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Compensatory fetal membrane mechanisms between biglycan 
and decorin in inflammation

Luciana Batalha de Miranda de Araujoa, Casie E. Horgana, Abraham Arona, Renato V. 
Iozzob, and Beatrice E. Lechnera,*

aDepartment of Pediatrics, Women and Infants’ Hospital of Rhode Island, The Warren Alpert 
Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA

bDepartment of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, 1020 Locust 
Street, Philadelphia, PA 19107, USA

Abstract

Preterm premature rupture of fetal membranes (PPROM) is associated with infection and is one of 

the most common causes of preterm birth. Abnormalities of biglycan and decorin, two 

extracellular matrix proteoglycans, lead to preterm birth and abnormal fetal membrane 

morphology and abnormal signaling in the mouse model as well as being associated with 

inflammatory cascades. In humans, decorin dysregulation is associated with inflammation in 

PPROM. We investigated biglycan and decorin’s role in inflammation in fetal membranes using 

mouse models of intraperitoneal E. coli injections superimposed on biglycan and decorin 

deficiency. We assessed outcomes in vivo as well as in vitro using quantitative qPCR, Western 

blotting and ELISA techniques. Our results suggest that biglycan and decorin compensate for each 

other in the fetal membranes but lose the ability to do so in the setting of inflammation, leading to 

decreased latency to preterm birth. Furthermore, our findings suggest that biglycan and decorin 

play discrete roles in fetal membrane signaling pathways in inflammation, leading to changes in 

expression of MMP-8 and collagen α1VI, two components of the fetal membrane extracellular 

matrix that play a role in the pathophysiology of PPROM. In summary, these findings underline 

the importance of biglycan and decorin in fetal membranes as targets for the manipulation of fetal 

membrane extracellular matrix stability in the setting of inflammation.
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1. Introduction

Preterm birth is the leading cause of newborn morbidity and mortality in the United States 

(Murphy et al., 2012). About a third of preterm births are caused by preterm premature 

rupture of fetal membranes (PPROM) (Steer 2005). While no therapies for PPROM 

currently exist (Ananth and Vintzileos 2006) (Miyazaki et al. 2012) and the pathophysiology 
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is unclear, infection as well as genetic susceptibility are thought to play a role (Parry and 

Strauss 1998; Shen et al. 2008).

We have shown that mice deficient in biglycan and decorin, two highly homologous 

extracellular matrix proteoglycans, deliver their pups prematurely and display fetal 

membrane abnormalities in morphology and signaling (Calmus et al. 2011; Wu et al. 2014). 

Biglycan and decorin are members of the small leucine-rich proteoglycan (SLRP) family 

(Iozzo 1999; Iozzo 2011; Iozzo and Murdoch 1996) and are the most abundant 

proteoglycans expressed in human fetal membranes (Gogiel et al. 2003; Meinert et al. 2001; 

Valiyaveettil et al. 2004). Biglycan and decorin are involved in a number of biological 

processes including tumor angiogenesis and fibrosis (Neill et al. 2013; Neill et al. 2012a; 

Neill et al. 2012b), cancer growth (Iozzo and Cohen 1993; Reed et al. 2005; Sofeu Feugaing 

et al. 2013), stem cell biology (Berendsen et al. 2011; Bi et al. 2005; Ichii et al. 2012), 

myogenesis (Brandan and Gutierrez 2013) and osteoarthritis and osteoporosis (Ameye et al. 

2002; Ameye and Young 2002; Nikitovic et al. 2012). Furthermore, biglycan and decorin 

are involved in collagen fibrillogenesis and contribute to the mechanical properties of 

connective tissues (Chen et al. 2011; Reed and Iozzo 2002; Zhang et al. 2009). The absence 

of these proteoglycans leads to a decrease in connective tissue tensile strength (Corsi et al. 

2002). Humans with abnormal post-translational processing of biglycan and decorin display 

a subtype of Ehlers-Danlos syndrome, a syndrome associated with a decrease in tensile 

strength of connective tissues as well as an increased risk of PPROM (Barabas 1966; 

Quentin et al. 1990). Furthermore, we have shown that decorin is dysregulated in human 

fetal membranes with PPROM (Horgan et al. 2014).

Beyond their structural roles, both biglycan and decorin have been implicated in a number of 

signaling pathways, including the TGF-β pathway. TGF-β signals via Smads (Liu et al. 

1996), transcription factors that play a role in the modulation of the extracellular matrix. 

Both biglycan and decorin are regulated by TGF-β (Bassols and Massague 1988) and 

decorin modulates TGF-β activity via negative feedback mechanisms (Yamaguchi et al. 

1990). Smad-2 and -3 regulate downstream gene expression of tissue inhibitors of matrix 

metalloproteinases (TIMPs) and collagens (Verrecchia et al. 2001), proteins that in turn 

modulate the mechanical stability of the fetal membrane extracellular matrix. Matrix 

metalloproteinases (MMPs) are linked to the pathogenesis of PPROM through the 

degradation of fetal membrane extracellular matrix proteoglycans and collagens (Ferrand et 

al. 2002). Furthermore, mutations in matrix metalloproteinase genes (Fujimoto et al. 2002) 

as well as collagen genes (Anum et al. 2009) have been identified as possible predisposing 

factors to PPROM. Additionally, proteoglycans interact with MMPs. For example, decorin 

induces the expression of MMP-1 (Huttenlocher et al. 1996). Importantly, we have shown 

that biglycan and decorin modulate the TGF-β-SMAD-MMP-TIMP-collagen pathway in 

fetal membranes in a gestational age dependent manner (Wu et al. 2014).

Substantial clinical data suggest that infection is a significant risk factor for PPROM 

(Torricelli et al. 2013). When exposed to an infectious insult, term human fetal membranes 

display increased MMP expression (Estrada-Gutierrez et al. 2010). We have shown a link 

between infection and decorin expression in human fetal membranes with PPROM (Horgan 

et al. 2014). Coupled with studies indicating that biglycan and decorin both play a role in 
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inflammatory cascades (Babelova et al. 2009; Merline et al. 2011), these observations 

suggest that infection may significantly impact the biglycan and decorin-dependent 

signaling pathways that modulate fetal membrane mechanical properties.

However, while we know that mutations leading to abnormal processing of biglycan and 

decorin (Barabas 1966; Quentin et al. 1990) as well as infection (Torricelli et al. 2013) play 

a role in the pathogenesis of PPROM, the mechanism by which infection modulates the 

function of biglycan and decorin and their dependent signaling pathways in the fetal 

membranes is not known.

2. Results

2.1. In the setting of inflammation, latency to preterm birth as well as live birth is 
decreased in the absence of biglycan and decorin

In order to assess the role that biglycan and decorin play in the maintenance of gestation to 

term in the setting of inflammation, we first examined the natural history of mouse gestation 

after the injection of E. coli intraperitoneally into pregnant mice at embryonic day 15. We 

found that the period between injection of live E. coli and preterm birth is significantly 

decreased in the Bgn+/−;Dcn−/− and Bgn−/−;Dcn+/− nulls compared to the wild-type E. coli 

injected mice as well as compared to the PBS injected Bgn+/−;Dcn−/− and Bgn−/−;Dcn+/− 

null mice (Figure 1A) (P=0.001). Furthermore, while the incidence of live pup birth is 

significantly decreased in the E. coli injected wild-type dams compared to the PBS injected 

wild-type dams, it decreased to 0 in the E. coli injected Bgn+/−;Dcn−/− and Bgn−/−;Dcn+/− 

mice (Figure 1B) (P=0.004). For comparison with the wild-type, we chose mice that have 

only one of four possible SLRP genes (two biglycan and two decorin). These mice are more 

affected than the biglycan or decorin single nulls but are less severely affected than the 

double nulls (Bgn−/−;Dcn−/−). The Bgn−/−;Dcn−/− mice delivered their pups extremely 

prematurely even without the additional environmental insult of an E. coli injection, and are 

thus not suitable for this experimental design. While there was no statistically significant 

difference in the latency between the E. coli exposed and the saline exposed wild-type mice, 

the standard deviation was larger in the E. coli exposed mice, demonstrating a range of 

latencies compared to the saline exposed mice from decreased latency to increased latency 

with dystocia.

2.2. Biglycan and decorin compensate for each other in fetal membrane transcription in 
the absence of inflammation

Next, we investigated whether biglycan and decorin would exhibit compensatory 

upregulation of gene expression in fetal membranes depending on exposure to the 

environmental insult of inflammation. We observed upregulation of biglycan transcript in 

decorin null fetal membranes in the absence of inflammation (PBS injected mice) (P=0.05), 

and similarly, upregulation of decorin transcript in biglycan null fetal membranes in the 

absence of inflammation (P=0.025)(Figure 2A and 2B).
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2.3. Biglycan and decorin compensatory transcription increase does not occur in 
inflammation, while decorin transcription is decreased in the E. coli injected mice 
compared to the PBS injected mice

Interestingly, the compensatory mechanisms between biglycan and decorin in the fetal 

membranes that are present in the absence of inflammation are modified by the presence of 

inflammation. In the E. coli injected fetal membranes, biglycan transcription remained 

unchanged in the decorin null samples compared to the wild-type samples, thus departing 

from the compensatory increase that it displayed in the absence of inflammation. Decorin 

transcription also displayed a lack of compensatory upregulation in the biglycan null in the 

setting of inflammation. Additionally, in the absence of biglycan, decorin transcription 

decreased in the E. coli injected mice compared to the PBS injected mice (P=0.01) (Figure 

2A and 2B).

2.4. MMP-8 decreases in the wild-type and biglycan null fetal membranes in the setting of 
inflammation, while it remains unchanged in the decorin null

Next, we assessed the expression of the matrix metalloproteinases that play a significant role 

in fetal membrane rupture and PPROM. We found that inflammation leads to a decrease in 

MMP-8 expression in both the wild-type (P=0.03) and the biglycan null (P=0.05), but not in 

the decorin null, in which it remained unchanged irrespective of the presence of 

inflammation (Figure 3). MMP-9 expression was unchanged (data not shown).

2.5. Collagen α1VI gene expression is unchanged in the setting of inflammation in the 
absence of biglycan or decorin, while collagen α1VI protein levels are increased

Given the role that collagens play in the maintenance of connective tissue mechanical 

strength and integrity, we next examined the biglycan- and decorin-dependent expression of 

collagen α1VI, a biglycan and decorin binding collagen, in inflammation. In the absence or 

presence of both biglycan and decorin, there was no change in collagen α1VI gene 

transcription levels (Figure 4A). However, in the absence of either biglycan (P=0.05) or 

decorin (P=0.03), collagen α1VI protein expression increased in the setting of inflammation 

compared to non-inflammation controls (Figure 4B and C).

In summary, these results demonstrate that inflammation exacerbates the gestational 

phenotype of the biglycan/decorin null mouse and leads to abnormalities of transcriptional 

compensation between biglycan and decorin as well as leading to translational and 

transcriptional changes in downstream targets that play a role in fetal membrane stability.

3. Discussion

Biglycan and decorin are necessary for the maintenance of gestation to full term in a gene-

dose dependent and compensatory manner (Calmus et al. 2011), while biglycan/decorin null 

fetal membranes display abnormal morphology (Wu et al. 2014). In this study, we show that 

biglycan and decorin play a role in the maintenance of gestation in the setting of 

inflammation as well as in the fetal membrane response to inflammation.
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Others have shown that inflammation leads to preterm birth in the mouse model (Hirsch and 

Wang 2005; Reznikov et al. 1999) and is associated with PPROM in humans (Bendon et al. 

1999). Our study has demonstrated that the superimposition of an environmental insult, in 

this case inflammation, on a genetic defect, leads to an exacerbation of the preterm birth 

phenotype compared to the preterm birth phenotype in the setting of an environmental insult 

without a genetic mutation. Furthermore, our study of the role of fetal membrane biglycan 

and decorin in the context of inflammation has demonstrated important mechanistic insight 

into the role of these proteoglycans in the pathophysiology of PPROM.

Our data indicate that biglycan and decorin compensate for each other in the fetal 

membranes by increasing transcription in a compensatory manner in the absence of 

inflammation. This compensatory upregulation of biglycan and decorin is similar to 

observations in multiple tissues including cornea, kidney, skin, bone and muscle (Ameye 

and Young 2002; Corsi et al. 2002; Zhang et al. 2009) and to our observations in the 

placenta as well as functionally in vivo during gestation (Calmus et al. 2011). We have not 

observed similar upregulation of biglycan protein expression in decorin-null fetal 

membranes and vice versa (Calmus et al. 2011). This may be secondary to protein 

compensation not being present in the fetal membranes or it may be because compensatory 

changes are present but not readily apparent with the techniques we utilized given the 

abundance of both SLRPs in fetal membranes. Interestingly, this ability to compensate for 

each other is disrupted by the presence of inflammation. On the other hand, when 

inflammation occurs in a wild-type genetic background, inflammation fails to evoke 

biglycan or decorin expression. Thus, it is likely that the underlying etiology for the 

decreased latency to preterm birth in the Bgn+/−;Dcn−/− and Bgn−/−;Dcn+/− mice is a result 

of a two hit hypothesis, in which a genetic predisposition is aggravated by an environmental 

factor. Specifically, genetic susceptibility is compensated for, but the compensation is then 

tempered by an environmental hit that deranges the compensation. This observation mirrors 

clinical observations in patients with Ehlers-Danlos syndrome, who display a significantly 

elevated incidence of preterm birth from PPROM compared to their unaffected siblings 

(Barabas 1966; Yen et al. 2006). The progeroid variant of Ehlers-Danlos syndrome displays 

a mutation leading to the secretion of abnormal, non-glycosylated biglycan and decorin 

(Quentin et al. 1990). Further support is lent to the concept of PPROM via connective tissue 

genetic abnormalities exacerbated by inflammation by the fact that women with a history of 

multiple PPROM have undiagnosed connective tissue anomalies similar to Ehlers-Danlos 

syndrome (Hermanns-Le et al. 2005).

One caveat to these observations is that the mice used for the in vivo E. coli injection 

experiments are heterozygous/homozygous and homozygous/heterozygous biglycan/decorin 

nulls (Bgn+/−;Dcn−/− and Bgn−/−;Dcn+/−). However, based on our prior data (Calmus et al. 

2011), it is likely that our observations are a similar but tempered response compared to the 

homozygous/homozygous double nulls (Bgn−/−;Dcn−/−), which have too severe a 

phenotype to lend themselves to these types of experiments. At the same time, these 

observations are likely an exaggerated response compared to the single nulls (Bgn−/− or 

Dcn−/−), on which we have performed the in vitro component of this study.
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When both biglycan and decorin are present in fetal membranes, inflammation leads to a 

decrease in MMP-8 protein expression, perhaps as a protective mechanism to counteract the 

membrane destructive/remodeling effects. Alternately, MMP-8 could be transcribed at the 

typical rate but secondary to inflammation there is higher turnover as it is being used to 

degrade the fetal membranes. In the absence of biglycan, MMP-8 protein expression is 

decreased in a manner similar to the wild-type. In the decorin null, on the other hand, 

MMP-8 protein expression is unchanged. Thus, the expected MMP-8 decrease in the 

presence of inflammation does not occur in the absence of decorin, but does occur in the 

absence of biglycan, indicating a role for decorin in the MMP-8 signaling pathway under 

inflammatory circumstances. Similarly, exogenous decorin gain-of-function experiments 

confirm that decorin regulates components of this pathway (Wu et al. 2014). These findings 

are similar to our previous findings, in which MMP-8 and MMP-9 gene and protein 

expression, as well as MMP-13 gene transcription increases in fetal membranes close to 

term (embryonic day 18) in the absence of decorin, but not in the absence of biglycan (Wu 

et al. 2014), suggesting that decorin is a membrane stabilizing factor. Furthermore, decorin 

suppresses the expression and activity of two MMPs associated with PPROM, MMP-2 and 

MMP-9 (Neill et al. 2012a). Also, decorin decreases prior to parturition as ozen in liquid 

nitrogen and stored at hile biglycan increases (Meinert et al. 2007). Interestingly, however, 

decorin induces the synthesis of a number of MMPs, including MMP-1, -2 and -14 

(Schonherr et al. 2001) and during early gestation (embryonic day 12), the absence of 

decorin leads to a decrease in MMP-8 and -9 protein expression in fetal membranes. This 

suggests a role for decorin in extracellular matrix remodeling in early gestation as opposed 

to its membrane stabilizing role in late gestation and in inflammation.

Our data indicate that biglycan and decorin are both necessary for the maintenance of 

appropriate collagen α1VI levels in the setting of inflammation. Gene transcription of 

collagen α1VI is unchanged with inflammation or in the absence of biglycan or decorin. 

Protein expression, however, increases in the absence of biglycan or decorin in the setting of 

inflammation. One possible explanation for the increase in collagen α1VI in the absence of 

both biglycan and decorin is compensation for the structural role of the absent 

proteoglycans. In the setting of two hits, a genetic defect as well as inflammation, the 

increase in collagen α1VI expression may be a protective strategy to stabilize the fetal 

membranes. Decreased decorin in the kidney leads to increased accumulation of 

extracellular matrix with increased biglycan expression (Merline et al. 2009) and the 

absence of decorin leads to hepatic fibrosis (Baghy et al. 2011). Thus, alternately, the 

increase in collagen α1VI in the absence of these SLRPs may be a reflection of the anti-

fibrotic role of these proteoglycans.

The diverse MMP-8 and collagen α1VI expression profiles in the absence of biglycan or 

decorin suggest that the two SLRPs signal via discrete pathways. Given that they 

compensate for each other, if they exerted their signaling via one common pathway, one 

would expect the MMP-8 and collagen α1VI levels to be unchanged between the wild-type 

and either null mouse. It is likely that compensation is not complete, coupled with some 

level of discrete functions. Biglycan and decorin play differential roles in mouse fetal 

membrane TGFβ signaling, leading to differential expression of the MMPs -8, -9 and -13, 

TIMPs -1, -2, -3 and -4, and collagen α1VI (Wu et al. 2014). Furthermore, the differences in 
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expression and function may be related to the mid-pregnancy gestational age studied here, 

since biglycan and decorin play distinct signaling roles in a gestational age dependent 

manner (Wu et al. 2014).

Biglycan plays a role in inflammatory signaling as an inflammatory cascade activator via its 

role as a ligand for Toll-like receptors 2 and 4 (Babelova et al. 2009; Moreth et al. 2014; 

Zeng-Brouwers et al. 2014). Furthermore, decorin expression is evoked by septic 

inflammation, and decorin boosts inflammatory response in both sepsis and cancer (Merline 

et al. 2011). Thus, the role of biglycan and decorin in the maintenance of fetal membrane 

integrity in the setting of inflammation is likely to reflect complex interactions between their 

roles as connective tissue stabilizing proteins and their roles as extracellular matrix 

proinflammatory signaling molecules.

In summary, our findings suggest that biglycan and decorin compensate for each other in the 

fetal membranes but lose their ability to do so in the setting of inflammation, leading to 

decreased latency to preterm birth, and thus preterm birth earlier than inflammation alone 

would have led to. Furthermore, our findings suggest that biglycan and decorin play discrete 

roles in fetal membrane signaling pathways leading to changes in expression of MMP-8 and 

collagen α1VI, two components of the fetal membrane extracellular matrix that play a role 

in the pathophysiology of PPROM.

4. Materials and Methods

4.1. Mouse husbandry and genotyping

Wild-type mice (C3H) were purchased from Jackson Laboratories (Bar Harbor, ME). A 

Bgn−/− breeding pair (C3H) (generated by Marian Young (Xu et al. 1998)) was a gift from 

Justin Fallon. A Dcn+/− breeding pair (C57BL/6) was mated to the birth of homozygous null 

pups, which were then bred to establish the Dcn−/− colony. A Bgn−/− female was crossed 

with a Dcn−/− male to establish double heterozygous breeding pairs (Bgn+/−;Dcn+/− and 

Bgn−/0;Dcn+/−). These pairs were mated to breed Bgn+/−;Dcn−/− and Bgn−/−;Dcn+/− 

heterozygous-homozygous null pups. Breeding pairs were set up for mating at 5–7 weeks of 

age. Plugs were checked each morning, and the day of the plug was defined as embryonic 

day 0. Dams that were sacrificed at embryonic day 15 for tissue harvesting were sacrificed 

between 4 and 5 hours after E. coli or PBS injection. Approval was obtained from the 

Lifespan Institutional Animal Care and Use Committee. For genotyping, genomic DNA was 

extracted from each 3 mm tail biopsy sample using the High Pure PCR Template 

Preparation Kit (Roche, Mannheim, Germany). Polymerase chain reaction (PCR) was 

performed using the Taq DNA Polymerase kit (New England Biolabs, Ipswich, MA) and the 

PTC-200 thermal cycler. The PCR product was run on a 1.8% w/v agarose gel to visualize 

the following diagnostic bands. The decorin PCR produced bands of 161 bp for the wild-

type allele and 238 bp for the null allele. The biglycan PCR produced bands of 212 bp for 

the wild-type allele and 310 bp for the null allele.

4.2. Bacteria preparation

Previously frozen E. coli was inoculated on an agar plate overnight. The next morning one 

colony from the plate was incubated overnight in 10mL in Luria-Bertani (LB) broth (MP 
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Biomedicals, Santa Ana, CA). The next morning, the culture was diluted 1:50 in fresh LB 

broth and incubated until an optical density of 0.5–0.8 was detected at 600nm, indicating the 

bacteria was in log phase growth. A more accurate bacterial concentration was determined 

post hoc by the plating of 106 serial dilutions in triplicate. Colony counts were performed on 

these plates the next morning. Colony forming units ranged from 3×106 to 1.4×107 CFU/ml.

4.3. Injection preparation

300mcl of the previously mentioned log phase bacterial broth was concentrated by 

centrifugation with the addition of 700mcl clean LB broth. The resulting pellet was washed 

with 1ml of sterile, room temperature phosphate buffered saline (PBS) and was concentrated 

again via centrifugation. The PBS was decanted and the pellet was re-suspended in 0.5ml of 

sterile, room temperature PBS. The resulting suspensions were drawn into 1ml tuberculin 

syringes and injected intraperitoneally into pregnant embryonic day 15 mice of the 

following genotypes: Bgn−/−;Dcn+/−, Bgn+/−;Dcn−/− and wild-type (Bgn+/+;Dcn+/+). 

Vehicle controls of 0.5ml sterile, room temperature PBS were also used. In order to assess 

preterm delivery rates, the mice were observed twice daily while health status and preterm 

deliveries were recorded. Health status was determined using an adaptation of the Mouse 

Sepsis Index scale (Biswas et al. 2002). The scale ranges from 5 for a normal healthy 

clinical status to 0 for death. Four is defined as slight illness with ruffled fur and lethargy, 3 

is moderate illness with severe lethargy, ruffled fur and hunched back, 2 is severe illness 

with all signs of 3 plus exudative accumulation around the eyes, and 1 is a moribund state. 

Mice of both null genotypes injected with E. coli did not differ significantly from wild-type 

E. coli injected mice in their illness index. Nulls of both genotypes injected with E. coli had 

a mean score of 3.75 (SD 0.58) and wild-type mice injected with E. coli a mean score of 

3.87 (SD 0.73) (P= 0.7).

Mice that were designated for tissue harvest were sacrificed 4 to 5 hours after E. coli or PBS 

injection on embryonic day 15.

4.4. Western blotting

Fetal membranes from each genotype and condition were dissected at embryonic day 15 

between 4 and 5 hours after E. coli or PBS injection and frozen at −80°C Tissue samples 

were cut into small pieces and placed in 1.0 ml T-PER tissue protein extraction buffer 

(Pierce, Rockford, IL) with one tablet of proteinase inhibitor cocktail per 10 ml buffer 

(Roche, Basel, Switzerland). Tissue samples were then homogenized for 3×10s in an ice 

bath and kept on ice for 30 min. The homogenate was centrifuged at 10,000 × g at 4 °C for 8 

min. The supernatant was collected and stored at −80°C until use. Total protein content was 

determined using the BCA assay (Pierce, Rockford, IL). 30 μg of total protein was loaded on 

duplicate 10% SDS-polyacrylamide gels and subsequently blotted to a polyvinylidene 

difluoride membrane. Following blocking in 5% milk in PBS-T buffer (PBS with 0.2% 

Tween 20) for 30 min, each blot was incubated overnight at 4°C with primary antibody. The 

blot was then washed with PBS-T buffer briefly and incubated with secondary antibody for 

40 min. The Super-Signal West Pico chemiluminescent substrate kit (Pierce, Rockford, IL) 

was used prior to development of the blot membrane. The bands were compared with 

protein markers of known molecular size run in parallel on the same SDS-polyacrylamide 
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gel (Bio-Rad, Hercules, CA). The membrane was stripped using Restore Western Blot 

stripping buffer (Thermo Scientific, Waltham, MA) for 10 min and blocked with 5% milk 

PBS-T for 20 min, then re-probed with anti-GAPDH antibody at a 1:800 dilution (Santa 

Cruz Biotech, Santa Cruz, CA) as an internal standard. Immunoblots were digitally scanned 

and densitometrically analyzed using Gel-Pro Analyzer (Media Cybernetics, Bethesda, 

MDRelative optical density (specific protein band to GAPDH) was normalized to the wild-

type with PBS injection band. The experiment was repeated with three individual sets of 

samples.

4.5. Antibodies

The following antibodies were used: rabbit polyclonal anti-COLα1VI (sc-20649, dilution 

1:800) and mouse monoclonal anti-GAPDH (sc-137179, dilution 1:1000) (Santa Cruz 

Biotech, Santa Cruz, CA). Secondary antibody labeling was performed with anti-mouse and 

anti-rabbit IgG horseradish peroxidase conjugate (Cell Signaling, Danvers, MA).

4.6. ELISA

Wild-type, Bgn−/− and Dcn−/− dams injected with PBS vehicle as wells as dams of each 

genotype injected with E. coli were dissected at embryonic day 15 between 4 and 5 hours 

after E. coli or PBS injection. Fetal membranes were collected and flash frozen in liquid 

nitrogen and isopentane and stored at −80°C. Four whole fetal membranes from each 

condition were used. Each fetal membrane sample was homogenized in 1mL of protein 

lysate buffer (2.5ml Triton X and one tablet of Roche Complete EDTA-free Protease 

Inhibitor filled to 50ml volume), flash frozen in liquid nitrogen and stored at −80°C until 

used. Commercially available ELISA kits (MMP-8 from Anaspec, Fremont, CA; MMP-9 

from Abnova, Taipei City, Taiwan) were run in triplicate according to the manufacturer’s 

instructions. Plates were read on a Bio-Rad Laboratories Microplate Reader at 450nm.

4.7. RNA, cDNA preparation and quantitative PCR (qPCR)

Fetal membranes from wild-type, Bgn−/− and Dcn−/− dams injected with PBS vehicle as 

wells as dams of each genotype injected with E. coli were dissected at embryonic day 15 

between 4 and 5 hours after E. coli or PBS injection in 0.1mol l−1 phosphate-buffered saline, 

pH 7.4, snap-frozen in liquid nitrogen and stored at −80°C. RNA extraction, genomic DNA 

removal and conversion to cDNA was performed as described previously (Wu et al. 2014). 

qPCR reactions were performed on the 7500 Fast Real-Time PCR System thermocycler 

(Applied Biosystems, Foster City, CA) using the SYBR-Green method (Invitrogen, 

Carlsbad, CA). Primers were designed using Primer-Blast primer design software (National 

Library of Medicine, Bethesda, MD). GAPDH was used as a normalizer. Melting point 

analysis of the product was performed to ensure the absence of alternative products or 

primer dimers. Data analysis was performed via the comparative Ct method with a 

validation experiment. A standard sample of RNA pooled from samples of wild-type as well 

as biglycan and decorin null fetal membranes was used in each qPCR experiment as a 

calibrator whose relative transcript level was defined as 1. qPCR analysis was performed in 

triplicate. n=3–4 dams per genotype and condition.
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4.8 Primer sequences

qPCR—GAPDH forward: CTCACAATTTCCATCCCAGAC, reverse: 

TTTTTGGGTGCAGCGAAC; collagen α1VI forward: 

CTGGTGAAGGAGAACTATGCAG, reverse: GTCTAGCAGGATGGTGATGTC; 

biglycan forward: ATTGCCCTACCCAGAACTTGAC, reverse: 

GCAGAGTATGAACCCTTTCCTG; decorin forward: TTCCTACTCGGCTGTGAGTC, 

reverse: AAGTTGAATGGCAGAACGC.

Genotyping—Biglycan wild-type allele forward TGATGAGGAGGCTTCAGGTT, 

reverse GCAGTGTGGTGTCAGGTGAG; biglycan null allele forward 

TGTGGCTACTCACCTTGCTG, reverse GCCAGAGGCCACTTGTGTAG; decorin allele 

forward CCTTCTGGCACAAGTCTCTTGG, decorin wild-type allele reverse 

TCGAAGATGACACTGGCATCGG; decorin null allele reverse 

TGGATGTGGAATGTGTGCGAG.

All primers were purchased from Invitrogen (Carlsbad, CA).

4.9 Statistical analysis

Analysis of differences in levels of gene and protein expression between genotypes was 

performed using the Student’s t-test or, in the case of non-normally distributed data, the 

nonparametric Mann-Whitney Rank Sum test. ANOVA and χ2 analysis were performed for 

the in vivo experiments. Where appropriate, Bonferroni correction was performed for 

multiple comparisons using the Student’s t-test. Analysis was performed using SigmaPlot 

11.0 (San Jose, CA).
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Figure 1. 
[A] Days to delivery are decreased in the Bgn+/−;Dcn−/− and Bgn−/−;Dcn+/− dams injected 

with E. coli compared to both the same genotype injected with PBS and the wild-type 

regardless of injection category (p=0.001 via ANOVA). Error bars = SD. [B] While the 

percentage of live pup births is decreased in the wild-type injected with E. coli compared to 

PBS injected wild-type dams, it is decreased to zero in the Bgn+/−;Dcn−/− and 

Bgn−/−;Dcn+/− dams injected with E. coli (p=0.004 via χ2). Gestational age embryonic day 

15. n=3–8 per condition. Bgn=biglycan; Dcn=decorin.
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Figure 2. 
Biglycan and decorin compensate for each other in fetal membranes in the absence of 

inflammation, but not in the presence of inflammation. [A] Biglycan gene expression is 

increased in the PBS injected decorin null fetal membranes compared to wild-type (p=0.02); 

this compensatory increase does not occur in the setting of inflammation [B] Decorin gene 

expression is increased in the PBS-injected biglycan null fetal membranes compared to 

wild-type (p=0.006); this compensatory increase does not occur in the setting of 

inflammation, but decreased decorin gene expression occurs in the E. coli injected biglycan 

null fetal membranes compared to the PBS injected biglycan null fetal membranes 

(p=0.009). n=4 per genotype and condition. Error bars = SD. BgnKO=biglycan null; 

DcnKO=decorin null; WT=wild-type; PBS=phosphate buffered saline. Student’s t-test was 

performed for each set of data.
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Figure 3. 
MMP-8 expression is decreased in fetal membranes of E. coli injected mice in the wild-type 

as well as the biglycan null mouse but not in the decorin null mouse. n=4 per genotype and 

condition (p=0.03 and 0.028). Error bars = SD. BgnKO=biglycan null; DcnKO=decorin null; 

WT=wild-type. Student’s t-test was performed for each set of data.
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Figure 4. 
In the setting of inflammation, collagen α1VI protein expression is increased in the biglycan 

null and decorin null fetal membranes but not in the wild-type, while gene expression is 

unchanged. [A] Collagen α1VI gene expression is unchanged in the biglycan null and 

decorin null with or without inflammation compared to the wild-type. [B] Representative 

Western blots and [C] Summary data demonstrating increased collagen α1VI protein 

expression in the biglycan null and decorin null fetal membranes but not in the wild-type in 

the setting of inflammation (P=0.05 and 0.03). n=4 per genotype and condition. Error bars = 

SD. BgnKO=biglycan null; DcnKO=decorin null; WT=wild-type. Student’s t-test was 

performed for each set of data.
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