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Abstract

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease with no known cure. Current 

strategies to treat RA, including methotrexate (MTX), target the later inflammatory stage of 

disease. Recently, we showed that inhibiting indoleamine-2,3-dioxygenase (IDO) with 1-methyl-

tryptophan (1MT) targets autoantibodies and cytokines that drive the initiation of the autoimmune 

response. Therefore, we hypothesized that combining 1MT with MTX would target both the 

initiation and chronic inflammatory phases of the autoimmune response and be an effective co-

therapeutic strategy for arthritis. To test this, we used K/BxN mice, a pre-clinical model of 

arthritis that develops joint-specific inflammation with many characteristics of human RA. Mice 

were treated with 1MT, MTX, alone or in combination, and followed for arthritis, autoantibodies, 

and inflammatory cytokines. Both 1MT and MTX were able to partially inhibit arthritis when used 

individually; however, combining MTX + 1MT was significantly more effective than either 

treatment alone at delaying the onset and alleviating the severity of joint inflammation. We went 

on to show that combination of MTX + 1MT did not lower inflammatory cytokine or autoantibody 

levels, nor could the synergistic co-therapeutic effect be reversed by the adenosine receptor 

antagonist theophylline or be mimicked by inhibition of polyamine synthesis. However, 

supplementation with folinic acid did reverse the synergistic co-therapeutic effect, demonstrating 

that, in the K/BxN model, MTX synergizes with 1MT by blocking folate metabolism. These data 

suggest that pharmacological inhibition of IDO with 1MT is a potential candidate for use in 

combination with MTX to increase its efficacy in the treatment of RA.
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Introduction

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by severe 

inflammation of cartilage and bone (1). Disease in RA patients is chronic and progressive 

and there is no known cure. Currently, four basic types of drugs are used to treat RA; non-

steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease-modifying anti-

rheumatic drugs (DMARDs), and biologic response modifying drugs (2–4). Often, these 

drugs are used in combination in an effort to increase their efficacy (5, 6). While these drugs 

help alleviate the symptoms of RA, there remains an urgent need for new therapeutic 

strategies to address the underlying causes that drive disease in RA patients.

Results from our laboratory suggest that the tryptophan catabolizing enzyme, 

indoleamine-2,3-dioxygenase (IDO) is a potential new therapeutic target in the treatment of 

RA (7, 8). IDO has been linked to immune modulation in a variety of disease settings, 

including tumor immunology and inflammatory autoimmune disease (9–11). The chief 

functional paradigm has been that IDO acts by suppressing T cell activation, prompting the 

general assumption that IDO inhibition would exacerbate autoimmune disorders (12, 13). 

However, studies using preclinical models of RA, asthma, and allergy suggest that the IDO 

pathway instead drives inflammation in certain pathological settings (7, 14, 15). 

Furthermore, RA patients exhibit elevated levels tryptophan catabolism that correlate with 

disease severity, suggesting that IDO may also contribute to pathogenicity in RA patients 

(16, 17).

To study the role of IDO in inflammatory autoimmune disease, we made use of 1-methyl-

tryptophan (1MT), a small molecule inhibitor of the IDO pathway together with the K/BxN 

preclinical model of arthritis (7). K/BxN mice share many similarities with RA patients, 

including high titers of autoantibodies, inflammatory cytokine production, and immune-

mediated destruction of cartilage and bone in the synovial joints (18, 19). Joint inflammatory 

disease develops spontaneously in 100% of K/BxN mice starting around 4 weeks of age and 

continues chronically throughout the life of the animal. As such, the K/BxN model has been 

useful for testing therapeutics designed either to prevent the onset or reverse the symptoms 

of ongoing disease (8, 20–22). Previously, we showed that treatment of K/BxN mice with 

1MT reduced autoantibody and inflammatory cytokine levels, resulting in an amelioration of 

arthritis symptoms (7). We further demonstrated that IDO was necessary for the 

differentiation of autoreactive B cells into antibody secreting cells, but not for their initial 

activation or maturation in germinal centers (8). These data demonstrated that IDO is 

important during the early stages of the autoimmune response, and as such, inhibitors of 

IDO will be most useful when administered at the initiation of the autoimmune response. In 

support of this, we recently showed that 1MT is effective at inhibiting the reactivation of 

autoreactive B cells following their regeneration after B cell depletion therapy (8).
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Currently, the most commonly used DMARD in RA patients is methotrexate (MTX) (3, 23, 

24). Treatment with MTX has also been used successfully in murine models of 

inflammatory arthritis, including collagen-induced arthritis and MRL-lpr/lpr mice (25, 26). 

The mechanism by which MTX alleviates arthritis has been extensively studied, but remains 

controversial. In some models, MTX has been shown to inhibit inflammation by increasing 

endogenous adenosine concentrations and altering the production of inflammatory cytokines 

(27, 28). Other studies have suggested that MTX leads to decreased cell proliferation and 

increased apoptosis by decreasing polyamine production and increasing intracellular reactive 

oxygen species (ROS) levels (29). Finally, MTX is a folate antagonist and therefore has also 

been proposed to inhibit arthritis through its anti-proliferative effects.(30)

Based on its anti-proliferative and anti-inflammatory properties, MTX is thought to act on 

the effector phase of the response (27, 28). In contrast, our previous data showed that 1MT 

inhibited arthritis development when administered during the initiation of the autoimmune 

response, but was ineffective once the inflammatory response was underway (7). Here, we 

use the K/BxN model to test the hypothesis that combining 1MT with MTX therapy will 

target both the initiation phase (1MT) and chronic inflammatory phase (MTX) of the 

autoimmune response. Our data show that the combination of a low dose of MTX with 1MT 

is significantly more effective than either treatment alone at delaying the onset and 

alleviating the severity of joint inflammation and suggest that pharmacological inhibition of 

IDO with 1MT is a potential candidate for use in combination with MTX in the treatment of 

RA.

Methods

Mice

KRN TCR Tg mice (31) and IDO1 deficient (IDO−/−) mice (32) on a C57BL/6 background 

have been described. NOD mice were purchased from Jackson laboratories. To obtain 

arthritic mice, KRN Tg C57BL/6 mice were crossed with NOD mice yielding KRN 

(C57BL/6 x NOD)F1 mice designated K/BxN or C57BL/6 mice expressing the I-Ag7 MHC 

Class II molecule, designated KRN B6.g7. IDO−/− arthritic mice were generated by breeding 

KRN IDO−/− C57BL/6 mice expressing the I-Ag7 MHC Class II molecule (KRN/IDO−/− 

B6.g7). All mice were bred and housed under specific pathogen free conditions in the 

animal facility at the Lankenau Institute for Medical Research. Studies were performed in 

accordance with National Institute of Health and Association for Assessment and 

Accreditation of Laboratory Animal Care guidelines with approval from the LIMR 

Institutional Animal Care and Use Committee.

Administration of 1MT, MTX, and inhibitors

Mice were given 400 mg/kg/dose (100µl total volume) of D/L-1MT (Sigma) diluted in 

Methocel/Tween (0.5% methylcellulose (w/v), 0.5% Tween 80 (v/v) in water) twice daily by 

oral gavage (p.o.); (33) 1, 10, or 25 mg/kg/dose (100µl total volume) of MTX (Hannah 

Pharmaceuticals) diluted in Methocel/Tween weekly p.o.; 0.5mg/kg IB-MECA (Sigma) 

diluted in saline daily i.p.; 10mg/kg theophylline (Sigma) diluted in Methocel/Tween daily 

p.o.; 1% difluoromethylornithine (DFM0; ILEX oncology) in the drinking water; 1 or 

Pigott et al. Page 3

Autoimmunity. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



25mg/kg folinic acid (Sigma) diluted in Methocel/Tween daily p.o.; or a combination of 

1MT, MTX, and the inhibitors. Folinic acid and MTX were administered 8hr apart to avoid 

interference with their uptake (28, 30). Control mice were given an equal volume of carrier 

alone (Methocel/Tween).

Arthritis incidence

The two rear ankles of K/BxN mice were measured starting at weaning (3 wk of age). 

Measurement of ankle thickness was made above the footpad axially across the ankle joint 

using a Fowler Metric Pocket Thickness Gauge. Ankle thickness was rounded off to the 

nearest 0.05mm. At the termination of the experiment, ankles were fixed in 10% buffered 

formalin for 48h, decalcified in 14% EDTA for 2wks, embedded in paraffin, sectioned, and 

stained with H&E. Histology sections were imaged using a Zeiss Axioplan microscope with 

a Zeiss Plan-Apochromat 10x/0.32 objective and Zeiss AxioCam HRC camera using 

AxioVision 4.7.1 software. The images were then processed using Adobe Photoshop CS2 

software.

ELISpot Assay

LN cells were plated at 4 × 105 cells per well and diluted serially 1:4 in Multiscreen HA 

mixed cellulose ester membrane plates (Millipore) coated with GPI-his (5µg/ml). The cells 

were incubated on the Ag-coated plates for 4h at 37°C. The Ig secreted by the plated cells 

was detected by Alkaline Phosphatase-conjugated goat anti-mouse total Ig secondary Ab 

(Southern Biotechnology Associates) and visualized using NBT/BCIP substrate (nitroblue 

tetrazolium / 5-bromo-4-chloro-3-indolyl phosphate; Sigma).

ELISA Assay

Serum samples were plated at an initial dilution of 1:100 and diluted serially 1:5 in Immulon 

II plates coated with GPI-his (5µg/ml). Recombinant GPI-his protein was generated and 

purified as described previously (34). Donkey anti-mouse total Ig- HRP (Jackson 

Immunoresearch) was used as a secondary Ab. Ab was detected using ABTS (2,2'-Azinobis 

[3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt) substrate (Fisher). The serum 

titer was defined as the reciprocal of the last dilution that gave an OD>3x background.

Cytokine Secretion

Cells from the draining lymph nodes (LNs) of MTX alone or MTX + 1MT treated K/BxN 

mice were harvested and cultured in PMA (50 ng/ml) + ionomycin (500 ng/ml) for 24h. As a 

negative control, cells were cultured in media alone. The supernatants were then harvested 

and analyzed for the levels of IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17, MIP-1α, MIP-1β, 

RANTES, TNFα, IFNγ, and MCP-1 by cytometric bead array (BD Biosciences). The 

samples were stained according to manufacturer instructions and analyzed on a FACSCanto 

II flow cytometer (BD Biosciences) using FACSDiva software (BD Biosciences). Cytokine 

concentrations were calculated by comparing to standard curves generated using 

recombinant cytokines provided with the cytometric bead array kit and analyzed with FACS 

array analysis software (BD Biosciences). The CBA assay is a validated and commonly used 

assay to measure cytokines (35, 36); however we also confirmed the levels of two cytokines 
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(IL-6 and IL-17) in groups of 1MT and carrier-treated mice using a conventional ELISA 

assay. Within a treatment group, the levels of both IL-6 and IL-17 were similar whether 

measured by conventional ELISA or CBA. Likewise, the decrease in IL-6 seen in the 1MT-

treated group and lack of difference in IL-17 levels between carrier and 1MT treatment were 

also seen with both assays. (Supplementary Fig. 1).

Statistical Analysis

Statistical significance was determined using an unpaired Student’s t test or the Mann-

Whitney nonparametric test and Instat Software (GraphPad Software, Inc).

Results

1MT synergizes with methotrexate to inhibit arthritis in K/BxN mice

To test the hypothesis that combining 1MT and MTX would target both the initiation and 

effector phases and therefore be more effective as a co-therapeutic, K/BxN mice were 

treated with MTX with or without 1MT (D/L racemic mix) starting at 3 weeks of age, before 

the onset of arthritis (Fig. 1). The treated mice were then followed for the severity of 

arthritis by measuring inflammation in the ankles and by histological examination of the 

joints for immune cell infiltrates, synovial hyperplasia, panus formation, and cartilage and 

bone erosion. MTX was able to partially inhibit arthritis development when used 

individually at a high dose (10 or 25 mg/kg), but was ineffective at a low dose (1mg/kg, Fig. 

1a). Similarly, 1MT was also able to partially inhibit arthritis when administered as a single 

agent therapy (Fig. 1b and (7)). Because high doses of MTX are associated with severe side 

effects (28, 37), we tested the efficacy of a low dose of MTX combined with 1MT. 

Intriguingly, the combination of a low dose of MTX (which had no effect as a single agent) 

together with 1MT was significantly more effective than either treatment alone at delaying 

the onset and alleviating the severity of joint inflammation (Fig. 1b). Histological analysis 

confirmed that ankles from MTX+1MT treated animals had less inflammatory cell 

infiltrates, synovial infiltration, and cartilage damage than carrier-treated mice or those that 

received either MTX or 1MT alone (Fig. 2). In this experiment, MTX and 1MT were 

administered prophylactically, demonstrating that treatment throughout the course of disease 

can prevent arthritis development. To determine if the combination of MTX and 1MT would 

also be effective at treating established arthritis, K/BxN mice were allowed to develop 

arthritis and then treated with MTX alone, 1MT alone, or MTX + 1MT (Fig. 1c). Neither 

1MT nor a low dose of MTX affected established arthritis when administered as single 

agents. The combination of MTX and 1MT did slow the progression of arthritis, albeit not as 

effectively as when administered prior to arthritis onset (Fig. 1c). These data suggest the 

combination of MTX and 1MT is an effective strategy to inhibit both the initiation and 

effector stages of the autoimmune response as a treatment option for alleviating 

inflammatory arthritis.

IDO deficient mice are more responsive to MTX treatment

Because pharmacologic inhibitors such as 1MT may have unintended effects on other 

pathways, we used a genetic “knockout” mouse mutant of IDO. IDO deficient (IDO−/−) 

arthritic mice were generated by breeding KRN IDO−/− C57BL/6 mice expressing the I-Ag7 
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MHC Class II molecule (KRN/IDO−/− B6.g7). KRN B6.g7 mice develop arthritis with 

similar kinetics as the original K/BxN mice without the other immune complications of the 

NOD genetic background (31). As was demonstrated in the K/BxN model, treatment with a 

low dose of MTX (1mg/kg) does not inhibit the onset or severity of arthritis in KRN B6.g7 

mice (Fig. 3a). In contrast, this low dose of MTX significantly inhibited both the time of 

onset and severity of arthritis in KRN/IDO−/− B6.g7 mice (Fig. 3b). Therefore, both 

pharmacological inhibition and genetic knockout approaches demonstrate a synergistic role 

for inhibition of the IDO pathway together with MTX in the treatment of RA.

Combination of MTX and 1MT does not further inhibit autoantibody response

Our results suggest that the combination of MTX + 1MT synergizes to alleviate arthritis by 

inhibiting both the initiation (1MT) and effector (MTX) stages of the autoimmune response. 

One mechanism to explain this synergistic effect is that 1MT and MTX are acting on 

different cellular or molecular targets leading to a more effective inhibition of the overall 

autoimmune response and reduced arthritis. Arthritis in the K/BxN model has been shown to 

be dependent on B cells producing pathogenic antibodies to the glycolytic enzyme, 

glucose-6-phosphate isomerase (GPI) (19). Previously, we demonstrated that the most 

dramatic effect of 1MT treatment was on this pathogenic anti-GPI B cell response (7). 

Single agent therapy with 1MT inhibited the autoreactive B cell response, leading to lower 

serum anti-GPI Ig titers and reduced numbers of anti-GPI antibody secreting cells (ASCs) 

(Fig. 4 and ref. (7)). To determine if MTX also affects the anti-GPI B cell response and 

synergizes with 1MT to further reduce pathogenic anti-GPI Ig, the titer of serum anti-GPI Ig 

and number of anti-GPI antibody secreting cells in the dLNs was compared between mice 

treated with the combination of MTX + 1MT and control mice treated with MTX alone, 

1MT alone, or carrier (Fig. 4). Serum anti-GPI titers were reduced in mice treated with 

either 1MT or MTX alone, compared to carrier-treated mice; however, no additional 

reduction was measured in mice treated with both MTX and 1MT (Fig. 4a). Similarly, 

treatment with MTX alone and 1MT alone both reduced the number of anti-GPI ASCs 

detected in the dLNs, but the combination of MTX and 1MT provided no additional benefit 

(Fig. 4b). These data demonstrate that both MTX and 1MT are able to inhibit the pathogenic 

B cell response when used as single agents, but this does not explain their synergistic effect 

on inhibiting the overall joint inflammatory response.

MTX + 1MT combination therapy does not inhibit inflammatory cytokines

Treatment with MTX has been shown to reduce levels of the inflammatory cytokines IL-6, 

IFNγ, and TNFα in the collagen induced arthritis model (25, 27, 28) and IL-4, IL-6, IL-13, 

TNFα, IFNγ, and GM-CSF in human RA patients (38–40). Similarly, we have shown that 

levels of IL-5, IL-6, IL-10, MCP-1, TNFα, and IFNγ are reduced in arthritic mice treated 

with 1MT (7, 8). To determine if altered cytokine profiles could explain the synergistic 

effect of MTX + 1MT, the levels of a panel of cytokines in the joint draining lymph nodes 

were compared in K/BxN mice treated with 1MT alone, MTX alone, or the combination of 

MTX + 1MT (Table 1). As we showed previously, levels of IL-5, IL-6, IL-10, MCP-1, 

TNFα, and IFNγ were reduced in mice treated with 1MT alone. Mice treated with a low 

dose of MTX alone had decreased levels of IL-10, but increased levels of RANTES. Levels 

of the other cytokines tested were not significantly different from control treated mice. Mice 
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treated with the combination of MTX and 1MT did show lower levels of RANTES 

compared to MTX alone treated mice; however, the combination of MTX and 1MT did not 

show any synergistic effect compared to mice treated with 1MT alone. In fact for most 

cytokines, the beneficial effect of 1MT was lost in the MTX + 1MT group (Table 1). 

Therefore, the synergistic effect of combined MTX + 1MT treatment cannot be explained by 

a reduction in inflammatory cytokines.

MTX synergizes with 1MT by inhibition of folate metabolism

To further explore the mechanism by which 1MT synergizes with MTX, we investigated the 

potential downstream pathways targeted by MTX. The precise mechanism by which MTX 

acts to inhibit arthritis is unknown and remains controversial (27, 41). In some models, 

MTX has been shown to inhibit inflammation by increasing endogenous adenosine 

concentrations and altering the production of inflammatory cytokines (27, 28). Other studies 

have suggested that MTX leads to decreased cell proliferation and increased apoptosis by 

decreasing polyamine production and increasing intracellular reactive oxygen species (ROS) 

levels (29). Finally, MTX is a folate antagonist and therefore has also been proposed to 

inhibit arthritis through its anti-proliferative effects (30). To determine which, if any, of 

these mechanisms are responsible for the synergy between MTX and 1MT, we used a 

combination of inhibitors and agonists to probe the requirement of increased adenosine 

concentration, polyamine inhibition, and folate antagonism for MTX action.

To determine if the anti-arthritic effect of MTX was mediated by increased adenosine 

concentration, we inhibited adenosine receptors with the adenosine receptor antagonist 

theophylline in mice treated with the combination of MTX + 1MT (42). If the effect of MTX 

was due to increased adenosine release, then theophylline should block this effect and lead 

to increased arthritis in mice treated with MTX and 1MT. Treatment with theophylline alone 

had no effect on arthritis onset or progression, nor did it reverse the anti-arthritic effect when 

added to combination therapy of MTX + 1MT (Fig. 5a). Because theophylline antagonizes 

the A1, A2a, and A2b adenosine receptors, but does not affect the A3 receptor, in a second 

set of experiments, we combined 1MT with an adenosine receptor agonist (IB-MECA) to 

stimulate the A3 adenosine receptor directly (43). If adenosine signaling through the A3 

receptor was responsible for MTX’s anti-arthritic effect, then IB-MECA should be able to 

mimic MTX’s synergistic effect when combined with 1MT. Administration of IB-MECA 

alone had no effect on arthritis, nor did it mimic the synergistic anti-arthritic effect of MTX 

when combined with 1MT (Fig. 5b). Together, these data demonstrate that the synergistic 

effect of MTX and 1MT is not due to the release of the anti-inflammatory molecule 

adenosine.

To determine if MTX is acting by reducing polyamine production, we used DFMO, an 

inhibitor of ornithine decarboxylase (ODC), a critical enzyme in the polyamine synthesis 

pathway (44). K/BxN mice were treated with DFMO alone or in combination with 1MT 

(Fig. 5c). Both 1MT alone and DFMO alone delayed the onset and reduced the severity of 

arthritis. However, DFMO was not able to mimic the effect of MTX when combined with 

1MT, as the combination of DFMO + 1MT did not show an enhanced effect over either 
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agent used individually. These data suggest that polyamine inhibition is not the mechanism 

by which MTX synergizes with 1MT to alleviate arthritis in K/BxN mice.

Finally, to determine if folate antagonism was required for the action of MTX, mice were 

supplemented with folinic acid, a technique shown to partially bypass the effect of MTX in 

the antigen induced arthritis (AIA) model in rats (30). K/BxN mice were treated with the 

combination of 1MT + MTX in the presence or absence of folinic acid. Treatment with 

folinic acid alone had no effect on arthritis development. However, addition of folinic acid 

to 1MT + MTX co-therapy reversed the synergistic anti-arthritic effect, as inflammation in 

the joints from mice treated with 1MT + MTX + folinic acid approached the levels found in 

Carrier, MTX alone, or folinic acid alone treated mice (Fig. 5d). Therefore, these data 

suggest that MTX synergizes with 1MT to alleviate arthritis by antagonism of the folate 

pathway.

Discussion And Conclusions

Current therapeutic strategies to treat RA primarily focus on controlling or alleviating 

inflammation and the inflammatory mediators driving chronic disease (2–4). This includes 

MTX, the most commonly used drug in the treatment of RA (3, 23). In contrast, we have 

shown that 1MT, an inhibitor of the IDO pathway, blocks the initial stages of the 

autoimmune response underlying arthritis development in the K/BxN mouse model of RA 

(7, 8). In this study, we tested the efficacy of combining MTX with 1MT to target both the 

effector and initiation stages of the autoimmune response. Both 1MT and high doses of 

MTX were able to partially inhibit arthritis development when used individually; however 

the combination of 1MT with a low dose of MTX was significantly more effective than 

either treatment alone at delaying the onset and alleviating the severity of joint inflammation 

(Fig. 6).

Combination therapy is becoming an increasingly popular therapeutic strategy in the 

treatment of RA (45). Patients who do not experience lowered disease activity in response to 

monotherapy with a DMARD like MTX often experience better results when it is used in 

combination with another therapeutic. For example, combining MTX with therapeutics that 

target the TNFα pathway has been effective for some patients (45). In fact, the latest 

American College of Rheumatology recommendations for the use of DMARDs and 

biologics in RA include a prominent role for combination therapies early in the treatment 

process, a change from previous treatment paradigms (3). The thought is that using drugs 

that target different mechanistic aspects of the disease process will be more effective than 

monotherapies that focus on only one target. Our data suggest that 1MT, by targeting the 

initial stages of the autoimmune response, should also be considered as a potential new 

therapeutic option for combination therapy in the treatment of RA.

An additional benefit to co-therapy may be in the reduction in the dosage of the component 

drugs required for efficacy. Preclinical testing of 1MT did not reveal any side effects, even 

at saturating doses (46, 47). Likewise, results from phase I clinical trials in cancer patients 

reported that 1MT was generally well tolerated, although a small number of patients who 

had received prior immunotherapy did develop autoimmune hypophysitis (47–49). 
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Currently, 1MT is in Phase II clinical trials as a therapy for metastatic breast and prostate 

cancer and primary brain tumors (ClinicalTrials.gov identifier numbers: NCT01792050, 

NCT01560923, NCT02052648), but toxicity data has not yet been reported. In contrast to 

1MT, high doses of MTX are associated with severe side effects including liver toxicity and 

bone marrow suppression in human RA patients (28, 37). Due to these side effects, some 

patients are unable to tolerate high enough doses of MTX to achieve a clinical benefit (45). 

As such, a co-therapeutic strategy that uses 1MT to lower the dose of MTX required for 

therapeutic effectiveness would be clinically desirable.

The mechanism by which MTX inhibits arthritis is not clear. MTX, a folate antagonist, 

inhibits purine and pyrimidine synthesis, a mechanism that likely accounts for its 

effectiveness as a cancer therapeutic (50). Decreased folate metabolism has been shown in 

RA patients treated with MTX, suggesting that MTX may also inhibit arthritis through its 

anti-proliferative effects (30, 51). However, data from some preclinical models suggest 

instead that MTX inhibits inflammation by increasing endogenous adenosine concentrations 

and altering the production of inflammatory cytokines (27, 28). Still other studies suggest 

that MTX treatment leads to decreased cell proliferation and increased apoptosis by 

decreasing polyamine production and increasing intracellular reactive oxygen species (ROS) 

levels (29). B cell antibody production has also been reported to be diminished by MTX 

treatment (52, 53). In the current study, we tested each of these mechanisms and found that 

the synergistic co-therapeutic effect of MTX + 1MT did not lower inflammatory cytokine or 

autoantibody levels, nor could it be reversed by the adenosine receptor antagonist 

theophylline or be mimicked by inhibition of polyamine synthesis. However, 

supplementation with folinic acid did reverse the synergistic co-therapeutic effect, 

demonstrating that, in the K/BxN model, MTX synergizes with 1MT by blocking folate 

metabolism.

In contrast to MTX treatment, T helper and inflammatory cytokines are reduced in 1MT-

treated K/BxN mice, resulting in a dramatic reduction in both the number of autoantibody 

secreting cells and titers of autoantibody in the serum (7, 8). However, like MTX, the 

molecular mechanism by which 1MT exerts its anti-arthritic effect is not entirely clear. 

Although widely considered an IDO inhibitor, 1MT does not inhibit the IDO enzyme 

directly, rather it likely inhibits the IDO pathway (54). 1MT inhibition of the IDO pathway 

has been shown to modulate dendritic cell function, controlling the balance between effector 

and regulatory T cell populations (55–57). The IDO pathway is complex and the 

mechanisms controlling its role in other immune functions are only beginning to be 

established (10). Recent data suggests that IDO may function through tryptophan depletion 

and sufficiency signals influencing GCN2 and mTOR pathways (54).

In summary, we have identified a potential new co-therapeutic strategy for improving the 

efficacy of low dose MTX treatment in inflammatory arthritis. We show that targeting both 

the initiation and chronic inflammatory stages of the autoimmune response with 1MT and 

MTX, respectively, is an effective strategy to control disease symptoms. Our work suggests 

that targeting the IDO pathway with 1MT should be considered as an effective co-

therapeutic strategy for treating inflammatory autoimmune diseases like RA.
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Figure 1. MTX synergizes with 1MT to inhibit arthritis development
(A) Dose-dependent inhibition of arthritis development by MTX. K/BxN mice were treated 

weekly with MTX (1, 10, or 25mg/kg) or carrier alone p.o. starting at the age of 3wk and 

followed for arthritis development. The graphs show mean ankle thickness ± SEM for n=8 

mice per treatment group pooled from two independent experiments. (B,C) Co-therapy with 

MTX + 1MT. K/BxN mice were treated with Carrier, MTX alone (1mg/kg), 1MT alone 

(400mg/kg), or MTX + 1MT starting (B) before (age 3wk) or (C) after arthritis onset (age 

4.5wk) and followed for the progression of arthritis. Arrows indicate the start of treatment. 
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The graphs show mean ankle thickness ± SEM for n=9 mice per treatment group pooled 

from two independent experiments. *p<0.05, n.s., not significant.
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Figure 2. MTX synergizes with 1MT to inhibit pathological signs of arthritis
K/BxN mice were treated with Carrier, MTX alone (1mg/kg), 1MT alone (400mg/kg), or 

MTX + 1MT starting at the age of 3wk. Ankles were harvested at the age of 6wk, sectioned 

and stained with hematoxylin and eosin. Images show the metatarsal joint from 

representative sections from a total of 9 mice for each treatment group. Scale bar = 100µm.
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Figure 3. MTX inhibits arthritis in IDO ko mice
(A) KRN B6.g7 (IDO wt) and (B) KRN IDO ko B6.g7 (IDO ko) mice were treated with 

MTX (1mg/kg) or carrier alone starting at the age of 3wk and followed for the development 

of arthritis. The graphs show mean ankle thickness ± SEM for n=9 IDO wt and n=6 IDO ko 

mice per treatment group pooled from two independent experiments. *p<0.05, n.s., not 

significant.
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Figure 4. MTX and 1MT do not synergize to further inhibit autoantibody production
K/BxN mice were treated with Carrier, MTX alone (1mg/kg), 1MT alone (400mg/kg), or 

MTX + 1MT from 3–6wk of age. (A) Serum anti-GPI Ig titers were measured using an 

ELISA assay. The graph shows the mean titer ± SEM from n=16 Carrier, n=10 1MT, n=14 

MTX, and n=14 MTX+1MT treated mice, pooled from 3 independent experiments. (B) 

Antibody Secreting Cells (ASCs) from the joint draining LN were measured using an 

ELISpot assay. The graph represents the mean number of ASCs ± SEM from n=13 Carrier, 

n=10 1MT, n=18 MTX, and n=14 MTX+1MT treated mice, pooled from 3 independent 

experiments. *p<0.05, **p<0.01, n.s., not significant.
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Figure 5. MTX synergizes with 1MT by inhibition of folate metabolism
K/BxN mice were treated with Carrier, MTX alone (1mg/kg), 1MT alone (400mg/kg), or 

MTX + 1MT from 3–6wk of age. To determine if the synergistic effect of 1MT + MTX was 

due to increased adenosine release, mice were treated with 1MT and MTX in combination 

with (A) the adenosine receptor A1, A2a, and A2b antagonist theophylline (10mg/kg, p.o.), 

n=10 mice per treatment group, or (B) the adenosine receptor A3 agonist IB-MECA 

(0.5mg/kg, i.p.), n=8 mice per treatment group. (C) To determine if inhibition of polyamine 

synthesis could mimic the effect of MTX, mice were treated with 1MT together with the 

ODC inhibitor DMFO (1% in drinking water), n=9 mice per treatment group. (D) To test 

whether inhibition of folate metabolism was responsible for the synergistic effect of 1MT + 

MTX, 1MT + MTX treatment was supplemented with folinic acid (25mg/kg, p.o.), n=10 

mice per treatment group. The graphs show mean ankle thickness ± SEM for the indicated 

number of mice per treatment group pooled from two independent experiments each. 

*p<0.05, n.s., not significant.
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Figure 6. Impact of 1MT and MTX on autoimmune response leading to arthritis
Arthritis in the K/BxN model can be divided into two stages (1) an initiation stage that is 

dependent on autoreactive B and T cells and (2) an effector stage that is triggered by 

immune complexes and inflammatory cytokines and dependent on macrophages, mast cells, 

and neutrophils. 1MT treatment impacts the initiation stage by inhibiting the differentiation 

of autoreactive B cells into antibody secreting cells (ASCs) and reducing the levels of 

several T helper and inflammatory cytokines. In contrast, MTX treatment, through a folate-

dependent mechanism, primarily affects the effector stage. By targeting both the initiation 
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and effector stages of the response, cotreatment with 1MT and MTX is more effective than 

either agent alone at delaying the onset and alleviating the severity of joint inflammation.
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Table 1
MTX and 1MT do not synergize to inhibit inflammatory cytokine production

K/BxN mice were treated with Carrier, MTX alone (1mg/kg), 1MT alone (400mg/kg), or MTX + 1MT from 

3–6wk of age. At 6wk, cells from the joint dLNs (popliteal, axillary, and brachial LNs) were harvested and 

cultured overnight in media alone or PMA (50ng/ml) + ionomycin (500ng/ml). Cytokines were measured in 

culture supernatants by cytometric bead array. Table shows the mean concentration ± SEM from n=20 Carrier, 

n=13 1MT, n=14 MTX, and n=12 MTX+1MT treated mice, pooled from 3 independent experiments.

Cytokine
(pg/ml)

Carrier 1MT MTX MTX+1MT

IL-4 2 ± 1 0 ± 0 5 ± 3 4 ± 3

IL-5 77 ± 9 46 ± 7* 117 ± 24 102 ± 13

IL-6 43 ± 3 27 ± 5* 39 ± 2 37 ± 5

IL-9 20 ± 4 21 ± 5 16 ± 5 20 ± 7

IL-10 144 ± 22 75 ± 17* 51 ± 15* 59 ± 19*

IL-13 109 ± 12 87 ± 18 174 ± 35 154 ± 22

IL-17 895 ± 140 709 ± 284 1061 ± 189 1226 ± 267

IFNγ 6107 ± 370 4526 ± 727* 5731 ± 650 5999 ± 871

MCP-1 159 ± 13 104 ± 13* 156 ± 19 144 ± 17

MIP-1α 662 ± 16 650 ± 55 655 ± 17 630 ± 16

MIP-1β 160 ± 6 175 ± 15 161 ± 6 153 ± 5

RANTES 616 ± 38 551 ± 89 745 ± 37 629 ± 45

TNFα 391 ± 35 224 ± 55* 371 ± 29 364 ± 42

*
p<0.05
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