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HYPERTHERMIA, RADIATION AND CHEMOTHERAPY:   

THE ROLE OF HEAT IN MULTIDISCIPLINARY CANCER CARE 

MARK HURWITZ M.D. 
 

PAUL STAUFFER MS, MSEE 
 
 
 
 
 
 
HISTORICAL BACKGROUND 

 
The therapeutic potential of heat has been recognized for nearly 5000 years. The first recorded use of 

medicinal heat dates back to the 27th century B.C. in Egypt where direct application of hot blades or 

sticks were used to ablate breast cancer.(1) There are reports of various therapeutic uses of heat in 

ancient China and India as well.(2) The ancient Greeks recognized the therapeutic value of moderate 

temperature elevations such as occurs with fever. In the 6th Century B.C. Paramenides stated “Give me 

the power to produce fever and I will cure all diseases”.(3) Subsequently Hippocrates applied 

hyperthermia to treat breast cancer.   He expressed admiration for the therapeutic benefit of heat 

stating;  “That which drugs fail to cure, the scalpel can cure. That which the scalpel fails to cure, heat can 

cure. If heat cannot cure, it must be deemed incurable.”(4)   Over the ensuing several centuries there is 

documented use of moderate heating to cure a variety of diseases in Greece and subsequently the 

Roman Empire.(5)
 

 

In the 19th Century Busch reported successful use of infection to treat cancer and in 1893 Coley 

retrospectively reviewed the cases of 38 patients with advanced cancer who developed high fevers 

spontaneously or after purposeful infection with erysipelas. Thirty one of these patients experienced a 

remission in their cancers including twelve with a complete clinical response.(6)
 



The first report of use of radiation with hyperthermia is a German phase II trial published in 1910. One 

hundred patients with a variety of pathologically confirmed advanced cancer were treated with 

radiation and diathermy, a technique for local heating of body tissues with electric currents. Thirty two 

patients experienced complete regression while another 32 experienced temporary improvement.(7) In 

1935 Warren reported on combined induced fever with roentgen therapy which resulted in significant 

improvement and palliation in 29 of 32 end stage oncology patients. (8)
 

 

THERMAL BIOLOGY 
 

 
Biologic Rationale For Combining Heat With Radiation and Chemotherapy 
 

 
 
The biologic basis for benefit of hyperthermia with modern cancer therapies including radiation and 

chemotherapy began to be appreciated by the 1970’s. In regards to radiation therapy, hyperthermia 

was recognized as an ideal complementary treatment. Many conditions that contribute to radio- 

resistance including hypoxia, acidification, and S-phase of the cell cycle either enhance sensitivity to 

heat or do not temper it.(9-15) (FIGURE 1)  Hyperthermia also typically results in enhanced perfusion that 

may result in improved tumor oxygenation for subsequent radiation treatments. (16-17)
 

 

 
Chemosensitization with hyperthermia is dependent on the particular mechanism of effect for each 

agent. The magnitude of effect ranges from none as is typical with anti-metabolites to synergistic 

effects such as with cisplatin. (FIGURE 2) The mechanism of enhanced cytotoxicity can  include increased 

intracellular drug accumulation, inhibition of DNA repair, abrogation of cell cycling in S-phase when cells 

are most sensitive to heat, enhanced free radical production, and reversal of drug resistance.(18-20))      

Drugs  for  which  synergistic  effects  have  been  noted  include  cisplatin,  adriamycin, 

bleomycin,  melphalan,  cyclophosphamide,  nitrosoureas,  nitrogen  mustards,  and  mitomycin  c.(19)
 

 
Interaction of hyperthermia with other agents including taxanes and anti-metabolites is possible 

although for many agents the complex  interactions that contribute  to  enhanced  treatment effects 



remain to be fully defined.(20) In regards to timing and sequencing, simultaneous administration or 

chemotherapy followed immediately by hyperthermia has been shown to have the greatest effects. 

 
Mechanism of Cell Death With Hyperthermia 
 

 
High temperatures achieved with thermal ablation, typically in the range of 65-85°C result in 

instantaneous cell death. Temperatures above 45°C sustained for sufficient time will lead to protein 

denaturization and cell death typically via necrosis. Clinical hyperthermia involves temperature 

elevations in the range of 39-45°C Within this moderate temperature elevation range, tumor cell death 

occurs in a log-linear manner with an initial shoulder region followed by a steeper decline in cell survival 

correlated with increasing temperatures up to 45°C. While temperatures between 42- 45°C can result in 

cell death with sufficiently long exposure, use of hyperthermia alone is not a practical nor particularly 

effective theraupeutic strategy as monotherapy. The primary benefit of hyperthermia with moderate 

temperature elevation is therefore achieved through enhancement of anti-tumor effects through 

combination with either radiation or chemotherapy. 

 

The precise mechanisms by which moderate temperature hyperthermia results in tumor cell death are 

complex and highly dependent on the heating profile. In addition to complementary biologic effects 

with radiation and chemotherapy, mechanisms for direct effect include protein denaturization 

including inhibition of sub-lethal and potentially lethal damage repair through inactivation of DNA repair 

pathways leading to mitotic catastrophe, induction of senescence, apoptosis, and necrosis. (21-28) 

Research has revealed that protein denaturization is a key biologic effect of hyperthermia at modest 

temperature elevations.(29)   The activation energeries for protein denaturization and heat induced cell 

death were noted to be within the same range.   Further research suggested that nuclear proteins are 

most sensitive (30-32) and a high degree of correlation of nuclear protein aggregation and heat induced cell 

kill has been noted.  Radiation sensitization is achieved in large part through nuclear protein aggregation 

which inhibits the DNA repair process thus converting potentially lethal radiation induced DNA breaks into 

lethal events.   Specifically, heat induces changes in DNA repair foci such as the MRN complex which 

http://www.ncbi.nlm.nih.gov/books/n/cmed6/A10020/#A10124


includes MRE11, rad 50, and nbs1, key proteins involved in double strand break repair, the nucleolus and 

on the complexes that anchor DNA to the nuclear matrix thus contributing to radiosensitization. (33-34)   

Chromosomal aberrations may also occur due to heat sensitivity of the centriole. (35) Failure of  DNA 

replication in S-Phase of the cell cycle results in mitotic catastrophe.    Research to date has made it clear 

however that other mechanisms including necrosis, apoptosis and senescence also have important roles in 

hyperthermic cell kill.   Temperatures above 44-45°C generally lead to cell death via extensive protein 

denaturization and necrosis. (36).   Apoptosis has been noted at more moderate temperature elevations 

such at 41.5°C sustained for one to two hours. (37) Stress induced premature senescence may also occur in 

response to heat shock. (38) 

 

Heat Shock Proteins 
 

 
Heat shock proteins (HSP) play a central role in hyperthermia response. Heat shock proteins (HSP), first 

identified in relation to thermal stress are now recognized as ubiquitous proteins involved in general 

cellular stress response and also for their role in immune modulation.   HSP were discovered in 1961 by 



Chanel and Maury who described the effects of thermal shock on blood proteins in fish.(39) While 

initially identified in relation to heat shock and thus named as such, HSP are now known to have a 

universal role in cellular stress response. In the intracellular milieu HSPs have a primary role in 

stabilizing damaged proteins allowing for repair. This protective mechanism however has negative 

connotations for treatments directed at killing cancer cells. This response which may last for several 

days has potential to abrogate the effects of hyperthermia. This concept is referred to as thermal 

tolerance. The induction of thermal tolerance has been found to be associated with HSP up 

regulation.(40-41) Due to concerns about thermal tolerance, hyperthermia is typically delivered no more 

than a few times per week, generally with at least 72 hours between treatments. 

 
While serving a protective role for the cancer cell in the intracellular environment, HSP have potentially 

beneficial anti-neoplastic effects in the extracellular milieu. HSPs have chaperokine  effects  which 

include a central role in cellular immune regulation coupled with the ability to stimulate pro- 

inflammatory cytokine production.(42) HSP-PC complexes with functional CD8+ cells and macrophages 

are all required for induction of immunity.(43) The chaperone function of HSP relates to their role in 

shuttling immunogenic peptides onto MHCs for presentation to T cells. Notably, HSP-PC complexes can 

induce tumor-specific immunity. (44-46)    (FIGURE 3) 
 

 

Radiation has also been shown to have similar effects in regard to immune response. In the clinical 

setting, a consistent increase in serum HSP70 over the duration of a standardly fractionated course of 

radiation therapy for prostate cancer patients was noted. This increase in HSP70 was associated as 

expected with increase in proinflammatory cytokines and components of the cellular immune response 

including CD8+ and natural killer cells. Cell and animal modeling indicated this response is consistent 

with tumor specificity.(47)    Optimization of immune response with combination of hyperthermia with 



radiation and the ever increasing number of immunotherapeutics remains an active area of emerging 

investigation. 

 

Thermal Enhancement Ratio 
 

 
The additional anti-neoplastic effect achieved with hyperthermia is referred to as the thermal 

enhancement ratio or TER. TER is the ratio of radiation or chemotherapy doses required to produce a 

given level of biological damage with versus without heat. The finding of a significant TER as first 

defined in the laboratory has subsequently been demonstrated in clinical practice with most studies 

indicating a TER of approximately 1.5. (FIGURE 4) 

 

THERMAL PHYSICS 
 

 
Mechanisms of Heating 
 

 
While there are hundreds of medical devices available to administer thermal therapy, there are just 

three basic mechanisms of heat delivery to tissue: thermal conduction, resistive or dielectric losses, and 

mechanical losses from molecular collisions. The most fundamental mechanism of heat transfer in the 

body is thermal conduction, which causes a net flow of heat energy from higher to lower temperature at 

a rate dependent on the tissue thermal properties and temperature gradient. 

 

Resistive or dielectric losses result from an applied electromagnetic (EM) field. Critical factors  in selecting 

appropriate EM frequency are tumor size and depth. Dielectric losses increase with frequency, 

increasingly restricting tissue penetration at microwave frequencies greater than 150 MHz. Spatial 

resolution (focal spot size) is approximately one half the wavelength in tissue which varies from a tumor- 

sized 4 cm at 1000 MHz to >3 m at radiofrequencies (RF) below 100 MHz. Therefore a tradeoff exists 

between RF sources that can penetrate deep in the body but cannot selectively heat small volumes 



versus microwave sources that can focus energy into smaller tumors but cannot penetrate deep below 

the surface. 

 

The third mechanism of heat generation involves mechanical losses from molecular collisions as induced 

by an ultrasound (US) pressure wave. Like EM energy, US attenuates exponentially with depth in soft 

tissue. Furthermore, ultrasound absorption is fifty times greater in bone than soft tissue and therefore 

cannot be applied when there is bone between the applicator and the target. The most useful 

frequencies for power deposition in human anatomy are in the range of 0.5-10 MHz which have 

wavelengths ranging from 0.1 - 3 mm. These wavelengths are much shorter than the tumor dimensions 

and allow a focal spot size less than 2 mm diameter. Due to lower attenuation rate in soft tissue, US can 

penetrate deeper than EM energy. 

 
Approaches To Heating 
 

 
Heating approaches include whole body, deep-regional, deep-focused, superficial, or 

interstitial/intracavitary techniques. (FIGURE 5) 

 

Whole Body Heating 
 

 
Regardless of tumor location within the body, the most uniform tumor temperatures are possible by 

heating the entire body. The disadvantages are systemic stress and a limitation to <42°C due to 

thermosensitivity of critical tissues like heart, liver and brain. Thus the thermal goals of systemic 

therapy are usually more modest than local heating techniques, and intended for activation of drugs (48) 

or enhancement of immunologic response(49-50)) rather than radiosensitization. When heating the whole 

body,  normal  body-cooling  mechanisms  such  as  respiration  and  skin  cooling  must  be  blocked  by 

thermally insulating the patient and preheating the breathing circuit. The patient is often anesthetized 

or sedated and physiologic conditions and electrolyte balance must be carefully controlled throughout 



treatment which generally lasts many hours. Following early work using induced fever therapy,(51) 

systemic heating is generally accomplished via thermal conduction heating from immersion in heated 

fluid or air.(52-55) The heating process can be accelerated using infrared radiation.(56) For some 

applications, regional heating is sufficient with invasive approaches like intraperitoneal irrigation(57) or 

circulating blood that is heated by exteriorized arterio-venus shunts through organs(58) or limbs(59). 

 
Isolated Limb and Peritoneal Perfusion 
 

 
Hyperthermic limb perfusion involves isolating the limb from systemic circulation, typically with a 

tourniquet, after which chemotherapy is administered, often in the range of 60 minutes with 

extracorporeal circulation.(60-61) At the beginning of perfusion phase, the blood of the limb is heated 

after which chemotherapy infusion begins. Therefore a high concentration of chemotherapy can be 

delivered to the targeted limb while minimizing systemic toxicity. With peritoneal infusion the 

chemotherapeutic agent is heated and then injected directly into the targeted region.(62-64)
 

 

Deep Regional Heating 
 

 
Deep penetration of heat is best accomplished with array applicators that spread out superficial power 

deposition across a large surface area and combine geometrically to produce a concentrated heat focus 

at depth. The most practical approach to heat large tumor volumes at depth is the use of 

electromagnetic fields in the range of 8-140 MHz. This approach takes advantage of wavelengths that 

are long compared to body dimensions and thus deposit energy deeper and over a sizeable region. 

 

Deep Focused Heating 
 

 
Deep focused techniques include interstitial implantation of heatable sources into the body and more 

recently injectable paramagnetic nanofluids. Alternative magnetic fields (AMF) can be used to heat 

ferromagnetic  seeds of  fluids  implanted in  the body.    These strategies  have  been investigated for 



prostate cancer where placement of the heatable seeds is similar in  technique to  implantation of 

radioactive seeds as done for prostate brachytherapy.(65-66)
 

 

Superficial Heating 
 

 
To date, microwave applicators are used most frequently for heating superficial tissue disease less than 

3 cm deep. In the US, the most common device is the microwave waveguide, a simple rectangular or 

circular metal structure that guides EM waves from a single monopole feed out the open aperture which 

is at least a half wavelength in largest dimension. Waveguide antennas are commercially available from 

7.5 to 24 cm, designed for use at approved Industrial Scientific and Medical (ISM) band frequencies of 

915 or 2450 MHz in the US, (67-70) or 430-434 MHz in Europe(71-72) and Asia. (73-74) 

 

CLINICAL HYPERTHERMIA 
 

 
Early Clinical Experience 
 

 
Enthusiasm quickly waxed in the 1970’s and 1980’s for hyperthermia with realization of the potential for 

therapeutic gain combining moderate temperate heating and radiation. The Radiation Therapy 

Oncology Group initiated two phase III trials in the 1980s. These trials however were hampered by 

several key limitations including the inability at that time to effectively heat many tumors with the 

technology available, lack of appreciation for meaningful goals in prescribing hyperthermia, and lack of 

quality assurance guidelines. 

 

RTOG 81-04 compared radiation with or without hyperthermia for a variety of malignancies including 

breast, head and neck, trunk, and extremity tumors. No difference was noted in complete response 

between groups; however, benefit was noted for tumors less than 3 cm, suggesting that if tumors could 

be effectively heated meaningful clinical responses could be achieved.(75) A second phase II trial, RTOG 

84-19 was conducted to assess use of radiation with or without interstitial hyperthermia for persistent 



or recurrent tumors after previous radiation or surgery. No difference in any of the study endpoints was 

noted; however, only 1 of 173 evaluable patients met the minimum accepted criteria for adequate 

hyperthermia. The authors concluded that the study ultimately failed in its objective to assess the value 

of hyperthermia.(76) Coupled with other challenges including the typical hour or more needed  to 

administer hyperthermia, the difficulties in administering hyperthermia and lack of standards led many 

radiation oncologists to abandon pursuit of hyperthermia. 

 
Additional Randomized Trials 
 

 
Following the RTOG trial experience, over 20 randomized trials assessing hyperthermia with radiation or 

chemotherapy have been published with most demonstrating benefit to the addition of hyperthermia. 

These studies, while often of modest size, have shown benefit for hyperthermia in treatment of a wide 

range of malignancies including glioblastoma multiforme, head and neck cancer, breast cancer, 

melanoma, esophageal malignancies, and sarcoma. 

 
Randomized Trials of Hyperthermia and Radiation CNS Malignancies 

Hyperthermia has been shown to benefit patients with glioblastoma multiforme (GBM).  Researchers at 
 
the University of California at San Francisco randomized 79 patients following surgery and standard 

external beam radiation therapy to 59.4 Gy to undergo an interstitial brachytherapy boost of 60 Gy with 

or without interstitial hyperthermia. Time to progression and overall survival was significantly increased 

with the addition of hyperthermia. Two year overall survival was 31% vs 15% with vs without 

hyperthermia. A multivariate analysis adjusting for age and KPS showed that improved survival was 

significantly associated with randomization to “heat” with a hazard ration of 0.51.(77)
 

 

Head and Neck Cancer 



In  regard  to  head and  neck  cancers,  two  small  randomized  trials  have  revealed  benefit  to  addition  of 
 

hyperthermia to radiation in treatment. In one study pre-dating routine use of chemotherapy in locally 

advanced head and neck cancer, 65 patients were randomized to radiation alone vs. radiotherapy and 

hyperthermia. Radiation included 50 Gy in five weeks to the primary site and regional lymphatics followed by 

a boost of 10 to 15 Gy to the site of gross disease. Hyperthermia was administered twice weekly. 

Response as expected was excellent in either arm for patients with early stage disease with 12 of 13 

experiencing complete response. For patients with stage III or IV disease complete response was increased 

from 20% and 7% with radiation therapy alone to 58% and 38% respectively with addition of hyperthermia. 

While the radiation therapy and lack of use of chemotherapy as applied for these patients treated in the 

1980s can be rightly cited as inferior by current standards, the results are instructive in demonstrating the 

ability of hyperthermia to enhance radiotherapeutic outcomes.(78)
 

 

A phase III trial in Italy from this era assessed the impact of hyperthermia when applied with radiation in 
 

treatment of N3 squamous cell cervical lymph nodes. The primary endpoints were local control at 3 months 

and acute local toxicity. A planned interim analysis inclusive of 41 patients revealed a statistically significant 

difference in complete response rates in lymph nodes treated with hyperthermia. The complete response 

rate in the combined arm was 82.3% compared to 36.8% with radiation alone. In light of these very positive 

results the study was closed to further accrual. Treatment was also noted to be well tolerated. Apart from 

skin burns generally mild in severity, acute local toxicities were similar in both groups. One patient in the 

combined heat and radiotherapy arm died two months after completion of therapy with a carotid rupture 

which may have been associated with extensive tumor necrosis. A longer term analysis reported actuarial 5 

year overall survival of 55% vs. 0% in the hyperthermia vs. radiation alone arms.(79)
   

In  a  more  recent  study  from  India,  56  patients  were  randomized  to  receive  radiation  alone  or  with 

hyperthermia for treatment of tumors of the oropharynx, hypophaynx, or larynx.   Over 90% had stage 3 or 4 



disease. A complete response was observed in 79% of patients randomized to hyperthermia as opposed to 

42% of patients in the radiation alone arm. Survival was also significantly increased on the hyperthermia 

arm to 8.0 months as compared to 4.8 months with radiation alone.(80) Notably, chemotherapy and IMRT 

were not utilized, a significant number of patients in both arms did not complete the intended treatment or 

were lost to follow-up, and overall outcomes were worse than expected with optimal standard therapy, 

therefore limiting the conclusions that can be drawn from this study. Never-the-less overall these head and 

neck trials indicate there is significant potential for hyperthermia to improve outcomes for head and neck 

malignances. Thus additional study with present state-of-the-art radiation and chemotherapy is warranted. 

 
Lung Cancer 
 

 
 
Data in lung cancer is relatively limited given the challenges of safely heating lung without inducing 
 

thermal damage.    An International Atomic Energy Agency (IAEA)-sponsored, multi-institutional prospective 

randomized trial was, however, successfully completed.  This trial was designed to assess whether the 

combination of hyperthermia and radiation improves the local response rate of locally advanced non-small cell 

lung cancer (NSCLC) compared with radiation alone. 80 patients with locally advanced NSCLC were 

randomized. The primary endpoint was local response rate. Secondary endpoints included local progression-

free survival and overall survival. No significant differences between the two arms with regard to local 

response rate or overall survival rate was noted.  However, local progression- free survival was significantly 

better with the addition of hyperthermia. Toxicity was generally mild and no grade 3 late toxicity was observed 

in either arm.(81)
 

 
Breast Cancer 
 

 
Hyperthermia has been shown to improve complete response and local control for women with breast 

cancer, particularly in the setting of recurrent chest wall disease. Vernon   reported combined 



results of five randomized breast cancer trials in Europe and North America including both locally 

advanced primary disease and recurrent disease for which radiation therapy was indicated and surgery 

contraindicated.(82)  Three distinct groups were studied: patients with inoperable primary disease, recurrent 

disease in un-irradiated sites, and recurrent disease in previously radiated areas. The primary endpoint in each 

trial was local tumor response. 

 

A decision to perform a combined analysis was made after initiation of the individual studies due to slow 

accrual. A prospective statistical plan was generated to allow for assessment of the initial objectives. A total 

of 306 eligible patients were enrolled. Treated lesions included chest wall (71%) and intact breast tissue 

(26%). 48% of cases included multiple lesions.  There were a greater number of patients who had received 

prior chemotherapy and lesion size was greater in the hyperthermia plus radiation treatment arm. A highly 

significant difference in complete response was note for combined radiation and hyperthermia, 59%, vs. 

radiation alone, 41%. On further analysis it was determined this difference was driven by benefit in patients 

undergoing re-irradiation for whom radiation doses were limited. In this group there was nearly a doubling 

of complete response with the addition of hyperthermia to radiation of 59% as compared to 31% with 

radiation alone. Patients achieving a complete response who received hyperthermia had a reduced risk of 

recurrence with hazard ratio of 0.67 compared to patients who received radiation alone. Treatment with 

hyperthermia was well tolerated. Apart from acute occurrence of skin blistering of 11% vs. 2% with vs. 

without hyperthermia no differences in either acute or late toxicity were noted. 

 

Researchers at Duke University confirmed a dose response relationship for hyperthermia in a randomized 
 

trial in which patients with superficial tumors ≤ 3 cm depth received either “low” vs “high” dose 

hyperthermia combined with radiation. As prior studies had shown a thermal dose of CEM 43°C T90 (the 

number of cumulative equivalent minutes at 43°C exceeded by 90% of monitored points within the tumor) 



equated with improved treatment outcome,(83-84) hyperthermia was prescribed to either CEM 43°C T90 <1 or 

CEM 43°C T90 >10. 122 patients were enrolled of which 89% were determined at the time of first 

hyperthermia treatment to have tumors that could be effectively heated. These 109 patients were 

randomized to receive either no further hyperthermia or twice weekly hyperthermia over their course of 

radiation therapy up to 10 treatments. Patients were also stratified by whether they had received prior 

radiation therapy and by site of disease. Median CEM 43°C T90 in the low and high dose hyperthermia groups 

was 0.74 and 14.3 respectively. 65% of patients had breast or chest wall disease, 13% head and neck, 11% 

melanoma, with the remainder having various other malignancies,  36% of  patients had received prior 

radiation. Median radiation dose was 41 Gy in previously treated patients and 60 Gy for those not previously 

irradiated. 

 

Higher dose hyperthermia was found to be beneficial.  Complete response rate in the high dose arm was 66% 
 

and in the low HT arm 42%. The odds ratio for complete response was 2.7. This improvement in complete 

response translated into improved duration of local control of 48% vs. 25% at the time of death or last follow- 

up. Previously irradiated patients had the greatest incremental gain in complete response, 23% in the no HT 

arm vs. 68% in the HT arm as compared to 51% vs. 65% for patients without prior radiation therapy. The 

toxicity profile was also excellent. The study therefore demonstrated that thermal dose can be prospectively 

prescribed and delivered, and correlates with outcome.(85)
 

 
Pelvic Malignancies 
 

In a multicenter trial in the Netherlands patients with locally advanced pelvic tumors were randomized to 

radiation alone or radiation plus hyperthermia. 363 patients with bulky stage 1B or IIB-IVA cervical, T3 or T4 

bladder or unresectable or recurrent rectal cancers were stratified based on primary disease site.  With 

median 2 year follow-up local control with radiation and hyperthermia vs. radiation alone was 56% vs. 39%. 

3 year overall survival was significantly improved with the addition of hyperthermia, 31% vs. 24%.     On 



further analysis this benefit was determined to be due to a highly significant benefit for patients with cervical 

cancer with improvement in overall survival to 51% with hyperthermia compared with 27% for those 

receiving radiation alone. Apart from an 11% acute rate of skin burns which resolved with conservative 

treatment there were no significant differences in short or long-term toxicity.(86) Contemporaneous with 

publication of these impressive results, several studies were published showing a similar benefit to the 

addition of cisplatin to radiation in treatment of locally advanced cervical cancer established combined 

radiation and chemotherapy as standard of care.(87) Two studies exploring potential additional benefit of 

hyperthermia to both radiation  and chemotherapy were subsequently initiated  but closed due to poor 

accrual leaving this questioned yet unanswered. 

 
In 2010 a Cochrane review of 6 randomized  controlled  trials assessing  radiation vs.  radiation plus 

hyperthermia for locally advance cervical cancer found that addition of hyperthermia was associated with 

a significantly higher complete response rate with relative risk 0.56; a significantly reduced local recurrence 

rate with hazard ratio 0.48; and a significantly better overall survival following the combined treatment with 

HR 0.67. No increase in short or long-term toxicity was observed. The authors noted several limitations with 

the data including the limited number of patients available for analysis, methodological flaws and a 

significant over-representation of patients with FIGO stage IIIB (74%) which prohibited drawing definite 

conclusions regarding the impact of adding hyperthermia to standard radiotherapy. They went on to note, 

however, available data does suggest that the addition of hyperthermia improves local tumor control and 

overall survival in patients with locally advanced cervix carcinoma without affecting treatment related grade 3 

to 4 acute or late toxicity.(88)  

 

Several randomized studies have assessed the role of the addition of hyperthermia to radiation in treatment of 

rectal cancer.  Another Cochrane review identified six randomized controlled trials for rectal cancer 

published between 1990 and 2007 including 520 patients evenly divided between treatment arms. Four 

studies including a total of 424 patients reported overall survival rates. After 2 years, overall survival was 

significantly improved with 



the addition of hyperthermia with hazard ratio of 2.1 however this benefit disappeared with longer 

follow-up. Five of the studies reported complete response rates with significantly higher rate of complete 

response observed in the combined treatment group with relative risk of 2.8. No significant differences 

were noted in acute toxicity in two studies reporting this outcome. Late toxicity was not assessed. While 

these finding were promising, the authors concluded that additional studies are needed to compare 

chemoradiation versus thermoradiation versus chemoradiation plus hyperthermia in high quality controlled 

randomized trials.(89)
 

 
Skin Cancer 
 

Hyperthermia has also been demonstrated to be beneficial in treatment of melanoma. The European Society 

for Hyperthermic Oncology conducted a multi-center phase III trial involving 134 metastatic or recurrent 

lesions of malignant melanoma in 70 patients randomly assigned to receive radiotherapy with three fractions 

of 8 Gy or 9 Gy in 8 days alone or followed by hyperthermia. Addition of hyperthermia significantly increased 

local control from 28% to 46%. The overall 5-year survival rate was 19%, however 38% of the patients for 

whom all known disease was controlled survived 5 years demonstrating the contribution of local control to 

survival.(90)
 

 

Randomized Trials of Chemotherapy and Hyperthermia Sarcoma 

The European Organization for the Research and Treatment of Cancer (EORTC) in cooperation with the 

European Society for Hyperthermic Oncology (ESHO) reported results of a phase III trial revealing benefit to 

addition of hyperthermia to chemotherapy for treatment of sarcoma. 341 patients with either primary or 

recurrent clinically localized high-risk soft-tissue sarcoma defined as ≥5cm grade 2-3, deep to the fascia were 

randomized to either chemotherapy alone or combined with regional hyperthermia in 



addition to local therapy. Chemotherapy consisted of 4 cycles of neoadjuvant etoposide, ifosfamide, 

and doxorubicin (EIA) followed by surgery and when indicated radiotherapy to 50-60 Gy with boost up 

to 66 Gy in standard fractionation followed by an additional 4 cycles of EIA. Patients randomized to 

hyperthermia received hyperthermia in combination with chemotherapy on days 1 and 4 of each 3 week 

chemotherapy cycle pre and post-surgery. Patient and tumor characteristics were evenly matched. 

Local progression free survival, the primary endpoint, was improved at 2 years with the addition of 

hyperthermia to 76% from 61% with chemotherapy alone. The hazard ration for local progression or 

death with hyperthermia was 0.58. The relative hazard for disease free survival was also reduced with 

hyperthermia at 0.70 with median duration of 32 vs. 18 months with vs. without hyperthermia. In a 

pre-specified per protocol analysis comparing patients who completed EIA and hyperthermia vs. those 

who completed EIA alone revealed an overall survival benefit with hyperthermia with hazard ratio of 

0.66.(91)
 

 

Hyperthermic isolated limb perfusion for treatment of extremity soft tissue sarcomas has been assessed 

in multiple phase II trials. In a recent meta-analysis of 518 patients across 12 studies, 408 had at least a 

partial response and 428 had the limb spared. Median complete and partial response rates were 31% 

and 55% respectively with limb sparing achieved for 83% of patients. While these results in total 

were encouraging, no trial fulfilled either all ideal or essential quality criteria and seven trials did not 

include statistical methodology. Therefore well designed prospective randomized trials are still warranted 

to validate these findings.(92)
 

 
Bladder Cancer 

 
Combined hyperthermia and  chemotherapy has also proven  beneficial  in  treatment of non-muscle 

invasive bladder cancer. In a multicenter trial 83 patients with stage Ta and T1, grade G1 to G3 

transitional cell carcinoma of the bladder were randomized to receive mitomycin C with or without 



radiation therapy following complete transurethral resection. Patients with low-risk disease were 

excluded. Patient and tumor characteristics were evenly matched. Freedom from tumor recurrence, 

the primary endpoint was significantly improved with addition of hyperthermia to 83% as compared to 

42% with mitomycin C alone.(93) In a subsequent report of long-term results, this benefit was maintained 

with median follow-up for tumor free patients of 91 months. 10 disease-free survival was 53% vs. 15% 

with vs. without hyperthermia.(94) 

 
Esophageal Cancer 
 

 
 
Researchers at Kyushu University in Japan performed a prospective randomized study exploring use of 
 

hyperthermia with chemotherapy in treatment of esophageal cancer.  From January 1988 to June 1992, 

66 patients with resectable squamous cell carcinoma of the thoracic esophagus underwent preoperative 

neoadjuvant therapy. 32 were treated with local hyperthermia combined with chemoradiotherapy and 

while 34 patients were treated with chemoradiotherapy alone.  Over a three week period patients 

received 30 Gy in fifteen fractions combined with either bleomycin 30mg twice weekly or 150mg of 

cisplatin weekly with cisplatin being the primary chemotherapeutic agent from 1991 onwards.   Patients 

randomized to hyperthermia received twice weekly treatments over the three week course. Patients 

proceeded to undergo a sub-total esophagectomy through a right thoracotomy with lymph node 

dissection 7-10 days after completion of neoadjuvant therapy. Patients characteristics were similar 

between groups with 63% and 65% having stage III or IV disease and 28% and 21% presenting with nodal 

disease in the hyperthermia plus chemoradiotherapy vs. radiotherapy alone groups. Radiation and 

chemotherapy received was also similar. “Markedly effective” pathologic response, as defined by 

established national guidelines was 25% and 6% and 3 year overall survival was 50% vs. 24% in the 

hyperthermia plus chemoradiotherapy and chemoradiotherapy alone groups respectively.(95)
 

 
  ADDITIONAL CLINICAL TRIALS 



In addition to the trials described above, non-randomized phase II and earlier trials have been done for 
 

these disease sites and others as well.  While no randomized studies have been performed in prostate 

cancer to date, several trials have been reported.   In a phase II trial from the Dana Farber Cancer 

Institute, addition of two trans-rectal ultrasound hyperthermia treatments to radiation and androgen 

deprivation was shown to be beneficial in treatment of locally advanced disease.   37 patients with 

clinical T2b, T2c, or T3 disease without seminal vesicle involvement were treated with then standard 

66.6 Gy and a median of 6 months of androgen deprivation therapy.  Median Gleason score and PSA 

were 7 and 13.3ng/ml. Patients treated on the short-term hormonal therapy arm of RTOG 92-02 were 

used as historical controls.  The primary endpoint was absolute two year progression free survival.   The 

addition of hyperthermia resulted in a significant increase in two year disease free survival of 84% as 

compared with 64% for the historical control group.(96)  With median follow-up of 70 months, 7 year 

survival was 94% with 61% remaining free of failure.  No increase in long-term toxicity was noted.  Other 

studies assessing use of various approaches to hyperthermia for prostate cancer have also yield 

interesting results however firm conclusions are difficult to draw due to heterogeneity of patients and 

treatment.(97-99)
 

 

Hyperthermic limb perfusion has been investigated in several non-randomized trials for melanoma, 
 

many with promising results.(100-102)     These favorable findings lead the American College of Surgical 

Oncology Group to include hyperthermic limb perfusion as part of standard treatment in a phase III trial 

assessing melphalan with or without the addition of TNF-α. As hyperthermia was used for all patients 

as part of the standard treatment administered to both groups, insight into the specific benefit of 

hyperthermia in this setting was not assessed in this phase III trial. 

 
Whole body hyperthermia has been assessed in a limited number of phase I and II clinical studies. In a 
 

study of 37 patients with therapy resistant metastatic or advanced solid malignancies patients



underwent treatment cycles consisting of cisplatin on day one, followed by whole body hyperthermia and 

simultaneous gemcitabine 36 hours later; then a second dose of gemcitabine one week later; and daily 

IFN- alpha. The protocol was well tolerated and was associated with antitumor activity in patients with a 

variety of advanced metastatic solid tumors. Notably, tumor response occurred with the addition of 

hyperthermia despite treating malignancies that had progressed on the same chemotherapy drugs 

administered as standard treatment.  In particular, good responses were observed in patients with high- 

grade neuroendocrine and pancreas cancers.(103) 

 

CHALLENGES TO CLINICAL IMPLEMENTATION 

 

 
Despite compelling biologic rationale and benefit demonstrated in a majority of clinical trials, the clinical 

implementation of hyperthermia has been hindered by several factors. Challenges have included 

logistical concerns, definition of thermal dose goals equating with outcomes, quality assurance, and 

limitations of technology to deliver adequate heat. 

 

The ability to prescribe hyperthermia and easily deliver it has been a challenge. Compared to radiation 

dosing defined by physics and chemotherapy dosing defined by physiology, hyperthermia is dependent 

on both physics and physiology. The body has several mechanisms to dissipate heat. While thermal 

conduction and other mechanisms account for some heat dissipation, increase in blood perfusion during 

hyperthermia is the primary way in which heat is removed from the targeted area. Hyperthermia 

treatment is therefore more directly “hands on” as adjustments in magnitude and distribution of power 

are typically necessary during hyperthermia treatment in response to changes in perfusion.  This 

required degree of monitoring coupled with duration of treatment typically in the range of one hour, at 

therapeutic temperature tempered initial widespread enthusiasm for hyperthermia. 



Quantification of thermal dose that equates with clinical outcomes has also been a challenge but one 

that has been acceptably if incompletely addressed. Thermal dosimetric parameters now have been 

defined from clinical trials. In particular the minimum temperatures achieved in tumor have been 

shown most consistently to correlate with clinical outcome. Preclinical research on hyperthermia 

revealed a breakpoint in rate of cell killing at 43°C. For each degree Celsius above 43°C the time needed 

for an equivalent effect at 43°C is halved whereas for each degree Celsius below 43°C four times as 

much time in needed to achieve the same extent of cell kill. A thermal dose parameter was developed to 

account for both the relevance of minimum temperatures achieved and the differential rates of cell kill 

at various temperatures.(104) This parameter, cumulative equivalent minutes at 43°C achieved by 90% of 

the measured temperate points in the targeted area or CEM43T90, has been shown in multiple studies 

to correlate with clinical outcome.(83-84,105-112)
 

 

The field of thermal dosimetry continues to evolve given that most treatment thermal profiles are based 

on modest samples of temperature points in the heated region. Non-invasive approaches to 

temperature measurement capable of monitoring hundreds or thousands of points in real time is now 

possible albeit not widely available. Magnetic resonance imaging can be utilized using a technique 

referred to as proton resonance frequency shift (PRF) which uses the correlation of proton resonance in 

water with temperature to monitor heating non-invasively.(113) Other techniques utilizing ultrasound or 

computed tomography are also being developed. Advances in non-invasive thermometry providing 

more complete thermal profiles promise to further understandings of clinically relevant thermal dose 

parameters. 

 

The need for quality assurance guidelines became readily apparent with the conduction of early clinical 

trials. In response to challenges identified from these early clinical trials, leading organizations including 

the American College of Radiology, American Society for Therapeutic Radiation and Oncology and the 



Radiation Therapy Oncology Group (RTOG) published the first quality assurance guidelines in 1989.(114) 

The authors of the report noted several problems including lack of standardization in equipment, 

treatment procedures, patient monitoring, and treatment documentation as available in radiotherapy. 

The paper presented several recommendations including a set of test procedures necessary to ensure 

proper operation of equipment, guidelines for frequency for such tests, and guidelines on quality control 

procedures to be used during treatment to improve the safety, effectiveness, and reproducibility of 

hyperthermia treatments. Furthermore examples of forms were presented to indicate the minimum 

data that must be collected for acceptable documentation of treatment. In three follow-up papers the 

RTOG published guidelines to address quality assurance issues pertaining to deep tissue.(115)     RTOG 

quality  assurance  guidelines  for  interstitial  hyperthermia(116)   and  ultrasound.(117)       Recently,  leading 
 
experts in the United States published a review of the competencies and tasks used in a hyperthermia 

clinic. Guidelines were provided for what the competencies specialist involved in delivery of care 

including physicians, physicists and technologists need to perform multiple tasks to ensure properly 

functioning equipment, appropriate patient selection, and to plan and administer hyperthermia 

treatment.(118) The European Society for Hyperthermic Oncology has likewise published guidelines(119) 

which were recently updated. Guidelines for the implementation of regional deep hyperthermia 

treatments under strict rules of quality assurance were provided. The guidelines were based on practical 

experience from several hyperthermia centers. Recommendations for hyperthermia treatments, 

including indication, preparation, treatment, and standardized analysis were presented.(120)
 

 

The technological challenge of delivery of effective hyperthermia was a primary concern early on. Over 

the past 35 years, several hundred devices and techniques have been developed for heating tissue. 

Technology for delivery of hyperthermia has come a long way from the clinical investigations of the 

1980’s. Large improvements have been made in both thermal monitoring and power control for real 



time adjustment of heating distributions in the body. In many ways, advances in treatment planning 

and delivery for hyperthermia have paralleled advances in radiation therapy over this time. 

 

Initially, clinicians attempted to treat tumors of widely varying size and location within the body using a 

limited set of fixed dimension “one size fits all” equipment that eventually proved to offer limited or no 

adjustability to accommodate individual tumor heating requirements. Equipment available for the initial 

clinical trials of hyperthermia used simple non-adjustable applicators that could effectively treat only 

volumes 3-4 cm diameter with excessive heating in the center of the field and rapid fall off at the edges. 

Second generation equipment began to appear in the 1990’s with multi-aperture planar arrays and well- 

integrated computer monitoring and control interfaces that provided  improved  thermal  feedback. Basic 

treatment planning capabilities became available with 2-D generic tissue treatment planning to enable 

adjustment of heating patterns to fit a larger number of tumors. Over the past 10 years, the field has 

taken a significant leap forward. Several site-optimized applicators have been developed. These multi-

element phase and/or amplitude adjustable arrays are often combined with increasingly 

sophisticated treatment planning programs based on clinically realistic matching patient anatomic 

models. Improved real time thermal feedback is increasingly available. Techniques include use of 

mobile thermal mapping probes or non-invasive magnetic resonance image based volumetric 

temperature distribution monitoring during treatment. 

 

FUTURE DIRECTIONS 
 

 
Evolving areas of growth for hyperthermia include application of the principles of radio- and 

chemosensitization to thermal ablation, furthering the development of strategies for heat induced 

targeted drug delivery, definition of clinical strategies that take advantage of the tumor specific immune 

response that occurs with hyperthermia, and commercialization/distribution of new devices to enable 

treatment of a larger number of tumor sites.     While thermal ablation is typically used alone, a heated 



 
 

but not ablated rim of tissue exists around the high temperature region which provides opportunity for 

enhanced tumor kill with radiation or chemotherapy. Moving forward from more complicated 

treatment approaches such as isolated limb perfusion, thermally sensitive liposomes and a range of 

nanoplatforms which facilitate release of encapsulated drug in a tightly defined temperature range are 

either under development or in some cases undergoing clinical investigation as methods to enhance 

chemotherapeutic effect. Thermally enhanced immunotherapy is a therapeutic strategy that awaits 

development. While there are several questions that need to be answered including timing, 

sequencing, and optimal dosing with immune therapies and radiation, the potential for hyperthermia to 

play a role in the rapidly growing field of oncologic immunotherapy is clear and warrants investigation. 

Lastly, continued advancement of technology akin to the advances in radiation planning, delivery, and 

monitoring are moving forward including more automated treatment delivery and comprehensive real 

time non-invasive thermometry. 

 

 
 
 
 
CONCLUSIONS 
 

 
The potential for hyperthermia to benefit cancer patients has long been recognized. New appreciation 

for the biologic and physiologic mechanisms through which hyperthermia may improve outcomes of 

radiation and chemotherapy treatments led to enthusiasm in the 1980’s that subsequently waned due 

to technical limitations and the need to develop clinical standards for heat delivery. Despite these early 

challenges clinical trials for a wide range of malignancies have been completed with the vast majority 

indicating clinical benefit. Technology for heat delivery, standards for quality assurance and thermal 

biology have all significantly advanced in the 35 years since hyperthermia was introduced into the 

modern cancer clinic.      Coupled with timely opportunities to advance multi-disciplinary cancer care 



 
 
 

through  combination  with  state-of-the-art  radiation,  chemotherapy,  and  immunotherapy,  renewed  

 

focus on hyperthermia in oncology is warranted by the broad cancer community. 
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