed flow problem

as an initial value problem in time. Presently only two solution methods

for this approach are feasible: (1) the method of characteristics and
(2) direct substitution of finite-difference approximations for the
partial derivatives in the equations.

The inclusion of time in the basic flow equations as a-third
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independent variable alters the nature of the equations such that they
are of the hyperbolic type throughout the_flow field. .The method of
characteristics can therefore be used to solve the time dependent
eqﬁations of motion for the entire nozzle.. This is accomplished by

deriving the compatibility equations from the basic equations and

numerically integrating these equations along characteristic curves.

This is a three~dimensional characteristic¢ problem and results in
numercus complex computer programs for the solutioﬁ of the flow. Al~
though the method of characteristics appears to be the most accurate-
method available, the time to write and execute these massive programs
severely limits the utilization of the method for nozzle design or
perforﬁance analyses. . |

The direct substitution of finite differences for the partial
derivatives in the flow equations also has several problem areas which
impede &evelopment of a general working technique for application to
nozzle mixed flow solutions. The major problems associated with the
approach are the proper treatment of boundary conditioﬁs and numerical
stability of the difference equations. These problems are.éf a tech-

nical nature, however, and a well developed computational technique

should be able to overcome these obstacles, The approach contains none

of the fundamental errors assoclated with the methods discussed in the
preceding section. Much work has therefore been done in this area in

an effort to iron out the problems associated with the computation of-

“

mixed flows by the time-dependent finite-difference method.

The approach was originally suggested by von Neumarm and-

Richtmyer (43). Lax (44) implemented their technique by writing the

S
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équations'in-divérgence-free form (conservation form) aﬁd replacing
space and time derivatives with center and forward differenceé, re—
spectively. He was successful in obtaining solutions for'unsﬁeady one=-
" dimensional flows ﬁith’shocks. ‘Lax and Wendroff (45) extende& the
technique to include systems of equationé in three independent vari-
ables. Their technique is referred to in the literature as the Lax-
Wendroff one step method. They also developed the Lax-Wendroff two-
step method to reduce computer storage and execution time requirements.
Berstein (46, 47) applied the technique to the solution of several
multi;dimensional'flow problems. . Crocco-(&S); Fromm. (49) and Thoumen
(50) have devised time—dependent.finite-difference methods for solving
the Navier—-Stokes eqﬁatibns in various forms. These methods are
formidable, howéver,'due to the coﬁplex nature of these equations.

Sfeger and Lomax (51) suggested using a time-dependent relaxa-
tion technique. In the implementation of their suggestion, however,
.it was found that the relaxation technique required much refinement
befére ;t.could effectively be used to solve transonic flow problems.
Prozan (37, 38) developed the error minimiéation technique to improve
on thejexisting-felakation methods, In this method the governing
equations are rewritten in terms of a residual error. The set of
differential equations are solved simultanequsly-énd-the_residual
reduced until the desired flow.field is developed.

‘Many other techniques have been devised to obtain solutions by

the time-dependent method. Several authors (52~56) have compared these

numerical techniques on the basis of ease of,coding, gpatial and

temporal resolution and execution time. The results of these compari-
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sons indicate that a divergence form of the Lax-Wehdroff one-step
method originated by Mofetti and Abbett (54) shows the most promise
_for the solution.of'the problem at hand. Some of the desirable char-
acteristics of this method are: ‘

(1) It is 'a direct method in the sense that the nozzle
_ geometry is préscribed and contrels the subsequent computation,

(2) The desired accuracy of the solution is set by the
spatiél-gfid size and not by a reformation of the anmalysis.

(3)- The method ‘is not restricted to a'simblified thermo-
dynamical model.

(4) It requires a relatively short execution time on a high
speed computer.

(5) _The-cqmpdte: storage required is relatively émall.

For these reasons the time-dependent finite-difference method of
Morefti and Abbgtt apﬁears to be the best technique for obtaining a
rapid, accurate solution to the transonic flow problem in an axisym-
metric,lrapidly cqnverging-diverging nozzle. In the development of
this metﬁod for solution on a high-speed computer, the following guide-
lines were used:

(1) The coﬁputer program shﬁuld not require excessive execu-
tion time. | | |

(2) The computational methods' should be a&aptable to theimﬁst
~general flow problem.

{3 Boundary'point computational techniques shOuld.not be
strictly.mathematical in natﬁre but should be chosen on the basis of

physical considerations of the flow.
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Experimental Studieg

Early experimental investigations of gas flows through conical

nozzles show the two-dimensionality of the flow but do not provide data

' for nozzles with high entrance cone half-angles or tight throat con-

tours. ' Scheller and_Bierl;in (73) and Campbell and Farley (74) madel
measurements ‘in the divergent region of conical nozzles. Fdrtini and
Ehlers (7) recorded wall static preésure meagurements in the coﬁvefgent
region and Stanton (8) measured velocity distributions in the throat
region; |

Nozzles of the type considered in this paper were studied by

 Back et al. (1, 4, 6, 69-71). The experimental measurements were made

primarily on two severely contoured nozzles. The ne¢zzles have a-15l
degree divergent cone half~aﬁg1e and 45 and 30 degree convergent half-
angles with R_ equal to 0.625 and 2.0 vespectively. They present
static pressure measurements at.the centerline, wall and varioﬁs radii
for axial stations along the axis of the nozzlea. Mach number distri-
butions are detailed'andhhéat transfer and boundary layer data are
preserited. Shelton (?2) made static pressure measuremerits ‘in a coﬁical
nozzle with 30 degree convergent and 15 degree divergent half-angles
for Ry fanging from 0.35 to 1.0. These reports represent the extent of

experimental research on severely contoured conical nozzles.
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CHAPTER 1I

TECHNICAL DISCUSSION

Treatment of Boundaries

The equations governing fluid'flow are called the indefinite
equations of motion. That is, the equations épply to any fluid flow
problem in general, but do not define a specific problem. A proper
set of boundary and/or initial conditions is required before a spécific
problem can be solved. For each problem there are a numbér'of neces~
sary and sufficient boundary conditions. Ia treatment of the equations
by numerical techniques it is all too easy to overspecify boundary con-

ditions. Equally disastercus, but not as comﬁon, is the under-specifi-

‘cation of these conditionms. But this difficulty is not reserved to the

numerical investigator. FProper treatment of boundary conditions is the
butstanding problem area for all the trangonic flow solution techniques
discussed in the introduction. In-numerical'techniques, however, the
qifficulties afe compounded by the absence of a mathematical analysis
of stability at the boundaries. Moretti (57) has indicated that the
oscillations associated with numerical methods are generated at fhe
boundaries and are not a fault of the numerical technique. Prgzéh»(37)
makes a special effort to point out that treatment of boundary con-
ditions is the foremoat problgm associated with uumerical'solutiﬁn of
the flow field in a converging-diverging nozzle. This area must be -

studied extensively before any rewarding results can be obtained by.
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numerical techniques.

Subsonic Entrance

The entrance reglon offers a perplexing problem for the anélyti—
cal investigator of Laval nozzle flow. In numerical soiutions, the
flow field is overlayed with a grid where intersection poiﬁts on the
grid are assumed to represent the area surrounding the point.  The
numerical approximation approaches'the exact solution as the grid point
spacing is reduéed.--The use of the grid requires that an entrance line
be defined somewhere upstream of the area of interest where fiqw prop-
erties are known. This entrance must accurately represent the ch;rac--
teristics of the flow enteriug'thé nozzle. But the location of the line
must not be so far upstream as to make the computational region exces-
sively‘large.l This increases computer execution times. Since the,
entranée flow is constant, one might choose an entrance line based on
grid size.considetations and . assume constant values on it. In subsonic
flow, However, any point is affected by all the other points in the flow.
Cﬁanges in the downstream subsonic computational region create disturb-
ances whichfﬁropagate upstream. These disturbances must pass through
the entrance plane (5?). On an arbitrarily set computational entrance
line, then, falues.mnst be up-dated in accord with the propagatiﬁg wﬁve.
An arbitrary truncation of the subsonic flow field with constant flow
propértiés assumed at the entrance cannot be used to model flow con-
ditions at the entrance tola'nozzle. Several authors have used'this.
technique (37, 59) presumably under the assumption that the effect of |
wave propagation is negligible. Their results, however, are poor. The

authors who have devised methods for computing the entrance flow with
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some physical insight are briefly discussed in the following paragraphs.

Laval (60).utilizing the Lax—Wendfoff two-step method for numer-
ical solution of transonic flow, uses a parabolié-extrapolation from
the dovnstream flow on'anharbitrarily assigned entrance plane. The:
value of the axial component of velecity is then corrected ﬁy assuming
that the mass flow rate through the entrance sec¢tion at time t + At is
equal to the mass flow rate through the tﬁroaﬁ section at time t.

nigdél; et al. (61) use a stretching of the axial coordinate
which places the entrance at a station an infinité distance upstream-
from the throat. By'using.a constant angle inlet cone, the area at this
point is infinite. The flow variableé at the entrance, therefore, re-
main constant with time and equal to their stagnation values. Dis-
turbances generated at the throat Eannot_reflect'from an entrance plane
of thié type} This is also the pfocedure used by Prozan and Kooker
(38) with their error minimization technique.

Serra (62), using the Lax~Wendroff one-step method, developed a
technique utiliiing a two-dimensicnal methed of characteristics. analy-
sis to evaluate the flow variables on an arbitrarily agsigned suﬁsonic
entrance plane.--Thtee of the four dependent variables are-specified a
priori at each entrance grid éoint and the remaining pérameters are’
‘determined by feéucing the inviscid flow equations to normal form and
employing a modified characteristics construction. ' The value of the
fourth parameter is used to calculate values for re@éining variables
and the procedure is repeated until canvergeﬁce is'oﬁtainéd to the
values at advanced time.

The coordinate stretching was chosen as:the best method for
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treatment of the entrance reglon for the present problenm. Althoﬁgh the
metgod of Serra appears to be a valid téchnidue; the execution time
required for an iterative characteristics construction isrnot justifi-
able. The coordinate stretching method has the aécuracy of the
chara;teristics technique and much smaller execution times. Care must
be taken, however, to supply enough upstream, 'buffer', gri& stations
to preventlthe flow from abruptly changing froﬁ an infinite reservoir

to a finiteccrossection. If the buffer reglon for a particular problem

' “is found to require an excessive number of grid stations, the execution

time may also be excessive. Under these conditions the Serra technique

may become the'more acceptable method for computation of the values on

“the entrance plane.

Wall Points

In numérical solution of a flow field, information is transmitted
from point to point via computation of finite-differences. Boundary
grid points influence'their neighbors and boundary condition information
is transmitted into the flow field., At each comp;tational step, there-
fore, the values of normal velocity, tangential velocity, and pressure
must be caleulated at the nozzle wall. The only proper baundary_con—
dition on the wall is the #anishing of the normal component of velocity.
A wall point computational method must evaluate the boun&ary‘véluhs
using the_boundary:condition and information from interior points.
Authors vary considerably in theig treatment of thi; problem. - _

Laval (60) and Prozan et al. (37, 38) use a simple parabolic
extrapolation from interior points to obtainm Valﬁeé for wall points.

These extrapolated values are used for the next time step and extrapo-
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lation repeated. Errors are therefore compounded as the computation
progresses, Such a procedure does not model the physical behavior of
the flow, The wall partial derivatives obtained are dependent on the
geometrical nature of the extrapolation curve rather than the physical
properties of the flow.

Lapidus (59), using the Lax-Wendroff two-step method, devised
an interesting techﬁiqué'for treatment of wall points. .Property values
at severallpoints surrounding a particular wall point are averaged and
the change in properties through the region are calculated. The cal-

" culated change is then used:to up-date thé wall poiant in such a manner
as to make the momentum vector parallel to the wall. Although the
physical characterisfics'of the flow were'considéred in the development
of this technique, it has not yielded acceptablé results.

Several guthors (10, 46, 64) use the same difference equation at
the wall as is used in the interior of the flow.  This is accomplished
by use of the reflection technique. That is, a virtual grid line is
assumed beyond the wall. The values.alqng this line are assumed to-
be a mirror image of the intermal grid line immediately adjacent and
parallel to the wall. This causes the normal derivatives of all.
dependent wvariables to vanish at the wall. This is legitimate only
for the normal velocity. Forcing the remaining partials to zero is
physicall& wrong.

E Moretti and Abbett (63), recognizing that. two-dimensional time-
dependent equations are hyperboiic,.utilize-a quaéi-one-dimeﬁsioﬁal.
method of characteristics to evaluate the flow parameterg on the nozzle.

"wall., Initially, first order Taylor series are used to obtain provi-
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sional.valqéS'at the ﬁall, A poiﬁt on a characteristiq line which lies
in the interior at the old time step is located by an iterative process.
The values of the flow parameters are interpclated from-the surrounding
grid pointé. The compatibility equation is then integrated along the
characteristic line to obtain the value of the pressure at the new
time. This value is then compared with the value generated by the
Taylor series and a coftection made dependent on the'differehce in the
two values. The prﬁéedure is repeated until convergence is obtained

to the new time values. This method hés'been used by several authors
(64, 65) with favorable ;esults. The technique was programmed for |
evaluatibn of wal1 points for the axisymmetric nozzle problem of the
present study. The iterative computation was found to double program
execution times,  The severe two dimensional effects in the nozzles of
this study make the one-dimensional nature of the characteristics con-
struction unjustifiable. The method was therefore discarded in favor
of a simpler technique.

In this work, wéll'points are computed by evaluation of the
governing equations in their reduced form at the wall. The equations
are transformed to a normal-tangential-coordinate system.and the nofmal
componént:of vélocity is set equal to zero. _Central_and backward
differences.are.Substituted for the derivatives in the axial and radial
directions reSpectively.. This method is consistent with physical

behavior at the wall-aﬁd.reduces execution time substantially.

Centerline

' ‘Due to symmetry at the nozzle centerline, the behavior of the

flow is characterized by the vanishing of all radial partiﬁi derivatives.
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In. numerical methods, severalltééhniques are available for imposing

this condition. In terms of computational accuracy, the centerline

techniques are approximately equivalent. The’ choice of a method for
the present problem therefore depends on the éxecution times required
by each method.

The use of the.reflection technique, discussed earlier, is
completely valid for this case. The technique automatically sets all
defivatives in the direction ¢f the reflection equal.to zero. The
same differgude equations gﬁiiied in the'interior can be utilized at
the:ceﬁtéfiine.- ﬁowévér,-special'consideration must be given the term
V/nqtpee equation-(lb)]. By 1' Hopital's Rule this term is zero and
can be simply deleted frdm the goﬁerning equations -at the cente?line.
Otherwise ﬁhe equations remain unaltered. This approach requires the
largest execution time of the techniques. considereq.

Altern;tely, the governing equatiéns may be redgce& by setting
radial ﬁartial derivatives and V/r to zero. if the computer érogram is
coded using the reduced equations, execution times are reduced since
the routine does not evaluate radial deriwatives at the centerline.

The method used in this paper for computation of property values
at the ceuterline,\reduced execution times still farther. By utilizing
a series expansion approximation fsr each variable on the centerline in
powers of the radial coordinate the condition of symmetry is imposed
with minimal execution time.

Supersonic Exit

Since the flow equations for supersonic flow are hyperboiic,

disturbances can only travel in a downstream direction. The upstream




22

flow solution is therefore insensitive to the method used for com-
putétion of the flow properties at the exit boundary. The general
procedure for computation of this boundary is to use a simple linear

extrapolation from upstream points.

Stability

It iz an unfortunate fact that many times an attempt to solve a
partial differemtial equation by a finite-difference technique leads
only to a result which is completely unacceptable., The difference
equation may have a rapidly growing and oscillating solution which
bears no resemblance to the solution expected_frﬁm the original dif-
ferential equation,  This results from'computational instability (66).

Von Neumann  (43) proposed a method utilizing Fourier components
which could define the éomputational stability limits for a linear
difference equation with constant coefficients, ' Courant, Friedricks,

and Levy (74), recognizing that a "domain of dependence” exists in

hyperbolic equations; derived the familiar restriction

c At =g (1)
AX
Where:
c = constant
At = time increment
AX = sgpace increment

Their computational stability condition, often called the "Courant

condition,"

restricts the distance a wave travels in onme time increment
to less than one space increment., ‘Lax and Wendreff (45) analyzed thelr

- numerical method using a similar Fourier technique. The resulting

———————— e
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linearized stability condition is used consistently by the numerical

investigators cited. For the present case this condition states that:
Ax ) -
e gt ™ eV (N R &)

The equations describing motion éf a fluid; however, are a set
of coupled,_nonlinear; ﬁartial differential”equationa with variable
coefficients. Hirt (66) points out that Fourier stability analysis
cannot predict instabilities in fhis typé.equation.' Fourier analyéis*
neglects several terms which_contribdte to iﬁstabilities.. As ‘reported
by Lax and Wendroff (45), however, Burstein (46) found stability for
values of t larger thaﬁ-those-pefmitted by equation-(2). The linear-

ized stability analysis would then appear to be conservative for the

“variable coefficient problem. Equation (2) is therefore used as the

stability condition in this paper.

Initial-Couditioﬁs,

Time-dependent methods require initial values of flowHQuantities
at all points, The choice of initial conditions is somewhat arbitrary.
The solution is\ésymptotiC'and apparently the flow will eventually
approach steady-state .conditions no matter what initial data is assumed.
If the initial cbnditions come close to representing the steady state
flow, howevér, a faster convergence to the final solutipn,will bé ob~-
tained. An initial guess which is éubstantionally distant from the
steady state values may produce an initial flow which is too violent.
This may cause the computations to become unstable, This is an example

of non-linear instability. For linear systems, stability is not in-
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fluenced by the size of the initial data (59). The Lax-Wendroff
schemes and the Moretti and Abbett technique are non~linear systems
and therefore could'beéome unstable given imitial data which is far
from the-stead§ state solution. The general procedure for the two-.
dimensional  and axisymmetric seolution is to use the one-dimensional
solition as initial conditions for the time-dependent difference equa=-
tions.

In this étudy the ope-dimensionql solution used for initial con~ -
ditions is altered to make the velocity vector parallel to the nozzle
wall. The radial velocity is caused to decrease linearly across the
nozzle to zero at the centerline. This places the initial conditions
somewhat cleser;to the expected steady state selution; execution time

is reduced and inStabilities are.avoided.
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CHAPTER III
ANATYTICAL DEVELQPMENT

Coordinate Systems

Iaterior Points

4 cylindrical coordinate system, fixed in the nozzle, is used in
formilation of the governing equations in the physical plane (Figure 1).

The axial coordinate is the centerline of the nozzle., The origin is

situated at the nozzle throat with r representing the radial coordinate.

Because a timéhdepenaent finite~difference technique is used to
compute properties at interior points, a uniform mesh grid is desired
for simplicity'in.formulating expressions for pértial derivatives. By
meané'of a coordinate transfbrmation the physical plane of Figure 1
can be mapped into a rectangular region as shown in Figure 2. The
region can then be dividéd into various constant Y and Z intgrvals. In
the transformed plane (Figure 2) the radial coordinate véries between

zero and one. That is

¥=5 (3)

In order to prescribe subsonic boundary conditiens at the nozzle entrance

(Line AB, Figure 1), such that disturbances are not reflected, it is.

’ necessary to consider the entrance plane as infinitely far from any
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Figure 2. Finite Differencing Grid in the Transformed Plane
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' source of disturbances. The transformation

7= 1+ exp (-2/%5)
1 + exp (-2x/X,) _ : (4)

places the nozzle entrance (Line AB, Figures 1, 2 aﬁd 3) at X=1. A
rectangular grid on the transformed plane (see Figure 2) appears as an
exponentially'spatea grid\on the physical plame (Figure 3)}. This

allowé the cﬁmputatioual plaﬁe'to extend to upstream infinity where
flow parameters take on their stagnation values while permitting a
closely spaced grid in the thrbat region (-1 < Xg 1) where the greatest
accuracy is reQuired. The relative number of axial grid divisions
falling within the'tﬁroat reglon 1is contreolled by the value of the
stretchiﬁg pafﬁmeter, X,+ Notice in Figure 4 that for equal divisions
on Z, the corresponding number of divisions or X falling wiﬁhin the

throat region decreases as Xo is increased.

Wall Points

Since the normal component of velocity at the nozzle wall vanishes,

a coordinate transformation from the cylindrical, x-y, coordinate system

' to a system in which the coordinate directions lie normal and tangential

to the wall is desirable. A coordinate system is chosen in which the
tangential coordinaté is positive in the direction of the flow and the
normal coordinate is‘poéitive inward (Figure 1). The o:igin resides at
the'particular wall point §t which the properties are being computed.

The new coordinate system, therefore, moves from wall point to wall
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point as the flow calculation develops. Therefore,

= (X ".X’n) cos ¢ + (r - roﬂ) sin ¢ {5)
= (X - XT]) sing - (r - ry) cos e (6)

and
X=X,n+'rcos¢+'|']sin¢ ' (7)
r=r.n+-rsin9§-'ncos¢ - (8)

where x and y are the coordinates of the wall point under consideration,
The angle ¢ is the inclination of the N-1r coordinate system with respect

to the axial direction which is alse equal to the wall inclination angle,

Non—dimenaienalization”Pro;edure'

All coordinétes and fiow?properties nust be non~dimensionalized
so0 fhat results are applicable to more than one particular nozzle-flow
situation. This_process.shéuld be carried out in such .a manner as to
leave the governing equations essentially unaffected with regard-io
‘their form.l The area ef.particular interest lies .in the transonic flow
region. The significant length parameter is therefore taken to be. the
radius of the nozzle at the throat, r{. All length parameters are non-
dimenéionalized with requct to ‘this significant radius.. Pressure and.
dénsity are non-dimensionalized with respect to their values at the
nozzle entrance, (pé,pé). The nozzle entrance is situa;ed'at an
infinite distance upstream where the values of pressure and density
remain constant at their stagnation values. The square root of the

ratio of  p, to po 18 a measure of the speed of sound at the inlet and

i3 used in non-dimensionalization of all velocity parametefs. The




32

actual speed of sound at the inlet, (Tp; pé)%:was not used because it
complicates the form of the.non-dimensionalized'flow equations. Time,
which has the ﬁnits of a length divided by a velocity, 1s therefore
non?dimensionﬁlized with respect to r;/(pé/p;)%.- If any of the English
Enginéeting gystems of units is used_the gravitational constant must be
included in the expressions for velocity and time.

_The non-dimensional parameters are defined as follows:

x = x'/r)
s

LR 2N
=zl
P=7'/p]
p=p'/o,

u=u'/ @/l

vt (Rl gl

g = 0'/(P;/p$5%

v =y @
a = a'/(p;/p;j15
¥ - {9)

cr
|

€'c' /(o)) o)

Development of Governing Equationsg

. The working fluid is.referred to as a perfect gas. By this is
meanf that surface effects, magnetic effects, electrical effects aﬁd
chemical effects are not significant. The gas can be considered a pﬁre
substance which remains in a single phase. The specific heats are

constant, The gas is non-viscous and obeys the ideal:gas-equation of
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state:
p' = p' RT' : (10)

The thermodyﬁamic state of the system is,ltherefore, defined by
any two independent properties. The remaining propefties are related
by the equation of state. With the inclusion of velocity as a third
dependent variable the flow field is completely defined. Since the
flow is defined by three dependent wariables, thrée.independent.equa-.
tions must be utilized to solve the flow.  Assuming the flow to be
reversible and adiabatic with ﬁégligible body forces, these equations

are

conservation of mass

D - .
3% + oAV =0 | (11)

dbnservation-of momen tum
DV '
— + Ap =0
° Se P ‘ (12)

congervation of eunergy .

Dh _ Dp
P ot De : (13)

The equations of conservation of mass and momentum are expanded
into cylindrical coordinates, assuming axisymmetric flow. The equations

are non-dimensionalized as indicated previously. The expression re-

- lating pressure and density from the conservation of energy equation is

utilized to eliminate pressure from the equations.,  For couvenlence

R = 1n p (14)
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is defined. As a result ‘ . : i

a®=G=1 exp [(r - 1) R] - asy

Using the newly'defined'parametér R and the resulting expression for

the governing equations is non-dimensional form are '

conservation of mass-

et Retet o
.cpnservation of_axial.momentum
bv+vor ng Gg_z =0 | an
cdnservation of radial momentun
%K+%§+ﬁ§+c ~ o - (18)

Interior Points Coordinate Transformation

Using the coordinate transformations

¥y == _ ' e

and

‘ 7. = 1+ exp (-2/%o) _ N
' 1 + exp (~2x/Xg) ' (20)

the governing equations are rewritten in the transformed plane. It is
necessary to relate the fluid properties in the physical‘pléne.to those
of the transformed plane. Any fluid property g(x,r,t) in the physical

plane is related to a fluid property g(Z,Y,t) in the transformed plamne
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through the following equaticns:

X oy A Y f(21)
\bs= .
bt D%& ' (22)
b8 _ 288 : :
dt - bt ' ' | (23)
Where .

Ix

K = _ 2Z exp (-X )

= 02
ox X oLl + exp (~—")]

0L _ X d :
° Tpx o T or dx (xy) @4
S S , ‘
St ot (25)

The transforﬁation-equations [equations (21), (23) and (23)] are used in
conjunction with the governing equations for the physical plane [equations
(16), (17) and (18)] to produce the governing eﬁuations for the .-trans-

formed plane. These equations are

conservation of mass

DR | pOR | LOR DU oDV BV Ly 2 (26)
bt dZ - dY d2 Y DY =

conservation of axial momentum

R _

DU, g0, QU BV, R o
Z oY (27)

dt bz dY d

conservation of radial mementum

BV, gAY L BV R g

TR T Y = (28)




-.,

Where

=
"

H
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UC + VD (29)
UK ‘ | ' O 30)
DG | @D
c ' : (32)
GK (33)
a2 ) (34)

D/y | (35)

Nozzle Wall Points Transformation

As discussed previously, a normal-tangential coordinate system

property g(v,M,t) in the mobile wall fixed coordinate system 18 related

to the flow property g(x,r,t) in the

system by the relations

Al

b8

Bx

28

dr.

dg _

ot

-igs a convenient choice for calculation of the wall points. Any flow

2 % ,;
> cos ¢ + > sin ¢ (36)

28 sin¢ - 28 cos ¢

- OTh: (37)
b
Bt (38)

The components of velocity in the respective coordinate systems are

related by

[}
I

-
I

V- cos 95 + g sing ' {39)

v sin¢ - o cos ¢ | ' (405

stationary nozzle fixed coordinate
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Using equations (26), (27) and (28) in conjunction with equations (36),
(37), (38), (39), and (40) yields éhe governing equations for the

mobile wall fixed coordinate system;

conservation of mass

R, BB 4 R, b, b -0

: v

o— + =
ot S oT LAl (Y] ot r (41)
conservation of tangential momentum
by b [a}Y bR
— + + o2 + X = 0
> ot oM o - (42)
conservation of normal mementum
oy By M R _
ot o o am 43)

" For points on the nozzle wall the normal coordinate of velocity,
¢, 1s zero, The governing equétions for the wall points can therefore
be simplified further. 'Setting g = 0 in equations (41), (42), and

(43), ylelds

conservation of mass

bR [2"ed bR by -1 . _

_—+—+v—+-_.+__'=\)31.n95-0

bt oM T dT T ' - (44)
- congservation of tangential momentum

oy By R

dt T oT ' (45)

conservation of normal momentum

. bR _ :
w0 | | | 46)
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For computational convenience equations (44), (45) and (46) are

transformed into the rectangular Y - Z coordinate system. This trans-

- formation simplifies the merging of the interior and wall points

sclutions.

Keeping in mind the facts that

%‘x (rT]) = tan ¢ (47)

and

r at wa11_='rn (48)

the equations can be derived relating any property g(r,7,t) in the
mobile wall fixed coordinate system to the property g(Z2,Y,t) in the

rectangular transformed plane. These equations are

B8 . genpd8 . D B |

o bz cosd Y (49)
.b.g = ) .b.g )

_01- K CGS¢ >z ] (50)
b T 28

Mt pt ' L
Using equations (49), (50}, and (51) with equations (44), (45), and (46)
yields the governfng equations for points on the nozzle wall in the-

rectangular Y - Z coordinate system. These equations are:

conservation of mass

R mgp 2 . D boo, bR
v -+ Ksunqb_bz cos oY + K cos¢ 57 +

'K°°s¢‘g_§ + =Y sing =0
r .
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conservation of tangential momentum

by D cosd B’ = 0 |
2~ + vy Kcosop Y + GK cost;b. Y (52)

bt
.conservation of uormal momentum
. - BdR D 3R
Kgingg =—m = — = = 0
¢ B2 - cosppY : (53)

by substitution of equations (39), {(40) and equation (36-38), equations

(51), (52) and (53) could be written in the alternate forms:

- LI\ L P S L P LA . LA " SO -
bt vz B oY Y (54)
U, U . BB L g _

X Y Y ISa (55)
o, g 4 g
bt bt - Y : (56)
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Numerical Technique

The interior region of the flow field is calculated using the

method of Moretti and Abbett (63). The technique cousists of expanding

the fluid propertieg in a Taylor series in time. - Lax and Wendroff

(45), the principal investigators of this method, found that the term

conﬁaining_the second derivative was a necessary ﬁondition to insure
.~ convergence of the series. The methed therefore uses the variable
{a fluid propertf) aﬁd the first and second.defivativea of the
variable at time to to compute the wvalue of,tﬁe variable at time

tg + At. Written mathematically this statement is

2 2
= 28 g (aB)”
g(t, + At) = g(t,) + .O_t At + Ez‘ 7

where g represents a fluid property (R, U or V). The first time
derivative of g is obtained from. equations (26) through (28). Dif-
ferentiation of equations (26) through (28) with respect to time pro-

-duces the second time derivatives of g as follows:

2 2 2 o2
R _ _.pdR _ BB DR _DARR DU

dzdt dt dZ -pIdt bt dY didt

o

S

% %

DYt dIBT pt ' (57
W2 2 2 2

A A U B T A 5
bt bZdt BZ Bt dIBE  BLJY - - pZpt -

BB AR F R
dt DL - pYpt pt aY (58)
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2 2 2
ol v maw o
Bts -zt Bt pZ pint At Y
2R E
@R | 2R
YAt . pt aY _ : (59)

Equations (57) through (59) contain crossed time and space derivatives.

Interchange of thevorder of differentiation is valid for these functions.

. Equations (26) through (28) are therefore differentiated with respect

to Y and Z to express the crossed time - and space - derivatives in

terms of space-derivatives only. These terms are:

-2 2 ' 2
: o]

R _ -B R OB OR R bA DR
Zdt b2 dZ. D2 “dYBZ . dZ DY
2 - 2 2
U dR- U U . BC U DV
K2y - ——— - — .+ = - D -
OZ dz dZ  beZ BZ. DY DYDZ
LA - A |
dZ Y »Z dZ : (60)
DR _ 0RO R DADR
dIdL DZOY bY dZ oY Y dY
bzu ) bZU _d bzv - g '
dZdY N . dY By DY 2 Ay (61)
2 2
dU _ gd _ WU _ DU DA
8- - 2, oot oY oY
dzZdE DZ dZ. dZ DY™Z »Z dY
2
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DTt “pzoY
2R . QL3R
2ZdY oY oz

O

dZYHL zZ
bR BE 2R
dYRZ  dZ. dY

O

dYdE DYDZ
2
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%A R
oY oY

(63)
AW
DZ pY

(64)
24 W
oY Y

(65)

The first and second space.derivatives occuring in the equations for

the second time derivatives [see equations (57) through (65)] can be

closely approximated by finite differences. A standard central finite-

di fference scheme has been used for evaluating the partial derivatives.

The first and second space-derivatives of g in finite difference form

. are

%%(I,J) =[g@+ 1, 1) - gl=1, I)]/2az (66)

£

»§§(1,J) - [8(T, 3+1) - g(T, 7 - 1)]/28Y (67)




2
%E%(I,J)'= [g(I + 1, J) - 2g(I,d) + g(T - 1, 1))/

wz?

2
%;%(I,J) = [g(I, 3+ 1) - 2g(1,J) + g(T, J - 1))/

av)>

2

081 1) = [T+ 1, T4 1) - gl 41,7 - 1) -

gL -1, T+ 1) +g@-1,3+1)+g(I~-1,3 - 1)/
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(68)

(69)

. (70}

Where I and J refer to the gfid point under consideration as shown in

Figure 2, The remaining terms are evaluated as follows:

- dD = - D2 dr'n
dz K dx
bz dz

(7D

(72)

(73)

74)

S —
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dC . gdU . o, dD | o BV
3 cdY 9D, 0¥
U3z tVgZtlD

YA &Y 75)
K, 20
Cazt Koz . | a8

Gy f,l)bz

-
. e
CZ TPz _ (78)
3¢ . 26
6 YA ¢ YA (79)
L oK L oe
€3z + K33 (80)
_ 4 drg
D= _ (81)
D
¥2 ' (82)
dC 2l
Ut + Coy (83)
by : _
kY - (84)
Y
Gy - 1) oY (85)
DE.
P dY : (86)
¢ Lo

dY T dY ' (87)
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g

The first and second derivatives of r; with respect to x are calculated

from the nozzle wall function r

= f{x).
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(88)
(89)
(90)
(1)
92)

(93)

. (94)




46

As discussed in Chapter II,nthé initial conditions for two- ‘
dimensional numerical methods are usually taken to be the one-dimen-
sional selution for the geometry under comnsideration. In this study the
one-dimensional flow sclution is altered in order to decrease execution
time by bringing the initial conditions nearer to the final two-dimen-
sional solution.’ The total velo¢ity used for initial conditions is
assumed equal to the one-dimensional value, that is, constant across
the nozzle. Radial ﬁnd'gxial components are calculated to make thg'
total velocity parallel to thé wall. The radial velociﬁy is then
assumed td'vary linearly from this wall value to zero at the'cenﬁerline.
The axial component is then calculated from the known total and radial

velocities.

—_——L
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CHAPTER IV
RESULTS

The equations'develoéed in Chapter III are coded in the Fortran
V language for implementation on a Univac 1108 digital computer. A
listing of this program appears in the Appendix.

‘The-program solves the flow field for a convergéﬁt—divefgent

conical nozzle, The entrance and exit cones are connected by a cir-

cular arc of radius ri (see Figure 1). The nozzle geometry is described

to the:cdmputer.program by the input of the entrance and ‘exist half-
angles G@o,¢&)‘and.Rt, ﬁhe.ratio of throat radius of curvature r., to
the nozzle radius of the throat, r..

Th; computational grid (see Figure 4)Iis described by the input
of the nuhber of axial and radial grid lines and.the stretchiﬁg param-
eter, X, (éee equation 4). | -

Three nozzles aré'analyzed in the results. Two nozzles with
entrance half-angles of 30° have exit half-angles of 15°. They differ

in that one has an R, ratio of 0.35, the other, R, = 0.55. The third

;

nozzle has an entrance angle of 45° and an exit of 15° with R, = 0;625}&f

The results are discussed intterms of computer runs involving these

- three nozzles.

‘The grid Spaciﬁg used for these runs consists of 51 axial and:1ll

radial grid lines. A fine grid spacing produces very accurate approxi-

mation of derivatives by finite differences. This at the expense of

RN S—
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increased computation fimes. Fifty-one divisions axially was found to
be necessary to damp out oscillations initiated by the change from an
infinite to a finite nozzle crossection at the entrance. Eleven grid
lines in the radial direétion was found to be minimal for accﬁrate
representation of radial derivatives. The values of the stretching
parameter, Xo,hﬁsed are those which, after experiméntation,.yielded'the

best results as compared with experimental data.
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Run 1 : Ini;iai Check=-out

To check out the computer program an eséentially one=dimensional
flow situation is solved. The entrance and exit cones for this nozzle
have half-angles of three degrees. The cones are connected with a
circular arc throat section with Ry equal to 100. The axial coordinate
is stretched using X, equal to 10.00. The initial conditions for this
nozzle should be very close to the steady state-solufion. Table 1
compares the axial Mach Number distribution at the nozzle wall for the
initial conditions (N=0) and after 12 time steps (N=12). The steady
state solution is seen . to vary a.-max:l.mum of 0.06% from the initial

conditions. The program is thus considered operative.

e ——
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Table 1. Comparison of Initial Conditions and Final
Solution for an Essentially One-dimensional
Nozzle (¢, = -3, ¢ = 3, N = 51, R, = 100,
Xo = 10, N = 11)

- 36

1 x/r . N=0 N =12 Deviﬁtidn

6 . -14.221 0.2310 ' ~022310 ~0.00
11 -10.455 0.3076 0.3076 0,00
16 --8.109 0.3801 0.3801 0.00
21 - 6,330 - 0.4590 ' 0.4590 0.00
26 - 4,849 0.5539 - 0.5541 0.03
31 - 3.543 0.6567 0.6568 0.01
- 2.344 0.7624% 0.7627 0.04

41 - 1.209 0.8726 0.8730 0.05
46 - 0.103 0.9888 0.9894 0.06
51 - 1,00 1.1130 1.1130 . 0.00




a1

Run 2 s 30 - 15 Nozzle,_Rr = 0.35

Static pressure ragia distributions calculated using the computer
"program developed for this paper are presented ﬁor a conical nozzle
having convérgent and.divergent half-angles of 30 and 15 degrees respec-
tively. The nozzle has a ratio of throat radius of curvature tq throat
radius of 0.35. ﬁistriButions are calculated albng_the.axis and wall
of the nozzle. The wall pressure distribution is compafed with the
experimental meésutéments of Shelton.(72). The coordinate stretching
parameter for_this run was set at 6.0, The results appear in Figure 5
fdf the 180th time step (N=180). The execution time for the run was
3.66 minutes on an Univac 1108 digital computer.

Good agreement ig observed betweén'the'numgrical.and'experimental
pressure ratio distributioné along the uo#zle wall, except in the
supersonic region. This region can more accurately be describgd by
two-dimensional steady state characteristics method using the present
transonic boundary conditions.

The conéiderable two-dimensionality of the flow in the vicinity
- of the threoat is clearly demonstrated by the extreme divergence between

the wall and centerline pressure ratios in Figure 5.

o e — e A o+ -
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. Run 3 : 30 - 15 Nozzle, R¢ = 0.55

Figure 6 presents the results of Run 3. . The computer progfam
was set up, as on Run 2, for a 30 - 15 degree conical nozzle. On.thié
run a curvature ratio of 0.55 was used (Rt = 0.55)., A-slightly iess
severe stretching was used (X, = 3.0). The wall and centerline pres-
sure ratio distributions appear in Figure & compared with the wall
pressure measurements of Shelton'(72).- The execution time for this .,
run was 3,87 minutes for 200 time steps.

Very good agreement is observed within the transonlc region of
the flow field. As on Run 2, the theoretical curve dips-welllbelow
the experimental in the supersonic region. Close examination reveals
a deviation within the subsonic region. This deviation is oscillatofy

in nature and increases near the centerline.
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Run 4 : 45 - 15 Nozzle, Re = 0.625

Run: 4 investigates a more severely contoured nozzle. ‘A 45
degree inlet half-gngle is used with a 15 degree exit angle. A
strgtching parameter value of 3;0 is used. .Ihe computatién is allowed
fo march for 180 time steps. Figure 7 presents the numerical fesults
for the Mach Number distributions aleng the wall and centerliné of the
nozzle. These are comﬁared.with the.Exp;rimenfal_observations of Béck
et al. (75). This run réquired a 3.76 minutes of computer time. As
in the 30 - 15'nozzles, deviationé from the experimental are observed
in the subsonic and supersonic regions., Very good results are evident
within the transonic region.

- Mach line distributions for Run 4 appear in Figure 8, Experi-

mental data 1is that eof Back et al. (75).

The progression of the solution to steady state is indicated in
Figure 9. Notice that within the transonic region-(%t = 0,292) the

time marching routine has reached steady state by the 150th time step.

Just upstream of the throat (%t = .1.119) the routine requires 300 time

steps to obtain steady state conditions. Near the nozzle entrance

X _ :
(?t = ~4,906) within the subsonic region, the routine does not reach

steady state. This indicates an error generating source within the

subgsonic region., If left to accumulate, this error could destroyi%ﬁéj"

-

accuracy of the time marching routine, throughout the flow'field.;ﬁ
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

The computational method developed in this thesis permits the
golution of flows over a regime which includes subsonic, transonic and

supersonic flows. The computer program requires only the input of

.nozzle geometry parameters for solution of the flow field. The numer-

ical téchniqug is written in the Fortran V language. The program can _
be implemented on any large scale digital computer. Batch processing
or demand facilities may be used with equal ease.

The results show excellent agreement with ekperimental measure-
ments within the'transonic region, Deviations from experimental values
within the subsonic and supersonic¢ regions indicate that an error
generating gsource exists ﬁear the nozzle entrance region. |

With sufficient feel for the progress of the time marching
technique, effec;ive values of the stretching parameter and grid
spacing can be obtained. This does not insure that the chosen values

' I

are those that will yield the most accurate results or the most rapid

convergence. The effect of the stretching parameter and grid spacin

for ﬁarying inlet cone half-angles and throat contours on converge ﬁé?
and stability in the numerical technique has not yielded to m&th@@ﬂﬁical
correlation. The optimum parameter values for a given nozzle-can@ot be -

known before the initial execution. This is a disadvantage of the

method as presented. Additional study is required to{cdrrelate these

. me— e —m e - [P — e ot nmm ——— — i s
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parameters.

It is COncludéd that the numerical technique developed in this
report must be restricted to flow fleld solutions in the throat region
of converéing—diverging nozzles. Accurate results can be obtéined for
transonic flows but noﬁ for flows in the subsenic or supersonic regions
using this method.. The transonic flow solution generated can be used
as boundary conditions for a method of characteristics solution in the
supersonic xegion: The errors generated within the subsonic region,
however, have'ﬁhé capability of destroying the results fof thé éqtire
flow field. |

It is recommended that a study be implementéd to determine the
nature and extent of error generation within the'finite-diffefence
equations. Emphasis should be placed on determination of the effects
at the nozzle boundaries and entrance region. Subsequently the choice
of grid size and stretching parameter should be correlated for opti-
mization of accuracy and executlon time. Only after these studies are
compleﬁed'can the numerical téchnique developed herein be c@nsidered

reliable for the solution of two-dimensional flow fields.

.
3
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APPENDIX

A listing of the cbmputer-pﬁogram written to utilize the numeri-
cal technique developed for this thesis follows. This program may be
executed on any . large scale ditital computer. It contains logic for
both batch and deﬁand‘processing. Plotting routines written for the-
Typagraph Demand Terminal are also includéd. Comments are included
within the listinmg. This makes the program esaentially'aélf—explana—

tory.




:..” 6i;i

THIS PROGRAM conputes INITIAL co~nzrions

:INPUT DATA CARDS. . _--- R
: (1) - N¥.  {(INTEGER)
{2} - NR . (INTEGER) .
- 4{3). X0 (REAL) ..
o te) T RC - {REAL)Y _
{53 RT (REAL} o
A (6} " AGLIN (REAL+ DEGREES)
S o (7}  AGLOUT . (REAL» DEGREES)
OUTPUT FILE: 0 - ' o -
LOCATION OF

0O ANNANANNNNNN0O0N000NANNDONON

VARIABLES? S

DL 101) = X

- D 2e1) = X
DC 31y =22 -
DC 4rX) = YN
O( SrI) = DTNDX
D( 6:1) = D L
D{-7¢1) = K N
"DU B8¢1) = PHI (RADIANS)
D( 921I) = PHI (DEGREES)
.D{10sY) = SIN (PHI) .
D{11,1I) = COS (PHE)
D{12+1) = .DKZ S
D(r3:.1) = DD2

~De14.1) = DCZDY

- DU1Se1) = DCY -
Dll&ul)'=.DEYNDX
'RE&L K

DOUBLE PRECISION XO+DELZ¢DELYeYNL CPEE
COMMON/BLK7/U{51+¢51) 1R(51¢51} . o , _
COMMON/BLKG6/YNI{SL) . ' o
.. DIMENSION D(16v51)fClSl-51)'H(51051)ov151v513vTHA(51o51) th51r51l
1000 FORMAT()
-1001 FORMAT(? .ENTER NUMBER or AXTAL GRID: PUINTS'!

10C2 FORMAT(®' X0 = 7 *) o
- 1003 FORMAT(® ARC RADIUS = 2v) .

" 1004 FORMAT(* THROAT RADIUS =Pe)

/1005 FORMAT(* ENTRANCE ANGLE = 27)

. 1006 FORMAT(* EXIT ANGLE = 7t}

1007 FORMAT(® ENTER NUMBER -OF RnDIA' GRID POINTS®)
: UXEZ) T AXD/2. 1R LALDGIZ) =ALOG LL+EXP (=2, /%0)=2))
o KEZY = 00 (24%Z21/X0 ) * EXPL {=2.#X(Z))/XD ) Y /7
S : k! 1 + EXPL (-2.*x(2i)/x0 } Y
"WRITF(bclOGl) .
"READ (5:1000)" Nx
WRITE (&e1007) - .
. READ (571000} NR _
"WRITE (6&r1002) .
- READ{S5¢1000} X0
WRITE(56¢r1003)}"

.....

iyt -

SRR - ' _
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READ(S,1000) RC -
WRITE(6e1004)
READ(Sr1000} RT

. WRITE(5+1005) - -

' READ(5,2000) AGLIN
WRITE{6¢1006) - .
READ(S,1000) AGLOUT

_CONV = 57.2957795 .
AGLIN = AGLIN/CONV .
ABLOUT = AGLOUT/CONV

CPI = 3.1415927
RC = RC/RT '

 TI = RCASIN(AGLIND
T0 = RC*SINCAGLOUT)

TNI = TANCAGLIN) =

S TNO = TANTAGLOUT) -

DZ = 1e/(NX=1)
DY = 1./[NR-1) :
DELZ = 1,0D0/(NX = 1.000)
X0 = DBLE{XD) .
DELY = 1.000/(NR=140D0}

. GAMMA = 1.4

0‘1'1) = 100 :
pi(2e¢1) = = 1,0E10
D{(3¢1) = 0.0 o
P{%+1) = 1,0E10D
DIi5¢1) = =1.0
D(Bell = 0.0
bi{7+1) = 0.0
<. DO 10 1 = 1eNX
10 C{X¢1) = 0.0 - .
DO 110 J = 1eNR
O HUeJ) = 0.0
‘110 Cl1eJ) = 0.0
DO 20 I = 27 NX
2=(1=1) xpz
D{teX) =1 -
- plz2el) = x(2} ) : ) o G T . |
D(3/1) = Z o T R .

IF { 0129!} - TL ) 11- “11,.12

‘D(SeI) = TNI c
D(16eL). = 00 - _ _
o 60 TO 15 : _ o
12 IF L DI2+I) = TO } 1be 13. 13 ST '

13 DlueI) = D(2:1) * TNO ¢ 1 + RC = RC/COSthLDUT}
' D(5,1) = TNO .7

"D(16¢1) = 0.0

GO TO 15

©7 11 DUST) S DI2e1) % TNI + 3 ¢ ac"#*nc?cos;asLlns.“

14 Dlyel)

DiS+I) = D(2eI) / SGRT ¢ RC**2 = D(2rI)ex2 ) ' :
Dll&ut) = l SQGRT { RC *%x 2 = D(2+7) »% 32 )} + D(S-Iitn(zc}i i
3 C ./ [ RC *% 2 = D(arl) *x a

DBLEi D(u.xl J

15_vuit:i

= RC + 1 & 5@RT(RC:*2-012.1)¢*2;'




|30 VII/NR) = HXCIsNR) * at1u,x)

DM6e1) -

: 1.0 / D(lhn
- D7) = K(2) '
DI{BrI) = ATANC D(Se1} )
. DL9sI) = D(BeI) ® CONV
. DU10e1) = SING D(B+I) )
"Dl11»1I) = COS( D(BLIY ) -
D(12,1) =
- D(13.1) =
S plluel) =
~D{15¢2) = = DISeI) % D(B!I) N
DO 20 ¥ = 2r NR - o
Y=0(J=11) DY

2 x { D(T7e1) / D(3r!) -1 / XQ. ) :
= D(6e1) ** * DUSeY) 7/ DOT7eEY Lo :
DU13eI) =*- D(SlI) + D(&tI! * 0(1631) / D(?il’

CLIvd) = =1 = DE5eI) #* D(Evll & Y
20 H{IrJY} = D(6eY) 7 Y

CALL ONzDIM(XOcDELZrDELY)
Do 30 1 = ZONX
HX(IeNR} = UCIeNR)

DO 40 I = 2¢NX:
DO 40 J = LINR.
Y= (J-I) * DY
HX{Ird) = HX(IPNR) -
NLIrd) = V(I NR) =* Y

UlIrJd) = SQRT ( HXlItJ)t*? - V(IrJ}**Z l
CTHALT#JY = ATANG VILeJ)7U(Ird} )RCONV
4o R(Ird) (IICGAMMA-li?*ALOG(I ((HK(I!J)**Z!*(GAHMﬁ-I))

1 ZI2%GANMMAY )

';'AGLIN AGLIN * CONV

1 -

AGLOUT- = AGLOUT * CONV -

"WRITE (18). NX!NR!KD!RC.RT:AGLINJAGLDUT:D#CtH:R;UrVoTHRoH!

 END FILE 16
REWIND 10

 STOP

. END

FUNCTION FDERIV(K)

COMMON/BLKS/0MACH(150)

. DOUBLE PRECISIDON FDERIVeOMACH = . ' co -
FDERIV = (0.83333 + 0.16667*0MhCHﬁK)t*2)**2 -
(0. 83333 + 0. 16667*0“&CH(K1#*23**3 / OM&CH(K]**z o

- RETURN .

CEND
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iSUBROUT!NE ONEDTH X0+ DELZsDELY)

DOUBLE PRECISION ARE&:X'DELZODELYUXQ YNluZpAMﬂCH”'-

| jcomnonzaLx7/ut51.b1a.R(51.51)

N
-
N

3COMM0N/BLK6/¥N1(511
= 1.0/DELZ
= 1 O(DELY_
=N+

J + 1

j'DO 20 I = 2!Nl1
Z = (1 = 1F*DELZ -

-...zb

DO WO K E Ledrd
CULLeK) = UCLel) & e

40

" COMMON/BLKS/0MACH(150)
- 'DOUBLE ‘PRECISION FDERIU ﬁMﬁCHw gACHrFox.AREA

" 100

- 105
110
120

130 : :
' .-_'IF(DABS(O%ACH{K*I) - OMACH(Kl) .LE. 0+0000001)60 TO 140

140

"OMACH(1) = 0,01 -

G0 TO 110 :
‘OMACH{L). = 3.0

= (*X0/2, !tDLost('1;_+ nexpt-a./x01 - z) ’ 2)'

AREA = YNL(I)#%2 _ : .
- CALL XMACHCAREA»X» AMACH), : : -
UCL1r1) = (1,%8322¢AMACH) 7/ DSGRT( 1. + O.Z*AMACH**ZI

R(1.I) = 'DLOG{IIo + O-Z*AMACH**23**205)

DO 40 L 2eNel -

RCL¢K) = RLIL)
DO S0 K = 1od
Ul1rK) = 0.0

T RLeK) 5060
50 _
" RETURN -

CONTINUE
END

SUBROUTINE XMACH(AREA»X ¢ AMACH)
IF{X)100¢100¢105 ) .
IF ( AREA +GE. 55) OHACH(l) ,00-3 SR

K =1 - R
IF(K = 74)130:130.1#0 | ' '
OMACH(K+1) = OMACHM{K) = FtK.AREnl / FDERIV(K!

K=x +1

" 60 TO 120

AMACH = omacH(x + 11 f'ﬁ |
RETURN S

- END

e

L o
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o

| MAIN PROGRAH o
-'INPUT DATA cunos*f ST T e
. C. . {1y, FC . (REAL) .0 (GENERAL) .
(2) NE - " {INTEGER) (OPTION.JY.
"To . (3) NSK (INTRGER) . (OPTION P)
" INPUT FILEY UNITS 10011 | |
" OUTPUT FILE:- UNIT 10

'-.DPTIONS.

o BATCH CHECK S “OPTION K - =1y
-~ BATCH INITIAL CONDITIONS CDPTION' T .t 1@ =1 ) .
| BATCH RUN . .  OPTION Bt IBR = 1 ).
START ' o oPTION S (ICS =1 ) .
- RUN  NE TIME STEPS ~~ OPTION 4 € TN = 1 J-.
L BATCH  PRINT ALL EVERY NSK OPTION P ( ISP = 1)
" BATCH BRIEF-LIST - . .OPTION C  ( ORIEF- ) .

. BATCH " LONG LISY -~ . OPTION L { LONG )
- BATCH LONG FINAL LIST . OPTION F ¢ FINAL ) -

REAL LM

DATA QRrOUrQVooTHAaQHXoGM.GP/'R'o'U'r'V' -
$ITHA® s YHXY 0 9M? 5 PP/

'LOGICAL NDPT» oﬁr'BRIEF-_FIﬁx(; Lbus;.”fj.Fﬁ
" DIMENSION C(51+51)¢ H(S1151)s S(2e58)¢ . i
B UIIblaSl)' VIESI!S!J: RI(SI!SI)v HXI(513
" COMMON  /8LK1/ R(51¢511s U(S1¢510s V(S1+51)1 rHAts1.51;.
e | HX(SLrS1), MIS1:51), PUS1IS1Ns GAMMA
COMMON /BLK2/ RT+ D(l6s51)¢ -NPLOTe DY .
COMMON /BLK3/ NXe NR . .. R R

-COHMON /BLK“/ Ne I» J.

DTTlXiT!Z!R) (X'Y)/(DEMN*(Z*GAMWA*EXPIlGAMMﬂ-l)*Rl))

o 1 FORM&T(1H131XO1H1f7X01H2r7Xr1H306XulHurSthH5t8¥t1H0tBX: Teo
4 1H7u9Xr1H8r8Xr1H908Xf2H10v?Xp2H11t7xa2H1ﬂt7Xt2H13u6XraHlﬁo -
2 //2!01HI¢7X01HXr?XtlHZoSXu2HTN!6XcSHDYNDX:6Xt1HDvBX!lHKt
-3 BHPHIr6Xr3HPHIt“XeBHSIN(PHII:1X08H OS(PHm)vSXoSHDKZ!6X
4 EHDDZrSXrSHDCZDY) N
2 FORMATULIH /v1XeF3.0rF10. SvFE 2rFB QtFlO SrzFQ.S!FIO 5!F9 3'
1 FLO.5sFBt4rI3F2.5) -

3 FORMAT (1Xe'N =7 eI8e3Xe?I ~'»13.3x.'a "ll&PSXl‘TFQ "vlk) .;;-"

‘% FORMAT (v NS=t.Ju»? NE":IQ)

_-"1000 FORMAT(///* MINIMUM DT# N S%eIa)
©. 1001 FORMATCIXeASe ' (*eI2e%9%rI2¢") =*9FBe) '

e

B
b




e

1002 FORMAT(!: DT S 49FB,4)
1005 FORMAT(® N ='+15s%.3 LOOK = 1')
1006 FORMAT() .. .
-1007 FORMAT(* HOW MANY TIME STEPS 20y
1008 FORMAT(* STOP = 19)
1009 FORMAT(SXs'I5 THE PLOT SWITCH OFF 9'1 o -
1010 FORMAT(® ENTER 1 FOR A LOOK AT THE INITIAL conoxrlons- N"rlsi
1011 FORMAT(lHl:lDXn‘1'rBX-'15':11!:'16'//11Xu'1'o?x: o
&'DCY*9X0 "D2YNDX 7/} '
1012 FORMAT(9XeE3,G+5Xe F6.4-7X.F6.u!)
. 1013 FORMAT(* FC = z%} R
- 1014 FORMAT(' FC = 2 HO CHG. z NEGe') . -
1016 FORMAT(* DT PRINT = 17) -
1017 FORMAT(* TIME = *¢1PE1G.4)
1018 FORMAT(' SAVE IT. 2 - ENTER 1Y) _
1019 FORMAT(® N=*slle? DTZ"¢1PED.3s* RTM= '-1PE9 3-' 07502= ’thEg 3)
1020 FORMAT(! FC2tr1PEG,30? NEZV/T4# ! NSKZ'o14) - o
1021 FORMAT(1X¢A3+9¢3Xs1PEG,3)) - '
1024 FORMAT(//t N=* rlkaXrI2o'y'oIZrB(?XnIE-'r*rlzlaQXO'RTW"rIPEQvS)
1025 FORMAT(Y NXZ '4I2¢% NRZ *,I20% X0= *eF4ets
: +. C CRTE T.F5.2e% RCT VeFB.2/F
3 # ¢ AGLINS *rF6e2¢' AGLOUTZ '9F6.2) = '
© 3026 FORMAT (1H1/7/3X» YSTRETCHING PARAMETER =¢eFZe2/3Xs
' +'ENTRANCE ANGLE =7 1F7,2/3x¢ VEXIT ANGLE ='+F742/3%e
'THRDAT CONTOUR PARAMETER =*¢F643/3Xe 'GRID SIZE 30413
e X'e13/3X0 *TIME STEP B'o15e/////) _
',1027 FORMAT(///3X:'J 21377 AR .
1028 FORMAT(QX:'I‘!lDXr'R'vlSXu'U'!15Xu'V'rlkx-'THA'r14Xr1HX'r
CHLUXrTMYe1SXe ' PY/) L S _ -
| 1029 FORMAT(&X:IZ-lP?:lB.S)_" - S S SIS PP

C : . g
' 'IF ( OP('K*) ) ICK'=_1-
- IF COP{vI*'} )} II =1
“IF ¢ OP{'B*} ) IBR = 1
CIF O oP(i1SrY) ) JCS =
CIFECCOP(YYY) ) TUN = )
C CIF GOPUYP*) ) ISP =1 Lo
: JIF L oP{*'C*) ) BRIEF = .TRUE. -
e TR COPCLY) ) LONG = (TRUE.
" IF t OP('F') } FINAL = +TRUE.
c ' CONSTANTS
C .
. . GI\MMA = 1.‘4
- DEMN = S@RT(&.)
C o

€ READ VISCOSITY PARARMETER -
IF { IBR WNE. 1) PRINT 1013
READ (5+1008) FC

i:STaRT_DPTION

o000

IF € ICS WNE. 1) 60 TO 10




-_radtw .

a0

11 0z

_RE&DIlO) NX!NR:XO RC:RT kGLINfAGLOUTrD' Cr Ht Rv Ut Ve
REWIND 10 . o N
NZ= 0 .
oY = 1. /(NR‘II :

DTu = 10.0 .:
Do 8 J 2¢NR.-

- DD 81 = 2¢NX oo ' '

- PTX = DTT(D(E!I!!DIZ! -I)OU(IlerQ(IlJ1)
Y = (J=i} * pY * DigsI) -

CYM 2 (J=2) % DY * D{Ue])
oTY = D?T(YrTMrV{I!J)cR(IoJ))

‘DTS = AMINL{DTX!.DTY) ’

IF ( DTS «GT. DTM ) GO TD 8
DTM oTs
imx 1
JMX N
B CONTINUE
BT = 0,98 ¥ DTM
TT. = 'DTM?*
WRITE (6.1001) TT:IHX!JMX:BTM
WRITE (6:,100D02} Df
9 CONTINUE .
NSKCTR =
RTm = 0.0
G0 TO 11 .

CONTINUATION oprxou

10 ‘READ (10) NX!NR!XUORC!RT!AGLIN!&GLOJT!D!COH
-READ (11) NrDToRTWthU!V!TH&!HX :
REWIND 10
" REWIND 11
NEKCTR = 0

CONSTANTS -

= 1./ - 1)
DY = 1./(NR=-1} - :
~ NT = NX = 1
NTJ = NR -1 .
| 6GMO = GAMMA = 1
- T2 =2 % D2
TY =.2 x pY
- DZ2. D2 *% 2
DY2 OY *x 2
FYZ. = 4 % DY = DZ -
TYZ = 2 % DY ¢ 02
DYzZ2 = Ty = 02 -
RC = RC*RT

WRITE (601025 NXs. NRY X0, RT.-Rc;_AGtxa.fnsLourf-}*'

RC = RC/RT'
IF ¢ ICK .EG- 1)

+CALL CHECKI*GOMO®rGGMOs?TZ '4TZ 'Tf'”i?ft'ﬁy'nzz 02214

K TOYZ TDY2 S MFYZ GFYZ e 3o

. 6§'  o

TH&! Hx ' 

3 R




o0 oo _

e
. PRINT INITIAL CONDITIONS (DE“AND)'
"C

LINX=1)%3) /1A
(iNX‘l)*?)/l&
NX-1- :
1
(NR-I}IE
NR

% 1
12
13
J1

C.J2
J3

" READ TIME STEPS PER RUN - ' 0 " .-
IF ( IJN +£Qs 1) READ(5¢1008) NE

 READ OUTPYT SPACINB . C
: IF ( ISP +E@s 1) READ(S:lOOB) NSK

JIF (- I8R LNE., 1) GO TO 20 S
HRITE (601020) FCeNEeNSK-

" PRINT INITIAL CONDITIONS (BATCH OPTION)
CIF 0 I1'GNEs 1) so To 20

WRITE (6+1)
"po-iz I = 2oNX :
T WRITE (62} (D(Jtl)od-lth)
12 CONTINUE - ~
WRITE (6r1011) _ _
DO 13 1= Z2eNX - S -
- . WRITE (5.10121 nt1.r:.ot15.1:-0t16.1) U
.13 CONTINUE .
CALL TABLES(CeNels*CY)
. caLl TABLES{HeN tao'H‘)
" CALL TABLES(R+Ne3s#R?) .
 CALL TABLES(UeNeurstU?)
- CALL TﬁBLES(V!N:St'?') :
- CALL TABLES{THATNe6¢?'THA')
. CALL TABLEStHx.N.7.'Hx') _ _ T
- 60 To 1022 : ) _ EEREN

- 28 IF ( IBR .EQ. 1 } GO TD 23
PRINT 1010¢ N
_READ 1006+ INITCN
NSV = 2. '
IF ¢ INITCN .NE. 11 60 To uus

1022 DO 22 J = LeNR

DO 22 I = 1¥NX
PlIedY = EXPtsnmwA*R{I-J))

MI{I«J) = HX(IvJJ/SQRT(GAHMA*EXPIGGMO*R(loJ)1!

22 CONTINUE

o : o
B o PRINT P AND M (BATCH)

c S
IF { IBR «NE. 1 } GO TD 1023
© CALL TABLES (MiNeBr?M?t)
CALL TABLES (PeNsQ/*P?)

¢mﬁWWﬁ

L 1 HlILLi_ L CoMeno

)




70

. 80 To 23
1023 NPLTN = A
. so TO 495
B+ o - S - ) o T

Ct*##t#*#tt*ttttt*ttt*t*tt =PROPERTY COMPUT&TIONSQ dknkkk ek k kR Ry
c S : ' oo : : :
23 NS = N-+ l ST
IF { 1JN +EGes 1} NE = N + NE
©IF U TJN +NE.. 1 )} NE = NS
-IF { ICK <E@s 1) CALL CHECK('RTM'nRTM.'DT'oDTo'NT'-FLOAT(NTl.
+'N'oFLDAT(N)r'NS':rLOAT(NS)r'NE':FLO&TlNE):l)
2% NSv =.0 - . : S
DTM = 1.0 :
25 DO 400 N = NSeNE
... DTM = 1.0 -
RTM = RTM + 0T .
YTT = DY * DT.
DTSD2 = DT *%x 2 / 2

IF [ ICK +EQ.

Lt 7 WRITE 15-1019) NoDT'RTHrDTSDz '

NnoOn

c : _
E. RETAIN NORMAL VELOCITY AT NR~1
U= MR o ,
D0 29 I = 2eNX _ IR o
s{1:1) = U(I J-l) * 01100 ) = V(Iru=1) * D(11e1)
29 CONTINUE '
INTERIbR " _-t#$f$£§$§§tti§34f@_.f--~'
o DDHSD.J_:_ZoNfJ.= L
o Y= (J=11) %Dy
o YSe = ¥ ** 2. E !
L DO,“O'I'='ZGNT P S
e C
o A= Ullrd) & C{IlJ) + V(lrJ) t D(6n1)
B = ulle ) 2 DTy -
. 6G.2= GAMMA * EXP GGHO s R(IrJl 1
“E = D(bel) * 6
L F =2 C{led} * 6
_ L =.0(7¢1) % 6
c _ : . .
. IF ¢ ICK +E@. 1 ) SR S
+CALL CHECK(®A  *9A . 48 %8B . +'6 . '¢B
+ 'F Y+F L el e 37)-:
c L o - L
~~ DRZ = 11341+1LJ)'- RUI=1sg) )} /7 TZ
DUZ = L UCI+#1ed) = UlI=~1e ) )} 7 TZ
DVZ = ( VII¥1¢d) = ViI=1egd ) 7 TZ
PDRY = { R{Ied+1) = RiIed=-12 ) /7 TY
o DUY = A UIeJdEL) = ULIed=1) 3 / TY
: DVY = ¢ V(Ied+1) = V(Ied-1} } 7 TY
N - . o
- IF { ICK «EQ. 1 )
Y =




R - 'DRYY*+DRYYe 'DUYY s DUYY, 6 )

- DAZ-

. 1.; ?iﬁ ‘.

_+CALL cazcxt'oaz YeDRZ +'DUZ *eDUZ +%0VZ ++0VZ +DRY '.onr .
DY ADUY 4TDVY feDVY s k) e
. GGMG = GGMO g

" DRT "B % DRZ = A * DRY = DCTeI) * DUZ = cr:.J> * ouv

= D(6rI) * DVY = HIIvJ} = viIsd)
DUT 2 = B % DUZ = A ¥ DUY =L ¥ DRZ = F % DRY _
DVT = =8 £0VZ-A%DVY - E ¢ DRY o
DRZZ = C R(I+1:d) = 2 # RUIPD) + RCI-1,0} ) 7 OZ2
0UZZ T C UCE+LNY) -

2% U(qui ¥ U(I?lcdl l { DZZ .

CIF € ICK oEQ. 1) : | - RO
“4CALL CHECK('GGVG* ¢ GGG SDRT *+DRT +70UT 'oDUT-o'DVT '.ovr .
R "DRZZ*1DRZZ» 'DUZZ* 1DUZZs. 5 ) o

L DVZZ 2 0 VII+1ed) = 2 % V(Lod) + VII=1,JF ) / nzz R

- DRYZ = | RII+19J%1) = REI+1sJ=1) = REI=-1,J%1) + th-lod-l)’) I F'fz

L DUYZ = 0 T4l 1) = ULT41pd=1) = ULI=10041) + UlI=1rd=1)) /£ FYZ
DVYZ = { ViI+1lsJ+1) = V{I+ied=1} = V(I=1sJ21) + ¥{l=1,J=-1)} £ FYZ: -
DRYY = ( RiI+J+1l) ~ 2 = R{Ird) + RiIed=1) } £ .0Y2 = ..
DUYY = { U(Ted+1) - 2 % U(I J) + UlTrd=1) § £ ore

- IF { ICK «EQ@. 1 ) ' o
~ *CALL CHECK('DVZZ'&DVZZ!'DR?Z'rDRYZn'DUYZ'?DUYZ:'D?YZ'ODVYZ.-

CUDVYY = O VETed41) = 2 % VIIed) + Viled=1) i 7 ov2

T DHZ = D(13eI) /7 ¥
' DCZ = DS1GeI} * Y ..
S UlIed) ¥ DCZ. +
. + DI6eT) * DVE |
. DBZ = U(IrJ) # D(12¢3]
'DGZ = GGMG % DRZ ¥

IF 4 ICK «EQs 1 )
+ - "DBZ "DB

‘DEZ = 6 % DUI3¢I) + DAGeT
" DFZ = 6 * DCZ + ClI+y)
DLT =6 % D(12¢1) #.0.(70;
DHY = = D(6+3) 7 Y50
DAY S UlIed) * D(lSOIJ
" _DBY = D(7:1) = DUY

- IF C ICK «Ef. 1)
.*CALL CHECK{*DEZ 'fDE

+ . YDAY . Y,QAY:
 DBY = GGMG * DRY -
DEY = D(&2I) * DGY '
DFY = G % D(1SeI) + C&IoJ) t 06T
DLY = D{7+1) #*.DGY
 DAT = CAIsd) » DUT # DI(BII) * DVT-
DBT = D(7+1) # DUT .

IF { ICK «EQe 1 ) ' ST
_ +CALL CHECK{'DGY.." rDGY . »PDEY *y0EY .onrv 'onF o 'DLY TeDLY ¢ . - -
o« . "DAT *+DAT »'D8T 'rDBT .9 1 CLATT L

- DGT = seme * DRT L SO




noo

aon. Oonn

‘DETY = ,
DFT = C{Ivd) * DBGT .
DLY = B{7¢I). ¢« DGY. -~ . 7" '
DRTZ = - B8 * DR2Z - D32 . DRZ - A * DR?Z - DAZ * DRT
. S = D7) x DUZZ = D(12¢1) ¥ DUZ = ClIed) * DUYZ . R
. e DCZ * DUY = DI6Ee]) = DVYZ - Dll&pI) * DVY = H(Iad) * DVZ-
= Y l{IrJ) ¥ DHZ
DRTY = ~ B8 % DRYZ - DRY = DRZ - A % DRYY = D&Y * DRY
.« ~ D(T+¢I) * DUYZ = CUIrd) * DUYY - D{15: 1) x OUY.
S - DlGeI) *: DVYY - K{Ird) = DVT = VilIed) * DHY
IF { ICK +EQ. 1) S T
+CALL CHECK('DGT 'ODGT v'DET 'oD‘T t*0OFT Y+DFT o 'DLT *+0LT »--
+ *DRT2*rORTZ+ *ORTY*¢DRTY, 20 ) . '
bUTZ = = B8 * DUZZ =~ DBZ_* DUZ - A * DUYZ = DAZ * DUY
s .- ='LL '« DRZZ =~ -DLZ * DRZ - F * [RYZ = DFZ * DRY -
DUTY = = B % DUYZ - D3Y * DUZ - A = [UYY = DAY = DUY
T e E = L x DRYZ =-DLY * DRZ = F # DRYY - DFY * DRY
"NTZ = - B « DVZZ ~ DBZ * DVZ2 - A * DVYZ - DA2 = DUY
. -~ E.* DRYZ ~ DE2 * DRY . f o - :
"DVTY = = B * DVYZ - DBY * DVZ = A * DVYY - -
s« - = DAY = DVY = E % DRYY - DEY * DRY .
"PRYT = = B * DRTZ. = DBT * DRZ = A * DRTY = DA? = DRY
. j = D{7+1) * DUTZ = ctIuJJ * DUTY = D{6¢I) = DVTY
. e HUIeJdY * DVT o S
DUTT = = B * DUTZ = DAT * OUZ = A * DUTY = DAT ». ooy - B
A ' = L * DRTZ = DLT * DRZ --F * DRTY - OFT x. DRY
IF { ICK +EG. 1) - '
#CALL . CHECK('DUTZ':DUuZu'BuTY'-DUYYo'DVTZ!-DVTZ:'DVTY':DUTYc.
+ ' ‘DRTT':DRTT:'DUTT'.DUTT. 11 ) '
oVTT .= - 8 * DVTZ «~ DBT * DVZ = A = OVIY .
.o = DAT * DVY = E *JDRTY;--DEI-* DRYJ_
RI(I+J) = R(IeJ) # DT * DRT + DTSD2 * DRTT
UILIed) = U{IeJ) + DT * DUT +:0TSD2 » DUTT
NVItIed) = v(IeJ) + DT = DVT + DTSDZ * DVTT _
IF € ICK «EQ. 1) T g
+CALL. CHECK('DVTT'vDVTTo'R 5':R(I!J’r'U'fUIItJ)v 'V!!V(I!J’l e
+ _ 'Y Y . #tYSG TeYSQ e 12 ) e
uD<CONTINUE' S S =[
50 CONTINUE o
CENTERLINE =~ . . #ddkesstvks )
=1 : L . :
DD 51 1 = 2eNT - - T T
RI(Ied) 2 ( 4 % RI(IvJ+l) = RI(I+Je2) } 72 3
UIGIed) = { 4 s UI(IsoJ+l] —\UI(Irdfa’“}'f,3
VI(IeJd) = 0.0 : o . . o
51 CONTINU‘
HALL o kR RRERGRk
- J = NR

" 'COMPUTE NORMAL VELOCITY FoR

oter1) '+ 0st

NEW TIME AT NR=1

R,

Sy

i




nlwn .

.55

L 73l;5

DO 55 I Z-NX
5(2¢1) = U(IrJ-ll » 0(10!1) - UtI J'll - D(lltll
CONTINUE

00,60 2.Nr

t RlI+1rJ} SRU=1 ) 2 T2
U HXEI+Ld) = HX(I=10d) } 7 T2
-~ S(1+¢1) /£ DY :

GAMMA * EXP { GGMO. & R(IoJ) )

Lw |

v

-
milnnl

-GGMG = GGMD * &

DRZZ = ( R{I+1l.0})" -2 R(Iad) + . Rll-l.d) BY / DZZ e
IF (ICK .EQs 1) CALL CHECK('DRZ'rDRZa'DNZ'oDNZt‘DSY'!DSY!

4GS 5 tEGMEY G5 MGt'DRZZ‘tDRZZo13)

- DRT

ONZZ = { HX(I+19J) = 2 % HX(IsJd) + HX{I-1e J) l / DZ2
0SYZ = ( S{lel~l) = S{1¢I+1):) / TYZ

DGZ = GSMG * DRZ . :
= (DtoeI) / DI11,1) ) # oSy = DtlopI} * Hx(ch) * H(Ird)
e e DATeI) % Dtll:Il % - HX(I'J) * unz ¥ ouz ) S '
. DT = GGMG * DRT *
DHZ = 'D(13.1) -

CIF € ICK WE@s 1 }CALL CHECK: !'DHZZ‘-DNZZ!'DSYZ’.DSYZ! _:.

+tDGZ*+DGZs *DRTY v DRT» *DGT? ¢DGTr *DHZ ¢ DHZ» 14)
ONT = = D{7+1) = D{11+1) » { HX(I»J) * DNZ + G * DRZ )
PDRTZ = C 1 / DU11+IY ¥ # .( D{6el) * OSYZ + O(13r]1) % DSY )

e o= DE10RIY 0 HX(TeJd) % DHZ '+ H{TIeJ) * DNZ }

e . 4 G % DRZZ + DGZ * DRZ') + u(12.:f
. ' * DNZ + G * DRZ ) ')
DSTY = ( S{3el) = S{2¢3):) / vrr

DRTT
S N DC11¢1) % ( HX(IvJ) % DRTZ + ONT * DR : .
'DNTT-;.- O(T+1) = DILL,T) *  HX{InJ) = DNTZ:* ONT * DNZ

© = DE11eI) # C ( HX(I4J)- ¢ DRZZ + ONZ $DRZ +ONZZ ) ¥ o(?.t)_- '

_ + DC12+1) % { HXUI,J) * DRZ: + DNZ ) 3.
DNTZ = = D{11¢I) * ( D(7¢1) #* ( HX(IeJ) # DN

Di{6el) * DSTY 7 0(11,1) ~ D(lOvl) * !

4 G * DRTZ + DGT * DRZ ) P
IF € 1CK .EQ. 1) CALL CHECK('DNT’!DNTO‘DRTZ'rDRTZ'E

'+'DNTZ'oDMTZr'DSTY':DSTYu'DRTT':DRTT"DNTT'rDNTTtISl[2 3.Q":.

+
D UITIed) = HXICI) % DOR1el)
*

60

70

RI(IrJd} = R{Ird) + DT * ORT + 0TSD2 * DRTT:

HXI{I) = HX(1rJ) & DT # ONT '+ DTSD2 « DNTT

VICIeJd) = HXILTI)
CDNTIHUE .

pli1o-1}

SUPERSONIC BOUMDARYf

I=Nx L
DO 70U = 1eNR

RItI»J) = 2 R(NX-I:J) - R(Nx-avJ)
UIC(Ivd) = 2 * UINX=1rJ) = UINX=2iJ)
VI(IrJ) = 2 # VINX=1rJd) = VINX=2¢J)

CONTINUE

L




o0o0n .

aono

Y : L

335
77 po-s00 1

75

DO 75 I = LeNX
GO 75 J = 1sNR -

"R{T+J} = RI(IZ )
UIed) = VI
ViIed) = VILIed)
CONTINUE b

HINIMUM DT SEARCH
D090 J = 2sNR

. DO B0 I = 2eNX

DTX. = DTY ( Df2¢1)s 012.1-11. utI.J). R:I-J) )
Y = (J=1)+DY*D{4sI) - .
YM = (J=2)*DY*D(Gr])

~-DTY = DTTLY e YMeVII+J) yR{T0J) )

DTS = AMINL(DTX.DTY)

- IF ‘U DTS «GT. DTM ) GD TO au

- DTM
IMX

0TS

-1
o

NN 'll

JMX

L JF (O ICK bEQ. 1 ) CALL CHECK ( 'ornv.nrno*arv'-nrv.cnrx-.orx.I

80
90

'31

DO 331 1 = 1eNX
‘331

CRICIed) = UTH * (- R{IeD) = Rt:-l;ax ¥

e E'UI'rUI(Itle'R‘nR({tJ)r'UTM'!UTMr’U'OV(

. 500

SRR JICK +E@e. 1 7 CALL CHECK (. 'n'.acr.ax.-u-futtvaio RIS ot
8" V'rV(IrJJt'RI'rRI(I!Jlc'UI'lUI(IrJ)v'VI’vVIiIOJ)'lQ) DtttCHECK 1¥

'I'DTS'fDTSf‘Y‘tY:'YH'rYMrga) © Qxrk EHECK 92 **** '

CONTINUE
CONTINUE

* COMPUTE THAHX o MgP FOR FCz0.0

IF  FC .67, 1,0E~3 ).60 T0 335

DO 331 J = 1iNR .

CALL ANGLE

60 T0 551 | S,

ARTIFICIAL VISCOSITY — sessseqeos

DO 500 J = LeNR o
= 2¢NX .

UTy 2 ABSE ULLsd) = UCT=ted) )

WIIsd) = UTM * ( UCTsJ) = UCI=10d) ).

VI(Ied) = UTH:* ( VI Ird)} = ¢lI=1srJd) )
IF { ICK +EB. 1) CALL CHECK l'RI'cRI(IoJ

CONTINUE :

DO 515 J = 1+NR

DO 510 I = 2#NT

Y = (J=1)sDY _
FF = FC*(l-D(B-I))tY . - S
R{TeJ) +.FF .= { RI{I+1-J)-~ Rt(l-JJ ¥

RUI«JY =
UTed) = UMTed) + FF =1 yI(i+ded} = PUI(Is,
NALrdY = V(IedY + FF >0 vICT+100) = VIUTS

' ?&”. ;.1 o

———




" 525 CONTINUE

526 CONTINUE
. 530 CONTINUE

636 CONTINUE _ -

. 540 CONTINUE

510 CONTINUE - e A L A RS

RINXeJ)} = 2 * R(NK“lﬁJl - R(NK*Z!JI
UINKed) = 2 * UINX=1ed) = U(NX=20d}-

CVINXe D) = 2 venxBPHT L v inke2 J:“’*"'Fé R
IF (-1CK +EQ. 1.) CALL CHECK: (. TRTR(Todds W0 eUTodd s

o &'V'oV(IoJ)o'FF'cFF%‘JTM'{UTH-'NX'pﬁLOAI@NXl!IS) B*t* CHECk 15 t*t _
515 CONTINUE _ o .

DO 525 I = 2¢NX -
D0 520 J = 2¢NR -

"~ﬂfurn,: ABSC V(Iod) = V(Irdw1) )

T ORI{IJd) :ﬁUTM *® RlTed) - R(Ird-l} |
UI(I?JI_=-UTM £ { UlIrd) « UCTedet} } - o
VI{Ied) UTM * { VIIed) -~ V(ItJ-l) Yoo '
IF ¢ ICK cEQ- 11 CALL CHECK' ('RI'#HI(I!J’r'UI"UI(IIJ,v

S &'VI':VI(IrJJr'UTM'rUTMp'R'tR{IrJ)r'V'tV(Ifdiclbl “@eks CHECK ia '
| 520 CONTINUE -

RICIo1) = ( & % RE(Ie2) = RICEs3) 07 3 -
CUICTe1) = i s UI(Te2) < UICIe3) ) 2 3
CVIGIel) = 0.0 . o |

T DO S3S 1T = 2eNT
DO 530 J = 2¢NTJ
Y = tJ-i::nv _ _
FF = FC*(I-D(3:II)*Y ) ' )
v REXr Jl = R(IrJ! + FF = ( RI(I J+1) -'RI(Itd) ¥
CWIed) = U(Ivdl'+ FF * l UI(I:J+1! - UI(IoJl}l-;
iF ¢ ICK «£Qs 1 3 CﬁLL CHECK (’R“oR([:J],
TR V'uV(ItJ)r'RI'rRI(IaJ)o'UI'vUI(IoJ’o'VE',

51&:.J1.17: [ curcx 17
'CALL ANGLE

contT | . IR
R(Ied) = € 4 % ROLog¥1) |= R(:.J+zm 4 3‘
Ulled) = ¢ 4 = U‘IfJ+1)'- U(Ird+2$ Y/ I
VIIrd) = 0.0

IF ( ICK +E8. 1 ) CﬂLL CHECK ('R'vR(Itdi-’U'cUIItJ"'V'

- GV(I:J):'DTS'-DTSr'IMX'rFLDATlIMI)r'JMX'oFLOAT(JWX}019) nt cnsdﬁfié.
532 CONTINUE ' -

"CALL ﬁNGLE
535'CONTINUE
I & NX
- DO 540 J = llNTJ :
COR(Ied) T 2 2 RUI=Jed) = R(I'2tJ) -
SUIrd) = 2 % UlI=1eJd) = U(I=2:J).
VIIed) 5 2 % VI(I=1rd) = V(I=2:+J)

IF { ICK +EQ. 1 ') CALL CHECK- ('R':R(Ileo‘U'tU(IoJ)r'V'
&V(Irdlu‘DTS'!DTSr“IMK'uFLOhT(IMX!r'J“X'oFLOKT(JMK)OZO) 9

CALL ANGLE -
S J = NR

DO S50°1 = ZuNT . I
. OHX(IeJd) E sonrt u¢1-4>¢¢a ¥ v&:.Jlttz 1

\..

2
e
FREAN
B,

i
[

"




CUtTed) = HX(Ied) i'bt11.11

' 550

CALL ANGLE ?ﬁ
CONTINUE S
-1 = NX

o [ S ST L U

"asa¢§@a

ViIeJd) = HX{1eJ) t@&s

. - a i ﬂ ¥ .:
HX(1,J) = 2 * HX!I lvdi - HX(I-2OJ!.
UlIed) = HX(I!J) * D(11,Ty - .
VIiIed) = HX (Ird) * ot1u¢zl i,

. CALL ANGLE-
-l =1

1550
551

00 0

Do 1550 J _1-NR'
CALL ANGLE
‘CONTINUE .

.DT- . 9B*DTM

" PRINT DT toprxoux

1IF { LONG ) 6O TO 556

. IF ( BRIEF.)} GO TO 390
IF { ISP «EG@e 1 } 50 TO 360

30

non

350

360
370

- 380

"IF ¢ IPRT WNEs 1) 6o To 3su-fﬂ

WRITE (601000} N
TY = «D¥Me

. WRITE (6+1001). TTcIMKtJMXoDTH
_WRITE '(6r1002) DT ;

N ouTPUT 

IF { LONG ) GO TO. 556

" IF € IBR oNEo 1 ) GO TO 390

IF CNDPT )} GO YO 380 . -
NSKCTR = NSKCTR + 1 .

~IF C ISP oNEe 1 )} GO TO" 370

IF  NSKCTR NEw NSK ) 60 T0 390

" NSKCTR = 0 . -

CONTINUE .~

" IF ( ISP WNS. 1 ) c0 TO aﬂ

NDPT = «TRUE.
GO TO 34D '
NDPT = ..FALSE.

" CALL TABLES { Re Ne 16+ 'RY )

. CALL TABLES (_Ul-Ntl?f_'U’ )
. CALL TABLES ( Vr NelBr 've )}
CCALL . TABLES . (HXeNelSetHX*)Y .

CALL TABLES (THArNe20¢*THA')

T CALL TABLES (MiNe2ietyq?) .

a0

‘556

CALL TABLES APy No22r'P')

- LONG LIST oprrou

IF ( «NOT. LONG ) 60 TO 390
IF ( ISP «NE. 1 ) GO TO 557

 NSKCTR = NSKCTR + 1

..!Jf?6
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IF ( NSKETR <NEe NSK ) 80 TO 390
NSKCTR = 0

557 CONTINUE

WRITE (6'1026) XOOﬂGLIN'ﬂGLDUTfRC!NX'NR!N
GO 554 J = IvNR .
 WRITE 6410270 J =~ .
WRITE (6+1G28) _ ,;:_a.uay. e
00 553 I = 1.NX -
553 NRITE {6r1029) IeR(Tel )rU(ItJ}rV(ItJ)ITHQ(IDJPOHX(I.JI,_2u-
+ . . M(IoJJrP(Iudi - oo

- 554 CONTINUE

<

c
€

60 TO 400"
BRIEF LIST DPTION .

390 IF oNOT. BRIEF )y 6D TO QDD o
. WRITE (Be1028) NoIlrleIEoJl I3tJlfIl!J2!IZ'J2!13'J2' o
C F¥I3eJd3r120J3e13633RTM - .

© WRITE (601021) GRr R{IleJid» ROIZe+d1}e R‘I3!J1)!

+ ' T R{IleJ2)r REIZ+J2)e R{IZeJ2)r .

S T CREILeJ3) e REIZeU3)r RUI3rJ3)
" WRITE (641021) QUs UCI1ed1)s UCI2,013e U(I3eJ1)s
Coe T UtILled2)e UCI2002) UCI30J2) 6 -
B CULILeUR) e ULI24U3) e UAI30J3) :
. WRITE (61021} QVs VIIled1)s V(I2+d1)s V(I3eJLde.
e S C L VILNd2) s VIT2092)s VIIZRJ2)e
$o VIILed3)e VIE2003)e VIIZeJS) :
" WRITE (Bs1021). @THA: THACT1/U1) v THACIZoU1)s THACE34U1),
e . U THALIL,J2) e THACI2,02)r THA(IZ,02)0
S T THATTLeI3) e THACI24J3)r THAUI3.J3) .
WRITE (6+1021) GHXr HX(I1,020% HXCI2eJ1)e HXCI3pO1)e .
R SR ©OHX(I1,32) s HX(I20J2)¢ HX{I30G200 =
o T HXETLd3) e HXTI2eJ3) e HX (T30 93)
WRITE (601021) GMe M(I3oJ1)e M(I200i) ¢ M(T30 0100
SRR L MUELed2Y e MUE2e02) 0 MEIBeO2)e
IR MITI1eJ3)e M(12l43)1'M113lJ3!“f-

WRITE (651021) GPr PUILled1)}r PCIZ2eJl)r P{I3sulds
L . PiIl1ed2)de PlI2ed2)e P(I3rd2)s
B T P(I1sJda)s PII2:ea3)e PUI3¢JI3)

400 CONTINUE -
N = NE

DEHAND MODE ONLY

CIF ¢ IBR WEGe 1) GO To qg1
_ PRINT 1017¢RTM .
_ PRINT 1005!N
" READ 1006¢NPLTN
405 IF ( NPLTN +E8. 1) CALL PLOT
PRINT 1008 _
" READ 1006» NSTGO
CIF { NSTS0 «NE. 1 ). 6o To w10 .
IF ¢ NPLOT JEQ, 1) PRINY 1009 .
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60 TO 420
410 PRINT 1007 gif-
_ READ 1006¢ NOSTPS!
NS =N+
NE 3 NOSTPS. + N ;r;iy_,; S P
S PRINT 21814 - T e
READ 100&s CHGFF -~ ... - .~ & -
- IF { CHBFF +BE« 040 ) FC = CHGFF
¢ IF § IBR .NEs 1 ) PRINT 1016
READ 1008sIPRT -
CIF ( NSV +EQs .1 ) GO TO 24
© .60 TO 25 S

420 PRINT 1018
" READ 1006+NSVE
CIF { NSVE NE. 1 ) GO TO uzz

LONG FINAL LIST OPTIDN

420 1F ( .NOT. FINAL ) GO TG 425

_ WRITE 46,1026) xooAGLINoAsLOUToRCoNXaNRoN
- DO 424 J = 1eNR
. WRITE {(6¢1027) J
CWRITE (6¢1028)
DO 423 I = 1+NX

+. M(ItJIcP(IuJ)
424 CDNTINUE

'uas NRITE t11> NuDTlRTHchUtV:THn Hx*

END FILE 11
REWIND 11 ’

" ag2 CONTINUE

-STOP .

. END

FUNCTION F(Ke¢AREA) .
COMMON/BLKS/OMACH{150)
" DOUBLE PRECISION FrOMACH«AREA

F = (0.83333 + 0.16567*0MaCHtK)t*2}**3 / OMACN(K) - aREa _'_53-7

.. RETURN
END

E 423 WRITE £621029) I+R(Ie J:'U(IuJ)rv(I.J).THAtva).Hx(I.Jl.ff_




' SUBROUTINE PLOT

"REAL M

DIMENSIDN xt51).

 .“29  :

}

7(51 B ' L
COMMON /BLK1/ R{51ls5%}s 0(51,511. v151.511' Tnntsx,sitrf;"
+  HX(S1:51)e M(S1+51)¢ P{51e51)e. SGAMMA -
© COMMON /BLK2/7 RTr» D{169Sit)r NPLOTs DY o
. COMMON /BLK3/ NX¢ MR o
. COMMON /BLK4/ Nr Lv¢-J .
. 1. FORMAT(* CODE LIST = 1': : _ _ _ P
- 1001 FORMAT(/* PARAMETER. CODES: s I L
. 4/% RADIAL:I 1/Re 2/U+ 3/Ve 4/HXe 5/THAe  6/Ps  T/W%/
+2Xa'&XIAL' BlRo QIUv 1a/v. 11/Hx. 12/7THAY Y3/Pe 1G/7%)
FORMAT(). _ R
FORMATLY wHIcH COLUMN 2 ') : , - D
FORMATL(//Z/V N =teiGstiXst] -'uxszt Jv.?x,marxuxvtv'm"

FORMAT(* POINT LIST = 1°*)
8 FORMAT(//41X+A3s *FOR’ N-'axu-"t"olzflll '
9 FORMAT(//33Xs *TOTAL VELDCITY. VS ¥oals™ FOR’ N"rluvIXrAIt‘"'rtelil)
10 FORMAT(//720%s "VELOCITY. ANGLE IN aasﬂrrs VS '.A1.= FOR N--ala.
*IXOAIO"'nIEi///) . : o L
13 .FORMAT(* PLOT = 1°)
. 12 FORMAT(* MORE LOOK = 49
13 FORMAT (' WHICH ROW 2 .¢)-
. 1% FORMAT(//25Ks 'PRESSURE RATIO VS X FDR N ='-lﬂr'td -'olallfl
.15 FORMATI(/® N ='eJlsiXety Seel3/7 TCeTXoA3IOX» X)) -
U 16 FORMAT(//2BX» *MACH NUMBER VS X FOR NS®sTke? cJ='rIZt//ll .
1016 FORMAT(//33XsABe " VS X FOR N=*rI4s? J='-12-/{fl .dn"'
. 1017 FORMAT(* ENTER. CGDE"}
1018 FORMAT{(' COME AGAIN ?'
' .. PRINT 1 - _
READ 2¢NPRCD " '
. IF { NPRCD +EQ..1) PRINT 1001
. 217 PRINT 1017
218 READ 2+1ITX

2

3

u.

5 FORMAT{1X»rI2¢2(3Xe1PEDe3})
7

B

9

1¢..gun;~1tx-;segm1:!ﬁsdﬂqu219.'

CIF U ITX . oLE,
- 'PRINT 1018 : _
S @D TOo 238 0 - e T
© 219 IF (C ITX +E@+- 1 oORs ITX ,EQ. 8°)F AR = *RY .
© IF G ITX JEQ@4.-2 +ORe ITX ERe 9 ) AR = Syt
U CXF L ITX «EQ@e 3 ORs ITX <EQ. 10 ) AR = VY
B 6 ITX SEGQe 4 «ORs ITXULEQe 11-) AR = *HXY
IF (ITX “EQ. -'_5-._'&_0;20 ITK.EQ. . 12 Y AR = 'THA®
IR A CITX «EGe 6 +O0Re ITX LEQ. 13 ) AR-= P
IR ITX wEGe 7 eORe ITX aE@e 14 ) AR = 'MY
CLLIF (CITX WLE. 7 ) 6O TO 18 L :
- PRINT 13, . . oo o
300 READ:- 2oXRW .~~~ . o0 - R
© IF ( IRW +LE. NR +AND. IRNW +GE« 1 ) 50 TO 19
PRINT 10¥8 . - . PR
- 60 T0 300.
18 PRINT 3 -

220 READ 201CL . .. o T T
©IF ( ICL oLEe NX oANDe ICL oGEs 1) 60 7O §9 . 0}

L TN




“PRINT 1018

19

G0 TO 220
PRINT 7
READ 2017

+114¢116) «ITX

20
30
40
50
60
70
80
90

. 100
‘110

1110
111
1120

1121

112

13

C 118

115
vy = oY)
60 TO 112

116
o117

1117
‘1118

60 TO (20!409609505& ggémgq£?;2g¢

oo 30 I = 1sNR -

60 TO 120 :
DO.50-I = llNR

X1 = U(ICL-II

GO TO 120

DO 70 I = 1eNR
X(1) = v(ICL+1)
G0 TO 120 -

DO 20 1 = 1+NR
X(I) = HXCICLeI)

© .60 TO 120

0O 110 I = 1eNR
X{I) = THAUICL.I)
60 TO 120 -
00 1111 I = 1s8R -
X{I) = PLICLeY) -
60 TO 120 - :
DO 1121 I = 1sNR.
X(1} = MCICLeI)

60 TOo 120

DO 113.1 = 2¢NX

X{1) = D{(2,I}*RT .

Xt1) = X(2)

G0 TO 118

DO 115 1 = 2¢NX

YY) = P(1.IRW}.

00 117 1 = 2¢NX

YUT) = M(I+IRW) .

Y1) = v(2)
GO TD 3 - :
00 1118 1 = 2eNX

¥YLI) = RUI+IRMW)
SYi1) = ¥eRy o

. 60 TO 112

. 1119
11200

DO 1206 1 & 2¢NX
Y{I) = UCI+IRW)

Y1) = v(2)

- 60 TO 112

1230
1220

1230
1240

DG 1220 I = 2¢NX

Y(I). = vCIeIRW)
Y1) = Y(2)
60 TO 112 _
DO 1240 I = 2¢NX
Y(1) = HX{I+IRW)

Yl = v

  : 80

1117414190 12100225001250¢

Y

Ry Vi

S




1260

118

119
“ 120

-130

‘DO 146 1 = 1sNR-

140
150

" CALL EZSUB(XeYrNG)

160
170

180
181

182
183

184

-__.31 :___

T 66 To 112
“ 1250

DO 1260 I = 2¢NX

Y(I) = THALI,IRW) -

Y(1) = Y¥62) _

60 TOo 112 '
IF ( IT «NEe 1) so TD 150

'PRINT 1SeNeIRWeAR ;i 4 i r o i

BO 119 I = 2eNX

PRINT 5S¢l Y(I)rX(I)

G0 TO. 150 - _

Do 130 l1 = llNR o .
Y{I} = {I-1} * DY = D(#fICLI L RT -
IF ( IT +NE. 1 ) GO To 150 e
PRINT 4+NeICLrAR i

PRINT Sele K(Il!Y(Il

PRINT 11

. READ "2+NPLOT

IF ( NPLOT WNE. 1 ) GO.TO 210
IF ( ITX «LEe 7 ) NG = NR
IF { ITX «GE. B )} NG = NX

G0 TO (160vl&ﬂr160!170;180t160!160:183:183.183»18#;135:

+181+182) »ITX

PRINT 8¢AReNeICL
GO TO 200
AY = tyv

AC = *I°*
PRINT 9tAYvNoACtICL
G0 TO 200 :

AY = syt

AC = 1%

PRINT 1DvAYiNvACnICL

- GO TO 200
PRINT 14%¢NsIRW
G0 TO 200

PRINT .16+N¢ IRW
60 TO 200 o
PRINT 1016!&RON01Rﬂ

60.T0 200

AX : *X*
AC = "I

INPRINT 9:AXoNn&C!IRH

185

200

‘210

G0 TO 200
AX = *X?

AC = ‘gt -

PRINT 1D:AX:N:&C.IRH
60 TO 200 -
CONTINUE

"PRINT 12

READ 2¢MORE.

IF ( MORE +EGs 1 } .60 ro axrm,ﬁ
RETURN

" - END -

B
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SUBRDUTINE ANGLE
.REAL M

COMMON /BLKL/ R(S10517s ULSLr510s V(S1o510s THAUSLeS1)s
+ HX(S1¢S1)e M(S1¢51)s PUSEPSL)e GAMMA .

COM“ON /BLK3/ NX* NR° .
' COMMON . /BLK4/ Nr. Iy J o
THA(IsJ)=0.0 : E s
1IF(ULIL))  LEG. 000] GO T0 1
IF(V(IeJ) JEQs 0.0) GO TO 2
THACI ¢ JISATANGV (T o JY7U(Te )} -
“THALL v JISTHA (I J) #5T7.2957719 '

CIF {(Uled) .LT. 0«0). THA(I!J)“THA(I!J)+IBO 0
G0 To 3 - .

1 IF(V(I'J) oEQO 000’ G0 TO 3 .
IF(V(Ied} LLTe 040) THAC(L J)==90.0 . . S

60 TO 3 _ i o .

2 IF(U(I»Jd) LT 0.0} THA(I+JI=180.0 . _

3 HX{IvJI=SARTIU{ I e S %24V (e J) x%2} - ' '
MI{IreJ) = Hx(IrJI/SaRT(GAMMA*EXP{tGA“Wﬁhll*RII¢JJ}l
Pl{I.J} = EXP(GAMMA*R(IoJi) )

RETURN -
END -

SUBROUTIME OPTR(OOLET:TF‘

- LOGLCAL TFeLOG - :
TF=+FALSE .

N=FLD{O¢+BILET) =5 )
LOG= BDOL(FLD!9+N:1:O))
IF(LOG)TF=-TRUE._

" RETURN )

END ’

' FUNCTION OP(LIT)
CIFILYZ2e k2

CALL DEMOPT(A}

L=l

CONTINUE

"CALL OPTR(AvLITfOP)

RETURMN

END .




'hndhnnnn 

,'? 1 FORMAT " 1H1,

SUBROUTINE TABLES

 TO PRINT TABLES For

'.ﬂ} TBLMTX
S N
NUMB -

© TABLE

( TBLMTXr N." NUMBo TABLE :

NG = 11.21.31.u1, OR 51 o

"ARRAY NAME

'TIME STEP NUMBER -
TABLE NUMBER
TABLE NAME

| DIMENSION TBLMTX(S1:58) . = L

- COMMON /BLK3/ NXe
‘NJ =
NHJ = ¢ NR = NJ )

CNHI E CNX = 1) /10

NI = NJ =~ NHJ
CNKS NS+ NH
WRITE (6,1) NUMB»
61X
1 BTXe 1HI /

NR-

(NR -1} 72 1) + 1

/5

TABLEt N
s BHTABLE » IanHp

YA3s /7 65X

- wRITE (6e2) ( T¢ I = 1s NX-NHI }
2 FORMAT - ( 1H / 2Re 11111 Y- C
Do 30 J ‘1rNIfNHY i ' S -
: WRITE- l6r3) Je TBLHTX(I.J’: & = 17 MXeNHI )”;
3 FORMAT € 1H / SXr 12+ 1P11EL). 3 Yy R
CONTINUE _ _ '
.. WRITE (&et4)" NJo_l TBLMTX(!!NJIU'I = !NX!NHI l
- 4% FORMAT { 1H 7/ 2Xv 1HJr 2%, 125 1P11511 3/ l ,_'.”
- DO 4D J = NKrNReNHJ - :
.. "NRITE (6¢5) dv ( TOLMTX(I,Jd)s I= ltNXrNHI ) .
"5 FGRMAT ( 1H / SX» I2» 1P11E11 3/ i
CONTINUE
~_RETURN .~
. END .

© SUBROUTINE CHECK
COMMON /3LK4/ Ne I+ J

. WRITE(621). NrIoJtNler'NQoVZrNSfV3-NQOVQ NS'VSOV&OVBfCHN o

- 1 FORMAT. {iH r2HN-rIS!ZX.ZHI-!IZ!ZX!ZHJ':IZ!G(ZX A“le-llPE9c3lr S

(Nl VloNzrV20N30V3tN4rV4cNS'VStNBrVBtCHN l :;f;”.i 

1 ; 3X01Hﬂv12)

RETURN




10.

84

BIBLIOGRAPHY

-

Back, L. H., Massier, P. F. and Gier, H. L., "Comparison of

Measured and Predicted Flows Through Conic¢al Supersonic Nozzles
with Emphasis on the Transonic Region," American Institute of
Aeronautics and Astronautics Jourmal, August, 1965,

Graham, R, W. and Deissler, R. G., "Prediction of Flow-Acceleration
Effects on Turbulent Heat Transfer," Transactions of the American
Society of Mechanical Engineers, Journal of Heat Transfer, Vol. 89,
Series C, No. 4, pp. 371-372, November, 1967. .

| Bartz, D. R., "Turbulent Boundary-Layer Heat Transfer from Rapidly

Accelerating Flow of Rocket Combustion Gases and of Heated Air,"

in Advances in Heat Transfer, Ed. by Irvine, T, F., Jr. and Hartnett,
J. P., Vol. 2, Academic Press, 1965. _ '

Back, L. H., Massier, P. F. and Cuffel, R. F., "Some Observations
on Reduction of Turbulent Boundary-Layer Heat Transfer in Nozzles,"
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California, National Aviation and Space Administration..
Contract No. NAS 7-100, 1965,

- Back, L. H., Cuffel, R; F. and Massier, P. F., "Influence:.of Con-

traction Section Shape on Supersonmic Nozzle Flow and Performance."
Jet Propulsion Laboratory California Institute;of Technology,
Pasadena, Califormia, NASA Contract No. NAS 7-100, 1971.

Back, L. H., Massier, P. F. and Gier, H. L. "Convective Heat -
Transfer in a Convergent-divergent Nozzle," International Journal
of Heat and Mass Transfer, Vol. 7, pp. 549-568, 1964,

- Fortini, A. and Ehlers, R. €., "Comparison of Experimental to

Predicted Heat Transfer in a Bell-shaped Nozzle with Upstream

' Flow Disturbances," NASA TN D-1743, August, 1963.

Stanton, T. E., "The Variation of Velocity in the Neighborhood of
the Throat of a Constriction in a Wind Channeél,™ British
Aeronautical Research Council Reports and Memoranda No. 1388,

May, 1930. '

- Shelton, S. V., "A Study of Two-Dimensional Nozzle Flow," Unpublished

report, 1971.

Serra, R. A., "The Determination of Internal Gas Flows by a Transient

Numerical Technique,' Ph.D. Thesis, Renesselar Polytechnic Institute, .

Troy, New York, June, 1970.




11.

12,
13 L N

14.

16,

l?l .

18.
19 .
© 20.

21.

22,

23.

24,

85

Shapiro, A. ‘H., The Dynamics and Thermodynamics of Compressible

Fluid Flow, Vol., I, The Ronald Press Company, New York, N. Y.,

1953,

Meyer, Th., "Uber zweidimen31onals Bewegungsyorgange in einen Gas,

das mit Ueberschallgeschwindigkeit stromt," V.D.I, Forschungsheft,

Vel. 62, 1968,

Lighthill, M. J., "The Hodograph Transformation in Transonic

Flows," Royal Society of London, Proceedings, Series A, Vol. 191,

'pp. 323-351, November, 1947.

Taylor, G. I., "The Flow of Air at High Speeds Past Curved Surfaces,"
Aeronautical Research Council Reports and -Memoranda No. 1381, 1930.

Hooker, S. G., Aeronautical Research Council Reports and Memoranda
No., 132, 1930.

Yur' ev, I, M., "On the Design of Nozzles,' American Rocket Society

Journal, Vol. 30, No. 4, pp. 374-375, April, 1960.

Sims, J. L., "Calculation of Transonic Nozzle Flow," NASA TM
x-53081, October, 1964,

Medelson,.RQ-S.,_"A General Transonic Flow Analyéis for Axially
Symmetric Rocket Nozzles," Technical Report No. HSM-R037, Space -
Division, Chrysler Corporation, Huntsville, Alabama, February,
1964,

Oswatitsch, K. and Rothstein, W., "Flow Pattern in a Converging-
diverging Nozzle,” NACA TM 1215, March, 1949.

Oswatitsch, K., Gas Dynamics, Translated by G. Kuerti, Academic
Press Inc., New York, 1956.

‘Hall, I. M., "Transonic Flow in Two-Dimensional and Axially-

Symmetric Nozzles," Journ. Mech. and Applied Math., Vol. XV,
pp- 487-508, 1962.

Moore, A. w.'and Hall, I. M.,"Transonic Flow in the Throat Regi
of an Annular Nozzle with an Arbitrary Smooth Profile," Aeron

Research Cpuncil Reports and Memoranda No. 3480, January, 1963,

Quan, V. and Kliegel, J. R., "Two-Zone Transonic Flow in Nozzléé;“

- ALAA Journal, Vol. 5, No. 12, pp. 2264-2266, December, 1967.

Kliegel, J. R..and Levine, J. N., "Transonic Flow in small Throat
Radius of Curvature Nozzles," AIAA Journal, Vol. 7 No. 7, pp.

.1375-13?8 July, 1969,




25.

26,

27 -

28.

29.

30'

3l.

32.

33.

34,

35.

36.

37.

86

PFriedricks, K. 0., "Theoretical Studies on the Flow Through Nozzles
and Related Problems," Applied Mathematics Panel Report 82-1R
AMG=NYU No. 43, Applied Mathematics Group, New York University,
April, 1944,

Friedricks, K.iQ.,-“On Supersonic Compressors and Nozzles,"
Applied Mathematics Panel Report 82-2R, AMG-NYU No. 77, Applied

"Mathematics Group, New York University, October, 1944,

‘Liepman, H. P., "An Analytic Design Method for a Two-Dimensional

Asymmetric Curved Nozzle,” 'J. Aero. Sci., Vol. 22, No. 10, pp. 701-
709, October, 1955.

Grey, F. C., "Annular Throat Rocket Nozzle Design,” Masters Thesis,
Massachusetts Institute of Technology, June, 1961.

. I
Hopkins, D. F. and Hill, D. E., "Effect of Small Radius of Curvature
on Transonic Flow in Axisymmetric Nozzles," AIAA Journal, Vol. 4,
No. 8, pp. 1337-1343, August, 1966.

Hopkins, D. F., and Hill D. E., "Transonic Flow in. Unconventional

"Nozzles," AILAA Journal, Vol. 6, No. 5; pp. 838-842, May, 1968.

Thompson, P. A., "Transonic Flow in Curved Channels,“.ASME Paper
No. 67 FE-11; ASME Fluids Englneering Conference, Chicago, I11.,
May 8-11, 1967

Piruﬁnﬁ,,U{-G}; "Calculation of the Flow in a Laval Nozzle,"
Doklady Akademii Navk USSR, Vol. 176, No. 2, pp. 287-290,
September, 1967,

Zupnik, T. F. and Nilson, E., "Users Manual for Subsonic—-Transonic
Flow Analysis,'" Report PWA-2888, Pratt and Whitney Aircraft
Division, United Aircraft Corporatlon East Hartford, Connecticut,
June, 1967, :

Emmons, H. W., "The Numerical Solution of Compressible Fluid Flow
Problems," NACA TN 932, May, 1944,

-Emmons H. W., '"The Theoretical Flow of a Frictionless, Adiabatic,
Perfect Gas Inside of a Two-Dimensional Hyperbolic Nozzle,“ NA”'“INJ_

1003, May, . 1946

Southwell, R. V., Relaxation MEthods in Theoretical Physics, Vol. 1,
Oxford University Press, London, 1964 . -

Prozan, R. J.,’ "Transonic Flow in a Converging-Diﬁerging Nozzle;
Lockheed Missiles and Space Company, Contract NAS7-743, Huntsville,
Alabama.




38.

39,

40,

41.

42,

43,

44 .

45.

46,

47.

48.

49.

50.

- Navier Stokes Equations,” AIAA Jourmal, Vol. 3, No. 10, pp. 1824.”-'

87

Pfozan,.Ra J. and Kooker, D. E., "The Error Minimization Technique
with Application to a Transonic Nozzle Solution,” J. Fluid. Mech.,
Vol. 43, Pt. 2, pp. 269-277, 1970,

Belotserkovskii, O. m. and Chushkin, P, L., "The Numerical Solution
of Problems in Gas Dynamics,” Vol. I of Basic Developments in Fluid
Dynamics, Edited by M. Holt, Academic Press, New York, 1963.

Godunov, §. K., "Estimate of Errors for Approximate Solution of
Simplest Equations of Gas Dynamics," ATAA . Journal Vol. 2, No. 1,
pp. 208-214, January, 1964. _ _ )

Chou, P. C. and Mortimer, R. W., "Numericalllntegratioﬁ of Flow:
Equations Along Natural Coordinatea," ‘ATAA Journal, Vol. 4, No. 1,
pp. 26-30, January, 1966.

Holt, M., "Numerical Solution of Nom-linear Two-Point Boundéry
Problems by Finite Differerice Methods,;" Assn.- Computing Machy.-
Communications, Vol. 7, No. 6, pp. 366-373, June, 1964,

vbn Neﬁmhhn, J. and Richtmyer, R. D., "A Method for the Numerical
Calculation of Hydrodynamic Shocks,"' Journal of Applied Physics,
vol. 21, pp. 232-237, March, .1950.

.Lax, P. D., "Weak Solutions of Non-linear Hyperbolic Equations and
their Numerical Computation," Communications om Pure and Applied
Mathematics, Vol. VII, pp. 159-193, 1954,

Lax, P. D. and Wendroff, B., "Difference Schemes with High Order
of Accuracy for Solving Hyperbolic Equations,” Comm. on Pure and

‘Applied Mathematics, Vol. XVII, pp. 381-398, 1964,

Burstein, S. Z,, "Numerical Calculations of Multidimensional
Shocked Flows," ALAA Jourmal, Vol. 2, No. 12, pp. 2111-2117, -

December, 1964,

Rubin, E. L. and Burstein, S. Z., "Difference Methods for the
Inviscid and Viscous Equations 6f a Compressible Gas,” Journal

of Comgutational Physics, Vol. 2, pp. 178~196, 1967,

Crocco, L., "A Suggestlon for the Numerical Solution of the Stea”y??

1832, ‘October, 1965,

Fromm; J. E., "The: Tlme%Dependeﬁt Flow of an Incompressible iluid "
Methods in Computational Physics, Vol. 3, Academic Press, New York
1964, '

Thommen; H. W., "Numerical Integration of the Navier-Stokes
Equations," Zeltschrift fur angewandte Mathematik and Mechanik,
Vol. 17, 1966.




51.

52 -

53,

54'

53.

56.

57 .

58,

59.

60.

6l.

62.

88

Steger, J. L. and Lomax, H., "Generalized Relaxation Methods
Applied to Problems in Transonic Flow," International Con-
ference on Numerical Methods in Fluid Dynamics, 2nd, University
of California, Berkeley, California, Proceedings pp. 193-198,
September 15—19 11970,

Richtmyer, R. D. and. Mbrton, K. W., Difference Methods for Inltial

Value Problems, Intersc1ence Publishers, New York 1967.

Richtmyer, R. D., "A Survey of Difference Methods for Non—Steady
Fluid Dynamics," NCAR Techmical Notes 63—2 1962,

Emery, A. F., "An Evaluation of Several Difference Methods for
Inviscid Flow Problems," Journal of Computational Physics, Vol. 2,
Pp. 306-331, 1968.

Moretti, G,-and Abbett, M., "A Fast, Direct, and Accurate Technique
for the Blunt Body Problems," General Applied Science Labs.,
Westbury, N. Y., GASL TR-583, 1966.

Lomax, H., "An Analysis of Finite-Difference Techniques Applied to
Equations Governing Convective Transfer," Personal Correspondance,
1970.

Glasgow, E. R. and Diveta, J. S., "Analytical and Experimental
Evaluation of Performance Prediction Methods Applicable to Exhaust
Nozzles," ATAA Paper No. 71—?9 June, 1971.:_-j

Moretti Gino, "The Importance of Bouu&ary Coudimions in the
Numerical Treatment of Hyperbolic Equaﬂlonsﬂ" Polytechnlc Institute
of Brooklyn, PIBAL Report No., 68-34, November, 1968,

Lapidus, Arnold; "A Detached Shock Calﬁulatlon by Second-Order
Finite Differences," Journal of Computat10na1 Physics, Vol. 2,
pp. 154-177, 1967.

Laval;'Pierre;'"Time-Dependent Calculaﬁion Method for Transonic
Nozzle Flows,' International Conference on Numerical Methods in.
Fluid Dynamics, 2nd, University of California, Berkeley, California,

" Proceedings, pp. 187-192 September, 15-19, 1970.

Migdal, D., Klien, K. and Moretti, G., "Time-Dependent Calculations
for Transonic Nozzle Flow," ATAA Journal, Vol 7, No. 2, pp. 372-374,
February, 1969, : '

Serra, R. A., "The Determination of Internal Gas Flows by a Transient
Numerical Technique,”" AIAA 9th Aerospace Sciences Meeting, ATAA Paper

No. 71-45, January, 1971.




&63.
64,
65.
. 6?'
68,
69.
70,
71.
72,
73.

74.

75.

'Horétti,'Gino and Bleich, Gary, "Three-Dimensional F-ow Around

Journal, Vol. 4, pp. 600 and’ 776, 1966.

‘PP 1606 1614 September,I1965.

iBack L. H. and»Cuffel R. F., "Detection of Oblﬂque Shocks in a

'Back L. H., Cuffel, R. F. and Massier, P. F., "Transonic Flow

AIAA Journal Vol. 7, Ne. 7, pp. 1364—1366 July, 1969.

1967.

Back, L. H., Massier, P. F. and Cuffel, R. F., Persenal Correspond-

89

Moretti, Ginc and Abbett, Michael, "A Time-Dependent Computational
Method for Blunt Body Flows,' AIAA Journal, Vol. &4, No. 12, pp.
2136-2141, December, '1966.

Hooie, J. W., Thomas, T. J., Tatom, F. B. and Williams, J. C.,
"Numerical - Selution af Flow Flelds Surroundlng Saturn Type. Vehicles,"
Nortronice-Huntsville Technical Repert No. 382, TR-792-8-306,
N68-28309, Huntsville, Alabama, June, 1968.

Blunt Bodies," AFAA Journal, Vol. 5, No. 9, September, 1967.

Bdhachevsky,-l._O.-and-Rubin,'C.eL.,."A direct Method for Computa-
tion of Nen-Equilibrium Flows with Detached Shock Waves,” AILAA

Hirt, C. W., "Heurtistic -Stability Theory for Flnite—Difference
Equations," Journal of Computatienal Physics,-Vol. 2, pp. 339 355,
1968,

Sauer, R., "Génerai Characteristics of the Flow Through Nezzles at
Near C:itical'Speeds,"-NACH°TH.114?' 1947.

Back, L. H., Massier, P F. and. Gler, H.' L., 'Comparison of
Measured and Predi¢ted Flows Through Conical Supersonic Nozzles
with Emphasis 6n the Transenic Region,"” ALAA" Jﬂurnal Vol. 3, No. 9,

Conied Nozzle with a Circular --Arc Throat, AlAA‘Journal Vol. &,
No. 12, pp. 2219-2221, December, 1964.

Field in a Supgraonle Nezzle with Small Throat Radius of Cgrvature,-
Shelton, 5.-V,, Jet Propulsion Laboratory, Pasadena, California,

Sche;ler; K. and Bierlein, J. A., "Some Experiﬁents on Flow
Separation in Rocket Nozzles," American Rocket Seociety Journal,
Vol. 23, pp. 28-32; 1953. - - )

Csur&nt'.R., Friedrichs, K. 0. and Lewy, H., 'Ueber die Partiellen
Differenzengleichungen der Mathematischen Physik,” Math. Ann.,
Vol, 100, p. 32, 1928.

ance, 1967, !




