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Abstract

Purpose—Perturbations in the RB pathway are overrepresented in advanced prostate cancer; RB 

loss promotes bypass of first line hormone therapy. Conversely, preliminary studies suggested that 
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RB-deficient tumors may become sensitized to a subset of DNA damaging agents. Here, the 

molecular and in vivo consequence of RB status was analyzed in models of clinical relevance.

Experimental Design—Experimental work was performed with multiple isogenic prostate 

cancer cell lines (hormone sensitive: LNCaP and LAPC4 cells and hormone resistant C42, 22Rv1 

cells; stable knockdown of RB using shRNA). Multiple mechanisms were interrogated including 

cell cycle, apoptosis, and DNA damage repair. Transcriptome analysis was performed, validated, 

and mechanisms discerned. Cell survival was measured using clonogenic cell survival assay and 

in vivo analysis was performed in nude mice with human derived tumor xenografts.

Results—Loss of RB enhanced the radioresponsiveness of both hormone sensitive and castrate 

resistant prostate cancer. Hypersensitivity to ionizing radiation was not mediated by cell cycle or 

p53. RB loss led to alteration in DNA damage repair and activation of the NFκB pathway and 

subsequent cellular apoptosis through PLK3. In vivo xenografts of RB deficient tumors exhibited 

diminished tumor mass, lower PSA kinetics and decreased tumor growth after treatment with 

ionizing radiation (p<0.05).

Conclusions—Loss of RB confers increased radiosensitivity in prostate cancer. This 

hypersensitization was mediated by alterations in apoptotic signaling. Combined, these not only 

provide insight into the molecular consequence of RB loss, but also credential RB status as a 

putative biomarker for predicting response to radiation therapy.

Keywords

Retinoblastoma protein; ionizing radiation; DNA damage; apoptosis and prostate cancer

Introduction

The retinoblastoma protein (RB1) is a tumor suppressor protein and is functionally 

inactivated in several major cancers (1). RB belongs to the pocket protein family (pRb, p107 

and p130), whose members have a pocket for the functional binding of other proteins and 

while present throughout the cell cycle, its function is regulated in a cell-cycle dependent 

manner (2). In quiescent cells, RB is hypophosphorylated and forms a repressive 

transcriptional complex on E2F-regulated gene promoters to inhibit cell cycle. However, in 

response to mitogenic signals, RB phosphorylation disrupts the RB-E2F interactions 

facilitating G1/S cell cycle progression.

RB is a key regulator of multiple cellular functions including cell proliferation, apoptosis, 

differentiation, genome integrity, quiescence, senescence and DNA repair (3-6). RB 

function is altered in several tumor types through distinct mechanisms, which are often 

tissue specific. Within prostate cancer, RB1 loss is deregulated in approximately 5% of 

primary tumors, and up to 30-40% in metastatic or castration resistant prostate cancer 

(CRPC) samples (7). Loss of RB function, most commonly via allelic loss, facilitates 

development of resistance to hormone ablative therapies (8).

RB status has also been shown to alter response to genotoxic insults (9). Despite challenge 

with various chemotherapeutics, RB deficient mouse embryo fibroblasts failed to halt cell 

cycle progression resulting in incorrect DNA repair and cell death. However, within the 

Thangavel et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



context of prostate cancer cells, RB loss failed to alter cell growth despite challenge with an 

HDAC inhibitor and surprisingly, lead to resistance with cisplatin exposure in vitro (10). 

Moreover, treatment with antimicrotubule agents and a topoisomerase inhibitor yielded 

increased sensitivity in the RB depleted cells suggesting that cellular response to therapeutic 

intervention in prostate cancer cells is agent specific. Radiation therapy is a well-established 

treatment modality for localized and locally advanced prostate cancer. However, the role of 

radiation therapy has expanded with the introduction of radium-223 (11), which has yielded 

an improvement in survival in men with metastatic castrate resistant prostate cancer. Despite 

the high frequency of RB inactivation, few studies have addressed the impact of this event 

on cellular response to ionizing radiation.

Herein, we delineated the impact of RB function on response to ionizing radiation using a 

panel of human isogenic prostate cancer lines with stable knockdown of RB. In this study, 

we show for the first time that loss of RB function results in increased radiosensitization of 

human prostate cancer cells, using both short-term growth as well as clonogenic survival 

assays. Further, the increased sensitivity is mediated through alterations in both apoptotic as 

well as DNA damage and repair pathways. Further the study identified a key mechanism of 

NFκB mediated cellular apoptosis through polo-like kinase 3 (PLK3) modulation. PLK3 is a 

cytokine inducible kinase and has been shown to function as potent inducer of apoptosis via 

NFκB binding to the PLK3 promoter (12). In addition, the results are recapitulated using 

human xenografts. Together, these in vitro and in vivo data reveal a new paradigm for the 

role of RB in regulating cell survival in prostate cancer after treatment with radiotherapy, 

and reveal the potential to personalize therapy prostate cancer patients based on RB status.

Materials and Methods

Cell Culture

LNCaP and C4-2 cells were maintained in improved minimum essential medium (IMEM) 

supplemented with 5% FBS (heat-inactivated FBS). LAPC4 cells were maintained in 

Iscove’s modified Dulbecco’s medium supplemented with 10% ΔFBS. 22Rv1 cells were 

maintained in RPMI supplemented with 10% FBS (Atlanta Biological, Flowery Branch, 

GA). For steroid-depleted conditions, cells were plated in appropriate phenol red–free media 

supplemented with 5% to 10% CDT (GE Healthcare Life Sciences, Hyclone Laboratories, 

Logan, UT).

Immunofluoresence Analysis

Immunofluorescence staining was performed as previously described (10). 

Immunolocalization of γ-H2AX, 53BP1,cleaved caspase 3 and NFκBp50 was carried out by 

using a confocal microscopy (Nikon, Core Facility at Thomas Jefferson University).

Cell Growth Assay

RB proficient and deficient LNCaP, LAPC4, C4-2 and 22Rv1 cells were seeded at equal 

densities (1×105), exposed to ionizing radiation (PanTakOrthovoltage X-ray irradiator, 

calibrated daily using a Victoreen dosimeter), and harvested at indicated time points. At the 

time of harvest, cell number was determined using trypan blue exclusion dye by using a 
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hemocytometer. Cells were seeded at the above densities and transfected and infected with 

PLK3 cDNA (Addgene, Cambridge MA) or adenovirus harboring IκBα DN (SA mutation) 

(Vector Biolabs, Philadelphia, PA).

RNA Isolation and Microarray Analysis

Actively growing RB proficient and RB deficient LNCaP cells were exposed to ionizing 

radiation (10Gy) and the cells were harvested 24 hours post IR (three independent biological 

replicates). Total RNA was extracted using Trizol reagent (Invitrogen, Life Technologies, 

Grand Island, NY). Microarray was carried out as described (13); A 1.5-fold differentially 

expressed gene list was generated. The differentially expressed gene list was loaded into 

Ingenuity Pathway Analysis (IPA) 8.0 software (http://www.ingenuity.com) to perform 

biological network and functional analyses and genes were highlighted. Microarray data was 

deposited in NCBI/GEO website and the GEO accession number GSE58711. p-values< 0.05 

were considered as statistically significant. Microarray validation was conducted using qRT-

PCR and quantified using a delta-delta CT method.

Flow Cytometry Analysis

Cell proliferation was assessed by BrdU incorporation using flow cytometry as previously 

described (14). Flow cytometry analysis was performed (GE Healthcare, Piscataway, NJ) 

and the data was analyzed by using FlowJo version 8.8 software.

Clonogenic Assay

Clonogenic survival assays were carried out as previously described (15 ). Only colonies of 

50 or more cells were counted. Three replicates per dose were studied. Survival curves were 

generated. The surviving fraction value was corrected for cellular multiplicity to provide 

single-cell survival.

Western Blotting Analysis

For protein analysis, cells were harvested by trypsinization, and cell lysis was performed. 

The membranes were immunoblotted for pRB (BD Biosciences, San Jose, CA), actin, 

LaminB, p21, NFκB p50, NFκB p65, IκBα cleaved caspase 3 (Santa Cruz Biotechnology 

Inc, Dallas, TX and Abcam, Cambridge, MA), PLK3 (Sigma-Aldrich, St. Louis, MO), DNA 

ligase IV (Abcam, Cambridge, MA), CDC25A, CDK2 and p53 (Santa Cruz Biotechnology 

Inc, Dallas, TX) by standard techniques and visualized using enhanced Western lightening 

chemiluminescence (Perkin-Elmer Life Sciences, Waltham, MA).

Chromatin Immunoprecipitation Assay (ChIP)

Following ionizing radiation as described above, LNCaP and LAPC4 cells were cross-linked 

with formaldehyde and processed for chromatin immunoprecipitation analysis as previously 

described (8). Equal concentrations of chromatin from all treatment groups were pre-cleared 

with protein Agarose beads in the presence of bovine serum albumin to reduce non-specific 

background. After removal of beads by centrifugation, 2 μg of NFκBp50 or NFκBp65 

antibodies (Santa Cruz Biotechnology, Dallas, TX) were added and kept at 4°C for 

overnight on a rotary platform. The immunoprecipitated DNA was purified using PCR 
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purification kit (Qiagen, Valencia, CA) and resuspended in 50 μl of sterile water. The 

purified DNAs and input DNAs were analyzed by semi quantitative PCR using PLK3 

promoter targeting by using a forward 5′-GCC CGT GTC TAG CAT TTG AG-3′and a 

reverse primers 5′-CCA TCA CAC CCG GCT AAT TT-3′sequences, as described in (8, 

12). Input DNA served as a positive control, where as rabbit IgG and a non-E2F/RB target 

albumin promoter were served as negative controls. PCR products resolved on agarose gel 

and the images were captured using BioRad HemiDoc Imager (Bio-Rad Laboratories Inc, 

Hercules, CA), the band intensities were measured using ImageJ and the results were 

presented graphically using GraphPad prism version 6 (GraphPad Software, Inc., La Jolla, 

CA). The qPCR results were quantitated using the delta-delta CT method.

RB Knockdown

RB knockdown was carried out as described in (8). Control and knockdown LNCaP, 

LAPC4, 22RV1 and C4-2 cells were generated through transfection with either shRNA 

plasmid directed against Rb (MSCV-Rb3C; targeted sequence: 5′-

CGCATACTCCGGTTAGGACTGTTATGAA-3′) or a control plasmid (MSCV donor) 

using Lipofectin transfection reagent (Invitrogen, Life Technologies, Grand Island, NY). 

Retrovirus encoding shRb plasmid (MSCV-LMP Rb88; targeted sequence: 5-

GAAAGGCATGTGAACTTA-3) or control plasmid (MSCV donor) were used to create 

RB-knockdown or control LAPC-4 stable clones. Following selection with puromycin for 6 

to 7 days, stable clones were isolated and characterized. Puromycin selected cloned were 

subjected to RB mRNA (qRT-PCR) and RB protein analysis (RB immunoblotting) and 

selected RB deficient clones were further utilized for the study.

Comet Assay

Alkaline comet assay was performed as described in (16) using the Trevigen comet assay kit 

(Trevigen Inc, Gaithersburg, MD). Slides were visualized using epifluorescence microscopy. 

The images were analyzed using CometScoring software (TriTek Corp, Sumerduck, VA).

Transcription Factor Enzyme-Linked ImmunoSorbent Assay (TF-ELISA)

TF ELISAs were performed as previously described (17). The protein-DNA complex was 

detected by chromogenic substrate. Absorbance of the samples was measured at 450nm 

using microplate reader (Bio-Tek I Spectrophotometer instruments, Winooski, VT).

Xenografts and IR Treatments

Xenografts were carried out as described previously (8 ). RB proficient and deficient LNCaP 

cells (4 × 106) were individually mixed (1:1) with matrigel in a 200 μl volume (BD 

Biosciences, San Jose, CA) and the cells were implanted subcutaneously into the flanks of 

NCR/nu/nu (athymic) male mice. Once the tumors were reached 150 cubic mm volume and 

both RB proficient and RB deficient tumors were exposed to ionizing radiation (10 Gy, 

PanTakOrthovoltage X-ray irradiator). Tumor volumes were measured weekly with calipers, 

serum PSA levels were determined, and PSA doubling times were calculated. In shRB 

xenografts, maintenance of RB knockdown in vivo was verified by quantitative PCR (qRT-

PCR) analysis of the human RB1 (shRB) transcript was performed as described in (8, 18). 
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RB transcript levels as measured by qRT-PCR ranged from 10% to 90%. Maintenance of 

RB silencing was defined as having 30% or less of RB1 transcript level when compared to 

wild type xenograft tumors. Thirty percent of tumors failed to maintain loss of RB transcript 

and were not included in the analysis given the uncertainty of the timing when the tumors 

regained RB function. Animal studies were conducted in accordance with the principles and 

procedures outlined by the NIH guidelines and the IACUC of Thomas Jefferson University.

PLK3 Ectopic Expression and knockdown

PLK3 cDNA transfection and knockdown was carried as described in the manufactures 

protocol. Briefly 10 micrograms of PLK3 cDNA (Addgene, Cambridge MA) or control 

vector (PCDNA3) or PLK3 shRNA (Applied Biological Materials, Inc., Richmond, BC, 

Canada) or shRNA vector alone were transiently transfected in LNCaP shCon or LNCaP 

shRB or LAPC4 shCon or LAPC4 shRB cells with lipofectamine 2000 (Invitrogen, Life 

Technologies, Grand Island, NY). The PLK3 over expression or PLK3 knockdown was 

confirmed by PLK3 immuno blotting. The cells expressing PLK3 or PLK3 deficient cells 

were used for generating growth curve with radiation or no radiation. Cells were also 

analyzed for cleaved caspase3 immunoblotting

Ectopic expression of dominant negative IκBαSA

Adeno virus harboring dominant negative IκBαSA (Vector Biolabs, Philadelphia, PA) was 

infected in shRB cells (LNCaP and LAPC4) and exposed to ionizing radiation 10 Gy and 

processed for cell growth assay and cleaved caspase 3 apoptotic marker 

immunofluorescence and Western blotting analysis.

RB IHC analyses

RB IHC was performed as described in (8, 19). Eleven patients were identified in our 

institution who had biopsy proven local recurrence following primary radiation therapy (5 

patients received external beam radiation therapy and received brachytherapy). Biopsy 

specimens or whole mount glands were used for IHC analyses. 5-μm sections were 

deparaffinized, antigen retrieval was performed in 10 mM EDTA (pH 9) for 10 minutes in a 

pressure cooker, and slides were incubated with 3% H2O2 for 10 minutes, then blocked with 

avidin/biotin blocking solution (Vector Biolabs, Philadelphia, PA) for 30 minutes and 

incubated in a 5% chicken/goat/horse serum solution for 2 hours. Sections were incubated 

with anti-RB antibody overnight at 4°C [(4H1) Mouse mAb #9309, Cell Signaling 

Technology, Inc. Danvers, MA, USA; concentration 1:200. Negative control slides were 

incubated with mouse anti-MOPC21 (generated from a hybridoma obtained from ATCC) at 

the same concentration as the primary antibody. Slides were then incubated with horse anti-

mouse biotinylated secondary antibody (1:150, Vector Biolabs, Philadelphia, PA) for 30 

minutes, developed using Vectastain ABC (Vector Biolabs, Philadelphia, PA) and stable 

DAB (Invitrogen, Life Technologies, Grand Island, NY) counterstained with hematoxylin, 

dehydrated, and mounted with Cytoseal XYL (Richard Allan Scientific, Thermo Fisher 

Scientific, Waltham, MA). The stain was interpreted as percentage of tumor cells with 

nuclear staining and intensity of staining as 3+ (Strong staining similar to positive control), 

2+ (moderate staining), 1+ (weak staining) and 0 (no staining). Photomicrographs were 

taken by using bright field microscope (20X) and the scoring was performed by a clinical 
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pathologist (an experienced staff pathologist) (Thomas Jefferson University Hospital, 

Philadelphia).

Analysis of PLK3 and RB1 correlation in Prostate Cancer

A normalized mRNA expression dataset of prostate adenocarcinoma (7) was downloaded 

from the cBioPortal for cancer genomics (http://www.cbioportal.org/public-portal/) and used 

to evaluate coexpression of RB1 and PLK3 transcript levels. This dataset includes mRNA 

profiles for 29 normal prostate, 131 primary tumor, and 19 metastasis samples. Pearson’s 

correlation coefficient was calculated within normal prostate and prostate cancer groups. 

RB1 transcript levels were used to infer prostate cancer sample RB status, where RB-

deficient samples were defined below the median RB1 expression, and RB-proficient 

samples were defined above the median. A two-tailed t-test for populations of unequal 

variance was used to evaluate the significance of differential PLK3 expression in RB-

proficient vs. normal and RB-deficient vs. RB-proficient groups.

Statistics

Statistical analyses were performed using GraphPad Prism (version 6.0) software 

(GraphPadPrismSoftware, Inc.). All the data were analyzed for statistical significance using 

Student’s t-test/ one-way ANOVA. For all experiments, p < 0.05 was considered statistically 

significant.

Results

RB status dictates the cellular response to radiation in both early and late stage cancers

The retinoblastoma tumor suppressor protein (pRB) pathway is a key regulator of cell cycle 

in coordination with E2Fs. RB inactivation occurs during prostate cancer progression and 

has been correlated with poor outcome (8). In human samples, RB loss of function occurs 

commonly via loss of heterozygosity (20). In order to delineate the role of RB in modulating 

the response to radiation therapy, clinically relevant hormone sensitive and castrate resistant 

human isogenic prostate cancer cell lines were utilized that expressed either shRB or control 

as previously described (8). RB knockdown was verified using protein analysis across 

multiple prostate cancer cell lines (Figure 1A, B, left panel). First, in vitro clonogenic assays 

were performed. In the presence of androgen RB deficient LNCaP and LAPC4 cells showed 

increased radiosensitivity across all radiation doses studied, as compared to the isogenic RB 

proficient pairs. Statistical significance was observed after both 8 and 10 Gy exposure, 

indicating conservation of this result across multiple ranges of DNA damage (Figure 1C). 

Short-term growth assays using 10 Gy of ionizing radiation confirmed these findings, as 

control LNCaP and LAPC4 demonstrated greater viable cell number than their isogenic 

pairs (Figure 1A) in both hormone enriched and hormone free medium. Given that RB 

knockdown had been demonstrated to result in a growth advantage in a hormone free 

environment (10), short-term growth assays were performed with isogenic pairs (shRB and 

shControl) derived from castrate resistant prostate cancer deficient C4-2 and 22Rv1 cell 

lines (Figure 1B) in both hormone component and hormone free conditions. Together, these 

results suggest that RB loss sensitizes prostate cancer to ionizing radiation, irrespective of 
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hormone microenvironment. Given the prominent role of cell cycle in the manifestation of 

DNA damage, the impact of cell cycle checkpoints was investigated.

The impact of RB on the radiation response is independent of p53

DNA damage induces cell-intrinsic checkpoints, including p21, p53, and RB (21). Further 

prior reports demonstrated that p53 and RB can exert partially overlapping roles in the 

setting of inactivation of either tumor suppressor (22). Thus, complementary up-regulation 

of p21 or p53 may occur in the setting of RB knockdown after exposure to ionizing 

radiation. In prostate cancer models, up-regulation and stabilization of p53 has been 

correlated with induction of apoptosis (23). However, no difference in either protein 

induction or stabilization was observed for either p21 or p53 after exposure to DNA damage 

(Supplemental Figure 1A and 1B) in either LNCaP or LAPC4 regardless of RB status. These 

findings indicate that cell proliferation and cell cycle control may be altered in RB 

knockdown cells given the lack of compensation for other prominent checkpoint regulators.

RB status does not impinge on the alterations of cell cycle after radiation

Given the prominent role of RB as a G1 cell cycle checkpoint through regulation of E2F 

family transcription factors, it was hypothesized that RB knockdown would alter cell cycle 

regulation after radiation. Further, in multiple cell lines with disrupted RB function, it has 

been consistently shown that RB deficiency allows cells to efficiently bypass the cell cycle 

inhibitory response to DNA damaging chemotherapeutic agents such as cisplatin (9). In both 

RB proficient and deficient prostate cancer cells, exposure to ionizing radiation resulted in a 

G1 cell cycle arrest. However, it was surprising that no differential response in cell cycle 

progression as measured by BrdU incorporation was noted after exposure to ionizing 

radiation regardless of RB status (Supplemental Figure 1C-F). No differences were observed 

in CDC25A expression regardless of RB status with or without exposure to ionizing 

radiation (Supplemental Figure 1G). Upregulation of CDK2 expression occurred in RB 

deficient cells, but was not altered by exposure to ionizing radiation (Supplemental Figure 

1G). Given that alterations in cell survival do not appear to be accounted through alterations 

in cell cycle proliferation or cell cycle checkpoint response, other mechanisms were 

explored, which could putatively impinge on cell survival after genotoxic insult.

RB status alters the transcriptional response to DNA damage

Given that cell survival is a complex process and regulated by multiple underlying 

mechanisms, RB proficient and deficient LNCaP cells were exposed to ionizing radiation 

and followed by mRNA microarray analysis. After background correction and 

normalization, a gene list consisting of 1131 differentially (at least 1.5 fold change in 

expression) regulated genes were observed (Figure 2A). Using biological network and 

functional analysis, gene ontology demonstrated that 11 important functional pathways were 

significantly altered (Figure 2B) including cell death and survival, as well as DNA 

replication, recombination and repair, as a result of RB knockdown in the setting of DNA 

damage. An extended qRT-PCR validation was performed (Figure 2C), confirming the 

findings of the microarray. Together these data suggest that cell survival may be regulated 

through alterations of DNA damage/repair and increased apoptosis in RB deficient cells.
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RB loss alters DNA damage repair pathway

Microarray transcript analysis demonstrated that DNA damage and repair pathway genes 

were elevated in RB deficient LNCaP cells (Figure 3A). Ionizing radiation results in 

multiple DNA aberrations including base excision as well as double standard DNA 

breaks(24) and microarray validation reveals that multiple base excision repair genes 

including POLB, POLK and REV3L (Figure 3B) as well as the DNA damage induced 

meiotic recombination gene SYCP3 (25) were up regulated and alternatively DNA ligase IV 

was down regulated (Figure 3C) in shRB cells in the setting of radiation induced damage 

(5). DNA ligase IV is an ATP-dependent DNA ligase that joins double-strand breaks during 

the nonhomologous end-joining pathway of double-strand break repair (26). These findings 

suggest that RB may impact the DNA repair machinery. Given that SYCP3, γH2AX, and 

53BP1 are involved in DNA repair via similar mechanisms, we assessed the ability to repair 

DNA double strand breaks (27). γ-H2AXand 53BP1 foci were significantly elevated in 

shRB LNCaP cells as compared to control cells, indicating that radiation induced DNA 

damage depends on the RB status of the cells (Figure 3D left with quantification on right 

panel). The results were recapitulated in LAPC4 (Figure 3E panel), shRB cells showed a 

markedly diminished capacity to repair double stand breaks up to 24 hrs post-treatment. 

Comet assay recapitulated these findings demonstrating that RB deficiency radiosensitizes 

prostate cancer cells as shown with longer tail moments indicating higher amounts of DNA 

breaks (Figure 3F). Taken together, markers of DNA damage support the hypothesis that RB 

loss alters DNA repair mechanisms. Thus, this data reveals for the first time that RB 

promotes DNA double strand break repair independent of the ability of RB to regulate cell 

cycle progression.

RB deficiency leads to activation of NFκB pathway and cellular apoptosis in response to 
ionizing radiation

RB has been shown be function as an anti-apoptotic factor(28) and microarray analysis 

demonstrated that induction of pro-apoptotic transcripts in the setting of RB depletion 

(Supplemental Figure 2). Many of the altered gene transcripts are pro-apoptotic genes 

regulated via NFκB including DR4, TRAIL, RIP1 Fas, FasL, MYC, NOTCH2 and 

PLK3(29). The behavior of the transcription factor NFκB as a promoter or antagonist of 

apoptosis depends on the apoptotic stimulus. Higher total levels as well as increased nuclear 

translocation of NFκB p50 and p65 were observed in RB deficient cells in response to 

radiation (Figure 4A). Further immunolocalization and transcription factor ELISA analysis 

reveals that nuclear and DNA bound NFκB p50 was elevated in RB deficient LNCaP and 

LAPC4 cells (Figure 4B and C). In order to mimic NFκB knockdown, and we exogenously 

expressed a dominant negative IκBα (SA), which retains NFκB in the cytoplasm, thus 

preventing NFκB mediated downstream signaling. This modulation decreased nuclear 

translocation (Figure 4D, western blots) and decreased the radiosensitivity of shRB LNCaP 

and LAPC4 cells (Figure 4D, growth curves). Transcription factor ELISA analysis reveals 

that nuclear and DNA bound NFκB p50 was diminished in RB deficient LNCaP and LAPC4 

cells with the introduction of the dominant negative IκBα (Supplemental Figure 3A and B). 

Elevated levels of NFkB p50 and p65 protein have been demonstrated to activation of the 

apoptotic pathway (29). Knockdown of RB resulted in increased apoptosis in the setting of 

ionizing radiation (Figure 4E) and inhibition of NFκB via IκBα DN diminished cleaved 
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caspase 3 levels (Figure 4F). Thus, RB loss results in upregulation and increased nuclear 

translocation of NFκB with subsequent induction of apoptosis in the setting of ionizing 

radiation.

Modulation of PLK3 alters cellular apoptosis through an NFκB dependent manner

NFκB proapoptotic signaling has been demonstrated to be mediated via direct binding to the 

polo-kinase 3 promoter (12). This activation of PLK3 resulted in induction of apoptosis. 

Chromatin immunoprecipitation assay and qRT-PCR revealed higher levels of NFkB p50 

and p65 bound to the PLK3 promoter (Figure 5A). These increased binding correlated with 

increased expression of the PLK3 transcript in the setting of RB knockdown (Figure 5B). 

Further, inhibition of NFκB nuclear translocation resulted in diminished PLK3 expression 

(Figure 5C). An in silico analysis of human prostate tumor samples demonstrated a 

statistically significant inverse correlation of PLK3 and RB (Figure 5C) suggesting that RB 

loss may prime towards a pro-apoptotic pathway. Overexpression of PLK3 in the setting of 

RB deficiency inhibited growth (Figure 5D left panel, Supplemental Figure 4A left panel) 

and induced apoptosis (Figure 5D right, Supplemental Figure 4A right panel). Further, 

knockdown of PLK3 in the RB deficient setting reversed this phenotype through decreased 

levels of apoptosis Figure 5E, Supplemental Figure 4B). Thus RB loss results in activation 

of Plk3, a NFκB-regulated gene that induces apoptosis and radiosensitivity.

RB depletion results in marked in vivo radiosensitization

To further mimic the clinical setting, the role of RB in response to ionizing radiation was 

explored in vivo. RB proficient and RB deficient LNCaP cells were implanted into nude 

mice. As previously reported (10) and no significant growth advantage was noted (Figure 

6A, left panel) between shCon and shRB LNCaP cells. After reaching 100–150 mm3 

irradiation of the isogenic pairs unmasked a radiosensitivity advantage specific to RB-

deficient tumors (Figure 6A, right panel). These data suggested that RB depletion confers a 

clear alteration in response to ionizing radiation as monitored by tumor growth kinetics 

consonantly, there was a significant decrease in tumor mass among shRB compared with 

shCon1 tumors at the time of sacrifice (Figure 6B). Additionally, serum prostate-specific 

antigen (PSA; also known as KLK3) was monitored. PSA is used clinically as a marker of 

PCa detection, burden, and progression(30), and is not expressed in mice; thus, serum PSA 

was monitored as a measure of tumor growth. Serum PSA levels were significantly low in 

animals carrying the shRB xenografts (Figure 6C). Additionally, in order to determine the 

clinical impact of radiation sensitivity and RB status, we retrospectively identified all cases 

of biopsy proven local recurrence following radiation therapy over the past 10 years. 11 

patients were identified (5 cases treated with external beam therapy and 6 treated with 

brachytherapy). All samples stained positively for RB (Supplemental Figure 5) further 

suggesting the diminished radiosensitivity of tumors with intact RB. The working model 

illustrates that NFκB pathway drives the radio-sensitized cells to cellular apoptosis through 

PLK3 (Figure 6D). Collectively, these results indicate that active RB promotes resistance to 

radiation, using both in vitro and in vivo models of disease progression.
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Discussion

Given the frequency and importance RB inactivation in prostate cancer, understanding the 

response to radiation therapy is crucial for development of effective therapeutic strategies 

and sequencing therapies. The present study identifies for the first time the impact of RB 

status on radiation sensitivity. Key findings show that 1) Regardless of hormonal 

environment, RB loss sensitizes both hormone sensitive and CRPC to ionizing radiation 

both in vitro and in vivo; 2) RB loss alters multiple functionally important pathways critical 

in the response to radiation therapy including DNA damage and repair as well as apoptosis; 

3) Modulation of NFκB or PLK3 alters the cellular apoptosis and strongly suggests that, RB 

loss correlates with an increased nuclear translocation of NFκB resulting in cellular 

apoptosis mediated via PLK3 in response to radiation therapy.

The concept that RB inactivation alters radiosensitivity via upregulation of apoptotic 

pathways as opposed to alterations in cell cycle was unexpected. DNA damage elicits arrest 

at both G1 and G2 phases of the cell cycle (31). G1 arrest occurs due to activation of the 

p53/p21 regulatory pathway and is dependent on functional RB (32). RB is a known 

regulator of cell proliferation and and functional RB is required to induce a cell cycle arrest 

in G1 after DNA damage (9). G2 arrest generally relies on Chk1-dependent inactivation of 

the cyclin B1/Cdc2 kinase with maintenance of arrest after genotoxic stress being further 

regulated by p21, p53, and RB (33). Ionizing radiation induces a G2 arrest in mouse embryo 

fibroblasts (MEF) with intact RB, while MEF with knockout of RB continue to proliferate 

and eventually undergo cell death (33). In the current study, there were no differential 

alterations in cell cycle noted between control and RB knockdown prostate cancer cells after 

exposure to ionizing radiation. However, RB can inhibit cellular proliferation through 

distinct mechanisms: alterations in cell cycle and induction of cell death (34).

RB inhibits apoptosis in both normal tissue as well as tumor models. Ionizing radiation 

induces apoptosis in SAOS-2 cells, which lack functional RB and this phenotype is reversed 

by stable transfection of RB (35). Further, E2F1, which is inactive when present in complex 

with RB, is capable of inducing apoptosis (36). Prior studies have demonstrated that E2F1 

and E2F3 are upregulated in the setting of RB knockdown in prostate cancer (8, 36). 

Further, etoposides sensitize RB deficient prostate cancer (8) and this is mediated via E2F1-

mediated sensitivity to apoptotic stimuli. In this study, we demonstrated that pro-apoptotic 

pathways were upregulatedafter exposure to ionizing radiation in the setting of RB loss. RB 

inactivation primes cells for apoptosis via induction of procaspases (37). Caspase activation 

leads to apoptosis and increases the radiosensitivity of prostate cancer (38).

In the present study, cellular apoptosis was mediated via increased nuclear translocalization 

of NFκB and induction of PLK3 and cleaved caspase 3. PLK3 is a NFκB regulated gene that 

induces apoptosis in both p53 dependent and independent signaling pathways (12). The 

function of NFκB as either a pro-apoptotic or anti-apoptotic signal is context dependent 

(39). In the context of LNCaP cells, increased levels of NFκB activity led to increased 

apoptosis mediated viacaspase activation (40). Docetaxel treatment also increases NFκB 

activity in a dose dependent manner leading to decreased cell survival in RWPE-2 prostate 

cells (41). Docetaxel and paclitaxel demonstrate enhanced sensitization to cell death in the 
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context of RB loss (10). Our study further clarifies that NFκB mediated apoptosis is 

regulated via PLK3 expression.

Notably, RB loss is associated with altered AR activity and is causative for the transition to 

CRPC (8). Recent studies from our laboratory and others demonstrated that AR is a 

mediator of double strand DNA break repair, and can alter cell survival in response to DNA 

damage (42). Data herein demonstrate that RB is dominant to these effects, and that as 

mediated by deregulation of apoptotic signaling events, confers a robust radiosensitization 

phenotype.

RB status may be a viable biomarker from which to base therapeutic decisions (43). In 

tumors that retain RB function, next generation cyclin-dependent kinases (CDK) inhibitors 

may provide a robust approach to engage RB tumor suppressor activity and halt cellular 

proliferation. Both preclinical (44) and early phase I trials demonstrate early tolerability and 

efficacy (44). For RB deficient cells, use of DNA damaging agents is intriguing as this study 

confers with previous reports that RB loss confers a hypersensitization to genotoxic stress 

(10, 45). Clinical observations from breast (46), bladder (47), and head and neck cancer (48) 

support the hypothesis that RB deficient cells have a compromised response to DNA 

damage. Within the context of clinical prostate cancer, RB function has been incompletely 

defined due to the dual function of RB loss increasing radiosensitivity while driving castrate 

reistant growth (8). Low p16 expression, which is hypothesized to compromise RB function, 

was associated with an increased risk of development of distant metastases in RTOG 9202, 

yet investigation of locally advanced disease indicates that loss of RB and loss of p16 are 

not redundant(49, 50). Given that RB loss of function is noted in the context of metastatic 

castrate resistant prostate cancer (7), RB may serve as a marker of response in the context of 

palliative radiation or radium-223 (11).

In summary, the findings herein present a paradigm for RB function in protecting prostate 

cancer against ionizing radiation. RB loss confers radiosensitivity via increase apoptosis. 

Given the resurgent role of radiation in the management of men with advanced castrate 

resistant prostate cancer, a context in which RB loss is common, RB status may be a 

biomarker to therapeutic response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Loss of function of the retinoblastoma tumor suppressor protein in prostate cancer yields 

a castrate resistant phenotype. Given the survival benefit of radiation therapy in the 

management of men with advanced prostate cancer, one outstanding issue is the impact 

of RB function on sensitization to DNA damaging agents. In this study, we show that RB 

loss promotes sensitization to genotoxic stress through mechanisms distinct from cell 

cycle checkpoint control, and identify RB as a potent effector of the response to 

radiotherapy. The findings of this study suggest that future radiation trials should 

interrogate RB status as a potential biomarker of therapy response.
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Figure 1. RB status dictates the cellular response to radiation in both hormone sensitive and 
castrate resistant cancers
Actively growing LNCaP, LAPC4, C4-2 and 22RV1 cells were exposed to radiation therapy 

and processed for further analysis (A) RB Western blotting analysis in hormone responsive 

LNCaP and LAPC4 cells and actin loading control (top let panel). Cell number analysis of 

hormone responsive LNCaP and LAPC4 cells in hormone enriched and hormone free 

medium in response to radiotherapy (10 Gy) (top right panel). (B) RB Western Blotting 

analysis in castrate resistant C4-2 and 22Rv1 cells and actin loading control (bottom let 

panel). Cell number analysis of C4-2 and 22Rv1 cells in hormone enriched and hormone 

free medium in response to radiotherapy (10 Gy) (bottom right panel). (C) Clonogenic assay 

in LNCaP and LAPC4 cells. Each data point is a mean ± SD from three or more independent 

experiments. ★★p < 0.05 were considered as statistically significant.
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Figure 2. RB status alters the transcriptional response to DNA damage
Actively growing LNCaP and LAPC4 cells were exposed to radiation therapy and processed 

for further analysis (A) Microarray analysis (In silico) generated heat map of 1131 

differentially regulated genes in RB proficient and deficient LNCaP cells 24 hours post IR 

(10 Gy). (B) IPA software generated deregulated functional pathways in RB proficient and 

deficient LNCaP cells in response to radiation therapy. (C) qRT-PCR validation of 

functionally important genes from the microarray data. Each data point is a mean ± SD from 

three or more independent experiments. ★★p < 0.05 were considered as statistically 

significant.
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Figure 3. RB loss alters DNA damage and repair capacity in response to radiation
Actively growing LNCaP and LAPC4 cells were exposed to radiation therapy and processed 

for further analysis (A) In silico analysis generated heat map of DNA damage and repair 

pathway genes from RB proficient and deficient LNCaP cells after 24 hours of post IR (10 

Gy). (B) Microarray Validation of POLB, POLK, REV3L and SYCP3 transcripts in LNCaP 

cells exposed to IR. (C) Immunoblot analysis of DNA ligase IV in LNCaP and LAPC4 

(shCon and shRB) cells in response to 10 Gy IR. (D) Confocal microscopic images of DNA 

damage induced γ-H2AX and 53BP1 foci (left panel) and a graphic representation of γ-

H2AX and 53BP1 foci (right panel) in RB proficient and deficient LNCaP cells after post 

IR. (E) Confocal microscopic images of DNA damage induced γ-H2AX and 53BP1 foci 

(left panel) and a graphic representation of γ-H2AX and 53BP1 foci (right panel) in RB 

proficient and deficient LAPC4 cells after post IR (10Gy). (F) Photo micrographs of 

alkaline comet assayin LNCaP shCon, shRB LAPC4 shCon and shRB exposed to 20 Gy 

radiation (top panel) and graphic representation of alkaline comet assay (bottom panel). For 

each data point there is a mean ± SD from three or more independent experiments. ★★p 

<0.05 were considered as statistically significant. Scale bar “–” = 20 μm.
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Figure 4. RB deficiency leads to activation of NFκB pathwayand cellular apoptosis in response to 
ionizing radiation
(A) Immunobloting analysis nuclear and cytoplasmic NFκB p50, NFκB p65, LaminB, 

GAPDH (left panel) and apoptotic marker cleaved caspase 3 (A, right panel) (B) 
Immunolocalization of nuclear NFκB p50 in RB proficient and RB deficient LNCaP cells 

after 24 hours of post radiation therapy (10 Gy). (C) Graphic representation of NFκB p50 

binding to consensus sequence by TF ELISA in RB proficient and RB deficient LNCaP cells 

(10 Gy) in the presence of wild-type oligonucleotides and mutant oligonucleotides after 24 

hours post radiation therapy (10Gy) (D) Growth curve and immunoblotting analysis of 

cytoplasmic and nuclear NFκBp50, NFκBp65, LaminB, GAPDH and IκBα in LNCaP and 

LAPC4 shCon and shRB cells expressing IκBα-DN. (E) Immunobloting analysis of cleaved 

caspase 3 in LNCaP or LAPC4 shCon and shRB cells in the absence (left panel) and 

presence (right panel) of ionizing radiation. (F) Immunolocalization of cleaved caspase3 in 

LNCaP shRB cells with and without concomitant expression of IκBα-DN in response 

radiation. Each data point is a mean ± SD from three or more independent experiments. ★★p 

< 0.05 were considered as statistically significant over shControl. Scale bar “–” = 20 μm.
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Figure 5. Modulation of PLK3 alters cellular apoptosis through NFκB dependent manner
(A) Chromatin immunoprecipitation assay showing recruitment of NFκB p50 on the PLK3 

promoter. (B) Microarray data validation of PLK3 and NOTCH2 (qRT-PCR) (left panel) 

and immunobloting analysis of PLK3 in shRB expressing IκBα-DN. (C) In silico analysis 

of RB1 and PLK3 transcripts from human prostate tumor samples. Samples are ordered 

from low (blue) to high (red) RB1 and PLK3 expression (top panel). Boxplots show 

differential expression of PLK3 in normal prostate and tumor, grouped by RB status (bottom 

panel, ★p =1.46E-5 and statistically significant). (D) Cell growth and immunoblot analysis 

of PLK3, cleaved caspase3 and laminB inLNCaP shCon and shRB cells ectopically 

overexpressing PLK3. (E) Cell growth and immunoblot analysis of PLK3, cleaved caspase3 

and laminB in PLK3deficient LNCaP shRB cells. Each data point is a mean ± SD from three 

or more independent experiments. ★★p < 0.05 were considered as statistically significant 

over shControl.
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Figure 6. RB deficiency results in marked in vivo radiosensitization
(A) Tumor volume analysis in LNCaP shCon and LNCaP shRB xenografts with no radiation 

(left panel) and after radiation (right panel). (B) Tumor mass analysis after 1-5 weeks of post 

IR (5 Gy) in LNCaP shCon and LNCaP shRB xenografts. (C) Measurement of serum PSA 

levels 1-5 weeks post IR. (D) Working model (schematics) shows the NFκB mediated 

apoptosis through PLK3 in RB deficient radio sensitized prostate cancer model. For each 

data point is a mean ± SD from 5 or more mice. ★★p < 0.05 were considered as statistically 

significant.
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