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Our previous study demonstrated the application of the Dempster-Shafer theory of 
evidence to dose/volume/outcome data analysis. Specifically, it provided Yager’s 
rule to fuse data from different institutions pertaining to radiotherapy pneumonitis 
versus mean lung dose. The present work is a follow-on study that employs the 
optimal unified combination rule, which optimizes data similarity among inde-
pendent sources. Specifically, we construct belief and plausibility functions on the 
lung cancer radiotherapy dose outcome datasets, and then apply the optimal uni-
fied combination rule to obtain combined belief and plausibility, which bound the 
probabilities of pneumonitis incidence. To estimate the incidence of pneumonitis 
at any value of mean lung dose, we use the Lyman-Kutcher-Burman (LKB) model 
to fit the combined belief and plausibility curves. The results show that the optimal 
unified combination rule yields a narrower uncertainty range (as represented by 
the belief–plausibility range) than Yager’s rule, which is also theoretically proven. 

PACS numbers: 87.55.dh, 87.55.dk 

Key words: Dempster-Shafer theory, evidence theory, belief and plausibility 
 measures, dose-volume effects, Quantitative Analyses of Normal Tissue Effects 
in the Clinic (QUANTEC)

 
I. INTRODUCTION

Radiotherapy, which plays an important role in the treatment of lung cancer, often leads to 
complications. Therefore it is important and necessary for physicians to estimate the risk of 
complications according to published information (available clinical data) and their experi-
ence. In 2010, the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) 
reviews provided focused summaries of the dose/volume/outcome information for many 
organs. However, uncertainties such as the measurement error of total lung volume involved in 
radiation therapy practice and inconsistency among the algorithms used in different institutes 
were ultimately reflected in the outcomes of the data analysis. QUANTEC suggested that the 
information in the reviews could be updated and improved with the help of new physical and 
statistical techniques.(1-3) The present work introduces a statistical tool from the Dempster-Shafer 
(DS) theory to evaluate dose response. Using the combination procedure in DS theory, data 
from multiple sources can be fused, and more specific and accurate inference may be achieved. 
Although there exists meta-analysis, such as the inverse variance weighting method for data 
fusion, it mainly deals with the uncertain information involving randomness, and it requires 
unpublished results as well as published results to avoid publication bias. On the other hand, 
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DS theory and consequently its combination rules, are capable of dealing with different types of 
uncertainties, and producing reasonable results based on the available information. Therefore, 
in the current work we focus only on the combination rules within DS theory.

We have previously implemented a case study of “belief” and “plausibility” in regard to 
the occurrence of radiation pneumonitis (RP) as an example to demonstrate the application of 
the theory.(4) In the current work, we discuss an optimal unified rule that provides a combined 
result (fused information) most similar to the individual sources of information — the lung 
cancer radiotherapy dose response data from different institutes. 

 
II. MATERIALS AND METHODS

In lung cancer radiotherapy dose response analysis, we are interested in the incidence of 
pneumonitis among patients who have received radiotherapy for lung cancer. The informa-
tion we have (see Table 1) is the probability of pneumonitis (in the form of error bars: ± one 
standard deviation (SD)) at specific mean lung doses (MLD) from four institutions: Memorial 
Sloan-Kettering Cancer Center(5) (MSKCC), Duke University Medical Center(6) (Duke), MD 
Anderson Cancer Center(7) (MD Anderson) and the University of Michigan(8) (Michigan). The 
incidence ranges of the pneumonitis are the same as those in the previous study,(4) except that 
the data from Duke University are corrected as follows: We used the observed incidence of RP 
with respect to MLD (Table 4 from Duke(6)) to estimate the confidence interval [p – σ, p + σ], 
where p is the number of observed pneumonitis cases divided by the total number of cases n, 
and σ is the estimate of the standard deviation using the formula √ p(1 – p)/n . 

In the terminology of DS theory (see Appendix A), the universal set Θ comprises the set 
{RP} of patients with pneumonitis after radiotherapy and the set {non-RP} of patients without 
pneumonitis: Θ = {RP, non-RP}. The power set 2Θ is defined as {Φ,{RP},{non-RP},Θ}. The 
propositions are in the form of “the patient belongs to A” where A is an element of the power 
set. We construct an m-function over the power set to represent the uncertainty in each source 
of information (i.e., we assign a belief mass (a number in [0, 1]) to each proposition based on 
the information) indicating how strongly the information favors the proposition. For example, 
at MLD = 8 GY from MSKCC, we assign the minimum probability 0% to the proposition of 
{RP} as the belief mass and also the degree of belief (i.e., m({RP}) = Bel({RP}) = 0) and 
the maximum probability 6% as the degree of plausibility (i.e., Pl({RP}) = 6%). Then the 
m-function is constructed as 

 m({RP}) = 0; m({non - RP}) = 1 – Pl({RP}) = 0.94; m(Θ) = Pl({RP}) – Bel({RP}) = 0.06 (1)

Bel({RP}) may be considered as one’s belief regarding the proposition {RP}, while Pl({RP}) 
can be considered as a measure of evidence that does not contradict the proposition {RP}. 
They represent the lower and upper bounds of the true probability of pneumonitis. Notice that 
unlike the probability measure, we have Bel({RP}) + Bel({non-RP}) < 1. The remaining partial 
belief (i.e., 1- Bel({RP}) - Bel({non-RP})), which is also the gap between the belief and the 
plausibility of pneumonitis (i.e., Pl({RP}) - Bel({RP})), corresponds to the uncertainty due to 

Table 1. Radiation pneumonitis incidence ranges at four different dosages (Gy) from the four institutions. 

 Incidence Range of RP at Corresponding MLD
 Institutions 8 Gy 15 Gy 20 Gy 25 Gy

 MSKCC5  0% ~ 6% 4% ~ 16% 15% ~ 35% -----
 Duke6  5.76% ~ 14.24% 12.57% ~ 23.43% 10.82% ~ 21.18% 26.73% ~ 39.93%
 MD Anderson7  ----- 10% ~ 24% 23% ~ 39% 26% ~ 45%
 Michigan8  0% ~ 7.3% ----- ----- 60% ~ 96%



6  He et al.: Application of Dempster-Shafer theory in radiation oncology 6

Journal of Applied Clinical Medical Physics, Vol. 17, No. 1, 2016

the incomplete knowledge. Similarly, we construct all the m-functions mj
i for jth MLD from 

ith institutions (see Appendix B).
Next, we apply a special case of Inagaki’s unified rule(9) — the optimal unified rule (from 

He and Hussaini(10)) based on a distance measure — to fuse the m-functions to yield a single 
m-function. The m-function obtained (representing the combined information from the four 
institutions) is most similar to the individual sources of information. See Appendix A for the 
details of the combination rules. 

 
III. RESULTS & DISCUSSION 

A.  The combined results from the optimal unified rule
The degrees of belief and plausibility of pneumonitis corresponding to the different dosages are 
calculated using the optimal unified rule (see Appendix C for data) and plotted in Fig. 1. The 
LKB model is used to fit the degrees of belief and plausibility at the four different dosages to 
obtain two boundary sigmoid curves.

The best estimation of the incidence of RP (at a specific dose) from the four institutions is 
between the degrees of belief and plausibility. For example, for a patient receiving the dosage 
MLD = 15 Gy, the minimum incidence of radiation pneumonitis is 0.83%, while the maximum 
incidence of radiation pneumonitis is 12.80%. The gap between these two (the belief-plausibility 
range) takes into account the uncertainty in the original information and part of the conflict among 
information sources. It can be interpreted as the uncertainty with which a patient belongs to 
either group ({RP} or {non-RP}). Figure 1 also shows that the belief–plausibility range widens 
as MLD increases because the original data (see Table 1) involve more uncertainty in data from 
individual institutions and data conflict/inconsistency among the data at higher doses. The two 
boundary curves provide the belief and plausibility of {RP} continuously with respect to MLD. 
Figure 1 also shows that radiation pneumonitis essentially always occurs when MLD ≥ 40 Gy, 
and the conservative estimation of the dosage with which RP essentially always occurs is 35 Gy.

 

B.   Comparison of the results from the optimal unified rule to the results from DS 
and Yager’s Rules

The results from DS and Yager’s rules are shown in Fig. 2 and compared to the optimal   
unified rule. 

Figure 2 (left) indicates that Dempster’s rule of combination produces counterintuitive 
results because all the original incidence ranges from the institutions (e.g., at MLD = 20 Gy) 
are outside the range of belief and plausibility curves; the maximum possibility of  pneumonitis 

Fig. 1. The degrees of belief (◊) and plausibility (+) obtained from the optimal unified rule. The solid curves are the fits 
for the degrees of belief (lower curve) and plausibility (upper curve) using the LKB model. The error bars are from the 
clinical data of MSKCC,(5) Duke University,(6) M.D. Anderson,(7) and the University of Michigan.(8)



7  He et al.: Application of Dempster-Shafer theory in radiation oncology 7

Journal of Applied Clinical Medical Physics, Vol. 17, No. 1, 2016

after combination (plausibility value) is even smaller than all the estimated minimum pos-
sibilities of pneumonitis (the lower bounds of the vertical bars) from the institutions. This 
result obviously is due to the renormalization (i.e., distributing the belief mass committed to 
the empty set to the focal elements proportionally to their belief masses), which reinforces the 
proposition (focal element) with a larger degree of belief. Compared to Dempster’s rule, the 
optimal unified rule provides reasonable results. Compared to Yager’s rule (see Fig. 2 (right)), 
the optimal unified rule produces results with smaller belief–plausibility ranges, indicating 
thereby relatively less uncertainty.
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Fig. 2. (left) The solid curves are the fits for the degrees of belief (lower curve) and plausibility (upper curve) obtained 
from the optimal unified rule using the LKB model. The dashed curves are the fits for the degrees of belief (lower curve) 
and plausibility (upper curve) obtained from Dempster’s rule using the LKB model. The error bars are from the clinical 
data of MSKCC,(5) Duke University,(6) M.D. Anderson,(7) and the University of Michigan.(8) (right) Belief and plausibil-
ity ranges; the results from the optimal unified rule are the thicker lines in red, and the ones from Yager’s rule are the 
thinner lines in black. 
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APPENDICES

Appendix A. The Basics of Dempster-Shafer Theory.
Dempster-Shafer theory introduces measures (belief and plausibility) to model one’s intuitive 
perception of belief/opinion and combination rules to aggregate/fuse data from multiple inde-
pendent sources. Following are the basic notions of Dempster-Shafer theory. 

Let θ be the question of interest (e.g., Does a patient have radiation pneumonitis?) and let 
Θ = {θ1, θ2, …, θn} be the collection of all possible answers (e.g., Yes and No). Θ is called the 
universal set or the frame of discernment. The true answer θ0 is unknown, and we consider the 
strength of support from evidence (information) for the propositions in the form of “the true 
answer θ0 is in A” where A is a subset of Θ (A ⊆ Θ). The support of a piece of evidence for 
proposition A can be represented by a basic belief assignment (BBA, also called the m-function). 
An m-function assigns a number (called belief mass or simply mass) in [0, 1] to an element in 
the power set 2Θ (the collection of all the subsets of Θ): 

  (A1)
 

m : 2Θ → [0,1] such that       m(A) = 1.Σ
A⊆Θ

We further assume that no belief mass is assigned to the empty set Φ (i.e., m(Φ) = 0). The 
element A ⊆ Θ is called a focal element if it has a nonzero belief mass (i.e., m(A) ≠ 0) and the 
union of all the focal elements is called the core of the m-function. 

In general, the m-function is not a traditional probability distribution function (pdf), although 
it is amenable to such an interpretation in a restricted sense. The m-functions permit determina-
tion of an interval or range wherein the true probability of a proposition of interest lies. The 
lower bound, belief of A —Bel(A), is the sum of all m-functions of the proper subsets B of A 
(B ⊆ A), and the upper bound, plausibility of A —Pl(A), is the sum of all the m-functions of 
the subsets B that intersect A (B ∩ A ≠ Φ):

  (A2)
 

Belief is evidence supporting a proposition and it may be considered as one’s weighted 
opinion regarding a proposition. Plausibility is evidence that does not contradict a proposition. 
They may be viewed as providing a lower and upper bound, respectively, on the likelihood of 
a proposition (being true). The gap between these two describes the uncertainty in one’s belief 
in proposition A due to incomplete or partial knowledge. 

The m-, belief and plausibility functions in Dempster-Shafer theory are capable of repre-
senting partial knowledge or a piece of incomplete information/evidence. In practice, different 
sources of evidence may provide information about the same question of interest. Assuming 
independence of evidence sources, Dempster-Shafer theory introduces a combination rule to 
combine them to obtain a single belief for the purpose of statistical inference.

Suppose two m-functions — m1 with focal elements Ai(1 ≤ i ≤ n1) and m2 with focal ele-
ments Bj (1 ≤ j ≤ n2) — are constructed from two distinct bodies of evidence. The conjunctive 
sum combines m1 and m2, resulting in a single function: 

                     
  (A3)
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where C is a nonempty subset of the universal set Θ : (C ⊆ Θ, C ≠ Φ). It is quite possible that  
k = q(Φ) ≠ 0 due to the fact that two bodies of evidence may support contradictory answers (we 
call it conflict), which violates the definition of the m-function that be zero.

To make the resulting single function satisfy the definition of an m-function, the Dempster’s 
rule of combination simply ignores the conflicting evidence (discards the belief mass committed

to the empty set) and inflates q(C) by multiplying them by a factor of  such that the sum

of the belief masses of the subsets is equal to unity. It is defined as an orthogonal sum:

  (A4)
 

m1 m2 =
q(C)

1 q( )

Instead of ignoring the conflict, an alternative combination rule — Yager’s rule — considers 
the conflict part of the ignorance. Yager’s rule is defined as:

  (A5)
 

It is clear that Yager’s rule reassigns the belief mass committed to the empty set to the 
universal set, introducing more uncertainty (see Appendix D for proof). Here, we consider an 
optimal unified combination rule that maximizes the similarity among the multiple datasets, 
thereby reducing the uncertainty range. 

The unified rule produces a single m-function for a fixed β. It is defined as follows:

  (A6) 

mUni (C) = (1+ q( ))q(C),     C ,C ,C ,
mUni ( ) = (1+ q( ))q( )+ (1+ q( ) )q( ),    
mUni ( ) = 0,

 

He and Hussaini define the optimal β such that the dissimilarity between the combined 
m-function and the individual m-functions is minimized. The dissimilarity is measured by the 
defined total distance (as the root mean square of the distance between the combined m-function 
and mi) 

  (A7)
 

TotDis =
1
n

(dis(mUni ,m1)
2 + dis(mUni ,m2 )2 + ...+ dis(mUni ,mn )2 ),

where dis(mUni,m1) is the Jousselme’s distance measure:

  (A8)
 

dis(mUni ,mi ) = dJou (mUni ,mi ) =
1
2

(mUni mi )T D(mUni mi )  ,  D(A,B) = | A B |
| A B |

 ,
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where m (m = 2N  and N =| |) is the vector form of m. The total distance for all four doses can 
be rewritten as the objective function,

  
(A9)

 

J ( ) = sqrt 1
2 3 4

(m
1
Uni ( ) m1

1
)T D(m

1
Uni ( ) m1

1
)+ ...(m

1
Uni ( ) m3

1
)T D(m

1
Uni ( ) m3

1
)

 +  1
2 3 4

(m
2
Uni ( ) m1

2
)T D(m

2
Uni ( ) m1

2
)+ ...(m

2
Uni ( ) m3

2
)T D(m

2
Uni ( ) m3

2
)

  + 1
2 3 4

(m
3
Uni ( ) m1

3
)T D(m

3
Uni ( ) m1

3
)+ ...(m

3
Uni ( ) m3

3
)T D(m

3
Uni ( ) m3

3
)

  + 1
2 3 4

(m
4
Uni ( ) m1

4
)T D(m

4
Uni ( ) m1

4
)+ ...(m

4
Uni ( ) m3

4
)T D(m

4
Uni ( ) m3

4
) ,

where the combined m-function at a specific dose mUni
j  (1 j 4) depends on the corresponding 

m-functions m1
j ,m2

j ,m3
j; the four m-functions at all four doses share the same β; and the optimal 

value of the parameter β satisfies J ( *) = min J ( ).

Appendix B.  The Constructed m-functions at Four Different MLDs From Different 
Institutes.

We construct all the m-functions on the data for a given MLD from all four institutions (see 
Table B.1, where each cell contains the belief masses assigned to {RP}, {non-RP} and Θ, 
respectively).

Table B.1. The m-functions constructed based on the data from the four institutions for four dosages: the three numbers 
in each cell are the belief masses assigned to {RP}, {non-RP} and Θ, respectively. The constructed m1 corresponds 
to institutions MSKCC and Michigan (MLD = 25), m2 corresponds to Duke, and m3 corresponds to MD Anderson 
and Michigan (MLD = 8).

 m-functions
 MLD(Gy) m1 m2 m3

 8 0,         0.94,     0.06 0.0576,   0.8576,   0.0848 0,        0.927,     0.073
 15 0.04,    0.84,     0.12 0.1257,   0.7657,   0.1086 0.1,     0.76,       0.14
 20 0.15,    0.65,     0.2   0.1082,   0.7882,   0.1036 0.23,   0.61,       0.16
 25 0.60,    0.04,     0.36 0.2673,   0.6007,   0.1320 0.26,   0.55,       0.19

Appendix C.  The Degrees of Belief and Plausibility From the Optimal Unified Rule 
Corresponding to Figure 1.

The degrees of belief and plausibility at different MLD from the optimal unified rule are pre-
sented in the following Table C.1, where the data correspond to Fig. 1.

Table C.1. The degrees of belief and plausibility.

 MLD(Gy) Bel({RP}) – Pl({RP}) Bel({non-RP}) – Pl({non-RP})

 8 0.03% – 2.22% 97.78% – 99.97%
 15 0.83% – 12.80% 87.20% – 99.17%
 20 3.22% – 26.95% 73.05% – 96.78%
 25 23.05% – 70.69% 29.31% – 76.95%
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Appendix D. The Properties of the Optimal Unified Rule.
1. The optimal unified rule is applicable to combining totally conflicting sources of information 

where q(Φ) = 1 :

Two m-functions m1 and m2 are constructed on the universal set X = {θ1,θ2) to represent 
the two bodies of evidence from two totally conflicting independent sources, respectively: 

 m1: m1({θ1}) = 1; m1({θ2}) = 0; m1(X) = 0,
 m2: m2({θ1}) = 0; m2({θ2}) = 1; m2(X) = 0. (D1)

The Dempster rule is obviously not applicable since the denominator is zero (i.e., 1 – q(Φ) = 0). 

Using the optimal unified rule, β* = 0, the combined m-function is 

  m({θ1}) = 0; m({θ2}) = 0; m(X) = 1, (D2)

The optimal unified combination rule rightly predicts total uncertainty or ignorance.

2.  As a special case of Inagaki’s unified combination rule, the present optimal unified rule 
introduces no greater uncertainty (i.e., narrower or equal belief-plausibility range) than 
Yager’s rule.

Let X = {θ1,θ2) where θ1 and θ2 are singletons (subsets with one and only one element). The 
range of combined belief and plausibility using the optimal unified rule is no greater than 
that obtained from Yager’s rule, indicating a lesser or equal amount of uncertainty introduced 
by the optimal unified combination rule. 

Proof: For any θ∈X, 

  Pl({θ}) – Bel({θ}) = m(X)  (D3) 

 From the optimal unified rule (Eq. (A6)), 

  m(X) = q(X) + q(Φ) – βq(Φ)(1 – q(Φ) – q(X)) ≤ q(X) + q(Φ) (D4)

 Since β ≥ 0, q(Φ) ≥ 0 and (1 – q(Φ) – q(X)) ≥ 0 , 

 (1 – q(Φ) – q(X)) ≥ 0 ; (D5)

  while from Yager’s rule, we have m(X) = q(X) + q(Φ) . (D6)

  Thus, the range between belief and plausibility from the optimal unified rule is less than or 
equal to that from Yager’s rule.

3.  The combined m-function from the optimal unified rule represents the greatest amount of 
information similar to that represented by the individual m-functions, that is to say, the 
combined m-function (representing the fused information) remains similar to the original 
m-functions (representing the original sources of information) as much as possible. 

 We use the total distance TotDis (the root mean square of the Jousselme’s distance between 
the combined m-function and mi) to measure the dissimilarity between the fused information 
and the original sources of information. The optimization problem we solve for β indicates 
that the optimal unified rule produces the combined m-function with the most similarity. 
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