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Abstract

The most common cause of dilated cardiomyopathy and heart failure (HF) is ischemic heart 

disease; however, in a third of all patients the cause remains undefined and patients are diagnosed 

as having idiopathic dilated cardiomyopathy (IDC). Recent studies suggest that many patients with 

IDC have a family history of HF and rare genetic variants in over 35 genes have been shown to be 

causative of disease. We employed whole-exome sequencing to identify the causative variant in a 

large family with autosomal dominant transmission of dilated cardiomyopathy. Sequencing and 

subsequent informatics revealed a novel 10-nucleotide deletion in the BCL2-associated 

athanogene 3 (BAG3) gene ((Ch10:del 121436332_12143641: del. 1266_1275 [NM 004281]) that 

segregated with all affected individuals. The deletion predicted a shift in the reading frame with 

the resultant deletion of 135 amino acids from the C-terminal end of the protein. Consistent with 

genetic variants in genes encoding other sarcomeric proteins there was a considerable amount of 

genetic heterogeneity in the affected family members. Interestingly, we also found that the levels 

of BAG3 protein were significantly reduced in the hearts from unrelated patients with end-stage 

HF undergoing cardiac transplantation when compared with non-failing controls. Diminished 

levels of BAG3 protein may be associated with both familial and non-familial forms of dilated 

cardiomyopathy.
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INTRODUCTION

Heart failure (HF) secondary to systolic dysfunction and cardiac dilatation affects over 5 

million individuals in the U.S. and is an important cause of both morbidity and mortality. 

Approximately 30% of these patients have non-ischemic disease or idiopathic dilated 

cardiomyopathy (IDC). Although in the majority of patients with IDC the causative factors 

have remained undefined, emerging evidence suggests that up to 35% of individuals with 

IDC have an affected first degree relative1 and IDC can be associated with genetic 

abnormalities in 20-35% of individuals – leading to the use of the nomenclature familial 

dilated cardiomyopathy (FDC).2, 3Indeed, mutations in more than 30 genes have been 

identified as causative factors.4 and the most common pattern of inheritance is autosomal 

dominant with reduced penetrance and variable expressivity.5

Mutations causing FDC are found in genes encoding a wide spectrum of proteins6; however, 

a large number of the mutations that cause FDC occur in genes that encode sarcomere 

proteins or the complex network of proteins in the Z-disc6, 7 Recently, mutations in Bcl-2 

associated anthanogene-3 (BAG3), a 575 amino acid anti-apoptotic protein that serves as a 

co-chaperone of the heat shock proteins (HSPs), have also been associated with FDC. 8-10 

For example, Norton et al. recently identified a deletion of BAG3 exon 4 as a rare variant 

causative of FDC in a family without neuropathy or peripheral muscle weakness.11 

Subsequent sequencing of BAG3 in subjects diagnosed with IDC identified four additional 

mutations that segregated with all relatives affected by the disease. A genome-wide 

association study conducted in patients with HF secondary to IDC implicated a non-

synonymous single nucleotide polymorphism (SNP) (c.757T>C, [p. Cys151Arg]) located 

within the BAG3 gene as contributing to sporadic dilated cardiomyopathy.12

In the present study, we identified a novel BAG3 mutation in a family with adult-onset FDC. 

Furthermore, we report for the first time that BAG3 protein levels are significantly 

decreased in unrelated patients with non-familial IDC suggesting that altered levels of 

BAG3 protein may participate in the progression of HF.

METHODS

We identified a family with adult-onset familial dilated cardiomyopathy. After obtaining 

informed consent, participating family members underwent a physical examination by a 

heart failure cardiologist and blood was collected for subsequent DNA analysis. DNA was 

extracted using a DNA extraction kit (Qiagen, Valencia CA) and stored at −70°C. Whenever 

possible, electrocardiograms were obtained from affected family members who had not 

undergone heart transplantation. Family members who had not had a recent echocardiogram 

underwent a transthoracic echocardiogram using a SonoHeart Elite (SonoSite Inc, Bothell, 

Washington, USA) portable echocardiographic system. Medical records were obtained from 

one individual who had died. Affection status was determined on the basis of consensus 
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guidelines.13 Participating family members provided written informed consent prior to 

evaluation and the protocols were approved by the Internal Review Boards of Thomas 

Jefferson University and of the University of Colorado.

Human heart tissue was obtained from 9 subjects unrelated to our study family with end-

stage heart failure undergoing heart transplant at Temple University Hospital (6 male, 3 

female, mean age 47.6 + 5.7 years), from one affected family member at the time of heart 

transplantation at the University of Colorado and from 7 organ donors (1 male, 6 female, 

mean age 59.3 ± 3.7 years) whose hearts were unsuitable for donation owing to blood type, 

age or size incompatibility. All of the patients undergoing transplantation had severe left 

ventricular dysfunction and cardiac dilation with a mean left ventricular ejection fraction 

(LVEF) of 12.8 + 1.4%. Two of the transplant recipients had HF secondary to ischemic 

cardiomyopathy and the remainder had non-ischemic IDC. Four of the transplant recipients 

were receiving dobutamine alone, 5 were receiving milrinone alone and one was receiving 

both milrinone and dobutamine at the time of the transplantation. Echocardiography was 

performed on all of the organ donors prior to organ donation and all had normal left 

ventricular function by echocardiography with a mean LVEF of 57.5 + 1.6%. Tissue 

aliquots were removed from the left ventricular free wall, rapidly frozen in liquid nitrogen 

and stored at −70°C as described previously.14 The Institutional Review Boards of the 

University of Colorado and Temple University approved the tissue study and consent was 

obtained for all subjects.

Exome Sequencing and Bioinformatics

DNA from 5 affected family members and 1 unaffected family member was selected for 

exome sequencing with a target depth of >100X. Exome enrichment was performed using 

the Agilent SureSelect Human Exon 51Mb kit (Agilent, Santa Clara, CA). Paired-end 100 

nucleotide exome sequencing was performed using an Illumina HiSeq 2000 platform (San 

Diego, CA). Sequence reads passing Illumina chastity filter, were subjected to a quality 

filter step, trimmed and retained if the trimmed reads for each pair exceeded 50 nucleotides. 

Paired reads were then mapped to the reference human genome sequence (hg19) with 

gSNAP15 Sequence calls for variants (single-nucleotide polymorphisms [SNPs)] insertions 

and deletions [indels]) were performed using the Broad’s Genome Analysis Toolkit16

After variant detection, the program Annotate Variation (ANNOVAR) was used to classify 

variants (e.g., exonic, intronic, synonymous, non-synonymous, splice variant, stop gain, stop 

loss, insertion, or deletion) and to cross reference all the variants across various genetic 

variation databases (e.g., dbSNP, 1000 genomes database, AVSIFT) to isolate rare variants 

(variants with mean allele frequencies of <1% not found in dbSNP, 1000 genomes database, 

aVSIFT).17 Only non-synonymous changes (SNPs and in-dels), those that cause an alternate 

splice site, and/or an aberrant stop codon, were considered for further analysis. For non-

synonymous changes, all insertion and deletion variants were considered damaging, whereas 

SNP variants were cross-referenced to the dbNSFP database to determine whether the 

changes to the protein structure would be considered tolerable or damaging using four 

algorithms (Sorting Intolerant From Tolerant (SIFT), PolyPhen2, likelihood ratio test [LRT], 

or MutationTaster).18 Putative mutations identified were confirmed with traditional Sanger 
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sequencing in both affected and unaffected family members (primers and conditions 

available upon request).

Western Blot Analysis of Human Heart Tissue

Frozen tissue was homogenized in 40 mM Tris buffer, pH 7.5 containing 150 mM NaCl, 1% 

NP40, 1 mM DTT, and 1 mM EDTA. The sample was then centrifuged at 10,000 × g at 4°C 

for 30 min and the supernatant was collected and re-suspended in 350 DM Tris buffer, pH 

6.8 containing 25% beta-mercaptoethanol, 30% glycerol, 10% SDS, and 2% bromophenol 

blue. The protein concentration was measured using the method of Bradford and the samples 

were stored at −80°C. Equal amounts of protein (10ug) were fractionated by SDS-

polyacrylamide gel electrophoresis and transferred onto nitrocellulose membrane. 

Membranes were blocked in 10% nonfat dry milk/tris-buffered saline (pH 7.6) plus 0.1% 

Tween-20 (TBS-T) for 1 h and then incubated with polyclonal BAG3 antibody (Proteintech, 

Chicago, IL) in 5% nonfat dry milk with PBST for 2 hrs. Membranes were then incubated 

with goat-anti-rabbit 800 and goat-anti-mouse secondary antibody for 1 hr and scanned on a 

LI-COR Odyssey imaging system (Lincoln NE). All Western blot procedures were carried 

out at room temperature. BAG3 signal intensity was normalized to GAPDH.

RESULTS

Family history

The proband (Figure 1, III-5) was a 65 year-old woman of Eastern European ancestry who 

was referred in June 2003 to the heart failure clinic at Thomas Jefferson University because 

of a family history of HF. She had first been noted to have a dilated cardiomyopathy at 45 

years of age. She was largely asymptomatic while receiving a diuretic, a β-adrenergic 

receptor antagonist (β-blocker) and an angiotensin converting enzyme (ACE) inhibitor Her 

vital signs were within normal limits and her physical examination was notable only for a 

soft S3 heart sound. She had no peripheral muscle weakness and her neurologic examination 

was unremarkable. Her electrocardiogram revealed normal sinus rhythm with mild LV 

hypertrophy and non-specific ST-T wave changes. Her left ventricular ejection fraction was 

20% by echocardiography. As seen in Figure 1 and Table 1, the proband had two female 

siblings, one of whom (III-7) was asymptomatic with a normal physical examination; 

however, her ejection fraction by echocardiography was 44%. A second sister (III-9) was 

phenotypically normal and had a normal echocardiogram.

The proband had three children. A son underwent cardiac transplantation at the age of 20 

secondary to IDC ( IV-5 ), A second son was diagnosed with idiopathic dilated 

cardiomyopathy at the age of 20 but remained asymptomatic at age 32 despite an ejection 

fraction of 33% (IV-4). A daughter had no cardiac symptoms; however, her left ventricular 

ejection fraction by echocardiography was 48% and she had mild dilatation of the left 

ventricle and the aortic root without obvious aortic valve disease. (IV-6) Her 

echocardiogram met the criteria for diagnosis of a dilated cardiomyopathy. Her 

electrocardiogram was normal. Neurologic function was normal in all three children. The 

proband’s affected sister (III-7) had one daughter who died of progressive heart failure 

secondary to IDC at the age of 22 (IV-7): two other children had normal echocardiograms. 
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A cousin underwent cardiac transplantation because of IDC at 42 years of age after 

diagnosis at the age of 40 (III-1) and one of his sons also underwent cardiac transplantation 

for IDC at the University of Colorado at the age of 30 (IV-1). Healthy subjects were defined 

as “non-affected” if they had reached the age of 40 without symptoms and had a normal 

echocardiogram that did not meet the criteria for diagnosis of a cardiomyopathy. Ten-year 

follow-up of all participants demonstrated that functional capacity had remained stable in all 

family members.

Genetic analysis

As seen in Figure 1, the pedigree and clinical data were compatible with autosomal 

dominant adult-onset familial IDC. Exome sequencing of the DNA from 5 affected (III-5, 7: 

IV-1,4,5) and 1 unaffected (III-9) family members had an average of 11.8 + 0.96 Gb of past-

filter sequence reads per sample. After bioinformatics filtering a 10-nucleotide deletion in 

the coding portion of exon 4 of BAG3 (Ch10:del 121436332_12143641: del. 1266_1275 

[NM 004281]) was noted to be present in all tested affected subjects and absent in the one 

healthy sister of the proband (III-9) (Figure 2) Additional family members were tested for 

the BAG3 deletion by Sanger sequencing confirming appropriate co-segregation of the 

deletion with the phenotype among affected (III-1,5,7 and IV-1,4,5,6) and unaffected (III-9 

and IV-8,9,10,11,12) individuals. This deletion was not found in existing databases and 

introduces a frame shift and premature stop codon after 13 amino acids that predicts 

truncation of BAG3 at the carboxy terminal end by 140 amino acids. Thus, the abnormal 

BAG3 protein is predicted to have 435 amino acids instead of 575 amino acids. In addition, 

the amino acid sequence distal to the deletion (K P S W R R Y R G W S R L) is predicted to 

be different from that found in the normal protein. Only one additional variant was found by 

exome sequencing and after bioinformatics filtering. The variant (rs8192669), found in the 

IKZF5 gene did not segregate according to the IDC phenotype in other family members. An 

analysis of 52 genes previously associated with monogenic IDC for rare variants (<1%) 

identified only non-synonymous mutations in TTN, GATAD1, MYPN, ANKRD1 and RBM20: 

none of these variants segregated with the disease phenotype.

BAG3 expression in failing human heart

In order to determine whether the BAG3 deletion (BAG3 del. NM_004281) found in this 

patient cohort resulted in a decrease in the levels of BAG3 protein, Western blot analysis 

was performed on cardiac muscle obtained from one affected family member (IV-1) who 

underwent cardiac transplantation. The level of BAG3 protein in subject IV-1 was less than 

half that seen in heart tissue obtained from organ donors whose heart could not be utilized 

for transplantation. As seen in Figure 3, BAG3 levels in failing human heart from patients 

with end stage heart failure without known BAG3 mutations were significantly (p = 0.0002) 

less than that found in non-failing control hearts. Thus it appears that decreased levels of 

BAG3 protein can be found both in individuals with a BAG3 mutation as well as in end-

stage failing human heart.
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DISCUSSION

It is being increasingly recognized that genetic mutations can account for as many as a third 

of cases of IDC. Indeed, investigators have begun to refer to these cases as familial dilated 

cardiomyopathy (FDC).1-3 Inheritance can occur in a variety of manners with the most 

common pattern of inheritance being autosomal dominant. 19,20.21,5 Mutations are most 

commonly found in genes encoding the sarcomere leading to cardiac dysfunction, 

disintegration of the myofiber structure and accumulation of degraded material in 

autophagic granules. 22,6, 23-26 Here, we report a 10 bp deletion in the gene encoding the 

sarcomeric protein BAG3 that segregates completely with affected individuals in a family 

with an autosomal dominant pattern of FDC. We also report for the first time that BAG3 

protein is substantially reduced in the hearts of unrelated patients who are undergoing heart 

transplantation when compared with normal hearts from transplant recipients.

BAG3 is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart 

and serves as a co-chaperone of the heat shock proteins (HSPs).27,28 BAG3 binds to HSPs 

and regulates their ability to chaperone cytoskeletal proteins including desmin and also 

participate in degradation of cellular proteins through either the proteasome or autophagy 

pathways.28 BAG3 also protects cells from apoptotic death29 and inhibits myofibrillar 

degeneration in response to mechanical stress.30, 31 Knockdown of BAG3 in zebrafish11 or 

in neonatal cardiomyoctes30 or homozygous disruption of BAG3 in mice leads to cardiac 

dysfunction32 and BAG3 levels are decreased in the skeletal muscle of spontaneously 

hypertensive rats.33

The results of the present study in a large family with FDC are consistent with earlier reports 

that demonstrated an association between mutations in BAG3 and the development of 

muscle pathology. Mutations in BAG3 were first shown to cause abnormal muscle function 

in two families with childhood-onset muscular dystrophy8, 9 and the phenotype of IDC, 

diffuse myocardial fibrosis and sudden death was linked with markers in the chromosome 

10q25-26 region which includes the BAG3 locus.34 More recent studies have demonstrated a 

causative relationship between BAG3 mutations and the development of FDC without 

peripheral muscle weakness or neurologic findings.11,12,31

As seen with genetic variants in other sarcomeric genes, there was substantial genetic 

heterogeneity within this large family. For example, one of the proband’s sons had an early 

onset of severe disease requiring transplantation whereas a sibling with moderate disease 

and a middle-aged daughter with very mild disease remain asymptomatic for over a decade. 

Indeed, the cardiac dysfunction in the proband’s daughter would have gone unrecognized 

had it not been for careful phenotyping as part of this study. Identification of the causative 

mutation in this family provides an opportunity for guideline-driven genetic testing and 

counseling of family members and early identification of affected individuals.35 The finding 

that use of an angiotensin converting enzyme inhibitor improved survival in a small group of 

patients with Duchenne muscular dystrophy suggests that early therapy in families with 

mutations in sarcomere genes might be beneficial; however, additional studies will be 

required to define the best treatment strategies.36, 37
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We report for the first time that the level of BAG3 protein is significantly reduced in the 

hearts of unrelated patients with end-stage HF who are undergoing heart transplant and who 

have no family history of heart muscle disease. This finding is interesting as it suggests that 

while mutations in BAG3 can be causative of disease in FDC, changes in levels of BAG3 

protein might participate in the progression of disease in patients with non-familial forms of 

IDC. However, it remains to be seen whether the decrease in BAG3 levels in patients with 

IDC participated in the progression of the disease or is secondary to the disease process 

itself. Mechanistic studies will also be needed to understand the cellular and molecular 

effects responsible for the myopathy in individuals with the rare BAG3 deletion seen in this 

large family. Nonetheless, these results suggest that BAG3 protein might be a new target for 

therapeutic intervention in HF.
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Figure 1. 
BAG3-Associated Dilated Cardiomyopathy Pedigree. Males are represented by squares. 

Circles indicate females. Open symbols represent unaffected individuals and black symbols 

represent affected individuals. The presence or absence of the 10-nucleotide deletion in 

BAG3 is indicated by either a (+) or a (−) respectively. An arrow denotes the proband. An 

asterisk is used to denote individuals whose DNA was used for whole exome sequencing. A 

diagonal line is used to denote individuals who are deceased.
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Figure 2. 
A: Sequencing alignment for BAG3 10-nucleotide deletion. B: Representative Sanger 

sequencing shows the deletion in the BAG3 gene in an affected individual.
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Figure 3. 
Representative Western blot of BAG3 and GAPDH levels in non-failing (NF) and failing (F) 

human heart. C. Quantification of BAG3 protein levels in non-failing and failing human 

heart. Values are normalized to the level of GAPDH in order to account for variations in 

protein loading. Horizontal lines represent mean and standard error of the mean. Statistical 

analysis was performed using unpaired t-test with Welch’s correction for unequal variance,
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Table 1

Phenotype of study subjects with and without a 10-nucleotide deletion in the BAG3 gene.

Subject Age Gender EF(%] ECG Mutation

Comment

Eval/Onset/Death

or Transpl

II-1 na/na/70+ M Died

late 70's, hx of HF

II-3 na/na/80 F Hx of

HBP and CVA

II-4 na/na/29 M motor

vehicle accident

III-1 62 /40/42 M Yes

transplant at 42

III-5 65/45/na F 20 NS-ST-T changes Yes

III-7 67/47/na F 44 nl Yes

asymptomatic

III-9 68/na/na F 58 nl No

IV-1 30/30/30 M Yes

transplant at 30

IV-4 39/20/na M 33 sinus brady, IVCD Yes

asymptomatic

IV-5 35/20/20 M Yes

transplant at 20

IV-6 34/34/na F 48 nl Yes mild

aortic root dilat, LVDD 5.8

IV-7 na/18/22 F died -

worsening HF

IV-8 38 F nl No

IV-9 42 M nl No

IV-10 41 F nl No

IV-11 44 M nl No

IV-12 45 M nl No
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