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Expression of Enteropathogenic Escherichia coli Map Is Significantly
Different than That of Other Type III Secreted Effectors In Vivo

Mai Nguyen,a Jason Rizvi,b Gail Hechta,c

Departments of Medicine, Microbiology/Immunology, Division of Gastroenterology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USAa;
Jefferson Medical College, Philadelphia, Pennsylvania, USAb; Hines VA Medical Center, Hines, Illinois, USAc

The enteropathogenic Escherichia coli (EPEC) locus of enterocyte effacement (LEE)-encoded effectors EspF and Map are multi-
functional and have an impact on the tight junction barrier while the non-LEE-encoded proteins NleH1 and NleH2 possess sig-
nificant anti-inflammatory activity. In order to address the temporal expression of these important genes in vivo, their promot-
ers were cloned upstream of the luxCDABE operon, and luciferase expression was measured in EPEC-infected mice by
bioluminescence using an in vivo imaging system (IVIS). Bioluminescent images of living mice, of excised whole intestines, and
of whole intestines longitudinally opened and washed were assessed. The majority of bioluminescent bacteria localized in the
cecum by 3 h postinfection, indicating that the cecum is not only a major colonization site of EPEC but also a site of EPEC effec-
tor gene expression in mice. espF, nleH1, and nleH2 were abundantly expressed over the course of infection. In contrast, map
expression was suppressed at 2 days postinfection, and at 4 days postinfection it was totally abolished. After 2 to 4 days postin-
fection, when map is suppressed, EPEC colonization is significantly reduced, indicating that map may be one of the factors re-
quired to maintain EPEC colonization. This was confirmed in a competitive colonization study and in two models of chronic
infection, repeated exposure to ketamine and Citrobacter rodentium infection. Our data suggest that map expression contrib-
utes to the maintenance of EPEC colonization.

Enteropathogenic Escherichia coli (EPEC) is a human pathogen
that causes infantile diarrhea in developing countries (1–7).

EPEC adheres to host intestinal epithelium and induces attaching
and effacing (A/E) lesions, which are characterized by intimate
attachment of the organisms to host epithelial cells and efface-
ment of the surrounding enterocyte microvilli (8). A pathogenic-
ity island known as the locus of enterocyte effacement (LEE) en-
codes the proteins that promote the attachment and effacement
phenotype, including the type III secretion system (T3SS) and
T3SS effector proteins (9, 10). The T3SS translocates bacterial
effector proteins into host cells, thus mediating host cell responses
and alterations. Effector proteins secreted through the T3SS are
comprised of not only LEE-encoded proteins but also non-LEE-
encoded proteins. The temporal hierarchy of translocated effec-
tors through the T3SS has been defined using in vitro models. Tir
is the first effector to be translocated from EPEC into cultured
cells, followed by EspZ, EspF, EspH, EspG, and Map (11). There-
fore, it is likely that the expression of effector proteins in vivo also
varies in accordance with time and localization of infection. A
recent report described the expression of virulence genes in Citro-
bacter rodentium, a natural mouse pathogen, by studying the ex-
pression of Ler, a regulator for most LEE genes (12). This study
showed that virulence genes were expressed and required for
pathogen growth during early infection but that they were down-
regulated in the late phase of infection (12). It is possible that
expression of LEE effector genes in EPEC may have a similar pat-
tern; however, this has not been addressed in vivo.

Understanding the expression patterns of different EPEC ef-
fector proteins aids in interpreting their contribution to EPEC
pathogenesis in vivo. Previously, we reported the use of a bacterial
luciferase expression plasmid, pCM17 (13), to study the coloniza-
tion pattern of EPEC in a murine model (14). The plasmid pCM17
contains a constitutive promoter of an outer membrane gene,
ompC, upstream of the luxCDABE operon isolated from Photorh-

abdus luminescens. It can be employed to study gene expression
patterns of different EPEC virulence effector proteins by intro-
ducing the promoter of the virulence gene of interest upstream of
the luciferase operon, instead of the ompC promoter, into EPEC
and studying its expression in mice.

EPEC produces at least 26 virulence effector proteins, includ-
ing LEE and non-LEE proteins (15). EspF and Map (mitochon-
drial associated protein) are among the most extensively studied
LEE effector proteins and have multiple functions. EspF induces
mitochondrial lysis (16, 17), disrupts tight junctions (16, 18), pro-
motes degradation of antiapoptotic proteins (19), inhibits func-
tion of Na�/H� exchanger isoform 3 (NHE3) (20) and the so-
dium glucose transporter SGLT-1 (21), and inhibits phagocytosis
(22). Map induces transient filopodia at bacterial attachment sites
(23, 24), contributes to tight junction disruption (18), and triggers
mitochondrial dysfunction (25). espF is located in the polycis-
tronic LEE4 operon. map is located in a monocistronic operon in
LEE. Two homologous non-LEE-encoded proteins, NleH1 and
NleH2 (NleH1/2), that contain antiapoptotic and anti-inflamma-
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tory properties were also investigated. NleH1/2 block apoptosis
via inhibition of Bax-1 inhibitor and caspase-3 activation (26, 27).
They also dampen host cell inflammation via inhibition of the
NF-�B signaling pathway (28, 29). We previously reported that
NleH1/2 inhibit NF-�B through a mechanism involving attenua-
tion of I�B� ubiquitination (28). NleH1, but not NleH2, was re-
ported to prevent ribosomal protein S3 (RPS3) association with
NF-�B in the nucleus by inhibiting IKK� phosphorylation of
RPS3 (29).

In this study, the temporal expression profiles of espF, map,
nleH1, and nleH2 were assessed in a C57BL/6J mouse model of
EPEC infection using an in vivo imaging system (IVIS) to deter-
mine luciferase expression, as previously described (14). Mice
were infected by gastric gavage with EPEC strains carrying the
luciferase reporter driven by different native EPEC effector gene
promoters (LEE4, map, nleH1, and nleH2). Gene expression was
assessed at various times postinfection by an IVIS in live animals
and in excised intestine. map expression was found to be differen-
tially regulated compared to other EPEC effectors. Moreover, the
role of map and EPEC colonization was assessed in a competitive
index (CI) study. The correlation between map expression and
EPEC colonization was also assessed in mice repeatedly exposed to
ketamine to prolong colonization and in a natural C. rodentium
infection. Our data indicate that map may contribute to EPEC
colonization.

MATERIALS AND METHODS
Bacterial strains and plasmids. Bacterial strains and plasmids used in this
study are listed in Table S1 in the supplemental material.

Strain construction. Promoter regions were predicted using BPROM
bacterial promoter prediction software (30). Primers are listed in Table S2
in the supplemental material.

Construction of an luxCDABE reporter with multiple cloning sites
(MCS), pCM18. Because pCM10 (13) has only two unique restriction
sites, EcoRI and BamHI, an 88-nucleotide DNA fragment carrying mul-
tiple unique restriction sites was generated in between these EcoRI and
BamHI sites, upstream of luxCDABE. This fragment was generated from
two complementary primers, 18P1 with overhanging EcoRI and BamHI
sites (5=-AATTCATACGATCGATACCTGCAGGATAGGTACCTAAGG
CCTATTACCCGGGTAGCACTTTAATTAAGTTAACTTAGGCCGGC
CTATG; restriction sites are underlined) and 18P2 with overhanging
BamHI and EcoRI sites (5=-GATCCATAGGCCGGCCTAAGTTAACTT
AATTAAAGTGCTACCCGGGTAATAGGCCTTAGGTACCTATCCTG
CAGGTATCGATCGTATG; restriction sites are underlined). 18P1 and
18P2 were hybridized by incubation at 65°C for 10 min and then ligated
into pCM10 at EcoRI and BamHI sites.

pfliC, pLEE4, pnleH1, pnleH2, and pmap were constructed by PCR
amplification of the respective promoter regions and then subcloning
them into pCM10 or pCM18 to fuse with luxCDABE.

Mouse infection. Six-week-old male C57BL/6J mice were obtained from
Jackson Laboratory (Bar Harbor, ME, USA) and housed in a specific-patho-
gen-free facility at the University of Illinois at Chicago for 5 to 7 days with free
access to food and water. Mice were infected with bacteria by oral gavage as
previously described (14). Mice were pretreated with 5 g/liter streptomycin
sulfate in drinking water for 24 h to reduce the normal intestinal flora and
then switched to regular drinking water for 24 h prior to infection. To prepare
the inocula, bacteria were grown overnight (O/N) at 37°C in LB broth with
appropriate antibiotics (50 �g/ml kanamycin) and then inoculated at 1:33
into serum-free and antibiotic-free Dulbecco’s modified Eagle medium
(DMEM)/F12 medium for 3 h at 37°C. Bacteria was centrifuged at 3,700 rpm
for 30 min, and then cell pellets were washed with sterile phosphate-buffered
saline (PBS) once; the bacterial concentration was adjusted to �2 � 107

CFU/200 �l in PBS for mouse gastric gavage. This inoculation was 10 times

lower than a typical EPEC inoculation in order not to maximize the luciferase
measurement by the IVIS machine at the peak time point (around 3 h postin-
fection). Bacteria were administered by gastric gavage using a 22-gauge, ball-
tipped feeding needle.

In the competitive colonization studies, a 	map (Ampr Knr) strain,
SE1174, from the SE882 background (31), provided by James Kaper, Uni-
versity of Maryland, and a wild-type (WT) EPEC strain carrying plasmid
pACYC184 (Cmr) were grown in serum-free and antibiotic-free DMEM/
F12 medium for 3 h, and equal amounts of bacteria (108 CFU of each strain in
100 �l of PBS) were mixed and delivered to mice by gastric gavage. The
competitive index was calculated as described previously in Salmonella en-
terica serovar Typhimurium infection studies (32). The competitive index
(CI) of the mutant was calculated as the output ratio (mutant CFU
count/WT CFU count) divided by the input (inoculum) ratio (mutant
CFU count/WT CFU count). Animal protocols were approved by IACUC
at the University of Illinois at Chicago and Loyola University Chicago.

BLI in vivo and ex vivo. Mice were assessed for bioluminescence
imaging (BLI) by an IVIS Spectrum instrument (Xenogen Corporation,
Hopkinton, MA, USA) at 30 min, 3 h, 6 h, 24 h, 48 h, and 4 days postin-
fection. For in vivo BLI, mice were anesthetized either with 2.5% isoflu-
rane and then maintained at 1% or with an intraperitoneal (i.p.) injection
of a ketamine (100 mg/kg)-xylazine (5 mg/kg) mixture and maintained
using 1% isoflurane. To remove the black fur which interferes with the
bioluminescence signal, Nair Hair Remover (Church and Dwight Co.,
Princeton, NJ) was used on the day of infection. For ex vivo BLI, mice were
euthanized at different times postinfection, and the entire intestine was
immediately excised, positioned on a petri dish, and then imaged by an
IVIS. To detect adherent bacteria, the small intestine, cecum, and colon
were opened longitudinally and washed extensively with sterile PBS be-
fore imaging with an IVIS. Quantification of bioluminescence was con-
ducted using Living Image software, version 3.1.

Bacterium enumeration from fecal pellets. Freshly collected stool
from infected mice was weighed, homogenized, and serially diluted in PBS
and then plated on agar plates supplemented with appropriate antibiotics.
EPEC was plated on sorbitol MacConkey agar plates supplemented with
100 �g/ml nalidixic acid, and Citrobacter rodentium/pmap was plated on
LB plates supplemented with 50 �g/ml kanamycin.

In vitro bioluminescence imaging. Bacteria were grown O/N in LB
medium in the presence of appropriate antibiotics and then inoculated at
1:500 into different types of media: LB medium, LB medium with 18.4
mM NH4Cl, DMEM, DMEM with 18.4 mM NH4Cl, PBS, and PBS with
18.4 mM NH4Cl. At 1 h postinfection, triplicate samples of 100 �l of each
culture were pipetted into 96-well dark-walled, clear-bottom plates
(Corning Incorporated, Corning, NY). BLI was measured using an IVIS.

Statistical analysis. All data are reported as means 
 standard errors
of the means (SEM). Data comparisons were made using a nonparametric
Kruskal-Wallis test with Dunn’s multiple-comparison test or with Stu-
dent’s t test. Differences were considered significant when the P value was
�0.05. Data were graphed using GraphPad Prism software, version 5 (La
Jolla, CA).

RESULTS
Expression of EPEC effector proteins in mice within the first 24
h postinfection. To compare the expression profiles of the EPEC
effector proteins Map, EspF, NleH1, and NleH2 in a murine model of
EPEC infection, EPEC was transformed with pmap, pLEE4, pnleH1,
and pnleH2, respectively. espF is expressed under the regulation of
LEE4 promoter; therefore, pLEE4 was used to study the expression of
espF and other proteins in the LEE4 operon (SepL, EspA, EspD,
CesD2, and EscF). The regulation of expression of flagellin (FliC) was
previously reported in uropathogenic Escherichia coli (33). There-
fore, a luciferase reporter driven by the EPEC fliC promoter, pfliC,
served as a positive control in these experiments. Promoter re-
gions were predicted using BPROM bacterial promoter prediction
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software (30). Primers were designed so that each subcloned pro-
moter covered a region of 700 to 1,000 kb.

Constructed promoters were tested first in vitro to determine
whether they could be regulated by an exogenous stimulus. It has
been reported that EPEC secretion is reduced in the presence of 18.4
mM NH4Cl (34). Strains carrying different EPEC effector protein
promoters were inoculated into PBS or DMEM, and then the lucif-
erase signal was measured by an IVIS (see Fig. S1A and B in the
supplemental material) in the presence and absence of NH4Cl. The
promoterless pCM10 plasmid carrying luxCDABE was used as a neg-
ative control. pCM17 (the plasmid carrying an outer membrane
OmpC promoter) and pfliC served as positive controls. Luciferase
expression of all tested promoters was significantly reduced 10 to
25% in the presence of NH4Cl at 1 h postinoculation, in both PBS and
DMEM, confirming that the expression of these constructs was reg-
ulated. In addition, gene expression was 20 times higher in DMEM
than in PBS, confirming known regulatory patterns for the genes.

To test the expression of these genes in vivo, 7-week-old
C57BL/6J mice were infected with EPEC carrying pfliC, pLEE4,
pmap, pnleH1, or pnleH2 as described in the Materials and Meth-
ods section. Mice were anesthetized with isoflurane, and BLI im-
aging was performed at 30 min, 3 h, 6 h, and 24 h postinfection
and quantified (Fig. 1A and B). After imaging, the mice were sac-
rificed, and the intestine was immediately excised and imaged by
an IVIS in order to better localize the site of expression (Fig. 1C
and D). The gene expression profiles of effector proteins in bacte-
ria adherent to the intestine were also examined by opening the
intestine longitudinally and washing it extensively with sterile PBS
before in vivo imaging was performed (Fig. 1E and F). For all genes
examined, the expression patterns were similar within the first 24
h postinfection, with peak expression occurring at 3 h. In addition,
by 3 h postinfection, the majority of bioluminescent bacteria oc-
cupied the cecum (Fig. 1C); this pattern persisted at 24 h postin-
fection, suggesting that the cecum is the main site for EPEC colo-
nization and for expression of EPEC effector proteins in mice. No
significant difference was observed between the expression levels
of fliC, LEE4, nleH1, nleH2, and map within the first 24 h postin-
fection (Fig. 1B, D, and F).

Map expression is totally abolished by 4 days postinfection.
The initiation of EPEC infection requires the establishment of
bacterial adherence and creation of a niche. We were therefore
interested in assessing the level of effector expression at later time
points postinfection. Again, imaging and bioluminescence were
examined and quantified at 2 and 4 days postinfection. Interest-
ingly, at 2 days postinfection, map expression was suppressed,
while the other effector promoters remained active (Fig. 2A and
B). By 4 days postinfection, other effector promoters continued to
produce strong luciferase signals, while the map signal was unde-
tectable (Fig. 2D). Colonization levels of all strains were compa-
rable at both 2 and 4 days postinfection (Fig. 2C and E), indicating
that the suppression of map promoter signal was not due to loss in
bacterial colonization.

We previously demonstrated the pCM17 plasmid to be 100%
stable in EPEC when the bacteria are grown in LB medium for at
least 7 days without antibiotic selection (14). To further confirm
that the loss of the map signal was not due to plasmid instability,
we similarly tested the stability of the pmap plasmid in nonselec-
tive LB medium. After each consecutive day of growth, cultures
were plated on LB plates without antibiotics, and the percentage of
luminescent colonies was determined. We confirmed that pmap

was stable in 100% of colonies at least until day 4, and it remained
highly stable in 96% of colonies by day 5 (see Fig. S2 in the sup-
plemental material). This confirms that the loss of map expression
was not due to the instability of the plasmid.

In many cases, gene transcription is regulated by at least one tran-
scriptional regulator that binds to the regulatory region. In this study,
the promoters were constructed to include possible regulator regions
upstream of the core promoters. Although a map regulatory region
has not been reported, it is likely that one exists. To determine if the
upstream region of the map promoter is crucial for its expression, this
region was truncated to 125 nucleotides and cloned into the luciferase
reporter plasmid designated pmapT. The construct pmapT was
transformed into EPEC and assessed for map expression in infected
mice (Fig. 2F). The EPEC/pmapT colonization level was comparable
to that of EPEC/pmap (data not shown). As anticipated, luciferase
expression driven by the truncated map promoter was significantly
lower than that under the control of the full-length promoter (Fig.
2G). No signal was observed in mice, even at 3 h postinfection, which
is the normal time point for peak expression of effector proteins,
suggesting that the upstream region of the map promoter is required
for its expression.

Map expression is restored in a model of prolonged infec-
tion. Ketamine, an anesthetic drug used in animals, is known to pro-
long the colonization of bacteria (14, 35). Specifically, EPEC coloni-
zation in mice is prolonged for at least 30 days postinfection, instead
of the typical 7 to 10 days, when ketamine is received daily (14). We
examined the pattern of map expression in ketamine-treated mice in
comparison to that in untreated mice. For these experiments, the
same mice were repeatedly assessed for luciferase expression at differ-
ent time points, i.e., 3 h, 6 h, 24 h, 2 days, and 4 days postinfection
(Fig. 3A), and anesthetized intraperitoneally (i.p.) with a ketamine
(100 mg/kg)-xylazine (5 mg/kg) mixture prior to each image acqui-
sition. Similar to the results in untreated mice, map expression was
absent at 2 days postinfection in ketamine-treated mice while the
other effectors were abundantly expressed (Fig. 3A). In contrast, at 4
days postinfection, animals that received repeated ketamine injec-
tions expressed map at levels comparable to those of the other effec-
tors (Fig. 3A). In addition, EPEC/pmap colonization remained stable
over these 4 days (Fig. 3B).

In order to confirm that the elevated expression of map at day 4
was due to the effect of repeated exposure to ketamine, we examined
map expression at 2 and 4 days postinfection in mice sedated with
ketamine-xylazine only immediately prior to IVIS imaging. Only 1
out of 4 mice expressed map at 2 days postinfection while no mice
showed a luciferase signal at 4 days postinfection (Fig. 3C and D),
supporting the hypothesis that the elevated expression of map at 4
days postinfection in animals receiving repeated exposure to keta-
mine was, in fact, due to the effect of ketamine and correlated with
enhanced colonization. These data also support the idea that the
pmap plasmid is stable in the in vivo model. With repeated ketamine
administration, bacterial colonization remained at similar levels at
days 2 and 4 postinfection (Fig. 3B), whereas in the absence of keta-
mine, colonization levels dropped more than 1 log at 4 days com-
pared to the level at 2 days postinfection (Fig. 3E). These data suggest
that Map expression contributes to the extended colonization associ-
ated with repeated ketamine administration.

Map is required for competitive colonization. Map has been
reported to promote colonization in mixed-infection studies with
Citrobacter rodentium (36, 37) but has not been tested with EPEC.
To investigate the requirement of Map in competitive coloniza-
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tion, a mixture of approximately 50% WT EPEC (carrying a low-
copy-number Cmr plasmid) and 50% EPEC 	map (Knr Ampr)
was given to mice. Bacterial input levels were confirmed by growth
on selective LB plates with the specified antibiotics as described in
Materials and Methods. Stools were collected for colonization

from day 1 until day 5 postinfection. Calculation of the competi-
tive index (CI) was as described in the Materials and Methods
section. A CI of 1 indicates that the test strain was able to compete
at the same level as the WT strain, while a CI of less than 1 indicates
that the test strain was out-competed by the WT. The EPEC 	map

FIG 1 Bioluminescent imaging of EPEC expressing pfliC, pnleH1, pnleH2, pLEE4, and pmap in vivo. (A) Representative bioluminescent imaging of infected mice
at 30 min, 3 h, 6 h, and 24 h postinfection. Mice were anesthetized with 2.5% isoflurane, maintained at 1%, and then imaged by an IVIS. (B) Quantification of
bioluminescence in the images in panel A. (C) Representative bioluminescent imaging shows colonization of EPEC expressing pfliC, pnleH1, pnleH2, pLEE4, and
pmap in excised intestines. (D) Quantification of bioluminescence in the images in panel C. (E) Representative bioluminescent imaging of excised, longitudinally
opened and washed intestines showing adherent bacteria. (F) Quantification of bioluminescence in the images in panel E. In panels C and E, the entire intestine
was positioned on a petri dish with arrangement of small intestine, cecum, and colon from left to right, and then imaged by IVIS. Si, small intestine; Ce, cecum;
Co, colon. Signal strength is as indicated by the colored bars on the figure. In panels B, D, and F, values are means; error bars indicate SEM (n � 3). p.i.
postinfection; hpi, hours postinfection; mpi, minutes postinfection.

EPEC Map Expression In Vivo

January 2015 Volume 83 Number 1 iai.asm.org 133Infection and Immunity

http://iai.asm.org


strain has a CI of less than 0.2 from day 1 to day 5 postinfection
(Fig. 4), indicating that the expression of map provides an advan-
tage for EPEC colonization.

EPEC Map expression in Citrobacter rodentium. As opposed
to the 7- to 10-day colonization period of EPEC infection in the

murine model with streptomycin pretreatment, the related mouse
pathogen Citrobacter rodentium colonizes mice naturally for 17 to
21 days. EPEC Map and C. rodentium Map are 80% identical
(NCBI protein-protein BLAST), while their possible regulatory
and promoter regions share no significant similarity. Therefore,

FIG 2 map expression at days 2 and 4 postinfection. Mice were anesthetized with 2.5% isoflurane, maintained at 1%, and then imaged by an IVIS. (A)
Representative bioluminescent imaging of EPEC expressing pfliC, pnleH1, pnleH2, pLEE4, and pmap at day 2 postinfection (n � 4). (B) Quantification of
bioluminescence in the images in panel A. (C) Colonization of EPEC at day 2 postinfection. (D) Quantification of bioluminescence at day 4 postinfection (n �
6 to 7). *, P � 0.05 for map expression compared with either fliC, nleH1, nleH2, or espF under the control of LEE4 promoter. (E) Colonization at day 4
postinfection. (F) Bioluminescent imaging of EPEC/pmapT at 3 h, 24 h, and 48 h postinfection (n � 4; all mice are shown). (G) Quantification of pmap and
pmapT signals (n � 4). *, P � 0.05. Horizontal bars (B to E), medians; error bars (C and D), SEM.
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we used C. rodentium as the infecting agent to examine the level of
EPEC map expression in a natural model of prolonged coloniza-
tion. Mice were infected with C. rodentium carrying the construct
pmap, and map expression was determined by IVIS. Interestingly,
EPEC map expression was maintained throughout the course of
infection in C. rodentium (Fig. 5A), in contrast to its limited ex-
pression in EPEC. Interestingly, the maintenance of expression of

map correlates with the prolonged colonization of C. rodentium
(Fig. 5B). The differential expression of the EPEC map promoter
in EPEC versus C. rodentium indicates a divergent regulatory
mechanism of this gene in the two species.

DISCUSSION

This paper reports for the first time the investigation of expression
patterns of different EPEC effector proteins in vivo. We observed
that all of the studied effector genes, map, espF, nleH1, and nleH2,
have their highest expression in the cecum. This is consistent with
our previous report that the cecum was the main colonization site
for EPEC in mice (14). In a C. rodentium mouse model, the colon
and the cecum were reported to be the major expression sites for
LEE-encoded proteins during the early phase of infection (12).

Moreover, all studied effector genes were abundantly ex-
pressed within the first 24 h postinfection, with peak expression
occurring at 3 h postinfection. However, at 48 h postinfection,
while nleH1, nleH2, and espF were still robustly expressed, map
expression was significantly reduced, and it was totally suppressed
by 4 days postinfection. The fact that map is suppressed at day 4
while EPEC colonizes the gut for only 7 to 10 days suggests that
map, together with other factors, may play a role in maintaining
EPEC colonization. In fact, there is a sharp drop in colonization at
day 4 postinfection, which correlates with the suppression of map
expression (Fig. 3D). A role for map in EPEC colonization was
confirmed in competition assays with WT EPEC and a 	map
strain, which revealed that colonization by an EPEC strain lacking
map was significantly impaired in mice over the 5-day period

FIG 3 map expression in mice receiving repeated exposure to ketamine and in untreated mice. (A) Mice infected with EPEC expressing pmap, pfliC, and pLEE4 were
anesthetized with an i.p. injection of a mixture of ketamine (100 mg/kg)-xylazine (5 mg/kg), and sedation was maintained using 1% isoflurane. Bioluminescence was
imaged and quantified at 30 min, 3 h, 6 h, 24 h, 48 h, and 4 days postinfection (n � 4 to 8). Error bars, SEM. *, P � 0.05 for expression of map compared with either fliC
or espF under the control of the LEE4 promoter. (B) Colonization of EPEC/pmap from mice repeatedly exposed to ketamine. (C) Bioluminescent imaging of EPEC/pmap
in vivo at days 2 and 4 postinfection in untreated mice. Mice were anesthetized only once with ketamine-xylazine immediately before in vitro imaging. All mice are shown.
(D) Quantification of bioluminescence in the images in panel C. (E) Colonization of EPEC/pmap in untreated mice at 2 days and 4 days postinfection. Stools were
collected at days 2 and 4 postinfection. Horizontal bars (B, D, and E), means; error bars (D and E), SEM (n � 4). *, P � 0.05.

FIG 4 Competitive index (CI) of EPEC 	map strain in competitive colonization
studies with WT EPEC. Mice were infected with a mixture of equal amounts of WT
EPEC and a 	map strain. Colonization was determined by growth of each strain
on LB plates containing its corresponding selection antibiotic. CI was calculated as
described in Materials and Methods. Error bars, SEM (n � 8).
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tested (Fig. 4). Of greater interest perhaps is the demonstration
that in two models of prolonged colonization, one induced with
repeated ketamine exposure and the other through natural infec-
tion by C. rodentium, map expression is maintained at the same
level as other effectors except for a transient dip on day 2 postin-
fection in ketamine-treated mice.

The role of map in colonization has also been studied in other
A/E pathogens, enterohemorrhagic E. coli (EHEC) (38), and C.
rodentium (36, 37, 39). In an EHEC-infected infant rabbit model,
EHEC with a deletion of map showed a significant reduction in
colonization in small intestine (38). In C. rodentium-infected
mice, although Map deletion did not have an effect on coloniza-
tion (39), a C. rodentium 	map strain was impaired in competitive
assays with the WT (36, 37). Together with our results, these find-
ings suggest that map contributes to the colonization of A/E
pathogens although perhaps at a subtle level.

In addition to Map, intimin (40) and many other effectors, such as
Tir (41), EspF (38), EspH (38), and EspG (38), promote colonization
of A/E pathogens. Tir is required for ex vivo colonization of both
EPEC and EHEC in human intestinal mucosa in in vitro organ culture
experiments (41). However, intimin but not Tir is required for colo-
nization of C. rodentium in C57BL/6 mice pretreated with strepto-
mycin (40). EspF, EspH, and EspG are all required for EHEC
colonization in infant rabbits (38). However, EspG does not pro-
mote colonization of C. rodentium in mice (36). Together, it is
possible that Map may act in harmony with others factors like
intimin, Tir, and other effectors to maintain EPEC colonization.

Map has multiple known functions, including filopodium for-
mation at bacterial attachment sites, disruption of tight junctions,
and mitochondrial dysfunction, which may be important for the
earlier phases of infection. Of these known Map activities, tran-
sient filopodium formation is most associated with attachment
and perhaps plays a role in initial colonization. Attachment is
associated with actin pedestal formation mediated by Tir-intimin
complex (34). Map is translocated into host cells after Tir (11) and
induces filopodium formation caused by actin polymerization at
the site of bacterial infection (37, 38). Although Map signaling is
inhibitory to Tir-intimin-triggered pedestal formation, it may still
play an important role in optimizing the process of pedestal for-
mation (23). It is unclear why filopodia are induced transiently at
early phases of infection (23, 24), and we can only speculate as to
the cause. One possibility is that filopodium formation may assist
in localizing cellular components required for pedestal formation
to regions surrounding the bacterial attachment site. It is therefore

possible that transient, but not sustained, filopodium formation
assists in pedestal establishment and bacterial attachment.

Finally, our findings suggest that there are specific regulatory
events that control the expression of EPEC effector proteins, such
as Map. Further investigation of the mechanisms involved in
Map’s contributions to colonization and other functions is impor-
tant in order to gain a better understanding of Map’s role in
pathogenesis of A/E organisms. Moreover, elucidation of the ex-
pression profiles of other effectors such as EspG, Tir, intimin,
EspH, NleC, NleD, and others would provide deeper insight into
the pathogenesis of these bacteria.
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