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Abstract

The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor 

signalling and regulates cell growth, survival and metabolism. Recently, we described a 

mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the 

Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent 

manner. In the present paper, we describe a distinct mechanism to control Thr308 

dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-

terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-

terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) 

increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified 

Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-

dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a 
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regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove 

is a target for the development of agents that enhance Akt phosphorylation by insulin.

Keywords

ceramide; dephosphorylation resistance; insulin sensitivity; protein kinase A; protein kinase B/Akt

INTRODUCTION

The serine/threonine Akt protein kinases (Akt1, Akt2 and Akt3, also known as protein 

kinase B isoforms α, β and γ) affect multiple cellular functions related to cell growth and 

survival, differentiation, metabolism and migration [1,2]. Activation of Akt kinases is 

initiated by docking of the Akt pleckstrin homology (PH) domain to membrane 

phosphoinositide lipid products PtdIns(3,4,5)P3 or PtdIns(3,4)P2 [1,2]. Akt catalytic activity 

is further contingent on phosphorylation of two regulatory residues, one at its centrally 

located activation loop and one at the C-terminal tail. Complex mechanisms regulate the 

phosphorylation state of these two residues.

Akt activation loop phosphorylation (Thr308 in Akt1) is achieved by the phosphoinositide-

dependent kinase-1 (PDK1). The Akt C-terminal tail (Ser473 in Akt1) is phosphorylated by 

the mTORC2 (mammalian target of rapamycin complex 2) protein kinase, which is 

composed of the mammalian target of rapamycin catalytic subunit and the RICTOR 

(Rapamycin-insensitive companion of mTOR) subunit [3,4]. However, knockout of 

mTORC2 in mice only partially blocks Akt Ser473 phosphorylation, as evidenced in muscle 

tissues [5,6]. TANK-binding kinase 1 (TBK1) and atypical IκB kinase ε were found to 

phosphorylate Akt kinases at both the activation loop and the C-terminal tail [7,8]. 

Similarly, DNA-dependent protein kinase (DNA-PK) can phosphorylate the Akt1 C-

terminal tail (Ser473) during the DNA-damage response [9,10]. In addition, mTORC2 was 

found to phosphorylate additional residues in the extreme Akt1 C-terminus (Ser477 and 

Thr479) [11]. These sites are also phosphorylated by cyclin-dependent kinase 2 (Cdk2)/

cyclin A or by DNA-PK under synchronized cell cycle conditions and DNA-damaging 

conditions respectively.

Dephosphorylation of Akt kinases is accomplished by at least two phosphatases: the 

abundantly expressed protein phosphatase 2A (PP2A) [12,13] and PHLPP1/2 (PH domain 

leucine-rich repeat protein phosphatase). PHLPP1/2 is a member of the PP2C phosphatase 

family, which selectively dephosphorylates residues located in the C-terminal tails of protein 

kinase C (PKC) and of Akt kinases [14].

Previously, we showed that Akt dephosphorylation is subject to intrinsic allosteric control 

via ATP binding to Akt [15]. ATP binding alters the Akt activation loop conformation to 

enable interaction of the phosphorylated activation loop with other residues located in the 

kinase domain, including Arg273 (Arg274 in Akt2) resulting in steric hindrance of activation 

loop dephosphorylation. As a consequence, Akt activation at the plasma membrane is 

sustained or prolonged. This mechanism is probably responsible for the ‘paradoxical’ 

phosphorylation of Akt kinases observed during treatment of cells with several Akt-specific 
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ATP competitive inhibitors, including A-443654, GSK690693 and GDC-0068 [16–18]. In 

the case of Akt2, this mechanism has been shown to be biologically relevant. Specifically, 

Akt2 plays an important role in glucose metabolism and mitochondrial function [19,20] and 

the R274H mutation not only compromises the phosphatase-shielding cage but also is 

associated with severe insulin resistance and diabetes mellitus in humans [21]. Residues 

analogous to Arg274 also protect PKA (protein kinase A) and PKC kinases from 

dephosphorylation [22], suggesting that allosteric mechanisms controlling phosphatase 

access to regulatory residues can increase steady-state phosphorylation of Akt and other 

members of the protein kinase A, G, and C (AGC) group.

In the present paper, we characterize a second allosteric regulatory mechanism that controls 

Akt dephosphorylation kinetics and is mediated by intramolecular association of C-terminal 

sequences of Akt kinases with their kinase domains. We further provide evidence that the 

strength of interaction of C-terminal sequences with the kinase domain can be exploited to 

modulate Akt dephosphorylation kinetics. Molecular dials that gate phosphatase access are 

embedded in different parts of Akt kinase, including the nucleotide-binding pocket, the PH 

domain and the C-terminal sequences. The intricate interplay of these molecular dials is 

likely to contribute to insulin and ceramide signalling and they offer novel therapeutic 

targets to treat diseases ranging from cancer to diabetes.

MATERIALS AND METHODS

Plasmids, peptides and chemicals

Akt1 was fused at the N-terminus with an Src myristoylation signal (Myr, 

MGSSKSKPKSR) and at the C-terminus with a haemagglutinin (HA) epitope, as described 

in [15]. To distinguish heterologously expressed Akt from endogenous Akt, a 41-amino-acid 

large tag (LT), AIDGAGAGALVPRGSKET-AAAKFERQHMDSGAYPYDVPDYA, was 

fused at Akt C-terminus. The LT tag contained a peptide linker followed by a thrombin 

cleavage site, S-epitope tag and HA epitope tag. All plasmids were under the control of the 

cytomegalovirus promoter. Mutant constructs were generated using standard molecular 

biology strategies and confirmed by sequencing at the core facilities of Kimmel Cancer 

Center (Philadelphia, PA, U.S.A.). GFP in pFred143 (KH1035) was used in co-transfections 

to monitor transfection efficiency. H-89 {N-[2-(p-bromocinnamylamino)ethyl]-5-

isoquinolinesulfonamide}, a weak ATP-competitive Akt inhibitor (Km 2.5μM [23]) was 

purchased from LC Laboratories. The phosphatase inhibitor calyculin A was purchased Cell 

Signaling Technology. Pervanadate was prepared fresh by mixing equal molar amounts of 

hydrogen peroxide and NaVO4 [24].

Cell culture and transfection

H9C2 cells derived from rat neonatal hearts (A.T.C.C.) were cultured in M199 medium 

supplemented with 10% FBS and antibiotics. Human embryonic kidney (HEK) 293 cells 

were cultured in Dulbecco’s modified Eagle’s essential medium (DMEM) supplemented 

with 10% FBS and antibiotics. Primary human airway smooth muscle cultures were 

generated as described previously [25]. Cells were transfected using Fugene-6 HD (Roche) 
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or Lipofectamine 3000 Reagent (Life Technologies) according to the manufacturer’s 

protocols.

Cell extract Akt dephosphorylation

To maximally phosphorylate Akt1 constructs at the activation loop (Thr308), Akt constructs 

were co-transfected with PDK1. Transfected cells were stimulated for 15 min with 2 μM 

insulin, in the presence of the tyrosine phosphatase inhibitor pervanadate (100 μM). To 

harvest, stimulated cells were washed once with ice-cold PBS before they were placed in a 

cell culture dish on an ethanol/solid-CO2 bath to flash freeze. Cell-free extracts were 

prepared by scraping flash-frozen cells into phosphatase assay buffer (50 mM Hepes, pH 

7.5, 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 10 mM NaF, 5 μM H-89 ATP-competitive 

inhibitor and 0.1% NP40 detergent supplemented with 5 μg/ml leupeptin, 5 μg/ml aprotinin, 

10 mM PMSF and 1 mM DTT). H-89 was used in the cell-free system as an ATP-

competitive inhibitor against Akt (Km for Akt = 2.5 μM [23]). Total cell-free extracts were 

incubated at 30°C to initiate dephosphorylation. At the indicated times, a fixed amount of 

cell extract was removed from incubation and the reaction stopped by adding an equal 

volume of stop assay buffer (25 mM Tris/HCl, pH 7.6, 137 mM NaCl, 10% glycerol, 1% 

NP40, 10 mM NaF supplemented with 5 μg/ml leupeptin, 5 μg/ml aprotinin, 10 mM PMSF, 

1 mM NaVO4 and 100 nM calyculin, 20 mM β -glycerolphosphate and 1 mM sodium 

pyrophosphate). After lysis on ice for 10 min, cell lysates were clarified, reduced and 

denatured by PAGE sample buffer for immunoblotting.

Recombinant Akt and protein kinase A dephosphorylation

Recombinant activated Akt1 (50 ng, Millipore) and recombinant activated PKA catalytic 

subunit (50 ng, New England Biolabs) was dephosphorylated in 50 μl of optimized 

phosphatase assay buffer containing non-ionic detergents and supplemented with metal ions 

(1 mM MnCl2 or 5 mM MgCl2) and phospholipid micelles containing 4 μM PtdIns(3,4,5)P3, 

40 μM phosphoserine and 40 μM phosphocholine (Echelon Biosciences or Avanti Polar 

Lipids). The assays were initiated by adding 60–70 ng of recombinant PP2A catalytic 

subunit (L309 deletion, Cayman Chemicals) or 40 units of λ-phosphatase (Cell Signaling 

Technology).

Phosphatase assay with p-nitrophenyl phosphate as substrate

The same conditions used for Akt dephosphorylation were applied to assays using the 

colorimetric p-nitrophenyl phosphate phosphatase (PNPP) substrate. Assays were set up in 

untreated 96-well plates (Nunc 80040LE 0910) on ice and warmed at 37°C for 2 min before 

adding 50 μl of commercially prepared PNPP substrate (Anaspec). Phosphatase activity was 

measured at 405 nm from 5 to 60 min after incubation at 37°C. Where indicated, 200 ng of 

PP2A and 40 units of λ-phosphatase were used.

Immunoblotting

Akt phosphorylation (Ser473 and Thr308) was measured as described previously [26]. 

Briefly, cells were homogenized on ice using a NP40 lysis buffer (25 mM Tris/HCl, pH 7.6, 

137 mM NaCl, 10% glycerol, 1% NP40 and 10 mM NaF) freshly supplemented with 1 mM 
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sodium pyrophosphate, 5 μg/ml leupeptin, 5 μg/ml aprotinin, 1 mM EDTA, 10 mM PMSF, 1 

mM NaVO4 and 1 mM DTT. Clarified cellular lysates were boiled and separated by SDS/

PAGE (4–12% gels) and transferred on to nitrocellulose membranes. For immunoblotting, 

membranes were blocked for 30 min with Li-Cor blocking buffer and probed with 

antibodies at 4°C overnight. The blots were subsequently incubated with either IRDye 700 

or 800 secondary antibodies conjugated to IR fluorophores for 60 min. Bands were 

visualized and directly quantified using the Odyssey Infrared Imaging System (Li-Cor). The 

following antibodies were used at 1:1000 dilution: anti-phospho-proline-rich Akt substrate 

of 40 kDa (PRAS40) Ser246, anti-phosph-ERK1/2 (extracellular-signal-regulated kinase 

1/2), anti-phospho-Akt (Thr308), anti-phospho-Akt (Ser473; from Cell Signaling 

Technology), anti-total Akt (from BD Biosciences) and anti-GAPDH (glyceraldehyde-3-

phosphate dehydrogenase; from Santa Cruz Biotechnology) and anti-HA (from Covance).

Modelling structure

Structural figures were prepared using PyMOL (http://www.pymol.org) based on structures 

of activated Akt2 kinase domain with adenosine 5′-[β, γ-imido]triphosphate (AMP-

PNP)/Mn2+ [27,28] and PKA [29].

Calculation of relative free energy contributions

A CHARMM (Chemistry at HARvard Macromolecular Mechanics)-based method [30] was 

utilized to approximate the free energy contribution of each PDK1-interacting fragment 

(PIFtide) residue side chain interaction with the kinase domain-binding groove interface. 

The free energy contributions of the side chains are approximated by first removing peptide 

backbone atoms, transforming the α-carbon into a methyl group and calculating the linear 

interaction energy (LIE) difference between the scaled potential energies of the bound and 

free states [30]. Calculations are performed utilizing the Generalized-Born with Molecular 

Volume (GBMV) implicit solvent model providing a rigorous treatment of desolvation 

penalties.

Statistical analysis

A commercial software package was used for statistical analysis (Graph Pad Software). 

Comparison of means ± S.E.M. was analysed by non-parametric Mann–Whitney test.

RESULTS

Two AGC kinases, Akt and PKA, exhibit differential phosphatase sensitivity

When Akt kinases are ATP-bound, their phosphorylated activation loop (pThr308 in Akt1) 

interacts with other residues, His194 and Arg273, within the kinase domain and this 

interaction restricts cellular phosphatases from accessing the phosphorylated site [15]. The 

amino acid residues required for constructing this ‘phosphatase-shielding cage’ are 

conserved among AGC kinases, including PKA [22] (Figure 1A). However, unlike Akt 

kinase, inactive (regulatory subunit-bound) PKA is constitutively phosphorylated at the 

activation loop via the combined abilities of auto-phosphorylation and phosphatase 

resistance [31]. PKA activation loop is phosphorylated by PKA itself or by PDK1. In 

Chan et al. Page 5

Biochem J. Author manuscript; available in PMC 2015 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.pymol.org


addition, importantly, the fully phosphorylated PKA catalytic subunit becomes highly 

resistant to phosphatases in cells and in cell-free assays [32–34].

To directly compare dephosphorylation sensitivity between Akt and PKA using cell-free 

conditions, H9C2 cell extracts were prepared containing either constitutively phosphorylated 

Akt1 (Myr-Akt1) or constitutively phosphorylated PKA, using a rapid solid-CO2 freezing/

protein extraction method [15]. Incubation of cell extracts at 30°C resulted in 85% of Myr-

Akt1 being dephosphorylated by cellular phosphatases within 90 min; inclusion of the 

phosphatase inhibitor calyculin A inhibited this dephosphorylation (Figure 1B). By contrast 

and as expected, only 7% of PKA was dephosphorylated following incubation at 30°C for 

90 min. It is worth mentioning that transfected Myr-Akt1 expression was much higher than 

endogenous Akt, but transfection did not affect endogenous Akt response (Supplementary 

Figure S1).

To rule out the possibility that PKA dephosphorylation resistance was caused either by 

unknown factors in the cellular milieu or by intramolecular interactions between the PKA 

catalytic subunit and its regulatory subunit [35], we measured in vitro dephosphorylation 

using recombinant preparations of Akt and PKA catalytic subunits. When (pre)-

phosphorylated recombinant Akt1 or PKA (50 ng each) were incubated with the PP2A 

catalytic subunit (50 ng), 84% of Akt Thr308 was dephosphorylated within 60 min, yet only 

20% of PKA pThr197 was dephosphorylated (Figure 1C). PKA also resisted 

dephosphorylation more efficiently than did Akt1 when incubated with the pan-substrate 

bacteriophage λ phosphatase (Figure 1C, second panel). Thus, purified Akt kinase is 

‘intrinsically’ sensitive to dephosphorylation, whereas PKA is ‘constitutively’ phosphatase-

resistant.

Replacing Akt C-terminus with PIFtide enhances Akt activation loop phosphorylation

As noted earlier, PKA and Akt isoforms are members of AGC kinase family and, as shown 

for Akt1 and Akt2, their catalytic domains share a high degree of structural and amino acid 

homology, except at their C-termini (Figure 2A). An active Akt1 structure is not available. 

We compared the PKA C-terminus to active Akt2 structure with the S474D peptide (PDB 

code 1o6k). Since most of our biochemical studies were performed with Akt1, we indicated 

the corresponding Akt1 amino acid residues for clarity.

Structural comparison shows marked differences in intramolecular interactions formed by 

the respective C-termini. The PKA C-terminus is well-ordered, prior to the FxxF motif 

(residues 334–344). By comparison, the Akt C-terminus is disordered prior to the FxxF 

motif (residues 450–455). Using crystal structures of PKA (PDB code 4dg0) and Akt2 (PDB 

code 1o6k), a CHARMM-based method enabled us to approximate the free energy 

contribution of each C-terminal residue’s side chain interaction with the kinase domain-

binding groove interface (Supplementary Table S1). This analysis reveals that PKA Phe350 

of the FxxF motif is involved in several buried electrostatic interactions with residues Gln35, 

Lys92 and Lys111; consequently, the PKA Phe350 interaction within the kinase domain fold 

is −0.7 kcal/mol more favourable when compared with the comparable Akt residue (Akt2 

Phe473) interactions. These ‘high contact order’ interactions are particularly stabilizing to 

tertiary structures [36].
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Thus structural analysis predicts that PKA C-terminus forms strong intramolecular 

interactions involving the FxxF motif. By contrast, the Akt2 C-terminus interacts with the 

kinase domain in a more labile and dynamic fashion. This view is supported by experimental 

data revealing weak binding of the Akt C-terminus to the kinase domain [37]. The binding 

affinity of wild-type (WT) Akt C-terminal peptide for the hydrophobic groove on the kinase 

N-lobe is greater than 5000 μM. Even with phosphomimetic S473D replacement, the C-

terminal peptide affinity remains at 3600 μM [37].

We tested phosphatase sensitivity of phospho-Akt in cells by deletion of the PH domain 

(ΔPH-Akt1), which constitutively localizes Akt in the cytosol. Treating ΔPH-Akt1 

expressing cells with a phosphatase inhibitor (calyculin A) restored phosphorylation (Figure 

2B), indicating that phosphatase inhibition enhances cytosolic Akt phosphorylation. 

Transfected ΔPH-Akt1-WT expression was much higher than endogenous Akt 

(Supplementary Figure S2A).

We next tested the hypothesis that the differences in the strength of the intramolecular 

interactions of C-terminus FxxF motif may affect the phosphatase protection of activation 

loop (Akt pThr308). Unlike peptide sequences that correspond to WT Akt C-terminus which 

has weak affinity (~5000 μM) for binding the Akt kinase domain, a peptide derived from the 

C-terminus of PKC-related protein kinase 2 (PRK2) (PIFtide) binds Akt at 6 μM [37] 

(Figure 2C). Thus, we replaced the WT Akt C-terminus with the high-affinity PIF peptide 

(ΔPH-Akt1-PIF, SEEEQEMFRDFDYIADWC). When expressed in HEK293 cells, the 

ΔPH-Akt1-PIF construct enhanced Thr308 activation loop phosphorylation to an extent 

comparable to that observed with membrane-bound Myr-ΔPH-Akt1 (Figure 2D). The 

expression level of ΔPH-Akt1 mutants was much higher than that of endogenous Akt, but 

their phosphorylation was not affected by insulin stimulation (Supplementary Figure S2B). 

Interestingly, phosphomimetic mutations in ΔPH-Akt1 (S473D) or in ΔPH-Akt2 (S474D) 

failed to enhance Thr308 phosphorylation, probably due to weak ligand affinity even after 

S473D mutation [37] (Figure 2D; Supplementary Figure S2C).

Previously we demonstrated that ATP-binding site occupancy imparts dephosphorylation 

resistance to Akt [15]. To test whether the enhanced phosphatase resistance in ΔPH-Akt1-

PIF depends on occupation of the ATP-binding pocket, we mutated the ATP-binding lysine 

residue (Lys179 in the full-length human Akt1) to methionine (K179M) in ΔPH-Akt1-PIF. 

This construct (K179M-ΔPH-Akt1-PIF) was poorly phosphorylated at Thr308, yet 

phosphorylation was restored when cells were treated with calyculin A with or without 

insulin (Figure 2E; Supplementary Figure S2D). Thus, the phosphatase resistance in ΔPH-

Akt1-PIF is contingent upon occupation of the ATP-binding pocket previously shown to 

support Akt dephosphorylation resistance.

Replacing the Akt C-terminus with PIFtide blocks Akt dephosphorylation in cell-free 
assays

To avoid confounding variables inherent in cell-based studies [38,39], we used cell-free 

assays to directly test the ability of PIFtide to block phosphatase access to the Akt Thr308 

site.
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To differentiate transfected full-length Akt from endogenous Akt, we fused full-length 

Akt1-cDNA with a 41-amino-acid LT. This epitope tag consisted of a flexible linker, a 

thrombin cleavage site, an S-tag and a HA-tag (Figure 3A). To facilitate Akt 

dephosphorylation kinetics monitoring in the cell-free assay, we first established conditions 

that maximally phosphorylated Thr308 in Akt1-LT WT.

We tested cell treatment conditions in H9C2 cells and showed that combining PDK1 

expression with insulin and pervanadate treatment resulted in maximal Thr308 

phosphorylation of the Akt1-LT WT construct (Figure 3A). Insulin/pervanadate/PDK1 

treatment resulted in Akt1-LT WT phosphorylation at a level comparable to that observed 

for myristoylated Akt (Figure 3A) and for PIFtide-fused Akt1 (Figure 3B). PDK1/insulin/

pervanadate treatment also maximized Akt1-LT WT phosphorylation in HEK293 cells 

(Supplementary Figure S3A).

To test Akt dephosphorylation kinetics in cell-free extracts, H9C2 cells expressing 

maximally phosphorylated Akt1-LT WT and Akt1-LT PIF were snap-frozen using an 

ethanol/solid CO2 bath. Cell extracts were prepared with an EDTA-detergent extraction 

buffer without phosphatase inhibitors at 4°C. Akt1-LT WT was dephosphorylated by 89 ± 

2% within 30 min of incubation at 30°C (Figure 3B). Under the same conditions, Akt with 

the PIFtide was only dephosphorylated by 48±2% (P < 0.01), suggesting that PIFtide 

replacement enhanced Akt resistance to phosphatase activity. Unlike transfected constructs, 

endogenous Akt was similarly dephosphorylated in different cell extract types 

(Supplementary Figure S3B).

To directly assess whether PIFtide blocks Akt1 dephosphorylation, we incubated the 

purified PP2A catalytic subunit with recombinant phospho-Akt1 in a solution containing 

sonicated lipid micelles and PIFtide (Figure 3C). Under these conditions, PIFtide blocked 

Akt dephosphorylation by PP2A. For a control, we performed dephosphorylation assays in 

the absence of peptides and also with control peptides (Akt2 S473D C-terminal peptide, α-

helical region of Akt peptide, the myristoylated Src peptide and the myristoylated PKA 

peptide). With the exception of PIFtide, none of the peptides tested affected Akt 

dephosphorylation significantly (Figure 3C; Supplementary Figure S3C).

To rule out the possibility that PIFtide peptide directly inhibited phosphatases, we 

determined the effect of PIFtide on dephosphorylation of a universal phosphatase substrate, 

PNPP. Under conditions identical with those used in the Akt dephosphorylation assay, 

PIFtide did not affect the ability of PP2A to process PNPP (Figure S3D). Collectively, these 

data suggest that the Akt C-terminal interaction with PIFtide renders Akt resistant to 

phosphatase-mediated dephosphorylation.

C-terminal Akt residues can be modified to progressively decrease Akt dephosphorylation

We show the superposition of the C-terminal PIFtide (PDB code 1o6l) and S474D peptide 

(PDB code 1o6k) in the active Akt2 isoform in Figure 4A. C-terminal sequences 

surrounding phosphorylation sites of Akt1 (Ser473) and Akt2 (Ser474) are highly 

homologous (Figure 2A).
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In contrast with the serine/isoleucine motif in the Akt C-terminus, PIFtide contains a 

charged aspartic acid residue and a bulky tryptophan residue. We hypothesized that these 

two residues will enhance dephosphorylation protection in Akt kinases. To test this 

hypothesis, we sequentially replaced Akt1 amino acids in the tail with the corresponding 

PIFtide amino acids (Figure 4B). Cells expressing these mutants in the ΔPH-Akt1-S473D 

background revealed that combined S477D/G478W replacement alone enhanced steady-

state Thr308 phosphorylation approximately 7-fold (Figure 4B).

We noted that ‘DW’ dipeptide replacement alone was still much less effective than the 

native PIFtide (Figure 4B), suggesting that additional changes surrounding the FxxF motif 

(HFPQF as compared to MFRDF) contribute to dephosphorylation protection. Sequential 

replacement of these residues revealed that adding Q471D to S473D/S477D/G478W 

(DDDW) further increased phosphorylation from 6.6-fold to more than 17-fold (Figure 4B). 

Expression level of ΔPH-Akt1 mutants was much higher than that of endogenous Akt, but 

their phosphorylation were not affected by insulin stimulation (Supplementary Figure S2B). 

Taken together these results suggest that C-terminal sequences can be progressively 

modified to restrain phosphorylated Thr308 from cellular phosphatases, thereby increasing 

activation loop Akt phosphorylation and kinase activity.

A modified Akt C-terminus enhances insulin responsiveness

The preceding C-terminal modifications were tested in an Akt fragment lacking the PH 

domain, which does not respond to insulin stimulation [1]. To test the effects of C-terminal 

modification on insulin responses, we introduced the DDW (S473D/S477D/G478W) and 

DDDW (Q471D/S473D/S477D/G478W) mutations into full-length Akt containing the PH 

domain (Figure 5A). C-terminally modified Akt1 constructs were fused with a 41-amino-

acid LT to differentiate transfected Akt1 mutants from endogenous Akt. After transfecting 

these constructs into H9C2 cells, both DDW-and DDDW-modified Akt1-LT constructs 

demonstrated amplified insulin-dependent Thr308 phosphorylation (Figure 5B). Whereas 

WT Akt1 and the DDW-modified Akt1 responded similarly at acute insulin stimulation, 

only the DDW-modified Akt1 could sustain insulin-dependent phosphorylation at 4 h after 

insulin stimulation (Figure 5C).

Myr of Akt kinase, found in the viral Akt oncogene [40], causes constitutive activation loop 

phosphorylation that is refractory to serum starvation and phosphoinositide-3-kinase (PI3K) 

inhibitor treatment [1] (Figure 3A). In the presence of insulin, the specific phosphorylation 

of the Akt1-LT-DDDW mutant approached that of Myr-Akt1 (Figure 5D). Yet, unlike Myr-

Akt1, Akt1-LT-DDDW phosphorylation was reduced 8-fold within 60 min of insulin 

removal. Thus, C-terminal peptide mimics do not induce constitutive Akt 

hyperphosphorylation, but rather increase the transient response to insulin.

Next we tested phosphatase resistance of DDDW-modified Akt1-LT in the cell-free 

dephosphorylation assay. Insulin/pervanadate/PDK1 treatment maximal phosphorylated WT 

Akt to a level comparable to that of DDDW-modified Akt1-LT. Cell extracts were prepared 

after rapid freezing. To ensure a lack of protein kinase activity in the extracts, EDTA was 

included. Upon further incubation of cell extracts at 30°C, 90% of WT Akt1 was 

dephosphorylated within 30 min. In contrast, only 56% of DDDW-Akt1-LT was 
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dephosphorylated (Figure 5E). Furthermore, DDDW modification provided Thr308 

dephosphorylation resistance similar to that caused by full-length PIFtide replacement 

(Figure 3B; Supplementary Figure S4). Unlike transfected constructs, endogenous Akt were 

similarly dephosphorylated in different cell extract types (Supplementary Figure S3B). 

Thus, DDDW modification enables the Akt Thr308 site to resist cellular phosphatases.

Modified Akt kinase C-terminus renders Akt resistant to C2-ceramide inhibition

Akt kinases link insulin and other growth factors to increased cell growth, metabolism and 

survival [41–43]. Insulin resistance is associated with induction of the sphingolipid second 

messenger ceramide and ceramide directly regulates apoptosis susceptibility through 

inhibition of Akt [44,45]. Indeed, treatment of H9C2 myoblast cells and primary human 

airway smooth muscle cells for 2 h with 100 μM soluble short-chain ceramide (C2-

ceramide) reduced insulin-stimulated endogenous Akt phosphorylation by 90%(Figure 6A).

To test whether C-terminally modified phosphatase-resistant Akt constructs resist C2-

ceramide inhibition, we transfected DDDW-modified constructs into H9C2 cells and treated 

the cells with C2-ceramide. DDDW-modified ΔPH-Akt1 and full-length Akt1-LT remained 

highly phosphorylated at Thr308 after C2-ceramide treatment (Figures 6B and 6C). 

Consistently, Akt1-LT-DDDW also enhanced phosphorylation of the Akt substrate 

phospho-PRAS40 under C2-ceramide treatment conditions in both primary human airway 

smooth muscle cells (Figure 6D) and H9C2 cells (Supplementary Figure S5B). Interestingly, 

in the absence of ceramide, insulin-stimulated pPRAS40 phosphorylation was not further 

augmented by Akt1-LT-DDDW expression (Supplementary Figures S5A and S5B). These 

data suggest that targeting Akt dephosphorylation resistance could potentially protect cells 

from ceramide-mediated insulin resistance.

DISCUSSION

Activation loop phosphorylation is an essential prerequisite for catalytic activity of most 

AGC kinases [46,47]. In the present study, we demonstrate that the C-terminal signature 

hydrophobic motifs (FxxF) of the two AGC kinases Akt (protein kinase B) and PKA 

increase activation loop phosphorylation by restricting access of cellular phosphatases to this 

site. Whereas C-terminus-dependent dephosphorylation resistance of PKA is constitutive, 

dephosphorylation resistance of the Akt activation loop is conditional as it depends on 

membrane-proximal localization and on ATP binding to Akt (Figure 7).

Previous work showed that the Akt C-terminal hydrophobic motif binds Akt with low 

affinity, even when the regulatory site (Ser473 in Akt1) is phosphorylated [37]. Low-affinity 

interaction of the Akt C-terminus with the kinase domain is further supported by structural 

data revealing an inactive ‘open’ conformation with a disordered αC-helix and disordered 

C-terminal tail [28,37]. By contrast, the C-terminus of PKA (PDB codes 4dg0 and 4dg2) 

forms high-affinity electrostatic interactions with N-terminal residues (Ser34/Gln35) that 

should confer significant conformational rigidity on this region; these residues are not 

conserved in Akt kinases [29]. As shown in the present study, increasing the strength of 

interaction of C-terminal sequence variants with the kinase domain renders the Akt 

activation loop resistant to dephosphorylation independent of intracellular localization.
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Akt conformational change induced by membrane binding coordinately regulates the 

phosphorylation of both the activation loop and the C-terminus [1,4]. However, these two 

sites are phosphorylated by distinct protein kinases (PDK1 and mTORC2). Whereas 

abolishing activation loop phosphorylation (via PDK1 deletion) does not affect C-terminal 

phosphorylation in embryonic stem cells [48], abolishing C-terminal phosphorylation blunts 

activation loop phosphorylation in a cell-type/condition-dependent manner.

Our research group, as well as other research groups [49], has found that mutating Ser473 to 

alanine in membrane-bound Akt reduced activation loop phosphorylation by nearly 95% 

(Supplementary Figure 6B). Similarly, abolishing Ser473 phosphorylation via genetic 

mTORC2 inhibition (RICTOR subunit deletion or knockdown) blunts activation loop 

phosphorylation in PTEN (phosphatase and tensin homolog)-deleted mouse prostate glands 

[50] and in several human cancer cells [3]. These results suggest that lack of Ser473 

phosphorylation increases Akt phosphatase sensitivity leading to reduced Thr308 

phosphorylation in these cells.

Surprisingly, Ser473 phosphorylation can be uncoupled from Thr308 phosphorylation. 

Abolishing Akt C-terminal phosphorylation in primary mouse embryonic fibroblast cells 

fails to reduce Thr308 phosphorylation [5,50–52]. Also, reducing mTORC2 activity blocked 

both Ser473 and Thr308 phosphorylation in insulin-stimulated 3T3-L1 adipocytes [53], but in 

brown adipocyte precursor cells, it only blocked Ser473 phosphorylation [54]. It is likely that 

mouse embryo fibroblasts and brown adipocyte precursor cells possess specific factors that 

enhance phosphatase resistance even in the absence of Akt C-terminal phosphorylation.

Phosphorylation of the Akt C-terminus regulates catalytic activity [47,55] and substrate 

selectivity of this kinase [56,57]. As shown in the present study by use of phosphomimetic 

mutants, phosphorylation of the C-terminus of Akt1 at Ser473 is required but not sufficient 

for conferring dephosphorylation resistance on the activation loop. The abundantly 

expressed phosphatase PP2A is the primary phosphatase to dephosphorylate Akt kinases 

(both the activation loop Thr308 site and the C-terminal Ser473 site) [12,13,58–60]. In 

addition, the Akt C-terminal site could also be dephosphorylated by a member of the PP2C 

phosphatase family, PHLPP1/2 [61,62] and by protein phosphatase-1 [63]. Consistently, our 

earlier study showed that both Thr308 and Ser473 sites can render phosphatase resistant by 

ATP binding in the presence of recombinant PP2A (Supplementary Figure in [15]). 

Furthermore, ceramide treatment blocked the phosphorylation at both Thr308 and Ser473 

sites (Supplementary Figure S6). Thus, we suggest that one function for Ser473 

phosphorylation is to enhance phosphatase resistance at the activation loop. 

Dephosphorylation kinetics probably affects multiple functions of Akt kinases including 

insulin-mediated and Akt-dependent modulation of glucose and lipid metabolism [41,43,64]. 

After insulin stimulation, the Akt2 isoform not only binds phosphoinositide lipids, but is 

recruited into a GLUT4 (glucose transporter type 4)-containing raft membrane containing 

potential regulatory proteins such as Cbl (Casitas B-lineage Lymphoma), Crk adapter 

molecule, flotillin and TC10 (also known as Rho-related GTP-binding protein Q) [65].

Insulin resistance, as observed in diabetes, is associated with reduced Akt activity and up-

regulation of the sphingolipid second messenger ceramide [44,45]. Ceramide is known to 
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modestly enhance PP2A activity (~1.5–2-fold) [66], but direct phosphatase activation by 

ceramide is not the main mechanism for Akt phosphorylation blockade. Instead, ceramide 

blocks the translocation of the Akt PH domain to the plasma membrane [67,68] via 

interaction with and/or phosphorylation by PKCζ and membrane rafts [69–72]. Thus, 

ceramide does not block phosphorylation in ΔPH-Akt constructs.

Along with other research groups, we have shown that the deletion of the Akt PH domain 

prevents Akt translocation to the plasma membrane [1]. Consequently, expressed ΔPH-

Akt1-WT does not respond to growth factor stimulation and is essentially unphosphorylated 

when expressed in HEK293 cells (Supplementary Figure S2A) and in many other cell types 

[73–77]. But treating cells with the phosphatase inhibitor calyculin A was sufficient to 

restore Thr308 phosphorylation in ΔPH-Akt1-WT over 200-fold (Supplementary Figure 

S2A). Thus, ΔPH-Akt1-WT is already dephosphorylated in the absence of ceramide 

treatment.

Our earlier studies showed that membrane-localized Akt becomes more phosphatase 

resistant [15]. Also, ceramide blocked Thr308 phosphorylation in WT Akt in the presence of 

insulin stimulation (Figure 6C) by preventing the translocation of Akt to the plasma 

membrane [67,68]. Thus, DDDW-modified Akt1 resisted ceramide treatment by enhancing 

phosphatase resistance even when not membrane-bound. We show in the present study that 

a modified Akt C-terminus not only increases steady-state Akt phosphorylation upon insulin 

exposure, but also imparts resistance to ceramide-dependent Akt dephosphorylation leading 

to robust Akt1 downstream signalling. These results suggest novel approaches to protect 

cells against ceramide-associated cytotoxic effects.

Finally, removal of insulin triggers dephosphorylation of C-terminally modified Akt. The 

insulin-responsive enhancement of Akt phosphorylation is distinct from constitutive 

phosphorylation as observed in membrane-targeted myristoylated Akt (which confers 

oncogenic properties) [1,78,79]. Thus, the requirement of physiological insulin to enhance 

C-terminally modified Akt phosphorylation suggests that Akt agonists based on modified 

Akt C-termini can be developed that have favourable pharmacological properties and are not 

encumbered by oncogenic risks.

Akt translocation to the plasma membrane promotes both its phosphorylation and its 

phosphatase resistance to sustain Akt activity. In addition, other cell membrane 

compartments, such as mitochondria-associated endoplasmic reticulum and the nucleus, also 

contain Akt substrates that affect Akt function. For example, Sasaki et al. [80] used 

subcellular-targeted fluorescent Akt substrate reporter to show that Akt phosphorylation 

occurs at Golgi and mitochondria subcellular membrane compartments, but not within 

cytosol. Also, we and others [4] have shown cytosolic Akt is readily dephosphorylated 

(Figure 2B).

The mechanism for activating Akt in these subcellular compartments is unclear. One 

possibility is that phosphorylated Akt traverses from the plasma membrane via D3-

phosphoinositide-containing membrane vesicles that support Akt phosphorylation and/or 

phosphatase protection. Alternatively, components of Akt signalling pathway may already 
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reside at these subcellular locations. Specifically, Akt kinase, PI3K, D3-phosphoinositides, 

PDK1 and mTORC2 have been found in the nucleus [81], at mitochondria-associated 

endoplasmic reticulum membranes [81–85] and at ClipR-59 lipid/raft associated scaffolding 

protein in adipocytes [86,87].

In summary, our results demonstrate that differences in dephosphorylation resistance among 

AGC kinases can be explained in part by differences in the affinity of intramolecular 

interactions between the C-termini and the kinase domains. Specifically, higher-affinity 

interactions between these functional domains confer higher degrees of phosphorylation 

resistance. These findings provide a rational basis for the development of C-terminal 

peptidomimetics for therapeutic purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AMP-PNP adenosine 5′-[β,γ-imido]triphosphate

DNA-PK DNA-dependent protein kinase

GAPDH glyceraldehyde-3-phosphate dehydrogenase

HA haemagglutinin

HEK human embryonic kidney

LT large tag

Myr myristoylation

PDK1 phosphoinositide-dependent kinase-1

PH pleckstrin homology

PHLPP PH domain leucine-rich repeat protein phosphatase

PI3K phosphoinositide 3-kinase

PKA/C protein kinase A/C

PNPP p-nitrophenyl phosphate phosphatase

PP2A protein phosphatase 2A

PRK2 PKC-related protein kinase 2
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Figure 1. Constitutive dephosphorylation resistance of phospho-PKA, but not phospho-Akt, in a 
cell-free assay
(A) Superimposition of Akt kinase domain (Akt2–Mn–AMP-PNP–G–SK3, green, PDB 

code 1o6k [28]) and PKA kinase domain (PKA–Mn–ATP–PKI, brown, PDB code 1cdk 

[88]). In the presence of bound ATP analogues, the phosphorylated activation loops (Thr308 

in Akt1, Thr197 in PKA) shown are stabilized by invariable histidine (His194 in Akt1, His87 

in PKA) and arginine (Arg273 in Akt1, Arg165 in PKA) residues. The structure was modelled 

on active human Akt2 crystal structures bound to the ATP analogue AMP-PNP and Mn2 + 

(PDB code 1o6k). Since most of our biochemical studies were performed with Akt1, we 

indicate the corresponding Akt1 amino acid residues in the structure for clarity. (B) Cell 

extract dephosphorylation of Akt and PKA. H9C2 cells expressing constitutively 

phosphorylated Myr-Akt1-HA and phosphorylated endogenous PKA were flash-frozen and 

extracted on ice. Aliquots of cell extracts without phosphatase inhibitors were incubated at 

30°C for 90 min. After incubation, protein extracts were subjected to immunoblot analysis 

using antibodies detecting phosphorylated Akt (Thr308), HA-tagged Akt, phosphorylated 
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PKA (Thr197) and total PKA. (C) Recombinant phospho-PKA catalytic subunit, but not that 

of recombinant phospho-Akt, resists dephosphorylation. Recombinant Akt1 and PKA (50 

ng) were incubated with PP2A (70 ng of PP2A-C) or pan-substrate bacteriophage λ 

phosphatase (40 units) for 60 min at 30°C. Images show Akt1 Thr308 phosphorylation, total 

Akt, PKA Thr197 phosphorylation and total PKA. The histograms show the percentage of 

pThr308 or pThr197 dephosphorylation. n=4/group. *P < 0.05 compared with PKA 

dephosphorylation by PP2A.
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Figure 2. Replacing cytosolic Akt1 C-terminal sequences with PIFtide 
(SEEEQEMFRDFDYIADWC) and phosphatase inhibitor treatment similarly enhanced Thr308 

phosphorylation
(A) Amino acid composition of Akt1 and Akt2 are highly homologous, especially at the 

FxxF C-terminal sequences. Only the active Akt2 crystal structure (PDB code 1o6k) is 

available. Since most of our biochemical studies were performed with Akt1, we indicated 

both Akt1 and Akt2 amino acid residues in the structure for clarity. Superimposition of 

active Akt2 crystal structure (PDB code 1o6k) with active PKA crystal structure (PDB code 

1cdk). Positioning of the Akt C-terminus (colour red) is distinct from the PKA C-terminus 

(colour blue). Whereas Akt C-terminal residues (450–466) are disordered, the PKA C-

terminus stably interacts with its kinase domain through high-affinity contacts. (B) 

Phosphatase inhibitor treatment (100 nM calyculin A) increases Thr308 phosphorylation in 

cytosol-localized Akt (ΔPH-Akt1). PH domain-deleted WT Akt1 (ΔPH-Akt1-WT) was 

transfected into HEK293 cells and exhibits expression localized to the cytosol. After 48 h, 

the transfected cells were propagated for an additional 4 h in exogenous growth factor-free 

medium followed by addition of 100 nM calyculin A for 15 min. Protein extracts were 

subjected to immunoblot analysis using antibodies to phospho-Akt Thr308 and HA tag. (C) 
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Sequence and known Akt-binding affinity values of Akt1 C-terminal tail (19 amino acids), 

phosphomimetic aspartic acid replacement of Ser473 (S473D) tail and PIFtide tail from the 

AGC kinase PRK2 (SEEEQEMFRDFDYIADWC) [37]. The six PIFtide amino acids 

identical with WT Akt sequences are highlighted. The PIFtide sequences were used to 

replace the Akt tail in the cytosolic Akt construct (ΔPH-Akt1-PIF). (D) Cytosolic Akt1 

containing PIFtide (ΔPH-Akt1-PIF) increases Thr308 phosphorylation. ΔPH-Akt1 with 

PIFtide replacement (ΔPH-Akt1-PIF) along with membrane-targeting Myr signal (Myr-

ΔPH-Akt1) and S473D replacement (ΔPH-Akt1-S473D) constructs were transfected into 

HEK293 cells. Transfected cells were incubated for 4 h in medium that was free of 

exogenous growth factors. Protein extracts were subjected to immunoblot analysis using 

antibodies to phospho-Akt Thr308 and anti-HA. The histogram shows the percentage of 

reduced pThr308 phosphorylation from maximally phosphorylated Myr-ΔPH-Akt1. ΔPH-

Akt1-WT (n=7) compared with ΔPH-Akt1-PIF (n=8), *P < 0.001. See Supplementary 

Figure S2C for ΔPH-Akt2-S474D replacement data. (E) ATP binding is required for ΔPH-

Akt1-PIF to enhance Akt phosphorylation. The ATP-binding lysine residue (Lys179 in full-

length human Akt1) was mutated to methionine (K179M) in in ΔPH-Akt1-PIF. HEK293 

cells transfected with indicated constructs were incubated for 4 h in medium free of 

exogenous growth factors, with or without 100 nM calyculin A/2 μM insulin for 30 min.
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Figure 3. PIFtide enhanced Akt phosphatase resistance in cell-free assays
(A) To distinguish heterologously expressed Akt from endogenous Akt, a 41-amino-acid LT 

containing the HA epitope was fused with WT Akt1 (Akt1-LT WT). To define conditions 

that maximally phosphorylate the Thr308 site, Akt1-LT WT was first co-transfected with the 

kinase that phosphorylates the Thr308 site (PDK1). Constitutively phosphorylated Myr-Akt1 

construct was used as positive control. Then, transfected cells were stimulated for 15 min 

with 2 μM insulin plus the tyrosine phosphatase inhibitor pervanadate (Per-VO4) (100 μM). 

Immunoblot analysis using antibodies detecting phosphorylated Akt (Thr308) showed that 

the combined treatment of insulin/pervanadate/PDK1 maximally phosphorylated Akt1-LT 

WT. (B) Akt1 with PIFtide replacement resisted dephosphorylation in cell-free extracts. 

H9C2 cells expressing WT and PIFtide-replaced Akt1-LT constructs were maximally 

phosphorylated by insulin/pervanadate/PDK1 treatment. Flash-frozen cell extracts were 

prepared on ice with phosphatase inhibitor-free detergent extraction buffer. The extracts 

were incubated at 30°C for 30 min. After incubation, protein extracts were subjected to 
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immunoblot analysis using antibodies detecting phosphorylated Akt (Thr308). The histogram 

shows the percentage of Akt dephosphorylation at 0 min and at 30 min (Dephos. %) 

(respectively, Akt1-LT WT, n=5, n=10; Akt1-LT-PIF, n=2, n=4). *P < 0.01 compared with 

Akt1-LT WT at 30 min. (C) Recombinant PIFtide increased phosphatase resistance in 

recombinant WT-Akt. Amino acid position and composition of synthesized peptides used in 

the dephosphorylation assay. Pre-phosphorylated recombinant Akt1 (50 ng) was incubated 

with recombinant PP2A for 10 min or 30 min at 30°C. Assay solution contained 100 μM 

ATP and 10 μM of indicated peptides. Immunoblot images show Akt1 Thr308 

phosphorylation, total Akt1 and PP2A-C protein level. In addition, PIFtide did not affect the 

catalysis of the universal phosphatase substrate, PNPP (Supplementary Figure S2).
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Figure 4. Progressive protection of Akt dephosphorylation by a DDDW targeting groove
(A) Akt structures were superimposed with Akt C-terminal amino acids (purple) or with 

PIFtide amino acids (blue). Image depicts the insertion of PIFtide DW residues into an Akt 

groove. The structure shown is modelled on active human Akt2 crystal structures bound to 

the ATP analogue AMP-PNP and Mn2 + with S474D mutation (PDB code 1o6k) or with 

PIFtide fusion (PDB code 1o6l). Most of our biochemical studies were performed with 

Akt1. When Akt2 structure models were used, we indicate the corresponding Akt1 amino 

acid residues for clarity. (B) The C-terminally modified cytosolic Akt (ΔPH-Akt1) 

constructs were transfected into HEK293 cells and incubated for 4 h in medium that was 

free of exogenous growth factors. Protein extracts were subjected to immunoblot analysis 

using antibodies to phospho-Akt Thr308 and anti-HA. For quantification, we used a two-

colour infrared fluorescence quantitative Western blot system with Li-Cor Odyssey imager 

to measure band intensity from different blots. In each blot, pThr308 signal and the HA 

signal in ΔPH-Akt1-WT were normalized to 1. The specific phosphorylation is the ratio of 

the normalized pThr308 signal to normalized HA signals. *P < 0.001 ΔPH-Akt1-DDW 
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(n=9) or ΔPH-Akt1-DDDW (n=11) compared with ΔPH-Akt1-S473D (n=8). #P < 0.001 

ΔPH-Akt1-DDW compared with ΔPH-Akt1-DDDW.
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Figure 5. C-terminal stabilization in full-length Akt enhances insulin responsiveness
(A) To differentiate from endogenous Akt, a 41-amino-acid LT containing the HA epitope 

was fused with Akt1 (Akt1-LT). C-terminal mutation constructs in Akt1-LT are shown. (B) 

Akt1-LT-DDW and Akt1-LT-DDDW progressively improved insulin sensitivity after 

chronic insulin stimulation (240 min). Indicated Akt1-LT constructs were transfected into 

H9C2 myoblasts and stimulated with 2 μM insulin for 240 min. Protein extracts were 

subjected to immunoblot analysis using antibodies to phospho-Akt Thr308 and anti-HA. (C) 

The graph shows the time course of phospho-Thr308 response after insulin stimulation. 

Quantification shows the pThr308/total Akt ratio after 4 h of insulin stimulation normalized 

to Akt1-LT WT. *P < 0.05 Akt1-LT DDW (n=3) compared with Akt1-LT WT (n=4). (D) 

Unlike phospho-Myr-Akt1, pThr308 in Akt1-LT-DDDW was rapidly dephosphorylated after 

insulin removal. H9C2 cells were pre-stimulated with insulin for 10 min and then insulin 

medium was replaced with serum-free medium and incubated for 60 min. Quantification 

shows pThr308/total Akt ratio after 60 min of insulin removal. (E) DDDW modification 

provided Thr308 dephosphorylation resistance similar to full-length PIFtide in cell-free 

extracts. After maximally phosphorylating both AKT1-LT-WT and AKT1-LT-DDDW by 
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insulin/pervanadate/PDK1 treatment, flash-frozen cell extracts were incubated at 30°C for 

30 min. After incubation, protein extracts were subjected to immunoblot analysis using 

antibodies detecting phosphorylated Akt (Thr308) and HA epitope. The histogram shows the 

percentage of Akt dephosphorylation at 0 min and at 30 min (Dephos. %) (respectively, 

Akt1-LT WT, n=5, n=10; Akt1-LT-DDDW, n=2, n=5). *P < 0.001 compared with Akt1-

LT-WT at 30 min. See also Supplementary Figure S4 for Akt1-LT-PIF compared with 

Akt1-LT-DDDW assay.
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Figure 6. Modified Akt C-terminus confers resistance to ceramide-mediated inhibition
(A) C2-ceramide blocks insulin activation of Akt. H9C2 myoblast cells and primary human 

airway smooth muscle cells were treated for 2 h with 100 μM soluble short-chain ceramide 

(C2-ceramide). Then, cells were stimulated with 2 μM insulin for 30 min. Protein extracts 

were subjected to immunoblot analysis using antibodies detecting phosphorylated Akt 

(Thr308), total Akt and phospho-specific Akt substrate: phospho-PRAS40. GAPDH 

expression was used as loading control. (B) WT and DDDW-modified ΔPH-Akt1 construct 

was transfected into H9C2 myoblasts cells and incubated for 2 h with C2-ceramide before 

insulin stimulation. Immunoblot analysis shows phosphorylated Akt Thr308 levels in both 

transfected ΔPH-Akt1 constructs (45 kDa) and endogenous Akt (60 kDa). The histogram 

shows insulin-stimulated Thr308 phosphorylation in the absence or in the presence of C2-

ceramide (respectively, endogenous WT Akt, n=11, n=16; ΔPH-Akt1-WT, n=4, n=7; ΔPH-

Akt1-DDDW, n=2, n=4). *P < 0.001 compared with endogenous Akt without ceramide. (C) 

Modified Akt C-terminus resisted ceramide treatment. Akt1-LT WT, Akt1-LT-DDW and 

Akt1-LT DDDW constructs were transfected into primary human airway smooth muscle 

cells and were treated for 2 h with 100 μM soluble short-chain ceramide (C2-ceramide). 

Then, cells were stimulated with 2 μM insulin for 15 min. Immunoblot analysis used 

antibodies detecting the HA epitope, phosphorylated Akt (Thr308) and GAPDH loading 
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control. (D) DDDW-modified Akt1 enhanced Akt substrate phosphorylation. Akt1-LT WT 

and Akt1-LT-DDDW constructs were transfected into primary human airway smooth 

muscle cells. Cells were treated with 100 μM C2-ceramide and stimulated with 2 μM 

insulin. Immunoblot analysis used antibodies detecting the HA epitope, phosphorylated Akt 

(Thr308), phospho-specific Akt substrate, phospho-PRAS40 and GAPDH loading control.
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Figure 7. C-terminal stabilization promotes phosphatase-resistance cage formation
After PtdIns(3,4,5)P3 (PIP3 ) binding to Akt PH domain, membrane-bound Akt is 

phosphorylated at the C-terminus (Ser473 in Akt1) and at the activation loop (Thr308 in 

Akt1) by PDK1 and mTORC2 respectively and in a co-ordinated manner. Membrane 

localization also promotes the formation of a phosphatase-resistant cage to shield both 

phosphorylated sites from phosphatases. In the absence of phosphatidylinositol (3,4,5)-

trisphosphate (PIP3 ), cytosolic phosphorylated Akt is dephosphorylated by phosphatases. 

DDDW-modified Akt C-terminus promotes phosphatase resistance at the activation loop.
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