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Abstract  69 

Decorin is a prototypical small leucine-rich proteoglycan and epitomizes the multifunctional nature of 70 

this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target 71 

rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates 72 

signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a 73 

Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin 74 

blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising 75 

tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, 76 

including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell 77 

mitophagy, and angiostasis. Decorin is also pro-inflammatory by modulating macrophage function and 78 

cytokine secretion. Decorin suppresses tumorigenic growth, angiogenesis, and prevents metastatic 79 

lesions in a variety of in vitro and in vivo tumor models. Therefore, decorin would be an ideal 80 

therapeutic candidate for combatting solid malignancies. 81 
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1. Introduction 140 

Fundamental for all facets of multicellular life and evolutionarily conserved, the extracellular matrix 141 

(ECM) is a diverse network of instructional cues linking the local tissue microenvironment with the 142 

juxtaposed tumor cells [1-3].  Emerging as a critical entity in chemotherapeutics, tumorigenic 143 

progression, and predicting clinical outcome [4-6], the ECM is a nexus of signal integration for a 144 

plethora of cell-derived factors while synchronously regulating cellular behaviors [7]. This symbiotic 145 

relationship facilitates bidirectional parsing of intrinsic biological information into functionally relevant 146 

processes responsible for orchestrating tumorigenesis and angiogenesis [8-10].  147 

 The small leucine-rich proteoglycans (SLRPs) are an emerging subset of matrix-derived, soluble 148 

regulators that are inextricably woven into the fabric of the ECM. They reflect the multifactorial 149 

propensity of the matrix, and subsume crucial roles over a spectrum of homeostatic and pathological 150 

conditions [11]. This 18-member strong gene family is proving critical for restraining the development, 151 

progression, and dissemination of various solid tumors [12-14]. Decorin, the archetypical SLRP, 152 

harbors a single, covalently-attached N-terminal glycosaminoglycan (GAG) chain consisting of either 153 

dermatan or chondroitin sulfate, twelve leucine-rich tandem repeats (LRR), and a class-specific C-154 

terminal Ear domain [15].  Although the crystal structure of decorin has been solved a head-to-tail 155 

dimer [16], it is likely that soluble decorin is active as a monomer in solution [17,18]. 156 

 Decorin was originally discovered as an avid collagen-binding protein necessary for appropriate 157 

fibrillogenesis [19-22], thereby originating the eponym of decorin [15]. Akin with a role in orchestrating 158 

and ensuring proper collagen fibril network assembly, decorin regulates tissue integrity by modulating 159 

key biomechanical parameters of tendons and skin [23-26]. However, seminal work heralded a major 160 

paradigm shift in understanding the function of SLRPs by demonstrating that soluble decorin is a high 161 

affinity, antagonistic ligand for several key receptor tyrosine kinases resulting in protracted oncostasis 162 

and angiostasis [27]. As a further mechanism for the oncosuppressive propensities of decorin, 163 

numerous growth factors-e.g. TGF- [28,29] and CCN2/CTGF [30], to name a few-and matrix 164 

constituents are sequestered [31], and manifest as an indirect attenuation of downstream signaling 165 

apparati. More recently, decorin has emerged as a soluble pro-autophagic cue by initiating endothelial 166 

cell autophagy and evoking tumor cell mitophagy as the mechanistic basis for the documented 167 

oncostatic effects [32]. Cumulatively, decorin is a soluble tumor repressor and anti-angiogenic factor 168 

and has rightfully earned the designation of “a guardian from the matrix” [31]. 169 

Beyond the emerging literature regarding the role of decorin within the tumor stroma, decorin is 170 

genuinely a multifaceted signaling effector and exemplifies the growing role of SLRPs in organismal 171 

homeostasis and pathology. Germane examples include immunomodulation [33,34], cutaneous 172 

wound healing [35], proper keratinocyte function [36], diabetic nephropathies [37], fetal membrane 173 

homeostasis [38], obesity and type II diabetes [39], allergen-induced asthma [40], allergic 174 
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inflammation [41], delayed hypersensitivity reactions [42], hepatic fibrosis [43], myogenesis and 175 

muscular dystrophy [44,45], post myocardial infarction remodeling [46], and mediating proper 176 

vertebrate convergent extension [47]. Moreover, decorin has been identified as a potential biomarker 177 

for ischemic stroke [48], renal and pulmonary diseases [49-51] and for maintaining hematopoietic 178 

stem cell niches [52].   179 

In this review, we will critically evaluate decorin as a tumoricidal agent by examining the classical 180 

mechanisms of decorin-mediated oncogenic suppression and the newly discovered signaling 181 

pathways that are exploited for autophagic induction. The biofunctionality of decorin and associated 182 

mechanisms discussed herein represent novel targets for future therapeutic intervention, as derived 183 

from this versatile proteoglycan, that will satisfy a growing and unmet medical need. 184 

 185 

1.1. General considerations: Decorin as an oncosuppressive entity 186 

An important construct for understanding the anti-tumorigenic effects of decorin concerns the 187 

localization and corresponding expression patterns of this prototypical SLRP within the various 188 

tumorigenic compartments [53].  189 

 190 

1.1.1. Localization and expression patterns of decorin within the tumor 191 

Despite a large literature describing decorin as an oncosuppressive proteoglycan [12,13,31,54], there 192 

are still several incongruencies that need to be addressed. In particular, the absence of decorin in the 193 

breast tumor stroma has been established as an important clinical prognosticator of invasive and 194 

metastatic breast cancer [10,55-57] as well as in soft tumors [58]. A similar reduction of decorin 195 

expression is seen in the microenvironments of low- and high-grade urothelial carcinoma [59] as well 196 

as in the plasma of multiple myeloma and MGUS patients [60], cases of esophageal squamous cell 197 

carcinoma [61] and instances of colon cancer [53]. An in silico-based query utilizing 198 

immunohistochemical arrays spanning a variety of tissues has detected a marked reduction of decorin 199 

expression in the stroma of many solid malignancies, including breast [62]. Other studies seemingly 200 

report the opposite result inasmuch as certain tumor types, including colon and breast carcinomas 201 

[54], have elevated amounts of stromally-deposited decorin. Functionally, the increased caches of 202 

decorin within these tumors may still negatively regulate growth by physically constraining the tumor 203 

(e.g. desmoplastic-type reaction) as well as acting in a paracrine manner to downregulate the 204 

adjacent RTKs present on the tumor cell surface. As it pertains to the tumor proper, several studies 205 

have clearly demonstrated a complete loss of decorin expression in several tumor types, such as 206 

urothelial, prostate, myeloma, and hepatic carcinoma [63-68]. Utilizing an unbiased deep RNA 207 

sequencing method of hepatocellular carcinomas, several prominent matrix constituents were 208 

decreased, including decorin [69]. Moreover, poorly differentiated sarcomas completely lack decorin in 209 
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contrast to hemangiomas which have considerable expression of decorin [66]. Therefore, the 210 

malignancy of a tumor may be linked to endogenous decorin expression.  211 

 212 

1.1.2. Genetic and cell biological evidence for decorin as a soluble tumor repressor 213 

As mentioned in the preceding section (1.1.1.), decorin is found to be profusely expressed within 214 

the stroma of colon cancer. This was the very first indication of a possible connection between decorin 215 

and an oncogenic setting [70-72]. Like p53, decorin was initially perceived as an oncogene. Since this 216 

discovery, strong genetic evidence has emerged confirming the oncostatic role of decorin following 217 

the unconditional ablation of decorin from the M. musculus genome [73]. Mice lacking the Dcn gene 218 

and given a Western diet (e.g. high-fat) develop intestinal tumors [74]. Mechanistically, loss of decorin 219 

disrupts appropriate intestinal cell maturation, leading to aberrant turnover (decreased differentiation 220 

and increased proliferation consistent with suppressed p21 and p27 with elevated -catenin) of the 221 

intestinal epithelium [74]. Moreover, the inhibition of colon carcinoma by decorin involves modulating 222 

E-cadherin levels in vitro and in vivo [75]. Moreover, when both p53 and Dcn genes are concurrently 223 

ablated, there is a genetic cooperation demonstrated by the rapid onset of aggressive T-cell 224 

lymphomas and premature death of the double mutant mice [76]. These studies indicate that genetic 225 

loss of decorin is permissive for tumorigenic initiation.  226 

Several studies have been completed wherein decorin is potently anti-metastatic for breast 227 

carcinomas [56,57,77] while compromising otherwise rampant tumor angiogenesis [78,79]. In a 228 

murine model of osteosarcoma, decorin prevents lung metastases [80] and inhibits B16V melanoma 229 

cell migration [81]. Of clinical and therapeutic importance, re-introduction of decorin via adenoviral 230 

delivery, de novo ectopic expression, or systemic administration counteracts the tumorigenicity in 231 

several animal models of cancer that recapitulate solid neoplastic growth [82-88]. Notably, pre-clinical 232 

studies using infrared-labeled decorin have shown that it preferentially targets the tumor xenografts 233 

with prolonged retention of the active agent [89]. Recently, adenoviral mediated decorin expression 234 

has been shown to decrease the growth of bone metastases caused by intracardiac injections of 235 

prostate [90] and breast [91] carcinomas. Taken together, the aforementioned genetic and pre-clinical 236 

studies establish and authenticate decorin as a viable tumor repressor for combating several types of 237 

cancer. 238 

 239 

2. Decorin structure: High-affinity interactions with several receptors 240 

Harboring the largest known gene family of proteoglycans, decorin and related classes of SLRPs 241 

share a common core architecture [92]. They are ubiquitously expressed in all major organs during 242 

development [93], and are present within all matrix assemblies. The various members have been 243 



 8 

organized into five distinct classes based on the criteria of evolutionarily conserved structural 244 

homology (including organization at the genomic and protein levels) as well as by shared functional 245 

properties [15]. The closest SLRP to decorin is biglycan, which shares more than 65% homology. 246 

These properties include the innate ability of collagen binding [20,94], growth factor binding and 247 

sequestration (predominantly those from the TGF- superfamily) [12,31], and cell surface receptor 248 

modulation as a soluble mediator [54,95]. Moreover, a specific subclass of solubilized SLRP and 249 

matrix components can regulate autophagy [32]. Finally, these classes can be subdivided further into 250 

canonical SLRPs (classes I-III) and non-canonical SLRPs (classes IV, V) based on various structural 251 

considerations (see below). In this fashion, decorin embodies all of these principles while pioneering 252 

new functions and paradigms. 253 

 254 

2.1. The LRR constitutes the basic unit of decorin structure and function 255 

 Leucine-rich repeats are about 24 amino acids in length and contain a conserved stretch of 256 

hydrophobic residues that form short -sheets on the interior or internal (concave) surface of the 257 

solenoid. These short -sheets are further arranged in a parallel conformation with the adjacent LRRs 258 

in the core (Fig. 1A). In total, there are 12 LRRs (designated with roman numerals I-XII) that constitute 259 

the protein core of decorin (Fig. 1A). Conversely, on the exterior or external (convex) surface of the 260 

solenoid, these -sheets are flanked by and intertwined with equally short -strands connected by 261 

several types of -helices (Fig. 1A). Terminating each LRR at the N- and C-termini are disulfide bonds 262 

that function as a cap. The inherent structural determinants of these caps aid in further distinction 263 

among the various classes of SLRPs (e.g. classes I-III vs. classes IV, V), as discussed above [15]. 264 

This fundamental LRR architecture permits a plastic interface capable of coordinating a myriad of 265 

protein-protein interactions. Indeed, this hallmark is crucial for the widespread functionality of decorin 266 

[95], and related SLRPs, and is mediated by residues located on the internal surface of the protein 267 

[15]. Moreover, each LRR confers various functional properties for the well-established bioactivities of 268 

decorin. For example, LRR XII binds CCN2/CTGF [30], LRR V/VI aid in the binding of decorin to 269 

VEGFR2 [96], and the collagen binding sequence (SYIRIADTNIT) of LRR VII, located on the interior 270 

surface of the solenoid [97], mediates direct binding of decorin to type I collagen (Fig. 1A). A feature 271 

of decorin, also shared by Class I-III SLRPs, is the presence of an elongated (~30 amino acids) LRR 272 

known as the “ear” repeat (Fig. 1A). In decorin, this is found in the penultimate LRR, LRR XI. 273 

Interestingly, truncation or mutations arising in the ear repeat of decorin cause congenital stromal 274 

corneal dystrophy [20,98]. Mechanistically, mouse models of decorin lacking this ear repeat trigger 275 

intracellular accumulation of decorin within the endoplasmic reticulum, thereby causing ER stress, and 276 

compromising proper corneal collagen deposition and assembly [99].  277 
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 Importantly, the covalently attached glycosaminoglycan chain plays a pivotal role in the regulation 278 

of collagen fibrillogenesis [15]. However, in the context of controlling intracellular signaling cascades 279 

via cell surface receptors, the glycosaminoglycan chain is dispensable.  280 

The glycosaminoglycan chain has a pivotal role in various connective tissue disorders insofar as 281 

alterations in the chain are found in congenital stromal corneal dystrophy and Ehlers-Danlos 282 

syndrome [100] as well as in cancer [12]. Improperly modified or missing chains can disrupt structural 283 

functions as mediated by decorin by compromising the architecture of the surrounding matrix. This is 284 

exemplified in the skin fragility phenotype of patients with Ehlers-Danlos syndrome, where roughly half 285 

of the secreted decorin lacks the chain [101]. Mechanistically, early stages of collagen fibril formation 286 

are impaired following the loss of the glycosaminoglycan chain. Moreover, the type and composition 287 

of the attached glycosaminoglycan can also vary, particularly in cancer (colon, ovarian, pancreatic, 288 

gastric), where it is predominantly chondroitin sulfate [10,12,72,102]. In contrast, the chemically more 289 

complex dermatan sulfate is less abundant in these types of tumors [102]. The presence of CS is 290 

postulated to facilitate cell migration, thereby increasing the malignancy of the tumor [102].   291 

 292 

2.2. Decorin is a soluble pan-RTK inhibitor and binds multiple cell surface receptors  293 

 As discussed above (section 2.1), the overall arrangement of decorin, in conjunction with the 294 

individual composition of the LRRs, endows a rather promiscuous nature of binding multiple targets 295 

expressed within the tumor microenvironment and by the tumor proper. Of critical importance for 296 

attenuating tumorigenic progression and preventing metastases, decorin avidly binds numerous cell 297 

surface receptors [95] (Fig. 1B). Decorin can be considered an endogenous, soluble pan-RTK 298 

inhibitor, especially targeting cells enriched in EGFR, Met, and VEGFR2. These three RTKs are the 299 

most established and instrumental for transducing signals necessary for oncogenic and angiogenic 300 

suppression [31,54] (Fig. 1B). As such, this trio of receptors will be discussed in more depth in the 301 

forthcoming sections (see below, sections 3 and 4).  302 

 Decorin, non-canonically, engages IGF-IR (Fig. 1B), but does not trigger internalization nor 303 

compromise the stability of the receptor complex at the cell surface [59,103], unlike EGFR and Met 304 

(see below) [54]. Instead, decorin decreases the stability of critical downstream signaling effectors 305 

such as IRS-1 [59], thereby attenuating sufficient activation of the Akt/MAPK/Paxillin pathway for IGF-I 306 

induced mobility [104]. Moreover, the role of decorin as an IGF-IR ligand is strictly context-dependent 307 

as decorin is an IGF-IR agonist in normal tissues, but functions as an obligate IGF-IR antagonist in 308 

cancer [103]. Adding an additional layer of complexity in modulating the IGF-IR signaling axis, decorin 309 

exerts control over discrete IR-A ligands by differentially binding and sequestering (analogous with 310 

requisitioning TGF- members) the various IR-A ligand isoforms [105]. The role of decorin and related 311 
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proteoglycans, particularly SLRP members, in mediating receptor cross-talk between EGFR and IGF-312 

IR is emerging as a central mechanism in estrogen-responsive breast carcinomas [106]. 313 

 A prime example can be made from PDGFR-/ that will reinforce the central dogma of decorin. 314 

Screening the RTKome of two different chemically induced models of hepatocellular carcinoma 315 

(HCC), it was found that, in a Dcn null background, many RTKs are constitutively activated [68]. 316 

Indeed, the global loss of decorin permits inappropriate, basal activation of several RTKs as 317 

measured by an increase in the phospho-Tyr signal. From this screen, PDGFR-/emerged (Fig. 1B) 318 

as a viable candidate to which decorin engages with high affinity and suppresses the formation of 319 

HCC [68]. Importantly, these results are congruent with the finding that decorin is suppressed, at the 320 

transcriptomic level, in HCC [69]. These strong genetic data clearly demonstrate the importance of 321 

decorin in preventing aberrant and constitutive RTK activation while maintaining proper tissue 322 

homeostasis.  323 

  324 

2.3. Decorin is pro-inflammatory by engaging TLR2/4 on the surface of macrophages 325 

It is becoming evident that soluble decorin can regulate the innate immune response [33] via toll-326 

like receptors 2 and 4 (Fig. 1B) and is considered a damage-associated molecular pattern member 327 

[107]. This pro-inflammatory property is analogous to that of circulating biglycan [108,109]. Via high-328 

affinity interactions, decorin engages TLR2/4 and promotes a pro-inflammatory state by triggering the 329 

synthesis and secretion of TNF- and IL-12p70 [33]. Indirectly, via the formation of decorin/TGF- 330 

complexes, anti-inflammatory mediators (such as IL-10) are translationally suppressed by PDCD4 331 

[33]. Thus, circulating decorin is a pro-inflammatory proteoglycan for innate immune modulation [33]. 332 

It has emerged that biglycan is a viable biomarker of inflammatory renal diseases [110]. Likewise, 333 

cancer patients have significantly increased levels of circulating decorin [33], positing decorin as a 334 

desirable therapeutic target.  335 

 336 

3. Suppression of growth and tumor angiogenesis via EGFR and Met 337 

Innate and distinct biological information pertinent for abrogating tumorigenic growth and suppressing 338 

tumor angiogenesis is stored within the solenoid structure of decorin [31]. This information is 339 

interpreted and transduced via engagements to a specific subset of RTKs (Fig. 2) that are amplified 340 

and enriched within the tumor parenchyma [10,12]. In the context of Met and EGFR, monomeric 341 

decorin [17] binds a narrow region that partially overlaps with that of the agonist binding cleft [111]. 342 

This binding subsequently promotes receptor dimerization, analogous to the natural ligand EGF [112], 343 

followed by a rapid and transient phosphorylation of the unstructured intracellular tails. This is 344 

followed by recruitment and activation of downstream effectors, caveosome-mediated internalization 345 

of the decorin/receptor complex, and eventual lysosomal degradation [9,14,113,114]. The latter 346 
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causes a protracted cessation of intracellular receptor signaling. Overall, this mechanism of action is a 347 

hallmark of decorin activity in the contextual framework of tumorigenic RTK signaling. 348 

Seemingly, receptors harboring specific structural motifs, specifically members of the IgG 349 

superfamily, may provide essential docking platforms for decorin engagement [111,115]. Indeed, the 350 

ectodomains of EGFR, Met and VEGFR2 all contain multiple IgG folds [116,117]. Mechanistically, 351 

decorin binding may promote a combinatorially different phosphorylation signature than the pattern 352 

obtained with natural agonist (e.g. TGF, EGF, HGF/SF, VEGFA). Collectively, the decorin-bound 353 

receptors initiate a signaling program than can lead to cell cycle arrest, apoptosis, and 354 

angiosuppression (Fig. 2).  355 

 356 

3.1. Decorin binds EGFR for tumor cell cycle arrest and apoptosis 357 

The concept of decorin-mediated RTK-antagonism was pioneered following the discovery that EGFR 358 

is a main target [118] and that decorin represents an endogenous ligand for receptor occupancy and 359 

modulation [119]. In mouse models carrying A431 orthotopic tumor xenografts, it was established that 360 

decorin, by targeting EGFR, significantly subverts tumorigenic growth in vivo [120].  Decorin indirectly 361 

inhibits Her/ErbB2 activity [121], potentially via the titration of active ErbB1/ErbB2 dimers [54]. Decorin 362 

also directly binds and represses ErbB4/STAT3 signaling [122] in the central nervous system. 363 

Mechanistically, decorin triggers transient activation of downstream ERK1/2 signaling (following 364 

stimulation of the innate EGFR kinase) [87] concurrent with a regulated burst of cytosolic Ca2+ [123]. 365 

Paradoxically, positive EGFR/MAPK signaling (despite total EGFR being reduced by >50%) evokes 366 

induction of the cyclin-dependent kinase inhibitor, p21WAF1 with concomitant conversion of pro-367 

caspase-3 into active caspase 3 [87]. Collectively, this promotes cell cycle arrest and induces the 368 

intrinsic apoptotic pathway, respectively (Fig. 2). Imperative for the protracted function of decorin, 369 

decorin/EGFR complexes are shuttled into caveolin-1 coated pits [31]. Specific phopho-residues are 370 

required for the association of caveolin-1 with EGFR [124] and internalized via endocytosis for 371 

degradation. This system prevents recycling of EGFR for additional rounds of signaling, in contrast to 372 

active ligands which sort EGFR into clathrin-coated pits. This leads to endosomal recycling and, 373 

ultimately, to repopulation of the cell surface with activated EGFR for additional signal transduction 374 

(Fig. 2).  375 

 376 

3.2. Decorin evokes oncoprotein degradation and suppresses angiogenesis via Met 377 

A major tenet of decorin-mediated suppression of oncogenesis involves transient activation of the 378 

receptor complex [31]. Using a discovery tool, such as a phosphotyrosine RTK array, it was found that 379 

a second RTK, Met or HGF receptor, is specifically activated by soluble decorin proteoglycan or 380 

decorin protein core [115] (Fig. 2). Met is the key receptor for decorin and is responsible for relaying 381 
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signals applicable for anti-tumorigenesis, angiostasis and pro-mitophagic functionalities (see below, 382 

section 4.2) [54,115]. Moreover, decorin exhibits a tighter binding affinity for Met when compared with 383 

EGFR, (Kd~2 vs 87 nM, respectively).  [115]. Heterodimeric decorin/Met complexes are shuttled from 384 

the cell surface into caveolin-1 positive endosomes following recruitment of the c-Cbl E3-ubiqtuin 385 

ligase to Met via Tyr1003 (Fig. 2), a residue phosphorylated and favored by decorin treatment [115]. 386 

Association of decorin/Met with caveolin-1 ensures termination of oncogenic signaling, which in 387 

parallel with decorin/EGFR is in stark contrast with HGF/Met (and EGF/EGFR) complexes localizing 388 

within clathrin-coated endocytic vescicles for proficient receptor recycling [89].  389 

 As a major consequence of inhibiting Met, two potent oncogenes, -catenin and Myc, are targeted 390 

for unremitting degradation via the 26S proteasome [89] (Fig. 2). Decorin-evoked transcriptional 391 

suppression coupled with phosphorylation-dependent protein degradation of Myc (at Thr58, the 392 

effector kinase(s) remains unknown) permits de-repression of the CDKN1A locus via loss of the AP4 393 

repressor [89]. Moreover, decorin suppresses -catenin signaling in a non-canonical fashion insofar 394 

as being independent from Axin/DSH/GSK-3activity [89]. In this scenario, -catenin is 395 

phosphorylated, not for increased protein stability, and is instead targeted for degradation [125] in a 396 

manner consistent with direct phosphorylation of -catenin by an RTK, such as Met [126-129] (Fig. 2). 397 

The observation that Myc and -catenin signaling is governed by decorin may account for the 398 

intestinal tumor formation seen upon decorin ablation, as -catenin is a major oncogenic driver for 399 

intestinal epithelium turnover and maturation [130]. Constitutive activation of Met is found in many 400 

cases of colon carcinoma and directly influences -catenin signaling [131]. Therefore, as global loss 401 

of decorin relieves the basal inhibition of several RTKs [68], this could certainly contribute to Met/-402 

catenin driven transformation of the intestinal epithelium and/or other solid malignancies directed by 403 

this axis. 404 

 Concomitant with the concerted suppression of two potent oncogenes, Met also serves as the 405 

primary node for angiogenic suppression in cervical and breast carcinomas [79] (Fig. 2). Positive 406 

signaling via Met non-canonically suppresses the transcription of HIF1A regardless of oxygen 407 

concentration [79]. Correspondingly, VEGFA mRNA and proteins are compromised in several in vitro 408 

studies utilizing primary endothelial cells, MDA-MB-231 triple-negative breast carcinoma cells, and in 409 

vivo as demonstrated with HeLa tumor xenografts [79]. Moreover, MMP2/9 (Gelatinase A and B, 410 

respectively) which liberate matrix bound VEGFA, are also significantly suppressed [79]. In parallel 411 

with a protracted suppression of pro-angiogenic effectors, decorin also evokes the expression and 412 

secretion of anti-angiogenic factors such as TIMP3 and TSP-1 [79] (Fig. 2). Further studies have 413 

indicated that decorin triggers the rapid secretion of TSP-1 from MDA-MB-231 cells in an EGFR-414 

dependent manner by attenuating the RhoA/ROCK1 pathway [132]. Given the powerful anti-415 

angiogenic activity of TSP-1 and the involvement in several pathophysiological processes [133-138], it 416 
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is likely that this indirect activity of decorin in malignant cells could have a protective role against 417 

cancer growth and metabolism. Taken together, decorin differentially regulates potent angiokines 418 

[139] that favor silencing rampant tumor neovascularization, thereby contributing further to the 419 

ascribed anti-tumorigenic and anti-metastatic properties.   420 

 421 

4. Decorin ameliorates tumorigenesis by evoking stromal autophagy and tumor mitophagy 422 

A major breakthrough in deciphering the in vivo bioactivity of decorin came from a pre-clinical screen 423 

that sought novel decorin-regulated genes [88]. With this goal, triple-negative breast carcinoma 424 

orthotopic xenografts were established and treated systemically with decorin, for downstream 425 

utilization on a high-resolution transcriptomic platform [88]. Unlike traditional microarrays, this chip 426 

was designed for the simultaneous analysis and detection of species-specific genes modulated within 427 

the host stroma (Mus musculus) and those originating from the tumor xenograft (Homo sapiens) [88]. 428 

Following validated bioinformatics approaches, it was found that decorin regulates a small subset of 429 

genes; however, this signature showed differential regulation exclusively within the tumor 430 

microenvironment derived from the murine host [88], with minimal transcriptomic changes in the tumor 431 

cells of human origin [88]. The transcriptomic profile obtained implies that exogenous decorin 432 

treatment reprograms the tumor stroma in a fashion that disfavors tumorigenic growth, consistent with 433 

the function of decorin acting as a soluble tumor repressor from the outside. 434 

 435 

4.1. Decorin evokes endothelial cell autophagy in a Peg3-dependent manner 436 

Using the decorin-treated breast carcinoma xenografts described above, several novel tumor-derived 437 

genes were discovered [88]. Among these genes, the genomically-imprinted zinc-finger transcription 438 

factor, PEG3 [140-143] was selected [88]. Previously, Peg3 has been implicated in regulating stem 439 

cell progenitors [144,145], mediating p53-dependent apoptosis of myogenic and neural lineages [146-440 

150], and maternal/paternal behavioral patterns [151,152]. Peg3 has been implicated in the 441 

pathogenesis of cervical and ovarian carcinoma as its expression is frequently lost via promoter 442 

hypermethylation and/or loss of heterozygosity [153-156]. Thus, Peg3 is considered a bona fide tumor 443 

suppressor [157]. Importantly, Peg3 represents another tumor suppressor induced by decorin in 444 

addition to mitostatin and Beclin 1 (see below). Moreover, in analogy to decorin bioactivity in cancer 445 

cells, Peg3 non-canonically suppresses the Wnt/-catenin pathway [158].  446 

As a proxy for the tumor stroma, we investigated the function of Peg3 within endothelial cells, as 447 

this particular cell type conveys major angiogenic advantages for a growing tumor and constitutes the 448 

primary cell type involved in capillary morphogenesis and patent vessel formation. Moreover, these 449 

cells are significantly responsive to soluble decorin, which suppresses the expression of VEGFA, a 450 

major survival factor [79]. Serendipitously, we found that Peg3 mobilizes into large intracellular 451 
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structures reminiscent of autophagosomes [159] in primary endothelial cells (HUVEC). Co-452 

immunocolocalization and co-immunoprecipitation studies of canonical autophagic markers, e.g., 453 

Beclin 1 and LC3 [160,161], and Peg3 have clearly demonstrated that decorin evokes a novel gene 454 

involved in autophagy initiation [159] (Fig. 3, left). Intriguingly, Peg3 is required for decorin-mediated 455 

BECN1 and MAP1LC3A expression and is responsible for maintaining basal levels of Beclin 1 456 

[159,162]. Mechanistically, decorin promotes a competent pro-autophagic signaling composed of 457 

Peg3, Beclin 1 and LC3 while combinatorially precluding Bcl-2, a known autophagic inhibitor [163]. At 458 

the endothelial cell surface, decorin engages VEGFR2, the central receptor for endothelial cells, for 459 

autophagic induction [159] (Fig. 3, left). Pharmacological inhibition with the small molecule inhibitor 460 

(SU5416) abrogates the autophagic response, suggesting that decorin requires the VEGFR2 kinase 461 

for successful autophagy [159,162]. Downstream of stimulated VEGFR2, decorin differentially 462 

regulates decisive signaling complexes by activating pro-autophagic modules (e.g. AMPK and 463 

Vps34) while concurrently attenuating, in a protracted fashion, anti-autophagic nodes (e.g. 464 

PI3K/Akt/mTOR) [164] (Fig. 3, left).  Concomitant with autophagic initiation, decorin also impairs 465 

capillary morphogenesis [78,79,159]. Therefore, it is plausible that decorin evokes autophagy as the 466 

molecular underpinning for suppressing tumor angiogenesis from the perspective of endothelial cell-467 

driven angiogenesis (Fig. 3, left).  468 

 469 

4.2. Decorin induces tumor cell mitophagy in a mitostatin-dependent manner 470 

As a novel constituent of the multi-pronged approach for curtailing tumorigenesis and halting 471 

angiogenesis (differential modulation of pro- and anti-angiogenic factors and induction of endothelial 472 

cell autophagy) decorin directly influences catabolic programs and organelle turnover within the tumor 473 

proper (Fig.3, right). Induction of tumor cell mitochondrial autophagy (mitophagy) [165] may 474 

functionally reconcile the canonical tumoricidal effects of decorin with the emerging biology of matrix-475 

mediated autophagic induction for retarding tumorigenic and angiogenic progression. In a mechanism 476 

analogous to that of VEGFR2, decorin requires the kinase activity of Met for proper mitophagic 477 

induction in breast carcinoma cells [165] (Fig. 3, right). Both forms of autophagic induction require the 478 

presence of a cell surface receptor (VEGFR2 or Met) and the intrinsic kinase activity of referenced 479 

receptor. At the nexus of decorin-evoked mitophagy is a poorly characterized tumor suppressor gene 480 

known as mitostatin or trichoplein (mitostatin has the HuGO gene symbol, TCHP, and is located on 481 

chromosome 12q24.1). Mitostatin was originally identified as a decorin-inducible gene using 482 

subtractive hybridization and probes from decorin-transfected (and thereby, growth suppressed) cells 483 

[166]. Notably, mitostatin is downregulated in bladder and breast carcinomas [166,167], suggesting 484 

that it might represent a potential tumor suppressor gene. Mitostatin primarily resides at the outer 485 

mitochondrial membrane [167] and at specialized membrane:membrane contact sites at the 486 
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juxtaposition of the endoplasmic reticulum and mitochondria where it interacts with mitofusion-2 [168]. 487 

Hence the given eponym for mitostatin, mitochondrial protein with oncostatic activity.  488 

 During the early stages of mitophagy, downstream of Met, a master regulator of mitochondrial 489 

homeostasis and biogenesis, PGC-1 [169] is mobilized into the nucleus and binds TCHP mRNA 490 

directly for rapid stabilization coincident with mitostatin protein accumulation [165] (Fig. 3, right). 491 

Mediating the interaction of PGC-1 with TCHP mRNA via the C-terminal RNA recognition motif [165] 492 

is critical for stabilization. Truncating this domain or silencing PRMT1, for appropriate arginine 493 

methylation, compromises mitostatin mRNA stabilization [165]. The delineation of this pathway has 494 

revealed a unique cooperation between a novel mitophagic effector and a known oncogenic driver. 495 

PGC-1mediates B-Raf mediated oxidative metabolism [170] while defining a subset of aggressive 496 

melanoma characterized by an augmented mitochondrial capacity for increased resistance to 497 

oxidative stress [171].  498 

 The process of decorin-evoked mitophagy depends on the presence and yet-to-be-elucidated-499 

function of mitostatin [165] (Fig. 3, right). RNAi-mediated silencing of mitostatin prevents turnover of 500 

respiratory chain components (OXPHOS), decreased mtDNA content, VDAC clearance, and collapse 501 

of the mitochondrial network [165], all established markers of mitophagy [172]. Moreover, failure of 502 

mitophagic induction precludes the ability of decorin in suppressing VEGFA expression and protein 503 

[165] (Fig. 3, right), suggesting that mitophagy is key for understanding a fundamental hallmark of 504 

decorin biology. Subsequent to the collapse and aggregation of the tubular mitochondrial network, 505 

decorin triggers mitochondrial depolarization [165], with an activity comparable to that of an 506 

established depolarization agent (FCCP). This loss of membrane potential across the outer and inner 507 

mitochondrial membrane is a harbinger for mitochondrial dysfunction and eventual turnover [173,174]. 508 

Depolarized mitochondria may be the end product of increased Ca+2 levels as occur downstream from 509 

decorin/EGFR interactions [123]. As mitostatin is positioned at mitochondrial-associated membrane 510 

and interacts with Mfn-2, it may permit an efflux of Ca+2 from the ER directly into the mitochondria as 511 

the initial event for decorin-evoked mitophagy. 512 

In either scenario, depolarization of the mitochondria triggers recruitment of the PINK1/Parkin 513 

complex for eventual clearance of the damaged organelle. The E3-ubiquitin ligase, Parkin is strictly 514 

required for proper mitochondrial homeostasis, as recessive mutations in Parkin are found in the 515 

neurodegenerative disease, Parkinson’s [173,175,176]. It remains plausible that mitostatin may 516 

interact with or facilitate the conscription of PINK1/Parkin for mitochondrial turnover (Fig. 3, right). 517 

Alternatively, mitostatin may directly stimulate the inherent PINK1 kinase activity for proper 518 

recruitment, ubiquitin activation [177,178], and/or Parkin-mediated ubiquitination of target 519 

mitochondrial proteins [179-181]. Indeed, this axis is key for recycling respiratory chain complexes 520 

[182,183].  521 
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Collectively, the above findings imply that decorin transduces biological information via the Met 522 

kinase for mitophagic stimulation, in a mitostatin-dependent manner, within the tumor parenchyma of 523 

breast and prostate carcinomas [90]. This conserved catabolic process, coupled with the induction of 524 

endothelial cell autophagy, may form the molecular basis for the various outputs of decorin-mediated 525 

RTK regulation. Indeed, this newly-found activity may lie at the crossroads of controlling tumorigenic 526 

growth and unchecked tumor vascularization.  527 

 528 

5. Gene and protein therapy in various preclinical tumor studies 529 

Delivery of decorin via adenovirus (Ad) vectors together with the systemic administration of decorin 530 

proteoglycan or protein core, has been tested in a variety of preclinical studies. In Table 1 we 531 

summarize past and current studies utilizing these two approaches focused exclusively on cancer 532 

treatment and delivery.  Although the therapeutic efficacy varies among these studies, it is clear that 533 

decorin has a deleterious effect on growth, apoptosis, metabolism and angiogenesis. 534 

This concept was established by initial studies demonstrating that ectopically expressing decorin 535 

for the rapid neutralization and inhibition of tumorigenic growth from various histogenetically distinct 536 

origins held potential clinical relevance [84]. These studies provided further evidence that 537 

administering decorin, either decorin proteoglycan or protein core, in a systemic fashion prevented 538 

growth and metastases of orthotopic tumor xenografts [87]. Several studies (Table 1), have 539 

subsequently evaluated the feasibility of delivering decorin via adenovirus in several tumor types 540 

including breast and prostate carcinoma. Collectively, these studies have reaffirmed the in vivo 541 

applicability of utilizing decorin as a therapeutic modality for the prevention of metastatic lesions as 542 

well as suppressing the oncogenic and angiogenic properties of tumors.  543 

 544 

6. Conclusions 545 

The extracellular matrix is rapidly emerging as a crucial component for better understanding 546 

fundamental cellular processes and behaviors as well as providing novel therapeutic targets for 547 

combating complex pathological conditions [6] after these pathways have gone awry. Our pursuit of 548 

comprehending the varied intricacies and subtleties of reciprocal cell:matrix signaling for homeostatic 549 

and tumorigenic processes has been facilitated by an exhaustive proteomics approach, organized into 550 

an invaluable resource accessible for query [184]. As this database will undoubtably aid research 551 

concerning the contributions of matrix in various pathologies, the plenary discoveries of decorin 552 

mediated RTK-antagonism have revealed heretofore unknown signaling roles encoded within 553 

members of the soluble matrix. Since this pioneering breakthrough, similar mechanisms have been 554 

proposed as the underlying molecular explanation for a variety of biological phenomena [15] across 555 

diverse tissues and microenvironments. Indeed, the ever-expanding decorin interactome [31] 556 

encompasses a plethora of critical matrix-bound and cell-localized binding partners that substantially 557 
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attenuate pro-tumorigenic and pro-angiogenic signaling cues [54] while simultaneously inducing 558 

conserved, intracellular catabolic processes [32,95]. In summation, this manifests as patent and long-559 

lasting oncosuppression [88,89] that is efficacious and clinically-relevant in a variety of solid tumors. 560 

Structure always determines function; this axiom is epitomized within the leucine rich repeats 561 

composing the protein core of decorin. This regularly patterned structure inherently provides for a high 562 

affinity and multivalent interface capable of binding and interacting with a large number of effector 563 

proteins to potentiate probable cellular outcomes. As such, decorin requires and depends on this 564 

proclivity for binding multiple partners for competently executing downstream events under a variety of 565 

conditions. This concept is exemplified in the context of RTK binding. Canonically, decorin is 566 

characterized as an unwavering and unbridled antagonistic ligand for the EGFR and Met receptor, 567 

resulting in the inhibition of potent oncoproteins and pro-angiogenic factors. The mechanistic 568 

perspective for decorin (at the receptor level) has shifted after identifying a decorin-specific 569 

transcriptomic signature exclusively within the tumor stroma, and the subsequent discovery of 570 

endothelial cell autophagy in which VEGFR2 kinase activity is required. Therefore, decorin acts as a 571 

partial receptor agonist. A similar requirement is operational in Met kinase activity during the process 572 

of mitophagic initiation in breast carcinoma cells [165]. These findings support the hypothesis that 573 

decorin could engage a receptor for autophagic induction as a basis for oncostasis. Indeed, the 574 

oncogenic EGFR/Akt signaling suppresses Beclin 1 for increased chemo-resistance and 575 

tumorigenicity [185,186]. Moreover, a novel mechanism detailing the transcriptional induction and 576 

enhanced secretion of decorin from cardiac tissue and isolated mouse embryonic fibroblasts following 577 

a 25-hour fast has been recently identified [187]. Notably, the global ablation of decorin attenuates 578 

autophagic responses and blunts autophagic flux, further underscoring the critical importance of 579 

decorin as a soluble, in vivo pro-autophagic regulator [187]. This study may wield clinical relevance as 580 

a starting point for drug development towards molecules targeting Dcn induction and secretion for 581 

organismal-wide autophagic regulation and tumor suppression [188].  582 

Furthermore, the clinical efficacy of decorin as a novel therapeutic is exemplified by the diverse 583 

array of studies employing decorin as a potent soluble tumor repressor.  584 

In conclusion, the work on decorin provides a new paradigm in the more general scheme of matrix-585 

dependent regulation of cancer growth: soluble ECM constituents can act as pro-autophagic factors 586 

by interacting with various cell surface receptors for the proficient modulation of the intracellular 587 

catabolic network. This new function integrates well with the traditional oncosuppressive properties of 588 

decorin exerted on RTKs. Thus, decorin and related SLRPs, including soluble ECM fragments derived 589 

from larger parental molecules [95,189], hold great therapeutic potential and clinical benefit for 590 

combating cancer.  591 
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Figure Legends 1178 

 1179 

Fig. 1. The solved crystal structure of decorin permits association with a multitude of cell surface 1180 

receptors. (A) Cartoon ribbon diagram of monomeric bovine decorin rendered with PyMol v1.8. (PDB 1181 

accession #: 1XKU). Vertical arrows designate -strands whereas coiled ribbons indicate -helices. 1182 

Roman numerals situated above the diagram define each LRR from left to right, by convention. The 1183 

type I collagen binding sequence has been included and is shaded yellow. (B). Schematic depiction of 1184 

the various RTKs and innate immune receptors that decorin engages. Please, consult the text for 1185 

additional information.  1186 

 1187 

Fig. 2. EGFR and Met coordinate growth inhibition, apoptosis, and angiostasis. Schematic 1188 

representation of the signaling pathways modulated in response to decorin binding. Please,  consult 1189 

the text for additional information. 1190 

 1191 

Fig. 3. VEGFR2 and Met evoke endothelial cell autophagy and tumor cell mitophagy. Schematic 1192 

representation delineating the signaling pathways active in response to decorin acting as a partial 1193 

agonist of VEGFR2 or Met for endothelial cell autophagy or tumor cell mitophagy induction, 1194 

respectively. Please, consult the manuscript for additional information concerning these pathways. 1195 
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Table 1 1213 

Pre-clinical studies exploiting several delivery mechanisms for decorin as a therapeutic modality 1214 

against cancer and across multiple species.  1215 

Tumor type Origin Delivery system Reference(s) 

Orthotopic squamous 
cell carcinoma 

Human Ectopic expression Santra et al [84] 
 

Orthotopic squamous 
cell carcinoma 

Human Recombinant decorin 
proteoglycan 
or protein core 

Seidler et al [87] 

Orthoptopic breast 
carcinoma 

Human Ad-Decorin Reed et al [85] 

Lung adenocarcinoma Human Ad-Decorin Tralhão et al [86] 

Breast metastases Human Ad-Decorin Reed et al [57] 

Breast metastases Human, Rat Ad-Decorin  Goldoni et al [56] 

Multiple myeloma Human Rercombinant decorin 
proteoglycan 
 

Li et al [63] 

Orthotopic glioma Rat Ectopic expression Stander et al [190] 

Orthotopic glioma Rat Ectopic expression Biglari et al [191] 

Orthotopic breast 
carcinoma 

Human Recombinant decorin 
proteoglycan 
or protein core 

Buraschi et al [88] 

Bone metastases of 
prostate carcinoma 

Human Ad-Decorin Xu et al [90] 

Bone metastases of 
breast carcinoma 

Human Ad-Decorin Yang et al [91] 

  1216 

 1217 

 1218 
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