
Thomas Jefferson University
Jefferson Digital Commons

Department of Neurology Faculty Papers Department of Neurology

5-1-2016

Gray Matter Abnormalities in Temporal Lobe
Epilepsy: Relationships with Resting-State
Functional Connectivity and Episodic Memory
Performance.
Gaelle Eve Doucet
Department of Neurology, Thomas Jefferson University, Gaelle.Doucet@jefferson.edu

Xiaosong He
Department of Neurology, Thomas Jefferson University

Michael R Sperling
Department of Neurology, Thomas Jefferson University, Michael.Sperling@jefferson.edu

Ashwini Sharan MD
Department of Neurosurgery, Thomas Jefferson University, Ashwini.Sharan@jefferson.edu

Joseph I Tracy
Department of Neurology, Thomas Jefferson University, Joseph.Tracy@jefferson.edu

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/neurologyfp

Part of the Neurology Commons

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas
Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly
publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and
interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in
Department of Neurology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact:
JeffersonDigitalCommons@jefferson.edu.

Recommended Citation
Doucet, Gaelle Eve; He, Xiaosong; Sperling, Michael R; Sharan MD, Ashwini; and Tracy, Joseph I,
"Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State
Functional Connectivity and Episodic Memory Performance." (2016). Department of Neurology
Faculty Papers. Paper 111.
http://jdc.jefferson.edu/neurologyfp/111

http://jdc.jefferson.edu?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/neurologyfp?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/neurology?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jeffline.jefferson.edu/Education/surveys/jdc.cfm
http://jdc.jefferson.edu/neurologyfp?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/692?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.jefferson.edu/university/teaching-learning.html/


RESEARCH ARTICLE

Gray Matter Abnormalities in Temporal Lobe
Epilepsy: Relationships with Resting-State
Functional Connectivity and Episodic
Memory Performance
Gaelle E. Doucet1, Xiaosong He1, Michael Sperling1, Ashwini Sharan2, Joseph I. Tracy1*

1 Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States of America,
2 Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States of America

* joseph.tracy@jefferson.edu

Abstract
Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both struc-

tural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these

structural abnormalities were associated with FC abnormalities, and assessed the ability of

these measures to explain episodic memory impairments in this population. A resting-state

and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients

and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based mor-

phometry analysis was computed to determine the GM volume differences between groups

(right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was

computed, and compared between groups. Finally, we investigated the relation between EM,

GM and FC findings. Patients with and without temporal pathology were analyzed separately.

The results revealed reducedGM volume inmultiple regions in the patients relative to the con-

trols. Using FC, we found the abnormal GM regions did not display abnormal functional con-

nectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with

abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory

was better predicted by resting-state FCmeasures. This study investigated TLE abnormali-

ties using a multi-modal approach combining GM, FC and neurocognitive measures. We did

not find that the GM abnormalities were functionally or abnormally connected during an inter-

ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epilep-

tic network. We provided evidence that verbal and non-verbal episodic memory in left and

right TLE patients may have distinct relationships with structural and functional measures.

Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathol-

ogy, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is

necessary to produce reductions in episodic memory recall. The latter, in particular, demon-

strates the complex structure/function interactions at work when trying to understand cogni-

tion in TLE, suggesting that subtle network effects can emerge bearing specific relationships

to hemisphere and the type of pathology.
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Introduction
There is growing body of evidence that brain abnormalities in focal epilepsies such temporal
lobe epilepsy (TLE) are not limited to the epileptogenic region, but extend into widespread
areas of the whole brain. These extra-temporal abnormalities have emerged from gray matter
(GM)[1], white matter[2,3], metabolic[4,5], and, more recently, resting-state fMRI investiga-
tions (see review by [6]). In terms of structural abnormalities, voxel-based morphometry
(VBM) studies in TLE have been effective in demonstrating reduced GM volume in multiple
brain regions such as the mesial temporal lobe, thalami, insula, or sensory motor cortex[1,7,8].
Using this approach, differences between right and left TLE patients[8,9] and between TLE
patients with and without mesial temporal sclerosis (MTS)[10,11] have been established. These
extra-temporal structural abnormalities are considered to reflect the impact of seizure spread
or epileptogenesis, providing a potential map or clue to the reaches of the epileptiform network
emerging from the epileptogenic mesial temporal lobe[12,13]. Using a more direct assessment
of brain network abnormalities, resting-state functional connectivity (FC) studies in TLE
patients have demonstrated both temporal and extra-temporal functional connectivity abnor-
malities[14–16].

While these studies suggest that TLE preferentially affects a network of regions that are
functionally and anatomically connected to the hippocampus[1,17–19], the strength of the
association between structural (GM) and functional (FC) abnormalities remains untested. To
our knowledge, only a limited number of studies have explored the relationship between GM
concentration and FC in TLE patients [20,21]. Holmes et al. (20) investigated left TLE and
found that regions with significantly reduced GM concentration correlated with change in rest-
ing FC involving the left hippocampus or left thalamus, with the nature of the change (increase
or decrease) varying by region. McCormick et al. [21] found a focal GM loss in the epileptic
temporal lobe related to two specific patterns of DMN abnormality, namely, decreased FC
between the medial TL’s and posterior DMN, but increased intrahemispheric (anterior-poste-
rior) FC. A complete understanding of these potential epileptic networks emerging from GM
abnormalities requires measuring there impact on brain output and performance by including
measures of neurocognitive functioning. Indeed, neurocognitive deficits are well-described in
TLE[22], but the relation of those deficits to both structural and FC impairments, particularly
those outside the epileptogenic temporal lobe is quite unclear. In fact, the number of studies
showing a relation between GM volume and neurocognitive scores in TLE is quite limited
[21,23,24]. Focke et al.[23] found that global GM volume correlated with neurocognitive scores
in left TLE only. While McCormick et al. [21] revealed that the sections of the DMN noted
above, were related to episodic memory, McCormick did not test for a relationship between the
global (i.e., extra-temporal) structural integrity of the brain and FC. Also, Bonilha et al. [24]
suggested that both general and specific verbal memory impairments in left TLE are associated
with atrophy of the left mesial temporal lobe, including the hippocampus, the entorhinal, and
the perirhinal cortex. This study, however, did not examine relationships with FC. Regarding
resting-state FC, episodic memory deficits have been also correlated with FC abnormalities
emerging from the hippocampus in both left and right TLE patients [14,21]. It is unknown,
however, whether these episodic memory deficits are related to the abnormal FC emerging
from the hippocampus, hippocampal atrophy, or a combination of the two. Accordingly, to
date, data regarding the relation between extra-temporal GM and resting-state FC integrity is
limited, and, more importantly, the degree to which that association impacts neurocognition in
unilateral TLE patients has not been studied.

In this context, we sought to investigate structural (GM) abnormalities and their relation to
resting-state FC and episodic memory performance in unilateral mesial and non-mesial TLE
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patients. To do so, we studied a large sample of 94 TLE patients and 50 healthy matched con-
trols. Each participant underwent a MRI scan including a high-dimensional T1 sequence and a
resting-state condition. Patients’ verbal and non-verbal episodic memory performances were
also evaluated. Based on the regional GM abnormalities in TLE established through a VBM
approach, we explored the integrity of resting-state FC emerging from and between these
regions. We then went on to investigate whether these structural and functional measures were
associated with episodic memory performance in the patients, examining as well the role
played by MTS and the side of pathology in our findings. To our knowledge, no study has yet
combined structural measures of macrostructural GM abnormalities with measures of resting-
state FC integrity to test for, one, the presence of potential epileptic networks outside the tem-
poral lobe, and, two, the impact of GM abnormality-based FC measures on neurocognitive
measures such as episodic memory.

We hypothesized that the regions identified with reduced GM volume will form a network,
as verified by resting-state FC, with individuals showing the strongest FC abnormalities show-
ing the most impaired episodic memory. In addition, we expected that the strength of the rela-
tion between our structural and functional measures will predict the degree of episodic
memory impairment in TLE, with this relationship varying as a function of memory material
(e.g. verbal and non-verbal performance will be related to abnormalities in the left and right
TLE, respectively). Our goal is to understand the functional impact of GM abnormalities in
TLE, seeking to clarify the neuroplastic responses generated by TLE pathology both in terms of
altering resting-state FC and cognitive skills (i.e., episodic memory).

Materials and Methods

Participants
A total of 94 refractory unilateral TLE patients (53 left and 41 right) were included in this
study. A combination of EEG, MRI, PET, and neuropsychological testing was used to lateralize
the side of seizure focus[25]. All patients met the following criteria: unilateral temporal lobe
seizure onset through surface video/EEG recordings; normal MRI or MRI evidence of a tempo-
ral abnormality in the epileptogenic temporal lobe (mostly mesial temporal sclerosis (MTS),
see Table 1); concordant PET finding of hypometabolism in the ictal temporal lobe. Patients
were excluded from the study for any of the following: previous brain surgery; extratemporal
or multifocal epilepsy; medical illness with central nervous system impact other than epilepsy;
contraindications to MRI; drug abuse; psychiatric diagnosis other than an Axis-I Depressive
Disorder; or hospitalization for any Axis I disorder listed in the Diagnostic and Statistical Man-
ual of Mental Disorders, IV. Depressive Disorders were allowed given the high co-morbidity of
depression and epilepsy [26].

Of note, TLE patients with presence of unilateral mesial pathology will be referred to as
mesial TLE (mTLE) while TLE patients without visible structural brain abnormalities (revealed
on the T1, based on the radiologist’s report) will be referred to as nTLE. Because of previous
investigations suggesting that mTLE and nTLE constitute different pathologies [28], we ana-
lyzed their data separately.

Fifty healthy controls were recruited in order to match the patient participants in age, gen-
der and handedness. All controls were free of psychiatric or neurological disorders based on
health screening measures. This study was approved by the Institutional Review Board for
Research with Human Subjects at Thomas Jefferson University. All participants have provided
a written informed consent. Of note, all participants were fully capable to understand and com-
prehend the instructions. There was no indication of comprehension or other problems that
precluded them to provide consent. However, if a participant was unable to provide a written
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informed consent a next of kin or legally authorized representative consented on behalf of the
participant.

MRI Data Acquisition
All participants underwent Magnetic Resonance Imaging on a 3-T X-series Philips Achieva
clinical MRI scanner (Amsterdam, the Netherlands) using an 8-channel head coil. A total of 5
minutes of a resting-state condition was collected. Anatomical and functional acquisitions
were similar for all participants. Regarding the resting-state condition, the participants were

Table 1. Demographic and clinical characteristics of the TLE patients and healthy controls.

A.

Left TLE Right TLE Controls p-value

N (females) 53 (29) 41 (22) 50 (27) n.s.¥

Age—m (STD) 40.5 (12.4) 40.5 (13.3) 39.4
(10.8)

n.s. ¥

Age at TLE onset (years) 21.7 (13.3) 22.3 (13.0) - n.s. ¥

TLE duration (years) 17.7 (14.2) 18.5 (14.1) - n.s. ¥

Presence of structural
abnormalities

None (nTLE): 25 None (nTLE): 20 - n.s. ¥

mesial pathology (mTLE): mesial pathology (mTLE): - n.s. ¥

- MTS: 26 - MTS: 18

-mesial low grade tumor (e.g
ganglioglioma, cavernoma): 2

-mesial low grade tumor (e.g DNET,
cavernoma): 3

n.s. ¥

Seizure Types CPS only: 19 CPS only: 14 n.s. ¥

GTCS only: 1 GTCS only: 0

SPS only: 0 SPS only: 1

CPS/SPS: 5 CPS/SPS: 6

CPS/GTCS*:9 CPS/GTCS*:5

CPS/rare GTCS**:11 CPS/rare GTCS**:5

CPS with 2ndary GTCS: 9 CPS with 2ndary GTCS: 11

B.

L
nTLE

L
mTLE

p-val (mTLE vs
nTLE)£

R
nTLE

R
mTLE

p-val (mTLE vs
nTLE)£

Controls p-val (R. vs L.
TLE)¥

LM I 28 (9) 23 (10) n.s. 31 (11) 30 (10) n.s. 40 (11)a p = 0.002

LM II 18 (7) 13 (7) p = 0.023 23 (7) 19 (8) n.s. 34 (10)a p = 0.001

CVLT Tot 49 (12) 44 (11) n.s. 48 (12) 48 (12) n.s. 52.7 (12)b n.s.

CVLT LDF 11 (3) 8 (4) p = 0.005 11 (3) 10 (4) n.s. 12.3 (4)b n.s.

FM I 35 (6) 35 (5) n.s. 35 (5) 36 (4) n.s. 37.5 (5)a n.s.

FM II 36 (6) 35 (5) n.s. 35 (5) 35 (5) n.s. 37.5 (5)a n.s.

Part A. describes demographic and clinical characteristics of our experimental groups. Part B. shows the neuropsychological scores (mean (standard-

deviation)). n.s.: non-significant (p>0.05). Abbreviations: CPS: Complex partial seizures, GTCS: Generalized tonic-clonic seizure, MTS: Mesial temporal

sclerosis, SPS: simple partial seizures; LM: Logical Memory, FM: Facial Memory; CVLT: California Verbal Learning Test, LDF: long delay free score; Tot:

Total scores (Sum of the trials 1 to 5).

*: 10 or more GTCS in lifetime

**: less than 10 GTCS in lifetime
a: Normative results obtained on healthy age-matched participants (bin = [35–44] years) [27].
b: Normative results obtained on healthy age- and gender-matched participants (bin = [30–44] years) (manual of the CVLT II).
¥ 2-sample t tests between the right and left TLE groups (mTLE and nTLE combined).
£ post-hoc tests: two-sample t-tests between the nTLE and mTLE patients, within either right or left TLE patients.

doi:10.1371/journal.pone.0154660.t001
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instructed to remain still, keep their eyes closed but not fall asleep throughout the scan. Single
shot echoplanar gradient echo imaging sequence acquiring T2� signal was used with the fol-
lowing parameters: 120 volumes, 34 axial slices acquired parallel to the AC-PC line, TR = 2.5 s,
TE = 35 ms, FOV = 256 mm, 128×128 data matrix isotropic voxels, flip angle = 90°. The in-
plane resolution was 2�2mm2 and the slice thickness was 4mm. Prior to collection of the func-
tional images, high resolution T1-weighted images were collected using an MPRage sequence
(180 slices, 256×256 isotropic voxels; TR = 640ms, TE = 3.2ms, FOV = 256mm, flip angle = 8°,
voxel size = 1x1x1mm). Each EPI imaging series started with three discarded scans to allow for
T1 signal stabilization.

Preprocessing analyses of the anatomical T1 sequence
In order to preprocess each individual T1 sequence, we used the VBM8 toolbox, available in
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8). In detail, all T1-weighted images
were preprocessed using the standard “estimate and write” routine: the images were spatially
normalized to the same stereotaxic space (MNI space, Montreal Neurological Institute-152)
using the fast Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra,
(DARTEL) algorithm, segmented into GM, white matter and cerebrospinal fluid, and non-line-
arly modulated (correcting for local volume changes during the normalization), and, lastly,
smoothed with an isotropic Gaussian kernel of 8 mm. A test of quality was performed to
observe homogeneity and co-registration between the data. Seven subjects (4 left TLE, 3 right
TLE) showing a T1 with an overall covariance below two standard deviations were excluded.

Preprocessing analyses of the resting-state fMRI data
Resting-state fMRI data were preprocessed using SPM8. Slice timing correction was used to
adjust for variable acquisition time over slices in a volume, with the middle slice used as refer-
ence. Next, a six-parameter variance cost function rigid body affine registration was used to
realign all images within a session to the first volume. Motion regressors were computed and
later used as regressors of no interest. To maximize mutual information, coregistration between
functional scans and the MNI305 template was carried out using six iterations and resampled
with a 7th-Degree B-Spline interpolation. Functional images were then normalized and warped
into standard space (MNI305) to allow for signal averaging across subjects. We utilized the
standard normalization method in SPM8. All normalized images were smoothed by convolu-
tion with a Gaussian kernel, with a full width at half maximum of 8mm in all directions.
Sources of spurious variance were removed through linear regression: six parameters obtained
by rigid body correction of head motion, the cerebro-spinal fluid and white matter signals.
Finally, the data were temporally filtering in the band [0.008–0.1] Hz[29]. Eight TLE patients’
resting-state data (three left and five right) were excluded from further resting-state statistical
analyses because of severe head motion (superior to 3 mm or degrees) or because the normali-
zation step did not produce good results related to signal loss.

Neuropsychological tests
To investigate verbal episodic memory (EM) functioning, we used scores from the Logical
Memory (LM) subtests of the Wechsler Memory Scale III (WMS-III)[27], in addition to the
total learning (TOT) and long delay free (LDF) recall scores from the California Verbal Learn-
ing Test (CVLT) II[30]. To investigate non-verbal EM outcomes, we used the scores of the
Face Recognition Memory (FM) subtests from the WMS-III[27]. Standard administration
instructions were utilized (e.g., the delayed recall condition was administered approximately 30
minutes after the immediate recall). These tests were administered as part of the
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neuropsychological test battery given to all patients undergoing presurgical evaluation at the
Thomas Jefferson Epilepsy Center. The Logical Memory subtest is a verbal test that requires
the examinee to freely recall a story after it is read aloud by the examiner. The Face Recognition
Memory subtest is a visual, nonverbal memory test that requires a yes/no recognition response
after two-second exposure to a series of 24 faces. Recognition testing includes presentation of
24 distractor faces, not previously presented. This task is free from any visuomotor (graphic)
reconstruction requirements. For the FM test, two scores were used: the immediate (FM I) and
delayed recall (FM II) scores; the same two comparable scores were generated for the LM test
(LM I, LM II). These variables refer to the number of items remembered correctly.

Because six TLE patients did not complete neuropsychological testing at our center and one
right TLE patient had invalid neuropsychological results (e.g. low confidence in the validity of
the results), analyses involving these cognitive measures were conducted on 38 right and 52 left
TLE patients.

Group analyses
Gray matter analyses. First, a one-way ANOVA was computed on the post-processed T1

images to detect GM volume differences between our experimental groups (controls, left TLE,
right TLE). Age and gender were added as covariates of non-interest. Then, as a sub-analysis,
we recomputed the ANOVA to investigate the differences between the patients showing mesial
pathology (mTLE, right and left TLE separately) versus a normal brain (nTLE, right and left
TLE separately), relative to the controls. Left and right TLE patients were analyzed separately
and were never combined. Of note, we did not directly compare right and left TLE in order to
avoid bias or confound caused by, one, the intrinsic left-right asymmetries of brain, or, two, the
differential impact right and left TLE are known to have on brain structure and function (see
Discussion section for more detail). For these sub-analyses, only 25 controls were included in
order to match the sample size of our patient groups. All the analyses included an absolute
threshold masking of 0.1. Statistical whole-brain differences were reported with an initial statis-
tical threshold of p<0.0001, uncorrected and a minimum cluster size of 30 contiguous voxels.

Resting-state FC analyses. Next, from the results obtained at the least stringent threshold
(e.g. p<0.0001 uncorrected), we extracted the regions showing significant GM volume loss in
the patients, relative to the controls (mTLE and nTLE, right and left TLE, considered sepa-
rately). The resulting regions were used as regions of interest (ROIs) for the resting-state analy-
ses. The goal was to be maximally sensitive to regions that might be part of an epileptic
network, in investigating the FC between the regions showing significant GM volume differ-
ences versus controls.

In detail, an individual correlation map was produced by extracting the average BOLD time
course from each ROI and then computing the correlation between that time course and the
time course from all other brain voxels. Next, this map was submitted to a Fisher r-to-z trans-
formation. For each region, two-sample t-tests were computed to identify differences in FC
between the groups (e.g., controls vs. right mTLE, controls vs. right nTLE, controls vs. left
mTLE). Statistical whole-brain differences were reported, with the height threshold fixed at
p<0.0001 (uncorrected) and the spatial extent consistent with the expected number of voxels
per cluster was utilized (k>10).

Of note, we purposely kept a consistent whole-brain height threshold for all our analyses
(p<0.0001 uncorrected for both VBM and Resting-state analyses) but distinct spatial extent
between the VBM and Resting-state analyses. The reason for this is that the resolution of VBM
and resting-state data are quite different (voxel size = 1mm3 for VBM vs. 2 mm3 for Resting-
state; an eight- fold difference). While previous studies (see review by [1]) have suggested that
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a stringent threshold (e.g. by applying a family-wise error correction) is highly recommended
in VBM analyses, we compromised on the correction (not applying a whole brain correction
but a stringent p: p<0.0001 instead of a typical p<0.001) in order to be sensitive to the resting-
state data differences.

As a sub-analysis, we focused specifically on the FC solely between the regions with signifi-
cant GM reduction (regions extracted from the initial ANOVA described below). In this case,
two sample t-tests were computed between the patient and control groups (e.g., Left TLE versus
Control; Right TLE versus Control; Left mTLE versus Left nTLE; Right mTLE versus Right
nTLE). Significant differences were reported at p<0.05 corrected for the number of tests com-
puted (based on the number of significant ROIs previously identified). Throughout the above
analyses, right and left TLE and nTLE and mTLE were tested separately.

Analyses with the neuropsychological scores. Lastly, in order to measure the association
between our functional and structural measures and the neuropsychological scores, we con-
ducted linear regression analyses. Linear stepwise regression analyses were computed on the
neuropsychological data (dependent variables tested separately: CVLT-TOT; CVLT-LDF; FM
I; FM II; LM I; LM II) with the following as independent continuous variables (predictors): (1)
the volume measure for GM ROIs found to be abnormal, (2) the pairwise FC (correlations)
between GM ROIs found to be abnormal, (3) the interaction(s) between the effects involved in
items (1) and (2), i.e., the abnormal GM volume and FC measures. The interaction(s) was
inserted into the regression as a pre-multiplied product term (GM volume x FC measure).
Each ROI was tested separately, and run separately within the right nTLE, right mTLE, left
nTLE and left mTLE groups.

Lastly, for each significant result, we explored their relation with the age at TLE onset and
disease duration.

The statistical analyses were run using SPSS (IBM Corp. Released 2011. IBM SPSS Statistics
for Windows, Version 20.0. Armonk, NY: IBM Corp.).

Results

Behavioral data
The experimental groups did not differ in age nor gender (Table 1). Age at seizure onset or the
rate of MTS was not significantly different between the patient groups. Regarding the neuro-
psychological data, the right and left TLE patients significantly differed for the LM test (LM I:
p = 0.002; LM II: p = 0.001), with the left TLE showing lower scores. The patient groups did
not differ on the other tests. When comparing their performance to normative values (pro-
vided in the manuals of the WMS-III[27] and the CVLT II for an age-matched healthy popula-
tion, both right and left TLE patients showed reduced performance for the verbal episodic
memory tests, but not for the non-verbal tests (FM I and II) (one sample t-tests against norma-
tive scores, p<0.05). When comparing mTLE versus nTLE patients, the CVLT II-LDF as well
as the LM II scores were lower for the left mTLE patients (p = 0.023 and p = 0.005, respec-
tively). There was no interaction between mesial pathology and pathology side for any of the
neuropsychological tests. Also, there was no correlation between the age at TLE onset and any
of the neuropsychological scores.

VBM results
Our analyses revealed several differences in regional GM volume between the three experimen-
tal groups (Table 2, S1 Dataset). Relative to healthy controls, the left TLE patients showed three
regions with reduced GM volume located in the left paracentral lobule (PCL), and the anterior
and posterior parts of the left hippocampus (Fig 1A). In contrast, they did not show any regions
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with an increase in GM volume, relative to the controls. When investigating the specific effects
of MTS, we found that the left mTLE patients showed more extensive loss of GM, relative to
the controls, than the left nTLE patients. The left mTLE patients had reduced GM in both ante-
rior and posterior sections of the left hippocampus (Fig 1A). The left nTLE patients only
showed reduced GM in a cluster located in the left cerebellum. No significant cluster was
revealed in the ictal temporal lobe for the left nTLE patients.

None of these structural abnormalities were correlated with either the age at TLE onset or
the disease duration for the left mTLE group.

For the right TLE patients, we found reduced GM volume in six clusters located in the right
hippocampus, the right temporal pole, the left anterior cingular cortex (ACC), the left inferior
parietal cortex (IPC), the left postcentral gyrus and the left cerebellum relative to the controls

Table 2. Voxel-Based Morphometric Results.

Region T N voxels x y z

CTL—all LTLE L paracentral 5.36 112 -15 -12 75

L Ant. Hippocampus 5.24 211 -32 -13 -20

L PHG 4.83 526 -17 -36 -2

L Post. Hippocampus 4.66 -18 -25 -6

L Post. Hippocampus 4.33 -30 -31 -2

All LTLE—CTL None

CTL—L mTLE L Ant. Hippocampus 6.46 432 -30 -15 -18

L Post. Hippocampus 5.6 787 -18 -39 -2

L Post. Hippocampus 5.06 -29 -31 -3

L Post. Hippocampus 4.65 -18 -25 -6

CTL—L nTLE L Cerebellum 4.68 204 -44 -64 -54

CTL- all RTLE R Tp Pole 4.4 147 35 -4 -47

L ACC 4.4 75 -2 38 25

L Inf Parietal 4.4 94 -53 -27 43

R Hippocampus 4.12 31 41 -22 -11

L postcentral 4.07 44 -53 -16 52

L cerebellum 4 33 -44 -66 -53

All RTLE—CTL None

CTL—R mTLE R Hippocampus 6.18 1409 36 -12 -18

R Tp Pole 5.06 482 24 -4 -48

R Thalamus 4.35 361 11 -19 6

R Postcentral 4.08 76 60 -3 24

CTL—R nTLE L Inf Par 4.59 316 -53 -27 43

4.41 -59 -21 34

L Med Sup Frontal 4.57 341 -3 44 43

ACC 4.43 0 35 30

L postcentral 4.24 99 -47 -19 57

L nTLE–L mTLE L Hippocampus 5.28 908 -30 -16 -17

L Hippocampus 5.2 -26 -30 -3

R nTLE–R mTLE R Hippocampus 6.12 1174 30 -13 -20

LmTLE—LnTLE None

RmTLE—RnTLE None

Group differences reported at p<0.0001 unc., k>50. Abbreviations: ACC: Anterior cingular cortex, Ant: anterior, Inf: Inferior, L: Left, Med: Medial, Mid:

Middle, Par: Parietal, PHG: parahippocampal gyrus, Post: posterior, R: Right, SMG: supramarginal gyrus, Sup: superior, Tp: Temporal.

doi:10.1371/journal.pone.0154660.t002
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(Fig 1B). When investigating the specific effects of MTS, we found that relative to controls the
right mTLE patients showed more extensive loss of GM than the nTLE patients. The right
mTLE patients had reduced GM in the right hippocampus but also in the right temporal pole,
the right thalamus (Fig 2B, left panel) and the right postcentral gyrus. The right nTLE showed
reduced GM in left-sided clusters in the IPC, postcentral gyrus, and medial superior frontal
cortex (Fig 2C, left panel). While the age at TLE onset was not correlated with any of these clus-
ters, structural abnormalities in the right hippocampus was negatively correlated with disease
duration in the right mTLE group, indicating larger GM atrophy was associated with longer
disease (r = -0.49, p = 0.025). Similarly, we found a negative correlation with disease duration
and the degree of atrophy in the left postcentral cluster (r = -0.46, p = 0.039).

Overall, our analyses showed more GM volume loss in the ictal hemisphere, extending
beyond the ictal temporal lobe, for all the patient groups except right nTLE. This extra-tempo-
ral GM loss appears more pronounced and regionally variable in the right TLE patients, as the
loss for the left TLE patients loss is more strictly hippocampal and mesial. Also, our data dem-
onstrate that mTLE patients have more GM volume loss than nTLE patients, especially in the
ictal mesial temporal lobe. Finally, there was also an effect related to the side of pathology, sug-
gesting a more pronounced reduction of GM volume in right compared to left TLE.

Resting-state FC results
When seeding each ROI extracted from the VBM analysis, and interrogating the whole brain
for significant correlations, we found the patients and controls displayed significant FC differ-
ences in a very limited set of regions (Fig 2, S1 Table). Note, because the left nTLE patients did
not show regions with significant GM volume loss, relative to the controls, their data were not
analyzed and are not reported in this resting-state section.

Regarding the left mTLE patients, the left anterior hippocampus (seed) showed reduced FC
with both the left precuneus and left medial prefrontal cortex, relative to the controls. In con-
trast, it showed an increased FC with the left middle cingulate cortex, relative to the controls.
Using the left posterior hippocampus as a seed only a small cluster in the left middle frontal
cortex was evident with reduced FC, relative to the controls.

For the right mTLE group, the right thalamus was the only seed showing significant change
in FC, with an increase, relative to the controls. This increased FC involved the left postcentral
gyrus, the left inferior parietal cortex and the right middle temporal cortex.

Fig 1. Regions with loss of graymatter in TLE patients. Left TLE in the left (panel A) and right TLE in the
right (panel B).

doi:10.1371/journal.pone.0154660.g001
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Fig 2. Regions with abnormal FC in TLE. Regions showing significant abnormal FC with each VBM-based
ROI in the left mTLE (A), right mTLE (B) and right nTLE (C) patients, relative to the controls.

doi:10.1371/journal.pone.0154660.g002
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For the right nTLE group, when seeding the left IPC or the left postcentral gyrus, the regions
showing significant differences with controls were located in the right rolandic sulcus (more
negative FC in the patients) and the left cerebellum (less negative in the patients). Lastly, the
left medial prefrontal cortex was associated with less negative FC with a left inferior temporal
cluster in the right nTLE patients, relative to the controls.

As a subanalysis, we explored the FC between the VBM-based ROIs, for each patient group
separately (Table 3). We did not find any significant differences between the patient and the
control groups, or significant correlation with either age at seizure onset or TLE duration.

Overall, our data indicated that while the abnormal GM regions of the patients showed
some aberrant FC to regions elsewhere in the brain when examined individually, these regions
as a set showed no abnormal inter-functional connectivity.

Relation with neuropsychological scores
Using the GM volume and FC measures found to be abnormal relative to controls, we next
sought to determine if these variables were reliable predictors of either verbal or non-verbal
episodic memory performance. We utilized stepwise linear regressions to do so (Table 4).

For left mTLE patients, the CVLT Tot measure was only predicted by the GM volume of the
left posterior hippocampus (p = 0.001, adjusted R-square = 0.34) (Fig 3A). Non-verbal mea-
sures were not predicted by any of our GM or FC variables in the regression model involving
left mTLE patients.

In contrast, for the right mTLE patients, FM I (full model, adjusted R-square = 0.38,
p = 0.01) was best predicted by the FC measures between the following ROIs: right hippocam-
pus and the right thalamus (p = 0.027) and the right temporal pole/right postcentral gyrus
(p = 0.047). Similarly, FM II was best predicted by the FC measures involving the right tempo-
ral pole and the right postcentral gyrus ROIs (adjusted R-square = 0.2, p = 0.035). Lastly, for
the right nTLE, FM I was best predicted by FC between the left inferior parietal cortex and the
MPFC ROIs (adjusted R-square = 0.28, p = 0.024). The verbal measures LM I and LM II were
only predicted by the GM volume of the right temporal pole ROI (p = 0.03) and right thalamus
(p = 0.042), respectively. In the right mTLE, the CVLT TOT and CVLT LDF verbal memory

Table 3. Functional connectivity between the regions showing reduced GM volume in the TLE patients.

FC–Left mTLE Patients Controls p-value

L Anterior Hippocampus—L Posterior Hippocampus 0.33 (0.33) 0.33 (0.21) n.s.

FC–Right mTLE Patients Controls

R Hippocampus–R Temporal Pole 0.21 (0.28) 0.11 (0.24) n.s.

R Hippocampus–R Thalamus 0.34 (0.28) 0.25 (0.22) n.s.

R Hippocampus—R Postcentral -0.08 (0.21) -0.13 (0.21) n.s.

R Temporal Pole—R Thalamus 0.07 (0.27) 0.02 (0.13) n.s.

R Temporal Pole—R Postcentral -0.09 (0.19) -0.07 (0.18) n.s.

R Thalamus—R Postcentral -0.12 (0.17) -0.21 (0.3) n.s.

FC–Right nTLE Patients Controls

L IPC–L MPFC 0.04 (0.17) -0.04 (0.19) n.s.

L IPC–L Postcentral 0.81 (0.29) 0.71 (0.39) n.s.

L MPFC–L Postcentral 0.04 (0.15) 0.05 (0.28) n.s.

FC (Z-values) correlation [mean (standard deviation)] between the regions showing reduced GM volume in the TLE patients compared to the controls.

Abbreviation: ACC: anterior cingulate cortex; IPC: inferior parietal cortex.

doi:10.1371/journal.pone.0154660.t003

Episodic Memory and Gray Matter Volume in TLE

PLOSONE | DOI:10.1371/journal.pone.0154660 May 12, 2016 11 / 21



measures were predicted by the GM volume of the right thalamus (effect p values of 0.04, 0.005
and 0.01, respectively).

For the right nTLE, FM I was best predicted by the FC measures involving the left IPC and
the left MPFCC (adjusted R-square = 0.28, p = 0.024) (Fig 3B). In the right nTLE, both the
CVLT TOT and CVLT LDF verbal memory measures were predicted by the interaction
between the GM volume of the left IPC and the FC between the left post-central gyrus and left

Table 4. Results of the regression analyses predicting neurocognitive measures in the TLE patients.

A. Left mTLE

Verbal Measures: Adj R2 F(1,24) P

Model Effect for CVLT-LDF 0.34 13.5 0.001

GM Volume in L. posterior Hippocampus T = 3.7 0.001

B. Right mTLE

Non-Verbal Measures: Adj R2 F(2,17) P

Model Effect for FM I 0.38 6.3 0.01

FC between R. Hippocampus and R. Thalamus T = -2.4 0.027

FC between R. Temporal pole and R. Postc. G. T = 2.2 0.047

Model Effect for FM II Adj R2 F(1,17) P

0.2 5.3 0.035

FC between R. Temporal pole and R. Postc. G. T = 2.3 0.035

Verbal Measures:

Model Effect for LM I Adj R2 F(1,18) P

0.2 5.6 0.03

GM Volume in R. Temporal pole T = -2.4 0.03

Model Effect for LM II Adj R2 F(1,18) P

0.17 4.8 0.042

GM Volume in R. Thalamus T = 2.2 0.042

Model Effect for CVLT TOT Adj R2 F(1,18) P

0.34 10.1 0.005*

GM Volume in R. Thalamus T = 3.2 0.005

Model Effect for CVLT LDF Adj R2 F(1,18) P

0.29 2.9 0.01

GM Volume in R. Thalamus T = 2.9 0.01

C. Right nTLE

Non-Verbal Measures: Adj R2 F(1,14) P

Model Effect for FM I 0.28 6.5 0.024

FC between L. IPC and L. MPFC T = -2.2 0.047

Verbal Measures Adj R2 F(1,15) P

Model Effect for LM II 0.2 4.7 0.047

Interaction between GM Volume in L. Postc.G. and FC between L. Postc. G. and L. IPC T = -2.2 0.047

Model Effect for CVLT TOT Adj R2 F(1,15) P

0.25 6 0.028

Interaction between GM Volume in L. IPC and FC between L. Postc. G. and L. IPC T = -2.5 0.028

Model Effect for CVLT LDF Adj R2 F(1,15) P

0.24 5.5 0.036

Interaction between GM Volume in L. IPC and FC between L. Postc. G. and L. IPC T = -2.3 0.036

Abbreviations: L = Left, R = Right, IPC = Inferior parietal Cortex, MPFC = Medial prefrontal cortex, Postc. G. = postcentral gyrus.

*significant at p<0.05, corrected for the number of tests done (n = 6).

doi:10.1371/journal.pone.0154660.t004
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IPC (effect p values of .028 and .036 respectively). Also, the LM II was predicted by the interac-
tion between the GM volume of the left postcentral gyrus and the FC between this ROI and the
left IPC (effect p value of 0.047) (Fig 3B).

Thus, interaction effects between our structure (GM) and FC measures appeared only in
models involving the right nTLE group. A consistent pattern in these interactions was the cou-
pling of a single pair of left hemisphere nodes (left postcentral gyrus and left parietal cortex)
with a posterior region of GMmatter loss in the non-ictal, left hemisphere. Both forms of ver-
bal memory recall (LM and CVLT LDF) were involved in these interactions. In each case,
lower levels of memory recall were associated with higher levels of GM volume and increased
FC in the relevant regions (noted above).

Overall, our results revealed few predictive indices for episodic memory in left mTLE, and
in no case was a FC measure of predictive value. FC measures bore some predictive value for
non-verbal memory, and GMmeasures some value for verbal memory measures, in the setting
of right mTLE. A coupling of GM structure and FC was only evident in the setting of right
nTLE. Here, a very limited but common set of non-ictal regions appeared predictive.

Discussion
The present study identified whole-brain changes in GM volume associated with unilateral
TLE, and examined how these changes related both to resting-state FC emerging from these
abnormal regions and episodic memory performance. With our large sample of unilateral TLE,
we also investigated the effect of the side of the pathology and the presence of MTS, throughout
utilizing both verbal and non-verbal memory measures to keep track of material-specific
effects.

Our VBM analysis revealed major GM changes in TLE compared to controls involving
losses, mostly but not solely, in the ictal hemisphere, more prominent for the mTLE patients.
Indeed, when directly comparing the mTLE to the nTLE, the major structural differences
appeared in the ictal hippocampus with larger atrophy for the mTLE. These results are consis-
tent with previous studies showing that nTLE patients show less, or even no structural

Fig 3. Relation between episodic memory scores and structural or functional measures in the TLE
patients. A. Relation between the GM volume in the left posterior hippocampus and the CVLT-LDF score in
the left mTLE. B. Relation between the FC between the left inferior parietal cluster and the left medial
prefrontal cluster and the FM I Score in the right nTLE.

doi:10.1371/journal.pone.0154660.g003
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abnormalities, relative to the mTLE patients[11]. McCormick et al. [21] also found that TLE
was associated with GM volume loss primarily, though not exclusively, within the medial and
lateral aspect of the epileptic temporal lobes. While the ictal mesial temporal lobe was the
region showing the greatest reduction in GM, other extra-temporal regions were also signifi-
cantly impacted such as the left frontal (paracentral) cortex and cerebellum, for left TLE, and
the right thalamus, left cortical areas, as well as the cerebellum, for right TLE patients, relative
to the controls. While the thalamus has been consistently described as atrophic in this popula-
tion, and considered by some to be part of the TLE epileptogenic network[31], the role of the
cerebellum remains unclear in epilepsy. There are some indications this cerebellar loss may be
related to the iatrogenic effect of anti-convulsant medication[32]. It is also important to note
that such cerebellar loss is concordant with previous VBM[10,12], single photon emission
computed tomography (SPECT)[5], and FC studies in TLE describing abnormalities in the cer-
ebellum [33,34].

Our data revealed major structural differences between left and right TLE, relative to the
controls, with the former demonstrating more localized differences while the latter showing
more widespread, bilateral changes. Such differences have been described by other studies, sup-
porting the possibility that right and left TLE have a different impact on structural [35–37]
organization across the hemispheres. It is important to note that in contrast to our results,
there are studies [38] that have reported similar morphologic gray matter profiles for right and
left TLE patients. Such studies, however, have involved Engel class 1 outcomes (seizure free
patients) with multi-year follow-up. In pre-surgical samples, right and left TLE differences in
gray matter are more commonly described. However, the extent of the laterality effect on the
brain (e.g. localized versus widespread, relative to left versus right TLE) is not clear among all
these studies, suggesting that our findings are specific to our sample rather than generalized.
Certainly, more investigations need to be conducted to clarify in more detail GM integrity in
the context of seizure onset laterality. Our results certainly suggest that right and left TLE bear
distinct gray matter imprints, not just in terms of ictal region effects, but elsewhere in the
brain, outside the temporal lobe, regardless of the presence of MTS. The reason for this remains
unclear. One speculative possibility is that left versus right hemisphere TLE show differential
spread patterns and, therefore, potentially different levels of gray matter burden. However, a
recent study and review of spread pattern studies in TLE provided no indication of such,
though they did not specifically investigate spread differences as a function of left versus right
hemisphere seizure generators [39]. Alternatively, hemispheric language dominance may play
a role, possibly providing an example of how functionality can influence and alter structural
resiliency or neural reserve[14,16].

Importantly, we tested the hypothesis that the abnormal GM regions noted above would be
associated with abnormal FC, potentially pointing to the presence of an existing or emerging
epileptic network entrained and generated by seizure spread or epileptogenesis [13,40]. In con-
trast, we found that compared to controls these structurally abnormal regions did not display
abnormal inter-connections (i.e., FC) amongst themselves (i.e., their FC connections were sim-
ilar to matched controls at the time we scanned them, see Table 3). This does not imply that
these areas bore no FC, only that such connectivity was not abnormal compared to our norma-
tive reference group. This also does not preclude these regions from generating functional con-
nections, perhaps quite different from normal controls, under other conditions. While our
finding does seem to argue against the notion that structurally abnormal regions tend to form
epileptiform networks, other factors need to be considered. It is also possible, for instance, that
resting-state FC measures are insensitive to seizure network effects due to differences in the
time scale of fast, hypersynchronous seizure activity in cells, and the slower, longer time course
of BOLD/neuronal coupling [40,41]. It is also important to keep in mind that we did not test
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for indirect (e.g., polysnaptic) connections between the atrophic regions, which could explain
the lack of evidence for functional communication between gray matter areas that seem to
share a structural abnormality (i.e., gray matter atrophy from seizures). Another alternative
possibility is that these GM regions are part of an ictal epileptic network, but such network for-
mation was not evident in the inter-ictal state during which our resting-state scans were col-
lected. Such an interpretation is consistent with recent SPECT studies that have shown
differences in epileptic network formation between ictal and interictal states in TLE[4,5]. For
instance, Sequeira et al. [4] found the pattern of connectivity differs between the two states,
with decreased correlations between the epileptogenic temporal lobe and remaining cortex
during the interictal state, but emergent positive cross-correlations in temporal-limbic struc-
tures during the ictal phase of seizures. In fact, these authors proposed that there is a relative
disconnection between the epileptogenic temporal lobe and the rest of the brain during inter-
ictal periods.

In comparison to other studies examining links between gray matter structure and resting
state FC, our results reveal that in focal TLE seizure spread may affect multiple FC networks
rather than just one. In this regard, we should note that in both our structural and FC data, for
the right mTLE patients, the thalamus emerged as a common area, raising the possibility that
damage to this structure, a structure known to play a role in seizure generalization, may play a
role in perturbing resting FC networks. For instance, as we noted previously, McCormick et al.
[21] solely addressed the association between focal structural damage in the epileptic hippo-
campus specific patterns of DMN FC alterations. Our focus was broader, allowing for any
extra-temporal GM abnormality to emerge. While some of the regions we found to have GM
loss in our TLE patients were part of the DMN, the majority were not, and in fact, were anti-
correlated to this network [42,43]. As others have noted, the structural substrates for observed
functional connectivity differences are complex, and the latter cannot be assumed to reflect the
former [44]. Voets and colleagues [45], for instance, found reduced functional integration of
the hippocampus was associated with variability in gray matter structure, whereas functional
connectivity of nearby regions such as the parahippocampal gyrus, frontal, or temporal cortices
appeared instead to be associated with white matter structure abnormalities. These authors dis-
cussed methodological confounds (e.g., gray/white matter blurring, gray/white matter measure
co-linearity) behind such variability in structure/function relationships. Importantly, their data
and ours make clear that function-structure relationships in TLE are highly sensitive to the
analysis strategy and statistical method used. Further investigations will certainly need to be
conducted to explore in more detail GM and FC associations in TLE, determining if a more
generalizable pattern is present and verifying the direction of any effects (e.g., does gray matter
atrophy increase or decrease functional connectivity).

Given that our VBM-based ROIs were chosen on the basis of volume loss most likely
inflicted during the ictal rather than interictal state, our failure to find compelling evidence of
inter-ictal functional connectivity suggests that ictal and inter-ictal functional connectivity pat-
terns may be quite different, or that the abnormal regions we examined are actually part of dis-
tinct epileptic networks. However, one must consider that our choice of VBM-based ROIs may
have been biased, for instance, by our choice of smoothing kernel or whole-brain threshold.
Another approach would have been to base our FC analyses on regions defined by an anatomi-
cal atlas. Since such an approach has been extensively used in other resting-state papers
[15,46,47], we chose to use a different method to investigate the link between structural and
functional abnormalities in TLE patients. Overall, multi-modal investigations, sensitive to dif-
ferent network states, time scales and spatial resolutions, working to combine and integrate
both ictal and inter-ictal data, will be needed to fully confirm and characterize epilepsy-related
connectivity patterns.
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In our FC analyses, we also utilized our VBM-based ROIs as single seeds and examined con-
nectivity to the whole brain. In the case of left mTLE, as might be expected, the aberrant net-
works compared to controls did, by and large, emerge from the ictal region (left anterior
hippocampus). Our data also make clear that the extra-temporal regions involved, i.e., poten-
tially recruited into this network, were mostly ipsilateral in nature involving the left precuneus
and medial prefrontal cortex. These regions are part of the well-known DMN, and, in fact, are
defined as the key DMN hubs[48,49]. Our lab and others have described the DMN as abnormal
in TLE patients, especially for left TLE patients [15,21,50,51]. Therefore, our results are consis-
tent with previous literature, further confirming that the DMN is particularly affected by left
TLE seizures. However, it is important to highlight another potential implication of reduced
precuneal FC in our left TLE group. That is, it may reflect a more general process of seizure
spread and its associated pathology impacting high traffic areas of the brain, hubs, before bur-
dening other less trafficked brain nodes.

In contrast, for right TLE, the connectivity differences compared to controls involved ROIs
such as the ipsilateral thalamus, temporal cortex, the medial frontal and the left parietal corti-
ces, demonstrating numerous connections involving contralateral sensory-motor regions. As
noted, the thalamus was among the regions associated with both structural and functional
abnormalities, confirming its key role in both the structural and functional network effects of
even focal TLE. For this group, our finding of abnormal FC in sensory-motor regions adds to
the likelihood that our data have revealed the multiple independent networks revealed by sei-
zures. While unexpected, a previous study has indicated that sensory and perceptual networks
are impaired in TLE[52]. For both our left and right TLE groups it is important to note that the
instances of reduced connectivity involve mostly connections ipsilateral to the seizure focus. In
the cases of increased FC, however, our groups differed, with the left group showing mostly
ipsilateral abnormalities, and the right group showed mostly contralateral examples of abnor-
mally increased FC. Why the FC effects of right TLE would be more prone to a contralateral
impact is unclear. Similarly, it is not clear why we did not reveal FC abnormalities emerging
from the right epileptic hippocampus. This might have been caused by our stringent height
whole-brain threshold.

As was the case for understanding the greater extra-temporal GM volume loss in our mTLE
patients a more extensive pattern of seizure spread may be at work, or the impact of the most
crucial functional difference between the hemispheres (language dominance) may be altering
the resiliency or durability of node temporal synchrony during the resting state.

Regarding the relation between our structural and functional measures and episodic mem-
ory scores, we found that the left TLE patients produced fewer reliable effects, in fact, only a
single significant effect, material specific in nature, involving reduced verbal memory recall
and decreased GM volume in the left posterior hippocampus. This finding is not new to the lit-
erature [21,24,53] and, more notably, is consistent with literature showing that different
regions of the mesial temporal lobe bear distinct relationships with the component processes
involved in episodic memory (posterior/lateral areas mediating pattern generalizing item-con-
text representations support familiarity/recognition memory, and the anterior hippocampus
mediating pattern specific item memory involved in free recall)[38,53–55].

Our findings for right mTLE show that GM volume loss in right-sided structures is associ-
ated with reduction in verbal memory problems, both at the point of acquisition and recall.
Interestingly, in right mTLE, FC only showed associations with non-verbal memory. The rea-
sons for these distinct patterns for our FC and structural measures, are unclear. In contrast,
right non-lesional TLE was most commonly associated with weaker verbal memory, both
acquisition and retention, but only when there was a coupling (i.e., interaction) of our struc-
tural (GM) and functional (FC) measures involving the non-ictal hemisphere. Said differently
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and more specifically, increased GM in certain non-ictal extra-temporal areas (postcentral or
inferior parietal), appeared to be predictive of reduced verbal memory but only in the setting of
increased FC involving these regions. This suggests that in occult, non-lesional pathology both
structural and functional alterations may be necessary to produce cognitive deficits.

As to why the structure/function coupling we observed in right nTLE consistently produced
connections involving the postcentral gyrus and inferior parietal cortex remains unclear. These
associations, while unexpected, have been described in the literature, with a previous study
indicating that sensory and perceptual networks are, indeed, impaired in TLE [52], as part of
its extra-temporal impact [40]. With regard to right nTLE, it is again important to note both
that the instances of increased functional connectivity were contralateral to the seizure focus,
associated with increased GMmatter, and predicted reduced episodic memory. Accordingly,
this extra-temporal coupling of structure and function appears maladaptive, and limited to
non-lesional (and probable non-dominant hemisphere) TLE. In contrast, by our data, lesional
TLE does not produce these more widespread maladaptive effects.

It is important to note that our neuropsychological analyses were undertaken only to clarify
the potential cognitive and behavioral implications of a very select set of regions, chosen solely
on the basis of their demonstrating abnormal structure/function relationships. Thus, our
neuropsychological data neither re-test nor contradict previous work showing relationships
between memory and regional FC when considered in the absence of concurrent structural
(i.e., GM) abnormality. In other words, the neurocognitive relationships we observed do not
preclude the emergence of more standard memory/GM or memory/FC results, if they are
undertaken through standard whole brain analyses without the use of pre-selected regions.

Lastly, it should be noted that our patients may have been misclassified between mTLE and
nTLE, and therefore, biasing the results. While the classification of the mTLE patients was
based on multiple anatomical sequences and careful review by an Epilepsy Surgery Committee
including radiologists, neurologists, neurosurgeons, and neuropsychologists, all specialized in
epilepsy, misclassifications remain possible.

To our knowledge, this study is among the first lines of evidence to suggest that episodic
memory capacity in left and right TLE are associated with distinct structural and functional
measures. We acknowledge, however, that our findings in support of this interactive explana-
tion of our cognitive data are limited, and, in fact, only appeared for non-lesional right TLE
cases. Indeed, the fact that seeding both the hippocampus and other perturbed GM regions did
not produce networks relevant to episodic memory (or cognitive functions), makes the point
that neither seizure-generated networks, nor the location of seizure-related GM abnormalities,
need make sense in either adaptive or cognitive terms. Accordingly, while we had suspected
episodic memory deficits might be influenced by both structural and functional abnormalities,
our data suggest they show some independence in terms of a causal chain. Lastly, as a caveat,
with respect to neurocognitive performance, our FC analyses were not exhaustive. For instance,
as we did not specifically test the connectivity status of a known episodic memory network (i.e,
the default mode network, like [21]), nor other brain networks that could influence episodic
memory performance (e.g., executive function), nor did we utilize all possible indices of net-
work integrity in our interrogation of abnormal GM connectivity. Ultimately, the exact mecha-
nism by which structural and functional connectivity abnormalities might combine to mediate
memory and other cognitive deficits in TLE remains unclear and in need of further study.

Conclusion
This study investigated abnormalities in refractory TLE using a multi-modal approach com-
bining GM, FC and neuropsychological measures. Our data revealed distinct patterns of
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structural abnormality in TLE patients, which varied as a function of the side of pathology and
the presence of MTS. Importantly, we did not find that the GM abnormalities were functionally
or abnormally connected during the resting state. This result is consistent with the possibility
that the atrophic regions we tested do not form a functional epileptic network. Alternatively,
one must consider that our results simply reflect the weak sensitivity of functional connectivity
in terms of detecting epileptic networks during the inter-ictal state. We provide evidence of the
role that atrophy in the ictal posterior hippocampus plays in episodic verbal memory in the set-
ting of left mTLE. We also show that in the setting of right hemisphere lesional TLE, FC and
structural measures abnormalities, ipsilateral to the seizure focus, produce distinct material-
specific effects on memory. Lastly, we provide data suggesting that in the setting of occult, non-
lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-
temporal/non-ictal regions is necessary to produce reductions in episodic memory recall. The
latter, in particular, demonstrates the complex structure/function interactions at work when
trying to understand cognition in TLE, suggesting that subtle network effects can emerge bear-
ing specific relationships to hemisphere and the type of pathology.
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