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Pain is a hallmark of sickle cell disease (SCD) and its treatment remains challenging. Opioids are the major family of analgesics
that are commonly used for treating severe pain. However, these are not always effective and are associated with the liabilities of
their own.The pharmacology andmultiorgan side effects of opioids are rapidly emerging areas of investigation, but there remains a
scarcity of clinical studies. Due to opioid-induced endothelial-, mast cell-, renal mesangial-, and epithelial-cell-specific effects and
proinflammatory as well as growth influencing signaling, it is likely that when used for analgesia, opioids may have organ specific
pathological effects. Experimental and clinical studies, even though extremely few, suggest that opioids may exacerbate existent
organ damage and also stimulate pathologies of their own. Because of the recurrent and/or chronic use of large doses of opioids in
SCD, it is critical to evaluate the role and contribution of opioids in many complications of SCD.The aim of this review is to initiate
inquiry to develop strategies that may prevent the inadvertent effect of opioids on organ function in SCD, should it occur, without
compromising analgesia.

1. Introduction and Background

Sickle cell disease (SCD) continues to afflict millions of
people worldwide and the disease is on the rise [1]. Pain
is a hallmark feature of SCD that can begin in infancy
and increase in severity throughout life. Severe pain is the
most common clinical manifestation of SCD, leading to
hospitalization, opioid consumption, and increased risk of
shorter survival [2]. However, investigation on pain and its
treatment in SCD remained underexplored until recently.
An area that still remains unaddressed is the consequence
of frequent high doses of opioids in sickle patients. On
the whole, side effects of opioids are poorly understood
and opioid-induced hyperalgesia (OIH) is beginning to be
appreciated.

Long-term opioid use is associated with undesirable
consequences including physiologic tolerance, hyperalgesia,
and respiratory depression [3–5]. Available data suggest that
opioids influence vascular [6], pulmonary [7, 8], and renal

function [9, 10] and cancer progression [6]. Our group
(Gupta et al.) found that higher opioid requirement was
independently associated with shorter survival in patients
with advanced prostate cancer [11] and lung cancer [12].
However, it remains to be determined whether high opioid
use is a cause or consequence of this phenomenon. Heroin,
which metabolizes to morphine in vivo, is associated with
nephropathy in humans [13]. Because of shorter lifespan and
multiorgan complications including renal, pulmonary, and
vascular function in SCD, it is critical to understand if opioids
exacerbate organ damage in SCD and concurrently introduce
serious complications and comorbidities of their own. We
review the critical findings on opioid-induced adverse effects
and associations of opioid use in experimental and clinical
studies. Because of lack of experimental and clinical data on
opioid side effects, this review is intended to raise awareness
of this issue so that experimental and clinical studies can be
undertaken in near future.
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2. Complex Pathophysiology of SCD Is
Intertwined with Pain

In SCD, clustering of sickle red blood cells (RBCs) leads
to vascular occlusion, impairment of oxygen supply to the
tissues leading to organ damage, and acute painful episodes
called vasoocclusive crises (VOCs) [2, 14]. Characterized
by enormous complexity and phenotypic variability, SCD is
associated with unpredictable, recurrent, and acute VOC,
in addition to chronic pain and ischaemic organ damage
[2, 14]. Pain can begin in infancy and recur through adult
life, causing frequent hospitalizations, impairment of quality
of life, and reducing survival [2, 14, 15]. Some sickle pain can
be acute, recurrent, persistent, chronic, ormixed and could be
due at least in part to OIH. The lifelong, progressive nature
of pain in SCD necessitates chronic opioid use, resulting
in suboptimal analgesia and contributing to poor quality
of life [2]. Patients with SCD often remain undertreated
due to opioid inefficacy and providers’ fear (opioid phobia)
of addiction potential. Conversely, some patients may be
overtreated because of subjective measures of pain. A recent
study to evaluate pain and opioid treatment in SCD had to
be concluded prematurely because of poor enrollment and
multiple challenges [16]. However, it is known that both acute
and chronic pain require relatively higher doses of opioids
for longer durations in SCD than in many other chronic pain
conditions [2, 17, 18]. Clearance of morphine was found to be
almost twofold in sickle patients as compared to normal sub-
jects, which argue for the higher opioid dose administration
to achieve pharmacologically therapeutic levels [19, 20].

Recent studies in Berkley sickle mice have provided criti-
cal insights into the pathobiology of pain. The skin of these
mice shows abnormal peripheral nerve fiber architecture,
which may underlie the observed activation of nociceptors
and increased hyperalgesia [21]. Indeed, TRPV1 channels
were activated on the nociceptors of peripheral nerve fiber in
these sickle mice [21, 22].Thesemice also exhibit characteris-
tics of pain observed in SCD, including musculoskeletal pain
and increased sensitivity to mechanical, heat, and cold stim-
uli, which are further exacerbated by hypoxia/reoxygenation
(that simulates VOC) [21, 23]. Peripheral nociceptor acti-
vation appears to be mediated by mast cell activation and
neurogenic inflammation because treatment of sickle mice
with the mast cell inhibitor imatinib reduced neurogenic
inflammation and hyperalgesia and reduced the requirement
of morphine dose [24]. It is hypothesized that mast cell
activation results in release of inflammatory cytokines and
neuropeptides, which promote nociceptor activation and
enhance neuropeptide release from peripheral nerve termi-
nals, thus contributing to continued pain. The mechanism
of mast cell’s role in sustained hyperalgesia is based on the
studies in sickle mice. However, two separate clinical studies
on sickle patients show that the use of imatinib, a known
mast cell inhibitor, significantly reduced painful episodes in
patients with SCD [25, 26]. Another case report showed that
a sickle patient who died following an overdose of fentanyl
was on fentanyl for more than 18 months and had pruritis
and sickle crises type of pain for 2 days as well as ACS and
respiratory depression secondary to fentanyl overdose [27].

His blood showed significantly high blood concentration of
mast cell tryptase (76microg/L as compared to the normal
value of 2–4microg/L). These correlative mouse and human
studies suggest that therapies based on the inhibition of mast
cell activity need to be investigated in a larger clinical trial in
sickle patients.

3. Molecular and Cellular Effects of Opioids

3.1. Pharmacological Aspects of Opioids and Opioid Receptors
Relevant to SCD. Morphine is absorbed from the gastroin-
testinal tract [28, 29] and metabolized in the liver, gas-
trointestinal tract, and kidneys [30]. The major pathway for
the metabolism of morphine is conjugation with glucuronic
acid and liver is the main metabolic site but it can also be
metabolized in the brain and kidney [28]. Elimination is
through bile or urine [31]. Morphine-3-glucuronide (M3G)
and morphine-6-glucuronide (M6G) are the major metabo-
lites [28]. M6G has pharmacological actions that are indis-
tinguishable from morphine. The interaction with opioid
receptors by the glucuronides may thus contribute to the
pharmacological and/or toxicological effects of morphine.
M3G has no analgesic effects but may cause some of the side
effects of morphine.

Morphine and its congeners (hydromorphone, fentanyl,
etc.) act via G-protein coupled opioid receptors (ORs)
[32]. Four different ORs have been identified, namely, mu-,
delta-, kappa-, and nociceptin-OR (MOR, DOR, KOR, and
NOP/OR, resp.), but the analgesic activity of opioids is
mediated via the MOR. ORs undergo phosphorylation by G-
protein coupled receptor kinases and subsequent 𝛽-arrestin
recruitment, thus uncoupling the receptor from its G protein,
followed by endocytosis, degradation, and downregulation
[33]. However, MORs are recycled back to the cell membrane
following endocytosis. The “net signal” for relative activity
of the receptor versus endocytosis, termed “relative activity
versus endocytosis” (RAVE), is the ability of an opioid agonist
to induce signaling and to promote endocytosis. Morphine
has a high RAVE value as a consequence of its inability
to promote receptor desensitization and endocytosis [34].
Additionally, MOR can be constitutively activated and/or
can display elevated constitutive activity following prolonged
agonist treatment [33, 35]. The implication is that short-
term, repeated, or chronic morphine treatment may lead to
sustained effects on target tissues.Therefore, recurrent opioid
use during VOC may lead to continued opioid activity in
the target tissues in the intermittent period between VOC
episodes and/or after opioids are discontinued.

3.2. Molecular and Cellular Effects of Opioids That May Influ-
ence SCD Pathophysiology. In addition to analgesia induc-
tion, opioids activate growth, survival, and cytoprotection
via opioid receptors in multiple cell types in the peripheral
organs and in the central nervous system [6, 36]. Morphine
stimulates diverse neural and nonneural molecular targets.
Morphine induces expression of platelet-derived growth
factor-BB (PDGF-BB) in human brain- and umbilical vein-
endothelial cells and PDGF receptor-𝛽 (PDGFR-𝛽) expres-
sion in pericytes and increases vascular permeability [37, 38].
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Figure 1: Proposed model of morphine-induced signaling lead-
ing to organ damage. Morphine signaling via cyclooxygenase-2
(COX-2), platelet-derived growth factor-𝛽 (PDGFR-𝛽), and toll-like
receptor 4 (TLR4)may underlie themorphine-induced hyperalgesia
and tolerance via its action on the central nervous system (CNS);
promote endothelial dysfunction and associated retinopathy, lung
injury, pulmonary arterial hypertension, and stroke; and contribute
to renal dysfunction in sickle cell disease.

Morphine also transactivates receptor tyrosine kinases
(RTKs) for vascular endothelial growth factor receptor-2
(VEGFR2), PDGFR-𝛽, sphingosine 1 phosphate receptor
3 (S1P3R), mitogen activated protein kinase/extracellular
signal related kinase (MAPK/ERK), and cyclooxygenase-2
(COX-2) in endothelial cells and the central nervous system
[6, 39–42]. Several cytokines including PDGF and VEGF
that stimulate RTKs are elevated in SCD [43–45]. Morphine
stimulates the expression of PDGF-BB in endothelial cells,
known to increase vascular permeability [38]. Levels of
several cytokines including PDGF and VEGF that stimu-
late RTKs are elevated in patients with SCD [45]. Thus,
morphine administration may amplify endothelial activation
and promote organ dysfunction such as retinopathy, strokes,
and pulmonary hypertension, in SCD, as discussed below
(Figure 1).

3.3. Activation of TLR4. Morphine binds myeloid differ-
entiation protein-2 (MD-2) inducing toll-like receptor-4
(TLR4)/MD-2 oligomerization required for TLR4 signal-
ing [46]. Independent of opioid receptors, morphine can
induce inflammation and potentiate hyperalgesia in rodents
via TLR4 [47]. Our group found that TLR4 expression is
increased in the spinal cord and cutaneous mast cells of mice
expressing human sickle hemoglobin as compared to control
mice [21, 24]. Morphine treatment in vitro leads to the acti-
vation of cutaneous mast cells from control and sickle mice
and in vivo in breast tumors in mice, leading to the release of
inflammatory cytokines and neuropeptides, substance P (SP),
and calcitonin-gene related peptide (CGRP) [24]. In sickle
mice activation of TLR4 underlies vasoocclusion and acute
lung injury [48, 49]. Increased levels of neuropeptide SP were
described in sickle patients at steady state, which increased

further duringVOC [50]. Painwas not evaluated in this study.
It is possible that use of opioids during VOC contributed to
an increase in SP. Thus, while providing analgesia via MOR,
morphinemay simultaneously play a detrimental role in SCD
by promoting neuroinflammation, vascular dysfunction, and
hyperalgesia via TLR4 activation. These experimental data
argue for examining the cotreatment strategies of inhibition
of TLR4 with morphine and evaluate the contribution of
opioids to the exaggeration of inflammatory and neuroin-
flammatory microenvironment in SCD.

4. Implications of Opioid Exposure for
Organ Dysfunction in SCD

4.1. Renal Disease. Renal complications that start early in age
and may progress to end-stage renal disease (ESRD) are a
leading cause of morbidity and mortality in adults with SCD
[51, 52]. Survival is estimated to be 4 years following the
onset of ESRD even when receiving dialysis. The pathophys-
iology of sickle nephropathy is not clearly understood but it
involves both glomerular and tubular injury accompanied by
proteinuria, hyperfiltration, increased glomerular filteration
rate (GFR), blood flow and tubular resorption, and glomeru-
losclerosis. Renal microenvironment in SCD is attended by
oxidative stress, iron deposition, ischemia/reperfusion injury
and pulmonary hypertension, and altered hemodynamics
with increased hemoxygenase-1 and COX-2 and reduced
NO bioavailability. Early renal disease includes glomerular
hyperfiltration, increased proximal tubular function, and
hematuria. Subsequently the concentrating ability is reduced;
there is focal segmental glomerulosclerosis with proteinuria,
papillary necrosis, and reduced glomerular filtration [53].

4.2. Influence of Opioids on Renal Disease. Clinical and experi-
mental studies have demonstrated the toxic effects of the
chronic use of opioids on the kidney. We and others have
observed that clinical doses of morphine and hydromor-
phone incite kidney pathology, glomerular enlargement,
and albuminuria in wild type and transgenic sickle mice
[10, 54, 55]. Opioids cause renal damage as evidenced
by renal tubular vacuolization, mononuclear cell infiltra-
tion, and focal necrosis in rats receiving morphine or
levo-alpha-noracetylmethadol, a metabolite of levo-alpha-
acetylmethadol, a long-acting MOR agonist [56, 57]. Mor-
phine and opioid peptides have direct effects on mesangial
and glomerular epithelial cells, kidney fibroblast, and the
interaction of mesangial cells with circulating macrophages
and PMNs via the production of superoxide [58, 59].Through
this interaction,morphine has the potential to directly impair
slit diaphragm cell membranes in podocytes, contributing
to kidney injury. Morphine-induced generation of reactive
oxygen species (ROS) and production of superoxide by
macrophages and mesangial cells induce podocyte DNA
damage [58]. Morphine-induced podocyte injury leads to
albuminuria in wild type mice [10]. Morphine treatment led
to albuminuria and podocyte injury as well as diminished
expression of podocyte markers, synaptopodin, and nephrin,
in wild type FVBN mice [10], and increased podocyte foot
process effacement accompanied by albuminuria in sickle
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Figure 2: Proposed model of morphine activity in the kidney. Mor-
phine stimulates cyclooxygenase-2 (COX-2), hemoxygenase-1 (HO-
1), inducible/endothelial nitric oxide synthase (i/e NOS), oxidative
stress via reactive oxygen species/peroxynitrite, mitogen activated
protein kinase/extracellular signal regulated kinase (MAPK/ERK),
platelet-derived growth factor receptor-𝛽 (PDGFR-𝛽), and platelet-
derived growth factor-BB (PDGF-BB). These molecular changes
are accompanied by albuminuria and glomerular pathology in
morphine treated mice. Together, these morphine-induced cellular,
molecular, and pathological effects may stimulate and exacerbate
existent renal damage in sickle cell disease.

mice [60]. Morphine stimulates proliferation of glomerular
mesangial cells [9] and superoxide production [58], enhances
deposition of ferritin-antiferritin complexes in the glomeru-
lus [61], amplifies nitrite production [62], and stimulates
COX-2 in the kidneys of mice treated with morphine [54].
Morphine amplifies renal pathology, stimulates albuminuria,
and impairs renal function, in sickle mice, which share the
disease phenotype with humans [55]. Therefore, morphine
treatment may stimulate and/or further augment renal injury
(Figure 2).

Sickle and control mice treated with morphine demon-
strate increased phosphorylation of PDGFR-𝛽 and MAPK/
ERK and glomerular cell markerThy-1 in the kidneys as com-
pared to PBS. PDGFR-𝛽, MAPK/ERK, and Stat3 signaling
pathways play a central role in kidney disease. We (Gupta et
al.) observed that morphine-induced mesangial proliferation
is dependent on PDGFR-𝛽 and Stat3 signaling via MOR
and KOR [55] and accompanied by increased kidney weight
and glomerular volume expansion in wild type and sickle
mice [9, 54, 60]. Since morphine also leads to PDGF-BB
expression in endothelial cells, it is likely to amplify PDGFR-
𝛽 signaling by direct coactivation of the receptor and also via
the release of PDGF-BB in the kidney. Higher expression of
MOR andKOR in sicklemouse kidneysmay further augment
the activity of morphine manifested as renal dysfunction
demonstrated by proteinuria, higher BUN, and reduced BUN
clearance in sickle mice and increased BUN in Wistar rats
following chronic morphine treatment [55, 56]. Morphine-
induced tubular damage observed in mice and rats [56, 60]
may additionally contribute to renal dysfunction. Increased
PDGF-BB levels have been reported in sickle patients as

compared to normal subjects [45]. Pain and opioid use were
not evaluated in this study. No human data could be found on
the effect/association of opioid use with nephropathy in SCD.
However, heroin-associated nephropathy was recognized in
chronic drug users more than three decades ago [63] but the
possibility of a similar nephropathy in chronic morphine (a
metabolite of heroin) users remains unexamined. Moreover,
intravenous opiate addiction has been considered a risk
factor for the development of human immunodeficiency
virus (HIV) associated nephropathy [56, 58]. Data suggest
both central and sympathetic nervous system dependent and
independent effects of opioids on renal function [64]. There-
fore, whether morphine contributes to sickle nephropathy in
humans merits careful examination.

4.3. Pulmonary Disease. Pulmonary disease is another major
cause of morbidity and mortality in adults with SCD but
its etiology is not well understood. In sickle patients, mor-
phine is associated with an increased risk of developing
acute chest syndrome (ACS) [7, 65]. In a retrospective
analysis of children with SCD, the frequency of ACS was
significantly higher in the morphine treated group (29%) as
compared to 12% in those treated with Nubain, a synthetic
opioid antagonist/agonist related to naloxone and oxymor-
phone [7]. Causes of ACS include pneumonia, bone marrow
fat embolism, pulmonary infarct due to in situ sickling,
rib/sternal infarction, infection, and pulmonary embolism
(PE) [18, 66–68]. Approximately 50% of patients with ACS
have no identifiable etiology [18, 69]. Acute chest syndrome is
closely associated with VOCs, especially in adults [18, 69, 70].
It occurs in approximately 50% of hospitalized patients with
SS for VOC [18, 69, 71–73]. These hospitalized patients were
given opioids, mostly morphine for pain management. This
sequence of events suggests that opioids including morphine
may have been instrumental in causing ACS especially in the
50% of patients on whom no identifiable cause was found.
This is further supported by three observational reports
showing that the use ofmorphine in patients with SCD seems
to be associated with acute chest syndrome [7, 74, 75].

As discussed above, morphine stimulates TLR4 activity,
and TLR4 has been implicated in acute lung injury and
vasoocclusion in sickle mice [48, 49]. Moreover, the patient
discussed above who died of fentanyl toxicity may have had
fentanyl-related ACS, although the autopsy findings were
not entirely convincing [27]. The association of morphine
with increased frequency of ACS, therefore, merits further
investigation.

4.4. Pulmonary Arterial Hypertension (PAH). PAH is amajor
cause of morbidity and mortality in adults with SCD and
may be associated with ESRD [76]. Right heart catheteri-
zation is the gold standard for the diagnosis of pulmonary
hypertension [77, 78]. It is well known that people with SCD
are at increased risk of PAH and PAH is a poor prognostic
indicator. Yet, the pathogenesis of pulmonary hypertension
in patients with SCD is not known. Several mechanisms
have been proposed including hemolysis leading to nitric
oxide (NO) deficiency, interstitial fibrosis secondary to ACS
and vasculopathy characterized by endothelial dysfunction,
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increased vascular tone, inflammation, hypercoagulability,
and vascular remodeling and destruction of pulmonary vas-
culature [79–81]. Increased plasma PDGF-BB concentrations
were associated with increased odds of TRV in patients
with SCD [45]. Morphine stimulates PDGF-BB expression
in human brain- and umbilical vein-endothelial cells [37,
38]. Morphine may therefore influence PAH by augmenting
PDGF-BB concentration.

In pulmonary hypertension, the initial apoptotic injury
of pulmonary endothelial cells followed by hyperproliferation
of apoptosis-resistant cells is believed to be one of the causes.
Morphine has been implicated in simian immunodeficiency
virus- (SIV-) induced PAH. Morphine treatment led to pul-
monary vascular remodeling caused by enhanced apoptosis
and endothelial proliferation in SIV-infected macaques [8].
It is noteworthy that morphine did not stimulate vascular
remodeling in uninfected macaques. This clearly indicates
that vascular responsiveness to morphine is distinct in a
proinflammatorymicroenvironment, as compared to normal
conditions. Similarly, in a tumor microenvironment replete
with inflammatory cytokines, morphine promotes angiogen-
esis [6, 82]. It is therefore possible that the vasculopathic
effects of morphine may contribute to development of PAH
in an inflammatory microenvironment encountered in SCD.

Hemin-induced acute lung injury in sickle mice is medi-
ated by TLR4 [49]. Since morphine activates TLR4 signaling,
it may induce the pulmonary complications seen in SCD.
Endothelial TLR4 signaling is also associatedwith hemolysis-
induced VOC in sickle mice [48]. TLR4 gene expression is
upregulated severalfold in cutaneous mast cells from sickle
mice as compared to control mice. Morphine activated the
release of tryptase and neuropeptides from mast cells from
both control and sickle mice [24]. Mast cell proliferation
and activation may contribute to PAH in humans [83]. In
sickle mice, mast cell inhibitors reduce inflammation and
improve morphine analgesia [24]. Thus, whether morphine
may contribute to PAH in SCD via activation of TLR4
and mast cells is unknown at present. These hypotheses
are speculative, but emerging mechanisms of morphine’s
role in vascular biology and the known role of vascular
dysfunction and inflammation in sickle pathobiology provide
a compelling rationale to pursue experimental and clinical
studies to evaluate the role of morphine in PAH.

4.5. Other Organ Systems. We speculate that the activity
of morphine on the vasculature may exacerbate preexist-
ing endothelial vasculopathy and multiorgan dysfunction
leading to devastating complications such as retinopathy
and cerebral strokes in SCD. Proangiogenic signaling and
angiogenesis stimulated by morphine may promote prolif-
erative sickle retinopathy and collateralization in ischemic
strokes, while morphine-induced vascular permeability may
contribute to hemorrhagic strokes in SCD. Morphine use
was associated with a 4.24- and 2.90-fold higher risk of
hemorrhagic and ischemic stroke in prostate cancer patients
and the risk increased with increase inmorphine dosage [84].

Morphine-induced pruritis is another common feature
in SCD patients [85]. Significantly less itching was observed
with controlled release oxycodones as compared to controlled

release morphine in cancer patients with pain [86]. The con-
tribution of mast cell activation described above, therefore,
deserves consideration in morphine-induced pruritis.

Opioid-induced clinical manifestations of the gastroin-
testinal system have been well known. Opioid-induced con-
stipation (OIC) is reported in almost 35–70% of patients
using opioids (includingmorphine, oxycodone, fentanyl, and
others) [87, 88]. A peripherally acting OR antagonist with
high affinity to MOR has been shown to reduce opioid-
inducedOIC [89]. Another side effect induced by opioid anal-
gesia in patients is vomiting, which persists upon intrathecal
delivery as well [90, 91]. Both constipation and nausea appear
to be mediated by MOR in the GI as well as the CNS.
Therefore, careful usage of MOR antagonists needs to be
explored for these side effects while using opioids.

4.6. Effect on Red Blood Cells. Morphine directly diminishes
normal RBC deformability in rats with morphine depen-
dence [92]. Morphine treatment led to a decrease in RBC
membrane fluidity and alterations in the secondary structure
of membrane proteins. This would be expected to further
exacerbate any problems with microvascular flow for sickle
RBCs.We observed increased vascular congestion in kidneys
of morphine treated sickle and wild type mice [54, 60],
possibly due in part to a morphine-induced alteration in the
rheological properties of RBCs. Increased iron deposits have
been reported in the kidney of sickle patients by magnetic
resonance imaging [93]. The mechanism by which iron is
deposited is unclear, but it is almost certainly due to filtered
iron from intravascular hemolysis [93]. Complementary to
these in vitro and experimental observations, opioid drugs
have been shown to influence whole blood rheology and
cause morphometric and hematometric alterations in ery-
throcytes in drug users [94], including high incidence of
anemia amongst heroin users [95]. MOR is expressed on
human RBCs and its expression is increased in chronic
opioid users [96]. In this study, RBCs with increased MOR
expression also showed higher deformability indices and
dehydration. Additionally morphine inhibited the activity of
glutathione reductase purified from human erythrocytes in
vitro [97]. This may in turn exacerbate existent oxidative
stress, existent in SCD.

4.7. Therapeutic Benefit of Topical Morphine Treatment in Leg
Ulcers in SCD. Like pain, leg ulcers in SCD are a debilitating
condition causing more pain and contribute to the poor
quality of life [18, 98].This has been a neglected complication,
which has recently gained attention from several groups
worldwide [98–103]. Since morphine promotes angiogenesis,
it can promote healing.We found that topically appliedMOR
agonist opioids, morphine, hydromorphone, and fentanyl
accelerated closure of ischaemic open wounds in normal
Fischer 344 rats [104]. Similarly, in leptin receptor mutant
Zucker diabetic fatty rats, fentanyl accelerated wound closure
as compared to PBS treated wounds [105]. Morphine stimu-
lated angiogenesis, lymphangiogenesis, and nerve fiber den-
sity in the wounds and increased endothelial and inducible
nitric oxide synthase, NO, and phosphorylation of PDGFR-
𝛽 [104, 105]. Pain was not examined in these studies. On
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Figure 3: Proposed model of mast cell mediated as well as direct effects of morphine on vascular dysfunction and organ damage. Directly as
well as via mast cell activation morphine may augment vascular dysfunction and inflammation. Through its multicellular and organ specific
activities, morphine may influence hyperalgesia (pain), retinopathy, pruritis, stroke, pulmonary arterial hypertension, and nephropathy in
SCD.

the basis of several clinical studies, a comprehensive review
described that opioids applied topically significantly reduced
pain in chronic wounds due to multiple pathologies, without
any adverse effects [106]. However, when opioids were given
systemically by other routes such as subcutaneous, intra-
venous, or orally, they did not ameliorate wound pain. Simi-
larly, in our studies on Fischer 344 rats, morphine delivered
via osmotic pumps implanted subcutaneously away from the
wound site did not have any effect on wound closure, but
topically applied opioids on the wound accelerated closure
[104]. MOR signaling has been shown to heal the intestinal
injury in mice [107]. Deletion of MOR resulted in thinner
epidermis inmice [108]. Previous studies fromour laboratory
showed that sickle mice have significantly thinner epidermis
and reduced MOR expression in the skin as compared to
control mice [21]. Thus, examination of the opioid/opioid
receptor system and therapeutic potential of topically applied
opioids to reduce pain and promote healing of leg ulcers in
SCD deserves consideration.

5. Conclusions and Future Directions

Overall the side effects of opioids remain poorly defined in
clinical studies with a few exceptions.There are no controlled
trials to compare the safety and efficacy of different opioids in
the management of acute sickle cell crises. Patient safety can
be maximized by obtaining a detailed history; understanding
opioid pharmacology, mechanism of action, and side effects;
carefully monitoring patients; and individualizing care.

In vitro and preclinical studies raise awareness about
the possible adverse and/or beneficial effects of opioids in
the pathophysiological setting of SCD (Figure 3). Therefore,
simultaneous strategies to ameliorate the adverse side effects
need consideration. Cannabinoids have shown efficacy in
treating chronic, inflammatory, and hypoxia/reoxygenation-
induced acute pain in sickle mice [21, 23], offering an
alternative (or adjunct) to opioid treatment if their efficacy

is confirmed in human trials. Targeting TLR4 or mast cells
offers the advantage of reducing pain and bypassing mor-
phine tolerance. Clinically available drugs such as imatinib
may target several key mechanisms including inhibition of
PDGFR-𝛽 and mast cells as well as reduction in morphine
tolerance [24, 55]. Another strategy may be coadministration
of COX-2 inhibitors which may have an opioid sparing effect
[109] and simultaneously inhibit the adverse effects of opioids
on renal hemodynamics. Opioid-induced peripheral effects
can also be antagonized by coadministration of peripherally
selective opioid receptor antagonists [110]. Before advancing
to clinical use, however, newer strategies need to be tested for
potential adverse effects on the pathophysiology of SCDusing
validated transgenic mouse models of SCD.
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